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a b s t r a c t 

Optimal risk sharing arrangements have been substantially studied in the literature, from the aspects of 

generalizing objective functions, incorporating more business constraints, and investigating different op- 

timality criteria. This paper proposes an insurance model with multiple risk environments. We study the 

case where the two agents are endowed with the Value-at-Risk or the Tail Value-at-Risk, or when both 

agents are risk-neutral but have heterogeneous beliefs regarding the underlying probability distribution. 

We show that layer-type indemnities, within each risk environment, are Pareto optimal, which may be 

environment-specific. From Pareto optimality, we get that the premium can be chosen in a given interval, 

and we propose to allocate the gains from risk sharing equally between the buyer and seller. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

This paper studies an optimal (re)insurance contract design 

roblem, where there are different indemnity environments. In the 

nsurance market, indemnity contracts are often allowed to depend 

n an exogenous realization of mutually exclusive possible events, 

r the so-called triggers; such triggers are not necessarily a func- 

ion of the underlying loss. Examples include multiple-peril and 

ndex-linked insurances; they are also common in the market for 

atastrophe (CAT) bonds and other risk-linked securities (see, e.g., 

ummins, 2008 ). In this paper, we focus on insurance contracts, 

hile our model applies also to an optimal reinsurance setting. 

Multiple-peril insurance contract bundles together different 

overages arising from various mutually exclusive perils. For in- 

tance, a homeowner insurance policy package may include cov- 

rages due to fire and smoke, theft, lightning strikes, as well as 

indstorms and hail. Another instance would be the federally sub- 

idized multiple-peril crop insurance (MPCI) program operated by 

he Federal Crop Insurance Corporation in the United States (see, 

.g., Smith & Baquet, 1996 ). Index-linked insurance contract usu- 

lly writes on a single-peril, with various coverage levels among 

ifferent realized values of certain index, such as the Catastro- 

he Loss Index (CLI); such a contract is expected to be increas- 
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ngly more prevalent in the currently pressing climate change. Both 

ultiple-peril and index-linked insurance contracts have a charac- 

eristic of mutually exclusive and verifiable triggers; after an inde- 

endent third party confirms that the one and only one trigger is 

et, insurance company provides an indemnity coverage to the in- 

ured for that particular trigger. Multiple indemnity environments 

re also observed in cyber insurance policies with exclusions, such 

s, criminal activity, disregard for computer security, act of terror- 

sm or war, and so on. 

There have been only a few studies where the optimal indem- 

ity is not a function only of the underlying loss, but can also 

epend on other exogenous risk factors. For instance, Mahul & 

right (2003) show that indemnity functions depend not only on 

he underlying loss, but also on other factors such as the individual 

ield and/or price for crop revenues. Moreover, Dana & Scarsini 

2007) and Chi & Wei (2020) show that optimal indemnities can 

epend on exogenous background risk. In all three papers, it is 

hus shown that exogenous events may influence the optimality of 

ndemnity contracts. It requires us to study conditional probability 

istributions of losses, which is studied empirically by Ker & 

oble (2003) for crop insurance. Albrecher & Cani (2019) show 

hat if the Value-at-Risk (VaR) is used for holding capital of the 

nsurer, then randomized reinsurance contracts can be optimal 

y “creating” a random event that triggers a non-coverage of the 

ndemnity. In such contracts, there is a trigger that leads to no 

overage for the insurer. For instance, if the reinsurer faces default 

isk, then limited liability enables the reinsurer not to fully pay 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

ring with multiple indemnity environments, European Journal of 
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he reinsurance indemnity. In this manner, there is for the insurer 

n exogenous event that yields an adjustment in the recovery of 

he indemnity. This exogenous event is allowed to be correlated 

ith the underlying loss that the insurer seeks reinsurance for. In 

his paper, we propose a very general setting where there is an 

xogenous event that can trigger different indemnity contracts. 

Originally, optimal (re)insurance contract theory focuses on the 

nilateral maximization of the utility of the insurer, where there is 

 given premium principle for (re)insurance ( Arrow, 1963; Borch, 

960a ). With preferences based on risk measures, this is more re- 

ently studied by Balbás, Balbás, & Heras (2011) and Tan, Wei, Wei, 

 Zhuang (2020) . A bilateral bargaining approach is proposed by 

aviv (1979) and Aase (2009) for the case where both the insurer 

nd the reinsurer are endowed with expected utilities. This is ex- 

ended by Boonen, Tan, & Zhuang (2016) to a class of comonotonic 

dditive risk measures. In such a setting, Pareto optimal indemni- 

ies have been characterized by Asimit & Boonen (2018) as the con- 

ract profile that minimizes the sum of risk measures. We extend 

his approach in this paper to the case with multiple indemnity 

nvironments. Thus, our focus in this paper is on Pareto optimal- 

ty, which implies that there is no profile of contracts that is better 

or both agents, and strictly better for at least one agent. 

The primary risk holder (buyer) approaches an insurance seller, 

nd bargains for such an optimal contract in this bilateral setting. 

he two agents seek to find an acceptable profile of indemnity con- 

racts and the corresponding premium paid by the buyer to the 

eller. Moreover, we allow the insurer to include a compensation 

a bonus) in the case that the trigger for insurance coverage is not 

et, and thus no indemnities need to be covered. In particular, we 

how optimal indemnity profiles that yield Pareto optimality. The 

orresponding premiums are usually non-uniquely determined by 

areto optimality alone. 

Pareto optimality leads to a rather specific structure on the pro- 

le of indemnity contracts, while the corresponding premium can 

e chosen in a flexible manner. In particular, like Asimit & Boonen 

2018) , optimal indemnities follow from a sum-minimization. Here, 

isk is perceived by the agents with the indemnity environment 

eing also unknown. We first show Pareto optimal insurance 

ndemnity contracts in the case that the agents use the VaR or 

he Tail Value-at-Risk (TVaR), or the agents are risk-neutral but 

ave heterogeneous beliefs regarding the underlying probability 

istribution. In the case that the VaR is used by both agents, then 

areto optimality leads stop-loss or dual stop-loss type indem- 

ities, within each risk environment. On the other hand, when 

oth agents use TVaR or when both agents are risk-neutral and 

ave heterogeneous beliefs, then layer-type indemnities, within 

ach environment, are optimal. 1 The corresponding parameters 

ay depend on the specific indemnity environment. In particular, 

he effect on these optimal indemnity profiles by environment 

robabilities are rigorously investigated. As a second step, the pre- 

ium can be chosen in a flexible manner, and thus we allow for 

eciprocal reinsurance contracts as in Borch (1960b) ; in particular, 

e propose to allocate the gains from risk sharing equally between 

he buyer and seller, which coincides with the Nash-bargaining 

olution. 2 

This paper is set out as follows. Section 2 defines the Pareto 

ptimality problem with multiple indemnity environments. Pareto 

ptimal solutions of this problem in the case that the two agents 

re endowed with VaR or TVaR are shown in Sections 3 and 4 , re-

pectively. A constructive example is provided in Section 5 . In the 
1 In absence of multiple indemnity environments, optimal risk sharing with het- 

rogeneous beliefs and risk-neutral insurance agents have been studied by Boonen 

 Ghossoub (2019) . 
2 The use of game-theoretic arguments to understand insurance transactions is 

lso proposed by Dutang, Albrecher, & Loisel (2013) . 

a  

I

t

t

2 
ase that the two agents are risk-neutral but are endowed with 

eterogeneous beliefs regarding the underlying probability distri- 

ution, Pareto optimal insurance contracts are studied in Section 6 . 

ection 7 discusses the selection of an insurance premium. Finally, 

ection 8 concludes. The proofs are delegated to the appendices. 

. Problem formulation 

Let (�, F ) be a measurable space, and let P be a probability

easure on (�, F ) . We consider a one-period economy, where a 

rimary risk holder is endowed with a loss X, which is payable at a 

xed future reference time T > 0 . The risk X is defined on (�, F ) ,

nd we assume that the loss X is a non-negative random variable 

ith 0 < E 

P [ X] < ∞ . 

The primary risk holder, or buyer, intends to share the loss at 

ime T with another party, or seller, and accepts to pay a premium 

t time 0. Both parties agree to achieve an optimality in terms of 

heir risk positions by choosing appropriate amounts of indemnity 

nd premium at the present (time 0). However, unlike classical risk 

haring problems, this paper considers a setting such that the in- 

emnity level depends upon an external factor, which cannot be 

nfluenced by both parties, yet can be precisely observed and mea- 

ured at time T . We will provide a practical example in Section 5 . 

To this end, let Y, defined on the same measurable space 

�, F ) , be the trigger to characterize the exogenous environment 

uch that the sample space � is partitioned into finitely many, 

ore precisely m + 1 , disjoint subsets, which are given by { ω ∈ � :

 (ω) = k } , for k = 0 , 1 , . . . , m . Moreover, for any ω ∈ �, if Y (ω) =
 , then X(ω) = 0 . For each remaining environment k = 1 , . . . , m,

he loss (X| Y = k ) is risky, in the sense that P (X > 0 | Y = k ) > 0 .

hus, we explicitly assume that the random variables X and Y are 

ot independent. 

If the realized environment is non-risky, i.e. given that Y = 0 , 

ince the loss becomes void, no indemnity transfer is required. We 

ssume that, instead, a bonus b ∈ [0 , b ] (also called an experience 

efund in the insurance industry) will then be paid by the seller 

o the buyer at time T , where b ≥ 0 . 3 Moreover, if the realized

nvironment is risky, i.e. given that Y = k, for some k = 1 , . . . , m,

he buyer will transfer I k (X ) to the seller at time T , where I k (·)
s called an indemnity function. Note that both parties have to 

gree at time 0 on a bonus b and a profile of indemnity functions 

I 1 , . . . , I m 

) since the exogenous environment is not realized until 

ime T . Moreover, the buyer also agrees to pay the seller a pre- 

ium π ≥ 0 at time 0. We refer to a tuple (b, (I 1 , . . . , I m 

) , π) as a

ontract . 

Any admissible profile of indemnity functions is composed of 

isk transfers that are comonotonic within the risky environment 

 : 

I := { ( I 1 , . . . , I m 

) : 0 ≤ I k ≤ Id , 

I k and R k are non-decreasing for all k = 1 , . . . , m } , 
here Id denotes the identity function and R k , k = 1 , . . . , m, is

alled a retention function, which is defined by R k : = Id − I k . For 

ach k = 1 , . . . , m, the first condition is motivated by the fact that

he indemnity loss I k (X ) paid by the seller is at least non-negative 

nd is at most the loss X; the second condition precludes ex post 

oral hazard from both parties, as suggested by Huberman, May- 

rs, & Smith (1983) . Note that the realization of Y at time T is not

ffected by decisions of any of the two parties at time 0. For each 

dmissible bonus b ∈ [0 , b ] and indemnity profile I := (I 1 , . . . , I m 

) ∈
, the realized risk positions of the buyer and seller are respec- 
3 In practice, b is usually a fraction of the premium, which is a partial return of 

he premium to the insurance buyer in the case that there are no losses at all in 

he industry. In this paper we model the bonus as a decision variable. 
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4 Asimit & Boonen (2018) assume law invariance of the preferences; that is, the 

preferences are only functions of distributions of random variables. But this as- 

sumption is not needed in the proof of the result herein. Also note that Asimit 

& Boonen (2018) do not assume convexity of the preferences. Under convexity of 

the preferences, it is well-known that the Pareto optimal frontier can be obtained 

as solutions of the minimization of all weighted sums of risk measures, where the 

weights are positive (see Miettinen, 1999 ). If the preferences are translation invari- 

ant, then Asimit & Boonen (2018) show that it is sufficient to set the weights equal 
ively given by: 

 (b, R ; X,Y ) := −b × I { Y =0 } + 

m ∑ 

k =1 

R k ( X ) I { Y = k } , (2.1) 

nd 

 (b, I ; X, Y ) := b × I { Y =0 } + 

m ∑ 

k =1 

I k ( X ) I { Y = k } , (2.2) 

here R := (R 1 , . . . , R m 

) , and I A is an indicator function of an event

 . Notice that, due to the exogenous environment, by definition, 

he risk positions of the buyer and seller are not necessarily mono- 

onic functions with respect to the underlying loss X . 

Let ρ1 and ρ2 be two risk measures for the buyer and seller 

espectively to order their risk preferences at time 0. Together with 

he agreed premium payment, the post-transfer risk positions of 

he buyer and seller are respectively given by ρ1 ( B (b, R ; X, Y ) + π)

nd ρ2 ( S (b, I ; X, Y ) − π) . Unless otherwise specified, the following 

ssumption holds throughout this paper. 

ssumption 2.1. The risk measures ρ1 and ρ2 are: 

• translational invariant: for any m ∈ R and Z ∈ X , ρi (Z + m ) =
ρi (Z) + m ; 

• monotonic: for any Z 1 , Z 2 ∈ X with Z 1 ≤ Z 2 , P -a.s., ρi 

(
Z 1 

)
≤

ρi 

(
Z 2 

)
; 

• such that ρi (0) = 0 and ρi (X ) < ∞ , 

here X is the linear space of finite random variables. 

It is well-known that the VaR and the TVaR under the probabil- 

ty measure P satisfy the conditions in Assumption 2.1 . These two 

isk measures will be recalled and discussed in Sections 3 and 4 . 

To ensure the risk sharing being viable, both buyer and seller 

xpect that it does not create any extra risk at time 0. In other 

ords, the following individual rationality constraints have to be 

eld: 

1 ( B (b, R ; X,Y ) + π) ≤ ρ1 ( X ) and ρ2 ( S (b, I ; X, Y ) − π) ≤ ρ2 ( 0 ) = 0 . 

ogether with translation invariance, these can be rewritten as ad- 

itional premium constraints: 

2 ( S (b, I ; X, Y ) ) ≤ π ≤ ρ1 ( X ) − ρ1 ( B (b, R ; X, Y ) ) . (2.3) 

herefore, the joint admissible set A of contracts contains any 

onus b ∈ [0 , b ] , indemnity profile (I 1 , . . . , I m 

) ∈ I, and premium

≥ 0 such that (2.3) holds. Notice that the joint admissible set 

 is non-empty; in particular, no risk sharing is feasible: b = 0 , 

 1 (X ) = · · · = I m 

(X ) = 0 , and π = 0 . 

At time 0, both parties negotiate to choose the design of bonus, 

ndemnity profiles, and premium payments in the admissible set 

 . We require that such a contract is Pareto optimal, which implies 

t is impossible to find another contract that reduces the post- 

ransfer risk position of either of them, without increasing the risk 

osition of counterparty. Pareto optimality is formally defined as 

ollows. 

efinition 2.1. A bonus, indemnity profile, and premium payment 

uple (b ∗, (I ∗
1 
, . . . , I ∗m 

) , π ∗) ∈ [0 , b ] × I × [0 , ∞ ) is called Pareto op-

imal in A , if (b ∗, (I ∗1 , . . . , I 
∗
m 

) , π ∗) ∈ A , and there is no admissible

uple (b, (I 1 , . . . , I m 

) , π) ∈ A such that 

ρ1 ( B (b, R ; X, Y ) + π) ≤ ρ1 

(
B (b ∗, R 

∗; X, Y ) + π ∗);
ρ2 ( S (b, I ; X, Y ) − π) ≤ ρ2 

(
S (b ∗, I ∗; X, Y ) − π ∗), 

ith at least one of the two inequalities being strict. 

It holds that (b ∗, (I ∗
1 
, . . . , I ∗m 

) , π ∗) ∈ A is Pareto optimal if and

nly if (b ∗, (I ∗1 , . . . , I 
∗
m 

) , π ∗) ∈ S G , where 

 G := argmin ( b, ( I 1 , ... ,I m ) ,π ) ∈A ρ1 ( B (b, R ; X, Y )) + ρ2 ( S (b, I ; X, Y )) , 

(2.4) 

t

3 
hich follows by similar arguments as in Theorem 3.1 of Asimit & 

oonen (2018) . 4 Since the objective function of the minimization 

roblem in (2.4) does not depend on premium π, this problem 

an be solved sequentially by: 

Step 1: solving min 

b∈ [0 , b ] , (I 1 , ... ,I m ) ∈I ρ1 

(
B (b, R ; X, Y ) 

)
+ 

ρ2 

(
S (b, I ; X, Y ) 

)
; 

Step 2: for each optimal b ∗ ∈ [0 , b ] and (I ∗1 , . . . , I 
∗
m 

) ∈ I from Step

1, choose π ∗ ≥ 0 such that (2.3) holds, i.e., 

ρ2 

(
S (b ∗, I ∗; X, Y ) 

)
≤ π ∗ ≤ ρ1 ( X ) − ρ1 

(
B (b ∗, R 

∗; X, Y ) 
)
. 

