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Double-diffusive instabilities at a vertical
sidewall after the sudden onset of heating

By OLIVER S. KERR

Department of Mathematics, City, University of London,

Northampton Square, London EC1V 0HB, U.K.

(Received 21 September 2020)

When body of fluid with a salinity gradient is heated from an isolated vertical wall
instabilities can form. These have been observed in many experiments. The evolving
temperature boundary layer causes the fluid to rise and generates horizontal salinity
gradients and vertical shear. These background temperature and salinity gradients and
the shear can all drive (or inhibit) the instabilities. The time-dependent nature of the
background gradients has previously restricted linear stability analysis to some limits
where a quasi-static assumption could be made. However, in many of the experiments
this assumption is not valid. We investigate the instabilities over the full range of salinity
gradients and applied heating, from what is essentially the thermal problem to the strong
salinity gradient limit, with two different heating rates. The approach taken is to find the
optimal evolution of a quadratic energy-like measure of the amplitude of the instabilities
as the background state evolves. This involves a matrix optimization problem. The choice
of quadratic measure is not predetermined, but selected to minimize this optimal growth.
This approach has been developed previously for the purely thermal case of heating from
isolated horizontal and vertical boundaries, and to the double-diffusive problem of heating
a salinity gradient from a horizontal lower boundary. We show that there are three regimes
of instability when a salinity gradient is heated from a sidewall. There are the small and
large Prandtl number regimes observed previously in the purely thermal problem. As the
salinity gradient increases the shear-driven small Prandtl number mode is suppressed and
only the large Prandtl number mode is observed. For larger salinity gradients a double-
diffusive mode of instability appears, which initially has an order one aspect ratio. As the
salinity gradient further increases it evolves into the thin almost horizontal intrusions of
the quasi-static analysis. These findings are in line with experimental observations.

1. Introduction

Instabilities in fluids driven by the presence of both temperature and salinity gradients
have been of significant interest since Stern (1960) realised that the mechanism driving
the “oceanographic curiosity” of Stommel, Arons & Blanchard (1956) did not need a pipe.
Stommel et al. had the idea that a vertical pipe in a area of the sea where the surface
water was hotter and saltier than at the bottom could sustain a continuous vertical flow.
Less salty water in the pipe drawn from lower down would be heated through the pipe by
the warmer surroundings. The water in the pipe would become relatively buoyant, and
so would rise further. Stern realised that the pipe was not necessary as the much smaller
diffusivity of salt in water compared to that of heat meant that a vertical column of
water moving upwards essentially retained its lack of salt compared to its surroundings
while absorbing heat. A similar mechanism would allow downward moving columns of
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Figure 1. Schematic diagram of the heating of a salinity gradient from a vertical sidewall.

fluid to retain their salt and continue their descent, giving rise to “salt fingers” that have
been observed in the laboratory and in the oceans. The realisation that novel instabilities
could be driven by the difference in the diffusivities of heat and salt gave rise to the whole
field of double-diffusive convection where many such motions were investigated (Turner
1974; Schmitt 1994; Radko 2013).

One of the areas of interest were double-diffusive instabilities driven by horizontal
gradients of temperature and salinity. These had applications in a variety of areas such as
fronts between bodies of water in the oceans, icebergs melting in the seas, salt-gradient
solar ponds, and magma chambers where layer-like instabilities may form. There was
much study of these instabilities in laboratory experiments as well as in the field. However,
theoretical studies of the onset of instabilities were often based around idealized cases
where the background state was steady, such as motions in a vertical or inclined slot
(Hart 1971; Thangam, Zebib & Chen 1981; Young & Rosner 1998; Kerr & Tang 1999),
or cases where a quasi-static assumption could be made and the background state was
assumed to be steady (Kerr 1989, 1991). In this paper we will look at cases where neither
of these idealizations are appropriate.

When a uniform salinity gradient is heated from a vertical sidewall, the heat that
diffuses into the fluid from the boundary generates an upward motion. This in turn
creates horizontal salinity gradients. Thus there are three components, the horizontal
gradients of heat and salt and the vertical shear, that can drive or inhibit instabilities
along with the vertical salinity gradient. This is shown schematically in figure 1. In
some circumstances the initial instabilities that are observed can take the form of almost
horizontal convecting layers (for example, Chen, Briggs & Wirtz 1971). While for other
cases the convection cells are often observed to have an order one aspect ratio (see,
for example, Narusawa & Suzukawa 1981; Tanny & Tsinober 1988; Schladow, Thomas &
Koseff 1992). Most of the experiments of Schladow et al. (1992) had the added complexity
of a vertical temperature gradient away from the wall in addition to the salinity gradient.
In some examples instabilities seemed to emerge from a rising boundary layer (Wirtz,
Briggs & Chen 1972). It is the initial linear growth of the instability that concerns us
here. The complex nonlinear development of the convection layers when they reach a
large enough amplitude is beyond the scope of this paper, although a focus of many of
the experiments.

In some circumstances, such as the gradual heating of a strong salinity gradient, the
instabilities start to grow when the heated thermal layer near the wall is quite wide in
comparison to the vertical scale of the disturbances that initially form. In such cases a
quasi-static analysis of the instabilities can be applicable, as conducted by Kerr (1989).
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Figure 2. Comparison of the instantaneous Rayleigh numbers, RaT and RaS , at the onset
of instability for experimental results of Tanny & Tsinober (1988) with the marginal stability
curve for a laterally heated vertical slot (Young & Rosner 1998; Kerr & Tang 1999). Also shown
(dotted line) is the stability boundary of Kerr (1989). The arrows, A–D, show trajectories of
instantaneous Rayleigh numbers in typical experiments.

Then the results were in good agreement with some of the results of experiments such
as Chen, Briggs & Wirtz (1971) and Tanny & Tsinober (1988) in the parameter regimes
where the analysis was appropriate. However, in the case where the wall heating was
such that instabilities formed more quickly, the quasi-static assumption was not valid.
The agreement was not as good, as is to be expected. This is the case where the salinity
gradients are weaker, or the heating increase occurs more rapidly. In these cases the
evolution of the background state is on a comparable time scale to that of the growth of
the instabilities, and so a conventional stability analysis is not applicable.

In the experiments of Tanny & Tsinober (1988) the salinity gradients had a variety
of wall heating rates applied. Some being very close to an instantaneous increase in wall
temperature, while others had a more gradual increase over an extended period. In each
case the wall temperature was continually monitored, and the instantaneous thermal and
salt Rayleigh numbers based on the penetration depth of the background temperature
from the wall were calculated:

RaT (t) =
gα∆T (t)δ3

νκT
, RaS(t) =

g(−βSz)δ4

νκT
, where δ = (κT t)

1/2. (1.1)

Here g is the acceleration due to gravity, α the coefficient of thermal expansion, β the
equivalent for salt, ∆T (t) the instantaneous wall temperature, Sz the uniform vertical
salinity gradient, ν the kinematic viscosity, κT the thermal diffusivity and t the time since
the onset of wall heating. For each experiment the values of these Rayleigh numbers were
tracked in the RaS–RaT plane. The locations of these instantaneous Rayleigh numbers
move up and to the right. These trajectories have gradients between 3/4 and 5/4 in the
log–log plot they used, depending on the form of the heating. At the instant Tanny &
Tsinober first observed instabilities in the middle of the heated wall they recorded the po-
sition on the plot. These locations are reproduced in figure 2. In addition the trajectories
of the points (RaS(t),RaT (t)) for four idealized experiments with slope 3/4 are shown by



4 O. S. Kerr

the arrows in this figure. These would correspond to cases with an instantaneous increase
in the wall temperature. These four will be looked at in some detail in §4.

Tanny & Tsinober made a comparison between the location of the experimental points
to the stability boundary for the lateral heating of a salinity gradient in a vertical slot
found by Thangam, Zebib & Chen (1981). The comparison of the instantaneous tem-
perature and salt Rayleigh numbers to the stability boundary of the lateral heating of
a salinity gradient in a vertical slot was a logical thing to do, given the absence of any
other theoretical results at the time. However, the original marginal stability results for
a vertical slot that they used had some errors that were corrected by Young & Rosner
(1998) and Kerr & Tang (1999). This corrected stability boundary is included in figure 2.
Kerr & Tang showed that the stability boundary for a slot in the RaT –RaS plane for
a Prandtl number and salt/heat diffusivity ratio appropriate for common salt in water
has sections corresponding to 5 different asymptotic regimes. For example, one of these
was the strong salinity gradient limit which was found by Hart (1971) for a vertical slot,
and at leading order involves many of the approximations as the quasi-static analysis of
Kerr (1989) for an isolated heated vertical wall. However, some of the slot modes were
unlikely to correspond directly to instabilities in a semi-infinite fluid. One of the regimes
corresponded to a long wavelength instability up the slot, and so was incompatible with
instabilities observed in experiments that seemed to be constrained by the Chen scale
given by (2.9). This scale corresponds to the height a parcel of fluid in the salt strat-
ification would rise by in order to be at the level of fluid with its new density if its
temperature were to increase by ∆T . The heating of a uniform body of fluid without a
salinity gradient at an isolated wall occurs for thermal Rayleigh numbers much smaller
than those of the small RaS limit in a slot, which one would expect to tend to the purely
thermal case (Foster 1965, 1968; Kerr & Gumm 2017). There are no clear reasons why the
other asymptotic regimes for instabilities at a vertical slot would correspond particularly
closely to those found when heating an isolated vertical wall.

It is clear from many of the experimental results that the evolution of the instability is
on a similar time scale to the evolution of the background state. For example, Schladow,
Thomas & Koseff (1992) made the observations that the growth of instabilities seemed
to start at the same time as the initial rise of the fluid up the wall came to a halt. In
such cases the quasi-static assumption is not valid, and the analysis of Kerr (1989) is not
applicable to many observations. The objective of this paper is to rectify this situation.

A more recent approach to looking at instabilities in evolving systems was developed
by Kerr & Gumm (2017). They investigated linear instabilities at isolated horizontal and
vertical heated boundaries, and followed the evolution of the disturbances as the back-
ground state evolved. In their approach they looked for the initial state that maximized
the growth of an energy-like quadratic measure of the amplitude of the instabilities over
a fixed time interval. This was achieved by converting this maximization problem for
their numerical simulations into a matrix eigenvalue problem. An important element of
their method was the choice of the quadratic measure that was to be used. This measure
involved all the components of the instability, but the relative ratio of the contributions
from the velocity and temperature perturbations could be varied. The choice of this ratio
was an important part of the optimization process. Inappropriate choices of the ratio of
the velocity and temperature contributions in this measure could lead to an artificial ap-
parent boost in the growth in the instabilities, while using a measure that focused on, say,
just the kinetic energy could lead to an initial drop in the measure that underestimated
the underlying growth. A choice of a quadratic measure that minimized the maximum
growth over all possible initial conditions over the given time interval was found to be
most effective. This approach was extended to double-diffusive instabilities that occur
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when a salinity gradient is heated from a lower boundary by Kerr (2019). We use this
method here.

There are three obvious different idealized cases of wall heating that could be con-
sidered. The first is the case of a sudden increase in the wall temperature by a fixed
amount. Many experiments aim for such a fixed increase in wall temperatures. Although,
in reality, there will be a time lag in attaining this final temperature. The second ideal-
ization is a constant heat flux, which results in the wall temperature growing like t1/2,
such as the experiments of Narusawa & Suzukawa (1981). Most experiments seem to
have an early phase where the temperature grows linearly with time. Indeed, Tanny &
Tsinober (1988) sought to have linear temperature growth in some of their experiments.
This was achieved by the computer control of the wall heating. Having a constant linear
temperature increase after some initial time is the third obvious case, and is a good
approximation for the early stages of nearly all experiments. In the logarithmic plot, as
shown in figure 2, the trajectories of the instantaneous Rayleigh numbers in these three
cases will be straight lines with gradients 3/4, 1 and 5/4 respectively. We will look at two
of these cases — the first and the third, which correspond to the fixed temperature rise
and the temperature increasing linearly with time. We shall see these two cases share
many similarities. The second case lies, in some sense, between these two extremes.

