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Abstract. The integrity of complex software systems built from existing 
components is becoming more dependent on the integrity of the mechanisms 
used to interconnect these components and, in particular, on the ability of these 
mechanisms to cope with architectural mismatches that might exist between 
components. There is a need to detect and handle (i.e. to tolerate) architectural 
mismatches during runtime because in the majority of practical situations it is 
impossible to localize and correct all such mismatches during development 
time. When developing complex software systems, the problem is not only to 
identify the appropriate components, but also to make sure that these 
components are interconnected in a way that allows mismatches to be tolerated. 
The resulting architectural solution should be a system based on the existing 
components, which are independent in their nature, but are able to interact in 
well-understood ways. To find such a solution we apply general principles of 
fault tolerance to dealing with architectural mismatches. 

1 Introduction 

Software architecture can be defined as the structure(s) of a system, which comprise 
software components, the externally visible properties of those components and the 
relationships among them [18][20]. A software architecture is usually described in 
terms of its components, connectors and their configuration [15]: components 
represent computation units, connectors correspond to the communication protocols, 
and configurations characterize the topology of the system in terms of the 
interconnection of components via connectors.  

As a result of combining several architectural elements using a specific 
configuration, architectural mismatches may occur [11]. Architectural mismatches are 
logical inconsistencies between constraints of various architectural elements being 
composed. An architectural mismatch occurs when the assumptions that a component 
makes about another component, or the rest of the system, do not match. That is, the 
assumptions associated with the service provided by a component are different from 
the assumptions associated with the services required by a component for behaving as 
specified [15]. These assumptions can be related to the nature of components and 



  

connectors (control and data models, and synchronization protocols), the global 
system structure, or the process of building the system [11][20]. Traditionally, 
mismatches have been dealt with statically [8][10], by means of analysis and removal. 
For example, a formal approach has been advocated to uncover architectural 
mismatches in the behavior of components, in particular, deadlocks [4][12]. 

There are many reasons to support our claim that it is usually non-practicable to 
statically localize and correct all possible architectural mismatches, and because of 
this, we believe that it is vital to be able to build systems that can tolerate such 
mismatches. This is mainly due to the complexity of modern systems and restricted 
applicability of the static methods of correcting mismatches (c.f. software design 
faults). First of all, complex applications have complex software architectures in 
which components are interconnected in complex ways and have many parameters 
and characteristics to be taken into account, and they have to meet many functional 
and non-functional requirements that often have to be expressed at the level of 
software architecture. Secondly, architects make mistakes while defining software 
architectures, in general, and while dealing with mismatches, in particular. Thirdly, 
there is a strong trend in using off-the-shelf elements while building complex 
applications and because of the very nature of such elements some information about 
their architectural characteristics may be unavailable. Lastly, modern software 
systems are to be open, flexible and adaptive, and they may undergo dynamic 
reconfiguration (often by incorporating new components knowledge about which is 
not available offline), adding uncertainty about the various architectural elements 
present at any point in time. 

Instead of dealing with architectural mismatches during development time, which 
is the conventional approach, this paper shows how these mismatches can be tolerated 
during runtime at the architectural level. The rest of the paper is structured as follows. 
Section 2 discusses architectural mismatches in the context of features that are 
associated either with the architectural elements or the application being represented 
by these elements. In Section 3, we present some basic dependability concepts that 
provide the basis for the following discussion (in Section 4) on architectural 
mismatches from the perspective of system dependability. In Section 5, we address 
the notion of mismatch tolerance by discussing in more detail its basic activities. 
Section 6 presents several simple examples that demonstrate the proposed approach. 
Finally, Section 7 concludes with a summary of the contribution and a perspective of 
future research. 

2 Architectural Mismatches and Features 

To understand better the ways of tolerating architectural mismatches we will look 
first into specific characteristics of the individual architectural elements to be 
composed into a system, as well as into the reoccurring architectural solutions (i.e. 
architectural styles) applied for building system architectures. 



2.1 Architectural Features 

The architectural mismatches occur because of inconsistencies among given 
architectural elements. These inconsistencies can be stated in terms of the features 
(i.e. characteristics or properties relevant to system composition) exhibited by the 
architectural elements to be integrated into the system. Such features have proven to 
be very useful for static mismatch detection [10]. 

A considerable number of such features have been determined while studying 
system composition from the viewpoint of detecting architectural mismatches during 
system development to allow systems to be corrected by removing mismatches [10]. 
Concurrency, distribution, supported data transfers (e.g. via shared data variables, 
explicit data connectors, shared repositories, etc.), dynamism (system ability to 
change dynamically its topology), encapsulation (provision of well-defined 
interfaces), layering, backtracking, and reentrance are some of the examples of the 
architectural features relevant to possible mismatches. A very useful source of such 
features can be found in research on online system upgrading, where, for example, 
additional (meta-) information describing component behavior is used to deal with 
component interface upgrades [13]. 

Another dimension of the analysis proposed in [10] is relevance of such features to 
the particular architectural styles (such as pipe-and-filter, blackboard, etc.) employed 
in building system architecture: it is clear that some of these features are not 
applicable to some particular styles. For example, the pipe-and-filter style assumes 
multithreaded concurrency, no backtracking or reentrance, while the blackboard style 
assumes backtracking, imposes no restrictions on types of concurrency and assumes 
no reentrance. The overall idea here is that by analyzing the characteristics of the 
architectural elements to be integrated and the styles from which these elements were 
derived, the system architects are able to localize architectural mismatches earlier in 
the life cycle. 