Notice that in Step 1, we omit the constraint: 

2 ( S (b, I ; X, Y ) ) ≤ ρ1 ( X ) − ρ1 ( B (b, R ; X, Y ) ) . 

his is because an optimizer of the minimization problem in Step 

 must satisfy this constraint. Indeed, with the optimal b ∗ ∈ [0 , b ]

nd (I ∗1 , . . . , I 
∗
m 

) ∈ I, it holds 

ρ1 

(
B (b ∗, R 

∗; X, Y ) 
)

+ ρ2 

(
S (b ∗, I ∗; X, Y ) 

)
≤ ρ1 

(
B (0 , X ; X, Y ) 

)
+ ρ2 

(
S (0 , 0 ; X, Y ) 

)
= ρ1 ( X ) , 

here R = X and I = 0 is defined as R k = Id and I k = 0 for all

 = 1 , . . . , m, respectively. The main objective of this paper is Step

: the structure of the indemnities in Pareto optimal contracts. 

ection 7 will discuss Step 2: selecting the premium. 

One might conjecture that any optimizer of the minimization 

roblem in Step 1 satisfies I ∗
1 

= · · · = I ∗m 

. If this is the case, then the

areto optimal risk sharing exercise with multiple indemnity envi- 

onments proposed in this paper reduces to the classical problem 

ith a single indemnity environment, with a simple extension of 

onus inclusion. We will however demonstrate that for the cases of 

aR and TVaR this conjecture is not true. We provide counterex- 

mples in Sections 3.1 and 5 , in which we show that there ex- 

sts an optimizer of the minimization problem in Step 1 such that 

 

∗
i 

� = I ∗
j 

for some i � = j. Another interesting question is under what

ondition should all Pareto optimal contracts be different among 

isky environments; this will be addressed in Section 6 . 

emark 2.1. In the recent literature on optimal risk sharing in in- 

urance, there have been roughly two approaches towards Pareto 

ptimality. First, Cai, Liu, & Wang (2017) ; Jiang, Hong, & Ren (2018) ,

nd Lo & Tang (2019) assume that the premium follows from a 

remium principle, i.e. a given function of the insurance indem- 

ity. Then, the only variable that is determined by Pareto optimal 

isk sharing is the indemnity function. Second, Asimit & Boonen 

2018) , as well as Asimit, Cheung, Chong, & Hu (2020) , study Pareto 

ptimal risk sharing in which the contract is given by the pair 

I, π) : an indemnity function and a corresponding premium. The 

remium is then part of the contract that is determined by Pareto 

ptimal risk sharing. This paper follows the second approach. 

. Pareto optimality with VaR preferences 

In this section, assume that the risk preferences ρ1 and ρ2 of 

he buyer and seller are both characterized by the VaR under the 

robability measure P . The VaR under the probability measure P is 
o 1 for both agents. 
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iven by 

aR γ (Z) := inf { z ∈ R : P (Z > z) ≤ γ } , where γ ∈ (0 , 1) . 

n particular, practical values of γ are close to 0 in banking and 

nsurance regulation. 

Let α ∈ (0 , 1) and β ∈ (0 , 1) be the respective risk tolerance

evels of the buyer and seller. The minimization problem solving all 

areto optimal bonus and profiles of indemnity functions is given 

y: 

min 

b∈ [ 0 , b ] ;( I 1 , ... ,I m ) ∈I 
VaR α

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

R k ( X ) I { Y = k } 

) 

+ VaR β

( 

b × I { Y =0 } + 

m ∑ 

k =1 

I k ( X ) I { Y = k } 

) 

. (3.1) 

The risk positions of buyer and seller both involve mutually ex- 

lusive loss components herein. Hence, with the mutual exclusivity, 

e apply a modification argument (see, e.g., Chi, 2012 and Cheung, 

hong, & Yam, 2015a; Cheung, Chong, & Yam, 2015b ) to identify 

 sub-class of optimal solutions for the minimization problem in 

3.1) , which has the least finite number of parameters to be de- 

ermined. However, the modification arguments herein are largely 

xtended from the canonical one, which combines with the defini- 

ion of VaR, as well as balancing between retained and indemnity 

osses when a modification is carried out. 

To this end, denote the objective function in the minimization 

roblem (3.1) as F . Define a subset of the admissible indemnity 

rofiles as 

I 1 := { ( I 1 , . . . , I m 

) ∈ I : for each k = 1 , . . . , m, 

there exists a d k ∈ [ 0 , ess sup ( X ) ] 

such that I k ( x ) = ( x − d k ) + or I k ( x ) = x − ( x − d k ) + } , 
here ess sup (X ) is the essential supremum of random variable X

nder probability measure P , and (x ) + = max { x, 0 } . For the sake of

 clear exposition of our results, we assume that ess sup (X ) < ∞ , 

ut our results also hold true in the case that ess sup (X ) = ∞ and

e replace [0 , ess sup (X )] by [0 , ∞ ) as the range of X . The follow-

ng theorem provides a functional form of some Pareto optimal in- 

emnities with the VaR, and its proof is delegated to Appendix A . 

heorem 3.1. Let ρ1 = VaR α and ρ2 = VaR β . For any b ∈ [0 , b ]

nd (I 1 , . . . , I m 

) ∈ I, there exists an ( ̃ I 1 , . . . , ̃  I m 

) ∈ I 1 such that

 (b, ( ̃ I 1 , . . . , ̃  I m 

)) ≤ F (b, (I 1 , . . . , I m 

)) . 

Theorem 3.1 states that any admissible indemnity profile 

I 1 , . . . , I m 

) is suboptimal to an indemnity profile ( ̃ I 1 , . . . , ̃  I m 

) ∈ I 1 ,
ith the same bonus b, where the indemnity profile ( ̃ I 1 , . . . , ̃  I m 

) ∈
 1 is composed of the stop-loss or dual stop-loss risk transfers. Due 

o such a sub-optimality result, the minimization problem (3.1) , 

hich is infinite-dimensional, can be reduced to a finite dimen- 

ional one: 

min 
b∈ [ 0 , b ] ;

θ1 , ... ,θm ∈ { −1 , 1 } ;
 1 , ... ,d m ∈ [ 0 , ess sup ( X ) ] 

F B ( b, θ1 , d 1 , . . . , θm , d m ) + F S ( b, −θ1 , d 1 , . . . , −θm , d m ) , (3.2) 

here, for any b ∈ [0 , b ] , φ1 , . . . , φm 

∈ {−1 , 1 } , and d 1 , . . . , d m 

∈
0 , ess sup (X )] , 

F B ( b, φ1 , d 1 , . . . , φm , d m ) 

:= VaR α

( 

−b × I { Y=0 } + 

m ∑ 

k =1 

(
( X − d k ) + I { φk = −1 } + ( X − (X − d k ) + ) I { φk =1 } 

)
I { Y= k } 

) 

, 

nd 

F S ( b, φ1 , d 1 , . . . , φm , d m ) 
4 
:= VaR β

( 

b × I { Y=0 } + 

m ∑ 

k =1 

(
( X − d k ) + I { φk = −1 } + ( X − (X − d k ) + ) I { φk =1 } 

)
I { Y= k } 

) 

. 

y (2.4) it follows that all these solutions of this finite dimensional 

inimization problem constitute Pareto optimal bonuses and pro- 

les of indemnity functions. As we alluded in Section 2 , we shall 

rovide a counterexample in Section 5 that there exists an opti- 

izer such that I ∗
i 

� = I ∗
j 

for some i � = j under the case of VaR; see

lso the section below. 

.1. Explicit optimal indemnities 

In this section, the effect on the Pareto optimal indemnity pro- 

le by the probabilities of exogenous risky environment is studied 

nder the VaR preferences. In order to do so, the finite dimensional 

roblem (3.2) is first solved explicitly, under some conditions for 

echnical tractability, in the following proposition, and its proof is 

elegated to Appendix B . 

roposition 3.1. Let P (Y = 0) = 0 , b = 0 , m = 2 . Denote p := P (Y =
) ∈ (0 , 1) , and thus P (Y = 2) = 1 − p ∈ (0 , 1) . Denote F X| Y (·| 1) and

 X| Y (·| 2) as conditional distribution functions of the loss, given that 

 = 1 and Y = 2 , respectively, which are assumed to be strictly

ncreasing and continuous in x ∈ [0 , ess sup (X )] , with F X| Y (0 | 1) =
 X| Y (0 | 2) = 0 ; denote F −1 

X| Y (·| 1) and F −1 
X| Y (·| 2) as the inverse functions

f F X| Y (·| 1) and F X| Y (·| 2) , respectively. Assume furthermore that ρ1 =
2 = VaR α with α ∈ (0 , 1) . The optimal indemnity profiles of the fi- 

ite dimensional problem (3.2) and the minimized value of the objec- 

ive function are given as follows: 

(1) If p < α and p ≤ 1 − α, 

• I ∗1 (x ) = (x − d ∗1 ) + and I ∗2 (x ) = x ∧ d ∗2 , or I ∗1 (x ) = x ∧ d ∗1 and

I ∗
2 
(x ) = (x − d ∗

2 
) + , 

for any d ∗
1 

∈ [0 , F −1 
X| Y (1 − α

1 −p | 2) − d ∗
2 
] and d ∗

2 
∈ [0 , F −1 

X| Y (1 −
α

1 −p | 2)] , or 

• I ∗
1 
(x ) = (x − d ∗

1 
) + and I ∗

2 
(x ) = (x − d ∗

2 
) + , or I ∗

1 
(x ) = x ∧ d ∗

1 
and I ∗2 (x ) = x ∧ d ∗2 , 

for any d ∗1 ∈ [0 , F −1 
X| Y (1 − α

1 −p | 2)] and d ∗2 ∈ 

[ F −1 
X| Y ( 

1 −α−pF X| Y (d ∗
1 
| 1) 

1 −p | 2) , ess sup (X )] ; 

• F (0 , (I ∗1 , I 
∗
2 )) = F −1 

X| Y (1 − α
1 −p | 2) . 

(2) If α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

p | 1) < F −1 
X| Y (1 − α

1 −p | 2) , 

• I ∗
1 
(x ) = (x − d ∗

1 
) + and I ∗

2 
(x ) = x ∧ d ∗

2 
, or I ∗

1 
(x ) = x ∧ d ∗

1 
and

I ∗2 (x ) = (x − d ∗2 ) + , 
for any d ∗1 ∈ [0 , F −1 

X| Y (1 − α
1 −p | 2)] and d ∗2 ∈ [ max { F −1 

X| Y (1 −
α
p | 1) − d ∗1 , 0 } , F −1 

X| Y (1 − α
1 −p | 2) − d ∗1 ] , or 

• I ∗
1 
(x ) = (x − d ∗

1 
) + and I ∗

2 
(x ) = (x − d ∗

2 
) + , or I ∗

1 
(x ) = x ∧ d ∗

1 
and I ∗2 (x ) = x ∧ d ∗2 , 

for any d ∗1 ∈ [ F −1 
X| Y (1 − α

p | 1) , F −1 
X| Y (1 − α

1 −p | 2)] and d ∗2 ∈
[ F −1 

X| Y ( 
1 −α−pF X| Y (d ∗

1 
| 1) 

1 −p | 2) , ess sup (X )] ; 

• F (0 , (I ∗1 , I 
∗
2 )) = F −1 

X| Y (1 − α
1 −p | 2) . 

(3) If α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

p | 1) = F −1 
X| Y (1 − α

1 −p | 2) , 

• I ∗
1 
(x ) = (x − d ∗

1 
) + and I ∗

2 
(x ) = x ∧ d ∗

2 
, or I ∗

1 
(x ) = x ∧ d ∗

1 
and

I ∗2 (x ) = (x − d ∗2 ) + , 
for any d ∗1 ∈ [0 , F −1 

X| Y (1 − α
p | 1)] = [0 , F −1 

X| Y (1 − α
1 −p | 2)] and d ∗2 =

F −1 
X| Y (1 − α

p | 1) − d ∗1 = F −1 
X| Y (1 − α

1 −p | 2) − d ∗1 ; 
• F (0 , (I ∗1 , I 

∗
2 )) = F −1 

X| Y (1 − α
p | 1) = F −1 

X| Y (1 − α
1 −p | 2) . 

(4) If α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

1 −p | 2) < F −1 
X| Y (1 − α

p | 1) , 

• I ∗1 (x ) = (x − d ∗1 ) + and I ∗2 (x ) = x ∧ d ∗2 , or I ∗1 (x ) = x ∧ d ∗1 and

I ∗
2 
(x ) = (x − d ∗

2 
) + , 

for any d ∗1 ∈ [ max { F −1 
X| Y (1 − α

1 −p | 2) − d ∗2 , 0 } , F −1 
X| Y (1 − α

p | 1) −
d ∗

2 
] and d ∗

2 
∈ [0 , F −1 

X| Y (1 − α
p | 1)] , or 
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Fig. 1. Optimal indemnity profiles of two risky environments when risk tolerance 

levels of buyer’s and seller’s Value-at-Risk are equal; linear and horizontal solution 

of F −1 
X| Y 

(
1 − α

p 
| 1 ) = F −1 

X| Y 
(
1 − α

1 −p 
| 2 ) for Case (3) is chosen for graphical convenience. 
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• I ∗1 (x ) = (x − d ∗1 ) + and I ∗2 (x ) = (x − d ∗2 ) + , or I ∗1 (x ) = x ∧ d ∗1 
and I ∗

2 
(x ) = x ∧ d ∗

2 
, 

for any d ∗1 ∈ [ F −1 
X| Y ( 

1 −α−(1 −p) F X| Y (d ∗
2 
| 2) 

p | 1) , ess sup (X )] and d ∗2 ∈ 

[ F −1 
X| Y (1 − α

1 −p | 2) , F −1 
X| Y (1 − α

p | 1)] ; 

• F (0 , (I ∗1 , I 
∗
2 )) = F −1 

X| Y (1 − α
p | 1) . 

(5) If α ≤ p and 1 − α < p, 

• I ∗
1 
(x ) = (x − d ∗

1 
) + and I ∗

2 
(x ) = x ∧ d ∗

2 
, or I ∗

1 
(x ) = x ∧ d ∗

1 
and

I ∗2 (x ) = (x − d ∗2 ) + , 
for any d ∗1 ∈ [0 , F −1 

X| Y (1 − α
p | 1)] and d ∗2 ∈ [0 , F −1 

X| Y (1 − α
p | 1) −

d ∗
1 
] , or 

• I ∗1 (x ) = (x − d ∗1 ) + and I ∗2 (x ) = (x − d ∗2 ) + , or I ∗1 (x ) = x ∧ d ∗1 
and I ∗

2 
(x ) = x ∧ d ∗

2 
, 

for any d ∗1 ∈ [ F −1 
X| Y ( 

1 −α−(1 −p) F X| Y (d ∗
2 
| 2) 

p | 1) , ess sup (X )] and d ∗2 ∈ 

[0 , F −1 
X| Y (1 − α

p | 1)] ; 

• F (0 , (I ∗1 , I 
∗
2 )) = F −1 

X| Y (1 − α
p | 1) . 

(6) If 1 − α < p < α, 

• I ∗
1 
(x ) = (x − d ∗

1 
) + and I ∗

2 
(x ) = x ∧ d ∗

2 
, or I ∗

1 
(x ) = x ∧ d ∗

1 
and

I ∗2 (x ) = (x − d ∗2 ) + , 
for any d ∗

1 
∈ [ F −1 

X| Y ( 
1 −α

p | 1) , ess sup (X )] and d ∗
2 

∈
[ F −1 

X| Y ( 
1 −α
1 −p | 2) , ess sup (X )] ; 

• F (0 , (I ∗1 , I 
∗
2 )) = 0 . 

Regardless of the conditions on the parameters p and α, and 

he conditional distributions of the loss, I ∗
1 

� = I ∗
2 
. The six cases in

roposition 3.1 are illustrated in Fig. 1 . 

Suppose the risk tolerance level of the buyer and seller is such 

hat α ∈ (0 , 1 2 ) . When the probability of the first risky environment

s very small, i.e. p < α and p ≤ 1 − α, if the buyer and seller each

ear a stop-loss in one risky environment and a dual stop-loss in 

nother risky environment, the deductibles d ∗
1 

and d ∗
2 

are flexible, 

s long as the sum d ∗1 + d ∗2 is smaller than the conditional VaR of

he second risky environment at an adjusted risk tolerance level 

 

−1 
X| Y (1 − α

1 −p | 2) ; if the buyer and seller each bear stop-loss or dual

top-loss in both risky environments, the deductibles d ∗ and d ∗ are 

1 2 

5 
lso flexible, but d ∗
1 

is smaller than F −1 
X| Y (1 − α

1 −p | 2) while d ∗
2 

is nec-

ssarily larger than it. When the probability of the first risky envi- 

onment increases, but before the conditional VaR of the first risky 

nvironment at an adjusted risk tolerance level F −1 
X| Y (1 − α

p | 1) is at 

east F −1 
X| Y (1 − α

1 −p | 2) , same set of optimal indemnity profiles hold 

xcept that the flexibility of deductibles shrinks. When the proba- 

ility of the first risky environment increases to a level such that 

 

−1 
X| Y (1 − α

p | 1) = F −1 
X| Y (1 − α

1 −p | 2) , the buyer and seller each must

ear a stop-loss in one risky environment and a dual stop-loss in 

nother risky environment, where the deductibles are least flex- 

ble that d ∗1 + d ∗2 = F −1 
X| Y (1 − α

p | 1) = F −1 
X| Y (1 − α

1 −p | 2) . The remaining

wo Cases (4) and (5) are similar with the probability of the sec- 

nd risky environment being small. 