In this paper we will look briefly in §2 at the background state and some of the length-
scales that are associated with this problem. There are several of these length-scales which
may be more or less important in different regimes. This will be followed, in §3, by a look
at the governing equations for the instabilities, and a brief description of the approach
used to investigate the instabilities. In §4 we will consider instabilities when there is a
sudden increase in wall temperature by a fixed amount, ∆T . Here the natural focus will
be on instabilities that occur when the salinity gradient is weaker. The sudden increase in
wall temperature was looked at by Kerr & Gumm (2017) for heating a fluid at a sidewall
in the absence of a salinity gradient. In this sudden-heating regime the trajectories of
the instantaneous Rayleigh number follow lines with slope 3/4 in the log–log Rayleigh
number plane. They approach the marginal stability line of the quasi-static analysis of
Kerr (1989), that is valid when the salinity gradient is stronger, from the unstable side.
The marginal stability line in that case corresponds to a line of slope 5/6 in this log–log
plane. This quasi-static regime is, however, accessible when the wall temperature increase
is proportional to the time since the onset of heating, and the trajectories follow lines
with slope 5/4. This regime is examined in §5, where we will focus more on the cases with
a stronger salinity gradient. This will be followed by further discussions and conclusions
in the final section.

As we shall see later, there are four nondimensional numbers that determine the be-
haviour of a salt-stratified fluid heated from a sidewall. Two of these are the Rayleigh
numbers mentioned above that are a measure of the strength of the heating and the
salinity gradients. The other two that we use are the Prandtl number, σ = ν/κT , and
the ratio of the diffusivity of salt to the heat diffusivity, τ = κS/κT . In order to make
this problem tractable we will restrict ourselves to the case of σ = 7 and τ = 1/80, the
approximate values for water with common salt as used in laboratory experiments.

2. Background state and scales

In this section we will consider the background state that is observed when heating a
semi-infinite uniform salinity gradient from a vertical sidewall, and some of the length-
scales that are associated with this flow.

The governing equations for the background state when heating a sidewall allow for
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a solution that is uniform in the vertical direction, and which only depends on the time
since the onset of heating, t, and the horizontal distance from the wall, x. The equations
for this background state are

∂W

∂t
= g(αT − βS) + ν

∂2W

∂x2
, (2.1a)

∂T

∂t
= κT

∂2T

∂x2
, (2.1b)

∂S

∂t
+W Sz = κS

∂2S

∂x2
, (2.1c)

where the vertical velocity is W (x, t), the temperature is T = T0+T (x, t), and the salinity
is S = S0 + zSz + S(x, t) with the vertical salinity gradient Sz constant. We have made
the Boussinesq approximation and assumed the density of the fluid depends linearly on
the temperature and salinity:

ρ = ρ0(1− α(T − T0) + β(S − S0)). (2.2)

The initial conditions are that the fluid is at rest, and the temperature and salinity
variations are zero at the time of the onset of heating. The boundary conditions are
no-slip for the vertical velocity, a prescribed temperature at the wall and zero flux of salt
through the wall. Far from the wall the motions and the temperature and salinity remain
unchanged. That is to say

W (x, 0) = T (x, 0) = S(x, 0) = 0 for x > 0, (2.3a)

W (0, t) = 0, T (0, t) = ∆T (t),
∂S

∂x
(0, t) = 0 for t > 0, (2.3b)

W (x, t)→ 0, T (x, t)→ 0, S(x, t)→ 0 as x→∞. (2.3c)

A condition that is often applied to problems of lateral heating in a slot is that there
is no total flux of fluid up the slot. This is not appropriate for a semi-infinite fluid. Even
though we will be making our numerical calculations in a slot, the far wall will play an
insignificant role. We do not impose a zero vertical flux condition on our calculations.

If we impose a sudden temperature increase of a fixed ∆T at time t = 0. The temper-
ature equation has the well-known solution

T (x, t) = ∆T erfc

(
x

2(κT t)1/2

)
, (2.4)

where erfc(x) is the complementary error function. However, the vertical velocity and
salinity do not have simple closed-form solutions such as this. The small and large time
asymptotics of these equations can be found (see Kerr 1989). For small times the hori-
zontal length-scale is just

L1 = (κT t)
1/2, (2.5)

the thermal diffusion distance. For large times it can be shown that there are two addi-
tional distinct length-scales that emerge. One is associated with a salt boundary layer and
the other associated with oscillations generated in the fluid at the Brunt-Väisälä or buoy-
ancy frequency, N , given by N2 = −gρz/ρ0 (Lord Rayleigh 1883). These length-scales



Double-diffusive instabilities at a vertical sidewall 7

are

L2 =

(
4κSν

gβ(−Sz)

)1/4

, L3 = ((ν + κS)t/2)
1/2

, (2.6)

respectively. The contributions of these two components both decay at t−1/2 for the
case of a no-flux boundary condition on the salt at the wall. This enabled Kerr to focus
on the disturbances on the thermal scale, L1, for his quasi-static large-time analysis of
the resulting instabilities. However, for the problems of interest here, near the onset of
heating the three components identified with the large time asymptotics may not have
separated out.

The above scales are also present for the case of linear wall heating where the temper-
ature profile is given by

T (x, t) = C

((
t+

x2

2κT

)
erfc

(
x

2(κT t)1/2

)
− x

(πκT t)1/2
exp

(
− x2

4κT t

))
, (2.7)

with the wall temperature T (0, t) = Ct for some constant C.
If a weak salinity gradient has a large temperature difference imposed, then one may

expect that the salinity gradient is relatively unimportant, and so the scalings from Kerr
& Gumm (2017) when they looked at the heating of a body of fluid from the side would
be appropriate. There the length-scale, L4, that made the thermal Rayleigh number one
was adopted:

RaT =
gα∆TL3

4

νκT
= 1. (2.8)

This scale was used by Foster (1965) in his investigation of heating a body of fluid from
below, and may be appropriate when the salinity gradient is weak. As we have two
Rayleigh numbers there would be a second length-scale that could be derived by setting
RaS = 1. It is not clear in advance which, if either, would be appropriate here in general.

In addition to these horizontal length-scales there is a vertical scale, the so-called Chen
scale (Chen, Briggs & Wirtz 1971), given by

HC =
α∆T

−βSz
, (2.9)

which describes the height a parcel of fluid in the isothermal density gradient would rise
if it were to be heated by ∆T in order to be surrounded by fluid of equal density. With
a fixed wall temperature, this length-scale is also fixed. For increasing wall temperatures
this scale will also increase with time. The average vertical scale of well-developed insta-
bilities in experiments of heating or cooling a salinity gradient is often found to be of
the order of 60–70% of this Chen scale (Wirtz, Briggs & Chen 1972; Huppert & Turner
1980; Huppert & Josberger 1980; Tanny & Tsinober 1988).

Having the Chen scale smaller than the width of the thermal layer allows a stability
analysis to be carried out using a quasi-static assumption, where the thermal length-scale,
L1, was appropriate for the horizontal scale and the Chen scale,HC , for the vertical scales.
This was conducted by Kerr (1989). The theoretical results were in good agreement with
the results of experiments such as Chen, Briggs & Wirtz (1971) and Tanny & Tsinober
(1988) in the cases where the analysis was appropriate. However, when the quasi-static
assumption was not valid the agreement was not as good. Unfortunately there is no
one length-scale that is the most appropriate in all circumstances. In the analysis of
Kerr the predicted instabilities were thin, almost horizontal layers as were observed in
the experiments of, say, Chen et al. (1971). It was found in Kerr that the appropriate
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nondimensional parameter for predicting the onset of instability in this quasi-static limit
was

Q =
(1− τ)6g(α∆T )6

νκSL2
1

(
−βSz

)5 =
(1− τ)6gα∆TH5

C

νκSL2
1

, (2.10)

where τ = κS/κT is the salt/heat diffusivity ratio. The parameter Q involves both the
horizontal thermal scale, L1, and the vertical Chen scale, HC . The factor (1− τ)6 leads
to simplification of the equations in the mathematical analysis and is not of importance
here. From this we can see that not only is there no single length-scale that is appropriate
everywhere, but in some circumstances more than one scale is needed.

We will now look at the background state. Having found several length-scales for the
full problem, we will now use a variation of L2 to nondimensionalize the equations for
the background flow for the fixed wall temperature rise of ∆T . We nondimensionalize
(2.1) using the scalings

x =

(
νκT

gβ(−Sz)

)1/4

x̂, t =

(
ν

κT gβ(−Sz)

)1/2

t̂, (2.11a)

W =

(
g(α∆T )2κT

νβ(−Sz)

)1/2

Ŵ , T = ∆T T̂ , S =
α∆T

β
Ŝ. (2.11b)

The resulting equations for the background flow are

1

σ

∂Ŵ

∂t̂
= T̂ − Ŝ +

∂2Ŵ

∂x̂2
, (2.12a)

∂T̂

∂t̂
=
∂2T̂

∂x̂2
, (2.12b)

∂Ŝ

∂t̂
− Ŵ = τ

∂2Ŝ

∂x̂2
. (2.12c)

The boundary conditions at the wall are T̂ = 1, along with the no-flux condition on
the salinity and no-slip for the velocity along with the decay conditions as x̂ → ∞. We
see that this problem for the background state only depends on the Prandtl number and
salt/heat diffusivity ratio. Thus, in these units the background evolution is the same
for all cases, and so if we want to find the time taken to achieve the maximum kinetic
energy of the background flow, or the time to the first minimum, then there is a universal
answer.

A plot of the kinetic energy of the background flow in these units,

EBG(t̂) =

∫ ∞
0

1

2
Ŵ (x̂, t̂)2 dx̂, (2.13)

is shown in figure 3(a). This shows an increase as the heated fluid rises to the wall
temperature. Because of the salinity gradient the rising fluid becomes saltier than the
fluid far from the wall, causing a decrease in the acceleration of the fluid up the wall and
a peak in the kinetic energy. After this the energy decays away. This decaying tail has a
modulation due to the stratification which is at the buoyancy frequency of σ1/2 in these
units. The first maximum occurs at t̂ = 1.140 and first minimum at t̂ = 2.895.

Comparing (1.1) and the scaling for t in (2.12) we see that the instantaneous salt
Rayleigh number and t̂ are linked by

RaS = t̂2. (2.14)
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Figure 3. Graph of the kinetic energy of the background flow as a function of t̂ from the

equations (2.12) with temperature at the wall given by (a) T̂ = 1 and (b) T̂ = t̂.

Ŝ, T̂

x̂/t̂1/2 x̂/t̂1/2 x̂/t̂1/2

(a) (b) (c)

Ŝ, T̂

x̂/t̂1/2 x̂/t̂1/2 x̂/t̂1/2

(d) (e) (f)

Figure 4. Comparison of the background salinity profiles (solid lines) and temperature profiles
(dashed lines) for the sudden increase in the wall temperature. Here the salt Rayleigh numbers
are (a) RaS = 0.1, (b) RaS = 1, (c) RaS = 10, (d) RaS = 102, (e) RaS = 103, and (f) RaS = 104.

Hence, the general form of the background flows is governed by the salt Rayleigh number
only. The first maximum in the kinetic energy occurs when the instantaneous Rayleigh
number is given by

RaS = (1.140)2 = 1.300, (2.15)

and the first minimum occurs when

RaS = (2.895)2 = 8.381. (2.16)

We shall refer to these quantities later.
The profiles of the background components will also only depend on t̂, and hence

on RaS . A comparison of the salinity profiles to the temperature profiles is shown in
figure 4 for RaS = 10−1, 100, . . . , 104. With these scalings given temperature and salinity
perturbations have equal but opposite contributions to the density. These examples go
from one extreme where the salinity is small in comparison to the temperature, so the
flow is still dominated by the temperature. At the other extreme the profiles are almost
identical, and so their effect on the density almost exactly cancel out and the buoyancy
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forcing is greatly reduced. The initial increase in the salinity is away from the wall near the
location of the maximum of the vertical velocity. This results in some of the intermediate
salinity profiles having significant regions near the wall with salinity gradients in the
opposite direction to the bulk of the fluid.