Some examples of architectural mismatches that can be detected by analyzing the 
architectural features are [10]: 
• Data transfer from a component that may later backtrack – this mismatch may 

cause undesired side effects on the overall composed system state. 
• Call to a non-reentrant component - this mismatch may happen when system 

composition is achieved via a bridging (triggered) call, and the callee is not 
reentrant and is already running at the time of the call. 

• Sharing or transferring data with different underlying representations - this 
mismatch happens when sharing or transferring data with different underlying 
representations, including differences in data formats, units and coordinate 
systems. 

2.2 Style-specific and Application-specific Mismatches 

Architectural features of architectural elements and their groupings may be 
inherent to the architectural style(s) used, or specific to the application at hand. This 
occurs because architectural styles impose constraints on the kinds of architectural 
elements that may be present and on their configurations [20], yet they do not 



  

prescribe all the features that may be present in an application [10]. During software 
development, the software architecture is incrementally refined following the 
refinement of the system definition. Initially, the software architecture is defined in 
terms of architectural styles, thus binding the style-specific features. Subsequently, as 
the architecture is further refined towards the life-cycle architecture, application-
specific features are bound. This is exemplified on Table 1 (adapted from [9]). In the 
following we will refer to the architectural features pertinent to particular architectural 
styles as style-specific features. A set of such features is defined in [10]. The features 
that are defined by the characteristics of the application to be developed but not by the 
architectural styles employed are called application-specific features.  

Every time an architectural feature is bound, there is a potential for an architectural 
mismatch to be introduced. Hence, we refer to architectural mismatches as being: 
• style-specific - if their presence is brought about by some architectural feature(s) 

that the style(s) imposes, or 
• application-specific -  if their presence is due to architectural decisions imposed by 

the application at hand but not the particular style(s) used. 
 

 Early Cycle 1 End of Cycle 1 Cycle 2 Cycle 3 
Definition of 
operational 
concept and 

system 
requirements 

Determination 
of top-level 
concept of 
operations 

Determination of 
top-level concept 

of operations 

Determination of 
detailed concept of 

operations 

Determination of 
IOC 

requirements, 
growth vector 

Definition of 
system and 

software 
architecture 

System scope/ 
boundaries/ 
interfaces 

System scope/ 
boundaries/ 
interfaces 

Top-level HW, 
SW, human 

requirements 

Choice of life-
cycle architecture 

Elaboration 
of software 
architecture 

No explicit 
architectural 

decision 

Small number of 
candidate 

architectures 
described by 

architectural styles 

Provisional choice 
of top-level 
information 
architecture 

Some components 
of above TBD 

(low-risk and/or 
deferrable) 

 Binding of 
architectural 

features 

No 
architectural 

features 
explicitly 
defined  

Fixed architectural 
features that are 

defined by 
architectural 

styles, others are 
unknown 

Architectural 
features defined by 
architectural styles 

are fixed as are 
some application 

specific ones, 
others are 
unknown 

Most 
architectural 

features are fixed, 
the few unknown 

ones relate to 
parts of the 

architecture still 
to be defined 

Table 1. Refinement of software architecture under a Spiral Model Development. 

 
Identification of the nature of the architectural mismatches, as well as the nature of 

the architectural features causing these inconsistencies among architectural elements 
plays a vital role in developing approaches to tolerating such mismatches. 



3 Dependability 

Dependability is a vital property of any system justifying the reliance that can be 
placed on the service it delivers [14]. The causal relationship between the 
dependability impairments, that is, faults, errors and failures, is essential for 
characterizing the major activities associated with the dependability means (fault 
tolerance, avoidance, removal and forecasting). A fault is the adjudged or 
hypothesized cause of an error. An error is the part of the system state that is liable to 
lead to the subsequent failure. A failure occurs when a system service deviates from 
the behavior expected by the user. 

Fault tolerance is a means for achieving dependability working under assumptions 
that a system contains faults (e.g. ones made by humans while developing or using 
systems, and caused by aging hardware) and aiming at providing the required services 
in spite of them. Fault tolerance is carried by error processing, aiming at removing 
errors from the system state before failures happen, and fault treatment, aiming at 
preventing faults from being once again activated [14].  

Error processing typically consists of three steps: error detection, error diagnosis 
and error recovery. Error detection identifies an erroneous state in the system. Error 
diagnosis assesses the damage caused by the detected error, or the errors propagated 
before detection. Error recovery transforms a system state that contains errors into an 
error free state. Recovery typically takes forms of either backward error recovery or 
forward error recovery. When the former is applied the system is returned to a 
previous (assumed to be correct) state; the typical techniques used are application-
independent and often work transparently for the application (e.g. atomic transactions 
and checkpoints). Forward error recovery intents to move the system into a correct 
state using knowledge about the current erroneous state; this recovery is application-
specific by its nature. The most general means for achieving it is exception handling 
[4]. 

Fault treatment consists of two steps: fault diagnosis and system repair. Fault 
diagnosis determines the causes of the error in terms of both location and nature. 
System repair consists of isolating the fault to avoid its reactivation, reconfiguring the 
system either by switching on spare components or reassigning tasks among non-
failed components, and reinitializing the system by checking, updating and recording 
the new configuration [1]. The process of repairing the system usually modifies its 
structure in order for the system to continue to deliver an acceptable service.  

Providing system fault tolerance plays an ever-growing role in achieving system 
dependability as there are many evidences proving that it is not possible to rid the 
system and system execution from faults. These include the growing complexity of 
software causing programmers’ bugs, operators’ mistakes, and failures in the 
environment in which the system operates. 

4 Dependability and Mismatches 

In the context of dependability, an architectural mismatch is an undesired, though 
expected, circumstance, which must be identified as a design fault (in the terminology 



  

from [14]). When a mismatch is activated, it produces an error caused by mismatch 
(ECM) that can either be latent or detected. Similarly to errors, only a subset of ECMs 
can be detected as such (see Figure 1). Additional information is needed to allow an 
error to be associated with a mismatch. Eventually, there is a system failure when the 
ECM affects the service delivered by the system. 

