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Abstract: Classification models are very sensitive to data uncertainty, and finding robust classifiers
that are less sensitive to data uncertainty has raised great interest in the machine learning literature.
This paper aims to construct robust support vector machine classifiers under feature data uncertainty
via two probabilistic arguments. The first classifier, Single Perturbation, reduces the local effect of
data uncertainty with respect to one given feature and acts as a local test that could confirm or
refute the presence of significant data uncertainty for that particular feature. The second classifier,
Extreme Empirical Loss, aims to reduce the aggregate effect of data uncertainty with respect to all
features, which is possible via a trade-off between the number of prediction model violations and
the size of these violations. Both methodologies are computationally efficient and our extensive
numerical investigation highlights the advantages and possible limitations of the two robust classifiers
on synthetic and real-life insurance claims and mortgage lending data, but also the fairness of an
automatized decision based on our classifier.

Keywords: binary robust classification; insurance fraud prediction; mortgage lending prediction;
support vector machine

1. Introduction

Binary classification is a standard prediction model in machine learning and statistical
learning that aims to predict whether a randomly chosen data point belongs to one of
two possible classes. There is a wider range of applications, but detecting insurance
fraud and predicting mortgage-lending decisions are the most common applications of
binary classification in the insurance and financial sectors. Motor insurance is massively
affected by fraud, especially for a third-party liability line of business that is often not
profitable, and, thus, reducing the fraud insurance has obvious financial incentives. At the
same time, an effective fraud detection model would also help to reduce the unintended
discriminatory effects observed in the insurance supply for potential policyholders from
certain locations and/or having some particular characteristics related to race and ethnicity;
this effect is known in the insurance literature as redlining. The decisions with respect
to mortgage lending (but also other non-mortgage products affected by credit risk, e.g.,
applicants for credit cards, auto loans, student loans, etc.) are very sensitive decisions that
require a balance between a low prediction error and reducing the effect of the unintended
discriminatory effects of such decisions. The literature on these two applications is quite
rich, e.g., see Bermudez et al. (2008) and Artis et al. (1999) for insurance fraud detection,
and Kallus et al. (2022), Zhang (2016) and Steenackers and Goovaerts (1989) for predicting
mortgage-lending decisions and evaluating the fairness of such decisions.
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A prediction model is said to be robust if small changes in the data would not change
the model outputs, which is a consistent interpretation of robust prediction modeling
across the theoretical statistics and computational robustness literature. Standard practical
approaches to achieve robust predictions in the machine learning literature include outlier
detection, testing prediction performance under data contamination or allowing for data
uncertainty (DU) in the prediction model.

Creating robust prediction models is imperative whenever the current and/or future
data are affected by DU. Specifically, DU means that the data are affected by (i) the sampling
error, (ii) ambiguity or (iii) data noise, and each source of DU affects the robustness of
the prediction model. The sampling error is inevitable, and this source of DU is negligible
in large samples, which is often the case in machine learning modeling. Data ambiguity
goes beyond missing data, and is a challenging issue that often occurs in categorical data.
For example, insurance fraud data contain information about the event leading to a claim
(major/minor) that is very subjective; similarly, Likert scale features in automatized hiring
processes are influenced by ambiguous questionnaires. Data noise is the unexplained
variability within the observational data. The data noise could be associated with the
features or response variable(s) in supervised learning. In summary, data ambiguity and
feature and/or label noise are the important sources of DU, though data noise is the main
source of DU considered in the robust classification literature.

A support vector machine (SVM) is an effective classifier with a variety of real-world
applications due to its simplicity, and, thus, is one of the most important (distance-based)
classification methods in the machine learning and statistical learning literature. However,
the SVM is very sensitive to label and feature noise, and, thus, a large amount of work has
been carried out to robustify SVMs against such sources of DU. For example, prior studies
dealing with various loss functions have been used to robustify SVM predictions with
respect to feature noise (Bamakan et al. 2017; Shen et al. 2017; Singh et al. 2014; Suykens
and Vandewalle 1999); standard approaches have also been explored in the field of robust
optimization (RO), such as metric-type (non-probabilistic) uncertainty sets (Bertsimas et al.
2018; Bi and Zhang 2005); another RO approach, namely, chance constraints (CC), which are
probabilistic uncertainty sets, has been introduced in the literature so that the underlying
optimization problems used in SVM prediction exhibit more robust outputs whenever DU
is present (Huang et al. 2012; Lanckriet et al. 2002).

The main purpose of this paper is to reduce the effect of feature noise for binary SVM
classifiers. We explore the internal structure of the classical SVM (C-SVM) classifier in order
to detect and tackle the feature noise via probabilistic arguments, while the eventual label
noise issue is put aside in this paper, since our proposed probabilistic arguments are not
easily extendable to prediction modeling under label noise.

The first proposed robust SVM classifier is the Single Perturbation (SP-SVM), and aims
to reduce the local effect of DU with respect to one given feature by embedding this possible
source of uncertainty into the prediction model. This technique is very popular in RO,
where the so-called CCs are constructed to replace its non-robust counterparts (that are
assumed to be certain). SP-SVM is an effective classifier whenever DU is present, and it
could be used to test whether or not each feature is affected by DU.

The second proposed robust SVM classifier is the Extreme Empirical Loss (EEL-SVM),
and aims to reduce the aggregate effect of DU. This is achieved by introducing a trade-off
between the number of prediction model violations (misclassifications) and the size of
these violations, which is explained via a probabilistic argument. Simply speaking, C-SVM
assigns the same importance (probability) to each misclassification and aims to reduce the
overall prediction error. In contrast, EEL-SVM focuses only on the most significant errors,
i.e., the extreme errors, which increases the accuracy around the borderline decisions and
improves the model accuracy. This approach is inspired by the standard risk measure,
namely, conditional value-at-risk, which was shown to be very robust in the context of model
ambiguity modeled via RO (Asimit et al. 2017).
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C-SVM is a special case of both SP-SVM and EEL-SVM, and, thus, our robust formu-
lations generalize C-SVM. Efficient convex quadratic programming solvers are used for
solving SP-SVM and EEL-SVM, but the computational times of SP-SVM and EEL-SVM
are not smaller than C-SVM, and this effect is known in the RO literature as the price of
robustness. Note that, due to its sparsity, EEL-SVM has a lower computational time than
SP-SVM and the reduction in computational time is mainly influenced by the sample
size. Our numerical experiments have shown that both SP-SVM and EEL-SVM perform
very well when compared with their robust SVM competitors. Moreover, even though
the overall performance of SP-SVM is slightly superior to EEL-SVM, the sparsity trait of
EEL-SVM is extremely appealing from a computational perspective; for specific details
about our numerical experiments, see Section 4.

It is worth noting that, unlike the existing methods based on CC (Lanckriet et al. 2002;
Wang et al. 2018), SP-SVM does not require estimating the covariance matrix, which is
not always computationally stable (Fan et al. 2016; Ledoit and Wolf 2020). Moreover, in
this paper, we only provide explicit derivations for SP-SVM and EEL-SVM with the most
popular loss function, i.e., hinge loss, but similar derivations are possible for any other loss
function. In addition to the two new robust SVM models, we also prove Fisher consistency
for a general convex loss function and binary SVM classifier.

The paper is organized as follows. Section 2 provides the necessary background, while
Section 3 illustrates the two proposed robust SVM classifiers. Section 4 summarizes our
numerical experiments conducted over synthetic and real-life datasets. All proofs are
relegated to the Appendix A.

2. Background and Problem Definition

The current section takes stock of the necessary background related to binary SVM
classification. Section 2.1 briefly explains the C-SVM formulation, while Section 2.2 provides
a comprehensive description of the pros and cons of various loss functions, which is a
pivotal choice for any SVM implementation. Finally, Section 2.3 discusses the importance
of the Fisher consistency property in classification followed by a theoretical contribution in
the context of binary classification, which is stated as Theorem 1.

2.1. Problem Definition

Our starting point is the training set that contains N instances and their associated
labels, {(xi, yi), i = 1, . . . , N}, where xi ∈X ⊆Rd and yi ∈Y . The training set is assumed
to be sampled from (X, Y), but the binary classification reduces to Y := {−1, 1}, where
yi = 1 if xi is in the positive class, C+1, and yi = −1 if xi is in the negative class, C−1. The
main objective is to construct an accurate (binary) classifier c : X → Y that maximizes the
probability that c

(
xi
)
= yi.