For the case where the wall temperature is given by T (0, t) = ct for t > 0, if the
scalings for x and t are those used before in (2.11), but now

W =
αc

β(−Sz)
Ŵ , T = c

(
ν

κT gβ(−Sz)

)1/2

T̂ , S =
αc

β

(
ν

κT gβ(−Sz)

)1/2

Ŝ,

(2.17)
the resulting equations are the same as (2.12), and the boundary conditions are un-

changed, except for T̂ = t̂ at the wall. The growth of the kinetic energy is shown in
figure 3(b). This time there is no maximum as the temperature continues to rise, with
the energy growth being proportional to t1/2 at leading order for large time. Again there
is a modulation at the buoyancy frequency, but it is less pronounced. If we were to look
at a salt stratified fluid heated with a constant wall flux the kinetic energy would rise to
a peak and then decay as t−1/2, as would the maximum velocity. There is again a mod-
ulation at the buoyancy frequency on top of the general decay. Schladow et al. (1992)
observed in their experiments that the rise of the boundary layer flow come to a halt. This
was for the case of a constant heat flux. However, there was also a vertical temperature
gradient away from the wall, along with the vertical salinity gradient.

It should be noted that the scalings (2.11) and (2.17) do not have a scaling for the
velocity which is the scaling for the length divided by the scaling for time, as is more
usual. If these scalings were to be used for the full equations, then new less conventional
nondimensional parameters would appear in the equations for the perturbations.

As we will be aiming to understand the instabilities that are observed experimentally,
we will adopt the approach of Tanny & Tsinober (1988) and fix on the final time when
observations are made or when the experiment is terminated. It was argued by Kerr
(2000) that this latter time was important in some experiments in determining whether
instabilities were seen or not. We will focus the instantaneous Rayleigh numbers, (1.1),
at this final moment, giving us a time-scale, t1, and the associated thermal length-scale,
L1 = (κT t1)1/2. If we nondimensionalize t with respect to this time, then the end time
will automatically be t1 = 1. However, we will refer t1 as a shorthand for the end time
henceforth.

3. Governing equations for instabilities and solution method

In this section we will give the governing equations for the linear instabilities to the
evolving background state and give an outline of the approach for finding the optimal
instabilities. Fuller details of this approach can be found in Kerr & Gumm (2017) and
Kerr (2019).

The linearized equations for the perturbations to the velocity, u, and the temperature,
T , are

∂u

∂t
+W (x, t)

∂u

∂z
+ u · ∇W (x, t)ẑ = − 1

ρ0
∇p+ gαT ẑ− gβSẑ + ν∇2u, (3.1a)

∇ · u = 0, (3.1b)

∂T

∂t
+W (x, t)

∂T

∂z
+ u

∂

∂x
T (x, t) = κT∇2T, (3.1c)
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∂S

∂t
+W (x, t)

∂S

∂z
+ u

∂

∂x
S(x, t) + wSz = κS∇2S, (3.1d)

where W (x, t), T (x, t) and S(x, t) are the background vertical velocity and temperature
variations from the previous section, and Sz the uniform vertical salinity gradient. The
unit vector pointing upwards is ẑ. Here we have made the Boussinesq approximation and
assumed a linear equation of state.

In this study we will restrict ourselves to looking at two-dimensional motions, and so
we can use the vorticity–streamfunction formulation. We take the curl of the momentum
equation (3.1a) and consider the y-component of the vorticity, ω. We will nondimension-
alize the equations using the rescalings

x′ = x/D, t′ = κT t/D
2, ω′ = D2ω/κT , T ′ = T/∆T, S′ = S/(−DSz). (3.2)

whereD is an appropriate length-scale. For example, in the case of two parallel boundaries
the distance between the walls is an obvious and conventional choice of a length-scale
for nondimensionalizing the equations. However, for heating a salinity gradient from a
sidewall we will use D = L1 = (κT t1)1/2, where t1 is the fixed time at the end of the real
or numerical experiment.

The nondimensional background equations are

1

σ

∂W
′

∂t′
= RaTT

′ − RaSS
′
+
∂2W

′

∂x′2
, (3.3a)

∂T
′

∂t′
=
∂2T

′

∂x′2
, (3.3b)

∂S
′

∂t′
−W ′ = τ

∂2S
′

∂x′2
. (3.3c)

The equations for the vorticity and the streamfunction, ψ′ are

1

σ

(
∂ω′

∂t′
− ∂ψ′

∂z′
∂2W

′

∂x′2
+W ′

∂ω′

∂z′

)
= −RaT

∂T ′

∂x′
+ RaS

∂S′

∂x′
+∇′2ω′, (3.4a)

∇′2ψ′ = −ω′, (3.4b)

where the primes indicate nondimensional variables. The perturbation velocity compo-
nents are given by

u′ = −∂ψ
′

∂z′
, w′ =

∂ψ′

∂x′
. (3.5)

The perturbation temperature and salinity equations are then given by

∂T ′

∂t′
− ∂ψ′

∂z′
∂T
′

∂x′
+W

′ ∂T ′

∂z′
= ∇′2T ′, (3.6a)

∂S′

∂t′
− ∂ψ′

∂z′
∂S
′

∂x′
− ∂ψ′

∂x′
+W

′ ∂S′

∂z′
= τ∇′2S′. (3.6b)

Henceforth we will drop the primes.
One boundary condition we apply at the wall is the no-slip condition for the velocity.

As we have a prescribed temperature at the wall the perturbation will be zero. For the
salinity we have zero flux at the wall. It should be noted that for the idealized case of a
constant heat flux at the wall, the natural boundary condition at the wall would also be
a no-flux condition. However in real heat-salt experiments the walls are never perfectly
conducting nor perfectly insulating, and so these idealized conditions will always be an
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approximation. We will stick to the perfectly conducting idealization of zero temperature
perturbation for all our calculations. Far from the wall all perturbations tend to zero.

If we define the measure of a quantity F (x, z, t) to be

〈F (x, z, t)〉 =

∫ ∞
0

1

P

∫ P

0

F (x, z, t) dz dx, (3.7)

where P is the vertical period of the instabilities, then we can define a quadratic energy-
like measure of the amplitude of the linear disturbances by

E(t) = EK(t) + λET (t) + µEM (t), (3.8)

where

EK(t) =

〈
1

2
|u|2

〉
, ET (t) =

〈
1

2
T 2

〉
, EM (t) =

〈
1

2
(S − γT )2

〉
. (3.9)

The quantities λ, µ and γ are parameters that are to be determined in the stability
analysis. The approach taken is to consider a time interval from t = t0 to t = t1 and
find the initial disturbance that maximizes the growth of E(t1)/E(t0), or equivalently
maximizes E(t1) subject to the constraint E(t0) = 1. The outcome of this optimization
of the growth depends of the parameters λ, µ and γ. In Kerr & Gumm (2017) thermal
problems were considered with only ET (t) and the parameter λ. It was shown that by
making λ very big or very small the optimized growth could be made arbitrarily large.
It was found that choosing λ to minimize this optimal growth was a good choice. For
example, when applied to the heating of a horizontal layer of fluid, the classic Rayleigh–
Bénard problem, the maximum growth rate from conventional linear stability analysis
was recovered, even when t1 − t0 was relatively small. It was shown in Kerr (2019) that,
again, a good choice of the parameters λ, µ and γ for double diffusive problems was one
that minimized this maximal growth found by optimizing the initial conditions. There it
was also shown that the adoption of a mixed quadratic term, EM (t), instead of one just
involving S2, was more effective. A mixed term like this was also required in the energy
stability analysis of Kerr (1990). We will then independently find the vertical period of
the disturbances that maximizes the growth found with optimized λ, µ and γ.

We will adopt here the convenient constraint that E(t0) = 1 in all cases. We will also
consider two cases for the selection of t0: instabilities that start growing at the onset
of heating, that is to say t0 = 0, and the case where t0 > 0, which may lead to a
larger growth in E(t1) by the end of the time interval. This leads to a further level of
optimization.

The method we use for finding the most unstable modes was developed in Kerr &
Gumm (2017) for thermal problems and Kerr (2019) for double diffusive problems, where
more details are available. We look at modes with vertical wavenumber α. Then, for
example, we express the temperature as

T (x, z, t) = <
[
T (x, t)eiαz

]
= Tr(x, t) cosαz − Ti(x, t) sinαz, (3.10)

where Tr and Ti are the real and imaginary parts of T . The evolution of the temperature,
salinity, vorticity and streamfunction are then calculated over the time interval from
t = t0 to t = t1 on a grid with N interior points. So we evaluate numerical solutions that
can be expressed as vectors such as

T(t) = (Tr1, Tr2, . . . , TrN , Ti1, Ti2, . . . , TiN )
T
. (3.11)

Previously we had zero boundary conditions for the temperature, salinity and stream-
function, and so we only needed the interior values of these. The no-slip condition meant
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that we could determine the wall values of the velocity from the interior values. This
time we have a no-flux condition for the salinity, and so we need to incorporate the wall
values. The approximation for salinity will also include Sr0, Si0, SrN+1, SrN+1 We take
vectors for the temperature, salinity and vorticity to give a combined vector

Ψ(t) =

 T(t)
S(t)
ω(t)

 . (3.12)

We can then express the numerical approximation to E(t) as

E(t) = Ψ(t)TA(λ, µ, γ)Ψ(t), (3.13)

where A is a symmetric matrix. Our optimization becomes the finding of the initial vector
Ψ(t0) with E(t0) = 1 which maximizes E(t1). As the problem is linear, we can calculate
the transfer matrix, M, such that

Ψ(t1) = MΨ(t0), (3.14)

for all possible initial conditions. This involves many numerical simulations over the time
interval from t = t0 to t = t1. Our optimization problem can now be expressed in matrix
form as finding the vector Ψ which maximizes

(MΨ)TA(MΨ) with ΨTAΨ = 1. (3.15)

With the use of a Lagrange multiplier, Λ, this maximization problem reduces to the
eigenvalue problem

MTAMΨ = MTAMA−1(AΨ) = Λ(AΨ), (3.16)

with eigenvector AΨ , and eigenvalue Λ. The largest such eigenvalue is the maximum
growth in E(t1) that we seek. Fortunately, for the problems considered in this paper
iterative methods for finding this eigenvalue and associated eigenvector proved to be
quick and effective. The minimums of the growth rate as a function of λ, µ and γ were
smooth, and so the ratios of EK(t), ET (t) and EM (t) at t = t0 and t = t1 are the same,
as shown in Kerr (2019). In the calculations we typically use N = 240, but for some more
extreme cases and for checking we use up to N = 480.

4. Sudden increase in wall temperature

In this subsection we will look at the idealized case of the sudden increase in the
wall temperature at t = 0. This was the aimed for case of Chen et al. (1971), but the
experiments took around 3 minutes to reach this final temperature. However, Tanny &
Tsinober (1988) were able to raise their wall temperature in a few seconds. Another set
of experiments where there was a rapid change in the heat at a vertical wall were those
of Huppert & Josberger (1980) and Huppert & Turner (1980) where blocks of ice were
introduced into a salinity gradient. Although the temperature was effectively a sudden
decrease in temperature (fully equivalent to a sudden increase) there was the added
difficulty in these cases of a flux of fresh water at the boundary due to the ice melting,
and so comparisons with the work here could be problematic.

