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Bell inequalities rest on three fundamental assumptions: realism, lo-
cality and free choice, which lead to nontrivial constraints on correla-
tions in very simple experiments. If we retain realism, then violation
of the inequalities implies that at least one of the remaining two as-
sumptions must fail, which can have a profound consequences for
the causal explanation of the experiment. In this paper, we inves-
tigate the extent to which a given assumption needs to be relaxed
for the other to hold at all costs. Our discussion is based on the
observation that an assumption violation need not occur on every
experimental trial, even when describing some correlations violating
Bell inequalities. How often this needs to be the case determines the
degree of, respectively, locality or free choice in the observed exper-
imental behaviour. Despite their disparate character and interpreta-
tion, we show that both assumptions are equally costly. Namely, the
resources required to explain the experimental statistics (measured
by the frequency of causal interventions of either sort) are exactly
the same. Furthermore, we compute such defined measures of lo-
cality and free choice for any non-signalling statistics in a Bell ex-
periment with binary settings, showing that it is directly related to
the amount of violation of the so called Clauser-Horne-Shimony-Holt
inequalities. This result is theory-independent as it refers directly
to the experimental statistics (with quantum predictions being just
one example). Additionally, we show how the local fraction results
for quantum-mechanical frameworks with infinite number of settings
translate into analogous statements for the measure of free choice
introduced in the present paper. Such a parallel treatment of both as-
sumptions demonstrates that, as far as the statistics is concerned,
causal explanations resorting either to violation of locality or free
choice are fully interchangeable.
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"I would rather discover one true cause1

than gain the kingdom of Persia."2

– Democritus (c. 460-370 BC)3

The study of experimental correlations provides a win-4

dow into the underlying causal mechanisms, even when5

their exact nature remains obscured. In his seminal works (1–6

5), John Bell showed that seemingly innocuous assumptions7

about the structure of causal relationships leave a mark on8

the observed statistics. The first assumption, called realism (or9

counterfactual definiteness), presents the worldview in which10

physical objects and their properties exist, whether they are11

observed or not. Note that realism allows a standard notion of12

causality (6, 7), which in turn provides us with the language to13

express the remaining two assumptions. The locality assump-14

tion is a statement that physical (or causal) influences prop-15

agate in accord with the spatio-temporal structure of events16

(i.e., neither backward in time nor instantaneous causation).17

The free choice assumption asserts that the choice of measure- 18

ment settings can be made independently from anything in the 19

(causal) past. These three assumptions are enough to derive 20

testable constraints on correlations called Bell inequalities. 21

Surprisingly, nature violates Bell inequalities (8–15) which 22

means that if the standard causal (or realist) picture is to be 23

maintained at least one of the remaining two assumptions, that 24

is locality or free choice, has to fail. It turns out that rejecting 25

just one of those two assumptions is always enough to explain 26

the observed correlations, while maintaining consistency with 27

the causal structure imposed by the other. Either option poses 28

a challenge to deep-rooted intuitions about reality, with a 29

full range of viable positions open to serious philosophical 30

dispute (16–18). Notably, quantum theory in its operational 31

formulation does not provide any clue regarding the causal 32

structure at work, leaving such questions to the domain of 33

interpretation. It is therefore interesting to ask about the 34

extent to which a given assumption needs to be relaxed, if we 35

insist on upholding the other one (while always maintaining 36

realism). In this paper, we seek to compare the cost of locality 37

and free choice on an equal footing, without any preconceived 38

conceptual biases. As a basis for comparison we choose to 39

measure the weight of a given assumption in terms of the 40

following question: 41

How often a given assumption, i.e. locality or free choice, can
be retained, while safeguarding the other assumption, in order
to fully reproduce some given experimental statistics within a
standard causal (or realist) approach?

42

This question presumes that a Bell experiment is performed 43

trial-by-trial and the observed statistics can be explained in 44
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the standard causal model (or hidden variable) framework (1–45

7, 19–21), which subsumes realism. It means that the remaining46

two assumptions of locality and free choice translate into condi-47

tional independence between certain variables in the model,48

whose causal structure is determined by their spatio-temporal49

relations (6, 22) (for some alternative approach endorsing in-50

definite causal structures see e.g. (23, 24), or (25) for discussion51

of retrocausality). Modelling of the experiment implies that in52

each run of the experiment all variables (including unobserved53

or hidden ones) always take definite values and the statistics54

accumulates over many trials. This leaves open the possibility55

that the violation of the assumptions do not have to occur on56

each run of the experiment to explain the given statistics. We57

can thus put flesh on the bones of the above question and seek58

the maximal proportion of trials in which a given assumption59

can be retained, while safeguarding the other assumption, so60

as to fully reproduce some given statistics. In the following,61

we shall denote so defined measure of locality (safeguarding62

freedom of choice) as µL and measure of free choice (safeguard-63

ing locality) as µF. Also, without stating this in every instance,64

we note that in all subsequent discussion realism is assumed.*65

There has been some previous research on this theme. A66

measure of locality analogous to µL was first proposed by67

Elitzur, Popescu and Rohrlich (27) to quantify non-locality in68

a singlet state. Note, it seems that the original idea of a bound69

for such a locality measure was expressed earlier, in (28), but a70

bound was not worked out. In any case, Elitzur, Popescu, and71

Rohrlich’s measure was dubbed local fraction (or content) and72

shown (with improvements in (29–31)) to vanish in the limit73

of an infinite number of measurement settings. A substantial74

step was made in (32) where the local fraction is explicitly75

calculated for any pure two-qubit state for an arbitrary choice76

of settings. We note that those results concern measure µL only77

for the specific case of quantum-mechanical predictions. In78

this paper we go beyond this framework and consider the case79

of general experimental statistics (see (33) for extension to the80

idea of contextuality). To avoid confusion, the term local fraction81

for measure µL will be only used in relation to the quantum82

case. Furthermore, we propose a similar treatment of the free83

choice assumption quantified by measure µF. Natural as it may84

seem, this approach has not been pursued in the literature,85

with some other measures proposed to this effect (34–42) (all86

retaining locality as a principle, but departing from the original87

notion of free choice introduced by Bell (6, 22)).88

We aim to comprehensively consider the extent to which a89

given assumption, i.e. locality or free choice, can be preserved90

through partial violation of the other assumption. To accom-91

plish this, we provide similar definitions and discuss on an92

equal footing both measures of locality µL and free choice µF.93

Then, we derive the following results. First, we prove a general94

structural theorem about causal models explaining any given95

experimental statistics in a Bell experiment (for any number of96

settings) showing that such defined measures are necessarily97

equal, µL = µF. This result consolidates those two disparate98

concepts demonstrating their deep interchangeability. Second,99

we explicitly compute both measures for any non-signalling100

*As noted, realism is subsumed in the standard notion of causality, which is implicit in the defini-
tion of locality and free choice (1–6). So, henceforth, referring to the standard causal framework
implies the realist approach. We also remark that, although, "realism" goes under different guises
in the literature (e.g. "counterfactual definiteness", ’"local causality", "hidden causes", etc.), for our
purposes those distinctions are irrelevant and the underlying mathematics remains the same, i.e.
it boils down to the hidden variable framework (which beyond physics is frequently referred to as
the structural causal models (7)). See (3, 26) for some discussion.

