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Abstract 
 

The current experimental research work is concerned to address different types of 

cavitation inside the multi-hole nozzle and their impact on the emerging spray stability 

and atomisation as the effect of cavitation on atomisation is not yet fully understood. 

The previous studies have provided experimental data addressing unresolved questions 

about string cavitation origin, area of formation, lifetime and influence on the nozzle 

hole flow [1] [2] [3] [4] [5] [6]. More importantly, it is aimed to fully characterize the 

spray structure generated from the new generation stepped multi-hole injectors [7] [8]. 

Thus, this experimental research work has been planned in four phases to address 

specific issues.  The first phase of the experimental investigation was to visualise the in-

nozzle flow and cavitation development inside a 15-times transparent enlarged model of 

a conventional multi-hole injector (6-holes symmetric) using high-speed visualisation 

(Mie Scattering) technique. A new enlarged model injector was designed that was 

geometrically similar to phase 1 model but 7-times larger than the real injector. In this 

regard, cavitation types and development at different flow conditions were visualised. It 

was found that the geometric and vortex cavitation can significantly affect the spray 

angle and can induce instability in the spray structure. The underlying mechanisms 

relating to the interaction of vortex and geometric cavitation and the resulting impact of 

the bubble pockets and their collapse in the erosion sites was obtained. Two counter 

rotating vortex cavitation found at the top and bottom of the nozzle inlet which can 

contribute to erosion at the erosion sites. The results also revealed that the hydraulic flip 

happens much earlier than expected and at lower cavitation numbers compared to the 

15 times enlarged model. It also reveals that a stochastic ligament spray with much lower 

velocities is being formed at the vicinity close to the upper part of the nozzle exit where 

the air entrainment seems to be maximum. The wetting phenomena can happen inside 

the counter bore stepped-hole region of the nozzle or on the curved surface on the tip 

of the injector nose. In the third phase of the experiment, a real-size stepped injector 
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test rig was designed and manufactured. It also enabled the measurement of the spray 

tip penetration and cone angle from different viewing angles. It further allowed the 

visualisation of the overall spray behaviour and very near-nozzle exit spray. It was found 

that stepped-nozzle compared to straight nozzle injector may have flapping of the jets 

creating snake shape pattern. Unique A shaped with no visible jet boundary was also 

seen. Higher jet to jet interactions and higher air entrainment were observed compared 

to other injectors. Tip penetrations of 22mm at 0.25ms, 50mm at 0.75ms ASOI are almost 

similar to other injectors. Increasing the pressure from 50 bar to 100 bar increases the 

cone angle significantly from 64 degrees to 72 degrees. In the fourth phase of the 

experiment, a Fiberflow Dantec PDA measurement system was setup to measure spray 

characteristics including droplet diameters and velocities at the very near-nozzle area of 

the injector (1mm from it) up to distance of 35mm from injector tip, to investigate early 

breakup and spray characteristics. Velocities up to 120m/s at 1mm away from nozzle exit 

at 100bar are in good agreement with micro-PIV measurements of the in-nozzle flow of 

transparent model of a similar type of injector at the same injection pressure. 

Comparison of the average droplet diameter at 1mm away from nozzle exit of the 

current stepped multi-hole injector (7.5µm) with conventional straight multi-hole 

(15µm) and outward pintle-type (13µm) at same operation condition shows better 

atomization performance of this model. The improved atomization performance can be 

due to the stepped part of the current injector where the fuel undergoes through a 

sudden expansion process whereby the flow becomes 3-D and highly turbulent and 

becomes susceptible to earlier breakup and rapid atomization. It was also found that as 

Jet 1 is slightly contracted, the center of the jet moves slightly downward towards the 

axis of the spray during the main injection event. Also existence of 4 local peaks in the 

instantaneous velocity contour plot and the change in their location at different ASOI 

during the main injection event indicates that there are instabilities in the velocity. 