We look at the growth of linear instabilities for the idealized problem where the nondi-
mensional wall temperature is instantaneously raised by 1 at the initial time, t = 0. In
this case the instantaneous thermal and salt Rayleigh numbers (1.1) are proportional to
t3/2 and t2 respectively. Hence the points (RaS ,RaT ) evolve along lines of slope 3/4 in
the log–log plot of the RaS–RaS plane as shown in figure 2. We will base the presentation
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Figure 5. Growth in E(t1) as a function of final RaS and RaT with t0 = 0. Contours with
E(t1) = 102, 103, . . . , 1016 (from bottom to top). Also shown are arrows indicating the gen-
eral evolution of the instantaneous Rayleigh numbers for four cases, A–D. The red dashed lines
indicating the boundaries of the different regimes, and the black dotted line giving points cor-
responding to marginal stability for the large RaS quasi-static asymptotics with Q = 147 700
(Kerr 1989).

of many of our results on this approach, used by Tanny & Tsinober (1988). Each point
on the plot will correspond to the final Rayleigh numbers of a numerical experiment. At
this point the growth of the instabilities will be investigated: we find the optimal growth
and the corresponding wavenumber. We will consider two cases. Firstly those where the
growth of instabilities is measured from the initial time t0 = 0. Secondly, we will look at
those where this initial time for measuring the growth of instabilities is also optimized
to maximize the growth over the time interval from t = t0 to t = t1.

4.1. Growth of instabilities from t0 = 0

The optimal final growth, E(t1), as a function of the final instantaneous RaS and RaT
with t0 = 0 is shown in figure 5. In each case the growth is minimized with respect to λ,
µ and γ, and maximized with respect to the wavenumber, α. This optimal wavenumber
is shown in figure 6†. In figure 5 we only show the contours of the growth in E(t) in
the range from 102 to 1016. The former corresponds to a growth in the perturbation
quantities by a factor of around 10. The form of the instabilities changes over the growth
period so this factor may not be exact for each component. The maximum figure of 1016

corresponds to a growth in velocities comparable to the ratio of the speed of finger-
nail growth to around 10 cm s−1. In all probability, any linear disturbance will be of
large amplitude, and be nonlinear in their nature, before this upper limit for growth is
observed. Any growths much bigger are mathematically well-defined but likely to be of
limited physical significance, and so omitted so that the focus is on results that are likely
to be relevant in reality.

Visible on the contour plot for the maximum growth are two valley-like features, clearly
visible for the larger growths where the contours have kinks. These features are visible in
the corresponding plot of the wavenumber, α, as lines of discontinuity and are highlighted
by the red dashed lines in both figures. The left-hand line of discontinuity in α levels

† In these and subsequent contour plots shading has been added, with blue taking the lower
values and red the higher. This is intended to aid clarity, particularly where there are disconti-
nuities.
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Figure 6. Wavenumber, α, of most unstable mode as a function of final RaS and RaT , with
t0 = 0. The contour lines are at α = 100, 10±0.1, 10±0.2, 10±0.5, . . ., with the heavier lines at
α = 100, 10±0.5, 10±1.0, . . . and the dashed contours have α < 1. The green dashed lines show
the contours for growth in E(t1) of 102 and 1016 as shown in figure 5. The red dashed lines show
the discontinuities in the critical wavenumber, α.

off to the left just above RaT = 2 000. This corresponds to the transition between the
large and small Prandtl number modes of growth seen for the no-salt sidewall heating
considered by Kerr & Gumm (2017). There this transition was found for σ = 7 at
around t = 160 (using the definition of t based on L4 used there). This corresponds
to RaT = 1603/2 = 2023.9 here. We saw in figures 4(a,b) that the background salinity
gradient starts to become significant between RaS = 0.1 and RaS = 1. In this region
the growth contours above the line of discontinuity tend to move up, while those below
tend to move down. This indicates that the initial effect of the salinity gradient is to
stabilize the low Prandtl number mode, and to destabilize the large Prandtl number
mode. This happens because the low Prandtl number mode is destabilized by shear, and
so the presence of a salinity gradient slows down the up-flow, and so tends to stabilize the
flow in this regime. However, the high Prandtl number mode is stabilized by shear and
so the increasing salinity gradient, which slows down the background flow tends to make
these modes more unstable. We have seen in (2.15) that the maximum in the kinetic
energy of the boundary layer occurs at RaS = 1.300, which coincides with the transition
where the small Prandtl number mode recedes, and the instabilities consist only of the
large Prandtl number mode.

The second valley-like structure extends vertically through the plot. It divides the
region into two parts: to the left are the modified thermal modes of instability, and to
the right is what we will see is a new double-diffusive mode. In the plot of the optimal
wavenumbers in figure 6 there is a jump in the wavenumber across this transition line
at some points. However at other points there is a smooth transition with a relatively
quick, but not large, variation in the wavenumber. Lower down the line of discontinuity
the valley-like structure fades away, and there is no clear jump in the wavenumber. In
this region below the line for E(t1) = 100 the contours of α look a bit confused to the
right of the red dashed line. Here there seem to be several exchanges between different
modes with similar wavenumbers. However, this region is outside our range of growth
that we are concerned with, and we will disregard it henceforth.

There is an upturn in the contours of the growth to the right of the double diffusive
region. As the background vertical salinity gradient increases, so the horizontal salinity
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gradient needed to drive the instabilities also increases. The salinity profile matches
the temperature profile closely here. This means that the wall temperature required
for instability also increases. The more detailed argument in Kerr (1989) about the
relative magnitudes of the salinity gradients shows that the stability boundary should
tend towards a line of slope 5/6 in the plots, as seems to be the case. This argument
assumes that the vertical scale of the instabilities is approximately that of the Chen scale,
HC , but the scale used for the nondimensionalization is the thermal scale, L1. Along this
boundary HC/L1 decreases, and so the vertical wavenumber increases steadily to the
right. We shall see later that the Chen scale is indeed the appropriate measure of the
vertical scale of the instabilities here.

The growth region extends just below the quasi-static stability line of Q = 147 700
that is shown in figure 5. However, this does not mean we have instability where stability
was previously predicted. If we follow the trajectories of these cases backwards, we find
they are instabilities that grew to a larger amplitude in the unstable region and have
subsequently dropped in size as they approach this line. As the overall trajectories move
further to the right they eventually get to a stage where E(t) only just reaches the
threshold of 102 before decaying. Beyond this point no instabilities form that reach this
limit.

We will look at the evolution of three instabilities as they progress along the first
three arrows, A–C, shown in figure 5. These each have the same final RaT but with
increasing RaS . This could correspond to three experiments with the same increase in
wall temperature and observed for the same time, but with increasing salinity gradients.
In each case we will take t0 = 0 and find α, the wavenumber up the wall, to maximize
the growth. The evolution of the optimal E(t) for these cases is shown in figure 7, where
the first and third plots have been raised and lowered to aid clarity. We will focus on the
main part of the growth, ignoring the initial slightly wiggly bits for now.

The first case corresponds to the left-hand arrow, A. This has final Rayleigh numbers
RaT = 3718 and RaS = 0.36. The evolution of E(t), curve (a), shows there are two
periods of roughly steady growth with a transition at around t = 0.6 where E(t) has a
small dip. This behaviour was seen in the case of heating an unstratified body of fluid
from a sidewall in Kerr & Gumm (2017). There it was seen to be a transition from an
initial large Prandtl number mode to a small Prandtl number mode. This transition
occurred for Prandtl numbers in the range from just below σ = 3 to just over σ = 10,
which includes the approximate value for water σ = 7, which is used here. Outside this
range only one mode was observed as the instability grew. The instability that is observed
here is essentially just the thermal instability that was seen previously in Kerr & Gumm
(2017), with only minor modification due to the salinity gradient.

Next we look at the case B where the salt stratification is increased so the final salt
Rayleigh number is now RaS = 7.2, but with the same final thermal Rayleigh number as
case A. The background horizontal salinity profile is close to that shown in figure 4(c),
with a region near the wall where the salinity is increasing, and further away a reasonably
close match between the salinity and temperature. We find the instability grows without
any transition. The growth rate is approximately the same as the first part of the previous
case, and slower than its second part. With the effect of the transition phase producing
a dip in the growth in our first case, the overall growth is similar. The form of these two
instabilities, A and B, are shown in figures 8 and 9 where contours of the vorticity and
temperature perturbations are shown for t = t1/4 and t = t1, which correspond to before
and after the transition for case A. We shall see later that the salinity perturbations do
not play a significant role in the dynamics of the instabilities in these two cases, and are
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Figure 7. Growth in E(t) as a function of t/t1 for final Rayleigh number RaT = 3718 and (a)
RaS = 0.36, (b) RaS = 7.2 and (c) RaS = 288. The value of E(t) is multiplied by 1000 in (a)
and by 0.001 in (c) for clarity. In each case t0 = 0 and the values of the wavenumbers are (a)
α = 0.2330, (b) α = 0.3530 and (c) α = 2.5362, chosen to maximize the growth at t = t1.
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Figure 8. Contour plots of the perturbation of the (a,b,d,e) vorticity and (c,f) temperature at
(a,b,c) t/t1 = 0.25 and (d,e,f) t/t1 = 1 for case A. The final Rayleigh numbers are RaT = 3718
and RaS = 0.36, with α = 0.2330. Plots (a) and (d) have the correct aspect ratio, while the
others are stretched horizontally for clarity.

not shown. Here the main impact of the salinity is felt in the reduction of background
velocity.

The instabilities that emerge along arrows A and B are relatively tall compared to their
width, as shown by the vorticity plots in figures 8(a,d) and 9(a,d). For clarity, these are
repeated in the plots (b) and (e) but with horizontal stretching, as are the accompanying
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Figure 9. Contour plots of the perturbation of the (a,b,d,e) vorticity and (c,f) temperature at
(a,b,c) t/t1 = 0.25 and (d,e,f) t/t1 = 1 for case B. The final Rayleigh numbers are RaT = 3718
and RaS = 7.2, with α = 0.3530. Plots (a) and (d) have the correct aspect ratio, while the
others are stretched horizontally for clarity.

temperature perturbation plots (c) and (f). We can see that the instabilities in case A
have clear differences in their forms before and after the transition, corresponding to
the large and small Prandtl number modes respectively. When we look at the form of
the instabilities in case B, we see that at t = t1/4 there is a clear similarity with the
corresponding large Prandtl number instabilities in case A. At t = t1, although not
identical, there is again a large degree of similarity in form indicating that now the large
Prandtl number mode persists.

It was found by Kerr & Gumm (2017) that the large Prandtl number modes tended to
have larger wavenumbers than the cases where small Prandtl number modes eventually
appeared. This trend is seen here where the optimized wave numbers are α = 0.2370
for case A and α = 0.3530 for case B, based on the length-scale of the thermal layer at
t = t1.

For the third case, shown by arrow C, we further increase the salt stratification so
RaS = 288 at t = t1. The horizontal temperature and salinity profiles are now very
similar for nearly all their range, with only a small deviation near the wall. The forms
of these instabilities are entirely different from both the large and small Prandtl number
modes seen previously. We saw in figure 7 that we again get a steady growth for the
main part of the evolution for the instabilities, however the growth rate is lower than
the previous two cases. The forms of these instabilities are shown in figure 10 for t = t1.
Here there is no horizontal re-scaling, and so the aspect ratio is clearly very different in
this case. The instabilities have a wavenumber of α = 2.536. The small anomalies in the
salinity near the wall are due to the reversed horizontal salinity gradients in this region.

