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Abstract
We study Maurer–Cartan moduli spaces of dg algebras and associated dg categories and
show that, while not quasi-isomorphism invariants, they are invariants of strong homotopy
type, a natural notion that has not been studied before. We prove, in several different con-
texts, Schlessinger–Stasheff type theorems comparing the notions of homotopy and gauge
equivalence for Maurer–Cartan elements as well as their categorified versions. As an appli-
cation, we re-prove and generalize Block–Smith’s higher Riemann–Hilbert correspondence,
and develop its analogue for simplicial complexes and topological spaces.

Keywords Maurer–Cartan element · Differential graded algebra · Simplicial complex ·
Smooth manifold · Locally constant sheaf

1 Introduction

The simplest version of the Riemann–Hilbert correspondence is the statement, known for
many decades, that the category of flat vector bundles on a smooth manifold M is equivalent
to the category of representations of its fundamental groupπ1(M). Recently Block and Smith
[7] developed a higher generalization of this statement. In it, the category of representations
of π1(M) was replaced by a differential graded category of infinity local systems on M and
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the category of flat vector bundles by a differential graded (dg) category of certain modules,
called cohesive modules, over �(M), the de Rham algebra of M . The correspondence was
given by a certain A∞ functor.

The proof in loc.cit. is technically complicated and our original motivation was to under-
stand it in simple terms, particularly keeping in mind that one side of the equivalence—the
category of infinity local systems—is essentially the same as the more classical notion of a
cohomologically locally constant (clc) complex of sheaves, i.e. a complex of sheaves whose
cohomology forms an ordinary (graded) locally constant sheaf. An obvious approach to prov-
ing the desired result is based on the observation that�(M) is the global sections of the sheaf
of de Rham algebras on M and the latter is a soft resolution of the constant sheafR. Similarly,
a dg module N over �(M) could be sheafified and viewed as a module over the sheaf of de
Rham algebras. Imposing suitable restrictions on M , one could hope that the resulting sheaf
of modules would be quasi-isomorphic to a clc sheaf and that this procedure establishes an
equivalence between the derived category of clc complexes of sheaves on M and a suitable
homotopy subcategory of dg�(M)-modules (such as cohesive�(M)-modules). Taking into
account that the category of clc sheaves makes sense for spaces more general than manifolds,
e.g. simplicial complexes, one could further ask whether this programme can be carried out
in this more general context. Next, one could try to achieve a similar result working with
the singular cochain complex of a topological space or a simplicial set, with values in rings
other thanR, e.g.Z. Finally, one should study the functorial properties of this construction, in
particular its liftability to the suitable homotopy category of spaces that are being considered
(manifolds, simplicial complexes, topological spaces or simplicial sets).

Somewhat surprisingly, this naive approach does work and eventually produces all the
results one would initially hope to obtain (and, in fact, quite a bit more). The main diffi-
culty in implementing the strategy outlined above is proving, in different contexts, that the
associated complex of sheaves of a dg �(M)-module N is clc. To show this, one needs to
work with Maurer-Cartan (MC) elements in dg algebras and their moduli spaces. MC ele-
ments and their moduli arise in deformations of various geometric and algebraic objects (flat
connections in vector bundles, complex analytic manifolds [26], associative algebras [31]),
models of function spaces in rational homotopy theory [33] and innumerable other contexts
of differential and algebraic geometry, homological and homotopical algebra. MC elements
are also known as ‘twisting cochains’, particularly in algebro-topological literature [11].

A priori there are different notions of equivalence forMC elements and it is both necessary
for our applications and generally desirable to compare them. We establish various versions
of the classical Schlessinger–Stasheff theorem [45] which states that, under appropriate con-
ditions, homotopy equivalent MC elements must be gauge equivalent, and vice-versa. This
result is usually formulated in the context of dg (pro)nilpotent Lie algebras but we need it
for dg associative algebras.

Schlessinger–Stasheff type results are established in this paper in two different contexts:
analytical (for dg algebras such as the smooth de Rham algebra of a manifold) and algebraic
(for dg algebras without any topology or with a pseudo-compact topology such as the singular
cochain algebra of a topological space).

The algebraic version of the Schlessinger–Stasheff theorem is particularly interesting and
has ramifications far beyond higher Riemann–Hilbert correspondence; some of them have
been explored in the present paper but others await further study.

We associate to any dg algebra A several dg categories, of which the most important
is the category of twisted A-modules Tw(A). A version of this category (in the context
where A itself is a dg category) was first introduced by Bondal and Kapranov in the seminal
paper [9] where it was called the category of (two-sided) twisted complexes and denoted by
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Pre − Tr(A) (in fact, Tw(A) is obtained from Pre − Tr(A) by adding infinite direct sums of
objects). The homotopy category H0(Tw(A)) is superficially similar to D(A), the derived
category of A, but is a finer invariant; in particular it is not, generally, a quasi-isomorphism
invariant of A, unlike D(A) (as pointed out by Drinfeld [15, Remark 2.6]). It turns out that
the correct notion to use in this context is that of strong homotopy equivalence of dg algebras.
This is a chain homotopy equivalence that takes into account the multiplicative structure and
it was not studied before, as far as we know. We show that two strongly homotopy equivalent
dg algebras have quasi-equivalent dg categories of twisted modules.

Furthermore, the notion of strong homotopy and strong homotopy equivalence exists also
for dg coalgebras (equivalently, pseudo-compact dg algebras), such as the normalized chain
complex of a simplicial set, and we show that two weakly equivalent Kan simplicial sets
give rise to strongly homotopy equivalent dg coalgebras. This is an important ingredient in
the proof of the singular version of the higher Riemann–Hilbert correspondence, but it also
has philosophical significance as it shows that the singular chain coalgebra on a simplicial
set that is not Kan (or fibrant) might have the wrong homotopy type. The simple example
of a non-fibrant model of the circle S1 shows that this indeed happens, cf. Remark 6.4
below. This phenomenon also showed up in the recent paper by Rivera and Zeinalian [44]
where a generalization of Adams’ cobar-construction to the non-simply connected case was
established.

Denoting by C∗(X) the normalized cochain algebra of a Kan simplicial set X , we show
that the homotopy category of twistedC∗(X)-modules is equivalent to the derived category of
clc complexes of sheaves on |X |, the geometric realization of X . If X is not Kan, the category
Tw(C∗(X)) has no homotopy invariant meaning, but one could speculate that it is related to
the category of sheaves on |X | that are constructible with respect to some stratification. A
related idea is contained in Kontsevich’s preprint [30, pp. 3–4].

The paper is organized as follows. Section 2 introduces the notion of an MC element in a
dg algebra as well as concomitant concepts: gauge equivalence, MC twisting and a notion of
homotopy gauge equivalence 1 that is, as the name suggests, a relaxation of familiar gauge
equivalence to an up to homotopy notion.

Section 3 introduces twisted modules, and gives a comparison with Block’s cohesive
modules [6]. In Sect. 4 we study smooth homotopies of topological algebras and their MC
elements, and prove an appropriate analogue of the Schlessinger–Stasheff theorem, its cate-
gorified version and show that homotopic maps of manifolds give rise to isomorphic functors
between the corresponding categories of twisted modules over their de Rham algebras. In
Sect. 5 we introduce the notions of a strong homotopy of dg algebra morphisms and of a
strong homotopy equivalence. A comparison is given with various weaker notions, of which
the notion of derivation homotopy has been previously known, particularly in the context
of rational homotopy theory. We obtain a suitable version of the Schlessinger–Stasheff the-
orem that implies that strongly homotopy equivalent dg algebras have quasi-equivalent dg
categories of twisted modules and obtain a similar result for pseudo-compact dg algebras.
In Sect. 6 we apply our results to normalized cochain algebras of simplicial sets and show
that weakly equivalent Kan simplicial sets give rise to quasi-equivalent categories of twisted
modules.

In Sect. 7 we consider complexes of sheaves on a locally ringed space and, using our
Schlessinger–Stasheff theorems, show that, under suitable assumptions, the homotopy cate-
gory of perfect (i.e. finitely generated up to homotopy retractions) twisted modules over the

1 It was pointed out to us by the referee that the notion of a homotopy gauge equivalence was already present
in [5] where it was called ‘quasi-invertible Maurer-Cartan element’ and Proposition 8.4 in op.cit. is essentially
equivalent to our Theorem 5.1.
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dg algebra of global sections is equivalent to the derived category of perfect complexes. This
is applied in Sect. 8 to produce versions of the higher Riemann–Hilbert correspondence for
smooth, possibly non-compact, manifolds and finite-dimensional simplicial complexes, thus
generalizing the results of Block and Smith [7]. We also consider the case of the Dolbeault
algebra and coherent sheaves on a complex manifold, slightly strengthening the result of
Block [6]. Finally, we treat the most interesting case, that of the singular cochain algebra
on a topological space and the corresponding higher Riemann–Hilbert correspondence. The
latter is obtained under very general assumptions, i.e. we consider any locally contractible
topological space and its dg category of possibly infinitely generated and unbounded clc
sheaves over any ring of finite homological dimension.

The paper contains an appendix where relevant facts from the theory of nuclear spaces
are collected.

1.1 Notation and Conventions

We work in the category of Z-graded dg modules over a fixed commutative ring k; an object
in this category is a pair (V , dV ) where V is a graded k-module and dV is a differential
on it; it will always be assumed to be of cohomological type (so it raises the degree of a
homogeneous element). Unmarked tensor products and Homs will be understood to be taken
over k. The shift of a graded k-module V is the graded k-module V [1] with V [1]i = V i+1.

A pseudo-compact relative graded k-module is a a projective limit of finitely generated free
k-modules; it is thus complete and separated with respect to the projective limit topology. The
adjective ‘relative’ pertains to the discrete ground ring k; note that in the original definition
of Gabriel [17] the ground ring is itself supposed to be topological and pseudo-compact
modules considered were more general, i.e. not necessarily topologically free. Later on, we
shall omit the adjective ‘relative’ as no other pseudocompact modules will be considered.
Pseudo-compact k-modules form a category where maps are required to be continuous. The
category of pseudo-compact k-modules is anti-equivalent to that of (discrete) free k-modules
via k-linear duality. The category of pseudo-compact k-modules is monoidal: if V = lim←− Vα

andU = lim←−Uβ are two pseudo-compact k-modules represented as inverse limits of finitely

generated free k-modules, then V ⊗̂U := lim←−α,β
(Vα ⊗Uβ). Later on, the hat will always be

omitted (but understood) for the tensor product of two pseudo-compact k-modules. We will
also need to form the tensor product of a pseudo-compact k-moduleV = lim←− Vα and a discrete

k-moduleU ; such a tensor product will be defined as V ⊗̂U := lim←−α
(Vα ⊗U ) and, as before,

the hat will be omitted but understood. Note that the tensor product of a pseudo-compact
and discrete k-modules has a topology but is not, in general, pseudo-compact. Overviews of
this monoidal structure can be found, e.g. in [21] (where pseudo-compact modules are called
profinite) and in [51].

A dg algebra is an associative monoid in the dg category of dg k-modules and in the
examples we consider its underlying k-module is free. A (right) dg module over a dg algebra
A is a dg k-module V together with a map V ⊗ A → V of dg k-modules satisfying the usual
conditions of associativity and unitality. Similarly a pseudo-compact dg algebra is amonoid in
themonoidal category of pseudo-compact k-modules. Via continuous linear duality a pseudo-
compact dg algebra becomes a dg coalgebra, and the two notions are therefore equivalent.
We, however, will work consistently with pseudo-compact algebras rather than coalgebras.
An important example of a pseudo-compact dg algebra over Z is the singular integer-valued
cochain complex C∗(X ,Z) of a topological space X (or, more pertinently, its normalized
version); it is pseudo-compact as dual to the dg coalgebra C∗(X ,Z) of singular chains on X .
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Wewill consider dg contramodules over dg pseudo-compact algebras, cf. [41,42]; a (right)
contramodule over a pseudo-compact algebra A is a discrete k-module V supplied with a
‘contra-action’ map V ⊗A → V satisfying the usual conditions of associativity and unitality.
Note that in loc.cit. a contramodule M over a coalgebra C is defined via a structure map
Hom(C, V ) → V satisfying suitable conditions; this definition is equivalent, via dualization
A := C∗, to ours.

We reiterate that V ⊗ A is a completed tensor product so a contramodule is not merely
an A-module where the topology on A is disregarded; at the same time the contra-action
map V ⊗ A → V is not required to be continuous. Importantly, a contramodule cannot be
viewed as a module over a monoid in a symmetric monoidal category in same way as discrete
modules or pseudo-compact modules can; this subtlety makes the category of contramodules
quite peculiar. Prominent among contramodules are those of the form V ⊗ A with the A-
(contra)action given by the right multiplication. These contramodules are free in the sense
that if U is another A-contramodule, then HomA(V ⊗ A,U ) ∼= Homk(V ,U ) just as it is in
the case of usual free A-modules. Contramodules encountered in this paper will only be free
(and so we will steer clear of various peculiar phenomena alluded to above). For example,
X is a topological space and V is a (possibly infinitely generated) free abelian group then
C∗(X , V ) ∼= V ⊗ C∗(X ,Z), the singular cochain complex of X with coefficients in V is a
free C∗(X ,Z)-contramodule.

IfM is a dg object (such as a dgmodule, dg algebra etc), wewillwriteM# for its underlying
graded object (i.e. graded module, graded algebra etc).

A dg category in this paperwill be understood to be a category enriched over dg k-modules.
For example, if A is a dg algebra then the category of dg A-modules is a dg category; similarly
the category of contramodules over a pseudo-compact dg algebra is also a dg category. The dg
k-module of homomorphisms in a dg categoryC will be denoted byHom(−,−) and similarly
for endomorphisms. The homotopy categoryH0(C) of the dg categoryC has the same objects
as C and for two objects O1, O2 in C we have HomH0(C)(O1, O2) := H0[HomC (O1, O2)].

A dg functor F : C → C ′ between two dg categories is quasi-essentially surjective if
H0(F) : H0(C) → H0(C ′) is essentially surjective and quasi-fully faithful if F induces
quasi-isomorphisms on the Hom-spaces; if both conditions are satisfied then F is called
a quasi-equivalence. A stronger notion is that of a dg equivalence: this is a dg functor
F : C → C ′ admitting a quasi-inverse dg functor G : C ′ → C , in the sense that there exist
natural closed isomorphisms F ◦ G ∼= 1C ′ and G ◦ F ∼= 1C .

Adg category is strongly pre-triangulated if it admits cones and shifts, andhas a zero object
(precise definitions can be found in e.g. [15]), and pre-triangulated if it is quasi-equivalent
to a strongly pre-triangulated category. A dg functor between pre-triangulated dg categories
is a quasi-equivalence if and only if it induces an equivalence on their homotopy categories.
A category dg-equivalent to a strongly pre-triangulated category is likewise strongly pre-
triangulated. Examples of strongly pre-triangulated categories are provided by dg A-modules
or dg A-contramodules where A is a dg algebra or a dg pseudo-compact algebra respectively.

If X is a topological space, we denote byC∗(X) its normalized singular chain dg coalgebra
with coefficients in k and by C∗(X) its k-dual normalized cochain (pseudo-compact) dg
algebra; similarly if X is a simplicial set, C∗(X) and C∗(X) will stand for its normalized
chain dg coalgebra and normalized cochain (pseudo-compact) dg algebra.

We will call a complex of sheaves on a topological space a dg sheaf. For a k-module M
we define by M the corresponding constant sheaf on a given topological space. For two dg
sheaves F ,G the corresponding dg sheaf of homomorphisms is denoted by Hom(F ,G ).

We denote by �(M) the de Rham algebra of a smooth manifold M . If K is a simplicial
complex, then we write �(K ) for its piecewise smooth de Rham algebra. Recall that a
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smooth form on an n-simplex �n is a smooth form on the interior of �n such that it and all
its derivatives extend continuously to the boundary of�n . It follows from Seeley’s extension
theorem [46] that such a form restricts to piecewise smooth forms on the faces of �n . The
elements of �(K ) are collections of smooth forms on the simplices of K that are compatible
with restriction maps. We define the sheaf � on |K |, the geometric realization of K , by
setting �(U ) = lim�n∈K A ∗(|�n | ∩U ) for U ⊂ |K |. Then it is clear that �(K ) coincides
with the global sections of �.

When working with complete locally convex spacesU and V , we will writeU ⊗V for the
completed projective tensor product ofU and V ; in the examples relevant to us,U and V will
be nuclear, for which this choice of a tensor product is isomorphic to any other reasonable
one.

2 Maurer–Cartan Elements for Algebras: Basic Notions, Definitions and
Examples

Let A be a dg algebra.

Definition 2.1 An element x ∈ A1 is Maurer-Cartan or MC if it satisfies the equation

d(x) + x2 = 0. (1)

The set of Maurer-Cartan elements in A will be denoted by MC(A).
The group A× of invertible degree 0 elements in A acts onMC(A) by gauge equivalences:

for g ∈ A×, x ∈ MC(A) set

g · x = gxg−1 − d(g)g−1

The Maurer-Cartan moduli set MC (A) is the quotient of MC(A) modulo gauge equiva-
lences.