(   )

(   )

Fig. 1. Summary of the results. The main Theorem 1 is the backbone of the paper,
consolidating both measures of locality µL and free choice µF . Theorem 2 is a theory-
independent result about both measures µL and µF . It offers a concrete interpretation
for the amount of violation of the CHSH inequalities. Theorems 3 and 4 are specific to
the quantum-mechanical statistics stated here for measure µF . They are translations
of some remarkable local fraction results µL in the literature (marked with an (∗),
cf. (29–32)).

statistics in a two-setting and two-outcome Bell scenario. This 101

enables a direct interpretation to the amount of violation of the 102

Clauser-Horne-Shimony-Holt (CHSH) inequalities (43). Third, 103

we consider the special case of the quantum statistics with 104

infinite number of settings, utilising existing results for the 105

local fraction µL, which thus translate on the newly developed 106

concept of the measure of free choice µF. Fig. 1 summarises 107

the results in the paper. 108

Results 109

Bell experiment and Fine’s theorem. Let us consider the usual 110

Bell-type scenario with two parties, called Alice and Bob, 111

playing the roles of agents conducting experiments on two 112

separated systems (whose nature is irrelevant for the argu- 113

ment). We assume that on each side there are two possi- 114

ble outcomes labelled respectively a, b = ±1 and M possible 115

measurement settings labelled respectively x, y ∈ M where 116

M ≡ {1, 2 , . . . , M}. A Bell experiment consists of a series of 117

trials in which Alice and Bob each choose a setting and make 118

a measurement registering the outcome. After many repeti- 119

tions, they compare their results described by the set of M×M 120

distributions {Pab|xy}xy , where Pab|xy denotes the probability of 121

obtaining outcomes a, b, given measurements x, y were made 122

on Alice and Bob’s side respectively. For conciseness, following 123

the terminology in (5), we will call {Pab|xy}xy a "behaviour". Note 124

that without assuming anything about the causal structure un- 125

derlying the experiment any behaviour is admissible (as long 126

as the distributions are normalised, i.e. ∑a,b Pab|xy = 1 for each 127

x, y ∈M). In particular, quantum theory gives a prescription 128

for calculating the experimental statistics Pab|xy for each choice 129

of settings x, y ∈M based on the formalism of Hilbert spaces. 130

It is instructive to recall the special case of two measurement 131

settings on each side x, y ∈M = {0, 1} for which Bell derived 132

his seminal result. Briefly, this can be expressed by saying that 133

any local hidden variable model with free choice has to satisfy 134

the following four CHSH inequalities (43) 135

|Si| 6 2 for i = 1, ... , 4 , [1] 136
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www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

where137

S1 = 〈ab〉00 + 〈ab〉01 + 〈ab〉10 − 〈ab〉11 , [2]138

S2 = 〈ab〉00 + 〈ab〉01 − 〈ab〉10 + 〈ab〉11 , [3]139

S3 = 〈ab〉00 − 〈ab〉01 + 〈ab〉10 + 〈ab〉11 , [4]140

S4 = −〈ab〉00 + 〈ab〉01 + 〈ab〉10 + 〈ab〉11 , [5]141

with 〈ab〉xy = ∑a,b ab Pab|xy being correlation coefficients for a142

given choice of settings x, y. Interestingly, by virtue of Fine’s143

theorem (44, 45), this is also a sufficient condition for a non-144

signalling behaviour {Pab|xy}xy to be explained by a local hidden145

variable model with freedom of choice (for non-signalling see146

Eqs. (16) and (17)).147

It is crucial to observe that, although locality and freedom148

of choice are two disparate concepts with different ramifica-149

tions for our understanding of the experiment, they are in150

a certain sense interchangeable. If locality is dropped with151

Alice and Bob freely choosing their settings, then the boxes, by152

influencing one another, can produce any behaviour {Pab|xy}xy.153

Similarly, a violation of the free choice assumption can be154

used to reproduce any behaviour {Pab|xy}xy, without giving up155

locality. It is straightforward to see how this might work if one156

of the two assumptions fails on every experimental trial.†157

However, such a complete renouncement of assumptions158

so central to our view of nature may seem excessive, espe-159

cially when the CHSH inequalities are violated only by a little160

amount (less than the maximal algebraic bound of |Si| 6 4),161

leaving room for a possible explanation of the experimental162

statistics by rejecting one of the assumptions sometimes only.163

Here we assess the cost of such a partial violation by asking164

how often a given assumption can be retained in order to165

account for a behaviour {Pab|xy}xy . We will investigate both166

cases in parallel: (♠) full freedom of choice with occasional non-167

locality (communication), and (♣) the possibility of retaining168

full locality at a price of compromising freedom of choice (by169

controlling or rigging measurement settings) on some of the170

trials. We shall use the least frequency of violation, required171

to model some statistics with a hypothetical simulation, as a172

natural figure of merit, guided by the principle that the less173

the violation the better. Notably, such simulations should not174

restrict possible distributions of measurement settings Pxy. In175

other words, we define a measure of locality µL as176

the maximal fraction of trials in which Alice and Bob do
not need to communicate trying to simulate a given be-
haviour {Pab|xy}xy , optimised over all conceivable strategies
with freely chosen settings.

[♠]177

Similarly, we define a measure of free choice µF as178

the maximal fraction of trials in which Alice and Bob can
grant free choice of settings in trying to simulate a given
behaviour {Pab|xy}xy , optimised over all conceivable local
strategies.