To get a better understanding of the driving forces for the motions in the instabilities
we can consider the evolution of the kinetic energy as a whole. The evolution of EK(t)
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Figure 10. Contour plots of the perturbation of the (a) vorticity, (b) streamfunction, (c) tem-
perature and (d) salinity at t/t1 = 1 for case C. The final Rayleigh numbers are RaT = 3718
and RaS = 288.0, with α = 2.536. These plots have the correct aspect ratio.

is governed by the equation

d

dt
EK(t) = −

〈
uw

∂W

∂x

〉
+ σRaT 〈wT 〉 − σRaS 〈wS〉 − σ

〈
|∇u|2

〉
. (4.1)

The first term on the right is the driving of the motion by the background shear, the
second and third are the buoyancy forcing from temperature and salinity respectively,
and the last the dissipation due to viscosity. The relative sizes of the contributions of
these terms to the driving of these are shown in figure 11 for the three cases A, B
and C. The contributions from the four terms on the right of (4.1) are shown in yellow
for the shear, red for the thermal term, blue for the salinity term and green for the
viscous dissipation. Above the horizontal t-axis are shown the terms making a positive
contribution to the time derivative, while those below make a negative contribution.
Hence the dissipation term (green) is always below the axis. The contributions have been
scaled so the maximum of either the positive or negative contributions has magnitude
one. If the lower bound of the plot is above −1 then this indicates the total sum will be
positive and the kinetic energy will be growing. Similarly if the upper bound is less than
one the kinetic energy will be decreasing.

In each case there is an initial chaotic-looking adjustment phase up to around t/t1 = 0.2,
where there is not significant growth in the instabilities. We will again ignore these for
now. We will instead focus on the evolution of these curves for the parts corresponding
to the strong growth in the instabilities seen previously.

For case A, shown in figure 11(a), we see that there are two distinct parts separated
by a transition phase just before t/t1 = 0.6. Before this transition the main driver for
the motion is the temperature, with the viscous term dissipating a significant proportion
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Figure 11. Plots showing the relative contributions of the terms in the kinetic energy equation
(4.1) for final Rayleigh numbers RaT = 3718.1 and (a) RaS = 0.36, (b) RaS = 7.2 and (c)
RaS = 288 as t increases. In each case t0 = 0 and the values of the wavenumbers are (a)
α = 0.2330, (b) α = 0.3530 and (c) α = 2.5362, chosen to maximize the growth. The four
terms are the shear term (yellow), the thermal term (red), the salt term (blue) and the viscous
dissipation term (green).

of the energy. As time progresses the shear term becomes steadily more important in
the driving of the motions. After the transition stage, the shear becomes the dominant
driving force, with the contribution from the thermal buoyancy term dropping almost
to zero, showing that in this phase the motions are driven by background shear. At no
stage is the contribution from the salinity term of any significance.

The evolution of the terms driving the motions in case B are shown in figure 11(b). After
the initial adjustment phase the motion is primarily driven by the thermal buoyancy,
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with the shear term playing only a small and decreasing role. This is similar to the pre-
transition phase in case A. One clear difference here when compared to the previous case
is that the salinity term is now playing a non-trivial stabilizing role, which is comparable
to the dissipation term.

In the last of these three cases, shown in figure 11(c), is clearly a very different regime.
After the initial phase, the shear contribution is barely distinguishable from the hori-
zontal axis, indicating this term no longer has any significant role. As the background
temperature and salinity profiles closely match each other, the buoyancy force driving
the vertical flow is much reduced and the velocity drops off. Instead the instabilities are
now driven by the salinity term. The thermal term has a stabilizing effect of similar
magnitude to the viscous dissipation. As a warm salty parcel of fluid moves away from
the wall one may anticipate that the temperature perturbation would dissipate far faster
than the salinity as the ratio of the diffusivities, τ = κS/κT = 1/80, is so small. However
there is a second mechanism for reducing a positive salinity perturbation in a parcel
of fluid, which is for the parcel to sink towards a saltier environment. Similarly fresher
fluid moving towards the wall can rise to less salty surroundings reducing its salinity
difference. This results in the reduction in the salinity perturbation being significantly
faster than one may expect from diffusion considerations alone, and so the temperature
perturbation remains relatively significant. As the warm salty fluid moving away from
the wall tends to sink, the warmth of this fluid resists this downwards motion. Similarly
cool fresh fluid moving towards the wall will tend to rise to a less salty level, and the
coolness will resist this motion. As the temperature opposes the motion and a stabilizing
effect.

The last of the arrows in figure 2 at the right, case D, ends up at a higher RaT .
This would correspond to a further increase in the salinity gradient (which slows down
the growth of the instabilities) and allowing the experiment to run for around a factor
5.4 times as long as the previous examples if the same temperature difference were to
be applied at the wall. The overall growth shown in figure 12(a) is comparable to the
previous examples. This indicates the average growth rate is around a fifth of the previous
case. The initial adjustment where E(t) drops from 1 is not clear in the scalings here as
it happens in a relatively short interval. The left-hand end of figure 12(b) is similar to
that of case C shown in figure 11(c). The main difference here is that we can now see a
gradual reduction in the influence of the temperature in inhibiting the instabilities. The
gap between the bottom of the green region and the line at −1 is almost invisible. This
indicates the further reduction in the significance of the time-derivative inertia term.
The balance in this equation is essentially that of the salinity term driving the motion,
which is primarily resisted by the viscosity with a contribution from the temperature.
The structure of the instabilities at the end of case D is shown in figure 13. These are
very similar to the thin almost horizontal instabilities of Kerr (1989) from his quasi-static
analysis.

One feature that is emerging here is that during the initial phase at the start there
is either no significant growth or a significant drop in the amplitude from the initial
E(0) = 1. Once the growth phase starts it does so from an amplitude that is similar
to or clearly less than this initial starting point. This initial phase seems to have little
importance to the growth of the instability as a whole. We will return to this in the next
subsection, where we will see that this is the case.

In the double-diffusive regime, the contributions to the motions show that the motions
are being driven by the salinity, with the temperature and viscous terms providing the
dissipation. This background shear is small, and unimportant for this larger salinity
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Figure 12. Plots for line D in figure 2 for final Rayleigh numbers RaT = 46 475 and
RaS = 43 200, and α = 10.000 with t0 = 0. In (a) is shown the growth in E(t) as a function
of t/t1. The relative contributions of the terms in the right side of the kinetic energy equation
(4.1) are shown in (b). The four terms are the shear term (yellow), the thermal term (red), the
salinity term (blue) and the viscous dissipation term (green).

gradient regime. The shear term did not appear in the large salinity gradient analysis of
Kerr (1989).

4.2. Growth of instabilities with optimized t0 > 0

When we looked at the drivers behind the evolution of the instabilities in figure 11 we
ignored the chaotic-looking transient behaviour at the start. In most of the examples here
E(t) does not change greatly, only for case D was there a clear drop. In some cases, the
initial perturbations seem to consist of distorted versions of the form of the instabilities
when they start growing, and that during this initial phase the background motions
lead to the unwinding of this distortion. Thus this initial phase is less to do with the
growth of the instabilities, and more to do with ensuring the appropriate form of the
disturbance is present to ensure rapid growth once it initiates. In some circumstances,
experimental observations of the instabilities formed when a salinity gradient is heated
from a sidewall seem to indicate a delay between the heating of the wall and the onset
of instability. For example, in Chen et al. (1971) there is a clear delay of several minutes
before instabilities are seen in the experiments illustrated in their figure 8, while Schladow
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Figure 13. Contour plots of the perturbation (a) vorticity, (b) salinity and (c) temperature
perturbations for case D. The final Rayleigh numbers are RaT = 46 475 and RaS = 43 200, and
α = 10.000, with t0 = 0.

et al. (1992) observed that in some of their experiments the instabilities only started to
grow after the initial up-flow at the heated wall slowed down. As was shown in Kerr &
Gumm (2017), by delaying the onset of the period considered for the evolution of the
instability, the growth at the end time, t1, can be enhanced. We will now consider the
case where we allow for t0 > 0, and choose the value that enhances E(t1) the most, along
with usual optimization with respect to the wavenumber, α, and the parameters λ, µ
and γ in E(t).

When we allow for the optimisation of E(t1) with respect to t0 we notice some degree
of enhancement. The growth is shown in figure 14 and the corresponding wavenumbers
in figure 15. There is a slight lowering of the growth contours, and some changes to
contours of the wavenumber and the location of the red dashed lines showing jumps in
α. The biggest differences are in the region below the E(t1) = 102 contour, which do not
concern us.

The difference caused by optimizing t0 is more clearly seen by looking at the ratio of
the new optimised growth E(t1) with t0 > 0 to those found in the previous subsection
with t0 = 0. This is shown in figure 16. This ratio lies between 1 (no enhancement) and
just under 40. As this plot uses results for both the t0 = 0 and t0 > 0 cases, the lines
corresponding to the jumps in α for both cases are relevant. The difference between the
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Figure 14. Growth in E(t1) as a function of final RaS and RaT with optimized t0. Contours
with E(t1) = 102, 103, . . . , 1016 (from bottom to top). Also shown are the arrows indicating the
general evolution of the instantaneous Rayleigh numbers for four cases, A–D. The red dashed
lines indicating the boundaries of the different regimes, and the black dotted line giving points
corresponding to marginal stability for the large RaS quasi-static asymptotics with Q = 147 700
(Kerr 1989).
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Figure 15. Contour plots of the wavenumber, α, for the optimal E(t1) with optimized t0 as a
function of final RaS and RaT . The contour lines are at α = 100, 10±0.1, 10±0.2, 10±0.5, . . .,
with the heavier lines at α = 100, 10±0.5, 10±1.0, . . . and the dashed contours have α < 1. The
green dashed lines show the contours for growth in E(t1) of 102 and 1016 shown in figure 14.

lines separating the large and small Prandtl number modes are not noticeable on these
log–log plots, but is visible between the large Prandtl number modes and the double
diffusive modes. If we look at the regions of the small and large Prandtl number thermal
modes, we see there is a limited enhancement of the growth. This is in line with the
findings of Kerr & Gumm (2017) where there was a small enhancement in the growth
of E(t1) of up to around a factor of 2 in total growth after optimization. This could be
seen by the closeness of the growth contours for the optimized cases and those with t0
in their figure 18. This relatively small increase in the growth is repeated here for these
modes, with enhancements of less than 2.7 found in these regions.

The region with the greatest enhancement in growth is in the top left part of the double
diffusive regime. In this regime the trajectories of the instantaneous Rayleigh numbers
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Figure 16. Contour plots of the ratio of E(t1) with optimized t0 to the case where t0 = 0 as a
function of final RaS and RaT . The thinner contours have a spacing of 0.25 up to a ratio of 4.
From ratios of 4 upwards spacing of the thicker contours is 4. The arrows A–D are as in figure 5.
The arrow E shows a trajectory of a case with a higher level of enhancement.
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Figure 17. The growth of E(t) as a function of t/t1 for three cases with RaT (t1) = 11 154 and
RaS(t1) = 160.73. The solid line shows the case with optimal t0/t1 = 0.2118 and α = 2.431,
the dashed line shows the optimal case for t0 = 0 with α = 2.247. The dotted line shows the
evolution of E(t) when the initial conditions for the case with optimal t0 is applied at t = 0.

cross the low Prandtl number regime before ending in the double diffusive regime. We
can get some understanding for the cause of this enhancement by looking at the growth
of E(t) for a typical case that ends up in this region. We will follow the evolution along
arrow E in figure 16. Much of this arrow lies in the large Prandtl number region, but due
to the logarithmic scales the time taken to reach the red dashed line is around half the
total time from 0 to t1.

Three plots of the growth of E(t) for case E are shown in figure 17, with Rat(t1) =
3718.1 and RaS(t1) = 71.83. The solid line shows the fully optimal growth which has
t0/t1 = 0.2118 and α = 2.431. The growth is approximately linear in this plot, indicating
growth that is close to exponential throughout. The dashed line shows the growth of
the optimal form of the instability with t0 = 0. This has two phases, an initial slower
relatively unsteady growth which is followed by a faster relatively steady phase with
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Figure 18. The optimal value of t0/t1 to maximize the growth of the instabilities as a function
of final RaS and RaT , with t0 = 0. The heavy contours are at t0/t1 = 0.1, 0.2, . . ., with thinner
contours at t0/t1 = 0.025, 0.05, 0.075, . . ..

a growth rate only slightly slower than that shown by the solid line. This marginally
slower final growth and the small differences between the shape of the dashed and dotted
lines observed beyond around t/t1 = 0.2 are due to the different wavenumbers. The
wavenumber for the t0 = 0 mode is α = 2.247, which differs from that of the first mode,
and is not optimal for this phase. The form of the instability in the large Prandtl number
mode differs significantly from the double-diffusive mode, and so does not form a good
initial condition for when the double diffusive mode becomes unstable. This mode has to
grow and overtake the original mode, leading to a delay in the appearance of the double-
diffusive mode. As an exercise, the initial conditions for the double diffusive mode were
applied at t = 0. This is shown by the dotted line. Although there is a small initial
peak, it is clear this does not provide a good initial condition for the growth of the large
Prandtl number mode. Nor does it cause the double diffusive mode to start sooner as
the initial double diffusive mode gets swamped by the large Prandtl number mode.