We now introduce the notion of MC twisting.

Definition 2.2 For x ∈ MC(A) the dg A module A[x] has A as its underlying graded space
and the differential d[x] :

d[x](a) := d(a) + xa.

The right A-module structure on A[x] is the ordinary right multiplication. We will call A[x]
the module twisting of A by x . Similarly define the algebra twisting Ax as the dg algebra
having A as an underlying graded algebra and the differential dx :

dx (a) = d(a) + [x, a].
Note that the MC condition (1) for x implies (in fact, is equivalent to) d[x] squaring to zero
in A[x]. It also implies that dx squares to zero in Ax . With these definitions, A[x] becomes a
dg (Ax , A)-bimodule.

Example 2.1 Let X be a smooth manifold and E → X be a flat vector bundle on X . Consider
End(E), the associated endomorphism bundle and set A = �(X ,End(E)), the de Rham
algebra of X with values in End(E). The given flat structure determines a derivation d on
A of square zero; if the bundle E is topologically trivial then d could be taken to be the
ordinary de Rham differential. Then an MC element of A is an End(E)-valued 1-form x on
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X satisfying the MC Eq. (1). The set MC(A) is the set of all flat connections on the bundle E
andMC (A) is the set of gauge equivalence classes of such flat connections. The complexes
A[x] and Ax are respectively one-sided and two-sided twisted de Rham complexes of X with
values in End(E).

Example 2.2 Let A := k[x], d(x) = −x2. Clearly x is a non-zero MC element of A, and
it is not gauge equivalent to 0. This algebra is universal in the sense that an MC element
y in a dg algebra B is equivalent to a dg algebra map A → B with x → y. Note that A
is quasi-isomorphic to k, which implies that the MC moduli set is not quasi-isomorphism
invariant.

Recall that the category of (right) A-modules is enriched over dg modules: for any two
right dg A-modules M and N , we have the dg module of homomorphisms Hom(M, N )

from M to N ; it is the graded vector space
⊕∞

n=−∞ Hom(M, N [n]) with the differential
d( f )(m) := d f (m) − (−1)| f | f (dm). Then we have the following result whose proof is
straightforward inspection.

Proposition 2.1 Let x, y ∈ MC(A). The dgmodule A[x,y] of right A-module homomorphisms
A[x] → A[y] has A as its underlying graded space and the differential d[x,y] :

d[x,y](a) := d(a) + ya − (−1)|a|ax .

The operations of left and right multiplications determine a dg (Ay, Ax )-bimodule structure
on A[x,y]. ��

Note that for two right A-modulesM and N amapM → N of right A-modules is precisely
a zero-cocycle in Hom(M, N ). Then M and N are homotopy equivalent if there are maps
of (right) A-modules f : M → N and g : N → M such that f ◦ g is cohomologous
to 1 ∈ Hom(N , N ) and g ◦ f is cohomologous to 1 ∈ Hom(M, M). The notion of a
gauge equivalence of MC elements admits an important weakening to a homotopy gauge
equivalence.

Definition 2.3 Let MCdg(A) be the dg category whose objects are MC elements of A and
for x, y ∈ A the dg module of morphisms Hom(x, y)MCdg(A) := Hom(A[x], A[y]). The
correspondence A → MCdg(A) is a functor from dg algebras to dg categories.

Two MC elements x, y ∈ A are called homotopy gauge equivalent if they are homotopy
equivalent as objects in MCdg(A). TheMaurer Cartan homotopy moduli set MCh(A) is the
set of isomorphism classes of objects in H0(MCdg(A)), i.e. the quotient of MC(A) modulo
homotopy gauge equivalences.

Thus, x, y ∈ MC(A) are homotopy gauge equivalent if there exist elements g, h ∈ A0 such
that

(1) dg + yg − gx = 0;
(2) dh + xh − hy = 0;
(3) hg is cohomologous to 1 in Ax ;
(4) gh is cohomologous to 1 in Ay .

Note that if g ∈ A is invertible (i.e. x and y are isomorphic, as opposed to merely homotopy
equivalent inMCdg(A)) then we could take h = g−1 and conditions (2), (3) and (4) above are
automatically implied by condition (1). In that case x and y are gauge equivalent. However,
the following example shows that the relation of homotopy gauge equivalence is strictly
weaker than that of gauge equivalence.
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Example 2.3 Let A := k〈x, y, g, h, s, t〉, the free algebra with two generators x, y in degree
1, two generators g, h in degree 0 and two generators s, t in degree −1. The differential in
A is given by the formulae:

d(x) = −x2, d(y) = −y2,

d(g) = gx − yg, d(h) = hy − xh,

d(s) = −xs + gh − 1, d(t) = −yt + hg − 1.

It is clear that x, y ∈ MC(A) and that g and h provide maps of right dg A-modules A[x] →
A[y] and A[y] → A[x] respectively that are homotopy equivalences with homotopies given by
s and t . As an aside, also note that A is the universal dg algebra having two homotopy gauge
equivalent MC elements in the sense that any other such dg algebra B receives a unique map
from A. Now A, being free, has no non-scalar invertible elements, and it follows that the MC
elements x and y are not gauge equivalent, although they are homotopy gauge equivalent.

3 TwistedModules and Cohesive Modules

We will now introduce the notion of a twisted module over a dg algebra A.

Definition 3.1 A twisted A-module is a (right) dg A-module M such that M# is free as an
A#-module. A twisted A-module is finitely generated if M# is finitely generated. Finally, any
twisted module that is a homotopy retract of a finitely generated twisted module is called a
perfect twisted module.

We will denote the dg category of twisted A-modules by Tw(A), and its full subcategories
of finitely generated and perfect twisted A-modules by Twfg(A) and Twperf (A) respectively.

Remark 3.1 If A is a dg ring, then a dg A-moduleM is sometimes called perfect if it represents
a compact object in the derived category of A. This is not the same as a perfect twisted A-
module, in particular the latter need not represent a compact object in a triangulated category.
Later on, we will also use the notion of a perfect dg sheaf of modules. In all cases, our
terminology will always be clear from the context and unambiguous.

Remark 3.2 A twisted A-module can be written as (V ⊗ A#, DV )where V is a free k-module
and DV is a differential on the free A-module V⊗A# compatiblewith the A-module structure.
This is further equivalent to that of an MC element x ∈ End(V ) ⊗ A: for such an element
DV = 1 ⊗ dA + x gives a differential DV on V ⊗ A compatible with that of A and any
compatible differential on V ⊗ A must be of this form. We will often slightly abuse notation
and write V ⊗ A for (V ⊗ A#, DV ).

It is easy to see that Tw(A),Twfg(A) and Twperf (A) are strongly pre-triangulated dg
categories. Shifts are induced by the shift functor on V and the cone on f : (V ⊗ A, DV ) →
(W ⊗ A, DW ) is given by the complex (V ⊕ W [1]) ⊗ A with differential

(
DV f

DW [1]
)

.

The following result shows that the categories Tw(A) and Twperf (A) are closed with
respect to taking retracts up to homotopy, i.e. their homotopy categories are idempotent
complete.

Proposition 3.1 Any idempotent morphism in H0(Tw(A)) or H0(Twperf (A)) is split.

Proof Since H0(Tw(A)) is a triangulated category with direct sums, all idempotents in it split
by [8, Proposition 3.2]. The statement about Twperf (A) follows directly. ��
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Remark 3.3 We defined the category Twperf (A) as a certain subcategory of Tw(A). We see
that Tw(A) is pre-triangulated, with H0(Tw(A)) being idempotent complete; it is thusMorita
fibrant, cf. [48] regarding this notion. Moreover, the inclusion of the category Twfg(A) of
finitely generated twisted A-modules into Twperf (A) is a Morita morphism. Thus, Twperf (A)

is a Morita fibrant replacement of Twfg(A) and could be defined, up to a quasi-equivalence,
independently of the category Tw(A).

The notion of a twisted A-module is closely related to that of a cohesive A-module cf. [6].

Definition 3.2 A right dg A-module M is cohesive if M# is of the form E ⊗A0 A# for a
graded right A0-module E that is projective, finitely generated in every degree and bounded.
We will denote the dg category of cohesive A-modules by PA.

The following result shows that any cohesive A-module is, up to a homotopy, a perfect twisted
A-module.

Proposition 3.2 Any cohesive A-module is a retract of a free cohesive A-module.

Proof The forgetful functor A-Mod → A#-Mod has a left adjoint sending a (right) A#-
module L to the A-module G(L) consisting of formal symbols x + dy for x, y ∈ L with
A-action given by

(x + dy)a = xa + d(ya) − (−1)|y|y da

and differential d(x + dy) = dx , see e.g. the proof of Theorem 3.6 in [41]. The unit map
L → G(L) is injective with cokernel isomorphic to L[−1]. In particular, if L is projective,
then G(L)# is isomorphic to L ⊕ L[−1].

Let P be a dg A-module and assume that P# is projective. Let L be a (projective) A#-
module such that P# ⊕ L is free. Then P is a retract of F := P ⊕ P[−1] ⊕ G(L) and F#

is isomorphic to P# ⊕ P#[−1] ⊕ L ⊕ L[−1], which is a free A#-module. Note that if P# is
finitely generated then F can be chosen so that F# is of finite rank.

In particular a cohesive module M is a retract of a module F such that F# is a free A#-
module of finite rank. But then we can write F# = F ′ ⊗A0 A# for some graded A0-module
F ′ that is bounded and free of finite rank in every degree, i.e. F is a free cohesive module. ��

Under mild assumptions cohesive modules and perfect twisted modules agree.

Lemma 3.1 If A is concentrated in non-negative degrees and A is flat over A0 then idempo-
tents split in the homotopy category of cohesive modules.

Proof We call a bounded complex of finitely generated projective modules over A0 strictly
perfect; any dg-module A0-module quasi-isomorphic to a strictly perfect will be called per-
fect.

Let h : E ′ ⊗A0 A → E ′ ⊗A0 A be a homotopy idempotent. We can construct a splitting
in the homotopy category of all A-modules by the well-known telescope trick. Writing
E = E ′ ⊗A0 A we define a map σh : ⊕NE → ⊕NE defined by sending the i-th copy of E
to the (i + 1)-st copy using h and to the i-th copy using 1− h. Then the cone of σh splits h,
i.e. there is an equivalence E � cone(σh) ⊕ cone(σ1−h).

By construction cone(σh) is of the form (N ′ ⊗A0 A, DN ) for some graded A0-module
N ′. Moreover, inspecting the construction we see that (N ′, D0

N ) is equal to cone(σh0), which
is the complex obtained by going through the above construction with (E ′, h0) in place of
(E, h). To check this note that the underlying complex of cone(σh) consists of a direct sum of
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copies of E ′ ⊗ Awith some degree shifts. Writing the differential as a matrix each coefficient
is given by 1, DE or h. Dividing out by A≥1 leaves a direct sum of shifted copies of E ′ with
differential given by a matrix of 1, D0

E and h0, which is exactly cone(σh0).
The complex cone(σh) is a quasi-cohesive module in the sense of [6] (i.e. a cohesive

modulewithout the assumption of finite generation) andwe assumed that A is in non-negative
degrees and is flat over A0. In this situation Theorem 3.2.7 of loc. cit. states that cone(σh) is
cohesive if cone(σh0) is perfect.

But as A is in non-negative degrees we can check that h0 is a homotopy idempotent for
(E ′, D0

E ) in A0-Mod. In fact assuming K is a homotopy from h to h2 then K 0 is a homotopy
from h0 to (h0)2. Thus cone(σh0) is a direct summand of E ′ in the homotopy category. We
claim that this implies it is perfect. Following [43] we say a map is algebraically nuclear if
it factors through a strictly perfect complex. Then a complex is homotopy equivalent to a
strictly perfect complex if and only if the identity is homotopy equivalent to a nuclear map,
see [43, Proposition 1.1]. Since the identity of cone(σh0) factors through E ′ it is algebraically
nuclear up to homotopy. This proves the claim and the lemma. ��
Corollary 3.1 If A is concentrated in non-negative degrees and flat over A0 then the dg
categories Twperf (A) and PA are quasi-equivalent.

Proof The inclusion of the dg category of finitely generated twisted modules J : Twfg(A) →
PA is quasi-fully faithful by construction; moreover it induces, by Proposition 3.2 and
Lemma 3.1 an equivalence on idempotent completions of its homotopy categories. It follows
that J is a Morita morphism and since by Lemma 3.1 PA is Morita fibrant, it could be
viewed as aMorita fibrant replacement of Twfg(A). It is, thus, quasi-equivalent to Twperf (A),
cf. Remark 3.3. ��
Example 3.1 Let A = �(X), the de Rham algebra of a smooth manifold X , and E → X
be a flat vector bundle over X . Then �(X , E), the sections of the bundle E , form a finitely
generated projective module over A0 and the given flat connection form on E determines the
structure of a cohesive A- module (and thus, of a perfect twisted A–module) on�(X , E)⊗A0

A.

The notions described in this and the previous sections make sense when A is a pseudo-
compact dg algebra. The definitions ofMC (A),MCh(A),MCdg(A),Tw(A) and Twperf (A)

are repeated verbatim. One slight subtlety is that the notions of twisted module over A as a
pseudo-compact dg algebra and as a discrete dg algebra (i.e. forgetting its pseudo-compact
structure) are different, in general. This is because the tensor product of a pseudo-compact
algebra and a (discrete) vector space is understood to be completed. A twisted A-module in
this case is the same as a free A-contramodule.

Remark 3.4 In good cases the homotopy category of twisted modules also agrees with Posit-
selski’s derived category of the second kind [41]. It follows from the proof of Proposition 3.2
that twisted A-modules agree up to homotopy with Positselski’s projective A-modules
A-Modproj. Under certain conditions on A#, the underlying graded algebra of A, there is
an equivalence H0(A-Modproj) ∼= Dctr(A-Mod). See Sections 3.8, 3.9 and 4.4 of [41].

Thus, for any dg algebra or pseudo-compact dg algebra A, we associated several invari-
ants: the dg categories MCdg(A),Tw(A) and Twperf (A) as well as moduli sets MC (A)

andMCh(A). These are not quasi-isomorphism invariants of A as, e.g. Example 2.2 demon-
strates. Later onwewill show that they are, nevertheless, homotopy invariants in two different
contexts: analytic and algebraic.
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4 Smooth Homotopies for dg Algebras

In this section we will consider dg Arens-Michael (AM) algebras. These are complete, Haus-
dorff, locally m-convex topological dg algebras over R. For a detailed introduction see [40].
A special case of a dg AM algebra is a nuclear dg algebra, e.g the de Rham algebra �(X)

where X is a smooth manifold or a simplicial complex.
For our purposes it is enough to know that any dg AM algebra is an inverse limit of dg

Banach algebras. There is a natural notion of smooth homotopy between dg AM algebras.

Definition 4.1 Let f0, f1 : A → B be two continuous maps between dg AM algebras A
and B. A smooth homotopy between f0 and f1 is a map F : A → B ⊗ �[0, 1] such that
(1A ⊗ ev0) ◦ F = f0 and (1A ⊗ ev1) ◦ F = f1.

Furthermore, A and B are called smoothhomotopy equivalent if there aremaps f : A → B
and g : B → A such that f ◦ g and g ◦ f are smooth homotopic to 1B and 1A respectively.

Lemma 4.1 Any AM dg algebra A is smooth homotopy equivalent to A ⊗ �[0, 1].
Proof It suffices to prove that �[0, 1] is smooth homotopy equivalent to R. This, in turn,
would follow if we show that the map 1�[0,1] ◦ev0 : �[0, 1] → �[0, 1] is smooth homotopic
to the identity map on �[0, 1]. This last homotopy can be taken to be the diagonal map
� : �[0, 1] → �[0, 1] ⊗ �[0, 1] induced by the multiplication [0, 1] × [0, 1] → [0, 1]. ��
Proposition 4.1 The relation of smooth homotopy on morphisms between AM algebras is an
equivalence relation.