[♣]179

In the quantum-mechanical context the measure µL is called180

a local fraction (27–32). By analogy, when considering the181

†For the simulation of a given behaviour {Pab|xy}xy in a Bell experiment one may proceed as
follows. Upon rejection of locality, in each trial the system on Alice’s side, one may not only use
input x but also y to generate outcomes (and similarly for the box on Bob’s side) that comply
with the appropriate distribution. On the other hand, when freedom of choice is abandoned, both
settings x, y may be specified in advance on each trial and the boxes can be instructed to provide
the outcomes needed to simulate the appropriate distribution. It is however unclear how this might
work with occasional violation of the respective assumptions.

quantum-mechanical statistics the measure µF might be called 182

a free fraction. This provides an equal basis for comparing 183

the two assumptions within the standard causal (or realist) 184

approach, which we formalise in the following section. 185

Causal models, locality and free choice. The appropriate 186

framework for the discussion of locality and free choice is 187

provided by hidden variable models (1–5). First, a hidden 188

variables model allows a formal statement of the realism as- 189

sumption, understood to mean that properties of a physical 190

system exist irrespective of an act of measurement (counterfac- 191

tual definiteness). Second, hidden variable models provide the 192

causal language in which the locality and free choice assump- 193

tions are expressed (6, 7). The locality assumption conveys the 194

requirement that the propagation of physical (or causal) influ- 195

ences have to follow the spatio-temporal structure of events 196

(i.e., preserve the arrow of time and respect that actions at a 197

distance require time). The free choice assumption concerns 198

the choice of measurement settings which are deemed cusally 199

unaffected by anything in the past (and thus it is sometimes 200

called measurement independence).‡ Both assumptions take the 201

form of conditional independencies between certain variables 202

in a hidden variables model. 203

To make this idea more concrete, let us consider a given 204

set of probability distributions (behaviour) {Pab|xy}xy which 205

describes the statistics in a Bell experiment. Without loss of 206

generality, by conditioning on λ in some a priori unknown 207

hidden variable space Λ, one can always write (4, 5, 7) 208

Pab|xy = ∑
λ∈Λ

Pab|xyλ · Pλ|xy , [6] 209

where Pλ|xy and Pab|xyλ are valid (i.e. normalised) conditional 210

probability distributions. The role of the hidden variable (cause 211

in the past) λ ∈ Λ, distributed according to some Pλ, is to 212

provide an explanation of the observed experimental statistics. 213

This means that at each run of the experiment the outcomes 214

are described by the distribution Pab|xyλ with λ ∈ Λ fixed in 215

a given trial, so that the accumulated experimental statistics 216

Pab|xy obtains by sampling from some distribution Pλ|xy over the 217

whole hidden variable space Λ. It is customary to say that 218

the choice of space Λ and probability distribution Pλ

along with conditional distributions Pab|xyλ and Pλ|xy

satisfying Eq. (6) specify a hidden variable (HV) model
of a given behaviour {Pab|xy}xy .

[?] 219

Note that such a model implicitly describes the distribution of 220

settings chosen by Alice and Bob through the standard formula 221

Pxy = ∑
λ∈Λ

Pxy|λ · Pλ . [7] 222

So far the framework is general enough to accommodate any 223

causal explanation of the statistics observed in the experiment. 224

The assumptions of locality and free choice take the form of 225

constraints on conditional distributions in (?). For a local hidden 226

variable (LHV) model, we require the following factorisation§
227

Pab|xyλ = Pa|xλ · Pb|yλ , [8] 228

‡As noted, the free choice assumption is sometimes called measurement independence. Instead
of on the agent, measurement independence is focussed on the measurement devices and pos-
sible correlations between their settings, which can affect the observed statistics. Regardless of
interpretation, the mathematics remains the same, with the source of correlations traced to some
common factor (in the causal past).

§Locality can be seen as a conjunction of two conditions: parameter independence Pa|xyλ = Pa|xλ
& Pb|xyλ = Pb|yλ , and outcome independence Pa|bxyλ = Pa|xyλ & Pb|axyλ = Pb|xyλ . One can
show that such defined locality entails the factorisation condition Pab|xyλ = Pa|xλ · Pb|yλ (46).
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DRAFT

y

Local                 Non-Loca l

P

only for L

x

LL

BobAlice

a b

‘‘ ‘

‘

Fig. 2. Causal model with some non-locality (communication). In a Bell scenario,
with free choice of settings, correlations between Alice and Bob’s outcomes have two
possible explanations: common cause in the past or causal influence between the
parties. In any causal model the space of hidden variables (representing common
causes) splits into two disjoint parts Λ′ = Λ′L ∪Λ′NL distinguished by whether, for a
given λ ∈ Λ′ , causal influence occurs or not, Eq. (10). Then, locality is measured by
the proportion of events when locality is maintained, which is equal to the probability
accumulated over subset Λ′L , i.e. Prob (λ ∈ Λ′L) ≡ ∑λ∈Λ′L

Pλ .

for each x, y ∈ M and all λ ∈ Λ. The freedom of choice as-229

sumption consists of requiring that λ does not contain any230

information about variables x, y representing Alice and Bob’s231

choice of measurement settings. This boils down to the inde-232

pendence condition (6, 22)233

Pλ|xy = Pλ (or equivalently Pxy|λ = Pxy) , [9]234

holding for x, y ∈M and all λ ∈ Λ. In the following, we will235

abbreviate a hidden variable model with freedom of choice as FHV236

model.237

The crucial point is the distinction between local vs non-local238

as well as free vs non-free situations in the individual runs of239

the experiment modelled by Eq. (6). This means that each240

condition Eq. (8) and Eq. (9) should be considered separately241

for each λ ∈ Λ, i.e. whenever the respective condition does242

not hold for a given λ the assumption fails on the correspond-243

ing experimental trials. Such a distinction leads to a natural244

splitting of the underlying HV space into two unique partitions245

Λ = ΛL ∪ΛNL and Λ = ΛF ∪ΛNF. The first one divides Λ by246

the locality property247

λ ∈ ΛL ⇔ Eq. (8) holds for all x, y ∈M ,

λ ∈ ΛNL ⇔ Eq. (8) fails for some x, y ∈M ,
[10]248

while the second one divides Λ with by the free choice prop-249

erty250

λ ∈ ΛF ⇔ Eq. (9) holds for all x, y ∈M ,

λ ∈ ΛNF ⇔ Eq. (9) fails for some x, y ∈M .
[11]251

Figs. 2 and 3 illustrate the causal structures for two extreme252

cases: FHV and LHV models (in general built on different253

HV spaces Λ′ and Λ′′). The first one grants full freedom of254

choice (Λ′ = Λ′F) while allowing for partial violation of locality255

(Λ′ ⊃ Λ′L). The second one retains full locality (Λ′′ = Λ′′L )256

while admitting some violation of free choice (Λ′′ ⊃ Λ′′F ).257

y

Free               Non-Free

P

only for
x only for

‘‘‘ ‘

‘‘
‘‘

BobAlice

a b

‘‘

Fig. 3. Causal model with some freedom of choice (rigging). In a Bell scenario,
with locality assumption, correlations between the outcomes on Alice and Bob’s side
can be explained by a common cause affecting choice or not (the latter implies freedom
of choice). In any causal model the space of hidden variables (representing common
causes) splits into two disjoint parts Λ′′ = Λ′′F ∪Λ′′NF distinguished by whether, for a
given λ ∈ Λ′′ , the choice is free or not, Eqs. (11). Then, the parties enjoy freedom of
choice only on the trials when λ ∈ ΛF , which happens with a frequency equal to the
probability accumulated over subset Λ′′F , i.e. Prob (λ ∈ Λ′′F) ≡ ∑λ∈Λ′′F

Pλ .