Similar conclusions hold for the case that α ∈ [ 1 2 , 1) . However, 

n this case, as long as the probability of the first risky envi- 

onment is such that p ∈ (1 − α, α) , the buyer and seller each

ust bear a stop-loss in one risky environment and a dual stop- 

oss in another risky environment, regardless of the conditional 

istributions of the loss. However, the deductibles d ∗
1 

and d ∗
2 

do 

epend on the conditional distributions of the loss; specifically, 

hey are flexible, as long as d ∗1 ≥ F −1 
X| Y ( 

1 −α
p | 1) and d ∗2 ≥ F −1 

X| Y ( 
1 −α
1 −p | 2) ,

hich are necessarily larger than the unconditional VaR of the loss 

 

−1 
X 

(1 − α) . 

We close this section with some comments on the assumptions 

f Proposition 3.1 . Our aim is to show explicitly solved optimal in- 

emnity profiles in Proposition 3.1 , and to illustrate the effect on 

he optimal indemnity profile (I ∗
1 
, I ∗

2 
) by the probabilities of exoge- 

ous risky environments. A solution of the finite dimensional prob- 

em (3.2) under weaker assumptions could be obtained numeri- 

ally, but there are a large number of cases to be considered. We 

ext summarize two computational issues: 

• The assumption that there are only two possible risky environ- 

ments ( m = 2 ) is for mathematical tractability. Indeed, if there 

are in general m risky environments, there exist 2 m combina- 

tions of θ1 , θ2 , . . . , θm 

, which grows exponentially in m . How- 

ever, we emphasize that even when the number of risky en- 

vironments is moderately large, the finite dimensional problem 

should still be computationally tractable. 
• The assumption that the risk tolerance levels of buyer and 

seller are the same ( ρ1 = ρ2 = VaR α) is for simplicity. If ρ1 = 

VaR α and ρ2 = VaR β with α � = β, we need to distinguish more 

cases, which yields more challenges to aggregate and compare 

local objective values. Note also that, under the assumption that 

α = β, the Pareto optimal contracts in (3.2) do not “distinguish”

the roles of buyer and seller via the optimal indemnity profiles, 

although it does via the premium (see Section 7 ). However, if 

α � = β, this no longer holds true. 

. Pareto optimality with TVaR preferences 

In this section, we assume that the risk preferences ρ1 and ρ2 

f the buyer and seller are both characterized by the TVaR under 

he probability measure P . The TVaR under the probability mea- 

ure P is given by 

VaR γ (Z) := 

1 

γ

∫ γ

0 

VaR η(Z) dη, where γ ∈ (0 , 1] . 

he TVaR is alternatively called Conditional Value-at-Risk or Ex- 

ected Shortfall, and has gained practitioner’s interest since the in- 

roduction of Basel III regulations. 

Let α ∈ (0 , 1] and β ∈ (0 , 1] be the respective risk tolerance lev-

ls of the buyer and seller. The minimization problem that yields 

ll Pareto optimal bonuses and profiles of indemnity functions is 
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5  

i  

X  

w

iven by: 

min 

b∈ [ 0 , b ] ;
( I 1 , ... ,I m ) ∈I 

TVaR α

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

R k ( X ) I { Y = k } 

) 

+ TVaR β

( 

b × I { Y =0 } + 

m ∑ 

k =1 

I k ( X ) I { Y = k } 

) 

. (4.1) 

In parallel to Section 3 , using mutual exclusivity and extended 

odification arguments, a sub-class of optimal solutions for the 

inimization problem (4.1) is identified, which has the least fi- 

ite number of parameters. Hence, the infinite dimensional min- 

mization problem (4.1) is reduced to a finite dimensional one (cf. 

q. (4.2) below); yet the finite dimensional minimization problem 

4.2) can only characterize some Pareto optimal contracts. 

Denote the objective function in the minimization problem 

4.1) as G . Define a subset of the admissible indemnity profiles 

I 2 := { ( I 1 , . . . , I m 

) ∈ I : 
for each k = 1 , . . . , m, there exist d k, 1 ∈ [ 0 , ess sup ( X ) ] 

and d k, 2 ∈ 

[
d k, 1 , ess sup ( X ) 

]
s.t. I k ( x ) = 

(
x −d k, 1 

)
+ −

(
x −d k, 2 

)
+ 

or I k ( x ) = x −
(
x − d k, 1 

)
+ + 

(
x − d k, 2 

)
+ } . 

he following theorem provides a functional form of some Pareto 

ptimal indemnities with the TVaR, and its proof is delegated to 

ppendix C . 

heorem 4.1. Let ρ1 = TVaR α and ρ2 = TVaR β . For any b ∈ [0 , b ]

nd (I 1 , . . . , I m 

) ∈ I, there exists an ( ̃ I 1 , . . . , ̃  I m 

) ∈ I 2 such that

 (b, ( ̃ I 1 , . . . , ̃  I m 

)) ≤ G (b, (I 1 , . . . , I m 

)) . 

Theorem 4.1 states that any admissible indemnity profile 

I 1 , . . . , I m 

) is sub-optimal to an indemnity profile ( ̃ I 1 , . . . , ̃  I m 

) ∈ I 2 ,
ith the same bonus b. The indemnity profile ( ̃ I 1 , . . . , ̃  I m 

) ∈ I 2 is

omposed of single layer or dual single layer risk transfers. Due to 

uch a sub-optimality result, the infinite dimensional minimization 

roblem (4.1) can be reduced to a finite dimensional problem to 

btain some Pareto optimal contracts: 

in 
b∈ [ 0 , b ] ;

θ1 , ... ,θm ∈ { −1 , 1 } ;
( d 1 , 1 ,d 1 , 2 ) , ... , ( d m, 1 ,d m, 2 ) ∈ [ 0 , ess sup ( X ) ] 

2 : 
d k, 1 ≤d k, 2 , ∀ k =1 , ... ,m 

G B ( b, θ1 , d 1 , 1 , d 1 , 2 , . . . , θm , d m, 1 , d m, 2 ) 

+ G S ( b, −θ1 , d 1 , 1 , d 1 , 2 , . . . , −θm , d m, 1 , d m, 2 ) , 

(4.2) 

here, for any b ∈ [0 , b ] , φ1 , . . . , φm 

∈ {−1 , 1 } and 0 ≤ d k, 1 ≤ d k, 2 ≤
ss sup (X ) , 

G B ( b, φ1 , d 1 , 1 , d 1 , 2 , . . . , φm 

, d m, 1 , d m, 2 ) 

:= TVaR α

(
− b × I { Y=0 } + 

m ∑ 

k =1 

(((
X − d k, 1 

)
+ −

(
X − d k, 2 

)
+ 

)
I { φk = −1 } 

+ 

(
X −

(
X − d k, 1 

)
+ + 

(
X − d k, 2 

)
+ 

)
I { φk =1 } 

)
I { Y= k } 

)
, 

nd 

G S ( b, φ1 , d 1 , 1 , d 1 , 2 , . . . , φm 

, d m, 1 , d m, 2 ) 

:= TVaR β

(
b × I { Y =0 } + 

m ∑ 

k =1 

(((
X − d k, 1 

)
+ −

(
X − d k, 2 

)
+ 

)
I { φk = −1 } 

+ 

(
X −

(
X − d k, 1 

)
+ + 

(
X − d k, 2 

)
+ 

)
I { φk =1 } 

)
I { Y = k } 

)
. 

We comment on two technical difficulties in explicitly solving 

he finite dimensional problem (4.2) under the case of TVaR, even 

nder the same set of assumptions as in Proposition 3.1 . 
6 
• Since an optimal indemnity function is taking the (dual) layer- 

form ( Theorem 4.1 ), there appears an additional jump in the 

conditional distribution functions of the retained and indemnity 

losses. Hence, more cases need to be considered. 
• TVaR is defined as an area under the quantile function. There- 

fore, we need to distinguish considerably more sub-case condi- 

tions compared with the proof of Proposition 3.1 in Appendix B . 

This brings more challenges to aggregate and compare local ob- 

jective values. 

Later, in Section 5 , we will provide an example where there 

xists an optimizer to the finite dimensional problem (4.2) such 

hat I ∗
i 

� = I ∗
j 

for some i � = j. Here, before closing this section, we

rst study a situation where there exists an optimizer such that 

 

∗
1 

= I ∗
2 

= · · · = I ∗m 

. This is indeed the case if the risk measure of the

eller ρ2 is given by the expectation under P ; in other words, the 

eller is risk-neutral with ρ2 = E 

P = TVaR 1 . The proof of the fol- 

owing proposition is delegated to Appendix D . 

roposition 4.1. Let ρ1 = TVaR α and ρ2 = E 

P . Then, 

b ∗, (I ∗1 , . . . , I 
∗
m 

) , π ∗) ∈ A with b ∗ = 0 , I ∗1 = I ∗2 = · · · = I ∗m 

= Id , i.e.

 

∗
1 

= R ∗
2 

= · · · = R ∗m 

= 0 , is a Pareto optimal contract. 

In particular, note that the Pareto optimal indemnity functions 

n Proposition 4.1 are not environment-specific provided that Y � = 

 . Then, there exists an optimal contract that coincides with an 

ptimal contract in the case that m = 1 . 

. Heterogeneous indemnities among risky environments 

In this section, we numerically illustrate a flexible implemen- 

ation of the indemnity profile with multiple risky environments 

y Pareto optimality. Consider an insurance company that has N = 

0 0 0 policyholders, who all have hurricane homeowner insurance 

ontracts with the insurance company. The policyholders are as- 

umed to have their houses in the same geological area, and indi- 

idual claims are assumed to be identical. Therefore, the total loss 

f the insurance company is X = N × X I , where X I is the stochastic

ndividual claim. Note that we assume for simplicity that the insur- 

nce claim is the same for every policyholder, which may not be 

rue when the policyholders hold different values of their houses; 

ne should consider to differentiate the costs of various house val- 

es in order to avoid excessive under-insurance or over-insurance. 

uch details are ignored for parsimonious reasoning. 

The insurance company seeks to purchase an index-linked hur- 

icane reinsurance contract, which covers two grouped scales, i.e. 

 = 2 , for example, of Saffir-Simpson Hurricane Wind Scale in the 

nited States. When the scale is either 1,2,3,4, the wind could 

ause certain degree of structural damage to a well-constructed 

rame house; when the scale is at the highest level 5, the wind 

ust cause total structural damage to any well-constructed frame 

ouse. The advantage of an index-linked reinsurance policy is that 

he loss adjustment expenses, i.e. claim settling costs, are dramat- 

cally reduced, which should reduce the premium. This is possible, 

ince the risky environments are fully identifiable by robust and 

ublicly available weather measurements. For simplicity, assume 

hat only one hurricane per year is covered by this reinsurance 

ontract. 

We denote Y = 0 , when there is no hurricane, with probabil- 

ty 0.5; Y = 1 , when the covered hurricane is of scale 1,2,3, or 4,

ith probability 0.2; Y = 2 , when the covered hurricane is of scale 

, with probability 0.3. If Y = 0 , then, with probability 1, X I = 0 ;

f Y = 1 , then, with probability 0.25, X I = 0 , with probability 0.5,

 I = 1 million, with probability 0.25, X I = 2 millions; if Y = 2 , then,

ith probability 1, X = 2 millions. To summarize, 
I 
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P ( X = 0 | Y = 0 ) = 1 ;
P ( X = 0 | Y = 1 ) = 0 . 25 , 

P ( X = 1 | Y = 1 ) = 0 . 5 , P ( X = 2 | Y = 1 ) = 0 . 25 ;
P ( X = 2 | Y = 2 ) = 1 , 

n which the units for X are in billions. Assume that the risk tol- 

rance levels of the insurer (buyer) and reinsurer (seller) are re- 

pectively α = 0 . 01 and β = 0 . 02 . Assume further that b = 0 , and

ence the only feasible bonus is given by b ∗ = 0 . 

First, we assume that both the buyer and the seller adopt the 

aR as their time-0 risk preferences. The finite dimensional min- 

mization problem (3.2) can be solved explicitly, and the optimal 

ost-transfer objective value is given by 2. There exist multiple 

olutions, and it is possible that I ∗
1 

� = I ∗
2 
. For instance, a solution

s given by I ∗1 (x ) = (x − 0 . 5) + and I ∗2 (x ) = x − (x − 1 . 5) + , for any

 ∈ [0 , 2] . 

Second, we assume that both the buyer and the seller adopt the 

VaR as their time-0 risk preferences. Then, the finite dimensional 

inimization problem is given by (4.2) , which can also be solved 

xplicitly. Again, the optimal post-transfer objective value is given 

y 2, and it is possible that I ∗
1 

� = I ∗
2 
. For instance, a solution is given

y I ∗1 (x ) = (x − 0 . 5) + − (x − 1 . 3) + and I ∗2 (x ) = x − (x − 0 . 6) + + (x −
 . 8) + , for any x ∈ [0 , 2] . 

There are two important implications of this numerical 

llustration. Firstly, it shows that there may exist profiles 

b ∗, (I ∗
1 
, . . . , I ∗m 

)) ∈ [0 , b ] × I solving 

min 

∈ [ 0 , b ] , ( I 1 , ... ,I m ) ∈I 
ρ1 

(
B (b, R ; X, Y ) 

)
+ρ2 

(
S (b, I ; X, Y ) 

)
, 

uch that I ∗
i 

� = I ∗
j 

for some 1 ≤ i, j ≤ m . Hence, Pareto optimal risk

haring with multiple indemnity environments may not reduce to 

he classical Pareto optimal risk sharing with a single indemnity 

nvironment. Secondly, since the optimal indemnities among risky 

nvironments are not necessarily the same, there is much more 

exibility in the Pareto optimal contracts than in the classical case 

ith a single risky environment. 

. Heterogeneous indemnities via heterogeneous beliefs 

In Section 5 , we introduced an example in which there exists 

 Pareto optimal indemnity profile with heterogeneous indemni- 

ies among risky environments, under the cases of VaR and TVaR. 

owever, due to modification arguments in solving the cases of 

aR and TVaR, such an example does not necessarily imply that 

or all Pareto optimal indemnity profiles, the indemnities are het- 

rogeneous among risky environments; indeed, Proposition 4.1 is 

 counter-statement under the case of TVaR, with seller’s prefer- 

nce being expectation, that there exists a Pareto optimal indem- 

ity profile with homogeneous indemnities among risky environ- 

ents. In this section, we consider a model setting, which is sim- 

le enough to provide a sufficient condition of the statement that, 

or all Pareto optimal indemnity profiles, the indemnities are het- 

rogeneous among risky environments. 