Proof Reflexivity is obvious and symmetry follows from the existenceof a auto-diffeomorphism
of [0, 1] swapping the endpoints. For transitivity consider a homotopy F : A → B ⊗
�[0, 1] ∼= B ⊗ �[0, 1

2 ] such that
(1B ⊗ ev0)◦ F = f1 and (1B ⊗ ev 1

2
)◦ F = f2, and another one G : A → B ⊗�[0, 1] ∼=

B ⊗ �[ 12 , 1] such that (1B ⊗ ev 1
2
) ◦ G = f2 and (1B ⊗ ev1) ◦ G = f3, The homotopies F

and G together constitute a map

H : A → B ⊗ (�[0, 1
2
] ×R �[1

2
, 1])

where the target of the last map could be viewed as B-valued forms on [0, 1] that are not
necessarily smooth at 1

2 .
To remedy the non-smoothness issue at 1

2 , let h1 : [0, 1
2 ] → [0, 1

2 ] be a smooth func-
tion such that h(0) = 0, h( 12 ) = 1

2 and constant in small neighbourhoods of the endpoints.
The correspondence ω → ω ◦ h determines a homomorphism �[0, 1

2 ] → �0[0, 1
2 ] where

�0 denotes differential forms constant near the endpoints. Note that this homomorphism
preserves the values of the differential forms at the endpoints. Similarly, there is a homomor-
phism h2 : �[ 12 , 1] → �0[ 12 , 1] preserving the values at endpoints. The homomorphisms h1
and h2 together constitute a map

(�[0, 1
2
] ×R �[1

2
, 1] → (�0[0, 1

2
] ×R �0[1

2
, 1]

and we denote by h̃ the composition of the latter map with the inclusion (�0[0, 1
2 ] ×R

�0[ 12 , 1] ⊂ �[0, 1]; the maps h̃ thus gets rid of a potential non-smoothness at 1
2 . Then

(1B ⊗ h̃) ◦ H : A → B ⊗ �[0, 1]
is the desired homotopy between f1 and f3. ��
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There are also obvious notions of a polynomial or real analytic homotopy, both ofwhich imply
smooth homotopy. The relations of polynomial or analytic homotopy are not necessarily
transitive.

As in the discrete setting a MC element x in a dg AM algebra A is an element of degree
1 such that dx + x2 = 0 and we can define the gauge action etc. in the same way.

Definition 4.2 Let A be a dg AM algebra. Two MC elements x0, x1 ∈ A are called smoothly
homotopic if there exists a MC element X ∈ A⊗ �[0, 1] such that (1A ⊗ ev0)(X) = x0 and
(1A ⊗ ev1)(X) = x1.

We have the following result that is a direct consequence of Proposition 4.1.

Lemma 4.2 The relation of smooth homotopy on MC elements of an AM algebra is an equiv-
alence relation. ��

Let X = x(z) + y(z)dz be a smooth homotopy as above. Then it is equivalent to the
system of equations

dx(z) + x(z)2 = 0, (2)

∂z x(z) = −dy(z) + [y(z), x(z)]. (3)

Theorem 4.1 Two MC elements x0 and x1 are smoothly homotopic if and only if they are
gauge equivalent via an element of A× in the path component of 1.

Proof Note first that we can, without loss of generality, assume that A is a Banach space.
Indeed, having a MC element in A := lim←− Aα where Aα are Banach spaces, is the same as
having a compatible collection of MC elements in every Aα (as MC elements are just maps
from the algebra R[x | dx + x2 = 0]). The same is true for gauge equivalences and also for
homotopies since tensoring with the nuclear space �[0, 1] commutes with inverse limits by
Theorem 9.2.

The proof is similar to that in [13, Theorem4.4]. Suppose that twoMCelements x0, x1 ∈ A
are gauge equivalent; that means that there exists g ∈ A× for which gx0g−1−dg ·g−1 = x1.
By assumption, there exists a smooth curve g(z) with g(0) = 1 and g(1) = g. Then define
the homotopy x(z)+ y(z) in A by x(z) = g(z)x0g−1(z)−dg ·g−1 and y(z) = ∂zg(z)g−1(z).
Then a straightforward inspection shows that (2) holds.

Conversely, suppose that there is a homotopy x(z)+ y(z)dz such that (2) holds. Consider
the differential equation

∂zg(z) = y(z)g(z) (4)

with the initial condition g(0) = 1. (We note that this gives a compatible systemof differential
equations inBanach algebras.) If g(z) is a solution of this differential equation and is invertible
in A then (2) would be satisfied with g(z)x0g−1(z)−dg ·g−1 in place of x(z) Since a solution
of a linear differential equation in a Banach algebra is unique, the solution in the AM algebra
A is likewise unique and we conclude that, in fact, x(z) = g(z)x0g−1(z)−dg ·g−1 and thus,
x0 and x1 are gauge equivalent.

But (4) does have the solution g(z) = P exp
∫ z
0 y(t)dt where P exp denotes the path

ordered integral, defined by

P exp
∫ z

0
y(t)dt := 1 +

∞∑

n=1

∫

0≤t1≤···≤tn≤z
y(tn) · · · y(t1) dt1 · · · dtn .

By [3, Propositions 3 and 4], g(z) is invertible. ��
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Corollary 4.1 A smooth homotopy equivalence between two AMdg algebras A and B induces
bijections MC (A) ∼= MC (B) and MCh(A) ∼= MCh(B).

Proof Let f : A → B and g : B → A be homomorphisms such that g ◦ f and f ◦ g are
smoothly homotopic to the identity. Then f and g induce functions between MC (A) and
MC (A). To see they are inverse note that, for each a ∈ A, g◦ f (a) is smoothly homotopic to
a and thus by Theorem 4.1 it is gauge equivalent to a, similarly f ◦ g(b) is gauge equivalent
to b. The bijection MCh(A) ∼= MCh(B) is proved in the same way. ��

We would like to consider twisted modules over AM algebras. Since an endomorphism
algebra of an infinite-dimensional space is, in general, not AM, it is not clear whether an
arbitrary (infinitely generated) twisted module is a reasonable notion. For an AM algebra
A, we consider the dg category Twfg(A) of dg A-modules of the form V ⊗ A where V is a
finite-dimensional R-space and denote Twperf (A), its Morita fibrant replacement. The latter
can be obtained, e.g. by taking the closure of the Yoneda embedding of Twfg(A)with respect
to homotopy idempotents.

Remark 4.1 Note that the definition of Twperf (A) depends, strictly speaking, on whether A
is viewed as an AM algebra or a discrete one since in the latter case Twperf (A) is defined in
terms of Tw(A) which is not considered for an AM algebra A. Nevertheless, this is only an
ambiguity up to quasi-equivalence since the notion of a Morita fibrant replacement is well-
defined up to a quasi-equivalence of dg categories, cf. Remark 3.3. Corollary 3.1 continues
to hold for an AM algebra A with the same proof.

Amap A → B ofAMalgebras induces functorsMCdg(A) → MCdg(B) andTwperf (A) →
Twperf (B). It is natural to ask how these induced functors differ for smoothly homotopicmaps.
The following result answers this question.

Proposition 4.2 Let f , g : A → B be two smoothly homotopic maps of AM algebras.
Then the induced functors on homotopy categories H0 MCdg(A) → H0 MCdg(B) and
H0 Twperf (A) → H0 Twperf (B) are isomorphic.

Lemma 4.3 For an AM algebra A consider the two natural maps

1A ⊗ ev0,1 : A ⊗ �[0, 1] ⇒ A.

Then the induced functors

H0 MCdg(A ⊗ �[0, 1]) ⇒ H0 MCdg(A)

are isomorphic.

Proof The map i : A → A ⊗ �[0, 1]; a → a ⊗ 1 induces a quasi-equivalence

MCdg(A)(i) : MCdg(A) → MCdg(A ⊗ �[0, 1]).
Indeed, i is a smooth homotopy equivalence by Lemma 4.1, and Corollary 4.1 then implies
that MCdg(A)(i) is quasi-essentially surjective (even essentially surjective). The quasi-fully
faithfulness of MCdg(A)(i) follows from acyclicity of �[0, 1].

The composition (1A ⊗ ev0) ◦ i : A → A is clearly the identity map on A and it follows
that the map 1A ⊗ ev0 induces the functor H0 MCdg(A ⊗ �[0, 1]) → H0 MCdg(A) that is
quasi-inverse to the one induced by i . The same can be said about the functor induced by
1A ⊗ ev1. Since quasi-inverse functors are determined uniquely up to an isomorphism, the
desired claim follows. ��
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Proof of Proposition 4.2 Let h : A → B ⊗ �[0, 1] be a smooth homotopy between f and g.
Then (1B ⊗ ev1) ◦ h = f and (1B ⊗ ev2) ◦ h = g, and applying Lemma 4.3 we obtain the
desired result.

Theorem 4.2 Let A and B be two dg AM algebras that are smoothly homotopy equivalent.
Then there is a quasi-equivalence between the dg categories

(1) MCdg(A) and MCdg(B),
(2) Twperf (A) and Twperf (B).

Proof Let f : A → B and g : B → A be the dg algebra maps such that f ◦ g is smoothly
homotopic to 1B and g ◦ f is smoothly homotopic to 1A. These maps induce functors
MCdg(A)( f ) : MCdg(A) → MCdg(B) and MCdg(A)(g) : MCdg(B) → MCdg(A). Corol-
lary 4.1 implies that MCdg(A)( f ) is quasi-essentially surjective and Proposition 4.2 – that
MCdg(A)( f ) and MCdg(A)(g) induce an equivalence H0 MCdg(A) → H0 MCdg(B). It fol-
lows that MCdg(A) and MCdg(B) are quasi-equivalent.

The same argument establishes a quasi-equivalence between Twfg(A) and Twfg(B) after
one observes that a finitely generated twisted A-module is the same as an MC element in the
dg algebra A ⊗ End(V ) where V is a graded finitely generated free k-module and similarly
for B. It follows that Twperf (A) and Twperf (B) (as Morita fibrant replacements of Twfg(A)

and Twfg(B)) are quasi-equivalent. ��
If X is a smooth manifold or a simplicial complex we write MCdg(X) and Tw(X) for the
dg categories MCdg(�(X)) and Tw(�(X)) respectively. For a smooth (piecewise smooth in
the case of simplicial complexes) homotopy X × [0, 1] → Y of maps between X and Y , the
associated map �(Y ) → �(Y × [0, 1]) ∼= �Y ⊗ �[0, 1] (see Corollary 9.3 regarding the
last isomorphism) is a smooth homotopy of the corresponding dg AM algebras. Therefore,
we have the following result.

Corollary 4.2 Let f , g : X → Y be (piecewise) smooth homotopic maps between M and N.
Then the induced functors

MCdg(A)( f ),MCdg(A)(g) : H0 MC(X) ⇒ H0 MC(Y );
MCdg(A)( f ),MCdg(A)(g) : H0 Tw(X) ⇒ H0 Tw(Y )

are isomorphic.
If X and Y are (piecewise) smooth homotopy equivalent smooth manifolds or simplicial

complexes then the following dg categories are quasi-equivalent.

MCdg(X) and MCdg(Y ),

Twperf (X) and Twperf (Y ).

��

5 Strong Homotopies for dg Algebras

In this section we introduce the notion of strong homotopy between maps of dg algebras
and the concomitant notion of strong homotopy equivalence of dg algebras. All definitions,
results and proofs are applicable verbatim to dg pseudo-compact algebras as long as we keep
in mind our conventions that homomorphisms of pseudo-compact algebras are assumed to
be continuous, unmarked tensor products are automatically completed etc.
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Let I be the singular simplicial set of the unit interval [0, 1]; recall that the set In of
n-simplices of I is the set of singular n-simplices of [0, 1], i.e. the set of continuous maps
�n → [0, 1] where �n is the standard topological n-simplex. We will consider a collection
of simplicial subsets of I defined as follows.

(1) The simplicial set K0 is generated by two nondegenerate simplices a0, b0 in degree zero
corresponding to the endpoints of [0, 1] and one nondegenerate simplex a1 in degree one
corresponding to the linear path from 0 to 1 in [0, 1], viewed as a 1-simplex in [0, 1].

(2) The simplicial set K1 contains all the simplices of K0 and has, additionally, one other
nondegenerate 1-simplex b1 corresponding to the linear path from 1 to 0 in [0, 1].

(3) Assuming that for n ≥ 1 the simplicial set Kn has been defined, we let Kn+1 contain
all the simplices of Kn plus two additional nondegenerate simplices an, bn in degree
n defined as follows. Writing �n as the convex hull of its vertices x0, . . . , xn , we let
an : �n → [0, 1] and bn : �n → [0, 1] be the affine maps for which

a(xi ) =
{
0, if i is even,

1, if i is odd
and b(xi ) =

{
1, if i is even,

0, if i is odd.

(4) The simplicial set K∞ is the union of the nested sequence of simplicial sets K1 ⊂ K2 ⊂
. . ..

Remark 5.1 We have the following inclusions of the simplicial sets introduced above:

K0 ⊂ K1 ⊂ . . . ⊂ K∞ ⊂ I

as well as their geometric realizations |Kn |. It is clear that |K0| is a cell decomposition of
[0, 1] with two 0-cells and one 1-cell. Furthermore, for n = 1, . . . ,∞ the cell complex |Kn |
is homeomorphic to the n-sphere Sn with two cells in each dimension.

Lemma 5.1 The simplicial set K∞ is a retract of I .

Proof Consider the category K with two objects and two mutually inverse morphisms
between them. The simplicial set K∞ is, by definition, the nerve ofK . SinceK is a groupoid,
its nerve is a Kan simplicial set (cf. [19, Lemma 3.5]). Clearly, the inclusion K∞ → I is
an acyclic cofibration and it follows that it admits a splitting, exhibiting K∞ as a retract
of I . ��
Remark 5.2 Since the simplicial sets Kn, 1 ≤ n < ∞ are not contractible, they are not
retracts of I . The simplicial set K0, while contractible, is still not a retract of I since it is not
Kan.

We denote by K ∗
n , n = 0, 1, . . . ,∞ and I ∗ the complexes of normalized cochains on the

corresponding simplicial setswith values in k. Endowedwith theAlexander-Whitneyproduct,
these become dg algebras, in fact pseudo-compact dg algebras (as duals to dg coalgebras).
We re-iterate that, even though K ∗∞ is a degree-wise finitely generated free k-module, it
will be regarded as pseudo-compact, in particular tensor products with it will always be
understood in the completed sense, as per our convention. Note that this subtlety is vacuous
for K ∗

n , n < ∞ as these free k-modules have totally finite rank. We have the following tower
of surjective maps of dg pseudo-compact algebras:

K ∗
0 ← K ∗

1 ← . . . ← K ∗∞ ← I ∗.
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Note that any pseudo-compact dg algebra in this tower admits two maps ev1 and ev2 to k
corresponding to the inclusion of the two endpoints of [0, 1] into the corresponding simplicial
set. We can define the notion of a K -multiplicative homotopy of dg algebra maps where K
is any simplicial subset of I containing the 0-simplices corresponding to the endpoints of
[0, 1]. In the following definition K is Kn, n = 0, 1, . . . ,∞, or I .

Definition 5.1 Let f , g : A → B be two dg algebra maps. An elementary K -homotopy
between them is amap H : A → B⊗K ∗ such that (1B⊗ev1)(H) = f and (1B⊗ev2)(H) =
g. We say that f and g are K -homotopic, if they are related by the equivalence relation
generated by elementary K -homotopy. If K = I , we will refer to K -homotopy as strong
homotopy.

Furthermore, A and B are called K homotopy equivalent if there are maps f : A → B
and g : B → A such that f ◦ g and g ◦ f are K -homotopic to 1B and 1A respectively. If
K = I we will refer to a K homotopy equivalence as a strong homotopy equivalence.

Remark 5.3 It is easy to see that for n > 0 the relation of elementary homotopy is symmetric
but not transitive and for n = 0 it is not even symmetric. Furthermore, using normalized
cochains is essential: almost all of our results will fail for un-normalized cochains. For
example, the un-normalized singular cochain algebra of the one-point topological space is
the dg algebra of Example 2.2 having non-trivial dg categories of MC elements and twisted
modules.

Since K∞ is a retract of I , the notions of strong homotopy and strong homotopy equiva-
lence are equivalent to those of a K∞ homotopy and K∞ homotopy equivalence respectively.
It is this notion of multiplicative homotopy that is of chief relevance to this paper. Also of
interest is the notion of K0 homotopy (sometimes called derivation homotopy); it has been
used in rational homotopy theory, cf. for example [2].

Lemma 5.2 Any dg algebra A is strongly homotopy equivalent to A ⊗ I ∗ (and thus, also to
A ⊗ K ∗∞).

Proof The multiplication map [0, 1] × [0, 1] → [0, 1] makes I ∗ into a bialgebra and the
coproduct map I ∗ → I ∗ ⊗ I ∗ could be viewed as a strong homotopy between the identity
map on I ∗ and a projection onto k. It follows that I ∗ (and thus, K ∗∞) is strongly homotopy
equivalent to k and the desired statement is an immediate consequence. ��

Remark 5.4 Similarly, K ∗
0 is K0-homotopy equivalent to k and so A is K0 homotopy equiv-

alent to A ⊗ K0; we will not use this result. Since for 0 < n < ∞ the algebra K ∗
n is not

acyclic, it is not K ∗
n homotopy equivalent to k. We will see later on (Example 5.1) that K ∗

0 is
not K2 homotopy equivalent to k.

Proposition 5.1 Let f , g : A → B be two K-homotopic dg algebra maps. If C is a third
dg algebra then for any dg algebra map h : C → A the maps f ◦ h, g ◦ h : C → B are
K -homotopic. Similarly for any dg algebra map k : B → C the maps k ◦ f , k ◦ g : A → C
are K -homotopic.

