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Abstract— A real-time state-of-charge (SOC) estimator 

based on the signals obtained from a Fibre Bragg Grating 
(FBG)-based sensor system is reported. The estimator 
has used a dynamic time-warping algorithm to determine 
the best fit, employing previously obtained experimental 
data. The strain data used were obtained from the optical 
signal monitored, providing the input to a supervised 
learning algorithm. The results achieved show a good 
match with those from conventional techniques, 
achieving a ~2% accuracy with a ~1% SOC resolution. 
The system has been successfully applied to a ‘proof of 
concept’ demonstrator, using a battery-operated train, 
illustrating as a result the way in which the real-time SOC 
estimator could be employed to enhance safety in the 
growing electrical vehicle industry. 

 
Index Terms— Fiber Bragg Grating, strain sensor, 

state-of-charge estimation, dynamic time warping. 

 

 

I.  Introduction 

ITHIUM-ION (Li-Ion) batteries are preferred for most of 

today’s energy storage applications, given their favorable 

power and energy density characteristics.  This makes Li-Ion 

batteries the energy storage medium of choice for the electrical-

vehicle industry, in its search for optimum performance, 

including high capacity and high peak power [1]. 

Despite all the advantages seen in using Li-Ion batteries over 

other energy storage technologies, there are still clear 

limitations on their use, which are mainly related to their safety 

and the optimization of the battery lifespan and capacity. For 

this reason, a number of studies involving better modelling of 

key Li-Ion battery parameters have been carried out, to achieve 

a better understanding of the dynamics of their chemistry in 

order to maximize their performance, while not compromising 

the safety of their operation. 

State-of-charge (SOC) is one such vital parameter to be 

monitored for this type of battery, as it can lead to important 

information about energy optimization and battery stability, as 

well as to ensure safety of operation. The main techniques 

employed for SOC estimation use measurements of the key 

electrical parameters of the battery, including coulomb 

counting and the Open Circuit Voltage (OCV).  Electro-
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chemical dynamic models can also be created with these 

parameters and thus used to characterize the state of the battery 

[1]. However, the complexity of such models brings challenges, 

such as how to achieve a good estimate of the SOC, without 

compromising the practicality of the system in which the 

battery is used. 

There are important limitations seen on the practicality of the 

electrical measurements previously discussed – for example, 

the Coulomb Counting Technique has serious issues with drift, 

even with attempts made to realize a dynamic recalibration [2]. 

On the other hand, the OCV method is clearly not suitable for 

in-the-field applications, as the battery needs to be ‘rested’ (or 

at least charged using very low current rates) before any 

measurement takes place. 

Fiber optic sensors have been shown to be an important 

technology which can serve as the basis of innovative sensing 

methods for the development of new models and thus better 

‘real-time’ monitoring, including Li-Ion batteries.  Such fiber 

optic sensors are well suited to use with electrical or battery 

systems: they are insulating in nature, will not cause short 

circuiting and are unaffected by electromagnetic compatibility 

issues, as well as being lightweight and easy to multiplex, as 

needed.  Looking in more detail at optical fiber-based methods, 
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Fiber Bragg gratings (FBGs) have been shown to be capable of 

measuring both surface strain [3] and temperature [4] in these 

sorts of batteries.  Several different types of battery ‘packages’ 

have been studied for this purpose, including coin cells [5,6], 

pouch cells [7-9] and cylindrical cells [10].  The fiber optic 

sensing approach has thus previously been shown to offer 

important advantages when compared to the use of 

conventional electrical sensors [9].  Efforts to integrate sensors 

inside the battery cell have also shown satisfactory results for 

the better thermal modeling of the internal behavior of Li-Ion 

batteries [10].  However, this option is only feasible as an aid 

to modeling and characterization in the laboratory context, as 

the battery would then not conform to industry standards 

(rendering it not suitable for use in ‘real world’ applications). 

There is a consensus in the community that the 

lithiation/delithiation processes cause stresses within the 

crystalline structure of the battery which, along with thermal 

stresses seen, will result in losses of the battery capacity [11], 

which is highly undesirable.  Therefore, adequate temperature 

and strain measurements are vital for the better understanding 

of the battery fundamentals underpinning the critical 

charging/discharging of Li-Ion batteries needed for their routine 

use in many different applications today. 