We assume that the risk preferences ρ1 and ρ2 of the buyer and 

eller are both simply characterized by the expectation, but the 

uyer and seller have heterogeneous beliefs on the future states 

f the world. Specifically, the buyer is endowed with the proba- 

ilistic measure P , while the seller is endowed with another prob- 

bility measure Q . Both P and Q are beliefs on the measurable 

pace (�, F ) . We assume that E 

Q [ X] < ∞ and that the expecta-

ion under Q is monotonic, i.e., Q 
 P , or for any Z 1 , Z 2 ∈ X with

 1 ≤ Z 2 , P -a.s., it holds that E 

Q [ Z 1 ] ≤ E 

Q [ Z 2 ] . It thus holds that both

he preferences of the buyer and the seller satisfy Assumption 2.1 . 

oreover, all assumptions on the risky environments and the con- 

itional loss hold under Q , i.e. Q (X > 0 | Y = k ) > 0 for any risky

nvironment k = 1 , 2 , . . . , m . Then, according to the discussions in
7 
ection 2 , the minimization problem solving all Pareto optimal pro- 

les of indemnity functions is given by: 

min 

b∈ [ 0 , b ] ;( I 1 , ... ,I m ) ∈I 
E 

P 

[ 

−b × I { Y =0 } + 

m ∑ 

k =1 

R k ( X ) I { Y = k } 

] 

+ E 

Q 

[ 

b × I { Y =0 } + 

m ∑ 

k =1 

I k ( X ) I { Y = k } 

] 

. (6.1) 

nlike Sections 3 and 4 , the minimization problem (6.1) is solved 

xplicitly in the following theorem, and its proof is delegated to 

ppendix E . 

heorem 6.1. Let ρ1 = E 

P and ρ2 = E 

Q . An admissible tuple 

b ∗, (I ∗
1 
, . . . , I ∗m 

) , π ∗) ∈ A is Pareto optimal if and only if 

b ∗ = b if Q ( Y = 0 ) < P ( Y = 0 ) , 

b ∗ = 

˜ b if Q ( Y = 0 ) = P ( Y = 0 ) , and 

 

∗ = 0 if Q ( Y = 0 ) > P ( Y = 0 ) , 

here ˜ b is an arbitrary constant in [0 , ̄b ] , and for any k = 1 , 2 , . . . , m,

nd for any t ∈ [0 , ess sup (X )] , 

I ∗k 
)′ 

(t) = 1 if Q ( { X > t } ∩ { Y = k } ) < P ( { X > t } ∩ { Y = k } ) , 
I ∗k 
)′ 

(t) = h k ( t ) if Q ( { X > t } ∩ { Y = k } ) = P ( { X > t } ∩ { Y = k } ) , and 

I ∗k 
)′ 

(t) = 0 if Q ( { X > t } ∩ { Y = k } ) > P ( { X > t } ∩ { Y = k } ) , 
here h k is a measurable function taking values in [0 , 1] . 

This theorem entails that, under each risky environment k = 

 , 2 , . . . , m, if the seller believes that the loss is more likely to be

mall while the buyer believes that the loss is more likely to be 

arge, then the environment-specific tail of the loss is transferred 

rom the buyer to the seller. If there is only one indemnity envi- 

onment, then the optimal contracts in Theorem 6.1 are also shown 

n Proposition 4.2 of Boonen & Ghossoub (2019) . In absence of 

eterogeneous beliefs and under a single indemnity environment 

hen the insurance agents are endowed with distortion risk mea- 

ures, the optimal indemnities have a similar layer-type structure 

s in Theorem 6.1 (see Assa, 2015; Cui, Yang, & Wu, 2013 ). Note, 

owever, that with multiple indemnity environments, the layer- 

ype indemnity structure only holds within a risky environment 

 = 1 , 2 , . . . , m . In general, the indemnity is not of a layer-type. 

Suppose that P (Y = k ) = Q (Y = k ) , for some k = 1 , 2 , . . . , m .

hen, given a realization of Y = k � = 0 , the optimal indemnity con-

racts only depend on the distribution of X| Y = k under P and 

 , and not on the distribution of Y . This is in sharp contrast to

hat we observed in Section 3.1 , in which the shapes of opti- 

al indemnities I 1 and I 2 under homogeneous beliefs, m = 2 and 

1 = ρ2 = VaR α, do explicitly depend on P (Y = 1) = p. 

The following corollary is a direct consequence of Theorem 6.1 , 

nd provides a sufficient condition of the statement that, for all 

areto optimal indemnity profiles, the indemnities are heteroge- 

eous among risky environments. 

orollary 6.2. Let ρ1 = E 

P , ρ2 = E 

Q , and let a pair of indemnity en-

ironments (i, j) with i � = j. If there exists a t ≥ 0 such that 

( Q ( { X > t } ∩ { Y = i } ) − P ( { X > t } ∩ { Y = i } ) ) 
× ( Q ( { X > t } ∩ { Y = j } ) − P ( { X > t } ∩ { Y = j } ) ) < 0 , 

hen for all Pareto optimal contracts it holds that I ∗
i 

� = I ∗
j 
. 

xample 6.1. Suppose that m = 2 , and that the seller and 

uyer both believe that Y = k happens with probability p k > 0 

or k = 1 , 2 , with p 1 + p 2 < 1 . The seller believes X| Y = k is

xponentially distributed with parameter λ and the buyer 
1 k 
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of the SOA. 

5 These four properties are given by (i) invariance with respect to positive affine 

transformations, (ii) strict individual rationality, (iii) independence of irrelevant al- 

ternatives, and (iv) symmetry. For an extensive discussion of these four properties, 

we refer to Osborne & Rubinstein (1994) . 
elieves X| Y = k is exponentially distributed with param- 

ter λ2 k , for k = 1 , 2 . Then, P ({ X > t} ∩ { Y = 1 } ) = e −λ11 t p 1 ,

 ({ X > t} ∩ { Y = 2 } ) = e −λ12 t p 2 , Q ({ X > t} ∩ { Y = 1 } ) = e −λ21 t p 1 ,

nd Q ({ X > t} ∩ { Y = 2 } ) = e −λ22 t p 2 . We get from Theorem 6.1 that

b ∗, (I ∗1 , . . . , I 
∗
m 

) , π ∗) ∈ A is Pareto optimal if and only if for any

 = 1 , 2 , 

 

∗
k = Id if λ2 k > λ1 k , and I ∗k = 0 if λ2 k < λ1 k , 

hich is a direct consequence of e −λ2 k t p k < e −λ1 k t p k if and only if

2 k > λ1 k , for all t ≥ 0 and k = 1 , 2 . For instance, if λ11 > λ21 and

22 > λ12 , then I ∗
1 

= 0 and I ∗
2 

= Id. Thus, there is full coverage if

 = 2 and no coverage if Y = 1 . 

Now, assume that there may also be heterogeneous beliefs 

egarding the distribution of Y . Let p k := P (Y = k ) and q k :=
 (Y = k ) for k = 0 , 1 , 2 . Then, we get from Theorem 6.1 that

b ∗, (I ∗
1 
, . . . , I ∗m 

) , π ∗) ∈ A is Pareto optimal if and only if 

b ∗ = b if q 0 < p 0 , 

b ∗ = 

˜ b if q 0 = p 0 , and 

 

∗ = 0 if q 0 > p 0 , 

here ˜ b is an arbitrary constant in [0 , ̄b ] , and for any k = 1 , 2 , and

or any t ∈ [0 , ess sup (X )] , (
I ∗k 
)′ 

(t) = 1 if e −λ2 k t q k < e −λ1 k t p k , 

I ∗k 
)′ 

(t) = h k ( t ) if e −λ2 k t q k = e −λ1 k t p k , and (
I ∗k 
)′ 

(t) = 0 if e −λ2 k t q k > e −λ1 k t p k . 

hus, b ∗ is a non-decreasing function of p 0 and a non-increasing 

unction of q 0 . Likewise, for any t ∈ [0 , ess sup (X )] , I k (t) is a non-

ecreasing function of p k and a non-increasing function of q k . 

ence, if an agent’s subjective probability of a state Y = k de- 

reases, ceteris paribus , then the agent absorbs weakly more risk 

n any Pareto optimal contract. 

. Range of premiums 

Recall from Section 2 that the structure of Pareto optimal 

ontracts is based on two steps. In Step 1, we got a charac- 

erization of the indemnity contracts corresponding to Pareto 

ptimal contracts. In this section, we discuss Step 2: select- 

ng the premium. For a fixed bonus b and indemnity profile 

I 1 , . . . , I m 

) minimizing the sum of risk measures, (and thus con- 

tituting a Pareto optimal contract), the aim is to select π
n the interval [ ρ2 ( S (b, I ; X, Y )) , ρ1 (X ) − ρ1 ( B (b, R ; X, Y ))] so that

b, (I 1 , . . . , I m 

) , π) ∈ S G . Recall that this interval is always non-

mpty. If the interval [ ρ2 ( S (b, I ; X, Y )) , ρ1 (X ) − ρ1 ( B (b, R ; X, Y ))] is

ingle-valued, we have no relevant problem as the status quo is 

hen Pareto optimal. Suppose now that this interval is not single- 

alued, so that ρ2 ( S (b, I ; X, Y )) < ρ1 (X ) − ρ1 ( B (b, R ; X, Y )) . 

The set A captures already the individual rationality conditions. 

n other words, any contract in A is weakly preferred by the both 

gents compared to the status quo. The status quo is reached 

hen both agents do nothing, and thus b = 0 , I k (X ) = 0 for all

 = 1 , . . . , m, and π = 0 . Clearly, if π is equal to ρ2 ( S (b, I ; X, Y )) or

1 (X ) − ρ1 ( B (b, R ; X, Y )) , then the seller or the buyer is indifferent

ompared to the status quo, respectively. 

When there are more than two agents, it may be of interest to 

tudy remaining core-type stability conditions ( Asimit & Boonen, 

018 ). If there is a deep liquid market with many agents, Arrow- 

ebreu equilibrium concepts are popular in pricing ( Arrow & De- 

reu, 1954 ). In the absence of knowing other information about 

he market, a solution is to allocate the gains from sharing risk 

qually: 

2 ( S (b, I ; X, Y ) − π) = ρ1 ( B (b, R ; X, Y ) + π) − ρ1 ( X ) . 
8 
ranslation invariance of ρ1 and ρ2 yields directly that 

= ρ2 ( S (b, I ; X, Y ) ) + 

1 

2 

( ρ1 ( X ) 

− ρ1 ( B (b, R ; X, Y ) ) − ρ2 ( S (b, I ; X, Y ) ) ) . (7.1) 

he contract (b, (I 1 , . . . , I m 

) , π) ∈ S G , where π is given by

7.1) , coincides with Nash-bargaining solution (Nash, 1950), as 

b, (I 1 , . . . , I m 

) , π) solves: 

max 
 

b, ( I 1 , ... ,I m ) ,π ) ∈A 
( ρ1 ( B (b, R ; X,Y ) + π) − ρ1 ( X ) ) · ρ2 ( S (b, I ; X, Y ) − π) . 

his equivalence can be shown via the same arguments as in 

oonen et al. (2016) . Note here that (b, (I 1 , . . . , I m 

) , π) ∈ A im-

lies that the two components ρ1 ( B (b, R ; X, Y ) + π) − ρ1 (X ) and

2 ( S (b, I ; X, Y ) − π) are non-positive. Moreover, it is well-known 

hat the Nash-bargaining is necessarily Pareto optimal ( Nash, 

950 ). The Nash-bargaining solution has been characterized by 

ash (1950) as the only solution concept that satisfies four prop- 

rties 5 , and alternative characterizations are proposed by Binmore, 

ubinstein, & Wolinsky (1986) and Van Damme (1986) . 

. Conclusion 

Multiple indemnity environments affect the shape of optimal 

ndemnity contracts. Traditionally, with a single indemnity envi- 

onment, it is well-known that stop-loss and layer-type indemni- 

ies are Pareto optimal for the VaR and TVaR, respectively. This pa- 

er generalizes this finding to the case of multiple indemnity envi- 

onments. We show that stop-loss and layer-type indemnities are 

lso optimal for the VaR and TVaR, respectively, but these indem- 

ities may have parameters that are environment-specific; more- 

ver, full insurance is Pareto optimal when the buyer minimizes a 

VaR and the seller is risk-neutral. When both the buyer and the 

eller are risk-neutral but have heterogeneous beliefs regarding the 

nderlying probability distribution, we find all Pareto optimal con- 

racts in closed form. 

While there are many applications of VaR, TVaR and the ex- 

ectation in insurance and its regulatory frameworks as Solvency 

I and Swiss Solvency Test, we wish to generalize our findings to 

he more general monetary risk measures. For the monetary risk 

easure, the technical difficulty of the problem to find Pareto op- 

imal contracts with multiple indemnity environments is to include 

utually exclusive background risk into the risk sharing approach. 

lso, a more realistic situation would be that the seller is endowed 

ith background risk that is due to potential other business lines 

see, e.g., Chi & Wei, 2020; Dana & Scarsini, 2007 ). We leave these 

wo problems open for further research. 
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Fig. A.2. Constructions of ˜ R k (left) and ˜ I k (right), under the conditions that a ≥ 0 

and I −1+ 
k 

( c ) ≤ R −1+ 
k 

( a ) < ess sup ( X ) , for VaR risk preferences (Sub-sub-case 1.1.1); 

linear R k and I k are chosen for graphical convenience, and ˜ R k and ˜ I k are bold-faced. 
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ppendix A. Proof of Theorem 3.1 

For any b ∈ 

[
0 , b 

]
and ( I 1 , . . . , I m 

) ∈ I, define 

 := VaR α

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

R k ( X ) I { Y = k } 

) 

, 

c := VaR β

( 

b × I { Y =0 } + 

m ∑ 

k =1 

I k ( X ) I { Y = k } 

) 

. 

or any k = 1 , . . . , m, define the right-continuous inverse of I k in c

s 

 

−1+ 
k ( c ) := inf { x ∈ [ 0 , ess sup ( X ) ] : I k ( x ) > c } , 

here, by convention, inf ∅ = ess sup (X ) . Moreover, define similarly 

he right-continuous inverse of R k in a as 

 

−1+ 
k ( a ) := inf { x ∈ [ 0 , ess sup ( X ) ] : R k ( x ) > a } . 

First, we assume a ≥ 0 . For each k = 1 , . . . , m, consider the fol-

owing two cases and the corresponding sub-cases to construct the 

odification 

˜ I k . 

Case 1: Assume that I −1+ 
k 

(c) ≤ R −1+ 
k 

(a ) . 

Sub-case 1.1: Consider that I −1+ 
k 

(c) < ess sup (X ) . De- 

fine ˜ I k (x ) := (x − I −1+ 
k 

(c) + c) + , and hence 

˜ R k (x ) = x − (x − I −1+ 
k 

(c) + c) + , for any 

x ∈ [0 , ess sup (X )] . Note that, by definition, it 

holds for any x ∈ [0 , ess sup (X )] that ˜ I k (x ) > c if 

and only if I k (x ) > c. Moreover, using the iden- 

tity that I k (I −1+ 
k 

(c)) + R k (I −1+ 
k 

(c)) = I −1+ 
k 

(c) , 

it holds for any x ∈ [0 , ess sup (X )] that 
˜ R k (x ) ≤ I −1+ 

k 
(c) − c = R k (I −1+ 

k 
(c)) ≤ a, where 

the last inequality is true regardless of the 

following two sub-sub-cases: 

Sub-sub-case 1.1.1: Consider further that R −1+ 
k 

(a ) < ess sup (X ) . 

By the monotonicity of R k , it follows 

R k (I −1+ 
k 

(c)) ≤ R k (R −1+ 
k 

(a )) = a . 

Sub-sub-case 1.1.2: Consider further that R −1+ 
k 

(a ) = ess sup (X ) . 

Necessarily, for any x ∈ [0 , ess sup (X )] , 

it holds that R k (x ) ≤ a ; in particular, 

R k (I −1+ 
k 

(c)) ≤ a . 

Sub-case 1.2: Consider that I −1+ 
k 

(c) = ess sup (X ) . Necessar- 

ily, for any x ∈ [0 , ess sup (X )] , I k (x ) ≤ c. By

the case condition that I −1+ 
k 

(c) ≤ R −1+ 
k 

(a ) , 

necessarily, R −1+ 
k 

(a ) = ess sup (X ) , and 

hence, for any x ∈ [0 , ess sup (X )] , R k (x ) ≤ a .

Moreover, ess sup (X ) must be finite. In- 

deed, if ess sup (X ) = ∞ , the facts that, 

I k (2(a + c)) ≤ c and R k (2(a + c)) ≤ a, implies that 

2(a + c) = I k (2(a + c)) + R k (2(a + c)) ≤ a + c, 

which leads to a contradiction. Define ˜ I k (x ) := 

(x − ess sup (X ) + I k ( ess sup (X ))) + , and hence 
˜ R k (x ) = x − (x − ess sup (X ) + I k ( ess sup (X ))) + , 
for any x ∈ [0 , ess sup (X )] . Note that, by defi- 

nition, it holds for any x ∈ [0 , ess sup (X )] that 
˜ I k (x ) ≤ c. Moreover, using the identity that 

I k ( ess sup (X )) + R k ( ess sup (X )) = ess sup (X ) , it 

holds for any x ∈ [0 , ess sup (X )] that ˜ R k (x ) ≤
ess sup (X ) − I k ( ess sup (X )) = R k ( ess sup (X )) . Re- 

call that, for any x ∈ [0 , ess sup (X )] , R k (x ) ≤ a ;

in particular, R k ( ess sup (X )) ≤ a . Hence, for any 

x ∈ [0 , ess sup (X )] , ˜ R k (x ) ≤ a . 

In both sub-cases 1.1 and 1.2, the constructed 

˜ I k sat- 

isfies that, for any x ∈ [0 , ess sup (X )] , ˜ I k (x ) > c if and

only if I (x ) > c. Therefore, 
k 

9 
P 

(
I k ( X ) I { Y = k } > c 

)
= P ( { I k ( X ) > c} ∩ { Y = k } ) 

+ P ( { 0 > c} ∩ { Y � = k } ) 
= P 

({ ̃ I k ( X ) > c} ∩ { Y = k } )
+ P ( { 0 > c} ∩ { Y � = k } ) 

= P 

(
˜ I k ( X ) I { Y = k } > c 

)
. 