Thus, for a given experimental trial (with λ ∈ Λ fixed) 258

the constraints in Eqs. (10) and (11) indicate, respectively, 259

whether some non-local influence between the parties takes 260

place (λ ∈ ΛNL) and whether some influence from the past on 261

the measurement settings occurs (λ ∈ ΛNF). In other words, 262

in a hypothetical simulation scenario these possibilities corre- 263

spond to, respectively, communication or rigging measurement 264

settings. How often this has to happen depends on the distri- 265

bution Pλ. This picture lends itself to quantifying the degree 266

of locality and freedom choice in a given HV model. 267

Remark 1. For a given HV model (?) locality is measured by 268

Prob (λ ∈ ΛL) ≡ ∑λ∈ΛL
Pλ, and similarly freedom of choice is 269

measured by Prob (λ ∈ ΛF) ≡ ∑λ∈ΛF
Pλ. 270

This remark captures the intuition of measuring locality and 271

freedom of choice by considering the proportion of trials when 272

the respective property is maintained across the whole ex- 273

perimental ensemble. We note that this quantity is model- 274

dependent, since it is a property of a particular HV model 275

adopted to explain some given experimental statistics {Pab|xy}xy 276

(including the distribution of measurement settings Pxy, cf. 277

Eq. (7)). 278

The concepts just introduced allow a precise expression for 279

the informal definitions (♠) and (♣) given above. 280

Definition 1. For a given behaviour {Pab|xy}xy the measure of local- 281

ity µL and freedom of choice µF are defined as 282

µL := min
Pxy

max
FHV

∑
λ∈ΛL

Pλ , [12] 283

µF := min
Pxy

max
LHV

∑
λ∈ΛF

Pλ , [13] 284

where the maxima are taken respectively over all hidden variable 285

models with freedom of choice (FHV) or all local hidden variable 286

models (LHV) simulating given behaviour {Pab|xy}xy, with a fixed 287

distribution of settings Pxy , minimized over any choice of the latter. 288
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This definition follows the intuition of, respectively, locality289