SVM aims to identify a separation hyper-plane wTφ
(
x
)
+ b that generates two parallel

supporting hyper-planes:

wTφ
(
x
)
+ b = 1 and wTφ

(
x
)
+ b = −1, (1)

where φ(·) is a notional function that transforms the feature space into a synthetic feature
space that allows for a linear hyper-plane separation of the data (when linear classifiers are
not effective on the original data). The data are rarely perfectly separable, and a compromise
is made by allowing classification violations for the non-separable data. The latter is also
known as soft-margin SVM and is formulated as follows:

min
w,b

1
2

wTw + C
N

∑
i=1

L(1− yi(wTφ(xi) + b)). (2)

The first term aims to find the ‘best’ classifier by maximizing the distance between
the two hyper-planes defined in (1), whereas the second term penalizes the classifier’s
violations measured via a given loss function L : R→ R+; for details, see Vapnik (2000).
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2.2. Loss Function

Solving the general SVM formulation in (2) requires specific solvers that depend
upon the loss function choice, which has a central role in SVM classification. The existing
literature has dealt with numerous piecewise loss functions, and a summary is given below:

(i) Hinge loss: LH(u) := max{0, u};
(ii) Truncated hinge loss (a ≥ 1): LTH(u) := min{max{0, u}, a};
(iii) Pinball loss (a ≤ 0): LP(u) := max{au, u};
(iv) Pinball loss with ‘ε zone’ (ε ≥ 0 and a, b ≤ 0): LPEZ(u) := max{0, u− ε, au + b};
(v) Truncated pinball loss (a ≤ 0 and b ≥ 0): LTP(u) := max{u, min{au, b}}.

The standard choice, LH , leads to efficient computations as it reduces (2) to solving a
convex linearly constrained quadratic program (LCQP), which is the original SVM formulation
as explained in Vapnik (2000). Moreover, the hinge loss is proved to be an upper bound of
the classification error (Shen et al. 2017; Zhang 2004); therefore, it is a pivotal loss choice. At
the same time, the hinge loss has been criticized for not being robust and extremely sensitive
to outliers, whereas the truncated hinge loss proposed by Wu and Liu (2007) overcomes
this issue at the expense of computational complexity. The lack of convexity of this loss
function requires a bespoke algorithm, namely, the difference of convex functions optimization
algorithm (DCA), which is computationally less efficient than standard LCQP solvers used
for solving C-SVM and our proposed robust formulations (SP-SVM and EEL-SVM). The
optimization problems based on the two pinball losses require solving LCQPs with many
more linear equality constraints than the hinge loss, but the pinball loss seems to be more
robust and stable when re-sampling (Huang et al. 2014). Similar arguments have been used
in Shen et al. (2017) to justify that the truncated pinball loss is a good choice when dealing
with feature noise, though it shares the same computational shortcoming as the truncated
hinge loss: it requires non-convex solvers.

All previous five loss functions are piecewise linear, which is a computational advantage,
but non-piecewise linear loss functions have been proposed in the existing literature. For
example, the least square loss with LLS(u) := u2 is considered in Suykens and Vandewalle
(1999), for which, an efficient LCQP formulation is proposed; the correntropy loss is defined
in Singh et al. (2014), but variants of this have been investigated (see Xu et al. 2017 for SVM-
like formulations). One could understand the possible advantages of non-linear convex loss
functions for other classification methods from Lin (2004), where the hinge loss is shown to
be the tightest margin-based upper bound of the misclassification loss for many well-known
classifiers. Further, it is numerically shown that this property does not justify thinking of
the hinge loss as the universally ‘best’ choice to measure misclassification. Strictly convex
loss functions are argued in Bartlett et al. (2006) to possess appealing statistical properties
when studying misclassification.

Even though the loss function is a pivotal choice in SVM classification, our two new
robust classifiers are not restricted to a specific loss function, and, thus, SP-SVM and EEL-
SVM formulations are quite general and introduce two new methodologies of tackling
binary classification in the presence of DU. However, the SP-SVM (instance (6)) and EEL-
SVM (instance (11)) illustrations of this paper are only focused on hinge loss formulations,
though any other illustrations are possible. Therefore, the robustness of SP-SVM and
EEL-SVM is a result of how these classifiers deal with DU, and not a by-product of choosing
the ‘best’ loss function.

2.3. Fisher Consistency

A desirable loss function property for a generic classifier is Fisher consistency or classification
calibration (Bartlett et al. 2006). By definition, the loss function L is Fisher consistent if

arg min
f :X→R

EX ,YL
(
1−Y f (X)

)
(3)
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is solved by the Bayes classifier that is defined as follows:

f ∗Bayes(x) =
{

1, if Pr(Y = 1|x) > Pr(Y = −1|x),
−1, if Pr(Y = 1|x) < Pr(Y = −1|x).

In the context of binary SVM classification, one could show that (3) holds if

arg min
z∈R

EY|xL(1−Yz) = f ∗Bayes(x) (4)

is true for all x ∈ X ; e.g., see Proposition 1 in Wu and Liu (2007).
Fisher consistency has been extensively investigated in the literature, and we now

provide a concise review that relates to our framework. Theorem 3.1 in Lin (2004) shows
that, if the global minimizer of (3) exists, then it has to be the same as the Bayes decision
rule, which is valid for any classification method. In the binary SVM setting, Proposition 1
in Wu and Liu (2007) and Theorem 1 in Shen et al. (2017) show that this property also holds
for non-convex loss functions; the first result covers a large set of truncated loss functions,
whereas the second focuses on the truncated pinball loss. Lemma 3.1 of Lin (2002) shows
that the hinge loss is Fisher consistent, and Theorem 1 in Huang et al. (2014) shows the same
for the (convex loss) pinball loss. Our next result extends Fisher consistency to a general
convex loss function L for the binary SVM case, and its proof is relegated to Appendix A.1.

Theorem 1. Assume that L : R→ R+ is a convex loss function that vanishes at 0, i.e., L(0) = 0.
If L(·) is linear in (0, 2 + ε) for some ε > 0, then L is Fisher consistent.

2.4. Related Work

Most robust SVM algorithms for solving the feature noise problem are designed
following two approaches. The first approach is to replace the hinge loss function in C-
SVM by more robust ones, such as the truncated hinge loss (Wu and Liu 2007), pinball
loss (Huang et al. 2014), or truncated pinball loss (Shen et al. 2017). However, as discussed
in Section 2.2, these methods are less computationally efficient compared to the proposed
SP-SVM and EEL-SVM with standard choice of hinge loss. The second approach, coming
from operational research, involves chance constraints to quantify the probability of mis-
classification for uncertain data. For example, Lanckriet et al. (2002) propose minimizing
the maximum probability of misclassification assuming that the mean and covariance
matrix are known. Wang et al. (2018) obtain the equivalent semidefinite programming
(SDP) and second-order cone programming (SOCP) models for chance-constrained-SVM
(CC-SVM). However, in real applications, the moments are usually unknown and must
be estimated from observations. Unfortunately, estimating a large covariance matrix is
not always computationally stable (Fan et al. 2016; Ledoit and Wolf 2020). Compared to
existing CC-SVM models, SP-SVM can avoid this estimation problem by only focusing on
the feature most affected by DU.

3. Robust SVM

This section explains the concept of a robust SVM in a more formal way and provides
the technical details for our two robust SVMs; that is, SP-SVM in Section 3.1, and EEL-SVM
in Section 3.2. Finally, a summary of practical recommendations when using our robust
SVM formulations is given in Section 3.3.

3.1. Single Perturbation SVM

SP-SVM aims to reduce the local effect of DU with respect to one given feature by
embedding this possible source of uncertainty into the optimization problem that describes
our robust prediction model. The main idea is the appropriation of a standard RO approach
that relies on CCs constructed to replace its non-robust counterparts (assumed to hold
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almost surely). That is, SP-SVM extends C-SVM by adjusting the feasibility set through
parameter α that controls the DU level; α is tuned like in any other hyper-parameter model.

Previous robust SVM classifiers that rely on CC require the covariance (feature) ma-
trix estimate, which is computable but brings some practical drawbacks; the empirical
covariance matrix is computationally unstable when d is large, and is often not positive
semi-definite if missing values are present in the sample. This is not the case for SP-SVM,
whose robustness is achieved by identifying the feature affected the most by DU. We choose
this feature as the one with the highest variance whenever data are less interpretable (see
Sections 4.1 and 4.2), though domain knowledge could help with choosing this feature (see
Section 4.3).

Solving (2) under the hinge loss is equivalent to solving the following LCQP instance:

min
w,b,ξ

1
2

wTw+C
N

∑
i=1

ξi (5)

s.t. yi
(
wTφ(xi)+b

)
≥ 1−ξi, ξi ≥ 0, 1 ≤ i ≤ N,

where C > 0 is a penalty constant that becomes a tuning parameter in the actual implemen-
tation phase. Equation (5) represents the mathematical formulation of C-SVM.