Fig. 1. Detected errors caused by mismatches 

For describing the means for dealing with architectural mismatches, we draw an 
analogy with faults, which can be avoided, removed or tolerated. Faults are tolerated 
when they cannot be avoided, and their removal is not worthwhile or their existence is 
not known beforehand. The same kind of issues happens with architectural 
mismatches. Mismatches can be prevented by imposing strict rules on how 
components should be built and integrated. Mismatches can be removed when 
integrating arbitrary components by using static analysis methods and techniques 
[10]. However, this does not guarantee the absence of mismatches since risk and cost 
tradeoffs may hinder their removal, or system integrators may not be aware of their 
existence (similarly, research has shown that residual faults in software systems are 
inevitable). Consequently, mismatches should be tolerated by processing ECMs and 
treating mismatches, otherwise the system might fail. 

In the following, before presenting mismatch tolerance, we discuss in more detail 
what is mismatch prevention and mismatch removal. 

4.1 Mismatch Prevention 

The approaches associated with mismatch prevention attempt to protect a component, 
or the context of that component, against potential mismatches by adding to the 
structure of the system architectural solutions. The assumption here is that the 
integrators are aware of all incompatibilities between system components. For 
example, if the architectural style of a particular component does not fit the style of 
the system in which is to be integrated, then a specialized wrapper can be developed 
as a means of fixing architectural incompatibilities [18]. 

There are three classes of structuring techniques for dealing with architectural 
mismatches, all of which are based on inserting code for mediating the interaction 
between the components [7]: 
• Wrappers – which are a form of encapsulation whereby some component is 

enclosed within an alternative abstraction, thus yielding to an alternative interface 
to the component;  

ECMs 
Detected 
 ECMs 

Errors 

Detected 
 Errors 



• Bridges – which translate some of the assumptions of the components interfaces. 
Different from a wrapper, a bridge is independent of any particular component, and 
needs to be explicitly invoked by an external component; 

• Mediators – which exhibit properties of both wrappers and bridges. Different from 
a bridge, a mediator incorporates a planning function that results in the runtime 
determination of the translation. Similar to wrappers, mediators are first class 
software architecture entities due to their semantic complexity and runtime 
autonomy. 

4.2 Mismatch Removal 

The approaches associated with mismatch removal are those that aim at detecting 
architectural mismatches during the integration of arbitrary components [10]. Existing 
approaches for identifying architectural mismatches are aimed for the development of 
software, either during the composition of components while evaluating the 
architectural options [10], or during architectural modeling and analysis [8]. The 
Architect's Automated Assistant (AAA) approach uses automatic static analysis for 
performing early risk assessment for the purpose of detecting mismatches during 
component composition [10]. It is an approach that supports rapid evaluation of 
components with respect to potential incompatibilities among them. The software 
integrator gathers the information for the analysis, known as architectural features, 
from the system requirements and the specification of the components. On the other 
hand, the technique for architectural modeling relies on the specification of 
component invariants and services for analyzing the architectural conformance of its 
components. For example, the behavioral conformance of the pre- and post-conditions 
of two components can be analyzed using a model checking tool [8] [15]. The above 
two techniques, evaluation of architectural options and architectural modeling, are 
argued to be complementary because the former is able to detect mismatches very 
early during development, while the latter performs a more detailed and precise 
analysis of component mismatch.  

The techniques being proposed by these approaches are so specific to the context 
of software development that they cannot be transposed for runtime detection of error 
caused mismatches (ECMs). For example, how can we detect during runtime whether 
components have single or multiple threads, and how can we identify inconsistencies 
between the pre- and post-conditions among operations of interacting components? 
However, although it is difficult, in general terms, to relate the detection of errors to 
specific architectural mismatches that have caused them, it is nevertheless feasible to 
associate some (detectable) errors to architectural mismatches that may occur in the 
components’ behavior, their interfaces, or interaction protocols. For example, a 
mismatch may occur in the naming of an operation or message, or in the number, 
ordering, type, and units of parameters [21]. 



  

5 Architectural Mismatch Tolerance 

The main motivation for specifying mechanisms for tolerating architectural 
mismatches at the architectural level, instead of the implementation level, for 
example, is that the nature of mismatches and the context in which they should be 
fixed would be lost at the later stages of software development. Making an analogy 
with fault tolerance, it has been shown that the same type of problem exists when 
exception handling is not considered in the context of the software life cycle [6]. 
Moreover, we cannot expect that a general runtime mechanism would be able to 
handle a wide range of architectural mismatches, in the same way as there is no 
sufficiently general fault tolerance mechanism that can handle all classes of faults. It 
is envisaged that different classes of architectural mismatches will require different 
types of detection mechanisms and fixes that have to be specified at the architectural 
level.  

Although the goal is to tolerate architectural mismatches at the architectural level, 
it is nevertheless necessary to deal with two levels of abstraction: the architectural 
level, where the mismatches are actually introduced, and the execution level, where 
ECM processing and mismatch treatment take place. ECM processing comprises three 
steps [14]: 
• Detection of ECMs, which identifies erroneous states that are caused by 

mismatches;  
• Diagnosis of ECMs, which assesses the system damages caused by the detected 

ECMs; 
• Recovery from ECMs, which brings the system to an ECM-free state.  