Proof It suffices to treat the case of an elementary homotopy. If H : A → B ⊗ K ∗ is an
elementary homotopy between f and g then H ◦ h is an (elementary) K -homotopy between
f ◦ h and g ◦ h. Similarly, (k ⊗ 1K ∗) ◦ H is an (elementary) homotopy between k ◦ f and
k ◦ g. ��
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Remark 5.5 Using Proposition 5.1 we can define the K -homotopy category of dg algebras
as having dg algebras as objects and K -homotopy classes of maps as morphisms. Of most
interest is the case K = K∞ and K = K0 as K ∗∞ and K ∗

0 are acyclic dg algebras. As
was mentioned earlier, K ∗

0 is not K∞ contractible and so, the relation of K∞ homotopy
equivalence is strictly finer than that of K0-equivalence.

Moreover, the existence of a K -homotopy category of dg algebras suggest the existence of
a closed model category structure underpinning it. The standard closed model structures on
dg algebras having quasi-isomorphisms as weak equivalences, should then be localizations
of the K∞ closed model structure.

The main advantage of the dg algebra K ∗∞ over I ∗ is that the former is much smaller, and
K∞, as well as its quotients Kn, n < ∞, admits an explicit description.

Proposition 5.2 (1) The dg algebra K ∗∞ is generated by two elements e, f in degree zero
and two elements s, t in degree one, subject to the relations

e2 = e, f 2 = f , e f = f e = 0;
f s = s, se = s, s f = es = 0;
t f = t, et = t, f t = te = 0;
t2 = s2 = 0

with the differential specified by the formulae

d(e) = t − s, d( f ) = s − t;
d(s) = ts + st, d(t) = st + ts.

(2) The algebra K ∗
n , 0 < n < ∞ is the quotient of K ∗∞ by the dg ideal generated by

monomials in s and t of length > n.
(3) The algebra K ∗

0 is the quotient of K ∗∞ by the dg ideal generated by t and polynomials in
s of degree > 1.

Proof Statements (2) and (3) clearly follow from (1). To prove (1), we use the interpretation
of K ∗∞ as the normalized cochain algebra of the nerve of the category with two objects and
two mutually inverse morphisms between them as in the proof of Lemma 5.1. It follows that

K ∗∞ is the path algebra of the graded quiver with arrows s and t placed in degree 1.
The stated relations in K ∗ are precisely the relations in this path algebra, with the elements e
and f corresponding to the length zero paths at the vertices of the above quiver. The formula
for the differential in K ∗∞ is straightforward to obtain. ��

5.1 Strong Homotopies for MC Elements

There is a corresponding notion of K-homotopy for MC elements.

Definition 5.2 Two MC elements x0, x1 in a dg algebra A are called K-homotopic if there
exists an MC element X ∈ A⊗ K ∗ such that (1A ⊗ ev0)(X) = x0 and (1A ⊗ ev1)(X) = x1.
If K = I , this will be referred to as strong homotopy of MC elements.

It turns out that the notions of K2 homotopy and homotopy gauge equivalence for MC
elements are equivalent.
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Lemma 5.3 Let x, x ′ be two MC elements in a dg algebra A. Then x and x ′ are homotopy
gauge equivalent if and only if they are K2-homotopic.

Proof Let X ∈ A ⊗ K ∗
2 be a K2-homotopy between x and x ′. We could write

X = xe + x ′ f + ys + y′t + zts + z′st,

where y, y′ and z, z′ are elements of A of degrees 0 and 1 respectively. Writing down the
MC equation for X and equating to zero the coefficients at e, f , s, t, st and ts we obtain:

x2 + dx = 0; (x ′)2 + dx ′ = 0

dy + x ′(y + 1) − (y + 1)x = 0

dy′ + x(y′ + 1) − (y′ + 1)x ′ = 0

(y + 1)(y′ + 1) − 1 + dz + [x, z] = 0

(y′ + 1)(y + 1) − 1 + dz′ + [x ′, z′] = 0.

The first line above is the statement that x and x ′ are MC elements in A, the second and
third – that the elements y + 1 and y′ + 1 determine right A-module maps A[x] → A[x ′]
and A[x ′] → A[x] respectively and the last two lines – that the elements (y + 1)(y′ + 1) and
(y′ + 1)(y + 1) are cohomologous to 1 in Ax and Ax ′

respectively. It follows that x and x ′
are homotopy gauge equivalent. Conversely, if x and x ′ are homotopy gauge equivalent, then
performing the above calculations in the reverse order, we find a K2-homotopy between x
and x ′. ��
Rather surprisingly, the notions of K2 and K∞ homotopy for MC elements are equivalent.
This could be interpreted as a strong homotopy analogue of the Schlessinger–Stasheff theo-
rem. Strikingly, it holds with no assumptions on the dg algebra in question. To show this, we
need a few preliminary results. Recall that we introduced a category K having two objects
O1 and O2 and two mutually inverse morphisms between them. Let K∞ be the dg category
with the same set of objects O1 and O2 and a set of free generators:

xn : O1 → O2; yn : O2 → O1 for n = 0, 1, . . .

with |xn | = |yn | = n. The differential d is given on the generators as follows:

d(x0) = 0, d(y0) = 0;
d(x1) = y0x0 − 1, d(y1) = x0y0 − 1

and for n > 0:

d(x2n) = ∑n−1
i=0 (x2i x2(m−i)−1 − y2(m−i)−1y2i );

d(y2n) = ∑n−1
i=0 (y2i y2(n−i)−1 − x2(n−i)−1y2i );

d(x2n+1) = ∑n
i=0 y2i x2(n−i) − ∑n−1

i=0 x2i−1x2(n−i)−1;
d(y2n+1) = ∑n

i=0 x2i y2(n−i) − ∑n−1
i=0 y2i+1y2(n−i)−1.

Note that K∞ is a cofibrant dg category. Clearly there is a surjection K∞ → K whose
kernel is generated by all xn, yn, n > 0. Then we have the following result.

Lemma 5.4 The map K∞ → K is a quasi-isomorphism, i.e. K∞ is a cofibrant resolution
of K .
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Proof This is proved in [36, Theorem 9,]; note thatK andK∞ are called ‘coloured operads’
in the cited reference but these are really dg categories as they do not support operations of
higher arities. ��
Remark 5.6 • The proof of Lemma 5.4 in [36] is computational. In fact, the resolution

K∞ → K is the standard reduced bar-cobar resolution of the categoryK . The existence
of such a resolution seems to be a well-known fact and is mentioned, in, e.g. [15,29].
We are, however, unaware of any reference where this general fact has been given a full
proof.

• A different (smaller) resolution of the categoryK was described in [15, Corollary 3.7.3].
• A one object analogue of the dg category K is the algebra k[s, s−1] with |s| = 0. A

cofibrant resolution of this algebra was constructed in [10]; the formulae are essentially
the same as for K∞.

Lemma 5.5 Let A be a dg algebra and x, x ′ ∈ MC(A). Then there is a 1-1 correspondence
between strong homotopies from x to x ′ and dg functors K∞ → MCdg(A) sending O1 and
O2 to x and x ′ respectively.

Proof Let X ∈ MC(A ⊗ K ∗∞) be a strong homotopy from x to x ′. We could write

X = xe + x ′ f + u0s + v0t + u1st + v1ts + . . . .

In other words the coefficient of X at the monomial st . . . t or st . . . s of length n is un and
the coefficient at the monomial ts . . . t or ts . . . s of length n is vn . Note that the un, vn are
elements of A of degree n.

Similarly, a dg functor F : C → MCdg(A) such that F(O1) = x and F(O2) = x ′ is
determined (since C is a free category) by a collection of elements

F(x2n) ∈ HomMCdg(A)(x, x
′),

F(y2n) ∈ HomMCdg(A)(x
′, x),

F(x2n+1) ∈ HomMCdg(A)(x, x),

F(y2n+1) ∈ HomMCdg(A)(x
′, x ′)

where n = 0, 1, . . ..
The correspondence between these two sets of data is given by

F(x0) = u0 + 1, F(y0) = v0 + 1

and, for n > 0:

F(xn) = un, F(yn) = vn .

Finally, a somewhat tedious but straightforward calculation, similar to that of Lemma 5.3
shows that the MC equation d(X) + X2 = 0 translates into the condition that F is a dg
functor (i.e. determines a dg map on Hom-complexes). �� ��
Theorem 5.1 Let A be a dg algebra. Then two MC elements in A are strongly homotopic if
and only if they are homotopy gauge equivalent.

Proof If two MC elements x, x ′ in A are strongly (or K∞) homotopic then they are K2

homotopic since K ∗
2 is a quotient of K ∗∞ and thus by Lemma 5.3 they are homotopy gauge

equivalent.
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Conversely, let x, x ′ ∈ MC(A)behomotopygauge equivalent and consider amap f : x →
x ′ inducing an isomorphism in H0(MCdg(A)). LetK0 be the k-linear category generated by
two objects O and O ′ and a single morphism i : O → O ′. Then there is a unique dg functor
F : K0 → MCdg(A) mapping i to f . Since f represents an isomorphism in H0(MCdg(A)),
the functor F factors through Li (K0), the derived localisation of K0, cf. [49]. On the other
hand, it follows from the proof of [49, Corollary 9.7] that Li (K0) is quasi-equivalent to the
category K consisting of two mutually inverse isomorphisms between two objects O1 and
O2. Since K∞ is a cofibrant replacement of K , we obtain a dg functor K∞ → MCdg(A)

taking O1 and O1 to x and x ′ respectively. By Lemma 5.5 this implies that x and x ′ are
strongly homotopic. ��
Corollary 5.1 For n = 2, 3 . . . , ∞ the relation of Kn-homotopy on MC elements of a dg
algebra is an equivalence relation.

Proof Indeed, by Theorem 5.1 two MC elements in a dg algebra A are Kn-homotopic if and
only if they are homotopy equivalent as objects in MCdg(A). The latter relation is obviously
an equivalence relation. �� ��
Corollary 5.2 A strong homotopy equivalence between two dg algebras A and B induces a
bijection MCh(A) ∼= MCh(B).

Proof The given strong homotopy equivalence between A and B clearly induces a bijection
of MC elements up to strong homotopy. By Theorem 5.1 this becomes a bijection of MC
elements up to homotopy gauge equivalence, i.e. a bijection MCh(A) ∼= MCh(B). ��
The following result is a strong homotopy analogue of Proposition 4.2 and its proof is
completely analogous, after replacing �[0, 1] with I ∗ and Corollary 4.1 with Corollary 5.2.

Proposition 5.3 Let f , g : A → B be two strongly homotopic maps of dg algebras. Then
the induced functors on homotopy categories:

(1) H0 MCdg( f ),H0 MCdg(g) : H0 MCdg(A) → H0 MCdg(B);
(2) H0 Tw( f ),H0 Tw(g) : H0 Tw(A) → H0 Tw(B);
(3) H0 Twperf ( f ),H0 Twperf (g) : H0 Twperf (A) → H0 Twperf (B)

are isomorphic. ��
The following result is a strong homotopy analogue of Theorem 4.2 and the proof is com-
pletely analogous, after replacing �[0, 1] with I ∗, Corollary 4.1 with Corollary 5.2 and
Proposition 4.2 with Proposition 5.3.

Theorem 5.2 Let A and B be two dg algebras that are strongly homotopy equivalent. Then
there are quasi-equivalences of dg categories between

(1) MCdg(A) and MCdg(B),
(2) Tw(A) and Tw(B),
(3) Twperf (A) and Twperf (B). ��
Example 5.1 Assume that 2 is not invertible in k and consider the dg algebra K ∗

0 ; recall that
it is the path algebra of the quiver with |s| = 1 with the differential being ad(s).
It is clear that s ∈ K ∗

0 is an MC element. It is easy to see that the K ∗
0 -module K ∗[x]

0 is not
isomorphic to K ∗

0 as its first homology group is k/2 �= 0. It follows that s is not homotopy
gauge equivalent to zero and therefore by Theorem 5.2, K ∗

0 is not K2 homotopy equivalent
to k.
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Example 5.2 Now let k be a field of characteristic zero and consider A := k[z, dz], the
polynomial de Rham algebra of the line. This is quasi-isomorphic to k, and even polynomially
homotopy equivalent to k, however MCdg(A) is not quasi-equivalent to MCdg(k) (and so, A
is not K2 homotopy equivalent to k). To see this note that MC elements are just polynomial
1-forms and a map in MCdg(k[z, dz]) between two such elements x and y is a polynomial f
satisfying d f + f x + y f = 0. This differential equation will not usually have polynomial
solutions, so different choices of x and y give a large number of MC elements in A which
do not map to one another (and thus represent non-isomorphic objects in H0 MCdg(A)).
The finitely generated twisted modules represented by these MC elements are examples of
O-coherent D-modules with irregular singularities at infinity.

Remark 5.7 It is interesting to find outwhether there is a closedmodel category on dg algebras
with weak equivalences being what we call strong homotopy equivalences. Such a closed
model category cannot be transferred from the category of complexes. For example, if k is
a field of characteristic zero, the de Rham algebra k[z, dz] is chain homotopy equivalent to
k as a complex of k vector spaces, but supports many nontrivial MC element and so, cannot
be strongly homotopy equivalent to k.

6 Categories of TwistedModules Associated with Simplicial Sets

In this section we consider twisted modules over the dg pseudo-compact algebra C∗(X),
the normalized cochain complex of a simplicial set X . We have the dg categories
MCdg(C∗(X)),Tw(C∗(X)) and Twperf (C∗(X)) that we will abbreviate to MCdg(X),Tw(X)

and Twperf (X) respectively. These dg categories are not (up to quasi-equivalence) invariants
of the weak homotopy type of X , however they are homotopy invariants of X in a sense that
we will now make precise.

Recall cf. [19] that two maps of simplicial sets f , g : X → Y are called homotopic if
they can be extended to a map X ×K0 → Y ; recall that K0 stands for the standard simplicial
interval having two nondegenerate 0-simplices and one nondegenerate 1-simplex. This notion
of homotopy is completely adequate only in the case where Y is a Kan complex (in which
case it is an equivalence relation). We will now introduce the notion of a strong homotopy of
maps between simplicial sets and the concomitant notion of strong homotopy equivalence.
Let C be a fibrant cylinder object for the simplicial point. For example, we can take C = I
or C = K∞. Then X × C is a cylinder object for any simplicial set X ; moreover it is very
good in the sense that the natural projection X ×C → X is a fibration of simplicial sets. We
will denote by i0, i1 : X → X × C the two natural inclusions of X into X × C .

Definition 6.1 An elementary strong homotopy of maps of simplicial sets f , g : X → Y is
a map h : X × C → Y such that h ◦ i0 = f and h ◦ i1 = g. the maps f and g are called
strongly homotopic if there is a chain of elementary homotopies connecting f and g.

Furthermore, X and Y are called strongly homotopy equivalent if there are maps f : X →
Y and g : Y → X such that f ◦g and g◦ f are strongly homotopic to 1Y and 1X respectively.

Proposition 6.1 The relation of strong homotopy does not depend on the choice of a very
good cylinder object C. Any such very good cylinder is strongly homotopy equivalent to the
point.
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Proof Let P stand for the simplicial point. For any two very good cylinder objects C and C ′
of P consider the diagram

P
∐

P

i0
∐

i1

i0
∐

i1
C ′

C P.

Since the left downward arrow is a monomorphism and thus a cofibration of simplicial sets,
and the right downward arrow is a fibration (C ′ being fibrant), there exists a filler C → C ′.
It follows that any strong homotopy based on C ′ gives rise to a strong homotopy based on
C . Symmetrically, any strong homotopy based on C gives rise to a strong homotopy based
on C ′; this proves the first claim of the proposition. The second claim follows from general
theory of closed model categories: any very good cylinder object is weakly equivalent to the
point; then, being a fibrant-cofibrant object it is homotopy equivalent to the point through
any fixed good cylinder object, i.e. it is strongly homotopy equivalent to the point. ��
Remark 6.1 Two natural candidates for C are K∞ and I , the singular simplicial set of the
unit interval [0, 1]. The multiplication on [0, 1] turns I into a simplicial monoid, and the
multiplication map I × I → I could be viewed as a homotopy between the identity map on
I and the map to the point. This is an explicit strong homotopy equivalence between I and
the point.

Proposition 6.2 Let f , g : X → Y be two maps of simplicial sets. If f and g are strongly
homotopic, then the inducedmaps of pseudo-compact dg algebras f ∗, g∗ : C∗(Y ) → C∗(X)

are strongly homotopic.
If two simplicial sets X and Y are strongly homotopy equivalent, then the pseudo-compact

dg algebras C∗(X) and C∗(Y ) are strongly homotopy equivalent.