We are interested in calibrating (5) in the presence of DU with respect to one feature,
e.g., the kth feature. Thus, the jth entry of φ

(
xi
)
, denoted by φj

(
xi
)
, is deterministic for all

1 ≤ i ≤ N and 1 ≤ j 6= k ≤ d, whereas the kth feature is affected by an error term Zik; hence,
φk
(
xi
)

is replaced by φk
(
xi
)
+ Zik for all 1 ≤ i ≤ N. Moreover, each error term is defined on

a probability space (Ωik,F , P) with Ωik ⊆ R. Therefore, the DU variant of (5) with respect
to the kth feature becomes

min
w,b,ξ

1
2

wTw + C
N

∑
i=1

ξi (6)

s.t. Pr
(

yi

(
wTφ

(
xi
)
+ wkZik + b

)
≥ 1− ξi

)
≥ α, ξi ≥ 0, 1 ≤ i ≤ N,

where α ∈ [0, 1] reflects the unknown modeler’s perception of DU that is later tuned. This
kind of probability-like constraint is also known as CC in the OR literature.

For any given tuple (i, k), the cumulative distribution function (cdf) of Zik, Fik(·) is defined
on Ωik. Furthermore, we define two generalized inverse functions as follows:

F−1
ik (t) := inf

{
x ∈ R : Fik(x) ≥ t

}
and F−1+

ik (t) := sup
{

x ∈ R : Fik(x) ≤ t
}

for all t ∈ [0, 1], where inf∅ = ∞ and sup∅ = −∞ hold by convention. Clearly,

t ≤ Pr
(
Zik ≤ x

)
⇔ F−1

ik (t) ≤ x and Pr
(
Zik < x

)
≤ t⇔ x ≤ F−1+

ik (t), x ∈ R and t ∈ [0, 1].

Therefore, the CC from (6) is equivalent to

yi
(
wTφ(xi) + b

)
+ yiwkF−1+

ik (1−α) ≥ 1−ξi, yi
(
wTφ(xi) + b

)
+ yiwkF−1

ik (α) ≥ 1−ξi (7)

when yiwk ≥ 0 or yiwk < 0, respectively. Without imposing any restriction on Fik, the
conditional constraint from (7) makes (6) a mixed integer programming instance, which is
a major computational shortcoming for large scale problems. The next set of conditions
enable us to solve (6) efficiently.

Assumption 1. F−1
ik (α) + F−1+

ik (1− α) = 0 for a given integer 1 ≤ k ≤ d and some α ∈ [0, 1].

If the random error Zik is defined on Ωik =
(
−ωik, ωik

)
with 0 < ωik ≤ ∞ such that

its cdf is continuous and increasing, and Fik(·) + Fik(−·) = 1 in a neighborhood of F−1+
ik (α),

then Assumption 1 holds. Note that symmetric and continuous cdfs, such as Gaussian,
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Student’s t or any other member of the elliptical family of distributions centered at 0, satisfy
Assumption 1; for details, see Fang et al. (1990). Therefore, Assumption 1 is quite general.

Under Assumption 1, (7) is equivalent to

yi
(
wTφ(xi) + b

)
− |wk|F−1

ik (α) ≥ 1− ξi,

and, in turn, (6) is equivalent to solving

min
w,b,ξ

1
2 wTw + C

N

∑
i=1

ξi

s.t. yi
(
wTφ(xi) + b

)
≥ 1−ξi (i)

yi
(
wTφ(xi) + b

)
− yiwkaik ≥ 1−ξi (ii)

yi
(
wTφ(xi) + b

)
+ yiwkaik ≥ 1−ξi (iii)

ξi ≥ 0, 1 ≤ i ≤ N, (iv)

(8)

where aik := F−1
ik (α). If aik ≤ 0 for all 1 ≤ i ≤ N, then the inequality constraints (8) (ii)

and (iii) are redundant, and, thus, SP-SVM and SVM are identical, i.e., the kth feature is
not affected by DU. If aik ≥ 0 for all 1 ≤ i ≤ N, then the inequality constraint (8) (i) is
redundant and the kth feature is affected by DU, in which case, SP-SVM becomes more
conservative than SVM, i.e., the SP-SVM hyper-plane violations ξis are allowed to be larger
(than the C-SVM violations) due to DU.

We now provide a practical recommendation for finding a ‘reasonable’ choice for aik.
One possibility is to assume a Gaussian random noise with zero mean and variance equal
to the sampling error estimate, i.e.,

aik = âk := qα,G

√√√√ 1
N−1

N

∑
i=1

(xik − x̄k)
2 and x̄k :=

1
N

N

∑
i=1

xik for all 1 ≤ i ≤ N,

where qα,G is the α-normal quantile. It could be argued that the Gaussian random noise
might underestimate DU; hence, a more heavy-tailed noise, such as Student’s t, might
be more appropriate. In that case, we could simply replace qα,G by the α-quantile of the
distribution of choice. We always tune α for values greater than 0.5, i.e., aik > 0 for all
1 ≤ i ≤ N, since DU is assumed to be present. Therefore, our SP-SVM implementations
require solving LCQP instances with 3N inequality constraints, though C-SVM implemen-
tations require solving LCQP instances with 2N inequality constraints; this is not surprising
and is known as the price of robustness in the OR literature. An explicit solution for (8) is
detailed in Appendix A.2, where we do not make any assumption on the sign of aik’s.

3.2. Extreme Empirical Loss SVM

EEL-SVM is designed to reduce the overall effect of DU with respect to all features that
are possibly affected by random noise, which is different from SP-SVM, where only one
feature is assumed to be affected by noise. This does not mean that EEL-SVM is ‘better’ than
SP-SVM, as the two approaches complement each other, and Section 4 provides empirical
evidence in that sense.

Simply speaking, EEL-SVM creates a trade-off between the number of model misclas-
sifications and the size of these violations, which is explained via a probabilistic argument.
Whereas C-SVM assigns the same importance (probability) to each ξi, i.e., 1/N, so that the
overall prediction error is minimized, EEL-SVM considers that only some of the largest
individual model violations affect the overall classification error. This means that EEL-SVM
robustifies the classifier by paying particular attention to outliers without removing such
data points that go astray from the general trend, since such sub-samples may not be a
negligible portion of the data when DU is present.
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The soft-margin SVM from (2) could be rewritten as

min
w,b

1
2

wTw + CÊ
[

L
(

1−Y
(
wTφ

(
X
)
+ b
))]

, (9)

where the second term acts as the empirical estimate of the penalty associated with the
classifier’s violations; this is given by the average model deviation measured via the
loss function L. The loss function choice could influence the borderline decisions where
examples could be classified either way, and, thus, a ‘good’ loss choice may reduce the
misclassification error. Many SVM classifiers focus on the choice of L, though the penalty
term is always based on the usual sample average with equal importance given to all
hyper-plane violations. EEL-SVM aims to focus more on the large deviations that may
considerably perturb the classification decision in the presence of DU. To this end, we
placed more weight to the larger violations via a novel empirical penalty function, namely,
the extreme empirical loss (EEL), which is formulated as

min
z

z+
1

N(1−α)

N

∑
i=1

max
{

ζi−z, 0
}

, (10)

where ζi = L
(
1− yi(wTφ(xi)+b)

)
are the individual model violations. Note that (10) is

the empirical estimate of the conditional value-at-risk at level α (CVaRα) of the classifier’s
violations, i.e.,

ĈVaRα

(
L
(
1−Y(wTφ(X) + b)

))
.

For details, see the seminal paper Rockafellar and Uryasev (2000), which introduces
CVaR, a well-known risk management measure. The parameter 0 ≤ α < 1 represents the
caution level chosen by the modeler; a higher value of α would penalize fewer extreme
violations, i.e., large ξis. This is made obvious by noting that (10) is equivalent to

1
r

r

∑
i=1

ζi,N if α = 1− r
N

, 1 ≤ r ≤ N

for any integer r, where ζ1,N ≥ ζ2,N ≥ · · · ≥ ζN,N are the upper order statistics of the
sample

{
ζi; 1 ≤ i ≤ N

}
. Clearly, the least conservative EEL is attained when α = 0, and

becomes the sample average 1
N ∑N

i=1 ζi, meaning that C-SVM is a special case of EEL-SVM
(when α = 0).