However, ECM processing is not sufficient if we would like to avoid the 
recurrence of the same architectural mismatch, so there is the need to treat 
mismatches, in the same way as faults are treated [14]. Mismatch treatment involves 
two major steps: 
• Mismatch diagnosis, which determines the cause (localization and nature) of the 

ECM; 
• System repair, which prevents a new activation of the architectural mismatch; it is 

performed by isolating the mismatch, and reconfiguring and reinitializing the 
system, in order to continue to provide an adequate, perhaps degraded, service. 
 
The intent of fault tolerant techniques is to structure systems to inhibit the 

propagation of errors, and to facilitate their detection and the recovery from them. 
Similarly, when dealing with architectural mismatches, there is the need to structure 
systems at the architectural level in a way that prevents propagation of ECMs, 
facilitates ECM detection and recovery, and makes it difficult for the architectural 
mismatches to be reactivated. 

In addition to system structuring, there is also the need for documenting 
architectural features of the system, as discussed in Section 2. This information is 
fundamental for distinguishing ECMs from other system errors, architectural 
mismatches from faults, and for choosing features suitable for tolerating style- and 
application-specific architectural mismatches. If little or no information is made 
available at the architectural level, either as interface properties of architectural 



elements or error codes, then this distinction cannot be characterized. For example, if 
there is no information about the types of data transferred between two architectural 
elements but the producer and the consumer assume different types (e.g. measurement 
units) the following situations are possible: 
• An error is detected by the consumer but because there is not enough information it 

cannot be identified as an ECM, so unsuitable fault tolerance measures are applied 
(e.g. rollback); 

• An error is further propagated outside the consumer and detected by other 
components. In this case without additional information it is impossible to identify 
the damage area to be recovered; 

• The ECM is not detected and the system fails to deliver the service. 
 
In order to provide the basis for defining an architectural solution for tolerating 

mismatches, in the rest of this section we present in more detail the activities 
associated with ECM processing and mismatch treatment. For each of the activities, 
we take into consideration whether architectural features, both style- and application-
specific, are incorporated into the architectural description of a system. 

5.1 ECM Processing 

As previously discussed, the detection of an ECM implies the presence of an 
architectural mismatch. The activation of a mismatch causing a system error depends 
on whether some conditions are satisfied, these conditions are related to 
inconsistencies in architectural features. In the following, we present in more detail 
the different activities associated with ECM processing. 

5.1.1 ECM Detection 
Upon error detection, one must first determine whether that particular error can be 
identified as an ECM. For an error to be detected as an ECM we need additional 
information at runtime about the system states and the features of the relevant 
architectural elements that would enable to identify this particular error as an ECM. 
This ought to be done based on the detected error and on the presence of the 
conditions required for activating the architectural mismatch.  

The identification of an error as an ECM will facilitate the process of error 
recovery, in particularly if the error can be differentiated as being either caused by an 
application- or style-specific mismatch. For both types of ECMs, error codes should 
be provided as an outcome of a failed operation, and these codes should be related to 
architectural features of the system (as it will be seen in the examples in Section 6). 
Provision of an error code to an error caused by a style-specific mismatch could be 
related to the execution of an operation that violates the properties of an architectural 
notation, for instance, when in a non-reentrant pipe-and-filter architecture a filter 
sends data to another filter that is already processing data from other source. On the 
other hand, provision of an error code to an error caused by an application-specific 
mismatch could be related, for example, to the semantic discrepancy of data received 
from other component; this error code should help, for instance, identify that the data 



  

received has the wrong type, such as, instead of receiving a value in meters, the value 
is in feet. 

Identification of a system error as an ECM is not essential if provisions are made in 
the later stages of mismatch tolerance for processing the error and treating the fault 
accordingly. However, the later an error is identified as an ECM or a fault as a 
mismatch, the more costly and more uncertain (mainly in its successful outcome) the 
respective processes of recovery and repair are. One of the techniques that can be 
used for detecting ECMs is executable assertions. 

5.1.2 ECM Diagnosis 
The purpose of ECM diagnosis is to assess the damages caused by the detected ECM. 
During damage assessment it is necessary to identify all the erroneous states of the 
system before initiating recovery from the ECM, for this purpose there is no need to 
differentiate system errors from ECMs. If an ECM is not detected close to where it is 
activated, the propagation can render impossible the error recovery. This is usually 
the case for errors caused by an application-specific mismatch. The propagation of 
such ECM to other architectural elements depends on the encapsulation properties of 
the architectural language used to describe the system. Ideally the error should be 
contained within the component where the mismatch is activated. On the other hand, 
an error caused by a style-specific mismatch is more capable of affecting the whole 
architectural configuration of a system than a single component due to the lack of 
diversity in the style-specific features of the architecture. For example, in a 
blackboard architecture where only some of the components are able to backtrack, the 
impact of a component backtracking has to be assessed in the context of the whole 
system architecture to identify which components’ states might have been affected by 
the backtracking. For both style- and application-specific mismatches, the process of 
damage assessment can be performed either by using static or dynamic techniques [1]. 

5.1.3 ECM Recovery 
The purpose of ECM recovery (which can be one of the form: backward, forward or 
compensation, as well as their combination) is to replace at the architectural level an 
ECM state by an error-free state. The level of difficulty encountered for recovering 
from ECMs very much depends on the specific characteristics of the ECM, the 
application, and the error containment capabilities of the architectural style.  

In general terms, the type of ECM, whether style- or application-specific, should 
dictate the choice of recovery form. For errors caused by style-specific mismatches, 
backward recovery is more appropriate because they are application independent and 
require general approaches for recovering. If the architecture provides adequate error 
containment capabilities, ECM recovery may consist of eliminating existing 
erroneous states within an architectural element, this can be done by rolling back to an 
error-free state that the element had prior to the detection of the ECM. For example, if 
a component semantically checks the information it provides to other components for 
potential errors then it can be assumed that errors that might occur within the 
component are not propagated to the rest of the system. On the other hand, if the 
architecture does not provide adequate error containment capabilities, then the 
recovery at the architectural element level might not be sufficient, and there is the 



need to have a coordinated recovery involving several system components and 
connectors. For example, if a component needs to rollback and there are other 
components in the system that cannot rollback then some system coordination might 
be needed to rid the system of the ECMs.  