or free choice as properties that can be relaxed only to the ex-290

tent that is required to maintain the other assumption in every291

experimental situation (i.e., for any distribution of measure-292

ment settings Pxy). Formally, the measures µL and µF count the293

maximal frequency of, respectively, local or free choice events294

optimised over all protocols simulating {Pab|xy}xy without vio-295

lating of the other assumption, cf. Remark 1. The minimum296

over all Pxy amounts to the worst case scenario, which takes297

into account the possibility that Pxy is a priori unspecified (i.e.,298

this amount of freedom is enough to simulate an experiment299

with any arbitrary choice of distribution Pxy in compliance with300

Eq. (7)).301

At first glance, even if conceptually appropriate, such a302

definition might seem too general to provide a manageable303

notion, due to the range of experimental scenarios that need304

to be taken into account (i.e. arbitrariness of Pxy). However,305

the situation considerably simplifies because of the following306

lemma (see Methods section for further discussion and proof).307

This lemma also provides additional support for Definition 1.308

Lemma 1. In both Eqs. (12) and (13) in Definition 1 the first309

minimum can be omitted, i.e. we have310

µL = max
FHV

∑
λ∈ΛL

Pλ , [14]311

µF = max
LHV

∑
λ∈ΛF

Pλ , [15]312

where the respective maxima are taken for some fixed nontrivial313

distribution Pxy (i.e., the expression is insensitive to this choice314

provided all settings are probed, Pxy 6= 0 for all x, y).315

It is in this way that the present measure of locality µL316

extends the notion of local fraction (27–32) to arbitrary exper-317

imental behaviour {Pab|xy}xy. Remarkably, the twin concept,318

which is the measure of free choice µF has not been considered319

at all. Perhaps the reason for this omission is the issue of arbi-320

trariness of the distribution Pxy, for which there are non-trivial321

constraints when freedom of choice is violated (note that for322

the measure µL this problem does not occur). Those concerns323

can be dismissed only after the proper treatment in Lemma 1.324

This allows a so defined measure of freedom µF on a par with325

the more familiar measure of locality µL.326

So far the concepts of violation of locality and freedom of327

choice, and the corresponding measures µL and µF, have been328

kept separate. This is expected given their disparate character.329

First, each concept plays a different role in the description330

of an experiment and hence offers a different explanation for331

any observed correlations, this is, direct influence (communi-332

cation during the experiment) vs measurement dependence333

(employing common past for rigging measurement settings).334

Second, on the level of causal modelling those assumptions335

are expressed differently, Eq. (8) vs Eq. (9). Third, violating336

free choice gives rise to subtle issues regarding constraints on337

the distribution of settings Pxy (as noted, these concerns are338

addressed in Lemma 1).339

Having brought all those issues to the spotlight, it is sur-340

prising that the assumption of locality and free choice are341

intrinsically connected. We now present the key result in342

this paper showing the exchangeability of both concepts,343

while maintaining the same degree of locality and freedom344

of choice so defined. It holds for any number of settings345

x, y ∈M = {0, 1, ... , M} (see Methods for the proof).346

Theorem 1. For a given behaviour {Pab|xy}xy the degree of locality 347

and freedom of choice are the same, i.e. both measures in Definition 1 348

coincide µL = µF. 349

This is a general structural theorem about causal modelling 350

of a given behaviour {Pab|xy}xy. It means that the resources 351

measured by the frequency of causal interventions of either 352

sort, required to explain an experimental statistics, are equally 353

costly. Thus, as far as the statistics is concerned, causal expla- 354

nations resorting either to violation of locality or free choice 355

(or measurement dependence) should be kept on an equal foot- 356

ing. Preference should be guided by a better understanding 357

of a particular situation (design of the experiment as well as 358

ontological commitments in its description). 359

Let us emphasise two features of Theorem 1. First, this is 360

a theory-independent result in the sense that it applies directly 361

to experimental statistics irrespective of the design or theo- 362

retical framework behind the experiment (with the quantum 363

predictions being just one example). Second, the connection 364

between those two seemingly disparate quantities µL and µF 365

has a practical advantage: knowledge of one suffices to com- 366

pute the other. Both features are illustrated by the following 367

results. 368

Non-signalling behaviour with binary settings. Consider the 369

case of Bell’s experiment with only two measurement settings 370

on each side x, y ∈M = {0, 1}. Let us recall that non-signalling 371

of some given behaviour {Pab|xy}xy means that Alice cannot infer 372

Bob’s measurement setting (whether it is y = 0 or 1) from the 373

statistics on her side alone, i.e. 374

Pa|x0 = ∑
b

Pab|x0 = ∑
b

Pab|x1 = Pa|x1 for all a, x , [16] 375

and similarly on Bob’s side (whether Alice chooses x = 0 or 376

1), i.e. 377

Pb|0y = ∑
a

Pab|0y = ∑
a

Pab|1y = Pb|1y for all b, y . [17] 378

Now we can state another result which explicitly computes 379

both measures µL and µF in a surprisingly simple form (see 380

Methods for the proof). 381

Theorem 2. For a given non-signalling behaviour {Pab|xy}xy with 382

binary settings x, y ∈M = {0, 1} both measures of locality µL and 383

free choice µF from Definition 1 are equal to 384

µL = µF =

{
1
2 (4− Smax) , if Smax > 2 ,

1 , otherwise ,
[18] 385

where Smax = max {|Si| : i = 1, ... , 4} is the maximum absolute 386

value of the four CHSH expressions in Eqs. (2)-(5). 387

We thus obtain a systematic method for assessing the degree 388

of locality and free choice directly from the observed statistics 389

{Pab|xy}xy without reference to the specifics of the experiment 390

(the only requirement is non-signalling of the observed dis- 391

tributions). In this sense, this is a general theory-independent 392

statement. 393

Overall, Theorem 2 allows an interpretation of the amount 394

of violation of the CHSH inequalities in Bell-type experiments 395

as a fraction of trials violating locality (granted freedom of 396

choice) or equivalently trials without freedom of choice (given 397

locality). 398
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The quantum case: Binary settings and beyond. Let us re-399