Proof The second statement of the proposition follows from the first. For the first, choosing
X × I as a very good cylinder object for X , consider a homotopy h : X × I → Y such
that h ◦ i0 = f and h ◦ i0 = g. This gives rise to a map of dg pseudo-compact algebras
C∗(Y ) → C∗(X× I ) and, composing the latter with the Eilenberg-Zilber mapC∗(X× I ) →
C∗(X)⊗ I ∗ (which is known to be a dg algebra map) we obtain the desired strong homotopy
between f ∗ and g∗. ��
Corollary 6.1 Let X and Y be two strongly homotopy equivalent simplicial sets. Then the
following dg categories are quasi-equivalent:

(1) MCdg(X) andMCdg(Y ),
(2) Tw(X) and Tw(Y ),
(3) Twperf (X) and Twperf (Y ).

Proof This is a direct consequence of Theorem 5.2 and Proposition 6.2. ��
Corollary 6.2 Let X and Y be two weakly equivalent Kan simplicial sets. Then the following
dg categories are quasi-equivalent:

(1) MCdg(X) andMCdg(Y ),
(2) Tw(X) and Tw(Y ),
(3) Twperf (X) and Twperf (Y ).
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Proof Twoweakly equivalent Kan simplicial sets are homotopy equivalent through any given
very good cylinder object. In particular, they are strongly homotopy equivalent. The conclu-
sion then follows from Corollary 6.1. ��
This also has a consequence for singular cochain algebras of topological spaces.

Corollary 6.3 Let X and Y be weakly equivalent topological spaces. Then there are quasi-
equivalences of dg categories between

(1) MCdg(X) andMCdg(Y ),
(2) Tw(X) and Tw(Y ),
(3) Twperf (X) and Twperf (Y ).

In particular, if X is a contractible topological space, then the dg categories MCdg(X),
Twperf (X) and Tw(X) are quasi-equivalent to the category of free k-modules of rank 1, the
category of finitely generated free dg k-modules and the category of all free dg k-modules,
respectively.

Proof Since the topological spaces X and Y are weakly equivalent, so are their singular
simplicial sets. Since the latter are Kan complexes, the claim follows from Corollary 6.2. ��

6.1 Reduced andMinimal TwistedModules

Let A be a non-negatively graded pseudo-compact algebra, such asC∗(X) for a simplicial set
X , and M := V ⊗ A be a twisted A-module. The differential DM on M is determined by its
restriction on V ; furthermore we have: DM |V⊗1 = d0 + d1 + . . . where dn : V → V ⊗ An .
In particular, d0 : V → V ⊗ A0 determines an A0-linear differential on V ⊗ A0.

Definition 6.2 A twisted A-module M as above is called reduced if d0 factors through V ↪→
V ⊗ A0 : v → v ⊗ 1, i.e. if it is induced by a differential in the graded k-module V . If,
further, d0 = 0, we will call the twisted A-module M minimal. We will denote by Twred(A),
Twm(A), Twm

perf (A), and Twred
perf (A) the categories of reduced, minimal twisted A-modules

and their perfect versions respectively. If A = C∗(X) for a simplicial set X , we will denote
these categories by Twred(X), Twm(X), Twm

perf (X) and Twred
perf (X) respectively.

Remark 6.2 If A, in addition to being non-negatively graded, is connected i.e. A0 = k, then
clearly any twisted A-module is reduced. Such is the case, when A = C∗(X) for a reduced
simplicial set X .

Remark 6.3 The notion of a minimal twisted module is similar to that of a minimal A∞-
module, [28]; indeed in the case when A is a completed tensor algebra representing an A∞
algebra, then a minimal twisted A-module is a contramodule corresponding to a minimal
A∞-module under the comodule-contramodule correspondence, cf. [41, Theorem 5.2].

Proposition 6.3 Ahomotopy equivalencebetween twominimal twistedmodules is necessarily
an isomorphism.

Proof It suffices to show that any endomorphism of a minimal twisted module that is homo-
topic to the identity is invertible. Let V ⊗ A be such a minimal A-module; then its dg
algebra of endomorphisms is A ⊗ End(V ); by minimality the differential in it has the form
DA = d1A + d2A + . . . where

dnA|V⊗1 : V → V ⊗ An .
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Let f ∈ A ⊗ End(V ) be a closed endomorphism homotopic to the identity; thus f =
1 + DA(g) for some g ∈ A ⊗ End(V ). Then DA(g) must have the form DA(g) =
d1A(g) + d2A(g) + . . . with dnA(g) ∈ An ⊗ End(V ) and therefore f is invertible: f −1 =
1 + ∑∞

i=1(−1)i (
∑∞

n=1 d
i
A(g)). ��

The following result is analogous to the well-known theorem on minimal A∞ modules [28].

Proposition 6.4 If k is a field then any reduced twisted A-module is homotopy equivalent to
a minimal one.

Proof Let A⊗V be a reduced twisted A-module; it has differential d0 +d ′ := d0 +d1 + . . .

as described above and d0 makes V into a dg k-vector space. Since k is a field, V admits a
decomposition V ∼= H(V )⊕d0(V )⊕U with d0 mappingU isomorphically onto V . Denote
by t : V → V the projection onto H(V ) and by s : V → V the operator that is inverse
to d0 on d0(V ) (viewed as an operator U → d0(V )) and whose restriction on H(V ) and
U is zero. The pair of operators (s, t) determines an abstract Hodge decomposition on V
(cf. for example [14] concerning this notion) and we can apply the Perturbation Lemma as
formulated in [14, Corollary 3.17]. Namely, the twisted module A ⊗ V is isomorphic to the
direct sum of M1 := A ⊗ (d0(V ) ⊕ U ) and M2 := A ⊗ H(V ) where M1 is supplied with
the differential 1A ⊗ d0 and M2 with the differential td ′(1 + sd ′)−1t . Since M1 is clearly
homotopy equivalent to zero and M2 is minimal, the claim follows. ��
Then we have the following result.

Corollary 6.4 If A and B are two non-negatively graded pseudo-compact dg algebras that
are strongly homotopy equivalent. Then the following categories are quasi-equivalent:

(1) Twm(A) and Twm(B),
(2) Twm

perf (A) and Twm
perf (B).

Let A be a connected pseudo-compact dg algebra over a field. Then the following dg cate-
gories are quasi-equivalent:

(1) Tw(A) and Twm(A),
(2) Twperf (A) and Twm

perf (A).

Proof Let f : A → B and g : B → A be twomaps that are inverse up to K2-homotopy.These
maps induce dg functors Tw( f ) : Tw(A) → Tw(B) and Tw(g) : Tw(B) → Tw(A) inducing
quasi-equivalence of the corresponding dg categories by (the pseudo-compact analogue of)
Theorem 5.2. These functors restrict to the categories of minimal twisted modules and, using
Proposition 6.4 we see, that these restrictions give mutually inverse quasi-equivalences. The
statement about perfect minimal twisted modules is proved similarly.

Finally, if A is connected, any twisted A-module is automatically reduced, and the proof
is finished by appealing to Proposition 6.4. ��
Theorem 6.1 Let X be a connected Kan simplicial set. Then the pseudo-compact dg algebra
C∗(X) is strongly homotopy equivalent to a connected one.

Proof Choosing a vertex of X amounts to constructing a map P → X from the one-point
simplicial set P to X . Let X ′ be the simplicial set defined by the pullback diagram

X ′ f
X

P cosk0(X).
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Here cosk0(X ′) is the 0-coskeleton (the zeroth stage of the Moore-Postnikov tower of X ).
The simplicial set X ′ has a single vertex corresponding to the map P → X and soC∗(X ′) is a
connected pseudo-compact dg algebra. It is well-known (e.g. [37, Proposition 8.2, Theorem
8.4]) that cosk0(X) is a weakly contractible Kan simplicial set, and it follows that X ′ is
likewise Kan. Then f : X ′ → X is a strong homotopy equivalence with a strong homotopy
inverse g : X → X ′ (in fact it is clear that X ′ is a deformation retract of X so that g◦ f = 1X ′ ).
By Proposition 6.2 C∗(X) and C∗(X ′) are strongly homotopy equivalent. ��
Combining Corollary 6.4 and Theorem 6.1 we obtain the following result.

Corollary 6.5 (1) Let X be a Kan simplicial set. Then there is a quasi-equivalence between
the following dg categories:

(a) Tw(X) and Twred(X),
(b) Twperf (X) and Twred

perf (X).

(2) If k is a field then, additionally, the following dg categories are quasi-equivalent:

(a) Tw(X) and Twm(X),
(b) Twperf (X) and Twm

perf (X).

(3) If X , X ′ are weakly equivalent Kan simplicial sets, then the following dg categories are
quasi-equivalent:

(a) Twm(X) and Twm(X ′),
(b) Twperf (X) and Twm

perf (X
′). ��

Remark 6.4 If X is a reduced simplicial set and k is a field then C∗(X) is a local pseudo-
compact dg algebra (which is the dual to a conilpotent dg coalgebra C∗(X)). The category
of local pseudo-compact dg algebras admits the structure of a closed model category, see
[41] where this result is formulated in the dual language of coalgebras. It makes sense to
ask whether weakly (or strongly) homotopy equivalent reduced simplicial sets give rise to
weakly equivalent (in the sense of the aforementioned closed model category) local pseudo-
compact dg algebras. A partial answer to this question could be extracted from the recent
paper [44] where it is proved that if X is a singular simplicial set of a topological space
(or, more generally, a Kan simplicial set) then the cobar-construction of C∗(X) is quasi-
isomorphic to the dg algebra of chains on the loop space of X . Note that this generalizes the
classical result of Adams on the cobar-construction [1] in that simple connectivity of X is not
assumed. This result implies that for two weakly equivalent Kan simplicial sets X and X ′ the
pseudo-compact local dg algebrasC∗(X) andC∗(X ′) are indeed weakly equivalent. The Kan
condition is essential; e.g. taking for X a simplicial circle with one non-degenerate simplex
in degree zero and another in degree one (which is not a Kan simplicial set), a straightforward
inspection shows that the cobar-construction of C∗(X) is isomorphic to k[x] with |x | = 0
whereas the singular chain algebra on �(S1) = Z is k[x, x−1] �= k[x].

7 TwistedModules and Sheaves

7.1 Generalities on dg Sheaves

In this section we will present the local to global arguments needed to apply Schlessinger–
Stasheff type results to infinity local systems. The results obtained here are directly used in
Sects. 8.1 and 8.2 and the methods of proof are used in Sect. 8.3.
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Let X be a topological space, always assumed paracompact and Hausdorff in this section.
Let R be a sheaf of k-algebras on X and let A = (A •, d) be a sheaf of non-negatively
graded dg R-algebras. Write A # for (A •, 0). We will consider the dg algebra A := A (X).

Write A-Mod for the dg category of dg A-modules and A -Mod for the dg category of
sheaves of dgmodules overA .WriteR-Mod for the dg category of sheaves of dgR-modules.

There is an adjunction p∗ � p∗ between dg modules over A and dg modules over A
which is induced by the map p : (X ,A ) → (∗, A) of dg ringed spaces.

For free modules we recall the following straightforward result:

Lemma 7.1 The adjunction p∗ � p∗ induces a dg equivalence between dg A-modules and
dg A -modules whose underlying A#-modules, respectively A #-modules, are free. ��
Proof We first forget the differential and the grading and consider a ringed space (X ,R)

and let R = R(X). Let q be the map (X ,R) → (∗, R). Then q∗ induces an equiva-
lence between free R-modules and freeR-modules: Any freeR-module is of the form q∗V
for a free R-module V and q∗q∗(W ) = (q∗W )(X) = W , which gives the isomorphism
HomR (q∗V , q∗W ) ∼= HomR(V ,W ).

Thus the unit and counit of the adjunction are isomorphisms. They are also compatible
with the grading and the differential, hence they are isomorphisms of dg modules, resp. dg
sheaves, proving the lemma. ��

For a fine sheaf R we can compare categories of locally free sheaves and projective
modules over the ring of global sections.

Recall that a sheaf F is fine if for any locally finite open cover {Ui } of X there is family
of morphisms φi : F → F such that

∑
φi = 1F and such that φi has support contained

inUi . On a paracompact Hausdorff space fine sheaves are always soft and thus �-acyclic. A
module over a fine sheaf of rings is automatically fine. For more details see e.g. [18, Section
II.3].

The following is Swan’s theorem as stated in [39, Corollary 3.2].

Theorem 7.1 Assume (X ,R) is a locally ringed space of finite covering dimension with
R a fine sheaf of commutative algebras. Then the category of finitely generated projective
R(X)-modules is equivalent to the category of locally free R-modules of bounded rank.

We note that Lemma 7.1 gives an equivalence of dg categories, but the two sides have a
priori very different homotopy theories: For dg sheaves the natural class of weak equivalences
is given by local quasi-isomorphisms, i.e. morphisms which restrict to quasi-isomorphisms
on all stalks.

To make this more precise we recall that the categories R-Modpsh and A -Modpsh of
presheaves of dg R-modules, respectively presheaves of dg A -modules, have model struc-
tures.

To define this, first recall the definition of a hypercover. A hypercover of a presheaf P
on a topological space X is an augmented simplicial presheaf C• → P such that all Cn are
coproducts of representable presheaves and for all n the map Cn → (coskn−1C)n is a cover,
where we take the coskeleton in the augmented sense. In particular a hypercover of X is
defined to be a hypercover of the presheaf hX that X represents, and it may be represented
by a cover U0 → X together with covers Un → limk<n Uk . The fundamental example of a
hypercover is the nerve of a Čech cover. In this case all the covers (except for U0 → X ) are
isomorphisms.
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Definition 7.1 The projective model structure on presheaves of dgR-modules has fibrations
and weak equivalences defined object-wise. The local model structure on presheaves of dg
R-modules is the localization of the projective model structure at all hypercovers.

Then weak equivalences are given by maps inducing weak equivalences on stalks. We
will abuse notations and refer to them as quasi-isomorphisms. An object P is fibrant if
it is a hypersheaf, i.e. for any open subset U ⊂ X and hypercover U• → U there is a
quasi-isomorphism P(U ) � Č(U•, P). Here the right hand side is the Čech complex of
a hypercover, defined exactly like the Čech complex for a cover. We say a hypercover is
contractible if every Un is a coproduct of contractible open sets. Any locally contractible
topological space admits a contractible hypercover.

Remark 7.1 We will in the following sometimes compute Čech cohomology with respect to
a hypercover, but not much generality is lost if the reader wants to mentally replace them by
Čech covers.

The local model structure on presheaves of dg A -modules is defined in the same way (or
it can be transferred via the forgetful functor, see e.g. [20]).

The homotopy category of this model category is the usual derived category of R-Mod,
respectively A -Mod. The adjunction p∗ � p∗ is Quillen.

For more details on the local model structure see [16] (in the case of simplicial presheaves)
and [12] (for chain complexes).

We now assume R → A is an object-wise quasi-isomorphism, i.e. in particular a local
weak equivalence. Writing J for the forgetful functor we have a dg adjunction − ⊗R A �
J : R-Mod � A -Mod. We consider the derived categories of R-Mod and A -Mod and
write RJ for the total derived functor of J , i.e. the lift of J to the derived categories. As A
and R are quasi-isomorphic RJ is an equivalence.

Definition 7.2 Let F = J ◦ p∗ : A-Mod → R-Mod be the dg functor given by composition
of the two functors defined above.

We will use F to map different categories of twisted modules to dg sheaves. In the remainder
of this paper we will abuse notation and write F for different choices of A as well as for the
restriction of F to Tw(A), Twperf (A) and Twfg(A).

7.2 TwistedModules and Perfect Complexes

We now consider the functor F : A-Mod → R-Mod in more detail. We let D(X ,R) or
simply D(R) be the derived category of R-Mod.

In this section we will assume X is locally good, which is defined as follows. We say a
ringed space (U ,R) is good if the natural map R(U ) → Ru∗R|U is a quasi-isomorphism
(here u : U → ∗ is the map to the one-point space). Then X is locally good if its topology
has a basis of good open sets.

Most spaces of interest are locally good, for example algebraic schemes, analytic spaces
and locally contractible topological spaceswith the constant structure sheaf. Good neighbour-
hoods are given by affine subvarieties, Stein subspaces and contractible subsets respectively.

Definition 7.3 A dgR-module on X is strictly perfect if it is bounded and a direct summand
of a free sheaf of finite rank in each degree. A dg R-module G is perfect if for every x ∈ X
there is a neighbourhood U such that G|U is quasi-isomorphic to a strictly perfect dg sheaf.
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We denote by Dperf (X ,R) or Dperf (R) the subcategory of D(X ,R) consisting of perfect
dg sheaves ofR-modules. We will say a perfect dg sheaf ofR-modules is globally bounded
if there are integers a, b and N such that there is a cover {Ui } such that each G|Ui is quasi-
isomorphic to a strictly perfect dg sheaf GU which is concentrated in degrees [a, b] and has
at most N generators. We let DB

perf (R) denote the subcategory of globally bounded perfect
dg sheaves.