Keeping in mind (2) and (10), the mathematical formulation of EEL-SVM is equivalent
to solving the instance

min
w,b,z,ξ

1
2 wTw + Dz+

D
N(1−α)

N

∑
i=1

ξi

s.t. ξi + z ≥ L
(
1− yi(wTφ(xi)+b)

)
, ξi ≥ 0, 1 ≤ i ≤ N,

for any loss function L, while the hinge loss choice simplifies EEL-SVM to solving the
convex LCQP instance from below:

min
w,b,z,ξ

1
2 wTw + Dz+

D
N(1−α)

N

∑
i=1

ξi

s.t. yi(wTφ(xi)+b)+z ≥ 1− ξi, ξi + z ≥ 0, ξi ≥ 0, 1 ≤ i ≤ N.
(11)

Here, D > 0 is a penalty constant that becomes a tuning parameter in the actual
implementation, which has a similar purpose to the penalty constant C in (8). One may
derive similar formulations for any other loss function and easily write the convex LCQP
formulations for pinball loss with ‘ε zone’; non-convex loss functions, such as truncated
hinge and truncated pinball, require bespoke DCA solvers, but such details are beyond
the scope of this paper. The explicit solution of (11) is given in Appendix A.3 via the usual
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duality arguments. Note that the convex instance (11) requires solving LCQP with 3N
inequality constraints, which has the same computational complexity as SP-SVM, though
EEL-SVM is more sparse.

3.3. Recommendations Related to the Use of the Two New Formulations

We first summarize the traits of SP-SVM and EEL-SVM. SP-SVM has a local robust
treatment and focuses on the mostly affected feature by DU, identified in Section 4 via
variance, though domain knowledge could be useful in determining that feature. EEL-SVM
does not differentiate among features and proposes an overall robust treatment by finding
a trade-off between the number of significant (to the prediction model) extreme violations
and the level of these violations.

Let us anticipate the computational pros and cons of SP-SVM and EEL-SVM. Our
numerical experiments in the next section show that the overall performance of SP-SVM
and EEL-SVM are comparable. Both generalize C-SVM at the expense of computational
cost, known as the price of robustness. Moreover, the computational time for EEL-SVM is
marginally lower than for SP-SVM due to the sparsity of the former.

4. Numerical Experiments

In this section, we conduct all our numerical experiments that compare our robust clas-
sifiers (SP-SVM and EEL-SVM) with four other SVM classifiers by checking the classification
accuracy and robustness resilience. The four SVM competitors include C-SVM (Cortes and
Vapnik 1995) and three well-known robust SVM classifiers, i.e.,

(i) Pinball SVM (pin-SVM) —see Huang et al. (2014);
(ii) Truncated pinball SVM (pin-SVM)—Shen et al. (2017);
(iii) Ramp loss K-support vector classification-regression (Ramp-KSVCR)—see Bamakan et al.

(2017).

Note that the three classifiers above build up robust decision rules by modifying the
standard hinge loss used in C-SVM. Classifiers (i) and (ii) are based on their corresponding
loss functions listed in Section 2.2, whereas classifier (iii) relies on a mixture of loss functions.

Section 4.1 consists of a data analysis based on synthetic data, where the ‘true’ clas-
sification decision has a closed-form. Section 4.2 compares all six binary classifiers over
various widely investigated real-life datasets. Section 4.3 offers a more qualitative analysis
of SVM robust classification, where it is explained how DU can be identified so that one can
validate whether a robust classifier is fit for purpose in practice. The code could be retrieved
from a public repository that is available at https://github.com/salvatorescognamiglio/
SPsvm_EELsvm (accessed on 1 January 2022).

4.1. Synthetic Data

The first set of numerical experiments compares the classification performance of
SP-SVM, EEL-SVM, C-SVM, pin-SVM and pin-SVM for simulated data. We generated
the data using a model with a classification decision known a priori. To achieve a fair
comparison between the different SVM models, we conducted our experiments by adopting
the experiment design used in the relevant literature; see Huang et al. (2014) and Shen et al.
(2017). Note that we were not able to compare these five SVM classifiers with Ramp-KSVCR,
since the publicly available code for it does not report the tuned separation hyper-plane
parameters, though the classification performances of all six classifiers (including Ramp-
KSVCR) are compared in Section 4.2 in terms of accuracy and robustness resilience to
contamination.

We do not assume DU in Section 4.1.1, and data contamination is added in Section 4.1.2.
The non-contaminated data were simulated based on a Gaussian bivariate model, for which,
the analytical/theoretical or ‘true’ linear classification boundary is known (referred to as
Bayes classifier from now on). Further, nested simulation was used to generate the labels via
a Bernoulli random variable B with probability of ‘success’ p = 0.5; therefore, we generated

https://github.com/salvatorescognamiglio/SPsvm_EELsvm 
https://github.com/salvatorescognamiglio/SPsvm_EELsvm 
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N ∈ {50,100, 200} random variates from this distribution, where N is the total number of
examples from the two classes. The features {xi, i = 1, . . . , N}were simulated according to

Xi | B=1 ∼ N (µ, Σ), Xi |B=−1 ∼ N (−µ, Σ), µ = [0.5,−3]T and Σ = diag(0.2, 3). (12)

Note that we estimated in Sections 4.1.1 and 4.1.2 the classifiers for these synthetic
data, i.e., x2 = mx1 + q, and compared them with the Bayes classifier, i.e., x2 = m0x1 + q0,
where m0 = 2.5 and q0 = 0. SP-SVM training was performed by considering DU only with
respect to the second feature that has a higher variance.

4.1.1. Synthetic Non-Contaminated Data

The data were simulated and we conducted a 10-fold cross-validation to tune the
parameters of each classifier over the following parameter spaces:

• SP-SVM: α ∈ ASP = {0.50, 0.51, . . . , 0.60};
• EEL-SVM: α ∈ AEEL = {0, 0.01, 0.02};
• pin-SVM: τ ∈ Tpin = {0.1, 0.2, . . . , 1};
• pin-SVM: (τ, s) ∈ Tpin × S , where Tpin = {0.25, 0.5, 0.75} and S := {0.25, 0.5, 0.75, 1}.

In the interest of fair comparisons, the parameter spaces had similar cardinality, except
EEL-SVM, which has a smaller-sized parameter space, which does not create any advantage
to EEL-SVM. We chose the same penalty value for all methods by setting C = 100 (for
C-SVM, SP-SVM, pin-SVM and pin-SVM) and D = 100× N (for EEL-SVM).

The five SVM classifiers were compared via 100 independent samples of size N, for
which, (mi, qi) was computed for all 1 ≤ i ≤ 100. Each classifier was fairly compared
against the Bayes classifier via the distance

dj =
∣∣m̄j−m0

∣∣σ̂mj+
∣∣q̄j−q0

∣∣σ̂qj , j∈{SP-SVM, EEL-SVM, pin-SVM, pin-SVM, C-SVM}, (13)

where m̄j (q̄j) and σ̂mj (σ̂qj) are, respectively, the mean and standard deviation estimates
of mj (qj) based on the 100 point estimates. Our results are reported in Table 1, where
we observe no clear ranking among the methods under study for non-contaminated data,
though Section 4.1.2 shows a clear pattern when data contamination is introduced.

Table 1. Distance (13) between various SVM classifiers and Bayes classifier for non-contaminated
synthetic data. Lowest distance along each row in bold.

C-SVM pin-SVM pin-SVM SP-SVM EEL-SVM

N = 50 0.5185 0.3531 0.4956 0.3968 0.5222
N = 100 0.3763 0.1132 0.1809 0.1014 0.3477
N = 200 0.0185 0.0337 0.0349 0.2166 0.0397

4.1.2. Synthetic Contaminated Data

We next investigated how robust the five SVM classifiers were. This was achieved
by contaminating a percentage r ∈ [0, 1] of the synthetic data generated in Section 4.1.1.
Data contamination was produced by generating random variates around a ‘central’ point
from the ‘true’ separation hyper-plane; without loss of generality, the focal point was (0, 0).
The contaminated data points were generated from three elliptical distributions centered
at (0, 0), namely, a bivariate normal N (0, Σc) and two bivariate Student’s t(0, Σc, g), with
g ∈ {5, 1} degrees of freedom and a covariance matrix given by

Σc =

[
1 −0.8
−0.8 1

]
.
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The equal chance of labeling the response variable ensures even contamination on
both sides of the linear separation line; moreover, the negative correlation of −0.8 was
chosen on purpose so that the DU became more pronounced.

The contaminated data are plotted in Figure 1 together with their estimated decision
lines. The three scatter plots visualize the realization of a sample of size N = 200 that is
contaminated with r = 5%, and the contaminated points appear in green. If a decision
rule is close to the ‘true’ decision rule given by the red solid line, then we could say that
its corresponding SVM classifier is more resilient to contamination, i.e., is more robust.
Note that C-SVM and EEL-SVM overlap in Figure 1 because the contaminated data points
become outliers that are too extreme, even for EEL-SVM, and, thus, this finds the same
decision rule as C-SVM. Figure 1a shows that most of the classifiers, except C-SVM and
EEL-SVM, are close to the ‘true’ classifier when a low level of DU is present due to the
light-tailed Gaussian contamination; the same behavior is observed in Figure 1b, where a
medium level of DU is present due to Student’s t with 5 degrees of freedom contamination.
Recall that, the lower the number of degrees of freedom is, the more heavy-tailed Student’s
t distribution is; therefore, Figure 1c illustrates the effect of a high level of DU, a case in
which SP-SVM seems to be the most robust classifier.