Prior work by Ganguli [12] has used FBG-based sensors in 

an effort to assess some of the important characteristics of the 

battery in use, such as the SOC. In that research, the data were 

subjected to Kalman-filtering using an empirical electrical 

battery model.  However, despite achieving good estimations of 

the SOC, the approach still relies on modeling as the initial 

point of the study. 

As it can be seen from an overview of the literature discussed 

in this Introduction [1 – 12], FBG-based technology has been 

employed in different ways over the last five years.  This has 

taken advantage of the capability that such devices have for 

measuring the two most important parameters for the 

characterization of the lithiation process, namely temperature 

and strain – and monitoring these together, for example where 

strain and temperature changes occur simultaneously.  The 

sensing of the strain in such batteries in use is particularly 

important as it tends to be directly related to the chemical 

reaction inside the cells.  Monitoring temperature allows 

tackling one of the most common cause of failure: thermal 

runaway [13] – and thus before major damage occurs. Apart 

from using these FBG-based methods, there are few others that 

can be employed – for example measuring the refractive index 

inside the battery, obtained using evanescent wave-based 

sensors [14] or fluorescence-based fiber optic sensors [15]: 

however, they have not been demonstrated for in-field 

applications, as yet. 

The dynamic time warping (DTW) technique has also been 

utilized by some researchers, typically to normalize the cycling 

curve to deal with dynamic current charging/discharging rates. 

The approach in the work herein is different from what has gone 

before – its aim is to make use of a DTW algorithm which 

would then allow an analysis of the strain data obtained from 

the battery and thus allow a correlation of the outcome of the 

measurements directly with the battery conditions – a step 

forward from previous studies.  In the demonstration carried out 

in this work, this has been applied to both an automated cycling 

potentiostat-based instrument and an electric-train 

demonstrator, with useful results reported and discussed. 

II. SENSOR DESIGN AND TEST SYSTEM SETUP 

The Li-Ion batteries used in this work were 3.2 V, 1.6 Ah, 

cylindrical LiFePO4 cells and as can be seen from Fig. 1, four 

such cells were used in the experiment carried out.  They are 

Li-Ion batteries broadely typical of those used in industry, 

including electrical vehicles, as their chemistry is stable enough 

to be more reliable and safer than other Li-Ion chemistries. As 

shown in Figure 1, each battery was instrumented with 3 FBG-

based sensors glued onto the 18650 cylindrical cell surface. 

They are co-located within a small footprint, but each with a 

slightly different orientation.  The sensors were attached to the 

battery package as they were supplied, meaning there were 

minimal changes to the original packaging, including the non-

removal of the polymeric cover (blue plastic shown in Fig. 1).  

This means that the batteries were not ‘damaged’ by the 

inclusion of the sensor systems, an important safety 

consideration.  Prior tests carried out showed there were no 

significant differences when comparing data gathered with or 

without this battery cover.  In this way, the sensors used could 

be retrofitted easily to the original packaging, with no problems 

due to potential short-circuit hazards that could arise from 

interfering with the manufacturer’s original packaging.  

 

 

Fig. 1. Battery cycling setup used, illustrating the embedded FBG-based 

strain sensors.  
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The principle of operation of the FBG-based sensors is well 

known (described in prior work by some of the authors [16]).  

Thus the FBGs used as the basis of the temperature/strain 

sensors were manufactured using the phase mask method and 

inscribed in photosensitive fibres supplied by Fibercore 

(PS1250/1500), using ultraviolet light from a high power KrF 

excimer laser.  The active section of each sensor has a length of 

3 mm, a value sufficiently small for ease of glueing on a 

cylindrical shape, as well as to maintain temperature constancy 

in the calibration.  Each triplet of sensors was attached to each 

battery after being pre-strained, in order to achieve a linear 

response through tension and compression excursions.  After 

the sensors were mounted and pre-strained, their characteristic 

wavelengths were 1534 nm, 1539 nm and 1544 nm, allowing a 

very confortable excursion as the peak wavelengths of the 

sensors are 5 nm apart.  The FBG-based measurements from the 

sensors used were performed using a Micron-Optics SM-130 

interrogator, operating at 1 kHz for the CC-CV cycling 

experiment and with Ibsen Optical Monitor for the model-train 

experiment carried out. 