For errors caused by application-specific mismatches, forward recovery is more 
appropriate since knowledge about the application allows bringing the system into a 
new (correct) state from which the processing can resume. In particularly forward 
recovery in the form of exception handling can be used for dealing with those errors 
that are anticipated. For example, if a component detects a semantic discrepancy in 
the value of a variable that is transferred by other component with a different 
underlying representation, then the component can calculate a new value (assuming it 
knows the correct underlying context, which, again, can be documented in a form of 
corresponding architectural features), and resume normal processing. 

In those cases where we cannot distinguish whether the ECM is either style- or 
application specific, or even an error cannot be identified as an ECM, error recovery 
should follow a general approach based on backward error recovery. In these 
situations, as in all those in which not enough information is provided for supporting 
process of tolerating a mismatch, error recovery often becomes intrinsically complex. 

5.2 Mismatch Treatment 

The treatment of mismatches aims to avoid mismatches from being further activated 
once their nature and location have been identified. As an activity following ECM 
processing, mismatch treatment attempts to avoid the re-activation of mismatches. If 
enough information regarding architectural features is made available as the interface 
properties of architectural elements, the process of tolerating mismatches might be 
reduced to mismatch repair. This can be achieved if, before any operation, 
architectural elements check for potential mismatches by requesting information 
about the architectural features of the other elements. After a potential mismatch is 
localized it should be repaired. For example, in a pipe-and-filter architecture, if a filter 
before sending its data checks for the status of the other filter and detects that the 
other filter is already receiving data from other source, then an alternative filter that is 
able to provide the same kind of services could be sought in the system. 

As we have already seen in the descriptions of previous activities, the treatment of 
mismatches depends on whether the relevant architectural features are style- or 
application-specific. For example, as we will show later, mismatches caused by 
incompatibilities in the style-specific features of an architecture often require more 
fundamental changes to the system architecture at hand. In the following, we present 
in more detail the different activities associated with mismatch treatment, considering 
again style- and application-specific mismatches. 

5.2.1 Mismatch Diagnosis 
The purpose of mismatch diagnosis is to determine the cause of ECMs, in terms of 
both location and nature, which, in particular, means identification of the architectural 
elements that failed and the way they failed. This activity is fundamental for the 
process of mismatch repair since a clear identification of the mismatch is needed 



  

before any changes are made on the system architecture. The activity of diagnosis is 
complicated by the fact that it often requires a lot of information from the system and 
elaborate means to process this information. The types of information that are 
necessary: the detected erroneous state (which presumably is cause by a mismatch), 
the overall state of the system when the ECM is detected, the configuration of the 
architecture, together with the available information on architectural features. The 
latter, in particular, provides the means for identifying the nature of the architectural 
mismatches. Although it is important to known whether a mismatch is style- or 
application-specific, the identification of the type of mismatch among a list of 
potential mismatches [10] is equally necessary for selecting the appropriate repair for 
the architecture. 

5.2.2 Mismatch Repair 
The purpose of mismatch repair is to prevent mismatches from being activated again. 
Since each mismatch is caused by incompatibilities between features of architectural 
elements (mainly components), the repair of this mismatch can be performed by 
modifying the system structure. This architectural reconfiguration is performed in 
runtime, and it is not a simple task as in most cases it requires redundant architectural 
elements that are intrinsically diverse1 in the way they provide architectural features 
(both application- and style-specific), since mismatches are design faults. The 
reconfiguration can be performed in various forms: removal or/and addition of a 
single component, removal of all the components involved in a mismatch (e.g., a 
particular architectural style-specific mismatch), replacement of the connector linking 
the problematic components with a new connector with additional functionalities 
aiming at avoiding mismatches. For example, in the case of a component that is not 
able to rollback, this component can be replaced by other component that allows 
rollback, or an alternative connector can be provided that allows information to be 
buffered. 

The dichotomy between style- and application-specific mismatches for system 
repair is difficult to observe since for repairing some style-specific mismatches it is 
necessary to rely on application level mechanisms and techniques. In these cases, 
simple replacing an architectural element is not a viable option due to the lack of 
diversity in the features of the architectural style, which creates inherent difficulties in 
repairing some style-specific mismatches. In terms of application-specific 
mismatches, the repair mechanisms and techniques are essentially application related 
and as such should exploit available redundancies at the application level.  

Although the general aim of mismatch repair is to find and employ mechanisms 
and techniques that are sufficiently general to allow dealing with a wide range of 
mismatches, in real systems this is difficult to achieve because of three main reasons: 
mismatches of different types require different ways of reconfiguration and different 
types of redundant elements, very often not enough system redundancies can be made 
available, and the most effective way of performing repair is application dependent. 

 

                                                           
1 By diverse elements we mean here architectural elements that provide the same functionality 

but have different designs and implementations. 



Summarizing, in order for the system to tolerate architectural mismatches, it is 
crucial that the information associated with the architectural features (either style- or 
application-specific) is documented and encoded in the system in different forms, 
either as error codes for performing activities associated with ECM processing, or as 
interface properties for the activities associated with mismatch treatment. If enough 
information is made available, then the process of tolerating architectural mismatches 
becomes less complex and less prone to faults. In the following, we demonstrate 
through examples the different activities associated with mismatch tolerance, 
including the cases in which the whole process can be improved, sometimes by 
suppressing some of the activities, when suitable architectural features are exploited 
during runtime. 