Moreover, in both sub-cases 1.1 and 1.2, the 

constructed 

˜ R k satisfies ˜ R k ( x ) ≤ a for any x ∈ 

[ 0 , ess sup ( X ) ] . Therefore, 

P 
(
R k ( X ) I { Y= k } > a 

)
= P ( { R k ( X ) > a } ∩ { Y = k } ) ≥ 0 

= P 
(

˜ R k ( X ) I { Y= k } > a 
)
. 

Case 2: Assume that R −1+ 
k 

( a ) ≤ I −1+ 
k 

( c ) . If R −1+ 
k 

( a ) < 

ess sup ( X ) , define ˜ R k ( x ) := 

(
x − R −1+ 

k 
( a ) + a 

)
+ , 

and hence ˜ I k ( x ) = x −
(
x − R −1+ 

k 
( a ) + a 

)
+ , for any 

x ∈ [ 0 , ess sup ( X ) ] . If R −1+ 
k 

( a ) = ess sup ( X ) , define 

˜ R k ( x ) := ( x − ess sup ( X ) + R k ( ess sup ( X ) ) ) + , and 

hence ˜ I k ( x ) = x − ( x − ess sup ( X ) + R k ( ess sup ( X ) ) ) + , 
for any x ∈ [ 0 , ess sup ( X ) ] . By following similar argu- 

ments as in Case 1 with interchanging the roles of 

I k (or the constructed 

˜ I k ) and R k (or the constructed 

˜ R k ), as well as of a and c, one can show that the 

constructed 

˜ I k and 

˜ R k satisfy 

P 

(
I k ( X ) I { Y = k } > c 

)
≥ P 

(
˜ I k ( X ) I { Y = k } > c 

)
;

P 

(
R k ( X ) I { Y = k } > a 

)
= P 

(
˜ R k ( X ) I { Y = k } > a 

)
. 

or the ease of understanding these cases above, Fig. A.2 illustrates 

he modification arguments of Sub-sub-case 1.1.1. 

Therefore, for any k = 1 , . . . , m, the constructed 

˜ I k and 

˜ R k sat- 

sfy 

P 

(
I k ( X ) I { Y = k } > c 

)
≥ P 

(
˜ I k ( X ) I { Y = k } > c 

)
and P 

(
R k ( X ) I { Y = k } > a 

)
≥ P 

(
˜ R k ( X ) I { Y = k } > a 

)
. 

y definition, 

 = inf 

{ 

z ∈ R : P 

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

R k ( X ) I { Y = k } > z 

) 

≤ α

} 

nd 

 = inf 

{ 

z ∈ R : P 

( 

b × I { Y =0 } + 

m ∑ 

k =1 

I k ( X ) I { Y = k } > z 

) 

≤ β

} 

. 

herefore, by mutual exclusivity, 

P 

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

˜ R k ( X ) I { Y = k } > a 

) 
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F

= P 

(
−b × I { Y =0 } > a 

)
+ 

m ∑ 

k =1 

P 

(
˜ R k ( X ) I { Y = k } > a 

)

≤ P 

(
−b × I { Y =0 } > a 

)
+ 

m ∑ 

k =1 

P 

(
R k ( X ) I { Y = k } > a 

)

= P 

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

R k ( X ) I { Y = k } > a 

) 

≤ α

nd 

P 

( 

b × I { Y =0 } + 

m ∑ 

k =1 

˜ I k ( X ) I { Y = k } > c 

) 

= P 

(
b × I { Y =0 } > c 

)
+ 

m ∑ 

k =1 

P 

(
˜ I k ( X ) I { Y = k } > c 

)

≤ P 

(
b × I { Y =0 } > c 

)
+ 

m ∑ 

k =1 

P 

(
I k ( X ) I { Y = k } > c 

)

= P 

( 

b × I { Y =0 } + 

m ∑ 

k =1 

I k ( X ) I { Y = k } > c 

) 

≤ β. 

y definition, it holds that 

VaR α

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

˜ R k ( X ) I { Y = k } 

) 

= inf 

{ 

z ∈ R : P 

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

˜ R k ( X ) I { Y = k } > z 

) 

≤ α

} 

≤ a. 

imilarly, it holds that 

aR β

( 

b × I { Y =0 } + 

m ∑ 

k =1 

˜ I k ( X ) I { Y = k } 

) 

≤ c. 

ence, ( ̃ I 1 , . . . , ̃  I m 

) ∈ I 1 and 

F (b, ( ̃ I 1 , . . . , ̃  I m 

)) 

= VaR α

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

˜ R k ( X ) I { Y = k } 

) 

+ VaR β

( 

b × I { Y =0 } + 

m ∑ 

k =1 

˜ I k ( X ) I { Y = k } 

) 

≤ a + c 

= F ( b, (I 1 , . . . , I m 

) ) . 

Following, we consider the case a < 0 . For this case, the defini-

ion of VaR together with the nonnegative property of R k (X ) im- 

lies 

 = −b and P ( Y = 0 ) ≥ 1 − α. 

e can construct ˜ I k (x ) as 

˜ 
 k (x ) = 

{
(x − I −1+ 

k 
( c ) + c) + , I −1+ 

k 
( c ) < ess sup ( X ) ;

x − (x − c) + , I −1+ 
k 

( c ) = ess sup ( X ) , 

hen 

 

(
I k ( X ) I { Y = k } > c 

)
= P 

(
˜ I k ( X ) I { Y = k } > c 

)
, ∀ k = 1 , · · · , m, 
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hich in turn implies 

aR β

( 

b × I { Y =0 } + 

m ∑ 

k =1 

˜ I k ( X ) I { Y = k } 

) 

≤ c. 

n the other hand, it is trivial that 

aR α

(
−b × I { Y =0 } + 

∑ m 

k =1 
˜ R k ( X ) I { Y = k } 

)
= −b because of 

 ( Y = 0 ) ≥ 1 − α. As a consequence, we have F (b, ( ̃ I 1 , . . . , ̃  I m 

)) ≤
 ( b, (I 1 , . . . , I m 

) ) . The proof is finally complete. 

ppendix B. Proof of Proposition 3.1 

First, note that 

max 

{ 

F −1 
X| Y 

(
1 − α

p 
| 1 

)
, F −1 

X| Y 
(

1 − α

1 − p 
| 2 

)} 

< F −1 
X ( 1 − α) 

< min 

{ 

F −1 
X| Y 

(
1 − α

p 
| 1 

)
, F −1 

X| Y 
(

1 − α

1 − p 
| 2 

)} 

. 

ndeed, if 0 < p ≤ α < 1 , then 1 − α
p ≤ 0 and 

1 −α
1 −p ≤ 1 . Therefore,

 

−1 
X| Y 

(
1 − α

p | 1 
)

= 0 , while F −1 
X ( 1 − α) < F −1 

X| Y 
(

1 −α
1 −p | 2 

)
is equivalent 

o 

 − α < F X 

(
F −1 

X| Y 
(

1 − α

1 − p 
| 2 

))
= F X| Y 

(
F −1 

X| Y 
(

1 − α

1 − p 
| 2 

)
| 1 

)
p + F X| Y 

(
F −1 

X| Y 
(

1 − α

1 − p 
| 2 

)
| 2 

)
( 1 − p ) 

= F X| Y 
(

F −1 
X| Y 

(
1 − α

1 − p 
| 2 

)
| 1 

)
p + 1 − α, 

hich is true. If 0 < α < p < 1 , then 1 − α
p > 0 and 

1 −α
1 −p > 1 . There-

ore, F −1 
X| Y 

(
1 −α
1 −p | 2 

)
= ess sup ( X ) , while F −1 

X| Y 
(
1 − α

p | 1 
)

< F −1 
X ( 1 − α) is 

quivalent to 

 − α > F X 

(
F −1 

X| Y 
(

1 − α

p 
| 1 

))
= F X| Y 

(
F −1 

X| Y 
(

1 − α

p 
| 1 

)
| 1 

)
p + F X| Y 

(
F −1 

X| Y 
(

1 − α

p 
| 1 

)
| 2 

)
( 1 − p ) 

= p − α + F X| Y 
(

F −1 
X| Y 

(
1 − α

p 
| 1 

)
| 2 

)
( 1 − p ) , 

hich is true. These together show that F −1 
X| Y 

(
1 − α

p | 1 
)

< 

 

−1 
X ( 1 − α) < F −1 

X| Y 
(

1 −α
1 −p | 2 

)
. Similar arguments yield that 

 

−1 
X| Y 

(
1 − α

1 −p | 2 
)

< F −1 
X ( 1 − α) < F −1 

X| Y 
(

1 −α
p | 1 ). 

Consider the four cases separately that, (i) Case 1: θ1 = 1 

nd θ2 = 1 , (ii) Case 2: θ1 = 1 and θ2 = −1 , (iii) Case 3: θ1 =
1 and θ2 = 1 , and (iv) Case 4: θ1 = −1 and θ2 = −1 . Since

= β, P ( Y = 0 ) = 0 , and b = 0 , it follows from a symmetry ar-

ument that if 
(
I ∗
1 
, I ∗

2 

)
is optimal among Cases 1 and 2, then 

Id − I ∗
1 
, Id − I ∗

2 

)
is also optimal among Cases 4 and 3. Then, 

(
I ∗
1 
, I ∗

2 

)
nd 

(
Id − I ∗

1 
, Id − I ∗

2 

)
are both optimal for the finite dimensional 

roblem (3.2), and it thus suffices to consider only the first two 

ases. 

For Case 1, the finite dimensional problem (3.2) is optimized 

ith I 1 ( x ) = ( x − d 1 ) + , with R 1 ( x ) = x ∧ d 1 , and I 2 ( x ) = ( x − d 2 ) + ,
ith R 2 ( x ) = x ∧ d 2 , for some d 1 , d 2 ∈ [ 0 , ess sup ( X ) ] . To explicitly

ptimize the sum of VaR of buyer and seller, there are two sub- 

ases. 

Consider the first sub-case that d 1 ≤ d 2 . The unconditional 

umulative distribution functions of the retained loss of buyer 

 B (0 ,R 1 ,R 2 ;X,Y ) and the indemnified loss of seller F S (0 ,I 1 ,I 2 ;X,Y ) are re- 

pectively given by 

 B (0 ,R 1 ,R 2 ;X,Y ) ( x ) = 

{ 

F X ( x ) for x ∈ [ 0 , d 1 ) ;
p + ( 1 − p ) F X| Y ( x | 2 ) for x ∈ [ d 1 , d 2 ) ;
1 for x ∈ [ d 2 , ess sup ( X ) ] ,
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nd F S (0 ,I 1 ,I 2 ;X,Y ) (x ) = pF X| Y (x + d 1 | 1) + (1 − p) F X| Y (x + d 2 | 2) , for

 ∈ [0 , ess sup (X )] ; recall that B (0 , R 1 , R 2 ; X, Y ) and S (0 , I 1 , I 2 ; X, Y )

re defined in (2.1) and (2.2) . In this sub-case that d 1 ≤ d 2 , there

re five further sub-cases to consider in order to explicitly op- 

imize the sum of VaR of buyer and seller. They are listed as 

ollows: 

(i) p + (1 − p) F X| Y (d 2 | 2) ≤ 1 − α < 1 ; 

(ii) max { p + (1 − p) F X| Y (d 1 | 2) , pF X| Y (d 1 | 1) + (1 −
p) F X| Y (d 2 | 2) } ≤ 1 − α < p + (1 − p) F X| Y (d 2 | 2) ; 

(iii) min { p + (1 − p) F X| Y (d 1 | 2) , pF X| Y (d 1 | 1) + (1 − p) F X| Y (d 2 | 2) } ≤
1 − α < max { p + (1 − p) F X| Y (d 1 | 2) , pF X| Y (d 1 | 1) + (1 − p) F X| Y (d 2 | 2) } ; 

(iv) F X (d 1 ) ≤ 1 − α < min { p + (1 − p) F X| Y (d 1 | 2) , pF X| Y (d 1 | 1) + (1 − p) F X| Y (d 2 | 2) } ; 
(v) 0 < 1 − α < F X (d 1 ) . 

For each of these further sub-cases, the sum of VaR of buyer 

nd seller (that is F B (0 , 1 , d 1 , 1 , d 2 ) + F S (0 , −1 , d 1 , −1 , d 2 ) ) is locally

ptimized, with the locally optimized d ∗
1 

and d ∗
2 
, as well as the lo-

ally optimal objective value, under various conditions on the pa- 

ameters p and α, and the conditional distribution functions of the 

oss. More specifically, they are summarized as follows: 

(i) 
• If 1 − α < p, (i) cannot hold. 
• If p ≤ 1 − α, d ∗

1 
= d ∗

2 
∈ [0 , F −1 

X| Y (1 − α
1 −p | 2)] , with

F B (0 , 1 , d ∗
1 
, 1 , d ∗

2 
) + F S (0 , −1 , d ∗

1 
, −1 , d ∗

2 
) = F −1 

X 
(1 − α) . 

(ii) 
• If 1 − α < p, (ii) cannot hold. 
• If p ≤ 1 − α and p < α, d ∗

1 
∈ [0 , F −1 

X| Y (1 − α
1 −p | 2)] and

d ∗2 = F −1 
X| Y ( 

1 −α−pF X| Y (d ∗
1 
| 1) 

1 −p | 2) , with F B (0 , 1 , d ∗1 , 1 , d 
∗
2 ) +

F S (0 , −1 , d ∗1 , −1 , d ∗2 ) = F −1 
X| Y (1 − α

1 −p | 2) . 

• If α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

p | 1) < F −1 
X| Y (1 − α

1 −p | 2) ,

d ∗
1 

∈ [ F −1 
X| Y (1 − α

p | 1) , F −1 
X| Y (1 − α

1 −p | 2)] and d ∗
2 

=
F −1 

X| Y ( 
1 −α−pF X| Y (d ∗

1 
| 1) 

1 −p | 2) , with F B (0 , 1 , d ∗1 , 1 , d 
∗
2 ) +

F S (0 , −1 , d ∗1 , −1 , d ∗2 ) = F −1 
X| Y (1 − α

1 −p | 2) . 

• If α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

1 −p | 2) ≤ F −1 
X| Y (1 − α

p | 1) , 

d ∗
1 

= F −1 
X| Y (1 − α

1 −p | 2) and d ∗
2 

= ess sup (X ) , with 

F B (0 , 1 , d ∗
1 
, 1 , d ∗

2 
) + F S (0 , −1 , d ∗

1 
, −1 , d ∗

2 
) = F −1 

X| Y (1 − α
p | 1) . 

(iii) There are two further sub-sub-cases. 

(I) Suppose that p + (1 − p) F X| Y (d 1 | 2) ≤ 1 − α < 

pF X| Y (d 1 | 1) + (1 − p) F X| Y (d 2 | 2) . 
• If 1 − α < p, (iii, I) cannot hold. 
• If p ≤ 1 − α and p < α, d ∗

1 
∈ [0 , F −1 

X| Y (1 − α
1 −p | 2)]

and d ∗
2 

∈ (F −1 
X| Y ( 

1 −α−pF X| Y (d ∗
1 
| 1) 

1 −p | 2) , ess sup (X )] , 

with F B (0 , 1 , d ∗
1 
, 1 , d ∗

2 
) + F S (0 , −1 , d ∗

1 
, −1 , d ∗

2 
) =

F −1 
X| Y (1 − α

1 −p | 2) . 

• If α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

p | 1) < F −1 
X| Y (1 −

α
1 −p | 2) , d ∗

1 
∈ (F −1 

X| Y (1 − α
p | 1) , F −1 

X| Y (1 − α
1 −p | 2)]

and d ∗2 ∈ (F −1 
X| Y ( 

1 −α−pF X| Y (d ∗
1 
| 1) 

1 −p | 2) , ess sup (X )] , 

with F B (0 , 1 , d ∗1 , 1 , d 
∗
2 ) + F S (0 , −1 , d ∗1 , −1 , d ∗2 ) =

F −1 
X| Y (1 − α

1 −p | 2) . 

• If α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

1 −p | 2) ≤ F −1 
X| Y (1 − α

p | 1) , 

there is no solution. 

(II) Suppose that pF X| Y (d 1 | 1) + (1 − p) F X| Y (d 2 | 2) ≤ 1 − α <

p + (1 − p) F X| Y (d 1 | 2) . 