strict our attention to the special case of the quantum statistics.400

Notably, various aspects of non-locality have been extensively401

researched in relation to the quantum-mechanical predictions,402

see (4, 5) for a review. This includes the notion of local frac-403

tion (27–32), which is the same as measure µL here defined404

for a general behaviour {Pab|xy}xy. As noted, it may be thus405

surprising that the equally natural measure of freedom µF has406

not been explored. Theorem 1 bridges the gap between those407

two seemingly disparate notions: there is no actual need for408

separate study. We next review some crucial results for the409

local fraction in the quantum-mechanical framework, which al-410

lows us to make similar statements for the measure of freedom411

µF.412

We first observe that Theorem 2 can be readily applied413

to the quantum-mechanical statistics (where non-signalling414

holds). In a Bell experiment, quantum probabilities obtain415

through the standard formula Pab|xy = Tr [ ρ Pa
x ⊗ Pb

y ] where416

ρ is a (bipartite) mixed state with two PVMs {Pa=±1
x } and417

{Pb=±1
y } representing Alice and Bob’s choice of measurement418

settings x, y ∈M = {0, 1}. Calculating the CHSH expressions419

Eqs. (2)-(3) in each particular case is straightforward, which420

gives explicitly the expression for both measures µL and µF via421

Eq. (18). The result of special significance concerns the famous422

Tsirelson bound SQM
max = 2

√
2 for the maximal violation of the423

CHSH inequalities in quantum mechanics (47). By virtue of424

Theorem 2, this means that in order to locally recover the425

quantum predictions in a Bell experiment with two settings,426

Alice and Bob can enjoy freedom of choice in the worst case,427

at most, with a fraction µF = 2−
√

2 ≈ 0.59 of all trials (cor-428

responding to the choice of measurements on a maximally429

entangled state that saturate the Tsirelson bound). Clearly, the430

same applies to local fraction µL in a two-setting scenario.431

Interestingly, relaxing the constraint on the number of432

settings for Alice and Bob’s measurements x, y ∈ M =433

{1, 2, 3, ... , M} the quantum statistics forces us to further con-434

strain, respectively, locality or free choice. The case of local435

fraction µL with arbitrary number of settings M→ ∞ has been436

thoroughly investigated for statistics generated by quantum437

states. Let us refer to two interesting results in the literature438

on local fraction µL which readily translate via Theorem 1 to439

the measure of freedom µF. The first one concerns the statistics440

of a maximally entangled state, cf. (27, 29) (see SI Appendix441

for a direct proof).442

Theorem 3. For every local hidden variable (LHV) model that443

explains the statistics of a Bell experiment for a maximally entangled444

state the amount of free choice tends to zero with increasing number445

of measurement settings M, i.e. µF M→∞
// 0 .446

Apparently, for less entangled states the amount of freedom447

increases, reaching the maximal value µF = 1 for separable448

states. This is a consequence of the result in (32), which explic-449

itly computes the local fraction µL for all pure two-qubit states.450

Stated for measure µF this takes the following form.451

Theorem 4. For a pure two-qubit state, which by appropriate choice452

of the basis can always be written in the form |ψ〉 = cos θ
2 |00〉+453

sin θ
2 |11〉 with θ ∈ [0, π

2 ], the amount of freedom is equal µF =454

cos θ, whatever the choice and number of settings on Alice and Bob’s455

side.456

Note that both Theorem 3 and Theorem 4 assume a spe-457

cific form of behaviour {Pab|xy}xy as obtained by the rules of458

quantum theory. The theorems should be contrasted with 459

Theorem 2 which is a theory-independent statement, not limited 460

to a particular theoretical framework. 461

Discussion 462

The ingenuity of Bell’s theorem lies in the fundamental nature 463

of the premises from which the result is derived. Within the 464

standard causal (or realist) approach, it is hard to assume less 465

about two agents than having free choice and their systems 466

being localised in space. Yet in some experiments nature refutes 467

the possibility that both assumptions are concurrently true (8– 468

15). It is not easy to reject either one of them without carefully 469

rethinking the role of observers and how cause-and-effect man- 470

ifests in the world.¶ Our objective in this paper is this: instead 471

of pondering the question of how this could be possible, we ask about 472

the extent to which a given assumption has to be relaxed in order to 473

maintain the other. Expressed more colloquially, it is natural for 474

a realist to ask what is the cost of trading one concept for the 475

other: Is it possible to save free choice by giving up on some locality? 476

Or, maybe is it better to forego a modicum of free choice in exchange 477

for locality? These questions can be compared on equal footing 478

by computing a proportion of trials across the whole experi- 479

mental ensemble in which a given assumption must fail, when 480

the other holds at all times. Surprisingly, the answer can be 481

obtained by looking at the observed statistics alone (avoiding 482

the specifics of the experimental setup). The first question 483

was formulated in the quantum-mechanical context by Elitzur, 484

Popescu and Rohrlich (27) who introduced the notion of lo- 485

cal fraction further elaborated in (29–32) (see (28) for an early 486

indication of these ideas). Here, we generalise this notion to ar- 487

bitrary experimental statistics (see also (33)). Furthermore, we 488

answer the second question by adopting a similar approach to 489

measuring the amount of free choice (which by analogy may be 490

called free fraction). The first main result, Theorem 1, compares 491

such defined measures in the general case (arbitrary statistics 492

with any number of settings), showing that both assumptions 493

are equally costly. This demonstrates a deeper symmetry be- 494

tween locality and free choice, which may come as a surprise, 495

given our intuition of a profound difference in the role these 496

concepts play in the description of an experiment. 497

In this paper, the notions of locality and free choice are 498

understood in the usual sense required to derive Bell’s theo- 499

rem (6, 22). They are expressed in the standard causal model 500

framework (which subsumes realism) as unambiguous yes-no 501

criteria for each experimental trial (i.e. when all past variables 502

are fixed), determining whether there is a causal link between 503

certain variables in a model (without pondering its exact na- 504

ture). The measures µL and µF count the fraction of trials when 505

such a connection needs to be established, breaking locality or 506

free choice respectively, in order to explain the observed statis- 507

tics. This problem is prior to a discussion of how this actually 508

occurs, which is particularly relevant when the exact nature of 509

the phenomenon under study is obscured. Theorem 1 shows 510

no intrinsic reason for a realist to favour one assumption vs 511

the other. The minimal frequency of the required causal in- 512

fluences of either sort, measured by µL and µF, is exactly the 513

¶We note that the conventional understanding of causality and the language of counterfactuals has
recently gained a solid mathematical basis; see e.g. the work of J. Pearl (7). However, in view of
the apparent difficulties with embedding quantum mechanics in that framework, the standard ap-
proach to causality based on Reichenbach’s principle or claims regarding spatio-temporal structure
of events might need reassessment; see e.g. indefinite causal structures (23, 24) or retrocausal-
ity (25).
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same. Notably, this is a general result which holds for any514