For much of the double diffusive region in the plot of the ratios of the growths, the
contours are approximately parallel to the arrows C and D. As with the above case in
much of this region the gains in E(t) are in the initial phase, and the subsequent growth
is essentially the same with or without optimizing t0. Hence, the gain along a given arrow
is mostly independent of the final position of the experiment on that trajectory, and so
arrows and contours are essentially parallel.

Contours of the optimized values of t0 are shown in figure 18. Here we see the larger
values are found for the smaller values of RaT for the large Prandtl number modes,
and towards the bottom left of the double diffusive region. The optimal start time for
instabilities on a given trajectory would be expected to be similar, and so the instabilities
further along the trajectory will have spent a longer period growing and so we would
expect t0/t1 to decrease. If, instead, we plot the instantaneous Rayleigh numbers at
the points corresponding to t0 where the instabilities start growing, we get a different
perspective. These points are shown in figure 19. The points displayed come from all
the results used to plot the contours with growth E(t1) ≥ 100. The three colours used
correspond to where the final Rayleigh numbers lie. If the instabilities end in the low-
Prandtl number regime they are red, in the large Prandtl number regime they are green
and blue for the double diffusive regime. The former are mainly clustered around a
horizontal line. It was observed that for the heating of a body of fluid from the side in
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Figure 19. Scatter plot of the instantaneous Rayleigh numbers evaluated at t0 for the instabili-
ties that have E(t1) > 100. The colours indicate the three regions of the final Rayleigh numbers:
red — small Prandtl number, green — large Prandtl number, and blue — double-diffusive. The
vertical dotted line is at RaS = 8.381 where the kinetic energy of the background flow has its
first minimum.

Kerr & Gumm (2017) that the optimal value of t0 differed little for the whole range of
growths considered. This behaviour would be expected for points at the left end of the
figure and is observed here. There is a larger degree of scatter for the instabilities that
lie on trajectories that are restricted to the large Prandtl number regime. The reason for
this not clear.

The locations of the Rayleigh numbers at the onset of instability for the cases that end
in the double-diffusive regime are tightly clustered around a line that curves upwards and
lies approximately between RaS = 2 and RaS = 9. This region lies just to the left of the
location of a small vertical cluster of points from the experiments of Tanny & Tsinober
(1988), shown in figure 2. The clustering of the instantaneous Rayleigh numbers in the
double-diffusive regime also ties in with an observation by Schladow et al. (1992) that the
growth of instabilities for rapid heating seemed to start at the same time as the initial rise
of the fluid up the wall came to a halt. Although the fluid never actually comes to a total
rest, we found in (2.16) that for the Prandtl number and salt diffusivity ratio used here
the kinetic energy of the background flow has a first minimum when RaS = 8.381. This
is shown by the vertical dotted line in figure 19. The cluster of points is plausibly tending
to this line as it rises. There is a vertical section of the stability boundary for a slot. It
was shown by Kerr & Tang (1999) to be a balance between the destabilizing horizontal
salinity gradient and the stabilizing vertical shear, both of which were proportional to
RaT for a given RaS , as is the case here. All this would seem to confirm the link between
the drop in the vertical velocity and the onset of instability is not just a correlation.

In all cases examined the growth of the instabilities with optimized t0 essentially avoid
the chaotic part of the growth at the start when t0 = 0 with strong growth starting
immediately. The chaotic part of the evolution of E(t) does not have any significance
in the growth of the instabilities, and justifies ignoring this portion in the previous
subsection.
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5. Linear increase in wall temperature

In this section we look at the case of a linear increase in the wall temperature starting
at the initial time, t = 0. In the previous section the trajectories of the instantaneous
Rayleigh numbers from the sudden heating of the wall have slope 3/4 in the log–log
Rayleigh number plots. As the asymptotic stability boundary has slope 5/6, this means
that trajectories approach this line from above, from the unstable region. With the in-
creasing wall temperature the equivalent stability boundary still has slope 5/6, but is
fractionally lower, with a reduced critical Q = 107 000 due to a change in the tempera-
ture profile (Kerr 1989). The Rayleigh number trajectories now have slope 5/4, and so
approach this stability boundary from below, i.e., from the stable side.

We will find that the RaS–RaT plane is again subdivided into three regions, cor-
responding to the small and large Prandtl number regions where the instabilities are
primarily thermal, and the double-diffusive region. The small and large Prandtl number
regimes are similar to these regions in the previous section. However, there are significant
differences in the double diffusive region such as being able to access the marginal sta-
bility line derived from the quasi-static analysis from the stable side. For these reasons
we will focus on the double diffusive region in this section and consider larger values of
RaS . In the following subsections will again consider the two cases where we set t0 = 0
and where we also optimize t0 to maximize the growth.

If we run two experiments, one with fixed wall temperature and the other with linearly
increasing wall temperature, then if they have the same vertical salinity gradient, are run
for the same time and end with the same wall temperature, then their final instantaneous
Rayleigh numbers will be the same.

5.1. Growth of instabilities with t0 = 0

We again start by looking at the results with t0 = 0. The contours for the growth in
E(t1) between 102 and 1016 are shown in figure 20, focusing on higher Rayleigh numbers
than before. The corresponding plots of the optimal wavenumber are shown in figure 21.
When we look at the contours of growth towards the left of the RaT –RaS plane shown,
we see that the overall pattern is similar to the contours for the fixed increase in the
wall temperature. The two valley-like structures seen in the previous section are present
here, although the left one only impinges slightly on the top left corner of the region
shown here. The second one is roughly parallel to the Rayleigh number trajectories, and
separates the large Prandtl number region from the double-diffusive region. The three
arrows A–C in figure 20 show the trajectories of three cases that we will look at in some
detail shortly.

The contours are generally higher than in figure 5. The final Rayleigh numbers are given
by the final wall temperatures. Since here it is linearly growing, the wall temperature is
always lower during an experiment than that for the corresponding fixed temperature
case, until the last moment. Hence the forcing for the instabilities is lower before this
point, and so one would expect the growth here to be lower for the same given final
Rayleigh numbers.

One notable feature of the growth contours is that their spacing decreases as the salt
Rayleigh numbers increases. In the experiments of Tanny & Tsinober (1988) the scatter in
the experimental observations of the instabilities decreases notably as the salt Rayleigh
number increases. Their figure also showed the results from a variety of wall heating
regimes. Different regimes introduce more scatter in the results reflecting the differences
between the contours of figures 5 and 20. However, as the higher salt Rayleigh numbers are
not accessible from the instantaneous wall temperature increase of the previous section,
this extra scatter will only apply to cases where the salt Rayleigh numbers is less than,



Double-diffusive instabilities at a vertical sidewall 29

RaS

Ra
T

A B

C

100 101 102 103 104 105 106 107 108
102

103

104

105

106

107

Figure 20. Contour plots of the growth of E(t1) with t0 = 0 at the optimal wavenumber, α, as a
function of final RaS and RaT where the wall temperature increases linearly with time. Contours
show E(t1) = 102, 103, . . . , 1016 (from bottom to top). The arrows indicate the general evolution
of the instantaneous Rayleigh numbers for three cases, A–C. The red dashed lines indicating
the boundaries of the different regimes, and the black dotted line giving points corresponding
to marginal stability for the large RaS quasi-static asymptotics with Q = 107 000 (Kerr 1989).

say, 105. This will tend to result in an even higher overall scatter in the experimental
results for the lower salt Rayleigh numbers.

There is still a gap between the growth contours and the line of instability correspond-
ing to Q = 107 000. One reason for this can be found by looking at the evolution of E(t)
along the arrows A–C, as shown in figure 22. The first two are qualitatively similar, with
a period up to around t = 0.25 where E(t) changes little. They then start a period of
growth with case B, with the stronger salinity gradient, growing faster than case A, with
the weaker salinity gradient. The third case, where we follow arrow C, approaches the
quasi-static stability line in a region where the quasi-static analysis may be expected to
be appropriate. In this case there is a prolonged period of steady decay in E(t) until
around t = 0.5 when a period of growth starts. At the minimum E(t) has decreased by
more than three orders of magnitude. When t = 0.5 the instantaneous thermal Rayleigh
number is around 18% of the final value. On the trajectory of this case, this point is close
to the line of marginal stability from the quasi-static analysis.

If we look at the contributions of the forcing terms to the growth in kinetic energy of
the disturbances, shown in figure 23, we see that the influence of the shear term ranges
from “very small” to “not visible”. The primary balance is the driving of the salinity
term being opposed by the viscous dissipation and the temperature term. This balance
is very close, and so the inertia term is not important. This behaviour is essentially the
same as for the double diffusive modes of the fixed increase in the wall temperature of
the previous section.

When we look at the contour plots of the perturbations for the vorticity and salinity
when t = t1 for the three cases A–C, shown in figure 24, we see that these are similar to
the double diffusive instabilities with a fixed rise in the wall temperature of the previous
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Figure 21. Contour plots of the optimal wavenumber, α, with t0 = 0, as a function of final
RaS and RaT where the wall temperature increases linearly with time. The thicker contours are
at α = 100, 10±0.5, 10±1, . . . with the negative contours dashed. The thinner contours are at
α = 10±0.1, 10±0.2, 10±0.3, . . .. The red dashed lines show discontinuities in α. The arrows are
the same as in the previous figure.
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Figure 22. Growth in E(t) as a function of t/t1 for final Rayleigh numbers (a) RaT = 25 000 and
RaS = 400, (b) RaT = 25 000 and RaS = 5 000 and (c) RaT = 2 500 000 and RaS = 6 000 000,
corresponding to arrows A, B and C in figure 20. In each case t0 = 0 and the values of the
wavenumbers are (a) α = 1.7247, (b) α = 6.2120 and (c) α = 26.006, chosen to maximize the
growth at t = t1.

section. However they also have one clear difference. Even though the thermal diffusion

length-scale, t
1/2
1 , is the same in both cases, these instabilities are confined to a signif-

icantly narrower region near the wall. This reflects the differences in the background
temperature and salinity profiles in the two cases. The temperature profiles are shown
in figure 25 at t = 1, when wall temperatures are the same. The lower of the profiles is
for the linear wall temperature increase and is notably narrower, with the temperature
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Figure 23. Plots for linearly increasing wall temperature showing the relative contributions of
the terms in the kinetic energy equation (4.1) for final Rayleigh numbers (a) RaT = 25 000 and
RaS = 400, (b) RaT = 25 000 and RaS = 5 000 and (c) RaT = 2 500 000 and RaS = 6 000 000. In
each case t0 = 0 and the values of the wavenumbers are (a) α = 1.7247, (b) α = 6.2120 and (c)
α = 26.006, chosen to maximize the final growth. The four terms are the shear term (yellow),
the thermal term (red), the salt term (blue) and the viscous dissipation term (green).

gradient at the wall twice as steep as for the fixed wall temperature case. This sharper
gradient is behind the lower critical value of Q for the linear increase in wall temperature
when compared to the fixed wall temperature case.