• If 1 − α < p < α, d ∗
1 

= 0 and d ∗
2 

= F −1 
X| Y ( 

1 −α
1 −p | 2) , with

F B (0 , 1 , d ∗
1 
, 1 , d ∗

2 
) + F S (0 , −1 , d ∗

1 
, −1 , d ∗

2 
) = 0 . 

• If 1 − α < p and α ≤ p, d ∗
1 

∈ [0 , F −1 
X| Y (1 − α

p | 1)] 

and d ∗
2 

= ess sup (X ) , with F B (0 , 1 , d ∗
1 
, 1 , d ∗

2 
) +

F S (0 , −1 , d ∗
1 
, −1 , d ∗

2 
) = F −1 

X| Y (1 − α
p | 1) . 
11 
• If p ≤ 1 − α and p < α, there is no solution. 
• If α ≤ p ≤ 1 − α and F −1 

X| Y (1 − α
p | 1) ≤ F −1 

X| Y (1 − α
1 −p | 2) , 

there is no solution. 
• If α ≤ p ≤ 1 − α and F −1 

X| Y (1 − α
1 −p | 2) < F −1 

X| Y (1 − α
p | 1) ,

d ∗
1 

∈ (F −1 
X| Y (1 − α

1 −p | 2) , F −1 
X| Y (1 − α

p | 1)] , d ∗
2 

= ess sup (X ) ,

with F B (0 , 1 , d ∗
1 
, 1 , d ∗

2 
) + F S (0 , −1 , d ∗

1 
, −1 , d ∗

2 
) =

F −1 
X| Y (1 − α

p | 1) . 

(iv) 
• If 1 − α < p < α, d ∗

1 
= 0 and d ∗

2 
∈ 

(F −1 
X| Y ( 

1 −α
1 −p | 2) , ess sup (X )] , with F B (0 , 1 , d ∗

1 
, 1 , d ∗

2 
) +

F S (0 , −1 , d ∗
1 
, −1 , d ∗

2 
) = 0 . 

• If 1 − α < p and α ≤ p, there is no solution. 
• If p ≤ 1 − α and p < α, there is no solution. 
• If α ≤ p ≤ 1 − α, there is no solution. 

(v) d ∗
1 

∈ (F −1 
X 

(1 − α) , ess sup (X )] and d ∗
2 

∈ [ d ∗
1 
, ess sup (X )] , with

F B (0 , 1 , d ∗1 , 1 , d 
∗
2 ) + F S (0 , −1 , d ∗1 , −1 , d ∗2 ) = F −1 

X 
(1 − α) . 

ince the objective function is locally optimized for each of these 

urther sub-cases, the locally optimal objective values under vari- 

us conditions need to be aggregated and compared. Therefore, the 

ollowing summarizes the first sub-case that d ∗
1 

≤ d ∗
2 
. 

(1) If p < α and p ≤ 1 − α, d ∗1 ∈ [0 , F −1 
X| Y (1 − α

1 −p | 2)] and d ∗2 ∈
[ F −1 

X| Y ( 
1 −α−pF X| Y (d ∗

1 
| 1) 

1 −p | 2) , ess sup (X )] , with F B (0 , 1 , d ∗1 , 1 , d 
∗
2 ) +

F S (0 , −1 , d ∗1 , −1 , d ∗2 ) = F −1 
X| Y (1 − α

1 −p | 2) . 

(2) If α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

p | 1) < F −1 
X| Y (1 − α

1 −p | 2) ,

d ∗1 ∈ [ F −1 
X| Y (1 − α

p | 1) , F −1 
X| Y (1 − α

1 −p | 2)] and d ∗2 ∈
[ F −1 

X| Y ( 
1 −α−pF X| Y (d ∗

1 
| 1) 

1 −p | 2) , ess sup (X )] , with F B (0 , 1 , d ∗
1 
, 1 , d ∗

2 
) +

F S (0 , −1 , d ∗1 , −1 , d ∗2 ) = F −1 
X| Y (1 − α

1 −p | 2) . 

(3) If α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

p | 1) = F −1 
X| Y (1 − α

1 −p | 2) , d ∗1 =
F −1 

X| Y (1 − α
p | 1) = F −1 

X| Y (1 − α
1 −p | 2) and d ∗2 = ess sup (X ) , with

F B (0 , 1 , d ∗1 , 1 , d 
∗
2 ) + F S (0 , −1 , d ∗1 , −1 , d ∗2 ) = F −1 

X| Y (1 − α
p | 1) = 

F −1 
X| Y (1 − α

1 −p | 2) . 

(4) If α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

1 −p | 2) < F −1 
X| Y (1 − α

p | 1) , d ∗1 ∈
[ F −1 

X| Y (1 − α
1 −p | 2) , F −1 

X| Y (1 − α
p | 1)] and d ∗2 = ess sup (X ) , with

F B (0 , 1 , d ∗1 , 1 , d 
∗
2 ) + F S (0 , −1 , d ∗1 , −1 , d ∗2 ) = F −1 

X| Y (1 − α
p | 1) . 

(5) If α ≤ p and 1 − α < p, d ∗1 ∈ [0 , F −1 
X| Y (1 − α

p | 1)] and d ∗2 =
ess sup (X ) , with F B (0 , 1 , d ∗1 , 1 , d 

∗
2 ) + F S (0 , −1 , d ∗1 , −1 , d ∗2 ) =

F −1 
X| Y (1 − α

p | 1) . 

(6) If 1 − α < p < α, d ∗1 = 0 and d ∗2 ∈ [ F −1 
X| Y ( 

1 −α
1 −p | 2) , ess sup (X )] ,

with F B (0 , 1 , d ∗
1 
, 1 , d ∗

2 
) + F S (0 , −1 , d ∗

1 
, −1 , d ∗

2 
) = 0 . 

For the second sub-case that d 2 ≤ d 1 , the above summary also 

olds by relabeling d ∗
1 

and d ∗
2 
, as well as p = P (Y = 1) and 1 − p =

 (Y = 2) . 

Again, since the objective function is locally optimized for the 

wo sub-cases that d 1 ≤ d 2 and d 2 ≤ d 1 , the locally optimal objec- 

ive values under various conditions need to be aggregated and 

ompared. Therefore, for Case 1 that θ1 = 1 and θ2 = 1 , it holds 

hat: 

(1) If p < α and p ≤ 1 − α, 

• d ∗
1 

∈ [0 , F −1 
X| Y (1 − α

1 −p | 2)] and d ∗
2 

∈ 

[ F −1 
X| Y ( 

1 −α−pF X| Y (d ∗
1 
| 1) 

1 −p | 2) , ess sup (X )] , or 

• d ∗
1 

= ess sup (X ) and d ∗
2 

∈ [0 , F −1 
X| Y (1 − α

1 −p | 2)] , 

with F B (0 , 1 , d ∗
1 
, 1 , d ∗

2 
) + F S (0 , −1 , d ∗

1 
, −1 , d ∗

2 
) = F −1 

X| Y (1 −
α

1 −p | 2) . 

(2) If α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

p | 1) < F −1 
X| Y (1 − α

1 −p | 2) , 
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• d ∗
1 

∈ [ F −1 
X| Y (1 − α

p | 1) , F −1 
X| Y (1 − α

1 −p | 2)] and d ∗
2 

∈
[ F −1 

X| Y ( 
1 −α−pF X| Y (d ∗

1 
| 1) 

1 −p | 2) , ess sup (X )] , or 

• d ∗
1 

= ess sup (X ) and d ∗
2 

∈ [ F −1 
X| Y (1 − α

p | 1) , F −1 
X| Y (1 − α

1 −p | 2)] , 

with F B (0 , 1 , d ∗
1 
, 1 , d ∗

2 
) + F S (0 , −1 , d ∗

1 
, −1 , d ∗

2 
) = F −1 

X| Y (1 −
α

1 −p | 2) . 

(3) If α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

p | 1) = F −1 
X| Y (1 − α

1 −p | 2) , 

• d ∗
1 

= F −1 
X| Y (1 − α

p | 1) = F −1 
X| Y (1 − α

1 −p | 2) and d ∗
2 

=
ess sup (X ) , or 

• d ∗1 = ess sup (X ) and d ∗2 = F −1 
X| Y (1 − α

p | 1) = F −1 
X| Y (1 −

α
1 −p | 2) , 

with F B (0 , 1 , d ∗
1 
, 1 , d ∗

2 
) + F S (0 , −1 , d ∗

1 
, −1 , d ∗

2 
) = F −1 

X| Y (1 −
α
p | 1) = F −1 

X| Y (1 − α
1 −p | 2) . 

(4) If α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

1 −p | 2) < F −1 
X| Y (1 − α

p | 1) , 

• d ∗
1 

∈ [ F −1 
X| Y (1 − α

1 −p | 2) , F −1 
X| Y (1 − α

p | 1)] and d ∗
2 

= ess sup (X ) ,

or 

• d ∗1 ∈ [ F −1 
X| Y ( 

1 −α−(1 −p) F X| Y (d ∗
2 
| 2) 

p | 1) , ess sup (X )] and 

d ∗2 ∈ [ F −1 
X| Y (1 − α

1 −p | 2) , F −1 
X| Y (1 − α

p | 1)] , 

with F B (0 , 1 , d ∗1 , 1 , d 
∗
2 ) + F S (0 , −1 , d ∗1 , −1 , d ∗2 ) = F −1 

X| Y (1 − α
p | 1) . 

(5) If α ≤ p and 1 − α < p, 

• d ∗
1 

∈ [0 , F −1 
X| Y (1 − α

p | 1)] and d ∗
2 

= ess sup (X ) , or 

• d ∗
1 

∈ [ F −1 
X| Y ( 

1 −α−(1 −p) F X| Y (d ∗
2 
| 2) 

p | 1) , ess sup (X )] and 

d ∗
2 

∈ [0 , F −1 
X| Y (1 − α

p | 1)] , 

with F B (0 , 1 , d ∗
1 
, 1 , d ∗

2 
) + F S (0 , −1 , d ∗

1 
, −1 , d ∗

2 
) = F −1 

X| Y (1 − α
p | 1) . 

(6) If 1 − α < p < α, 

• d ∗1 = 0 and d ∗2 ∈ [ F −1 
X| Y ( 

1 −α
1 −p | 2) , ess sup (X )] , or 

• d ∗1 ∈ [ F −1 
X| Y ( 

1 −α
p | 1) , ess sup (X )] and d ∗2 = 0 , 

with F B (0 , 1 , d ∗
1 
, 1 , d ∗

2 
) + F S (0 , −1 , d ∗

1 
, −1 , d ∗

2 
) = 0 . 

For Case 2 that θ1 = 1 and θ2 = −1 , the finite dimensional 

roblem (3.2) is optimized with I 1 (x ) = (x − d 1 ) + , with R 1 (x ) =
 ∧ d 1 , and I 2 (x ) = x ∧ d 2 , with R 2 (x ) = (x − d 2 ) + , for some d 1 , d 2 ∈
0 , ess sup (X )] . The unconditional cumulative distribution functions 

f the retained loss of the buyer F B (0 ,R 1 ,R 2 ;X,Y ) and the indemnified 

oss of the seller F S (0 ,R 1 ,R 2 ;X,Y ) are respectively given by 

 B (0 ,R 1 ,R 2 ;X,Y ) ( x ) 

= 

{
pF X| Y ( x | 1 ) + ( 1 − p ) F X| Y ( x + d 2 | 2 ) for x ∈ [ 0 , d 1 ) ;
p + ( 1 − p ) F X| Y ( x + d 2 | 2 ) for x ∈ [ d 1 , ess sup ( X ) ] , 

 S (0 ,I 1 ,I 2 ;X,Y ) ( x ) 

= 

{
pF X| Y ( x + d 1 | 1 ) + ( 1 − p ) F X| Y ( x | 2 ) for x ∈ [ 0 , d 2 ) ;
pF X| Y ( x + d 1 | 1 ) + ( 1 − p ) for x ∈ [ d 2 , ess sup ( X ) ] . 

here are seven sub-cases to consider in order to explicitly opti- 

ize the sum of VaR of buyer and seller, which are listed as fol-

ows: 

(i) max { p + (1 − p) F X| Y (d 1 + d 2 | 2) , pF X| Y (d 1 + d 2 | 1) + (1 −
p) } ≤ 1 − α < 1 ; 

(ii) min { p + (1 − p) F X| Y (d 1 + d 2 | 2) , pF X| Y (d 1 + d 2 | 1) + (1 − p) } ≤
1 − α < max { p + (1 − p) F X| Y (d 1 + d 2 | 2) , pF X| Y (d 1 + d 2 | 1) + 

(1 − p) } , which induces two further sub-cases for simplify- 

ing the minimum and maximum; 

(iii) max { pF X| Y (d 1 | 1) + (1 − p) F X| Y (d 1 + d 2 | 2) , pF X| Y (d 1 + d 2 | 1) + 

(1 − p) F X| Y (d 2 | 2) } ≤ 1 − α < min { p + (1 − p) F X| Y (d 1 + 

d 2 | 2) , pF X| Y (d 1 + d 2 | 1) + (1 − p) } ; 
(iv) min { pF X| Y (d 1 | 1) + (1 − p) F X| Y (d 1 + d 2 | 2) , pF X| Y (d 1 + d 2 | 1) + 

(1 − p) F X| Y (d 2 | 2) } ≤ 1 − α < max { pF X| Y (d 1 | 1) + (1 −
p) F X| Y (d 1 + d 2 | 2) , pF X| Y (d 1 + d 2 | 1) + (1 − p) F X| Y (d 2 | 2) } , 
which induces two further sub-cases for simplifying the 

minimum and maximum; 
12 
(v) max { (1 − p) F X| Y (d 2 | 2) , pF X| Y (d 1 | 1) } ≤ 1 − α < 

min { pF X| Y (d 1 | 1) + (1 − p) F X| Y (d 1 + d 2 | 2) , pF X| Y (d 1 + d 2 | 1) + 

(1 − p) F X| Y (d 2 | 2) } ; 
(vi) min { (1 − p) F X| Y (d 2 | 2) , pF X| Y (d 1 | 1) } ≤ 1 − α < max { (1 −

p) F X| Y (d 2 | 2) , pF X| Y (d 1 | 1) } , which induces two further sub- 

cases for simplifying the minimum and maximum; 

(vii) 0 < 1 − α < min { (1 − p) F X| Y (d 2 | 2) , pF X| Y (d 1 | 1) } . 
For each of these sub-cases, the sum of VaR of buyer 

nd seller is locally optimized (that is F B (0 , 1 , d 1 , −1 , d 2 ) +
 S (0 , −1 , d 1 , 1 , d 2 ) ), with the locally optimized d ∗1 and d ∗2 , as well

s the locally optimal objective value, under various conditions on 

he parameters p and α, and the conditional distributions of the 

oss. For example, for (i), 

• if p < α or 1 − α < p, (i) cannot hold; 
• if α ≤ p ≤ 1 − α and F −1 

X| Y (1 − α
p | 1) < F −1 

X| Y (1 − α
1 −p | 2) ,

d ∗1 ∈ [0 , F −1 
X| Y (1 − α

p | 1)] and d ∗2 = F −1 
X| Y (1 − α

p | 1) − d ∗1 , with

F B (0 , 1 , d ∗1 , −1 , d ∗2 ) + F S (0 , −1 , d ∗1 , 1 , d 
∗
2 ) = F −1 

X| Y (1 − α
1 −p | 2) ; 

• if α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

1 −p | 2) ≤ F −1 
X| Y (1 − α

p | 1) , 

d ∗1 ∈ [0 , F −1 
X| Y (1 − α

1 −p | 2)] and d ∗2 = F −1 
X| Y (1 − α

1 −p | 2) − d ∗1 , with

F B (0 , 1 , d ∗1 , −1 , d ∗2 ) + F S (0 , −1 , d ∗1 , 1 , d 
∗
2 ) = F −1 

X| Y (1 − α
p | 1) . 

Since the objective function is locally optimized for each of 

hese sub-cases, the locally optimal objective values under vari- 

us conditions need to be aggregated and compared. Therefore, for 

ase 2 that θ1 = 1 and θ2 = −1 , it holds that: 

(1) If p < α and p ≤ 1 − α, 

• d ∗
1 

∈ [0 , F −1 
X| Y (1 − α

1 −p | 2)] and d ∗
2 

∈ [0 , F −1 
X| Y (1 − α

1 −p | 2) −
d ∗1 ] , or 

• d ∗1 = ess sup (X ) and d ∗2 ∈ [ F −1 
X| Y ( 

1 −α
1 −p | 2) , ess sup (X )] , 

with F B (0 , 1 , d ∗1 , −1 , d ∗2 ) + F S (0 , −1 , d ∗1 , 1 , d 
∗
2 ) = F −1 

X| Y (1 −
α

1 −p | 2) . 