The scatter plots in Figure 1 explain the contamination mechanism, though these
pictorial representations may be misleading due to the sampling error, since Figure 1 relies
on a single random sample. Therefore, we repeated the same exercise 100 times in order to
properly compare the classifiers in Tables 2 and 3. Moreover, for each sample, we conducted
10-fold cross-validation to tune the additional parameters, and we then computed the linear
decision rule. The performance was measured via the distance (13), and the summary of this
analysis is provided in Table 2 for samples of size N ∈ {50,100, 200} and a contamination
ratio r ∈ {0.05, 0.10}. Note that the tuning parameters were calibrated as in Section 4.1.1,
except EEL-SVM, where the parameter space was enlarged (due to data contamination)
as follows:

AEEL :=
{
{0, 0.01, . . . , 0.05} if r = 0.05;
{0, 0.01, . . . , 0.10} if r = 0.10.

EEL-SVM requires a larger parameter space when DU is more pronounced, i.e., r = 0.10,
but even in this extreme case, the cardinality of AEEL is not larger than the cardinality of
any other parameter space. That is, we did not favor EEL-SVM in the implementation
phase.
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Figure 1. Cont.
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Figure 1. Classification boundaries for five SVM classifiers if DU is induced by (a) normal distribution,
(b) Student’s t distribution with 5 degrees of freedom and (c) Student’s t distribution with 1 degree
of freedom.

Table 2 shows that the performance of any classifier deteriorates when the level of DU
increases; moreover, the distance from the Bayes classifier increases with the contamination
ratio r. The overall performances of SP-SVM and pin-SVM are superior to all three other
competitors, whereas pin-SVM appears to be competitive in just a few cases and C-SVM
and EEL-SVM have a similar low performance. SP-SVM is by far the most robust classifier
when DU is more pronounced, which is observed in Figure 1c but for a single sample.

We conclude our comparison by looking into the computational time ratios (with
C-SVM as the baseline reference) that are reported in Table 3. In particular, this provides the
computational times after tuning each model, i.e., the training computational time, which
is a standard and fair reporting when one would expect high computational times when
tuning more model hyper-parameters. The reference computational time (in sec) of the C-
SVM, for a machine with Inter(R) Core(TM) i7−1065G7 CPU @ 1.30GHz, is approximately
0.0019 for N = 50, 0.004 for N = 100 and 0.0081 for N = 200. EEL-SVM requires the lowest
computational effort, though it is very close to SP-SVM, whereas pin-SVM is consistently
slower and pin-SVM is by far the method with the largest computational time. These
observations are not surprising because pin-SVM relies on a non-convex (DCA) algorithm
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that has scalability issues; on the contrary, pin-SVM, SP-SVM and EEL-SVM are solved via
a convex LCQP of the same dimension, though EEL-SVM and pin-SVM are, respectively,
the most and least sparse.

Table 2. Distance (13) between various SVM classifiers and Bayes classifier for contaminated synthetic
data. Lowest distance along each row in bold.

Normal distribution

r = 0.05 r = 0.10
N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

C-SVM 1.3443 0.8397 0.6623 1.9649 1.1455 0.8675
pin-SVM 0.0537 0.0704 0.1880 0.5350 0.2955 0.2996
pin-SVM 0.6378 0.3073 0.3984 1.2398 0.7334 0.4611
SP-SVM 0.3574 0.2305 0.2994 1.0827 0.5938 0.2813

EEL-SVM 1.3432 0.8431 0.6788 1.8921 1.1682 0.8785

Student’s t distribution (5 degrees of freedom)

r = 0.05 r = 0.10
N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

C-SVM 1.5685 1.1520 0.6795 2.4753 1.4983 0.9863
pin-SVM 0.8546 0.2966 0.1710 2.1801 0.6861 0.3322
pin-SVM 1.2229 0.5929 0.3410 1.6040 0.9491 0.6492
SP-SVM 0.7485 0.7405 0.3754 1.3408 0.8801 0.4539

EEL-SVM 1.5901 1.1560 0.6895 2.4864 1.5077 1.0025

Student’s t distribution (1 degree of freedom)

r = 0.05 r = 0.10
N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

C-SVM 1.7930 1.8189 2.0358 3.1206 2.6941 3.2549
pin-SVM 0.8546 1.1983 1.6466 2.1801 2.0853 2.1472
pin-SVM 1.2002 1.4458 1.3479 2.5982 1.9612 2.4647
SP-SVM 0.4277 1.2384 1.2675 2.1628 1.8261 1.8463

EEL-SVM 1.7669 1.8558 2.0280 3.0685 2.6788 3.2757

Table 3. Computational time ratios of SVM classifiers compared to C-SVM classifier for contaminated
synthetic data. Lowest computational time ratio along each row in bold.

Normal distribution

r = 0.05 r = 0.10
N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

pin-SVM 4.2695 15.5138 33.9715 4.4855 19.2942 39.8558
pin-SVM 2.5515 30.1658 22.9012 3.2739 36.6373 32.7994
SP-SVM 2.8101 7.6634 15.3068 2.9372 9.2248 16.7844

EEL-SVM 2.0301 6.6263 14.0950 2.1713 8.6631 16.1476

Student’s t distribution (5 degrees of freedom)

r = 0.05 r = 0.10
N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

pin-SVM 3.1421 12.6893 41.3835 4.4825 17.0174 44.2939
pin-SVM 2.4289 42.1007 26.7222 4.0141 61.5340 27.6636
SP-SVM 2.2494 6.1618 19.6716 2.9885 7.7810 17.8432

EEL-SVM 2.3466 5.6473 17.2680 3.1776 7.7076 17.6688
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Table 3. Cont.

Student’s t distribution (1 degree of freedom)

r = 0.05 r = 0.10
N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

pin-SVM 3.2366 11.4355 34.5926 4.4800 15.0441 41.0832
pin-SVM 3.4272 25.4353 42.4561 5.6555 45.9922 62.0633
SP-SVM 2.4380 5.9118 15.5805 3.0326 7.3598 17.8881

EEL-SVM 2.1472 5.1893 14.5320 3.0242 7.1204 16.3805

4.2. Real Data Analysis

We now compare the classification accuracy for some real-life data and rank all six
SVM classifiers, including Ramp-KSVCR. Ten well-known real-world datasets are chosen
in this section, which can be retrieved from the UCI depository1 and LIBSVM depository2;
a summary is given in Table 4. It should be noted that all datasets had features rescaled
to [−1, 1]. Moreover, the analysis was carried out over the original and contaminated
data. DU was introduced via the MATLAB R2019a function awgn with different signal noise
ratios (SNR); perturbations were separately introduced 10 times for each dataset before
training; and the average classification accuracy was reported so that the sampling error
was alleviated.

Table 4. Summaries of UCI datasets.

Data Number of Training Testing
Features Sample Size Sample Size

(I) Fourclass 2 580 282
(II) Diabetes 8 520 248

(III) Breast cancer 10 460 223
(IV) Australian 14 470 220
(V) Statlog 13 180 90

(VI) Customer 7 300 140
(VII) Trial 17 520 252

(VIII) Banknote 4 920 452
(IX) A3a 123 3185 29,376
(X) Mushroom 112 2000 6124

The data were randomly partitioned into the training and testing sets, as described
in Table 4. All SVM methods rely on the radial basis function (RBF) kernel chosen to
overcome the lack of linearity in the data. As before, SP-SVM methodology assumes that
the feature with the largest standard deviation is the one mostly affected by DU. All hyper-
parameters were tuned via a 10-fold cross-validation; the kernel parameter γ and penalty
parameter C were tuned by allowing γ, C ∈

{
2−9, 2−8, . . . , 28, 29} for C-SVM, whereas

C ∈
{

2−5, 2−3, 2−1, 20, 21, 23, 25} and γ ∈
{

2−7, 2−5, 2−3, 2−1, 20, 21} are allowed for all
other classifiers. Note that C-SVM has fewer parameters than other classifiers, and, thus, (γ, C)
are allowed more values in the tuning process, so that all classifiers are treated as equally as
possible. Note that Ramp-KSVCR has two penalty parameters C1, C2, an insensitivity parameter
ε and two additional model parameters s and t; the penalty parameters satisfy C1 = C2, as in
the original paper. The other parameters were tuned as follows:

• SP-SVM: α ∈ ASP = {0.50, 0.51, . . . , 0.56, 0.58, 0.60};
• EEL-SVM: α ∈ AEEL = {0, 0.05, 0.10, . . . , 0.3};
• pin-SVM: τ ∈ Tpin = {0.1, 0.2, . . . , 0.8, 1};
• pin-SVM: s ∈ {0.01, 0.1, 0.3, 0.5, 0.7, 1} and τ = 0.5;
• Ramp-KSVCR: ε ∈ {0.1, 0.2, 0.3}, t ∈ {1, 3, 5}, s = −1.
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A final note is that a computational budget of around 370 parameter combinations
was imposed on all cases, except EEL-SVM, where 294 combinations were considered.