Remark 7.2 Inmany cases of interest all perfect dg sheaves are globally bounded.An example
of a non-globally bounded one is given by the following construction. Consider C equipped
with the holomorphic (or smooth) structure sheaf. Then the skyscraper sheaf Cn at n ∈ C is
perfect and so is ⊕n∈NC⊕n

n . But this sum is clearly not globally bounded.

For later usewe also define Dlf (X ,R) or Dlf (R) to be the subcategory of D(R) consisting
of locally free dg sheaves of R-modules, i.e. those which are locally quasi-isomorphic to
free R-modules without any finiteness assumptions. In the case R = k, the locally free dg
sheaves ofR-modules will be referred to as cohomologically locally constant (clc) sheaves.
We will need the following:

Lemma 7.2 Dlf (R), Dperf (R) and DB
perf (R) are idempotent complete.

Proof The result for Dlf (R) follows from [8].
Next, recall that for any ring perfect dg modules are exactly compact objects in the derived

category, and since compact objects are closed under direct summands so are perfect dg
sheaves, see e.g. [8, Proposition 6.4].

We consider a perfect dg sheaf of the formG � M⊕N and will now show M is perfect. It
follows from the definition that any point has a neighbourhood U on which we may assume
G is strictly perfect. Then the restriction G|U is isomorphic to the sheaf associated to G(U )

(apply Lemma 7.1 restricted to finitely generated modules and extended to the idempotent
completion).

We write u : U → ∗. Then G|U ∼= u∗G(U ) � Lu∗G(U ) as G(U ) is cofibrant. We may
assume U is good and then G(U ) � Ru∗G � Ru∗M ⊕ Ru∗N . G(U ) is perfect and thus so
is Ru∗M . As G � Lu∗G(U ) it follows that M ⊕ N � Lu∗Ru∗M ⊕ Lu∗Ru∗N . Since the
map M → Lu∗Ru∗N in the derived category corresponds to the zero map Ru∗M → Ru∗N
under an adjunction it is zero and M � Lu∗Ru∗M . Thus M is perfect. The same argument
applies to globally bounded dg sheaves. ��
Proposition 7.1 Let (X ,R) be a ringed space, and letA be a fine sheaf of dg algebras on X
such that there is a quasi-isomorphismR → A satisfying condition (*) below. Then the asso-
ciated sheaf functor p∗ gives a quasi-fully faithful functor Twperf (A) → A -Mod and F =
J ◦ p∗ induces an embedding of triangulated categories H0(Twperf (A)) → DB

perf (X ,R).

Remark 7.3 Proposition 7.1 only depends on the construction of Twperf (A) up to quasi-
equivalence and thus holds equally if we consider A as a dg AM algebra, see Remark 4.1.

The crucial assumption is the following

(*) For every free graded k-module G, every x ∈ X with a neighbourhood U ′ and any MC
element ξ ∈ MC(A (U ′) ⊗ End(G)) there is a neighbourhood x ∈ U ⊂ U ′ such that
ξ |U is homotopy gauge equivalent to an element in the image of the Maurer Cartan set
of R(U ) ⊗ End(G).

We will be particularly interested in cases where (*) is the consequence of the following
stronger condition:
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(**) For every x ∈ X and every free graded k-module G there is a neighbourhood U such
that R → A induces a quasi-equivalence MCdg(R(U ) ⊗ End(G)) � MCdg(A (U ) ⊗
End(G)).

Proof of Proposition 7.1 By Lemma 7.1 the restriction p∗ : Twfg(A) → A -Mod is quasi-
fully faithful. Then p∗ on Twperf (A) is just the extension of p∗|Twfg(A) to homotopy
idempotents and it follows that p∗ is also quasi-fully faithful.

It remains to prove the statement on homotopy categories. We have the following compo-
sition

H0(Twperf (A))
p∗

−→ H0(A -Mod)
qA−→ D(A )

RJ−→ D(R)

where qA is the quotient by quasi-isomorphisms.
In Lemma 7.4 we will show that qA is fully faithful on the image of p∗. It is well-known

that RJ is fully faithful. Thus RJ ◦ qA ◦ H0(p∗) is fully faithful. It is clearly compatible
with shifts and cones.

The fact that RJ lands in Dperf (R) is Lemma 7.3. ��
Lemma 7.3 The dg functor F sends perfect twisted A-modules to globally bounded perfect
sheaves of R-modules.

Proof By Lemma 7.2 it suffices to show that a finitely generated twisted A-module E is sent
to a globally bounded perfect dg sheaf.

We may write E = (G ⊗ A, D) where G is a free graded module over k. It suffices to
show that F(E) ∼= (G ⊗ A , D) is perfect locally.

On any U we know that D|U − 1 ⊗ dA(U ) can be represented by a MC element ξ in
A (U ) ⊗ End(G). Fix some x . For a suitably small neighbourhood we may assume that ξ is
as in in condition (∗). Thus there is a homotopy gauge equivalence g ∈ A (U ) ⊗ End(G)

between ξ and some element η in the image of R(U ) ⊗ End(G).
It follows that g gives a homotopy equivalence from (G⊗A (U ), DU ) to (G⊗A (U ), dG⊗

1+1⊗dA )where dG is some differential onG⊗R(U ). Thuswe obtain a quasi-isomorphism
from F(E)|U to the perfect dg sheaf (G ⊗ R|U , dG) of R|U -modules.

Boundedness follows immediately from finite generation of E . ��
Lemma 7.4 The natural functor qA : H0(A -Mod) → D(A ) is fully faithful when restricted
to the image of perfect twisted modules.

Proof It suffices to consider finitely generated twisted modules, so we fix (V ⊗ A, DV ),
(W ⊗ A, DW ) ∈ Twfg(A) and compute RHomD(A )(V ⊗ A ,W ⊗ A ). The derived Hom
can be computed as derived global sections of the sheaf Hom U → RHomA |U ((V ⊗
A )|U , (W ⊗ A )|U ).

We first compute locally. We write V = V ⊗ R and W = W ⊗ R. Then let U be
any good open set as in condition (*), such that (V ⊗ A )|U is homotopy equivalent to
(V |U , dV ) ⊗R |U A |U , say. Then we can compute:

RHomA |U ((V ⊗ A )|U , (W ⊗ A )|U ) � RHomR |U ((V |U , dV ), (W ⊗ A )|U )

� HomR |U ((V |U , dV ), (W ⊗ A )|U ).

As (V |U , dV ) is free it is a cofibrant dg sheaf over R and the Hom space is underived.
To compute global sections we pick a hypercover U consisting of good open sets U

satisfying condition (*). By the above the Hom presheaf on U may be written as U →
HomR |U (V ,W ) ⊗R (U ) A (U ) with a suitable differential.
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We compute Čech cohomology. Since A # is fine each (HomR (V ,W ) ⊗R A )i

has no higher cohomology. We filter the map ε : Č∗(U,HomR (V ,W ) ⊗R A ) →
Č0(U,HomR (V ,W ) ⊗R A ) by the degree of coefficients. The associated map Gr(ε)
is a quasi-isomorphism and, since the filtration is exhaustive and Hausdorff, ε is a quasi-
isomorphism, too. Putting all of this together we have:

RHomD(A )(V ⊗ A ,W ⊗ A ) � Č∗(U, RHomA (V ⊗ A ,W ⊗ A ))

� Č∗(U,HomR (V ,W ⊗ A ))

� Č∗(U,HomR (V ,W ) ⊗R A )

� Č0(U,HomR (V ,W ) ⊗R A )

� HomA -Mod(V ⊗ A ,W ⊗ A ).

��
Corollary 7.1 If A is flat over R then F is quasi-fully faithful.

Proof We use the notation from the proof of Lemma 7.4. It suffices to compare HomR (V ⊗
A ,W ⊗A ) and HomA (V ⊗A ,W ⊗A ). Locally on U the terms are quasi-isomorphic to
HomR ((V , dV )⊗A ,W ⊗A ) and HomR ((V , dV ),W ⊗A ), respectively. IfA is flat over
R they are quasi-isomorphic. The local-to-global argument remains unchanged. ��
Lemma 7.5 Let (X ,R) and A be as in Proposition 7.1. If moreover (X ,A 0) is locally
ringed, A 0 is commutative, A is flat over A0 and X has finite covering dimension then
Dperf (X ,R) lies in the image of H0(F).

Proof Consider a globally bounded perfect dg sheaf V ofR-modules on X . Then V ⊗R A 0

is a perfect dg sheaf ofA 0-modules. Let �V := (�(X ,V ⊗R A ), DV ⊗ 1+ 1⊗ dA). This
is a dg sheaf of A-modules which is not necessarily a perfect twisted module. However, it
is a dg A-module of the form Q ⊗A0 A where Q is some dg A0-module. Such objects are
called quasi-cohesive modules in [6].

By Lemma 2.3 and [39, Proposition 2.5] the associated sheaf functor will send �V to
V . We will show that �V is homotopy equivalent to a cohesive module, which by 3.2 is in
turn homotopy equivalent to a perfect twisted module �′

V . Then it is clear that F(�′
V ) is

homotopy equivalent to V .
As �V is a quasi-cohesive modules we may apply [6, Theorem 3.2.7]. It suffices to show

that �(X ,V ⊗R A 0) is a perfect dg sheaf of A0-modules to deduce that there is a cohesive
module homotopy equivalent to �V .

By assumption E := V ⊗R A 0 is a perfect dg sheaf. Thus there is a cover {Ui }i∈I of
X such that each E |Ui is quasi-isomorphic to a strictly perfect dg sheaf E ′

i . Following the
argument in in [18, Proposition III.4.1] we may actually assume I is finite as long as we only
demand E ′

i to be strictly perfect on each connected component ofUi . Of courseUi can have
infinitely many components, but since E is globally bounded we may still choose the E ′

i to
be strictly perfect. As A 0 is fine we may apply Theorem 7.1 degree by degree and see that
each E ′

i (Ui ) is a finitely generated bounded complex of projective A 0(Ui )-modules.
We use the fact that A 0 is fine to write the identity on E(X) as a finite sum

∑
i φi where

suppφi ⊂ Ui . Thus every φi : E(X) → E(X) factors (up to homotopy) through E(Ui ). By
the above E(Ui ) is strictly perfect and thus φi is algebraically nuclear (up to homotopy), cf.
the proof of Lemma 3.1. Then [43, Proposition 1.1] shows that φi is homotopy equivalent
to a map x → ∑

j fi j (x)ei j for some finite family of functions fi j : E(X) → A0(X) and
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objects ei j ∈ E(X). Thus 1 � ∑
i
∑

j fi j (x)ei j . So the identity on E(X) is algebraically

nuclear and E(X) = �(X ,V ⊗R A 0) is perfect. ��
We can now compare perfect twisted modules with perfect dg sheaves. The following two

results are needed in the next section.

Theorem 7.2 Let (X ,R) and A be as in Proposition 7.1. If moreover (X ,A 0) is locally
ringed, A 0 is commutative, A is flat over A0 and X has finite covering dimension then F
induces an equivalence H0(Twperf (A)) → DB

perf (X ,R).

Proof This is Proposition 7.1 together with Lemma 7.5, which says that the functor
H0(Twperf (A)) → DB

perf (X ,R) is essentially surjective. ��
Theorem 7.3 Let (X ,R) and A be as in Proposition 7.1. If moreover (X ,A 0) is locally
ringed, A 0 is commutative and R is the constant sheaf k then F induces an equivalence
H0(Twperf (A)) → Dperf (X , k).

Proof Again this follows by Proposition 7.1 together with essential surjectivity. By Lemma
7.6 below we may identify perfect dg sheaves with dg sheaves with locally constant coho-
mology. Then we note that any locally constant sheaf M on X is in the essential image of
F . M ⊗ A 0 is locally free and thus �(X ,A ⊗ M ) is a cohesive module by Theorem 7.1
and thus homotopy equivalent to a perfect twisted module by Proposition 3.2. Clearly M is
quasi-isomorphic to F(�(X ,A ⊗ M )).

As F is quasi-fully faithful and H0(Twperf (A)) is triangulated this shows that any subcat-
egory of Dperf (X , k) containing locally constant sheaves and closed under triangles is in the
essential image of H0(F). But any perfect complex over k is a finite extension of its coho-
mology sheaves, thus contained in the image of H0(F). We note that the global boundedness
condition on perfect dg sheaves is automatic for clc sheaves. ��
Lemma 7.6 Let X be locally contractible. Then Dlf (X , k) is equivalent to the derived cate-
gory of clc sheaves.Moreover, Dperf (X , k) is equivalent to the category of sheaveswith locally
constant cohomology sheaves whose fibres are perfect when considered as dg modules over
k.

Proof The cohomology ofM ∈ Dlf (X , k) is locally given as the cohomology of a complex
of k-modules, and thus constant.

Conversely consider a dg sheaf M and some contractible open set U on which its coho-
mology is a constant k-module. As U has no cohomology M |U is quasi-isomorphic to a
direct sum of its cohomology sheaves. Using free resolutions of the cohomology sheaves
shows that M is locally quasi-isomorphic to a free dg sheaf.

The statement for perfect dg sheaves follows similarly. ��
Corollary 7.2 In the setting of Theorems 7.2 and 7.3 we also have H0(PA) ∼= DB

perf (X ,R).

Proof There is an embedding H0(PA) → H0(Twperf (A)) so it remains to show essential
surjectivity, which follows by inspecting the proofs. ��
Remark 7.4 Corollary 7.1 shows that if we assume A is flat over R then moreover F is
quasi-fully faithful in Theorems 7.2 and 7.3 and gives a quasi-equivalence with a dg category
of perfect complexes.

In general, the equivalences of homotopy categories may be be enhanced to quasi-
equivalences of dg categories between Twperf (A) and the dg-category of fibrant cofibrant
dg R-modules which are perfect dg sheaves. As presheaves in the image of F are fibrant it
suffices to compose F with functorial cofibrant replacement.
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8 Applications

8.1 The de RhamAlgebra

In this section the ground ring k is R and X is a connected smooth manifold. We consider
perfect twisted modules over the de Rham algebra �(X). We denote by � the dg sheaf of de
Rham algebras.

Recall that we consider �(X) as a dg AM algebra and that all tensor products are under-
stood to be completed.

Using what we have done so far we can recover and generalise the main result of [7], up
to replacing infinity local systems by clc sheaves with cohomology sheaves of finite rank.

Remark 8.1 Note that one may consider cohesive modules (or equivalently perfect twisted
modules) over the de Rham algebra A as Z-graded connections. By Theorem 7.1 we may
consider a a complex of finitely generated projective �0(X)-modules E as a dg vector
bundle E , and the differential becomes a Z-graded connection E : E → E ⊗�0 � satisfying
dE+E

2 = 0. This is the natural derived analogue of a vector bundle with a flat connection.

Theorem 8.1 Let X be a connected manifold (not necessarily compact). Then the dg functor
F : Twperf (X) → R-Mod sending E to U → E ⊗�(X) �(U ) is quasi-fully faithful and
induces an equivalence H0(Twperf (X)) ∼= Dperf (X ,R).

Proof The theorem follows from Theorem 7.2 or Theorem 7.3 together with Corollary 7.1,
applied to R = R and A = �.

To check the conditions fix some point x ∈ X and some perfect dg R-module G. We
consider the smooth homotopy equivalence R ⊗ End(G) → �(U ) ⊗ End(G) given by
inclusion and evaluation at x . Then we apply Corollary 4.2(i) to verify that the de Rham
algebra satisfies (**) and the assumptions of Proposition 7.1. ��
Remark 8.2 To recover the results of [7] we use Corollary 7.2 and then recall that perfect dg
sheaves over R are clc sheaves by Lemma 7.6, which are in turn equivalent to various other
notions of infinity local systems.

In fact, under mild assumptions, the following are all quasi-equivalent dg categories:

(1) perfect clc sheaves, sometimes called homotopy locally constant sheaves, i.e. fibrant
cofibrant dg sheaves whose cohomology sheaves are locally constant of finite rank,

(2) perfect dg modules over the dg algebra of chains on the Moore loop space of X ,
(3) the dg category obtained from the cotensor action of singular simplices on X on the dg

category of perfect chain complexes, see [23],
(4) (combinatorial) infinity local systems on a simplicial set as explicitly described in terms

of a Maurer-Cartan condition in [7].

One can extend all these notions by dropping the assumption of perfectness and the quasi-
equivalences still hold.

The equivalence of (1) and (2) follows from [24] and [25], (2) and (3) are identified in
[24]. The correspondence of (3) and (4) follows from [23]; note that there is a difference of
definition between the objects considered in (3) and (4) for an arbitrary simplicial set, but
on fibrant simplicial sets the definitions agree. In [24] it is shown that all of these can be
interpreted as categorified cohomology of X , i.e. cohomology of X with coefficients in the
dg category of perfect complexes. Keeping with this viewpoint one could consider the dg
category of cohesive modules over �(X) as categorified de Rham cohomology.