6 Examples 

This section demonstrates how mismatches can be tolerated following the 
framework discussed above. From the whole set of potential architectural mismatches 
discussed in [10], we have selected three mismatches, which are representative of the 
different types of mismatches and allow us to show different ways of tolerating them. 
In order to analyze the particularities associated with style-specific mismatches, the 
examples will be presented in the context of three architectural styles [20]: pipe-and-
filter, blackboard, and client-server. 

Our assumption here is that some of the non-functional properties/attributes of 
components (in particular, ones related to the architectural features) are published at 
their interfaces. Depending on the information available and on the way it is 
processed, we can distinguish three general scenarios in which architectural 
mismatches can be tolerated.  
1. The first scenario falls into the category in which mismatch tolerance is restricted 

to mismatch repair. The basis for this scenario is the above assumption that 
features of the architectural elements are provided at their interfaces. The 
availability of this information allows for a component before engaging into an 
interaction, trying to identify potential mismatches. If an architectural mismatch is 
localized, then the activities associated with error processing and mismatch 
diagnosis can be ignored.  

2. The second scenario falls into the category in which mismatch tolerance starts with 
ECM detection. During the interaction between two components when one of them 
returns an error diagnosed as an ECM, there is no need for the system to perform 
error diagnosis. Once again, for this to be possible it is necessary that additional 
information, about its architectural features, be made available at the interface of 
the architectural components.  

3. The third scenario falls into the category in which mismatch tolerance starts with 
detection of a system error. In this scenario, there is no additional information 
available about the architectural features. Hence, there is a need to perform error 
diagnosis to identify the nature of the error as being an ECM, for that, additional 
information is needed about the state of the system. 



  

In the following, we discuss how three different mismatches can be tolerated in the 
context of the above three scenarios. For each example of architectural mismatch, we 
present the type of mismatch, the characteristics of the architectural styles being used, 
and provide a small architectural configuration capturing the mismatch being 
discussed. Within this context, we proceed to explain, in detail, the different steps 
associated with the process of tolerating architectural mismatches. 

6.1 Style-specific Mismatch 

As a style-specific mismatch, we consider the mismatch “call to a non-reentrant 
component”. This mismatch happens when a component calls another component, and 
the latter may already be performing the requested execution and this execution is not 
reentrant [10]. This mismatch will be analyzed in the context of the pipe-and-filter 
style in which data is transformed by successive components. The components are the 
filters, which have almost no contextual information and retain no state between 
executions, and the connectors are the pipes, which are stateless [20]. 

An example of the pipe-and-filter architectural configuration in which the above 
mismatch can occur is shown in Figure 2(a), when FilterA calls FilterC without 
waiting until the currently executed request from FilterB is completed. In this 
example we assume that a Unix environment is used, which can provide a runtime 
documentation related to the appropriate style-specific features. For implementing the 
first scenario we have to ensure that the resources/ports become exclusive before 
executing any interaction between the filters. Implementation of the second scenario 
assumes that FilterB always executes additional (application) code before connecting 
to FilterC. The third scenario is not applicable here because FilterB always receives 
information based on the Unix error while accessing a busy filter, so we will not 
consider it any further. 
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(b) after mismatch treatment 

 
Fig. 2 A non-reentrant component in a pipe-and-filter architecture. 

 
This is how ECM processing and mismatch treatment (see Section 5) look like for 

the two remaining scenarios: 
a) ECM Detection: 
• for scenario 1, no detection needed; 
• for scenario 2, such an ECM is detected using the error code generated by Unix. 
b) ECM Diagnosis: 
• for scenario 1, no diagnosis needed; 



 

• for scenario 2, during damage assessment there is no need to identify the nature, 
since the error code provides enough information. 

c) ECM Recovery: 
• for scenario 1, no recovery required; 
• for scenario 2, different ways of recovering are possible depending on the 

application (e.g., backward or forward recovery, compensation, and recovery 
employing time redundancy). 

d) Mismatch Diagnosis: 
• for both scenarios, the error code should provide enough information to identify 

the location and the nature of mismatch; 
e) Mismatch Repair: 
• for both scenarios, system reconfiguration involves the usage of alternative 

component or connector. The way of reconfiguring the system depends on the 
application characteristics. Some possible scenarios are as follows: FilterB can 
switch to using an alternate FilterD (as shown in Figure 2(b)); it can create another 
instance of FilterC and switch to using it; it can use a different type of pipe (e.g. a 
timed pipe); in the situation when FilterB has a higher priority than FilterA, 
FilterC could be killed. In Unix environments, a script can execute this repair. 

6.2 Application-specific Mismatch 

As an application-specific mismatch, we consider the mismatch “sharing or 
transferring data with differing underlying representations”. This mismatch occurs 
when communication between two components concerning a specific data cannot 
happen because the data being shared or transferred has different underlying 
representations, which might include, different data formats, units and coordinate 
systems [10]. This mismatch will be analyzed in the context of the client-server style, 
which is representative of data abstract systems in which a component – the server, 
provides services to other components – the clients. 

An example of the client-server architectural configuration in which the above 
mismatch can occur is shown in Figure 3(a), when Client1 requests a service from 
ServerA but provides a value in feet while the server requires it to be in meters. For 
implementing the two first scenarios, we assume that the application-specific features 
of both components contain information about the units being used. In the first 
scenario, this information is part of the interface of the server, while in the second 
scenario this information is part of the services provided by the server application. 
The implementation of the third scenario does not assume any additional information 
is provided. 