behaviour {Pab|xy}xy. What remains is explicit calculation of515

those measures for a given experimental statistics.516

The second main result, Theorem 2, evaluates both mea-517

sures µL and µF for any non-signalling behaviour in a Bell518

experiment with two outcomes and two settings. It provides a519

direct interpretation to the amount of violation of the CHSH520

inequalities (43). The key motivation behind this result is that521

the degree by which the inequalities are violated has not been522

given tangible interpretation so far, beyond its use as a binary523

test of whether the inequalities are obeyed or not in study of524

Bell non-locality. Furthermore, Theorem 2 has the advantage525

of being theory-independent in the sense of being applicable to526

the experimental statistics regardless of its theoretical origin527

(i.e., beyond the quantum-mechanical framework). This makes528

it suitable for quantitative assessment of the degree of locality529

and free choice across different experimental situations, with530

prospective applications beyond physics, e.g. in neuroscience,531

cognitive psychology, social sciences or finance (48–52).532

We also state two results, Theorem 3 and Theorem 4, for533

the measure of free choice µF in the case of the quantum534

statistics generated by the pure two-qubit states. Both are535

direct translation, via Theorem 1, of the corresponding results536

for the local fraction µL (27–32).537

It is worth noting a related idea of quantifying non-locality538

through the amount of information transmitted between the539

parties that is required to reproduce quantum correlations (un-540

der free choice assumption). Together with the development541

of the specific models (53–57), this has led to various results re-542

garding communication complexity in the quantum realm (58).543

However, in this paper we take a different perspective on mea-544

suring non-locality by changing the question from "how much"545

to "how often" communication needs to be established between546

the parties to simulate given correlations. Theorem 2 gives547

the exact bound in the case of non-signalling statistics in the548

two-setting and two-outcome Bell experiment. In the quantum549

case, such a simulation requires communication in at least 41 %550

of trials (because of Tsirelson’s bound (47)) and for maximally551

entangled states increases to 100 % of trials when the number552

of settings is arbitrary (cf. Theorems 3 and 4).553

Natural as it may seem, the idea of measuring freedom of554

choice by measure µF has not been developed in the literature.555

The reason for this omission can be traced to the conceptual556

and technical issues with handling arbitrariness of the distribu-557

tion of settings Pxy. Those concerns are properly addressed in558

the present paper with Lemma 1, which considerably simpli-559

fies and supports Definition 1. We note that various measures560

have been developed as a means of quantifying freedom of561

choice (or measurement independence, as it is sometimes called).562

They include maximal distance between distributions (35, 37),563

mutual information (38, 42) or measurement dependent lo-564

cality (39–41). Furthermore, some explicit models simulating565

correlations in a singlet state with various degrees of measure-566

ment dependence have been proposed (34, 36) and analysed567

(e.g. see (42) for comparison of causal vs retrocausal models).568

However, these attempts depart from the original understand-569

ing of the free choice as introduced by Bell (6, 22) (strict in-570

dependence of choice from anything in the past) in favour of571

more sophisticated information-theoretic accounts. Notably,572

the proposed measure of free choice builds on the Bell’s origi-573

nal framework assessing the maximal frequency with which574

such a freedom can be retained in a model strictly consistent 575

with locality. It thus benefits from a direct interpretation within 576

the established causal framework of Bell inequalities and has 577

a clear-cut operational meaning. 578

Regarding Theorem 3, which rules out any freedom of 579

choice so defined, it is interesting to take an adversarial per- 580

spective on the problem of free choice in relation to quantum 581

cryptography and device independent certification (59, 60). In 582

this narrative an eavesdropper controls the devices trying to 583

simulate the quantum statistics of a Bell test, which is impossi- 584

ble as long as the parties enjoy freedom of choice. However, 585

any breach of the latter, i.e. control of measurement settings, 586

shifts the balance in favour of the eavesdropper in her mali- 587

cious task. Taking the view that any causal influence comes 588

with a cost or danger of being uncovered there are two di- 589

verging strategies that reduce the cost/risk to be considered: 590

(a) resort to the use of control of choice as seldom as possible 591

during the experiment, or (b) minimise the intensity of each act 592

of control. Theorem 3 completely rules out the first possibil- 593

ity when simulating quantum statistics, i.e., the eavesdropper 594

needs to manipulate both settings on each trial in order to sim- 595

ulate the quantum statistics. The question about the intensity 596

of the control is left open in our discussion, but amenable to 597

information-theoretic methods (35–42). This gives additional 598

security criteria for quantum cryptography and device inde- 599

pendent certification by forcing the eavesdropper to a more 600

challenging sort of attack (not only can she not miss a trial, 601

but the control has to be subtle enough). 602

We remark that the main Theorem 1 readily extends to the 603

case of larger number of parties and outcomes {Pabc...|xyz...}xyz.... 604

This should be also possible for Theorem 2 when characteri- 605

sation of the local polytope is known, cf. (61–67). Yet another 606

valuable avenue for research in that case consists of completing 607

the analysis to include signalling scenarios (68, 69). As for the 608

quantum case, we considered the simplest Bell-type scenario 609

with two parties involved in the experiment, but extensions 610

may prove even more surprising (see (5) for a technical review 611

of the vast field of Bell non-locality). In particular, in three- 612

party scenarios the methods discussed presently can be used to 613

eliminate freedom of choice already for two settings per party 614

sharing the GHZ state (cf. Mermin inequalities which saturate 615

in that case (70)). We should also mention an intriguing re- 616

sult (71) for a triangle quantum network in which non-locality 617

can be proved with all measurements fixed. Remarkably, there 618

is nothing to choose in that setup, but there is another assump- 619

tion of preparation independence which plays a crucial role in 620

the argument. 621

In this paper we are trying to remain impartial as to which 622

assumption — locality or free choice — is more important on 623

the fundamental level. This is certainly a strongly debated 624

subject in general, both among physicists and philosophers, 625

with strong supporters on each side (16–18). As just one 626

example depreciating the role of freedom of choice let us quote 627

Albert Einstein||: "Human beings, in their thinking, feeling and 628

acting are not free agents but are as causally bound as the stars 629

in their motion." As a counterbalance, it is hard to resist the 630

objection that was eloquently stated by Nicolas Gisin (72): "But 631

for me, the situation is very clear: not only does free will exist, but 632

it is a prerequisite for science, philosophy, and our very ability to 633

think rationally in a meaningful way." Without entering into this 634

||Statement to the Spinoza Society of America. September 22, 1932. AEA 33-291.
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debate, we remark that both assumptions are interchangeable635