123



Maurer–Cartan Moduli and Theorems of Riemann–Hilbert Type

Unravelling definitions we may also see that the category (4) for a reduced simplicial set
K agrees precisely with our definition of Tw(K ). One may deduce that the two notions agree
for arbitrary Kan complexes from Corollary 6.5 and homotopy invariance of infinity local
systems.

The main result of [7] shows that if X is a compact manifold and k = R then the dg
category of infinity local systems as in (4) is A∞-quasi-equivalent to the dg category of Z-
graded connections, using computations with iterated integrals. In Theorem 8.1 we directly
establish a quasi-equivalence of cohesive modules for the de Rham algebra with (1). There
is, incidentally, also a direct proof comparingZ-graded connections to (2), also using iterated
integrals [4].

We now extend this result to the case where we replace the manifold X by a simplicial
complex K . We write �(K ) for de Rham algebra of piecewise smooth differential forms on
K . Piecewise smooth differential forms define a sheaf on the underlying topological space
|K | of K that we also denote by �.

Theorem 8.2 Let K be a connected finite dimensional simplicial complex. Then the functor
F : Twperf (K ) → R-Mod sending E to U → E ⊗�(X) �(U ) is quasi-fully faithful and
induces an equivalence H0(Twperf (K )) ∼= Dperf (|K |,R).

Proof First we show that piecewise smooth functions (and thus piecewise smooth forms)
form a fine sheaf on K .

It is enough to construct, given two closed subsets A and B of K , a section s of �0 that is
equal to 1 on A and 0 on B. We proceed by induction on the dimension of the simplex. So
assume we have constructed the restriction of s to k-simplices and denote it by s′. Consider a
(k+1)-simplex L . We have to check that we can separate L ∩ A and L ∩ B by a function that
restricts to s′ on the boundary. As �0 is fine on L , we may choose a section t that is equal to
1 on L ∩ A and 0 on L ∩ B. Then on the boundary of L we observe that the function t − s′
is 0 on the intersections of A and B with the boundary of K . We can easily find a smooth
function t ′ on K that restricts to t − s′ and which has support disjoint from A and B. Then
we let s = t − t ′. We can clearly do this for all (k + 1)-simplices simultaneously as we did
not change s′.

Now we need to check that � satisfies condition (*) to deduce the theorem from Theorem
7.3. The other conditions on (|K |,�) are immediate. Note that we cannot use Theorem 7.2
as �(K ) is not flat over �0(K ).

Let x ∈ |K |. There is a neighbourhood U of x and a piecewise linear contracting homo-
topy H : U × [0, 1] → U . This induces a map H∗ : �(U ) = lim�∈K �(U ∩ �) →
lim�∈K �((U ∩�)×[0, 1]) ∼= �(U )⊗�[0, 1]. Here for the last equivalence we use Corol-
lary 9.3. Thus the map H∗ gives a smooth homotopy equivalence between R and �(U ).

Now we apply Theorem 4.2 to deduce condition (**) and apply Theorem 7.3. ��
Remark 8.3 Note that Theorem 8.2 would be false for the polynomial de Rham algebra that
is used for example in rational homotopy theory, cf. Example 5.2.

8.2 The Dolbeault Algebra

In this subsection k isC and X is a (not necessarily compact) complexmanifold equippedwith
its sheaf of holomorphic functionsOX . We revisit Block’s proof [6] that the derived category
of perfect dg coherent sheaves on a complex manifold X is equivalent to the homotopy
category of cohesive modules over the Dolbeault algebra (A 0∗(X), ∂̄). Note that the main
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result in the previous section draws from the methods in [6]; we have generalised the setting
and added some details regarding faithfulness of the functor from twisted modules to perfect
dg sheaves.

Thanks to Lemma 7.5 we may answer the implicit question in [6, Remark 4.1.4].

Theorem 8.3 Let X be a complex manifold. The functor F : Twperf (A
0∗(X), ∂̄) → OX -Mod

sending V ⊗ A 0∗(X) to its dg associated sheaf is quasi-fully faithful and induces an equiv-
alence H0(Twperf (A 0∗(X), ∂̄)) ∼= DB

perf (X ,OX ).

Proof The equivalence of homotopy categories follows from Theorem 7.2. Condition (*) is
exactly the content of [6, Lemma 4.1.5].

Quasi-full faithfulness follows from Corollary 7.1, which applies since smooth functions
are flat over holomorphic functions. To see this, note real analytic functions are flat over
holomorphic functions and smooth functions are flat over analytic functions, see [35, Corol-
lary V.1.2]. ��

Remark 8.4 One might try to also view this result through a suitable Schlessinger–Stasheff
theorem. There are, however, considerable conceptual obstacles to implementing this. Note
that the inclusion O(U ) → (A 0∗(U ), ∂̄) does not have a section as a function of topological
vector spaces for any open setU , see [38, Proposition 5.4]. On a closed poly-disk D there is
a section (not compatible with restrictions), but it is not clear how to construct a homotopy
equivalence between O(D) and (A 0∗(D), ∂), or even what the correct notion of homotopy
equivalence would be.

8.3 The Singular Cochain Algebra

In this subsection X is a topological space and C∗(X) the pseudo-compact dg algebra of its
normalized singular cochains. We will assume that X is connected and locally contractible,
and that k has finite homological dimension.

We will consider infinitely generated modules, so recall from Sect. 1.1 that whenever we
consider M ⊗ C∗(X) for some graded k-module M we will understand it as the completed
tensor product.

To define a functor from Tw(C∗(X)) to k-Mod we recall that the presheaf of singular
cochains with coefficients in any abelian group L , given for an open set U ⊂ X by U →
C∗
sing(U , L), has a sheafification given by U → C∗

sing(U , L)/C∗
0 (U , L). Here C∗

0 (U , L)

consists of those singular cochains on U such that there is an open cover of U on which
they vanish. See [47] for details. We write C ∗(L) = (C ∗(L), dC ) for the normalization of
C∗
sing(U , L)/C∗

0 (U , L). This is a flabby sheaf if X is semi-locally contractible and there is
a quasi-isomorphism L → C ∗(L). When L = k we drop it from the notation, and we note
that L ⊗ C ∗ ∼= C ∗(L).

Let us consider the dg functor F : Tw(X) → k-Mod defined by

F(M)(U ) = M ⊗C∗(X) C
∗(U ), (5)

where U is an open subset of X . Note that as C∗(X) is different from C ∗(X) this differs
from Definition 7.2. Then we have the following result.

Theorem 8.4 The dg functor F : Tw(X) → k-Mod defined above is quasi-fully faithful, and
induces an equivalence H0(Tw(X)) ∼= Dlf (X , k).
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The proof is somewhat long and technical and will occupy the rest of the paper. Many of the
technical complications of the proof disappear under the assumption that k is a field.

Given a simplex σ we will denote its vertices by σ0, . . . , σn and write σi0...ik for the
subsimplex spanned by σi0 , . . . , σik .

Recall that we may write objects of Tw(X) as (V ⊗ C∗(X), DV ) where V is some free
graded k-module.

Lemma 8.1 Let V be a k-module considered as a dg module concentrated in degree 0. Then
there is a bijective correspondence between C∗(X)-modules of the form (V ⊗ C∗(X), DV )

and functors from the fundamental groupoid�(X) of X toEnd(V ), where the latter is viewed
as a linear category with one object.

Proof It suffices to identify MC(C∗(X ,End(V ))) with functors from �(X) to End(V ).
Consider an element f ∈ MC(C∗(X ,End(V ))), which is by definition a 1-cochain. To define
the functor �( f ) : �(X) → End(V ) it suffices to specify it on the morphisms of �(x). For
a singular 1-simplex σ of X , viewed as a morphism of �(X), set �( f )([σ ]) = 1 + f (σ ).

Assuming f is MC we obtain, for any singular 2-simplex τ ,

0 = (d f + f 2)(τ ) = f (τ01) − f (τ02) + f (τ12) + f (τ01) f (τ12).

Wededuce that 1+ f (τ02) = (1+ f (τ01))(1+ f (τ12)). This shows that homotopic paths have
the same image and concatenation of paths is sent to multiplication, so�( f ) is a well-defined
functor.

Conversely, given a functor F : �(X) → End(V ), define a cochain�(F) by�(F)(σ ) =
F([σ ]) − 1. Given any two-simplex τ we know F(τ01) ◦ F(τ12) = F(τ02), and the same
computation as above shows �(F) is MC. The maps � and � are inverse to each other. ��

Lemma 8.1 is compatible with the correspondence between locally constant sheaves and
representations of the fundamental groupoid. With the notation of the proof, for every MC
element x ∈ MC(End(V ) ⊗C∗(X)) we have that (V ⊗C ∗, d + x) is a soft resolution of the
locally constant sheaf V associated to �(g). To check the monodromy we may observe that
if f : C∗(X) → V represents a section and σ is a 1-simplex connecting two points σ1 and
σ0 then the cocycle condition (dC + g)( f )(σ ) = 0 gives f (σ0) = �(g)([σ ])( f (σ1)).
Lemma 8.2 Let A, B be k-algebras concentrated in degree zero and x, y be MC elements
in A ⊗ C∗(X) and B ⊗ C∗(X) respectively. Let M be a (B, A)-bimodule and consider the
dg module (M ⊗ C∗(X), DM ) where DM ( f ) = d f + y f − (−1)| f | f x. Then the natural
quotient map qM : M ⊗ C∗(X) → M ⊗ C ∗(X) is a quasi-isomorphism.

Proof We proceed exactly in the same way as to establish the quasi-isomorphism C∗(X) →
C ∗(X). For the reader’s convenience we provide some details.We first observe thatC ∗(X) =
lim−→C∗

U(X) where the limit is over covers of X and C∗
U(X) are those singular cochains which

vanish on U. So it suffices to show qUM : M ⊗C∗(X) → M ⊗C∗
U(X) is a quasi-isomorphism

for every cover U.
The natural quotient map qU : C∗(X) → C∗

U(X) has a homotopy inverse P induced by
iterated barycentric subdivision of simplices. Inspection of the proof e.g. in [22, Proposi-
tion 2.21] shows that this homotopy equivalence is entirely formal, depending only on the
boundary operator d and the operator b induced by taking the cone over the barycentre of a
simplex. As long as they satisfy db+ bd = 1 one may define a subdivision chain map S and
the homotopy T from S to the identity, and use these to define the desired map P , see below.
Thus we may repeat the whole construction with twisted coefficients.
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Write X = x + 1 and Y = y + 1. We may write the differential on M ⊗ C∗(X) as

(DM f )(σ ) = Y (σ01) f (∂0σ) +
n−1∑

i=1

(−1)i f (∂iσ) + (−1)n f (∂n)X(σn−1,n).

We observe that this is just a two-sided version of the usual singular cochain complex with
local coefficients.

Let β(σ) denote the cone over the barycentre of σ . We then define bM f (σ ) as
Y (σ0b) f (βσ) where σ0b denotes the 1-simplex connecting σ0 to the barycentre of σ . A
straightforward computation, using the fact that Y (σ0b)Y (σb0) = 1 by Lemma 8.1, shows
bMDM + DMbM = 1.

We inductively define a twisted subdivision SM ( f ) = DMSMbM ( f ), with SM ( f ) = f
on a 0-cochain, and a chain homotopy TM ( f ) = (1 − DMTM )bM , with TM ( f ) = 0 on a
0-cochain. Then DMTM + TMDM = 1 − SM . For m ≥ 0 let Hm = ∑

0≤i<m SiMTM , this
is a chain homotopy from 1 to SmM . For every simplex σ there is a minimum m(σ ) such that
βm(σ )(σ ) is contained in U. We then define the map H by H( f )(σ ) = Hm(σ )( f )(σ ) and the

map PM = Sm(σ )
M + DMHm(σ ) − DMH . One can check that H is a chain homotopy between

the identity and PM ◦qUM . Moreover PM is a right inverse of qUM . This establishes the desired
homotopy equivalence. Details are as for the untwisted dual case, which may be found in
[22]. ��
Remark 8.5 Associated to a representation of the fundamental groupoid R : �(X) →
End(V ) is, according to Lemma 8.1, an MC element �(R). The corresponding twisted
module (V ⊗ C∗(X), DV ) ∼= (V ⊗ C∗(X))[�(R)] coincides with the singular complex of
X with local coefficients corresponding to the representation R. To a �(X)-bimodule, i.e. a
representation P : � × �op → End(M) one similarly associates a pair �1(P),�2(P) of
MC elements and a two-sided twisted complex (M ⊗C∗(X))[�1(P),�2(P)]; this complex was
used in the proof of Lemma 8.2. Any �(X)-bimodule determines, via the canonical functor
�(X) → �(X)×�(X)op, a left�(X)-module. It is easy to see that for a singular n-cochain
f with values in M , the map

f → ( f ) · (σn,n−1 · σn−1,n−2 · . . . · σ1,0)

determines an isomorphism from the two-sided complex with local coefficients to the one-
sided complex. This is analogous to the well-known isomorphism between the two-sided
Hochschild complex of a group and a one-sided complex, cf. [34, Chapter 6, p. 293].

The following lemma is only needed if k is not a field. In that case not all locally constant
sheaves are locally free, but the underlying graded module of a twisted module needs to be
free.

Lemma 8.3 Any locally constant sheaf V on X is the image under F of a bounded twisted
C∗(X)-module W ⊗ C∗(X).

Proof By Lemma 8.1 we know there is a C∗(X)-module (V ⊗ C∗(X), DV ) mapping to
V . The only problem is that V might not be free over k. We pick a finite free resolution
q : (W , dW ) → V . Now we need to construct a differential DW on W ⊗ C∗(X) that maps
to DV .

DV is determined by the map D1
V |V : V → V ⊗C1(X). For degree reasons all the maps

Di
V : V → V ⊗ Ci (X) for i �= 1 are zero.
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As W is free we can lift D1
V to a chain map w1 : W → W ⊗ C1(X). As D2

V = 0 we
know w2

1 = dW (w2) for some w2 : W → W [−1] ⊗ C2. We let w0 = dW . Then this is
the beginning of an inductive construction of a homomorphism

∑
i≥0 wi that will define a

differential onW ⊗C∗(X). Assume we are given wi for i ≤ k satisfying
∑n

i=0 wiwn−i = 0
for every n ≤ k. Then

∑k
i=1 wiwk+1−i is an object of End(W ) ⊗ Ck+1.

We now compute [w0,
∑k

i=1 wiwk+1−i ] to check that ∑ wiwk+1−i is a dW -cocycle. We
observe that

∑

0≤m,i, j≤k;m+i+ j=k+1

[wm, wiw j ] = 0

by symmetry. Then we split the sum as
[

w0,

k∑

i=1

wiwk+1−i

]

+
k∑

m=1

[

wm,

k+1−m∑

i=0

wiwk+1−m−i

]

= 0

But for m ≥ 1 all
∑

i wiwk+1−m−i are 0 by induction. Thus the first term in the sum is 0,
which is what we had to show.

As H−k(End((W , dW ))) = Ext−k(V , V ) = 0 we see that the cocycle
∑k

i=1 wiwk+1−i

is a boundary and we can define wk+1 such that
∑k+1

i=0 wiwk+1−i = 0. As W is finite this
process terminates. DW |W := ∑

wi defines a differential on W ⊗C∗(X) that is compatible
with DV .

Now we filter q : (W ⊗ C∗(X), DW ) → (V ⊗ C∗(X), DV ) by the singular cochain
degree. This is a complete exhaustive filtration and the associated graded map consists of
quasi-isomorphisms (W , dW ) ⊗ C p(X) � V ⊗ C p(X), thus q is a quasi-isomorphism.

In fact, q is a quasi-isomorphism if we replace X by any open subsetU and thus we have
constructed (W ⊗ C∗(X), DW ) whose image under F is quasi-isomorphic to V . ��
Lemma 8.4 For any twisted module E the sheaf F(E) is clc.

Proof Consider P = (V ⊗C∗(X), DV ) in Tw(C∗(X)) and restrict P to a contractible subset
U ⊂ X . We use the weak equivalence between U and a point and apply Corollary 6.3 to
show that P|U is weakly equivalent to a constant sheaf on U with fibre (V , dV ). ��
Lemma 8.5 The natural functor Tw(C∗(X)) → C ∗-Mod is quasi-fully faithful.

Proof Given twisted modules (V ⊗ C∗(X), DV ) and (W ⊗ C∗(X), DW ) over C∗(X) we
know that HomTw(C∗(X))(V ⊗C∗(X),W ⊗C∗(X)) is given by (Hom(V ,W )⊗C∗(X))with
a differential defined by f → DW ◦ f − (−1)| f | f ◦ DV on Hom(V ,W ).

We then compute HomC ∗(V ⊗ C ∗,W ⊗ C ∗). By Lemma 7.1 it is homotopy equivalent
to module homomorphisms HomC ∗(X)(V ⊗C ∗(X),W ⊗C ∗(X)). This space in turn can be
computed as Hom(V ,W )⊗C ∗(X) with differential induced by f → DW ◦ f − (−1)| f | f ◦
DV .