 

 

Client1 ServerA

ServerB

 
(a) before mismatch treatment 
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(b) after mismatch treatment 

 
Fig. 3 Components with different underlying representations in a client-server 

architecture. 
 
This is how ECM processing and mismatch treatment look like for the three 

scenarios: 
a) ECM Detection: 
• for scenario 1, no detection needed; 
• for scenario 2, an ECM is detected from the application-specific features of the 

component; 
• for scenario 3, a system error is detected. 
b) ECM Diagnosis: 
• for scenario 1, no diagnosis needed; 
• for scenario 2, during damage assessment there is no need to identify the nature, 

since the error provides enough information. 
• for scenario 3, a full damage assessment is necessary. 
c) ECM Recovery: 
• for scenario 1, no recovery required; 
• for scenarios 2 and 3, different ways of recovering are possible depending on the 

application (backward or forward recovery, or compensation). 
d) Mismatch Diagnosis: 
• for scenarios 1 & 2, the error should provide enough information to identify the 

location and the nature of mismatch; 
• for scenario 3, a full mismatch diagnosis is necessary. 
e)   Mismatch Repair: 
• for all the scenarios, system reconfiguration involves the usage of alternative 

component or connector. One of the ways to repair is for Client1 to request 
services of another ServerB (as shown in Figure 3(b)), which allows processing 
the request in feet. Another way to repair is to introduce a bridge that performs unit 
transformation. 

6.3 Style- and Application-specific Mismatch 

As an application-specific mismatch, we consider the mismatch “call or spawn from a 
subsystem that may later backtrack”. This mismatch occurs when after a component 
transfers data to other components, it backtracks, which might cause some undesired 
side effects. This mismatch will be analyzed in the context of the blackboard style, 



 

which allows building an active repository for sharing and transferring data between 
clients that run of independent threads [20]. Blackboard systems support 
backtracking, but they are neither reentrant nor preemptive. 

An example of a blackboard architectural configuration in which the above 
mismatch can occur is shown in Figure 4, when Client1 attempts to backtrack, which 
is permitted by the BlackboardA, BlackboardB, and Client3, but not by Client2. 
For implementing the first and the second scenarios, it is necessary to have additional 
information on the ability of each component to backtrack, on the fact that 
backtracking is initiated by a component, and on a set of interconnected components 
to be involved in backtracking. In the first scenario, this information is part of the 
interfaces of the components, while in the second scenario this information is part of 
the services provided by the application. The implementation of the third scenario 
does not assume that any additional information is provided. 
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Fig. 4 Components that cannot backtrack in the blackboard architecture. 

 
This is how ECM processing and mismatch treatment look like for the three 

scenarios: 
a) ECM Detection: 
• for scenario 1, no detection needed; 
• for scenario 2, an ECM is detected from the application-specific features of the 

components; 
• for scenario 3, a system error is detected. 
b) ECM Diagnosis: 
• for scenario 1, no diagnosis needed; 
• for scenario 2, during damage assessment there is no need to identify the nature, 

since the error provides enough information; 
• for scenario 3, a full damage assessment is necessary, which might have affected 

all the system components. 
c) ECM Recovery: 
• for scenario 1, no recovery required; 
• for scenarios 2 and 3, only forward recovery is possible because recovery is 

application dependent (backward recovery does not apply because one of the 
components is not able to backtrack). 

d) Mismatch Diagnosis: 
• for scenarios 1 and 2, the error should provide enough information to identify the 

location and the nature of mismatch; 



 

• for scenario 3, a full mismatch diagnosis is necessary. 
e)   Mismatch Repair: 
• for all the scenarios, system reconfiguration involves the usage of alternative 

component or connector; for example: an alternative component that allows 
backtracking, or a buffered connector to store data until there is no more risk of 
backtracking. 

 
From the above exercise, we can draw several conclusions. If the appropriate 
information for dealing with potential mismatches (for example, documentation of the 
architectural features and availability of redundant architectural elements) is 
embedded into the system, right from its architectural conception, then the actual 
process of tolerating mismatches becomes much simpler. This includes both 
developing measures for mismatch tolerance and tolerating mismatches at runtime. 
The reasons for this are that on the one hand some of its activities, like diagnosis, that 
are complex, time consuming and prone to errors, cease to be necessary, but on the 
other hand important architectural information related to mismatches and their 
tolerance is lost during the following phases of the life cycle. Another conclusion is 
that, although the dichotomy for identifying the nature of mismatches (as style- or 
application-specific) is clear, the same cannot be said about the process of repairing 
them, since its techniques might require handling aspects that are particular to style 
and application. The assumption that architectural features should be part of the 
interfaces of the components can be weakened by employing other means for 
retrieving all information related to such properties, for example, using a reflective 
capability or a specialized registry for storing it. 

7 Conclusions 

The problem of tolerating architectural mismatches during runtime can be 
summarized as follows. When an error caused by mismatch (ECM) is detected in the 
system, mechanisms and techniques have to recover the state of the system to an error 
free state, otherwise the erroneous state of the system can propagate, eventually 
leading to a system failure. However, the detection and recovery of an error is not 
enough for maintaining the integrity of the system services because if the mismatch, 
which has caused the detected error, is not treated, it can yet again be activated and be 
the cause of other errors. Similarly to fault tolerance in which one cannot develop 
techniques that can tolerate any possible faults, it is difficult to develop techniques 
that are able to deal with all types of architectural mismatches, hence assumptions 
have to be made about the types of mismatches that caused the errors to be detected 
and handled during runtime. 