(2) If α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

p | 1) < F −1 
X| Y (1 − α

1 −p | 2) , 

• d ∗
1 

∈ [0 , F −1 
X| Y (1 − α

p | 1)] and d ∗
2 

∈ [ F −1 
X| Y (1 − α

p | 1) −
d ∗

1 
, F −1 

X| Y (1 − α
1 −p | 2) − d ∗

1 
] , or 

• d ∗
1 

∈ (F −1 
X| Y (1 − α

p | 1) , F −1 
X| Y (1 − α

1 −p | 2)] and d ∗
2 

∈ [0 , F −1 
X| Y (1 −

α
1 −p | 2) − d ∗

1 
] , 

with F B (0 , 1 , d ∗
1 
, −1 , d ∗

2 
) + F S (0 , −1 , d ∗

1 
, 1 , d ∗

2 
) = F −1 

X| Y (1 −
α

1 −p | 2) . 

(3) If α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

p | 1) = F −1 
X| Y (1 − α

1 −p | 2) , 

• d ∗1 ∈ [0 , F −1 
X| Y (1 − α

p | 1)] = [0 , F −1 
X| Y (1 − α

1 −p | 2)] and

d ∗2 = F −1 
X| Y (1 − α

p | 1) − d ∗1 = F −1 
X| Y (1 − α

1 −p | 2) − d ∗1 , 

with F B (0 , 1 , d ∗1 , −1 , d ∗2 ) + F S (0 , −1 , d ∗1 , 1 , d 
∗
2 ) = F −1 

X| Y (1 −
α
p | 1) = F −1 

X| Y (1 − α
1 −p | 2) . 

(4) If α ≤ p ≤ 1 − α and F −1 
X| Y (1 − α

1 −p | 2) < F −1 
X| Y (1 − α

p | 1) , 

• d ∗1 ∈ [0 , F −1 
X| Y (1 − α

1 −p | 2)] and d ∗2 ∈ [ F −1 
X| Y (1 − α

1 −p | 2) −
d ∗1 , F 

−1 
X| Y (1 − α

p | 1) − d ∗1 ] , or 

• d ∗
1 

∈ (F −1 
X| Y (1 − α

1 −p | 2) , F −1 
X| Y (1 − α

p | 1)] and d ∗
2 

∈ [0 , F −1 
X| Y (1 −

α
p | 1) − d ∗1 ] , 

with F B (0 , 1 , d ∗
1 
, −1 , d ∗

2 
) + F S (0 , −1 , d ∗

1 
, 1 , d ∗

2 
) = F −1 

X| Y (1 − α
p | 1) . 

(5) If α ≤ p and 1 − α < p, 

• d ∗
1 

∈ [0 , F −1 
X| Y (1 − α

p | 1)] and d ∗
2 

∈ [0 , F −1 
X| Y (1 − α

p | 1) − d ∗
1 
] , or

• d ∗
1 

∈ [ F −1 
X| Y ( 

1 −α
p | 1) , ess sup (X )] and d ∗

2 
= ess sup (X ) , 

with F B (0 , 1 , d ∗
1 
, −1 , d ∗

2 
) + F S (0 , −1 , d ∗

1 
, 1 , d ∗

2 
) = F −1 

X| Y (1 − α
p | 1) . 

(6) If 1 − α < p < α, 

• d ∗
1 

= 0 and d ∗
2 

= 0 , or 

• d ∗1 ∈ [ F −1 
X| Y ( 

1 −α
p | 1) , ess sup (X )] and d ∗2 ∈ 

[ F −1 
X| Y ( 

1 −α
1 −p | 2) , ess sup (X )] , 
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Fig. C.3. Constructions of ˜ R k (left) and ˜ I k (right), under the conditions that a ≥ 0 

and I −1+ 
k 

( c ) ≤ R −1+ 
k 

( a ) < ess sup ( X ) , for TVaR risk preferences (Sub-case 1.1); linear 

R k and I k are chosen for graphical convenience, and ˜ R k and ˜ I k are bold-faced. 

F

t

t

E

E

with F B (0 , 1 , d ∗1 , −1 , d ∗2 ) + F S (0 , −1 , d ∗1 , 1 , d 
∗
2 ) = 0 . 

Finally, the result follows by aggregating and comparing the 

ummaries of Case 1 and Case 2. 

ppendix C. Proof of Theorem 4.1 

For any b ∈ [0 , b ] and (I 1 , . . . , I m 

) ∈ I, define a :=
aR α(−b × I { Y =0 } + 

∑ m 

k =1 R k (X ) I { Y = k } ) and c := VaR β (b × I { Y =0 } + 

 m 

k =1 I k (X ) I { Y = k } ) . Recall the right-continuous inverse functions of 

 k and R k from Appendix A . 

We first assume a ≥ 0 . For each k = 1 , . . . , m, consider the fol-

owing two cases and the corresponding sub-cases to construct the 

odification 

˜ I k . 

Case 1: Assume that I −1+ 
k 

(c) ≤ R −1+ 
k 

(a ) . 

Sub-case 1.1: Consider that R −1+ 
k 

(a ) < ess sup (X ) . Define ˜ R k (x ) := 

x − (x − a ) + + (x − ˜ d k, 2 ) + , and hence ˜ I k (x ) = (x −
a ) + − (x − ˜ d k, 2 ) + , for any x ∈ [0 , ess sup (X )] , where
˜ d k, 2 ∈ [ R −1+ 

k 
(a ) , ess sup (X )] such that 

E 

P [( ̃  R k ( X ) − a ) + | Y = k ] = E 

P 
[
( R k ( X ) − a ) + | Y = k 

]
. 

This implies 

E 

P [( ̃  R k ( X ) − a ) I { X≥R −1+ (a ) } | Y = k ] 

= E 

P [(R k ( X ) − a ) I { X≥R −1+ (a ) } | Y = k ] , 

which can be written as 

E 

P [ ̃  R k ( X ) I { X≥R −1+ (a ) } | Y = k ] 

= E 

P [ R k ( X ) I { X≥R −1+ (a ) } | Y = k ] , 

and 

E 

P [ ̃ I k ( X ) I { X≥R −1+ (a ) } | Y = k ] 

= E 

P [ I k ( X ) I { X≥R −1+ (a ) } | Y = k ] . 

Thus, 

E 

P [( ̃ I k ( X ) − ˜ I k (R 

−1+ 
k ( a ) )) + | Y = k ] 

= E 

P [(I k ( X ) − I k (R 

−1+ 
k ( a ) )) + | Y = k ] . 

By definition, it holds for any x ∈ 

[
0 , R −1+ 

k 
( a ) 

]
that 

˜ I k ( x ) ≤ I k ( x ) . Furthermore, we have ˜ I k 
(
R −1+ 

k 
(a ) 

)
= 

R −1+ 
k 

(a ) − a = I k 
(
R −1+ 

k 
(a ) 

)
≥ c. Therefore, 

E 

P [( ̃ I k ( X ) − c) + | Y = k ] 

= E 

P 

[ (
˜ I k ( X ) − c 

)
+ I { X≤R −1+ 

k 
( a ) } | Y = k 

] 
+ E 

P 

[ (
˜ I k ( X ) − c 

)
+ I { X>R −1+ 

k 
( a ) } | Y = k 

] 
= E 

P 

[ (
˜ I k ( X ) − c 

)
+ I { X≤R −1+ 

k 
( a ) } | Y = k 

] 
+ E 

P 

[ (
˜ I k ( X ) − ˜ I k (R 

−1+ 
k ( a ) ) 

)
+ | Y = k 

] 
+ 

(
˜ I k (R 

−1+ 
k ( a ) ) − c 

)
P 

(
X > R 

−1+ 
k ( a ) | Y = k 

)
≤ E 

P 

[ 
( I k ( X ) − c ) + I { X≤R −1+ 

k 
( a ) } | Y = k 

] 
+ E 

P 

[ (
I k ( X ) − I k (R 

−1+ 
k ( a ) ) 

)
+ | Y = k 

] 
+ 

(
I k (R 

−1+ 
k ( a ) ) − c 

)
P 

(
X > R 

−1+ 
k ( a ) | Y = k 

)
= E 

P 

[ 
( I k ( X ) − c ) + I { X≤R −1+ 

k 
( a ) } | Y = k 

] 
+ E 

P 

[ 
( I k ( X ) − c ) + I { X>R −1+ 

k 
( a ) } | Y = k 

] 
P 
= E [(I k ( X ) − c) + | Y = k ] . B

13 
Sub-case 1.2: Consider that R −1+ 
k 

( a ) = ess sup ( X ) . Necessarily, for 

any x ∈ [ 0 , ess sup ( X ) ] , R k ( x ) ≤ a . Define ˜ R k ( x ) := x −
( x − a ) + , and hence ˜ I k ( x ) = ( x − a ) + , for any x ∈ 

[ 0 , ess sup ( X ) ] . By definition, it holds for any x ∈ 

[ 0 , ess sup ( X ) ] that R k ( x ) ≤ ˜ R k ( x ) ≤ a, and necessar- 

ily ˜ I k ( x ) ≤ I k ( x ) . Therefore, 

E 

P [( ̃  R k ( X ) − a ) + | Y = k ] = 0 

= E 

P 
[
( R k ( X ) − a ) + | Y = k 

]
;

E 

P [( ̃ I k ( X ) − c) + | Y = k ] ≤ E 

P [(I k ( X ) − c) + | Y = k ] . 

In both sub-cases 1.1 and 1.2, the constructed 

˜ I k and 

˜ R k 
satisfy 

E 

P [( ̃ I k ( X ) − c) + | Y = k ] ≤ E 

P [(I k ( X ) − c) + | Y = k ] , 

and 

E 

P [( ̃  R k ( X ) − a ) + | Y = k ] = E 

P 
[
( R k ( X ) − a ) + | Y = k 

]
. 

Case 2: Assume that R −1+ 
k 

( a ) ≤ I −1+ 
k 

( c ) . If I −1+ 
k 

( c ) < ess sup ( X ) , 

define ˜ I k ( x ) := x − ( x − c ) + + (x − ˜ d k, 2 ) + , and 

hence ˜ R k ( x ) = ( x − c ) + − (x − ˜ d k, 2 ) + , for any 

x ∈ [ 0 , ess sup ( X ) ] , where ˜ d k, 2 ∈ 

[
I −1+ 
k 

( c ) , ess sup ( X ) 
]

such that 

E 

P [( ̃ I k ( X ) − c) + | Y = k ] = E 

P 
[
( I k ( X ) − c ) + | Y = k 

]
. 

If I −1+ 
k 

( c ) = ess sup ( X ) , define ˜ I k ( x ) := x − ( x − c ) + , and 

hence ˜ R k ( x ) = ( x − c ) + , for any x ∈ [ 0 , ess sup ( X ) ] . By 

following similar arguments as in Case 1 with inter- 

changing the roles of I k (or the constructed 

˜ I k ) and R k 
(or the constructed 

˜ R k ), as well as of a and c, one can 

show that the constructed 

˜ I k and 

˜ R k satisfy that 

E 

P [( ̃ I k ( X ) − c) + | Y = k ] = E 

P [(I k ( X ) − c) + | Y = k ] ;

E 

P [( ̃  R k ( X ) − a ) + | Y = k ] ≤ E 

P 
[
( R k ( X ) − a ) + | Y = k 

]
. 

or the ease of understanding these cases above, Fig. C.3 illustrates 

he modification arguments of Sub-case 1.1. 

Therefore, for any k = 1 , . . . , m, the constructed 

˜ I k and 

˜ R k satisfy 

hat 

 

P [( ̃ I k ( X ) − c) + | Y = k ] ≤ E 

P [(I k ( X ) − c) + | Y = k ] ;

 

P [( ̃  R k ( X ) − a ) + | Y = k ] ≤ E 

P 
[
( R k ( X ) − a ) + | Y = k 

]
. 

y the dual representation of TVaR ( Rockafellar & Uryasev, 20 0 0 ), 
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VaR α

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

R k ( X ) I { Y = k } 

) 

= inf 
d≥−b 

( 

d + 

1 

α
E 

P 

[ ( 

−b × I { Y =0 } + 

m ∑ 

k =1 

R k ( X ) I { Y = k } − d 

) 

+ 

] ) 

, 

here the infimum can be attained at d ∗ = a . Moreover, 

TVaR β

( 

b × I { Y =0 } + 

m ∑ 

k =1 

I k ( X ) I { Y = k } 

) 

= inf 
e ≥0 

( 

e + 

1 

β
E 

P 

[ ( 

b × I { Y =0 } + 

m ∑ 

k =1 

I k ( X ) I { Y = k } − e 

) 

+ 

] ) 

, 

here the infimum is attained at e ∗ = c. The last two relations im-

ly that 

VaR α

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

˜ R k ( X ) I { Y = k } 

) 

= inf 
d≥−b 

( 

d + 

1 

α
E 

P 

[ ( 

−b × I { Y =0 } + 

m ∑ 

k =1 

˜ R k ( X ) I { Y = k } − d 

) 

+ 

] ) 

≤ a + 

1 

α
E 

P 

[ ( 

−b × I { Y =0 } + 

m ∑ 

k =1 

˜ R k ( X ) I { Y = k } − a 

) 

+ 

] 

= a + 

1 

α
E 

P 
[
( −b −a ) + | Y =0 

]
P ( Y =0 ) 

+ 

m ∑ 

k =1 

1 

α
E 

P 
[(

˜ R k ( X ) −a 
)

+ | Y =k 
]
P (Y =k ) 

≤a + 

1 

α
E 

P 
[(

− b −a 
)

+ | Y =0 

]
P ( Y =0 ) 

+ 

m ∑ 

k =1 

1 

α
E 

P 
[(

R k ( X ) −a 
)

+ | Y =k 
]
P (Y =k ) 

= a+ 

1 

α
E 

P 

[ (
− b × I { Y =0 } + 

m ∑ 

k =1 

R k ( X ) I { Y = k } − a 
)

+ 

] 

= inf 
d≥−b 

( 

d + 

1 

α
E 

P 

[ ( 

−b × I { Y =0 } + 

m ∑ 

k =1 

R k ( X ) I { Y = k } − d 

) 

+ 

] ) 

= TVaR α

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

R k ( X ) I { Y = k } 

) 

. 

imilarly, we have that 

TVaR β

( 

b × I { Y =0 } + 

m ∑ 

k =1 

˜ I k ( X ) I { Y = k } 

) 

≤ TVaR β

( 

b × I { Y =0 } + 

m ∑ 

k =1 

I k ( X ) I { Y = k } 

) 

. 

herefore, ( ̃ I 1 , . . . , ̃  I m 

) ∈ I 2 and 

 (b, ( ̃ I 1 , . . . , ̃  I m 

)) 

= TVaR α

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

˜ R k ( X ) I { Y = k } 

) 

+ TVaR β

( 

b × I { Y =0 } + 

m ∑ 

k =1 

˜ I k ( X ) I { Y = k } 

) 
14 
≤ TVaR α

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

R k ( X ) I { Y = k } 

) 

+ TVaR β

( 

b × I { Y =0 } + 

m ∑ 

k =1 

I k ( X ) I { Y = k } 

) 

= G ( b, (I 1 , . . . , I m 

) ) . 

Following, we consider the case a < 0 . For this case, we use the

ame way as Case 2 to construct ˜ I k (x ) , then it is easy to find that

 

P [( ̃ I k ( X ) − c) + | Y = k ] = E 

P [(I k ( X ) − c) + | Y = k ] and E 

P [ ̃  R k ( X ) | Y =
 ] ≤ E 

P [ R k ( X ) | Y = k ] , which in turn imply 

TVaR α

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

˜ R k ( X ) I { Y = k } 

) 

≤ TVaR α

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

R k ( X ) I { Y = k } 

) 

nd 

TVaR β

( 

b × I { Y =0 } + 

m ∑ 

k =1 

˜ I k ( X ) I { Y = k } 

) 

≤ TVaR β

( 

b × I { Y =0 } + 

m ∑ 

k =1 

I k ( X ) I { Y = k } 

) 

. 

herefore, G (b, ( ̃ I 1 , . . . , ̃  I m 

)) ≤ G ( b, (I 1 , . . . , I m 

) ) , which completes 

he proof. 

ppendix D. Proof of Proposition 4.1 

Note that TVaR 1 = E 

P . Thus, the expectation is a special case of 

VaR. By Theorem 4.1 , it suffices to consider the finite dimensional 

roblem (4.2) : 

min 

b∈ [ 0 , b ] ;
( I 1 , ... ,I m ) ∈I 2 

TVaR α

( 

−b × I { Y =0 } + 

m ∑ 

k =1 

R k ( X ) I { Y = k } 

) 

+ E 

P 

[ 

b × I { Y =0 } + 

m ∑ 

k =1 

I k ( X ) I { Y = k } 

] 

. 