The sensitivities to temperature and strain of the FBG-based 

devoces used were, on average 14 pm/℃ and 1 pm/µε for the 

bare fibers, the former increasing to 21 pm/℃ when they were 

attached to the batteries, after they were pre-strained and the 

glue was fully cured.  Fig. 2 shows typical spectra from both: 

the fiber attached to the battery and the bare fiber before its 

attachment, showing that the pre-strain causes an 

approximately 1 nm wavelength shift.  

 
Fig. 2. Spectra of the fiber sensors before and after the pre-straining and 

following attachment to the battery’s cell body. 

 

This sensitivity difference between the response to strain and 

temperatures experienced means that the strain changes could 

easily be hidden by the temperature change effect.  However, 

using this sensor layout here, the approach taken allows the 

discrimination of the strain measurement in the radial direction, 

by canceling the temperature and longitudinal strain, given the 

differences in their orientations.  Thus as the FBGs respond 

both to strain and temperature, the wavelength data from the 

three FBGs that form the basis of the sensor system and that are 

attached to the surface of the cells were used to calculate the 

radial strain information.  As the sensors are placed at a known 

angle in respect with each other, temperature discrimination can 

be achieved by using the method described by Pereira et al [17]. 

As the radial strain is of interest and the sensors were small and 

sufficiently close to each other, the temperature compensated 

measurement of the radial strain (εr) can be derived from the 

following relationship: 

 

𝜀𝑟 =
(

∆𝜆1
𝜆1

−
∆𝜆2
𝜆2

)

(1−𝑝𝑒)−(1−cos(𝜃)2)
                           (1) 

 

where pe is the photo-elastic coeficient of silica, λ1 and λ2 are 

the Bragg wavelengths for each sensor and θ the angle between 

them. As there are three sensors, the response of the 

combination of pairs was averaged to achieve a more stable 

compensation.  The resulting calibration was tested in a stable 

chamber, using co-located thermocouples and conventional 

strain gauges as a reference, to ensure the system, worked well. 

In order to create an effective comparison of the performance 

of the system developed with that of well-established methods 

for SOC estimation, a constant-current/constant-voltage (CC-

CV) procedure was adopted for the battery charging following 

a CC discharge. In addition to the use of the FBG-based sensor 

system monitoring, the cell current (Coulomb Counting) and 

voltage were also recorded.  

Figure 3 shows the clear correlation between the strain 

measured from each battery (using the FBG sensors) and its 

SOC calculated using Coulomb Counting, when they were 

subjected to a series of charge/discharge cycles, performed at a 

rate of 1C, using a potentiostat. 

 

 

Fig. 3. Illustration of CC-CV charges and CC discharges (orange) along with 

the FBG strain response (blue). 

Using the above, the system was evaluated in a convenient 

laboratory-based environment (which satisfactorally mimics 

‘real world’ use) and consisting of a model train circuit 

assembly to simulate the operation of a battery-operated vehicle 

in normal use. This experiment allows tackling one of the 
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bigger issues arising from the discussion presented in the 

Introduction: the lack of tests performed under conditons where 

there are uncertainties inevitably present in field applications, 

such as in an electrical vehicle.  To look at this closely, the 

demonstrator was run under several different conditions: of 

temperature, random noise and unknown initial SOC, as the 

start/stop runs are not as precise as is the potentiostat 

experiment. 

A portable interrogator from Ibsen Photonics was used in 

conjunction with a Raspberry-Pi processor for the data 

acquisition (as illustrated in Fig. 4).  Here a 3-cell battery pack 

was used (which was appropriate to the train-based simulation 

undertaken here) and again, current and voltage were measured 

for the Coulomb-Counting comparison (as well as to ensure 

safety in the experimental setup).  For each discharge cycle, the 

train was continuously operated, until the voltage reached a safe 

minimum of 8 V. 