Table 5 summarizes the classification performance for all ten datasets for the original
(non-contaminated) data and their contaminated variants with various SNR values, where
a smaller SNR value means a higher degree of data contamination. EEL-SVM achieves
the best performance in 14 out of 40 scenarios investigated, which is followed by Ramp-
KSVCR, which performs best in 13 out of 40 scenarios; the other classifiers are ranked
as follows: SP-SVM (11/40), pin-SVM (10/40), C-SVM (7/40) and pin-SVM (6/40). We
also calculated the average ranks for each classifier by looking at each row of Table 5 and
ranking each entry from 1 to 6 from lowest to highest accuracy; SP-SVM and EEL-SVM
yield the best average ranks among all classifiers and SP-SVM outperforms its competitors
via this criterion.

We also performed a statistical test to verify whether the performances produced by
one method are significantly better than the others on these datasets. In particular, the
right-tailed paired sample t-test was considered. Under the null hypothesis, the difference
between the paired population means is equal to 0. Conversely, the alternative hypothesis
states that this difference is greater than 0. The tests were conducted considering all of the
results reported in Table 5, and the corresponding p-values are shown in Table 6. Each
table cell reports the p-value obtained by testing the performances of the row against
the column models as indicated. We set the significance level equal to 5% and reported
p-values below this in bold. Interestingly, we observed that pin-SVM, pin-SVM and SP-
SVM perform significantly better than Ramp-KSVCR. Furthermore, we observed that the
p-values associated with SP-SVM are generally lower than the other methods. Indeed,
SP-SVM is the only method that also outperforms C-SVM, making it preferable to other
strong competitors.

In summary, despite the EEL-SVM performing very well on the real-world data, we
conclude that SP-SVM exhibits a competitive advantage over competitors.

4.3. Interpretable Classifiers

The performance of SVM classifiers for real-life data has been analyzed in Section 4.2
without interpreting the decision rules so that the presence of DU is better understood and
the fairness of the decision is assessed. We achieved that now by providing a granular
analysis for the classification of the following two sources of data:

• US mortgage lending data that are downloaded from the Home Mortgage Disclosure Act
(HMDA) website3; specifically, we collected the 2020 data for two states, namely, Maine
(ME) and Vermont (VT), with a focus on subordinated lien mortgages;

• Insurance fraud data named car insurance (CI) that are available on Kaggle website4.

The US mortgage lending data refer to subordinate-lien (‘piggyback’) loans that are
taken out at the same time as first-lien mortgages on the same property by borrowers,
mainly to avoid paying mortgage insurance on the first-lien mortgage (due to the extra
down payment). Eriksen et al. (2013) find evidence that borrowers with subordinate loans
have an increased-by-62.7% chance to default each month on their primary loan. Such
borrowers may sequentially default on each loan since subordinate lenders will not pursue
foreclosure if the borrowers have insufficient equity until at least housing markets start
to recover. Subordinate-lien loans are high-risk mortgages and we aimed to classify the
instances as ‘loan originated’ (Y = +1) or ‘application denied’ (Y = −1) using the available
features. The HMDA data have numerous features and the following representative ones
were chosen: (F1) loan amount, (F2) loan-to-value ratio (F1 divided by the ‘property_value’),
(F3) percentage of minority population to total population for tract, (F4) percentage of tract
median family income compared to MSA (metropolitan statistical area) median family
income. Two categorical features were also considered, namely, (F5) derived sex and
(F6) age.
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Table 5. Classification accuracy (in %) of all SVM classifiers across all datasets. Highest accuracies
along each row in bold. Each row signifies the original data (reported as “NA”, i.e., no contamination)
or their contaminated variants (with SNR values 1, 5, 10).

Data SNR C- pin- pin- SP- EEL- Ramp-
SVM SVM SVM SVM SVM KSVCR

(I)

NA 99.29% 99.29% 99.65% 99.65% 99.65% 92.20%

10 99.65% 99.65% 99.65% 99.61% 99.75% 91.95%
5 99.65% 99.65% 99.65% 99.54% 99.72% 91.67%
1 99.54% 99.61% 99.61% 99.50% 99.65% 91.84%

(II)

NA 77.02% 79.84% 79.84% 80.24% 78.63% 80.24%

10 76.98% 76.49% 78.10% 79.64% 77.26% 77.10%
5 76.69% 76.57% 77.54% 78.02% 76.45% 79.48%
1 76.49% 77.70% 76.90% 77.66% 74.96% 79.44%

(III)

NA 93.72% 93.27% 94.17% 94.62% 93.72% 95.96%

10 93.90% 94.75% 93.86% 93.32% 94.44% 95.29%
5 93.86% 94.57% 94.17% 94.13% 94.08% 94.80%
1 93.81% 93.86% 93.86% 93.86% 94.04% 95.11%

(IV)

NA 88.64% 88.18% 89.55% 88.18% 89.09% 89.55%

10 85.82% 85.23% 85.77% 85.45% 85.32% 83.82%
5 80.68% 80.50% 82.41% 80.59% 78.45% 77.73%
1 76.59% 75.86% 77.86% 76.14% 76.23% 75.77%

(V)

NA 82.22% 82.22% 82.22% 83.33% 78.89% 80.00%

10 80.22% 80.56% 77.56% 80.22% 82.44% 81.00%
5 80.00% 79.33% 79.89% 79.33% 81.33% 77.00%
1 78.67% 78.22% 80.00% 78.44% 76.89% 80.22%

(VI)

NA 92.14% 91.43% 90.71% 92.14% 92.86% 91.89%

10 92.86% 92.50% 92.50% 92.71% 93.21% 89.93%
5 92.93% 92.86% 91.43% 93.07% 93.07% 91.36%
1 92.57% 92.93% 91.57% 92.57% 92.86% 90.79%

(VII)

NA 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

10 99.56% 99.80% 99.33% 99.76% 99.60% 99.48%
5 94.72% 94.60% 94.44% 94.84% 94.52% 93.97%
1 88.13% 88.13% 85.99% 88.29% 88.21% 86.98%

(VIII)

NA 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

10 99.73% 99.71% 99.80% 99.76% 99.89% 99.85%
5 99.38% 99.18% 99.05% 99.25% 99.36% 99.05%
1 97.94% 97.92% 97.61% 97.94% 97.83% 96.75%

(IX)

NA 82.81% 83.20% 83.36% 83.67% 81.71% 84.04%

10 80.50% 81.05% 80.57% 81.12% 81.15% 81.13%
5 78.57% 78.56% 77.94% 78.35% 78.26% 78.00%
1 76.34% 76.74% 75.94% 76.01% 76.02% 76.25%

(X)

NA 99.87% 99.87% 99.87% 99.87% 99.87% 99.87%

10 98.37% 98.84% 99.38% 98.31% 98.29% 99.03%
5 93.02% 93.79% 94.72% 93.05% 92.92% 93.77%
1 85.36% 85.63% 85.82% 85.46% 85.47% 85.55%

Average rank 3.25 3.18 3.18 2.93 3.05 3.53
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Table 6. p-Values of right-tailed paired sample t-tests. Values lower than 0.05 are bold.

C- pin- pin- SP- EEL- Ramp-
SVM SVM SVM SVM SVM KSVCR

C-SVM 0.8349 0.7345 0.9688 0.3605 0.0506
pin-SVM 0.1651 0.5105 0.8881 0.1815 0.0268
pin-SVM 0.2655 0.4895 0.8008 0.2668 0.0320
SP-SVM 0.0312 0.1119 0.1992 0.0714 0.0123
EEL-SVM 0.6395 0.8185 0.7332 0.9286 0.0721
Ramp-KSVCR 0.9494 0.9732 0.9680 0.9877 0.9279

The insurance fraud detection data refer to motor insurance claims, and the aim was to
identify if a claim is fraudulent (Y = −1) or not (Y = +1). The CI dataset is quite balanced
since 25% of the claims are recorded as fraudulent. Several features were available, and a
preliminary round of features engineering was performed. We considered the following
numerical features: (G1) the age of the policyholder, (G2) the percentage of the ‘injury_claim’
on the total claim amount, (G3) the percentage of the ‘vehicle_claim’ on the total claim
amount, (G4) the total claim amount and (G5) the age of the vehicle at the time of the
incident. The last one was computed as the period between the ‘auto_year’ (the year of
registration of the vehicle) and the ‘incident_date’. In addition, we included the categorical
features related to the policy, namely, (G6) the state and (G7) the deductible; related to
the insured, namely, (G8) the gender, (G9) educational level and (G10) relationship; and,
related to the incident, that is, (G11) type, G12) severity and (G13) state.