There is a clear trend in these three cases that as the salinity gradient increases the
aspect ratio changes from being relatively tall to almost horizontal layer-like structures.
These latter intrusions are as expected from the quasi-static analysis. This continuum
of behaviour in intrusions in a salt stratified fluid in fluids with infinite gradients was
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Figure 24. Contour plots of the perturbations of the (a,c,e) vorticity and (b,d,f) salinity for
linearly increasing wall temperature at t = t1 for final Rayleigh numbers (a,b) RaT = 25 000 and
RaS = 400, (c,d) RaT = 25 000 and RaS = 5 000 and (e,f) RaT = 2 500 000 and RaS = 6 000 000.
In each case t0 = 0 and the wavenumbers chosen to maximize the final growth.

found by Holyer (1983), where convecting layers become more horizontal as the ratio of
the vertical salinity gradient to the horizontal salinity gradient increases.

Along each of the arrows A–C in figure 21 we see that the wavenumber that maximizes
growth increases. In figure 26(a) is shown the evolution of E(t) along arrow C as a
function of t/t1 seen previously (the dashed line). The solid line in this graph shows
the optimal growth if the idealized experiment had stopped at each point. As is to be
expected, this line lies above the dashed line, with the two lines meeting at the final
point. However, the difference is not great. The second graph, (b), shows the optimal
wavenumbers found for all these points scaled with the corresponding thermal length-
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Figure 25. Comparison of the temperature profiles, T , at t = 1 for constant wall temperature
(upper line) and linearly increasing wall temperature (lower line).
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Figure 26. Graph (a) shows optimized growth of E(t) at each point along the trajectory given
by arrow C as a function of time for the last point (solid line), along with the growth of E(t)
for case C (dashed line) with final Rayleigh numbers RaT = 2 500 000 and RaS = 6 000 000 with
t0 = 0. In (b) the solid line shows the optimal wavenumber as calculated at each point, while
the dashed line shows it rescaled using the time and length-scale at the point where E(t1) = 1.

scales. Instead of using these length-scales, we can use the scale at the time for the
case when the E(t1) = 1. Thus all the wavenumbers are now scaled with what would
correspond to some given physical length-scale that is the same in all cases. Now we see
that the rescaled wavenumber (dashed line) is approximately constant as the instability
grows. Thus the optimal physical height does not change much. This would seem to
indicate that the optimal scale is fixed at some point in the trajectory, and not by the
scale at the end of the growth. A larger scale may lead to a greater growth rate at the end
of the experiment but could also lead to a delay in the start of growth and a lower initial
growth rate. Thus one may expect that the height of instabilities will be determined by
the conditions towards the start of the growth, and not on the final wall temperature nor
when nonlinear effects become important.

In the above discussion, the choice of the time where E(t) re-crosses the line E(t) = 1
is essentially arbitrary and could not be observed in real experiments. Its important
feature here is that it is the same for each case on this trajectory. We will return to the
appropriate choice of height for the general case in the final section.

5.2. Growth of instabilities from optimized t0 > 0

We now look at the effect of optimizing the start time of the instabilities, t0. As with the
fixed rise in the wall temperature, when we look at the contours for the growth in the
RaS–RaT , as shown in figure 27(a), there is a general enhancement of growth, shown by
the lowering of the growth contours. This can be seen more clearly to the right where
the gap between the growth contours and the large-RaS asymptotic approximation has
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Figure 27. Contour plots of (a) the optimal growth, E(t1), and (b) the corresponding wavenum-
ber, α, when t0 is optimized as a function of final RaS and RaT where the wall temperature
increases linearly with time. Contours for the growth show E(t1) = 102, 103, . . . , 1016 (from
bottom to top). The thicker contours in (b) are at α = 100, 10±0.5, 10±1, . . . with the negative
contours dashed. The thinner contours are at α = 10±0.1, 10±0.2, 10±0.3, . . .. The red dashed
lines show discontinuities in α. The arrows are cases A–C shown in figure 20

closed. Otherwise the figure is quite similar to figure 20 where t0 = 0. Again the details
of the red dashed lines differ. The jumps in the wavenumber, α, shown in figure 27(b)
are more defined than in the t0 = 0 case. The region of variability in the optimal α
seen in the t0 case has shrunk to below the small extra branch to the dashed red line at
the bottom, where there is a jump. This extra branch is mostly below the E(t1) = 102

contour, and is of no significance here.
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Figure 28. Contour plots of the ratio of the optimal growth, E(t1), when t0 is optimized to
the case when t0 = 0 as a function of final RaS and RaT . In (a) the thicker contour lines are
at growth ratio 5, 10, 15, . . . while the thin contours have separation of 0.25. In (b) the heavy

contours are at 10, 102, 103, . . ., while the thinner contours are at 101/2, 103/2, 105/2, . . .. Here
the wall temperature increases linearly with time.

The differences between the t0 = 0 and t0 > 0 cases are emphasised if we look at
the enhancement in the growth that results by optimizing t0. This is shown in figure 28
in two parts. There are two regions of significant enhancement, but of quite different
levels. Hence the need for separate plots. The first shown in figure 28(a) is analogous to
that seen previously in figure 16, while the second is found to the right and is shown in
figure 28(b). In the left region the enhancement is similar to that found before and rises
to a maximum of around 50 in the region between the green dashed lines corresponding
to growths up to E(t1) = 1016. Here there are two red dashed lines corresponding to
the two cases with t0 = 0 and t0 > 0 which both give rise to kinks in the contours of
the growth ratios. These two lines are more different here than in the previous section
when we have a fixed increase in the wall temperature. In the right panel the levels of
enhancement are far greater, rising to over 1012 for the results shown here.

A comparison of the growth of E(t) along the arrows A and C for the case t0 = 0 and
optimized t0 > 0 is shown in figure 29. The growth for the cases with t0 = 0 were shown
previously in figure 22. The enhancement in the left panel may seem to be analogous
to the enhancement region seen previously for the sudden increase in wall temperature,
but there are differences. Previously for the t0 = 0 case there was a period of growth of
the large Prandtl number mode followed by a transition to the double-diffusive mode.
When t0 was optimized the instability omitted the large Prandtl number phase. For
linear wall heating the optimized case is again essentially just the double-diffusive case.
The initial phase for the t0 = 0 case has no significant growth, and seems to be a salinity
perturbation being sheared by the background flow. At the end of this phase the optimal
solution is similar in form to the final growing solution. However, it clearly does not grow
as fast as the initial phase of the optimized t0 case, which results in the boost in E(t) for
this mode. This can be seen by the comparison of E(t) for the t0 = 0 and the optimized
t0 cases in figure 29(a).

The growth of E(t) along arrow C, which lies in the second sector, has much greater
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Figure 29. The growth of E(t) as a function of t/t1 for two cases with final Rayleigh numbers
(a) RaT = 25 000 and RaS = 400 and (b) RaT = 2 500 000 and RaS = 6 000 000. In each case
the solid line shows the case with optimal t0. Here (a) t0/t1 = 0.3568 and α = 1.955 and (b)
t0/t1 = 0.5022 and α = 27.15, the dashed line shows the optimal case for t0 = 0 with (a)
α = 1.725 and (b) α = 26.01.

enhancement as shown in figure 29(b). If we look at the evolution of E(t) for the t0 = 0
case, we see that there is an initial period of almost steady exponential decay shown by
the approximately straight initial section in this logarithmic plot. The exponential decay
rate is roughly 2.5 times faster than τα2, the decay rate of an x-independent salinity
perturbation with the same vertical periodicity when there is no heating. Near the start
point for the optimized t0 case the curve for the t0 = 0 case turns upwards, and the
growth of the instability starts. In the t0 = 0 case E(t) grows by a factor of around 1013

after the minimum. When we also optimize t0 the optimal growth is around 1014. The
initial condition for the optimized version is chosen to maximize the growth, while for
the t0 = 0 case the disturbances at the start of the growth phase are determined by the
slowest decaying mode and so will not be optimal, and so the growth would be expected
to be lower in that case.

The final form of the instabilities in the three cases A–C with optimized t0 is essentially
the same as those for the t0 = 0 case once those instabilities have started to grow, as
shown in figure 24. There is only a slight adjustment due to slightly different optimal
values of α, and so they are not shown here.

We can again look at the positions in the RaT –RaS plane where the instabilities start
growing by plotting the instantaneous values of the Rayleigh numbers at t = t0. These
are shown as a scatter plot in figure 30. We see that the points from the double-diffusive
range lie along a V-shaped curve. The points on the right branch of this V lie very close to
the marginal stability line for the quasi-static analysis of Kerr (1989). This boundary is a
very good predictor of where the instabilities start to grow, and supports the suggestion of
Kerr that this boundary should mark the lower boundary of the region where instabilities
should be observed.

The left-hand branch of the V of the blue double diffusive points in figure 30 are
similar to those observed in figure 19 for the fixed wall temperature, although moved
towards higher salt Rayleigh numbers. The green points are more tightly clustered than
previously, but it is not clear why.

In the previous section it could be argued that the main advantage of optimizing t0
instead of just using t0 = 0 is that it makes the evolution of the instabilities clearer. It
shows the chaotic looking initial portions of E(t) are not important for the overall growth
of the instabilities. When we look at the evolution of E(t) after t0 is optimized then this
chaotic phase is eliminated. The enhancement in overall growth was relatively modest,
except in one restricted corner of the double diffusive regime where there was a moderate
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Figure 30. Scatter plot of the instantaneous value of the Rayleigh numbers when t = t0, the
point of onset of instability. Also shown are the contours of the growth from figure 27. The
colours of the dots indicate the regions of the final Rayleigh numbers: green — large Prandtl
number, and blue — double-diffusive. The mauve dotted lines indicate the general trend of
trajectories.

enhancement. This could also be argued for much of the ranges of the Rayleigh numbers
here, except for the larger values of RaS . In this region the enhancement is far larger. In
the time before the optimized t0 the disturbances initiated at t = 0 decay significantly,
and so avoiding this period means that we focus on the time when the disturbances are
growing and growing significantly. Having t0 optimized is much more important for these
large RaS instabilities, and essential for understanding their behaviour.

6. Discussion and conclusion

In this paper we have used the method developed by Kerr & Gumm (2017), and ex-
tended by Kerr (2019), to investigate the stability of a salinity gradient heated from
a vertical sidewall. There are two main aspects of this approach. The first is the max-
imization of an energy-like quadratic quantity, E(t), over some time interval. This is
accomplished by converting this optimization problem involving unsteady partial differ-
ential equations into a matrix eigenvalue problem. The second aspect is the appropriate
choice of the parameters for E(t) as an interlinked optimization problem. This is achieved
by selecting the parameters in this quantity to minimize the optimal growth found. By
this approach we end up with a mode of instability and growth that is robust in the sense
that other choices can produce spurious boost to the growth that seem unrelated to the
underlying instability.

We have looked at instabilities for two different forms of the heating of a salinity
gradient from a sidewall, and seen their behaviours are quite similar. When comparing
these results to experiments there is always the difficulty that the exact form of the wall
heating is never exactly the same as for these idealized cases. Even when experimenters
are trying to achieve a sudden increase in the wall temperature, there is a lag between
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Figure 31. The heights of the instabilities as a proportion of the Chen scale, 2πRaS/(αRaT ),
as a function of the final RaS and RaT when t0 > 0. The heavy contours are for 1, 10−1, 10−2

while the thinner contours are for 10−0.2, 10−0.4, . . ..

the time of the onset of heating and reaching the final temperature. As was discussed
earlier, the two cases investigated here with a sudden increase in wall temperature and
the linear increase in wall temperature are, in some sense, extremes of what happens in
experiments. The common features would be expected to hold no matter what the details
of the actual rise in wall temperature are.