Writing M for Hom(V ,W ) we now need to show that there is a quasi-isomorphism
M ⊗C∗(X) � M ⊗C ∗(X). Note that M ⊗C∗(X) with its differential DM is not a C∗(X)-
module, and in particular not a twisted module. We may still consider its sheafification.

By Lemma 8.4 we know V ⊗ C ∗ and W ⊗ C ∗ are clc and thus so isHom(V ,W ) ⊗ C ∗.
Moreover, by Corollary 6.5 we may assume that V ⊗ C∗ and W ⊗ C∗ are reduced, so we
may assume that D0

M induces a differential on M .
We consider the natural map induced by the quotient C∗(X) → C ∗(X) and filter both

sides by the singular degree. We claim the associated spectral sequences agree on the second
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sheet, showing the map is a quasi-isomorphism as the filtration is complete exhaustive. For
the first spectral sequence we have I E pq

1 = Hq(M ⊗ C0(X)) ⊗C0(X) C
p(X), which we

may rewrite as Hq(M) ⊗ C p(X). The second sheet computes cohomology of a dg module
(Hq(M) ⊗ C∗(X), d1), which satisfies the conditions of Lemma 8.2 for A = End(V ) and
B = End(W ). For the second spectral sequence one has I I E pq

1 = Hq(M) ⊗ C p(X), and
by Lemma 8.2 the E2-terms agree.

Here the first spectral sequence computes the Ext groups between clc sheaves using the
singular cochain complex, and the second spectral sequence computes the Ext groups using
a soft resolution. ��
Recall that to any dg k-module C∗ one can associate its canonical truncation τ≤iC∗ obtained
by replacing Cn with zero for n > i and with ker(Ci → Ci+1) for n = i . Then τ≤iC∗ is
a dg submodule in C∗ and we set τ≥i+1C∗ := C∗/(τ≤iC∗). This construction works for
complexes over any abelian category, in particular one can define canonical truncations for
dg sheaves of k-modules. The following result shows that there are corresponding truncation
functors for twisted C∗(X)-modules.

Lemma 8.6 For every twisted C∗(X)-module M there is a twisted module τ≤i M and a map
τ≤i M → M such that F(τ≤i M) → F(M) is isomorphic in the derived category of dg
k-sheaves on X to the canonical map τ≤i F(M) → F(M). Similarly there is twisted module
τ≥i M and a map M → τ≥i M such that F(M) → F(τ≥i M) is isomorphic in the derived
category of dg k-sheaves on X to the canonical map F(M) → τ≥i F(M).

Proof We will prove the statement for the truncation τ≤i ; the other claim for τ≥i will follow
by taking τ≥i M to be the cone of the map τ≥i−1M → M . Let (V ⊗C∗(X), DV ) be a twisted
C∗(X)-module that will be assumed to be reduced (or we replace it by a reduced one by
Corollary 6.5). Note that DV restricts to (τ≤i (V )⊗[C∗(X)]) and so (τ≤i (V )⊗[C∗(X)], DV )

is well-defined as a dgC∗(X)-module. Thismay not be a twistedC∗(X)-module since τ≤i (V )

may not be free over k.
We pick a k-free resolution (W , dW ) of τ≤i (N ) and, arguing as in the proof of Lemma

8.3, construct a differential DW on W ⊗ C∗(X) together with a filtered quasi-isomorphism
(W ⊗ C∗(X), DW ) → (τ≤i (V ) ⊗ [C∗(X)], DV ).

Let us set τ≤i (V⊗C∗(X), DV ) := (W⊗C∗(X), DW ).Weneed to show that the truncation
so obtained agrees with the truncation of dg sheaves upon applying the functor F . This is
a local statement, and so it suffices to prove it with X replaced by a small contractible
neighbourhood U ⊂ X . This is, however, obvious since the twisted C∗(U )-module (W ⊗
C∗(U ), DW ) is homotopy equivalent to the (untwisted) tensor product of complexes (W , dW )

and C∗(U ) by Corollary 6.3. ��
Proof of Theorem 8.4 WeuseLemma7.6 to identify Dlf (X , k)with cohomologically constant
sheaves. Then by Lemma 8.4 the image of F consists of locally free dg sheaves. Next we
show that the functor H0(Tw(X)) → Dlf (X , k) induced by F is fully faithful.

To this end note that this functor can be represented as the following composition:

H0(Tw(X)) → H0(C ∗-Mod) → Dlf (X ,C ∗) → Dlf (X , k)

By Lemma 8.5 the first functor is fully faithful. To show the second functor is fully faithful
on the image of H0(Tw(X))we claim Hom(V ⊗C ∗,W ⊗C ∗) � RHom(V ⊗C ∗,W ⊗C ∗).
We deduce this claim by following verbatim the proof of Lemma 7.4. By Corollary 6.5 (1)
we have a homotopy equivalence (V ⊗C∗(U ), DW ) � (V , dV )⊗C∗(U ) on any contractible
set U . This takes the place of condition (*). We allow for unbounded dg sheaves, but this
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does not affect the proof as the filtration by degree of Hom(V ,W ) ⊗ C ∗ is still exhaustive
and Hausdorff. Note that the dg k-module (V , dV ) is cofibrant as it is free in each degree and
k has finite homological dimension. Hence the associated sheaf V ⊗ C ∗ is also cofibrant.

Since k � C ∗ we have D(X ,C ∗) ∼= D(X , k) and H0(Tw(X)) → Dl f (X , k) is fully
faithful.

Moreover, as C ∗ is flat over k we may refine the argument and show, as in the proof of
Corollary 7.1, that the functor F : Tw(X) → k-Mod is quasi-fully faithful.

Now we determine the quasi-essential image of F . The subcategory of Dlf (X , k) given
by bounded dg sheaves is the smallest triangulated subcategory inside the derived category
of dg k-module sheaves on X containing all locally constant sheaves. This follows since any
bounded element in Dlf (X , k) is an iterated extension of its cohomology sheaves. The image
of F contains all locally constant sheaves by Lemma 8.3. Thus, since F is compatible with
cones, the quasi-essential image of F contains all bounded clc sheaves.

Observe that every bounded below clc sheaf M in Dlf (k) is a homotopy colimit (in the
sense of [8]) of its truncations, hocolimiτ≤iM � M . By Lemma 8.3 wemay lift the diagram
τ≤iM to a diagram {Pi } in H0(Tw(X)). As H0(Tw(X)) has arbitrary direct sums we may
define P = hocolimi Pi and there is a natural map M → F(P) which is an isomorphism
on cohomology (as we can check on truncations using τ≤i F(P) � F(τ≤i (P)) � τ≤iM by
Lemma 8.6). Thus, all bounded below clc sheaves are in the quasi-essential image of F .

Finally we write a bounded above clc sheaf M as a limit of bounded dg sheaves; M ∼=
lim τ≥iM . We will explicitly construct a twisted C∗(X)-module Q with a map F(Q) → M
such that τ≥i F(Q) � τ≥iM , showing F(Q) � M .

To find Q we proceed as follows. We fix some Q0 = Q′
0 ⊗C∗(X) mapping to τ≥0M and

then construct twistedmodules Qi = Q′
i⊗C∗(X), i < 0, inductively.Wemaywrite τ≥iM as

an extension of τ≥i+1M by Hi (M )[−i]. Using Lemma 8.3 we obtainWi ⊗C∗(X)mapping
to Hi (M )[−i] under F where Wi is a finite complex of free k-modules; moreover, because
k is of finite homological dimension gd(k), the length of Wi is bounded independently of i .

As F is quasi-full we may lift the extension map τ≥i+1M → Hi (M )[−i + 1] to ηi :
Qi+1 → Wi ⊗ C∗(X)[1]. Now the cone on ηi is defined as the twisted module of the
form Q′

i ⊗ C∗(X) where Q′
i = Q′

i+1 ⊕ Wi [1] and the differential is given by DQi =
(DQi+1 , DW + ηi ), see Sect. 3. Thus we let Qi be the cone of the map ηi . By construction
there is a quasi-isomorphism F(Qi ) � τ≥iM .

By construction Q′
i is eventually constant, to be precise the degree m part (Q′

i )
m is

independent of i if i < m − gd(k)− 1. We define a graded k-module Q′ by (Q′)m := (Q′
i )
m

for sufficiently small i . Similarly, the differential DQi restricted to Q′
i is eventually constant

and we define DQ on (Q′)m to be DQi (for sufficiently small i) and extend by the Leibniz
rule.

Then Q = (Q′ ⊗ C∗(X), DQ) is the desired twisted module. There is a natural map
Q → Qi and the maps F(Qi ) → τ≥iM induce a map F(Q) → M . We need to check
that τ≥i F(Q) � F(τ≥i Q) is equivalent to τ≥iM . By construction τ≥i+1Q′ = Q′

i+1 ⊕
τ≥i+1Wi [1] ⊕ τ≥i+1Wi−1[2] ⊕ . . . . All summands but the first are acyclic for D0, thus after
applying F we can show that F(τ≥i Q) � τ≥iM .

This shows that that every bounded above clc sheaf is in the quasi-essential image of F .
As every dg sheafF is an extension of a bounded above sheaf τ≥0F by a bounded below

dg sheaf τ≤0F , it follows that F is quasi-essentially surjective. ��
Corollary 8.1 With X as above F induces an equivalence H0(Twperf (X)) → Dperf (X , k).

Proof We follow the proof of Theorem 8.4. In particular this means we define the functor F
on Twfg(X), the dg category of finitely generated twisted modules, and obtain an embedding
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H0(Twfg(X)) → Dperf (X , k). As the right hand side is idempotent complete this extends to
an embedding H0(Twperf (X)) → Dperf (X , k).

Essential surjectivity needs a little extra care. Considering any perfect k-module as a finite
extension of its cohomology sheaves it suffices to find a preimage for a locally constant sheaf
M .

The fiber of M may not be free, but by Lemma 7.6 it is quasi-isomorphic to a strictly
perfect dg module P over k. Next we find a dg module Q over k such that P ⊕ Q is free and
of finite rank in each degree, and Q has cohomology concentrated in degree 0. To do this let
us write P as Pn → . . . → P0. We pick for each Pi a k-module Ri such that Pi ⊕ Ri is free
of finite rank. Then let Qi = Ri ⊕⊕n

j=i+1 R
j ⊕ P j and define differentials inductively. The

map dn : Qn → Qn−1 is just the inclusion of Rn , and di is defined as the natural inclusion
into Qi−1 of the cokernel of di−1. With this definition the cohomology of Q is a k-module
N concentrated in degree 0.

We now consider the locally constant sheafM ′ = M ⊕ N . By construction its fiber has a
finite free resolution of finite rank.We use Lemma 8.3 to liftM ′ to a finitely generated twisted
module, using the fact that we may choose W in the proof of Lemma 8.3 to be of finite rank.
But M is a summand of M ′. Thus, as Twperf (X) is equivalent to an idempotent complete
subcategory of Dperf (X , k), it follows that M is in the essential image of Twperf (X). ��
Remark 8.6 For an early incarnation of MC elements on singular cochains see [11]. There
twisting cochains are used to express singular chains on a fibre space in terms of singular
chains on base andfibre.Onemay interpret this as higherMCelements onC∗(X) representing
certain infinity local systems.

There is a version of Theorem 8.4 for simplicial sets.

Corollary 8.2 Let X be a connected Kan complex. Then there is a quasi-fully faithful functor
from Tw(X) to the category of dg sheaves of k-modules on |X |, the geometric realization of
X, which induces an equivalence H0(Tw(X)) ∼= Dlf (|X |).
Proof The singular simplicial set of |X |, is weakly equivalent to X . Since both are Kan
simplicial sets, by Corollary 6.2 their categories of twisted modules are quasi-equivalent.
Now the result follows from 8.4 since |X | is locally contractible. ��
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Appendix: Nuclear Spaces

In this Appendix we collect some facts about Grothendieck’s nuclear spaces used in the main
text, for the reader’s convenience. Our main sources are [27] and [50]. We will consider
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complete locally convex Hausdorff topological vector spaces over R which will be referred
to below as simply ‘vector spaces’. If we have a linear continuous injection U ↪→ V that is
a homeomorphism of U on its image, we will refer to U as a subspace of V .

Definition 9.1 Let U and V be vector spaces. Their projective tensor product U ⊗π V is
a vector space having a universal property with respect to continuous bilinear maps out of
U×V , i.e. for any vector spaceW there is a natural isomorphismbetween the set of continuous
bilinear maps U ⊗π V → W and the space of bilinear continuous maps U × V → W .

It is clear that the above definesU ⊗π V up to a unique isomorphism, and there is an explicit
construction (that we will not need) showing that the vector space with the required universal
property exists. There are other natural notions of a tensor product of vector spaces, of which
the most important is that of an injective tensor product denoted by U ⊗ε V , [27, Chapter
16]. There is a canonical continuous map U ⊗π V → U ⊗ε V .

Definition 9.2 A vector space U is called nuclear if for any vector space V the canonical
map U ⊗π V → U ⊗ε V is a topological isomorphism.

From now on we will refer to projective tensor products as simply tensor products and omit
the corresponding subscript.

The category of nuclear spaces and continuous linearmaps is closedwith respect to various
natural operations.

Theorem 9.1 The collection of nuclear spaces is stable with respect to forming arbitrary
direct products, tensor products and passage to subspaces.

Proof See [27, Corollary 21.2.3]. ��
Corollary 9.1 The category of nuclear spaces contains arbitrary limits.

Proof This follows immediately from Theorem 9.1 since any limit can be constructed using
direct products and passing to subspaces. ��
It turns out that the operation of tensor product with a nuclear space commutes with arbitrary
limits:

Theorem 9.2 Let Uα be a diagram of vector spaces and continuous linear maps and V be a
nuclear space. Then there is a natural topological isomorphism

(lim←−αUα) ⊗ V ∼= lim←−α(Uα ⊗ V ).

Proof It suffices to show that tensor products commutes with direct products and passing to
kernels. This follows from [27, Proposition 16.2.5 and Theorem 16.3.1], taking into account
that injective and projective tensor products with a nuclear space are isomorphic. ��

A lot of vector spaces one encounters in analysis are nuclear. In particular:

Theorem 9.3 Let W be an open subset of some topological simplex �n. Then the algebra
C∞(W ) of smooth functions on W is nuclear.

Proof Let I nε ⊂ R
n denote the n-dimensional cube in R

n with side of length ε > 0. Using
Seeley’s extension theorem,more specifically its version for domainswith corners [32, Propo-
sition 24.10], we conclude that the restriction map C∞(Rn) → C∞(I nε ) has a continuous
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splitting and, since C∞(Rn) is nuclear, [50, Corollary to Theorem 51.5], its retract C∞(I nε )

is likewise nuclear. Moreover, clearly the algebra of smooth functions on any closed subset
inRn diffeomorphic to I nε also forms a nuclear space as it is isomorphic to C∞(I nε ). We then
deduce nuclearity ofW by representing it as a union of a collection of subsets diffeomorphic
to I nε and using Theorem 9.2. ��

Given a smooth manifold X we consider its de Rham algebra �(X) and for a simplicial
complex K we consider its piecewise smooth de Rham algebra �(K ). We also consider the
piecewise smooth de Rham algebra on any open subset U of the underlying space |K | of K .
Theorem 9.3 implies the following.

Corollary 9.2 If W be an open subset of Rn or of some standard simplex �n then the dg
algebra �(W ) is nuclear. ��
Theorem 9.4 Let U ,W be open subsets of topological simplices�n and�m respectively for
some n,m > 0. Then there is a natural topological isomorphism �(U × W ) ∼= �(U ) ⊗
�(W ).

Proof It suffices to prove the isomorphismC∞(U ×W ) ∼= C∞(U )⊗C∞(W ). Arguing as in
the proof of Theorem 9.3, we representU and V as unions of subsets diffeomorphic to cubes
I nε and Im

ε′ ; it will be sufficient to prove the desired isomorphism for U = C∞(I nε ), V =
C∞(Im

ε′ ). Since C∞(I nε ) and C∞(Im
ε′ ) are retracts of C∞(Rn) and C∞(Rm) respectively,

the natural map C∞(I nε ) ⊗ C∞(Im
ε′ ) → C∞(I nε × Im

ε′ ) is a retract of the map C∞(Rn) ⊗
C∞(Rm) → C∞(Rn ×R

m) and so is an isomorphism since the latter map is, [50, Theorem
51.6]. ��
Corollary 9.3 Let U and W be open subsets of the underlying spaces of simplicial complexes
K and L. Then �(U × W ) ∼= �(U ) ⊗ �(W ).

Proof By definition �(U ) = lim�∈K �(U ∩ |�|). As the tensor product commutes past the
limits by Theorems 9.3 and 9.2 it suffices to check the result for open subsets of the standard
simplex, which is the content of Theorem 9.4. ��
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