on a deeper level. Namely, for a given experimental statistics636

{Pab|xy}xy in a Bell-type experiment the measure of locality µL637

and measure of free choice µF are exactly the same. This makes638

an even stronger case regarding the inherent impossibility of639

inferring causal structure from experimental statistics alone.640

Materials and Methods641

In order to facilitate the following discussion we begin with two642

technical lemmas. See SI Appendix for the proofs.643

The first one holds for a Bell experiment with arbitrary number of644

settings x, y ∈M = {1, 2, 3, ... , M}.645

Lemma 2. For any behaviour {Pab|xy}xy and distribution of settings Pxy646

there exists a local hidden variable model (LHV) which fully violates the647

freedom of choice assumption. [i.e. if Λ̃ is the relevant HV space, then we648

have Λ̃ = Λ̃L = Λ̃NF , cf. Eqs. (10) and (11))].649

The second one concerns a Bell scenario with binary settings x, y ∈650

M = {0, 1}.651

Lemma 3. Each non-signalling behaviour {Pab|xy}xy with binary settings652

x, y ∈ M = {0, 1} can be decomposed as a convex mixture of a local653

behaviour {P̄ab|xy}xy and a PR-box {P̃ab|xy}xy in the form654

Pab|xy = p · P̄ab|xy + (1− p) · P̃ab|xy , [19]655

with p = 1
2 (4− Smax) for all x, y ∈ {0, 1}.656

Recall that a PR-box (73) is a non-signalling behaviour for which657

one of the CHSH expressions in Eqs. (2)-(5) reaches the maximal658

algebraic bound of |Si | = 4. Here, local behaviour means existence of659

a LHV+FHV model of {P̄ab|xy}xy and Smax = max {|Si | : i = 1, ... , 4}.660

We are now ready to proceed with the proofs.661

Proof of Lemma 1. Suppose we have a HV model (?) of some behaviour662

{Pab|xy}xy for some nontrivial distribution of settings Pxy. The latter663

obtains via Eq. (7) from the conditional probabilities Pxy|λ which are664

related to probabilities specified by the model, Pλ|xy and Pλ , by the665

usual Bayes’ rule. The point at issue is whether a given HV model can666

simulate any other distribution of settings P̃xy via Eq. (7) by changing667

Pxy|λ  P̃xy|λ , while keeping the remaining components of the HV668

model (?) intact. This requires consistency with Bayes’ rule, i.e.669

P̃xy|λ =
Pλ|xy · P̃xy

Pλ
, [20]670

which should be a well-defined probability distribution for each λ.671

Since distributions Pλ|xy and Pλ are fixed by the HV model (?), then672

the distribution of settings P̃xy is arbitrary as long as the expression673

in Eq. (20) is less then 1 for each λ ∈ Λ (normalisation is trivially674

fulfilled). Now, whenever freedom of choice from Eq. (9) holds, this675

condition is always satisfied, and hence such a HV model can be676

trivially adjusted for any distribution P̃xy (by redefining P̃xy|λ := P̃xy in677

compliance with Eq. (20), and keeping all the remaining components678

of the HV model (?) unchanged). Of course, for FHV models in the679

definition of µL in Eq. (12) this is the case, which thus entails the680

simpler expression for µL in Eq. (14).681

Clearly, such a simple argument falls apart for models without682

freedom of choice, like those in the definition of µF in Eq. (13), when683

Pλ|xy and Pλ do not cancel out and the probability in Eq. (20) may be684

ill-defined. In that case, some deeper intervention into the model is685

required as shown below.686

Let us take some LHV model (?) simulating a given behaviour687

{Pab|xy}xy with nontrivial distribution of settings Pxy. Then the related688

HV space decomposes as Λ = ΛF ]ΛNF and the degree of freedom689

is measured by pF := ∑λ∈ΛF
Pλ , cf. Remark 1. Now, consider a690

restriction of the model to the respective subspaces ΛF and ΛNF which691

amounts to the following rescaling692

PF
λ := 1

pF
Pλ , PF

λ|xy := 1
pF

Pλ|xy , PF
ab|xyλ := Pab|xyλ , [21]693

for λ ∈ ΛF , and similarly694

PNF
λ := 1

1−pF
Pλ , PNF

λ|xy := 1
1−pF

Pλ|xy , PNF
ab|xyλ := Pab|xyλ , [22]695

for λ ∈ ΛNF . Both are LHV models with marginals 696

PF
ab|xy = ∑

λ∈ΛF

PF
ab|xyλ · PF

λ|xy , [23] 697

PNF
ab|xy = ∑

λ∈ΛNF

PNF
ab|xyλ · PNF

λ|xy , [24] 698

which provide a convex decomposition of the original behaviour 699

{Pab|xy}xy , i.e. 700

Pab|xy = pF · PF
ab|xy + (1− pF) · PNF

ab|xy . [25] 701

The crucial point is a careful adjustment of these two models to 702

recover some arbitrary distribution of settings P̃xy, while maintaining 703

the respective marginals Eqs. (23) and (24). For the first one (restriction 704

to ΛF) the situation is trivial as explained above: since it is a FHV 705

model, then it suffice to redefine P̃F
xy|λ := P̃xy (in compliance with 706

Eq. (20)) and leave all rest intact. As for the second one (restriction 707

to ΛNF), we can use Lemma 2 for constructing another HV space Λ̃NF 708

with a LHV model without any free choice, that simulates behaviour 709

{PNF
ab|xy}xy with the required distribution of settings P̃xy. Then, such 710

modified models can be stitched back together on the compound 711

HV space Λ̃ := ΛF ] Λ̃NF with respective weights pF and 1 − pF . 712

This guarantees reconstruction of the original behaviour {Pab|xy}xy 713

(see Eq. (25)) with the new distribution of settings P̃xy. The model 714

is local and has the same degree of freedom equal to pF (the first 715

component has full freedom of choice, while in the second one it is 716

entirely missing). 717

The above construction shows that for every LHV model of some 718

behaviour {Pab|xy}xy there is always another one adjusted for any other 719

distribution of settings P̃xy with the same degree of freedom. This 720

justifies the simpler expression for µF in Eq. (15) and hence concludes 721

the proof of Lemma 1. 722

Proof of Theorem 1. Note that Lemma 1 Eqs. (14) and (15) can be taken 723

as a definition of measures µL and µF . This is very convenient, since it 724

allows a discussion free from any concerns about the distribution of 725

settings Pxy (this is particularly relevant in the case of µF as explained 726

above). 727

It is instructive to observe that the calculation of both measures µL 728

and µF can be succinctly formulated as a convex optimisation problem. 729

Suppose, we can decompose some given behaviour {Pab|xy}xy as a 730

mixture 731

Pab|xy = pL · PL
ab|xy + (1− pL) · PNL

ab|xy , [26] 732

where {PL
ab|xy}xy is a local behaviour with full freedom of choice (i.e., 733

has a LHV+FHV model), and {PNL
ab|xy}xy is a free behaviour (i.e., has a 734

FHV model). And similarly, suppose that 735

Pab|xy = pF · PF
ab|xy + (1− pF) · PNF

ab|xy [27] 736

where {PF
ab|xy}xy is a local behaviour with full freedom of choice (i.e., 737

has a LHV+FHV model), and {PNF
ab|xy}xy is a local behaviour (i.e., has a 738

LHV model). In both cases we assume that 0 6 pL , pF 6 1, and both 739

Eq. (26) and Eq. (27) have to hold for all a, b = ±1 and x, y ∈M. Then, 740

we have 741

Remark 2. Measures µL and µF evaluate the maxima over all possible 742

decompositions in Eqs. (26) and (27) of behaviour {Pab|xy}xy, i.e. 743

µL = max
decomp. (26)

pL , [28] 744

µF = max
decomp. (27)

pF . [29] 745

Proof. We will justify only Eq. (28), since the argument for Eq. (29) is 746

analogous. 747

Let us observe that every HV model (?) of behaviour {Pab|xy}xy as 748

described by Eq. (6) splits into two components (cf. Eq. (10)) 749

Pab|xy = ∑
λ∈ΛL

Pab|xyλ · Pλ︸ ︷︷ ︸
pL · PL

ab|xy

+ ∑
λ∈ΛNL

Pab|xyλ · Pλ|xy︸ ︷︷ ︸
(1−pL) · PNL

ab|xy

, [30] 750

which defines decomposition of the type in Eq. (26) with pL := 751

∑λ∈ΛL
Pλ. Therefore, by Eq. (14), we get µL 6 maxdecomp. (26) pL. 752
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To see the reverse, we note that every decomposition of the type in753

Eq. (26) implies existence of a LHV+FHV model of behaviour {PL
ab|xy}xy754

on some HV space Λ̃L and a FHV model of behaviour {PNL
ab|xy}xy on755

some HV space Λ̃NL. Those two models, when combined on a com-756

pound HV space Λ := Λ̃L ] Λ̃NL with the respective weights pL and757

1− pL , provide a HV model of behaviour {Pab|xy}xy. Since the local758

domain of such a model contains Λ̃L, then from Eq. (14) we have759

µL > pL , which entails µL > maxdecomp. (26) pL. This concludes the proof760

of Eq. (28).761

Now, in order to prove Theorem 1 it is enough to show that for ev-762

ery decomposition of the type in Eq. (26) there exists a decomposition763

of the type in Eq. (27) with the same weight pL = pF , and vice versa.764

A closer look at both expressions reveals that behaviours {PL
ab|xy}xy765

and {PF
ab|xy}xy are both local with full freedom of choice (i.e., share766

the same LHV+FHV model). Thus, the problem can be reduced to767

justifying that: (a) behaviour {PNL
ab|xy}xy also has a LHV model (possibly768

a non-FHV model), and (b) behaviour {PNF
ab|xy}xy also has a FHV model769

(possibly a non-LHV model).770

Ad. (a) This readily follows from Lemma 2.771

Ad. (b) Here, a trivial model will suffice. Let us take Λ := {λo} (a772

single-element set) with Pλo ≡ Pλo |xy := 1 and conditional distribution773

defined as Pab|xyλo := PNF
ab|xy. Clearly, it is a FVH model of behaviour774

{PNF
ab|xy}xy.775

Thus, we have shown equivalence of both decompositions Eqs. (26)776

and (27), which, by virtue of Remark 2, proves Theorem 1.777

Proof of Theorem 2. By virtue of Theorem 1 it suffices to prove the778

result for one of the measures. Let it be measure µL evaluated by779

means of Eq. (28) in Remark 2.780

Consider some arbitrary decomposition Eq. (26) of behaviour781

{Pab|xy}xy. Then, by linearity, the four CHSH expressions Eqs. (2)-(5)782

decompose as well, i.e. we get783

Si = pL · SL
i + (1− pL) · SNL

i , [31]784

where SL
i and SNL

i are calculated for the respective behaviours {PL
ab|xy}xy785

and {PNL
ab|xy}xy. Since the first one is a local behaviour with full freedom786

of choice (i.e. having a LHV+FHV model), then from the CHSH787

inequalities Eq. (1) we have |SL
i | 6 2. For the second one there is788

nothing interesting to be said other than noting the maximal algebraic789

bound |SNL
i | 6 4. As a consequence, the following inequality obtains790

|Si | 6 pL · 2 + (1− pL) · 4 = 4− 2 pL , [32]791

and we get pL 6 1
2 (4− |Si |). Thus, by assumed arbitrariness of decom-792

position, Eq. (26) gives the upper bound on expression in Eq. (28)793

µL 6 1
2 (4− |Si |) , [33]794

where Smax = max {|Si | : i = 1, ... , 4}. By Lemma 3 we conclude that795

the bound is tight, which ends the proof of Theorem 2.796
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