For both the fixed temperature rise and the linearly increasing temperature the differ-
ence between the regions of the different modes of stability do not change by a significant
amount between the t0 = 0 and t0 > 0 cases, at least on the log–log plots used here. Also,
the general arrangement of the regions of different modes of instability are the same for
the different heating rates. For weak salinity gradients the instabilities follow the same
pattern of evolution as for the case with no salinity gradient (Kerr & Gumm 2017): ini-
tially the instabilities are large Prandtl number modes, followed by a transition to the
small Prandtl number mode as the background state evolves. As the salinity gradient
increases the background vertical velocity reduces, and the shear-driven small Prandtl
number mode becomes less important and the instabilities observed are the large Prandtl
number modes for their entire evolution. For even larger salinity gradients the instabili-
ties change to a double-diffusive mode. In some ways this overall picture is simpler than
the instabilities in a vertical slot where there are 5 asymptotic regimes on the stability
boundary (Kerr & Tang 1999; Kerr 2001). We also found that each of the drivers of the
motion, the shear and the temperature and salinity gradients, can be either stabilizing
or destabilizing in different parameter regimes.

One of the features of many experiments is that the vertical scale of the instabilities
seems to scale with the Chen scale given by (2.9). The general observation is that this
Chen scale is an upper bound for the convection cells observed. For the heating of a
salinity gradient in a slot one of the modes of instability can exceed this threshold. The
asymptotic form of the mode at the lowest point of the stability boundary uses the limit
α → 0 (Kerr & Tang 1999), and so exceeds the Chen scale. In an experiment with an
instantaneous rise in the wall temperature the nondimensional Chen scale is constant
for all time. The height of the most unstable modes as a proportion of the Chen scale
is shown in figure 31. Nearly all the instabilities have height less than the Chen scale,
with the contour for those with the same height as the Chen scale just visible in the
top right of this figure just outside the region of growth 102 ≤ E(t1) ≤ 1016 that we
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Figure 32. Contour plot of the height of the optimal instabilities as a proportion of the Chen
scales evaluated at t0 as a function of the final Rayleigh numbers, RaS and RaT . Thicker contours
are at 1, 10−1, 10−2, . . ., while the thinner contours are at 10−0.2, 10−0.4, 10−0.6, . . .. The green
dashed lines show where the growth of E(t1) = 102 and E(t1) = 1016. The mauve dotted lines
have gradient 5/4 and show the trajectories of instantaneous Rayleigh numbers.

have been considering. In the double diffusive regime the heights vary from the Chen
scale itself to around 1/30 of this height, with the contours almost exactly parallel to the
trajectories of the instantaneous Rayleigh numbers of the instabilities. Not only are the
Chen scales fixed along each trajectory, but so is the height of the most unstable mode.
Outside the double diffusive regime the height as a proportion of the Chen scale steadily
decreases as RaS decreases as the height of the thermal instabilities is governed more
by the width of the thermal layer, and the Chen scale continues to grow as the salinity
gradient decreases, and ceases to have any physical relevance.

For the case of linearly increasing wall temperature the vertical Chen scale is no longer
fixed. It increases with time in each physical or numerical experiment. However, we saw
earlier that when t0 = 0 the vertical scale of the optimized instabilities along the path of
arrow C have very similar heights when all scaled with the same length-scale. The choice
of scale used there was essentially arbitrary. When we optimized t0 we found that these
times lie in a very tight band, shown in figure 30. This time scale can be used to fix on a
Chen scale to use for a measure of the height of the instabilities. The vertical scale of the
most unstable modes in the RaS–RaT plane as a proportion of the Chen scale calculated
at t = t0 is shown in figure 32. We see that in the right side of this region these heights
lie between the contours for 1 and 10−0.2 ≈ 0.63 times this Chen scale. This range is in
good agreement with experiments. Here the Chen scale at the onset of instability would
appear to be a good indicator of the vertical scale of all the instabilities in this portion of
the double diffusive regime. The left boundary of this region of similar vertical scales lies
approximately along the line of the middle of the mauve dotted lines. From figure 30 we
see that this middle line, if extended, separates the right branch of the V of the scattered
points of the Rayleigh numbers at t = t0 from all the other points. This means that we
can expect that when we have stronger salinity gradients in the double diffusive regime,
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the Chen scale at the onset of instability is a good universal predictor of the vertical
scale of the linear instabilities for all forms of wall heating.

Another feature that is common to both examples of heating is the valley-like structure
in the growth rates that separates the double diffusive regime from the large Prandtl
number regime. This represents a region of relative stability for RaS in between 10 and
100. This was observed in the experimental results of Tanny & Tsinober (1988) shown
in figure 2, where a few of the experimental results clearly lie above the general trend of
the remaining experiments in this region.

When the salinity gradient is weak, the small RaS limit, the instabilities are essentially
just the thermal case. When such an unstratified body of fluid, with Prandtl number
σ = 7, is heated from a wall there is a transition in the evolution of the linear instabilities
from the initial high Prandtl number mode to a low Prandtl number mode (Kerr &
Gumm 2017). The first effect of the introduction of the salinity gradient is to reduce the
background vertical velocity caused by the diffusion of heat into the fluid. This stabilizes
the low Prandtl number mode that is driven by shear, and results in the large Prandtl
number mode dominating for the entire evolution of the instability — at least up to the
maximum growth considered here. As the salinity gradient further increases a double-
diffusive mode of instability takes over. This is driven by the presence of the horizontal
salinity gradients induced by the rising hot fluid near the wall bringing up saltier fluid.

All the instabilities have a horizontal length-scale based on the thermal diffusion dis-
tance, (κT t)

1/2, with some additional variation due to the different shapes of the tem-
perature profiles for the different heating rates. However, the sequence of instabilities
observed as the salinity gradient increases goes from those that are much taller than
they are wide for the essentially thermal instabilities to ones with an order one aspect
ratio for the initial double-diffusive instabilities. Then, as the salinity gradient further
increases these instabilities become much wider than they are high. This sequence is
observed in physical experiments.

One of the difficulties that has beset this area of research over the years is a lack of a
clear picture of what governs the onset of instabilities and what may be observed. The rich
variation in behaviour in the early double-diffusive experiments and their relevance to
many problems in nature and industry drove many experimenters. However, the lack of a
clear framework of theoretical results for the underlying instabilities proved problematic.
The quasi-static stability analysis of Kerr (1989) could be used, to some extent, to explain
some of the observations (see Kerr 2000), but many aspects were beyond the available
analysis. This lack of a universal linear stability analysis has been addressed in this paper.
Unfortunately many of the published experimental results lack some details, such as
times to the onset of instability, that would make a more exact comparison easier. This is
entirely understandable given the analytical results available at the time, and the breadth
of phenomena under investigation. For example, Schladow, Thomas & Koseff (1992),
listed four objectives for their paper, only one of which was to do with the initial onset
of instability. Many experiments had a significant focus on the merging and evolution of
the fully nonlinear convection cells that evolved, which often were more relevant to the
authors’ underlying motivations. For example the experiments of Malki-Epshtein, Phillips
& Huppert (2004) examined the elongation of the nonlinear instabilities, and the effect
of the far wall on their development. Thus there were no meaningful comparisons to be
made to the results here, but a reminder to check the effect of performing calculations
in a finite slot when considering a semi-infinite fluid.

Wirtz, Briggs & Chen (1972) observed that instabilities seemed to come out of the fluid
rising in the wall boundary layer. There are two parts to this, the apparent emergence
of instabilities from the boundary layers at relatively well separated points, and that
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Figure 33. Contour plots of the optimal growth, E(t1) from figure 27 with mauve arrows show-
ing the trajectories of the representative experiments from Table 3 of Narusawa & Suzukawa
(1981) and the red arrows the experiment I-1 of Schladow, Thomas & Koseff (1992). The loca-
tions of the ends of the arrows are not significant.

the fluid is rising when this happened. We have seen that the instabilities that form
are relatively tall and narrow. This is the case for the small and large Prandtl number
regimes, but also, to some degree, for double diffusive instabilities at lower salt Rayleigh
numbers. Because the fluid is heated it initially tends to rise. The peak in the kinetic
energy of the upwards flow reaches a maximum at RaS = 1.300, before subsiding and
reaching a local minimum at RaS = 8.381. For more rapid heating, where instabilities
appear at lower salt Rayleigh numbers, we should expect tall thin instabilities to appear
from the upwards moving boundary layer as they observed.

In the experiments of Narusawa & Suzukawa (1981) they applied a constant heat flux.
Their results were presented in terms of their parameter π3 = α(q/k)/(−βSz) where
q is the heat flux and k the thermal conductivity. These experiments evolved along
trajectories given by

RaT =
2

π1/2
π3RaS . (6.1)

They observed instabilities for a salt gradient when π3 > 0.28. These trajectories should
always intersect the region of instability. The reason that instabilities were sometimes
not observed seems to be related to the finite time for the experiments, and does not
concern us here (Kerr 2000). The trajectories of the representative experiments using
common salt which were listed in their table 3 are shown in figure 33 by mauve arrows
superimposed on the growth contours for the linearly increasing wall temperature with
optimized t0, along with one experiment from Schladow, Thomas & Koseff (1992) shown
in red. The experiment displayed in the photographs for their figure 13 corresponds to
the fourth arrow from the left in figure 33. This is not too far from arrow B for the
linearly increasing wall temperature of the previous section. The predicted periodicity
and aspect ratio are entirely compatible with the form from experimental observation of
the instabilities as they first emerge. The details of the form of the instability are hard
to decipher from the shadowgraphs shown.
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The experiments of Schladow et al. (1992) mostly had a mixed vertical gradient of
salt and temperature, and so not directly comparable to our results. They listed four
issues of particular focus for their experiments. Only the first, the search for a proper
scaling for the initial layer thickness could potentially be addressed by the methods used
here. However, the ratio of the vertical gradients would result in an extra nondimensional
parameter, potentially expanding the scale of the problem greatly. Their observation of a
possible link between the background motions and the onset of instability seems to hold
for the sudden heating case, even if the details of the background flow differ. One of the
aspects they were interested in was the potential self-propagation of the intrusions. The
other issues relate to the nonlinear dynamics of the convection.

There are other problems in double diffusion where the current analytic approach
could be applied. For example, the instabilities that were observed in the experiments
of Linden & Weber (1977) when a sloping boundary was introduced into a body of fluid
with vertical salt and sugar gradients. These are analogous to heat and salt. The no-
flux conditions at the boundary drive the evolving background gradients. It is not clear
how much of an overlap there is between the parameter ranges that were possible in the
experiments and when the quasi-static analysis of Kerr (1991) is valid. The instabilities
were only observed in the experiments when Gρ > 0.7, where Gρ is the ratio of the
smaller of the two contributions of the two components to the vertical density gradient
to that of the component which is the main contributor to the stable overall density
gradient (and so Gρ < 1). However, the analysis showed that instabilities should always
form eventually. But the analysis assumed |Gρ| � 1 for the quasi-static assumption to
be valid. The current approach is suitable for investigating the onset of stability in this
intrinsically time-dependent situation for all values of Gρ.

We have attempted to address the lack of clear picture of what governs the onset of
instabilities and what may be observed and when. By using the more recent approach
to investigating the stability of evolving background states, we have been able to get
away from the restrictions of the quasi-static analysis and build up an overall picture
of what instabilities will form, and where in the parameter range they can be expected.
Experiments have given snapshots of what could be expected in some circumstances, but
we have been able to derive clear results over parameter ranges spanning several orders of
magnitude, ranging from essentially the thermal problem at one end to the strong salinity
gradient limit at the other where the quasi-static approximation holds. However, we have
only looked at the archetypal problem of heating a gradient of common salt in water. We
have not investigated the effect of varying the Prandtl number or the salt/heat diffusivity
ratio. For the purely thermal case we know that σ = 7 is in the middle of a range where
both large and small Prandtl number modes play a role in the growth of instabilities,
and so the low RaS range will be affected by changing this parameter. We could also
look at the case of a stratification in the bulk of the fluid which is due to a mixture
of salinity and temperature gradients, as looked at experimentally by Schladow et al.
(1992). This is the common situation in many cases outside the laboratory, from icebergs
melting in the sea to magma chambers. However, even the restricted investigation here
should give some insight into the possible complexities of these extensions of heating a
salinity gradient from a sidewall.
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