In this paper, we have mainly stated the problems and outlined a general approach 
to handling architectural mismatches during runtime. Our preliminary analysis shows 
that a number of particular mismatch tolerance techniques can be developed 
depending on the application, architectural styles used, types of mismatches, 
redundancies available, etc. It is clear for us that there will always be situations when 
mismatches should be avoided or removed rather than tolerated. Beyond the working 



 

examples discussed in the paper, the applicability of the proposed approach to real 
systems still remains an open issue. However, since the paper advocates application 
of general fault tolerant mechanisms and techniques for handling architectural 
mismatches, the potential limitations of our approach are the same as those associated 
with traditional fault tolerance when applied to the systems of the same scale and 
complexity. This, in particular, concerns scalability of the techniques and the ways the 
systems are structured. 

In our future work we will be addressing these issues, trying to define in a more 
rigorous way the applicability of the approach and to develop a set of general 
mismatch tolerance techniques. Some of the possible approaches are to modify how 
existing architectural styles are applied, to design a set of connectors capable of 
tolerating typical mismatches, to extend existing components and connectors with an 
ability to execute exception handling, and to develop a number of handlers that are 
specific for mismatches of different types. 

 
Acknowledgements. Alexander Romanovsky is supported by IST DSoS project 

(IST-1999-11585). 

References 

1. T. Anderson, and P. Lee. Fault-Tolerance: Principles and Practice. Prentice-Hall Int. 
Englewood Cliffs, NJ. 1981. 

2. A. Avizienis, J.-C. Laprie, and B. Randell. Fundamental Concepts of Dependability. 
Technical Report 739. Department of Computing Science. University of Newcastle upon 
Tyne. 2001. 

3. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-
Wesley. 1998. 

4. D. Compare, P. Inverardi, and A. L. Wolf.  “Uncovering Architectural Mismatch in 
Component Behavior”. Science of Computer Programming (33)2. 1999. pp. 101-131.  

5. F. Cristian. “Exception Handling”. Dependability of Resilient Computers. T. Anderson 
(Ed.). Blackwell Scientific Publications. 1989. pp. 68-97. 

6. R. de Lemos, and A. Romanovsky. “Exception Handling in the Software Lifecycle”. 
International Journal of Computer Systems Science & Engineering 16(2). March 2001. 
pp. 167-181. 

7. R. DeLine. “A Catalog of Techniques for Resolving Packaging Mismatch”. Proceedings 
of the 5th Symposium on Software Reusability (SSR'99). Los Angeles, CA. May 1999. pp. 
44-53. 

8. A. Egyed, N. Medvidovic, and C. Gacek. “Component-Based Perspective on Software 
Mismatch Detection and Resolution”. IEE Proceedings on Software 147(6). December 
2000. pp. 225-236. 

9. C. Gacek, A. Abd-Allah, B. Clark, and B. Boehm, “On the Definition of Software 
Architecture”. Proceedings of the First International Workshop on Architectures for 
Software Systems – In Cooperation with the 17th International Conference on Software 
Engineering. D. Garlan (Ed.). Seattle, WA, USA. April 1995. pp. 85-95. 

10. C. Gacek. Detecting Architectural Mismatches during System Composition. PhD 
Dissertation. Center for Software Engineering. University of Southern California. Los 
Angeles, CA, USA. 1998. 



 

11. D. Garlan, R. Allen, and J. Ockerbloom, “Architectural Mismatch: Why Reuse is so 
Hard”. IEEE Software 12(6). November 1995. pp. 17-26. 

12. P. Inverardi, A.L. Wolf, and D. Yankelevich. “Checking Assumptions in Component 
Dynamics at the Architectural Level”. Proceedings of the 2nd International Conference 
on Coordination Models and Languages. Lecture Notes in Computer Science 1282. 
Springer, Berlin. September 1997. pp. 46-63. 

13. C. Jones, A. Romanovsky, I. Welch. A Structured Approach to Handling On-Line 
Interface Upgrades. Proceedings of the 26th Annual International Computer Software 
and Applications Conference (COMPSAC 2002). Oxford, UK. August 2002. IEEE CS 
Press. pp. 1000-1005.  

14. J.-C. Laprie. “Dependable Computing: Concepts, Limits, Challenges”. Special Issue of 
the 25th International Symposium On Fault-Tolerant Computing. IEEE Computer 
Society Press. Pasadena, CA. June 1995. pp. 42-54 

15. N. Medvidovic, D. S. Rosenblum, and R. N. Taylor. “A Language and Environment for 
Architecture-Based Software Development and Evolution”. Proceedings of the 21st 
International Conference on Software Engineering (ICSE'99). Los Angeles, CA. May 
1999. pp. 44-53. 

16. N. Medvidovic, and R. N. Taylor. “A Classification and Comparison Framework for 
Software Architecture Description Languages”. IEEE Transactions on Software 
Engineering 26(1). 2000. pp. 70-93. 

17. P. Oberndorf, K. Wallnau, and A. M. Zaremski. “Product Lines: Reusing Architectural 
Assets within an Organization”. Software Architecture in Practice. Eds. L. Bass, P. 
Clements, R. Kazman. Addison-Wesley. 1998. pp. 331-344. 

18. D. E. Perry, and A. L. Wolf. “Foundations for the Study of Software Architecture”. 
SIGSOFT Software Engineering Notes 17(4). 1992. pp. 40-52. 

19. D. S. Roseblum, and R. Natarajan. “Supporting Architectural Concerns in Component 
Interoperability Standards”. IEE Proceedings on Software 147(6). December 2000. pp. 
215-223. 

20. M. Shaw, and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline. 
Prentice-Hall. 1996.  

21. R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J. Whitehead, J. E. Robbins, K. A. 
Nies, P. Oreizy, and D. L. Dubrow “A Component- and Message-Based Architectural 
Style for GUI Software”. IEEE Transactions on Software Engineering 22(6). June 1996. 
pp. 390-406. 