By the dual representation of TVaR ( Rockafellar & Uryasev, 

0 0 0 ), the above problem is equivalent to 

min 
b∈ [ 0 , b ] 

min 
( I 1 , ... ,I m ) ∈I 2 

inf 
d≥−b 

( 

d + E P 

[ 

1 

α

( 

−b × I { Y=0 } + 

m ∑ 

k =1 

R k ( X ) I { Y= k } − d 

) 

+ 

] 

+ E P 

[ 

b × I { Y=0 } −
m ∑ 

k =1 

R k ( X ) I { Y= k } 

] ) 

= min 
b∈ [ 0 , b ] 

inf 
d≥−b 

min 
( I 1 , ... ,I m ) ∈I 2 

( 

d + E P 

[ 

1 

α

( 

−b × I { Y=0 } + 

m ∑ 

k =1 

R k ( X ) I { Y= k } − d 

) 

+ 

] 

+ E P 

[ 

b × I { Y=0 } −
m ∑ 

k =1 

R k ( X ) I { Y= k } 

] ) 

= min 
b∈ [ 0 , b ] 

inf 
d≥−b 

(
d + b × P ( Y = 0 ) 

+ min 
( I 1 , ... ,I m ) ∈I 2 

m ∑ 

k =1 

E P 
[ 

1 

α
( R k ( X ) − d ) + − R k ( X ) 

∣∣∣Y = k 

] 
P ( Y = k ) 

)
. 

et b ∈ 

[
0 , b 

]
. First, fix any d ≥ 0 . For any k = 1 , 2 , . . . , m, I k takes a

orm either 

 k ( x ) = 

(
x − d k, 1 

)
+ −

(
x − d k, 2 

)
+ or I k ( x ) = x −

(
x − d k, 1 

)
+ + 

(
x − d k, 2 

)
+ , 
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or some d k, 1 ∈ [ 0 , ess sup ( X ) ] and d k, 2 ∈ 

[
d k, 1 , ess sup ( X ) 

]
, which 

llows us to directly compute E 

P 
[

1 
α ( R k ( X ) − d ) + − R k ( X ) | Y = k 

]
. In 

he sequel, we let d ∗
k, 1 

and d ∗
k, 2 

be parameters that yields the min- 

mum of this conditional expectation. 

Case 1: Suppose that I k ( x ) = 

(
x − d k, 1 

)
+ −

(
x − d k, 2 

)
+ , i.e. 

R k ( x ) = x −
(
x − d k, 1 

)
+ + 

(
x − d k, 2 

)
+ . 

Sub-case 1.1: Consider that 0 ≤ d ≤ d k, 1 ≤ d k, 2 ≤ ess sup ( X ) . 

Then, 

E 

P 

[ 
1 

α
( R k ( X ) − d ) + − R k ( X ) 

∣∣∣Y = k 

] 
= 

1 

α
E 

P 

[ 
( X − d ) + −

(
X − d k, 1 

)
+ + 

(
X − d k, 2 

)
+ | Y = k 

] 
− E 

P 

[ 
X −

(
X − d k, 1 

)
+ + 

(
X − d k, 2 

)
+ | Y = k 

] 
= 

1 

α

∫ ess sup ( X ) 

d 

S X| Y ( t| k ) d t + 

(
1 − 1 

α

)∫ d k, 2 

d k, 1 

S X| Y ( t| k ) d t 
− E 

P [ X| Y = k ] , 

which is non-decreasing in d k, 1 and non-increasing 

in d k, 2 , where S X| Y ( ·| k ) is the survival function of 

the loss X| Y = k under P , for k = 1 , 2 , . . . , m . There-

fore, d ∗
k, 1 

= d and d ∗
k, 2 

= ess sup ( X ) . 

Sub-case 1.2: Consider that 0 ≤ d k, 1 ≤ d ≤ d k, 1 + ess sup ( X ) −
d k, 2 ≤ ess sup ( X ) . Then, 

E 

P 

[ 
1 

α
( R k ( X ) − d ) + − R k ( X ) 

∣∣∣Y = k 

] 
= 

1 

α
E 

P 

[ (
X −

(
d k, 2 + d − d k, 1 

))
+ | Y = k 

] 
− E 

P 

[ 
X −

(
X − d k, 1 

)
+ + 

(
X − d k, 2 

)
+ | Y = k 

] 
. 

Define z = d k, 2 + d − d k, 1 , and thus 0 ≤ d k, 1 ≤ d ≤
z ≤ ess sup ( X ) , and 

E P 
[ 

1 

α
( R k ( X ) − d ) + − R k ( X ) 

∣∣∣Y = k 

] 
= 

1 

α
E P 

[
( X − z ) + | Y = k 

]
− E P 

[ 
X −

(
X − d k, 1 

)
+ + 

(
X −

(
z − d + d k, 1 

))
+ | Y = k 

]
= 

(
1 

α
− 1 

)∫ ess sup ( X ) 

z 

S X| Y ( t| k ) d t −
∫ d k, 1 

0 

S X| Y ( t| k ) d t 

−
∫ z 

z−d+ d k, 1 

S X| Y ( t| k ) dt, 

which can be easily shown to be non-increasing in 

d k, 1 , given a z. Therefore, d ∗
k, 1 

= d, and hence, 

E 

P 

[ 
1 

α
( R k ( X ) − d ) + − R k ( X ) 

∣∣∣Y = k 

] 
= 

(
1 

α
− 1 

)∫ ess sup ( X ) 

z 

S X| Y ( t| k ) d t −
∫ d 

0 

S X| Y ( t| k ) d t,
which is non-increasing in z. Therefore, z ∗ = d ∗

k, 2 
= 

ess sup ( X ) . 

Sub-case 1.3: Consider that 0 ≤ d k, 1 ≤ d k, 1 + ess sup ( X ) − d k, 2 ≤
d ≤ ess sup ( X ) . Then, 

E 

P 

[ 
1 

α
( R k ( X ) − d ) + − R k ( X ) 

∣∣∣Y = k 

] 
= −E 

P 

[ 
X −

(
X − d k, 1 

)
+ + 

(
X − d k, 2 

)
+ | Y = k 

] 
= 

∫ d k, 2 

d k, 1 

S X| Y ( t| k ) dt − E 

P [ X | Y = k ] , 
15 
which is non-increasing in d k, 1 . Therefore, d ∗
k, 1 

= 

d k, 2 − ess sup ( X ) + d, and hence, 

E 

P 

[ 
1 

α
( R k ( X ) − d ) + − R k ( X ) 

∣∣∣Y = k 

] 
= 

∫ d k, 2 

d k, 2 −ess sup ( X ) + d 
S X| Y ( t| k ) dt − E 

P [ X | Y = k ] , 

which can be easily shown to be non-increasing in 

d k, 2 . Therefore, d ∗
k, 2 

= ess sup ( X ) , and thus d ∗
k, 1 

= d. 

Sub-case 1.4: Consider that 0 ≤ d k, 1 ≤ d k, 2 ≤ ess sup ( X ) ≤ d. 

Then, 

E 

P 

[ 
1 

α
( R k ( X ) − d ) + − R k ( X ) 

∣∣∣Y = k 

] 
= −E 

P 

[ 
X −

(
X − d k, 1 

)
+ + 

(
X − d k, 2 

)
+ | Y = k 

] 
= 

∫ d k, 2 

d k, 1 

S X| Y ( t| k ) dt − E 

P [ X | Y = k ] , 

which is non-increasing in d k, 1 and non-decreasing 

in d k, 2 . Therefore, d ∗
k, 1 

= d ∗
k, 2 

≤ ess sup ( X ) ≤ d. 

Case 2: Suppose that I k ( x ) = x −
(
x − d k, 1 

)
+ + 

(
x − d k, 2 

)
+ , i.e. 

R k ( x ) = 

(
x − d k, 1 

)
+ −

(
x − d k, 2 

)
+ . 

Sub-case 2.1: Consider that 0 ≤ d ≤ d k, 2 − d k, 1 . Then, 

E 

P 

[ 
1 

α
( R k ( X ) − d ) + − R k ( X ) 

∣∣∣Y = k 

] 
= 

1 

α
E 

P 

[ (
X −

(
d k, 1 + d 

))
+ −

(
X − d k, 2 

)
+ | Y = k 

] 
− E 

P 

[ (
X − d k, 1 

)
+ −

(
X − d k, 2 

)
+ | Y = k 

] 
= 

1 

α

∫ ess sup ( X ) 

d k, 1 + d 
S X| Y ( t| k ) d t −

∫ ess sup ( X ) 

d k, 1 

S X| Y ( t| k ) d t 

+ 

(
1 − 1 

α

)∫ ess sup ( X ) 

d k, 2 

S X| Y ( t| k ) dt, 

which is non-decreasing in d k, 2 . Therefore, d ∗
k, 2 

= 

d k, 1 + d, and hence 

E 

P 

[ 
1 

α
( R k ( X ) − d ) + − R k ( X ) 

∣∣∣Y = k 

] 
= −

∫ d k, 1 + d 

d k, 1 

S X| Y ( t| k ) dt, 

which is non-decreasing in d k, 1 . Therefore, d ∗
k, 1 

= 0 

and d ∗
k, 2 

= d. 

Sub-case 2.2: Consider that 0 ≤ d k, 2 − d k, 1 ≤ d. Then, 

E 

P 

[ 
1 

α
( R k ( X ) − d ) + − R k ( X ) 

∣∣∣Y = k 

] 
= −E 

P 

[ (
X − d k, 1 

)
+ −

(
X − d k, 2 

)
+ | Y = k 

] 
= −

∫ ess sup ( X ) 

d k, 1 

S X| Y ( t| k ) d t + 

∫ ess sup ( X ) 

d k, 2 

S X| Y ( t| k ) d t, 
which is non-increasing in d k, 2 . Therefore, d ∗

k, 2 
= 

d k, 1 + d, and hence 

E 

P 

[ 
1 

α
( R k ( X ) − d ) + − R k ( X ) 

∣∣∣Y = k 

] 
= −

∫ d k, 1 + d 

d k, 1 

S X| Y ( t| k ) dt, 

which is non-decreasing in d k, 1 . Therefore, d ∗
k, 1 

= 0 
∗
and d 
k, 2 

= d. 
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ence, if d ≥ 0 , in any case, it is optimal to choose I k ( x ) =
 

x − d ) + , i.e. R k ( x ) = x − ( x − d ) + , which are independent of the 

nvironment k = 1 , 2 , . . . , m, and the objective function becomes: 

 −
m ∑ 

k =1 

E 

P 
[
X − ( X − d ) + | Y = k 

]
P ( Y = k ) + b × P ( Y = 0 ) , 

hich is non-decreasing in d, and thus the minimum is attained 

t d ∗ = 0 , and thus the objective function is b × P ( Y = 0 ) . 

Second, fix any d ∈ [ −b, 0 ] . For any k = 1 , 2 , . . . , m,

 

P 
[

1 
α ( R k ( X ) − d ) + − R k ( X ) | Y = k 

]
= 

(
1 
α − 1 

)
E 

P [ R k ( X ) | Y = k ] − d 
α . 

n the next two cases, we determine the parameters d ∗
k, 1 

and d ∗
k, 2 

hat yield the minimum of this conditional expectation. 

Case 1: Suppose that I k ( x ) = 

(
x − d k, 1 

)
+ −

(
x − d k, 2 

)
+ , i.e. 

R k ( x ) = x −
(
x − d k, 1 

)
+ + 

(
x − d k, 2 

)
+ , for some 

d k, 1 ∈ [ 0 , ess sup ( X ) ] and d k, 2 ∈ 

[
d k, 1 , ess sup ( X ) 

]
. There- 

fore, 

E P 
[ 

1 

α
( R k ( X ) − d ) + − R k ( X ) 

∣∣∣Y = k 

] 
= 

(
1 

α
− 1 

)(∫ d k, 1 

0 

S X| Y ( t| k ) d t + 

∫ ess sup ( X ) 

d k, 2 

S X| Y ( t| k ) d t 
)

− d 

α
, 

which is non-decreasing in d k, 1 and non-increasing in 

d k, 2 , and thus d ∗
k, 1 

= 0 and d ∗
k, 2 

= ess sup ( X ) . 

Case 2: Suppose that I k ( x ) = x −
(
x − d k, 1 

)
+ + 

(
x − d k, 2 

)
+ , 

i.e. R k ( x ) = 

(
x − d k, 1 

)
+ −

(
x − d k, 2 

)
+ , for some 

d k, 1 ∈ [ 0 , ess sup ( X ) ] and d k, 2 ∈ 

[
d k, 1 , ess sup ( X ) 

]
. There- 

fore, 

E 

P 

[ 
1 

α
( R k ( X ) − d ) + − R k ( X ) 

∣∣∣Y = k 

] 
= 

(
1 

α
− 1 

)∫ d k, 2 

d k, 1 

S X| Y ( t| k ) dt − d 

α
, 

and thus 0 ≤ d ∗
k, 1 

= d ∗
k, 2 

≤ ess sup ( X ) . 

Hence, if d ∈ [ −b, 0 ] , in any case, I k ( x ) = x, i.e. R k ( x ) = 0 , which

re independent of the environment k = 1 , 2 , . . . , m, and the objec-

ive function becomes: 
 

1 − 1 

α

m ∑ 

k =1 

P ( Y = k ) 

) 

d + b × P ( Y = 0 ) . 

f α ≥ ∑ m 

k =1 P ( Y = k ) , the objective function is non-decreasing in 

, and thus it is minimized at d ∗ = −b. If α ≤ ∑ m 

k =1 P ( Y = k ) , the

bjective function is non-increasing in d, and thus it is minimized 

t d ∗ = 0 . 

Therefore, there are two cases to consider on determining the 

ptimal bonus b ∗ ∈ 

[
0 , ̄b 

]
. 

Case 1: Suppose that α ≥ ∑ m 

k =1 P ( Y = k ) . Therefore, d ∗ = −b, and 

the objective function becomes, for any b ∈ 

[
0 , ̄b 

]
, (

P ( Y = 0 ) + 

1 
α

∑ m 

k =1 P ( Y = k ) − 1 
)
b, which is non- 

decreasing in b, and thus it is minimized at b ∗ = 0 . 

Case 2: Suppose that α ≤ ∑ m 

k =1 P ( Y = k ) . Therefore, d ∗ = 0 , and 

the objective function is, for any b ∈ 

[
0 , ̄b 

]
, b × P ( Y = 0 ) , 

which is also non-decreasing in b, and thus it is mini- 

mized at b ∗ = 0 . 

Hence, in any case, the bonus b ∗ = 0 and the optimal indemnity 

unctions I ∗
k 

= Id , for k = 1 , 2 , . . . , m, solve Problem (4.2) , and are

hus Pareto optimal. 

ppendix E. Proof of Theorem 6.1 

The minimization problem (6.1) can be rewritten as 

 

P [ X ] + min 

b∈ [0 , ̄b ] 
b(Q (Y = 0) − P (Y = 0)) 
16 
+ min 

( I 1 , ... ,I m ) ∈I 

m ∑ 

k =1 

(E 

Q [ I k ( X ) | Y = k ] Q ( Y = k ) 

− E 

P [ I k ( X ) | Y = k ] P ( Y = k ) ) . 

ere, min 

b∈ [0 , ̄b ] b(Q (Y = 0) − P (Y = 0)) is solved by 

 

⎧ ⎨ 

⎩ 

= b̄ if Q ( Y = 0 ) < P ( Y = 0 ) ;
∈ 

[
0 , ̄b 

]
if Q ( Y = 0 ) = P ( Y = 0 ) ;

= 0 if Q ( Y = 0 ) > P ( Y = 0 ) . 

By Assa (2015) , ( I 1 , . . . , I m 

) ∈ I implies I ′ 
k 
(t) ∈ [0 , 1] for all t ≥

 almost everywhere and all k = 1 , . . . , m . Moreover, for any k =
 , 2 , . . . , m, 

 [ I k ( X ) | Y = k ] Q ( Y = k ) − E 

P [ I k ( X ) | Y = k ] P ( Y = k ) 

= 

∫ ∞ 

0 

Q ( X > t| Y = k ) dI k ( t ) Q ( Y = k ) 

−
∫ ∞ 

0 

P ( X > t| Y = k ) dI k ( t ) P ( Y = k ) 

= 

∫ ∞ 

0 
( Q ( { X > t } ∩ { Y = k } ) − P ( { X > t } ∩ { Y = k } ) ) dI k ( t ) 

= 

∫ ∞ 

0 
( Q ( { X > t } ∩ { Y = k } ) − P ( { X > t } ∩ { Y = k } ) ) I ′ k ( t ) dt, 

here the last equality is due to the fact that I k is absolutely con- 

inuous, since ( I 1 , . . . , I m 

) ∈ I (see Cheung & Lo, 2017 ). Hence, the 

esult follows directly. 
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