 

 
 

Fig. 4. Instrumented battery-operated demonstrator train. 

 

Following the acquisition of the cycling data obtained from 

both the potentiostat and the model-train runs undertaken, the 

dynamic time warping (DTW) method was used to evaluate the 

strain data obtained from the optical sensors and to establish the 

correlation of the strain with the SOC of the cells. 

DTW is a method widely used to recognize patterns in time-

series data, used in speech recognition and other waveforms in 

discrete time series.  The method is based on the calculation of 

the minimum warping path that a sampled set of data needs to 

fit a model set, i.e. the algorithm calculates the minimum 

‘distance’ that is required to transform one set of data into a 

previously stored one [18]. 

The DTW method is then used to calculate the ‘cost function’ 

of the comparison between two signals and thus to identify the 

‘least costly’ warping path.  A matrix with the two signals is 

created (an N by M matrix) where N and M are the lengths of 

the two time series, obtained from the testing and the 

comparison series respectively. Each element, di,j, in this matrix 

will be equivalent to the Euclidean distance between the values 

xi from the testing series and yi (where i,j = 1,2,3…) from the 

comparison series, using the relationship: 

 

𝑑𝑖,𝑗 = |𝑥𝑖 − 𝑦𝑗| , ∀𝑖𝑗                           (2) 

  

The rationale used in this work is that the ‘cost’ between the 

strain data being measured will be a minimum when compared 

to a fraction of the entire cycle (with this cycle having been 

calibrated against its associated SOC).  For instance, if the cell 

is at 50% SOC, the distance will be minimal when the 

comparison is made against half of the charging graph (and 

higher at other values).  The minimum distance is achieved by 

the use of the nearest-neigbour classifier method.  

III. SOC EVALUATION USING STRAIN DATA 

As discussed earlier, the Li-Ion intercalation will cause 

stresses on the battery.  However, the whole effect of strain will 

occur at the anode due to the swelling of the graphitic structure 

used [19].  Those strain data were then used in this work for the 

characterization of the battery SOC.  Despite the fact that the 

strain data were likely to be valuable to reflect the battery state, 

the chemistry and geomectric complexity associated would be 

expected to show non-linear behaviour, as shown in the 2 cycles 

of charging/discharging illustrated in Fig. 5 - the data were 

obtained from a potentiostat.   

 
Fig. 5. FBG data from two subsequent CC/CV charging/discharging cycles at 

1C rate. 

 

It can be seen that the cyclical data obtained were very 

reproducible and that the charging/discharging processes are 

easily distinguisble: however, the SOC is not a simple 

polynomial function of the strain.  Therefore, a DTW algorithm 

was implemented as a means to predict the SOC, instead of 

creating a simple fitting of the data. 

The DTW algorithm created for this application was 

developed using two aproaches and their performance 

compared.  It should be noted that: (1) the whole strain dataset 

from the beginning of its charging or discharging process was 

compared to parts of the training data, similar to that shown in 

Fig. 5.  The key similarity, i.e. the minimum Euclidean distance 

between the two datasets, will be a maximum when it is 

indicated that the batteries have the same capacity.  Further: (2) 
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fractions of the strain data set were compared with the training 

data, as by doing so, the outcome expected would be an increase 

of the computational performance (as the data set size for DTW 

decreases), thus avoiding the need to know accurately the point 

where the cycling begins and ends. The drawback in this case 

is a loss in accuracy, as the smaller dataset will be less 

identifiable for use with the algorithm.  Fig. 6 shows the 

prediction of a charging cycle using the DTW algorithm on the 

FBG-based sensor strain data for the latter aproach, as its 

superior performance has shown it to be more compatible to 

that for the desired application.  The resolution was fixed at 1% 

SOC. The expected SOC is the value of the reference used for 

training the dataset.  In this case, the reference used was the data 

acquired by the Coulomb Counting method.  Despite this 

method is being used for this demonstration in this work, any 

reference method could be used instead: this being the optimal 

case of a mix of methods with models, as described in the 

Introduction. 