All categorical features (of the two sources of data) were pre-processed via standard
one-hot encoding procedure and all features were rescaled to [−1, 1] before training. Ran-
dom sampling was performed to extract the training and testing sets, so that the training
set was twice as large as the testing set. The hyper-parameter tuning of the three meth-
ods (C-SVM, SP-SVM, EEL-SVM) was performed via 10-fold cross-validation using the
hyper-parameter spaces in Section 4.2. SP-SVM identifies F1 (loan amount) and G4 (claim
amount) as the features affected by DU that have the largest standard deviation at the
same time. This is not surprising since both features have a massive impact on the target
variable and they are heavily influenced by all other features. Table 7 reports the details of
the training–testing splitting and the out-of-sample accuracy of the three SVM methods.

Table 7. Summaries of HMDA datasets and their accuracy levels. Highest accuracy along each row
in bold.

Dataset Total Testing C-SVM SP-SVM EEL-SVMSample Size Sample Size

ME 4226 1396 70.77% 70.77% 70.13%
VT 1948 648 90.74% 91.67% 90.89%
CI 1000 330 83.33% 83.33% 83.93%

We observed that EEL-SVM obtains the best result for the CI data, whereas SP-SVM
performs best in terms of accuracy, with C-SVM and EEL-SVM relatively close. The next
step was to interpret the classification rule and explain the DU effect, but also to evaluate
the effect of an automatized mortgage lending decision. The latter was measured by looking
into unfavorable decisions where the loan is denied, i.e., Y = −1.

The Equal Credit Opportunity Act (ECOA) prohibits a creditor from discriminating
against any borrower on the basis of age, marital status, race, religion or sex, known as
protected characteristics; such a regulatory requirement is imposed not only in the US,
but also similar ones are in place in the EU, UK and elsewhere. Under ECOA, regulatory
agencies assess the lending decision fairness of lending institutions by comparing the
unfavorable decision (Y = −1) across different groups with given protected characteristics.



Risks 2022, 10, 154 18 of 25

Our next analysis focuses on checking whether an automatized lending decision could
lead to unintentional discrimination, known as disparate impact. First, we looked at the
entry data and provided evidence on whether or not the loan amount is massively different
across the applicants’ gender at birth, income and racial structure in their postal code,
which would explain if DU is present or not. Second, we evaluated the fairness of the
lending decision obtained via SVM classification and argued which SVM-based decision is
more compliant with such non-discrimination regulation (with respect to the sex attribute).

Table 8 reports the Kolmogorov–Smirnov distances for loan amount samples of appli-
cants based on gender characteristics. There is overwhelming evidence that joint loan
applications and female applicants have very different loan amount distributions in both
training and testing data, though VT data exhibit the largest distance when comparing
male and female applicants with a favorable mortgage lending decision. This could be
explained by socio-economic disparities between males and females, though DU plays a
major role in this instance. Gender information in the HMDA data is expected to have a
self-selection bias, since applicants at risk are quite unlikely to report gender information
as they believe that the lending decision would be influenced by that. Consequently, we
removed a significant portion of the data, i.e., examples for which the gender information
is unknown, which is clear evidence of self-selection bias in our entry data.

Table 8. Kolmogorov–Smirnov distances in loan amount distributions of males versus females
(MvsF), males versus joint (MvsJ) and females versus joint (FvsJ). Largest distances along each row
corresponding to training and testing data in bold.

Training Data Testing Data

MvsF MvsJ FvsJ MvsF MvsJ FvsJ

ME
Y ∈ {−1, 1} 0.0853 0.0477 0.1330 0.0969 0.1248 0.2096
Y = −1 0.0540 0.0727 0.1215 0.1203 0.1122 0.2313
Y = 1 0.1091 0.0381 0.1472 0.0889 0.1266 0.1986

VT
Y ∈ {−1, 1} 0.0923 0.1009 0.1841 0.1355 0.1399 0.2000
Y = −1 0.0866 0.0449 0.1208 0.3095 0.1429 0.1667
Y = 1 0.1258 0.1579 0.2515 0.1235 0.1575 0.2108

Figures 2 and 3 show the kernel densities of the deviation in the log-transformed
loan amount from the population mean. In particular, we plotted such deviations for
the entire dataset, but also for sub-populations with a low/high minority and income
percentage. A low/high minority percentage means that the mortgage applicant is in an
area of lower/higher minority than the population median. Moreover, a low/high income
percentage means that the mortgage applicant household income is lower/higher than the
household income in her/his MSA. ME data from Figure 2 do not show any evidence of
DU with respect to the loan amount, which explains the results in Table 7, where SP-SVM
and EEL-SVM did not improve the non-robust counterpart. VT data show a very different
scenario in Figure 3, where the loan amount deviations have a bimodal distribution. In
addition, within the low minority sub-population, female applicants exhibit significantly
lower loan amounts than all other applicants; the same pattern is observed in the low
income sub-population. Therefore, the DU in the VT data is evident, and confirms the
findings in Table 8, but also those in Table 7, where SP-SVM and EEL-SVM did improve the
non-robust C-SVM.
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Figure 2. ME loan amount deviations from the population mean based on full data and sub-populations
with low/high minority and low/high income percentages.
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Figure 3. VT loan amount deviations from the population mean based on full data and sub-populations
with low/high minority and low/high income percentages.

We have concluded the first part of our qualitative analysis, where we have explained
the DU, and we now evaluate how compliant the automatized mortgage lending process
would be for the VT data; we do not report the ME results due to a lack of DU. Fairness
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compliance requires the lending decision – especially the unfavorable decisions (Y = −1)—to
be independent of the applicant’s gender at birth information, i.e.,

Pr(Y = −1) = Pr(Y = −1|S = l) for all l ∈ S := {Female, Male, Joint}. (14)

Table 9 tells us that the desirable lack of disparity in (14) is achieved best by EEL-
SVM. In addition, EEL-SVM estimates the unfavorable decisions very similarly to the ‘true’
decisions, and this can be seen by inspecting the probabilities that appear in bold.

Table 9. Probability of denied loan for the three classification methods. Closest value (per row) to
‘true’ probability in bold.

C-SVM SP-SVM EEL-SVM True

Pr(Y = −1) 2.3148% 1.0802% 5.5556% 7.8704%

Pr(Y = −1|Female) 3.9683% 1.5873% 6.3492% 9.5238%
Pr(Y = −1|Male) 7.8125% 3.9063% 10.1563% 16.4062%
Pr(Y = −1|Joint) 0.0000% 0.0000% 3.8071% 4.5685%

Pr(Y = −1|Low Income) 2.9316% 0.9772% 5.5375% 8.0495%
Pr(Y = −1|High Income) 1.7595% 1.1730% 5.5718% 7.6923%

Pr(Y = −1|Low Minority) 1.8576% 0.9290% 5.5728% 9.7720%
Pr(Y = −1|High Minority) 2.7692% 1.2308% 5.5385% 6.1584%

CDD −25.5944% −25.2601% −8.3263% −11.3792%

One popular fairness metric is the conditional demographic disparity (CDD), which is
discussed in Wachter et al. (2021), where the data are assumed to be part of multiple
strata. The CDD formulation for our data (with three strata, i.e., female, male and joint) is
defined as

CDD = ∑
l∈S

Pr(S = l)× DDl ,

where DDl is the demographic disparity within the lth stratum, i.e.,

DDl = Pr(S = l | Y = −1)− Pr(S = l | Y = 1) for all l ∈ S .

CDD could capture and explain peculiar data behavior similar to Simpson’s paradox,
where the same trend is observed in each stratum, but the opposite trend is observed in
the whole dataset. Amazon SageMaker, a cloud machine-learning platform developed
by Amazon, has included CDD in their practice to enhance model explainability and bias
detection; for details, see the Amazon SageMaker Developer Guide.

Table 9 shows that EEL-SVM has a superior performance to C-SVM and SP-SVM
when looking at the overall CDD fairness performance. In fact, EEL-SVM exhibits fairer
post-training decisions than the pre-training fairness measured on the ‘true’ mortgage
lending decisions observed in the testing data. In summary, the unanimous conclusion is
that EEL-SVM shows the fairest and most robust mortgage-lending automatized decision.

5. Concluding Remarks

This paper examines the binary classification problem in the context of data uncertainty.
Two powerful SVM-type classification algorithms are developed and discussed: the SP-
SVM and EEL-SVM. A large set of numerical experiments have been conducted to test
their effectiveness on synthetic and real-world datasets, both with and without noise
contamination.