 
Fig. 6. Prediction of the SOC using DTW algorithm on the FBG strain data 

and residuals comparing to the optimum prediction. 

 

The result obtained for the prediction of the SOC showed 

that the maximum values of the residuals always are <5% for 

all cases when the method discussed is used (when comparing 

to the expected values).  The figures are very similar for both 

charging to discharging, although some differences arise from 

the fact that the curves shapes are not the same and thus the 

DTW performance will likely be so as well.  It is worth noting 

that the algorithm will fail if the graph has long periods of 

‘steady’ behaviour, as its shape will not differ across the 

different time intervals studied.  Moreover, this method was 

tested in this work for the LiFePO4 chemistry of Li-Ion battery 

only.  For chemistries other than that mentioned, it is likely that 

the shape of the graph will be completely different: thus the 

DTW will fail to find similarities. The training data used thus 

must be obtained from batteries of the same type, as was done 

for the sample used in the testing here. 

Focusing on the main goal of this project, the same approach 

was implemented on a further model train demonstrator and in 

this case, additional challenges were seen. The demonstrator 

has been designed to be as close as possible to the situation seen 

for a real, full-sized electric train (and be fully representative, 

even though it is a model).  Therefore, it reflects the situation 

with the full-sized train, where errors caused by environmental 

factors such as temperature variations and deviations on the 

current rate of charging and discharging will be seen.  One 

important factor to be considered is that the charging process 

needs to be carried out with the train system (instruments and 

power management) operating.  The test train itself drains 

roughly 400 mA from the three-battery pack (9 V), while the 

instruments attached to it drain 800 mA.  Therefore, the 

charging curve will be flattened, as shown in the example seen 

in Fig. 7 for each cycle.  In this graph, the discharging process 

lasts for one hour while the charging cycle lasts three times 

longer than that, as the power consumption is two thirds of the 

battery charging rate.  Despite the larger errors involved on the 

cycling dynamic, the data are still reproducible, so the DTW 

algorithm can be applied using the same approach as with the 

potentiostat cycling data.  Another interesting observation from 

this graph is that despite the same discharge rate (1C) being 

used, the shape of the graph showing the strain changes is very 

different, suggesting that the nature of the load will affect the 

strain caused to the battery.  While the load is totally resistive 

in the potentiostat case, it is mainly inductive in the 

demonstrator. 

 
Fig. 7. Strain data from two different cycles of the train demonstrator 

operation and the voltage for the cell during each of the experiments. 

 

Another very important parameter that can be determined 

from analysis of the same data (as discussed above), is the 

temperature shift.  Despite the environment temperature being 

kept constant, there is a temperature shift that is related to the 

charging and discharging processes through the nature of the 

reaction experienced.   It is important to observe that behaviour, 

as shown in Fig. 8.  
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Fig. 8. Temperature variation data obtained from one cycle of the 

demonstrator use. 

 

The temperature is seen to follow the strain behaviour and 

increase during discharge, as expected.  However, it is clear 

from Fig. 7 that the second half of the discharging process 

generates more significant changes in strain than are seen in the 

temperature.  The same effect occurs for the charging process, 

as the temperature changes are less abrupt than the strain.  This 

kind of result  can benefit the development of better models for 

the electro-chemical characterization of the batteries.  Another 

potential outcome from the temperature measurements is that 

they can be used in the same way (as the strain data) to increase 

the accuracy of the predictions.  However, this is beyond the 

scope of this study (and will be discussed in subsequent work). 

Fig. 9 shows the results of the use of the predictive algorithm 

employing the data generated from the various cycles of the 

demonstrator model train considered.  In this case, the 

prediction results show higher errors than were seen for the 

potentiostat measurements, possibly because of random 

variations of current rate, compared with the controlled 

environment of the potentiostat.  The predicted SOC (solid - 

blue curve) deviates slightly from the optimum fit (dashed - red 

curve) when the SOC approaches 100%.  This can indicate that 

the battery state of health (SOH) is not the same as the training 

data, which could be used in a future SOH estimator and be 

corrected by this.  The observed error is still  ~5%, even in these 

cases. 

 
Fig. 9. SOC prediction using the demonstrator train datasets and residuals 

for comparison to the optimum prediction. 

 

As shown in the SOC prediction illustrated in Fig. 9, the 

performance of all three sensors was very satisfactory and a 

close correlation with the training data was achieved.  The 

algorithm contains some adjustment parameters, on which the 

quality of the results will depend.  The most important 

parameter is the SOC resolution, which was set to 1% 

throughout this investigation.  The testing window, i.e., the size 

of the data set to be compared, will directly affect the accuracy 

of the prediction.  The larger the datasets, the better will be the 

correlation with the training data and thus the confidence that 

the minimum Euclidean distance will reflect well the 

correlation.  Another parameter which must be set is the number 

of training cycles to be used on the comparison.   The number 

of cycles chosen is a balance: it must be high enough to deal 

with random fluctuations on the data but not large enough to 

increase the computational cost to the point where the method 

becomes impractical.  The DTW function is the most 

computationally costly of all the parts of the algorithm and must 

therefore be carefully adjusted, if implemented in a real-time 

system. Fig. 10 shows an example of an experimental run with 

the real time estimator and its comparison with the approach of 

the Coulomb Counting method.  

 
Fig. 10. Real time comparison between the proposed method and a Coulomb 

counter for the train demonstrator. 



Bruno Rente et al.: Lithium-Ion battery state-of-charge estimator based on optical strain sensor.         7 
 

 

 

 

This experiment uses the DTW algorithm which was  

previously evaluated, in terms of its characteristics such as 

resolution and training data size, as well as for errors it 

demonstrated through the residual graphs in this paper. It has 

been applied for each data point during the entire run, having 

thus one predicted point every 30 seconds.  The computational 

cost showed this to be sufficiently small for this application, 

demonstrating that even more sophisticated algorithms could be 

run in such a system, in real time.  The SOC errors associated 

with the prediction was indeed as was expected, having higher 

errors compared to the Coulomb Counting approach on the 

second of the runs carried out, as shown in the residuals in the 

graph in Fig. 9. 

All the SOC curves, obtained in this work and from any one 

of the several cells tested, are essentially similar, so the DTW 

algorithm can be used to compare one cell against any other. 

Thus, conveniently, a user could select a brand new battery and 

use the training information obtained from the old batteries that 

had previously been evaluated.  Thus the results obtained are 

representative from all cells but yet come from a random cycle, 

from one cell only. 

IV. DISCUSSION 

The work undertaken has shown clearly that a simple 

machine-learning algorithm based on DTW can be used to 

evaluate the SOC of representative Li-Ion batteries, using fibre-

optic sensors which are highly compatible with installation on 

such battery systems. The FBG-based sensor data obtained 

were shown to be reliable and sufficiently reproducible to serve 

as the input for the DTW algorithm used. 

A resolution of 1% SOC was achieved with an accuracy of 

better than 5% in all cases, and even better than 2% in certain 

particular situations. The accuracy figure has been shown to be 

highly dependent on the data behaviour, as better results were 

achieved when data show sufficient variation in time.  This 

characteristic arises from the nature of the DTW method and 

can be mitigated with the use of other methods in parallel, such 

as Kalman filtering or neural networks, using the same data as 

input. 

The fact that the sensors are surface mounted on the battery 

rather than being embedded inside the cells, illustrates that this 

is a feasible approach to creating a novel, cost-effective, non-

invasive method for SOC prediction.  Therefore, the system has 

been shown to be ready for applications to safety-sensitive 

environments, such as industries where Li-Ion batteries are 

currently used.  Recognizing the predicted growth of Li-Ion 

batteries in automotive and rail transport, as well as wider 

potential applications of Li-Ion batteries across a range of 

sectors, emphasizes the value of the approach demonstrated.  

The use of the model train has proved to be very effective for 

this proof-of-concept study for future battery management 

systems, especially in electrical vehicles. The system behaviour 

was shown to be reliable and indeed very satisfactory, operating 

as it does in real time and can thus such a system can be 

employed effectively in a variety of ‘real-world’ electrical 

vehicle applications. 
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