Their performances have been compared with the classical C-SVM and some well-
known robust SVM formulations from the literature: pin-SVM, pin-SVM and the Ramp-
KSVCR. The results highlight that both our newly proposed methods are promising alter-
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natives to those currently available in the literature. SP-SVM achieved good results in all
our experiments, especially on synthetic data with strong noise contamination. EEL-SVM
was found to be less competent in synthetic experiments, but appeared to be an accurate
classifier for real-world datasets. In addition, the training of these two methods includes
optimization problems that can be efficiently solved faster than for other SVM methods. We
also showed empirically, using economic and insurance data, that both proposed methods
can lead to an interesting gain in classification accuracy when the data are affected by DU.

Future research will proceed in different directions. First, we plan to extend the
proposed methods to multiclass classification problems. Second, we intend to develop a
new SVM extension that combines the benefits of SP-SVM and EEL-SVM; this can be a
useful tool for handling very noisy data. Finally, we aim to explore new SVM formulations
that are robust to non-symmetric distributed noise.
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Notation
The following lists the notations frequently used in the paper:

x vector of features
y label
w, b coefficients of the hyper-plane
φ(·) kernel function
C penalty hyper-parameter for misclassifications
τ additional hyper-parameter for the pin-SVM and the pin-SVM
s additional hyper-parameter for the pin-SVM and the Ramp-KSVCR
r percentage of noisy points in the synthetic data
α additional hyper-parameter for the SP-SVM and the EEL-SVM

Appendix A

Appendix A.1. Proof of Theorem 1

It is sufficient to show that (4) holds when p > q and p < q, where

p := Pr
(
Y = 1|x

)
and q := Pr

(
Y = −1|x

)
.

The latter is equivalent to

arg min
z∈R

EY|xL
(

1−Yz
)
= arg min

z∈R
pL(1−z) + qL(1+z) =

{
1, if p > q,
−1, if p < q.

(A1)

Note that L(1± ·) are compositions of the convex function L with affine mappings, and,
therefore, the objective function of (A1) is convex. Moreover, the left and right derivatives
of L exist as the loss function is convex.

https://archive.ics.uci.edu/ml/index.php,
https://archive.ics.uci.edu/ml/index.php,
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/,
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/,
https://ffiec.cfpb.gov,
https://www.kaggle.com/datasets/buntyshah/auto-insurance-claims-data
https://www.kaggle.com/datasets/buntyshah/auto-insurance-claims-data
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Assume first that p > q. The left and right derivatives at 1 of the objective function in
(A1) are −pL′(0+) + qL′(2−) and −pL′(0−) + qL′(2+), respectively. Clearly,

−pL′(0+) + qL′(2−) = L′(0+)(q− p) ≤ 0

is true as L is linear on (0, 2 + ε) for some ε > 0. Further,

−pL′(0−) + qL′(2+) ≥ 0

also holds due to the fact that L′(0−) ≤ 0 ≤ L′(2+), which is a consequence of the convexity
of L that attains its global minimum at 0. Thus, the global minimum of (A1) is attained at 1
whenever p > q.

Assume now that p < q. Similarly, the left and right derivatives at −1 of the objective
function in (A1) are −pL′(2+) + qL′(0−) and −pL′(2−) + qL′(0+), respectively. Clearly,
−pL′(2+) + qL′(0−) ≤ 0 holds as L′(0−) ≤ 0 ≤ L′(2+) and L is convex, attaining its global
minimum at 0. Further, −pL′(2−) + qL′(0+) = L′(0+)(q− p) ≥ 0 is true as L is linear on
(0, 2 + ε) for some ε > 0. Thus, the global minimum of (A1) is attained at −1 whenever
p < q. This completes the proof.

Appendix A.2. Explicit Solution for (8)

Let φj
(
xi
)

be the jth element of φ
(
xi
)
. Denote by φ1

(
xi
)

and φ2
(
xi
)

two vectors with
their jth elements given by φ1j

(
xi
)
= φj

(
xi
)
− aik Ij=k and φ2j

(
xi
)
= φj

(
xi
)
+ aik Ij=k for all

1 ≤ i ≤ N and 1 ≤ j ≤ d, where IA is the indicator of set A that takes the values 1 or 0 if A
is true or false, respectively. Thus, (8) could be written as

min
w,b,ξ

1
2 wTw + C

N

∑
i=1

ξi

s.t. yi

(
wTφ

(
xi
)
+ b
)
≥ 1− ξi, ξi ≥ 0, 1 ≤ i ≤ N,

yi
(
wTφk(xi) + b

)
≥ 1− ξi, k ∈ {1, 2}, 1 ≤ i ≤ N.

(A2)

It should be noted that the above is a convex quadratic optimization problem that has
only affine constraints, and, thus, strong duality holds. The dual of (A2) is given by

max
α,β,γ,δ≥0

− 1
2
[
α β γ

]T T
[
α β γ

]
+ 1Tα + 1T β + 1Tγ

s.t. α + β + γ + δ = C1,
yTα + yT β + yTγ = 0,

(A3)

where the block matrix T is given by

T =


Tφ,φ Tφ,φ1 Tφ,φ2

Tφ1,φ Tφ1,φ1 Tφ1,φ2

Tφ2,φ Tφ2,φ1 Tφ2,φ2


with Tϕ1,ϕ2 being an N × N matrix with the (i, j)th entry given by yi ϕ

T
1 (xi)ϕ2(xi)yj for all

ϕ1, ϕ2 ∈ {φ, φ1, φ2} and 1 ≤ i, j ≤ N. Clearly, (A3) is equivalent to solving

min
α,β,γ≥0

1
2
[
α β γ

]T T
[
α β γ

]
− 1Tα− 1T β− 1Tγ

s.t. α + β + γ ≤ C1,
yTα + yT β + yTγ = 0.

(A4)
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Let (α∗, β∗, γ∗) be an optimal solution of (A4), which now helps with finding an
optimal solution of (8), which, in turn, gives us the classification rule identified by w∗ and
b∗. Clearly,

w∗ :=
N

∑
i=1

(
α∗i yiφ(xi) + β∗i yiφ1(xi) + γ∗i yiφ2(xi)

)
.

The choice of b∗ is possible by considering the complementary slackness conditions of

(A2). A sensible estimate of b∗ is b̂∗ := b̂+l /|Sl |, where |Sl | represents the cardinality of Sl ,
which is the set with the largest cardinality among

Sk :=
{

1 ≤ i ≤ N : θ∗ik(C− αi − βi − γi) > 0
}

,

where θ∗i0 = α∗i , θ∗i1 = β∗i and θ∗i2 = γ∗i for all 1 ≤ i ≤ N, and

b̂+l := ∑
j∈Sl

yj −∑
j∈Sl

N

∑
i=1

(
α∗i yiφ

T(xi)φ(xj) + β∗i yiφ
T
1 (xi)φ(xj) + γ∗i yiφ

T
2 (xi)φ(xj)

)
.

Appendix A.3. Explicit Solution for (11)

The derivations in this section are quite similar to those in Appendix A.2, and, thus,
we provide only the main steps. Note that the convex quadratic instance (11) has only
affine constraints, and, therefore, the strong duality holds.

One may show that the dual of (11) is equivalent to solving

min
α,β,γ≥0

1
2 α Tφ,φ α− 1Tα

s.t. α + β + γ = D11,
yTα = 0,
1Tα + 1T β = D,

(A5)

where Tφ,φ is as defined in Appendix A.2 and D1 := D/N(1− α). Once again, (11) and
(A5) are equivalent due to strong duality arguments.

Let (α∗, β∗, γ∗) be an optimal solution of (A5). Then, (11) is solved with

w∗ =
N

∑
i=1

α∗i yiφ(xi).

Finally, the bias term b∗ could be estimated as follows:

(
b̂∗, ẑ∗

)
:=

{ (
b̂∗1, 0

)
if |S4| ≤ |S3|,(

b̂∗2, 0
)

if |S4| > |S3|,

where

b̂∗1=
b̂+3
|S3|

, b̂+3 = ∑
j∈S3

yj− ∑
j∈S3

N

∑
i=1

α∗i yiφ
T(xi)φ(xj),

b̂∗2=
b̂+4
|S4|

, b̂+4 = ∑
j∈S4

yj− ∑
j∈S4

N

∑
i=1

α∗i yiφ
T(xi)φ(xj),

and

S3 :=
{

1 ≤ i ≤ N : α∗i β∗i γ∗i > 0
}

and S4 :=
{

1 ≤ i ≤ N : α∗i β∗i > 0, γ∗i = 0
}

.
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Notes
1 See https://archive.ics.uci.edu/ml/index.php (accessed on 5 January 2021).
2 See https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ (accessed on 5 January 2021).
3 See https://ffiec.cfpb.gov (accessed on 15 December 2021).
4 See https://www.kaggle.com/datasets/buntyshah/auto-insurance-claims-data (accessed on 5 January 2021).
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