Maximum droplet mean diameter, SMD, and Weber number decreases during the main 

injection event. The injector has Weber number of 8 at 1mm from nozzle exit while 

outward pintle-type model had Weber number of 25 at 2.5mm away from nozzle exit.
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1 Chapter 1: Introduction 

 Introduction 

Since its invention, the internal combustion (IC) engine has been used extensively in the 

automobile industry over the last century.  The compact size and efficiency of the internal 

combustion engine, combined with the benefit of storage of liquid fuel, have made it an effective 

power plant used in many other industries, including aviation, ship propulsion, and stationary 

power generation. From its early years of invention, the IC engine has been developed over the 

decades in order to increase its power to weight ratio. In this journey, the efficiency of the IC 

engine (power to fuel consumption ratio) was also improved. In addition, the power output 

(torque times speed) was also improved. However, with the rises in fuel costs over time, fuel 

economy was becoming a dominant issue. Due to the rise of the fuel costs per gallon for gasoline, 

diesel engine became an alternative solution for lowering the costs. That is because 1 litre of 

diesel has around 30% more power than 1 litre of gasoline. That is why gasoline engines run on 

higher rpm in order to produce same horsepower. In this situation, the spark ignition engine 

needed to improve its fuel economy to remain competitive. With recent environmental impacts 

of CO2 and other exhaust emissions, the race to develop engines with less harmful emissions 

became more intense. In this race, the diesel engine has experienced a big difficulty after 2015 

news about the real level of Nox and the spark ignition engine (SIDI) is still at the forefront of this 

race. 

 

 IC engine emissions 

Combustion of fossil fuels in IC engines produces carbon dioxide, which is contributing to global 

warming. It also produces NOx and CO and some other harmful gases. For these reasons, there is 

pressure over the transportation sector to reduce emissions of carbon dioxide and other 

pollutants from vehicles. This is due to the sharp increase in number of passenger cars and freight 

demand. Therefore, the current trend is towards replacing conventional IC engines with newer 

technologies. There are number of new technologies which will significantly contribute to the 



 
 
Chapter 1                           Introduction 

32 
 

reduction of carbon emission in the transportation sector. These engine technologies are: Electric 

cars, Hydrogen fuel cells, Hybrid vehicles, Bio fuels and Spark Ignition Direct Injection (SIDI) 

engine. 

The last choice is the refinement of current technology of IC engines. Automotive engineers are 

trying to develop IC engines which can comply with the future emission requirements while 

simultaneously enhancing brake-specific fuel consumption (BSFC). Among conventional IC 

engines, diesel engines were believed to have lower CO2 emissions compared to gasoline engines 

until a few years ago [9]. However an ICCT report in 2019 confirmed that the gasoline TSI 

(Turbocharged Stratified Injection) emitted lower CO2 levels than the TDI (Turbocharged Direct 

Injection), under similar laboratory conditions [10]. In addition, during on-road testing, CO2 levels 

of the gasoline TSI were found to be lower than of the TDI. [10] On the other hand, Diesel has 

more Nox emissions due to the higher compression ratios and it has less power output since it 

has more limited speed range. Hence, the trend has been to develop an internal combustion 

engine which has a combination of the characteristics of both diesel engines and gasoline engines 

with less CO2 emissions and more power output. Researchers have shown that a promising 

candidate for reaching this goal is a spark ignition direct injection (SIDI) engine. It is also referred 

to as gasoline direct injection (GDI) engines in the market. 

 Theory of Operation of SIDI Engines 

The major advantages of a SIDI engine are increased fuel efficiency and high power output. 

Emissions levels can also be more accurately controlled with the SIDI system. The cited gains are 

achieved by the precise control over the amount of fuel and injection timings that are varied 

according to engine load. In addition, there are no throttling losses in some SIDI engines, when 

compared to a conventional fuel-injected or carburate engine, which greatly improves efficiency, 

and reduces 'pumping losses' in engines without a throttle plate. When fuel is injected directly 

into the combustion chamber, it evaporates and absorbs heat from the surroundings, therefore 

the temperature of the cylinder is reduced. Less temperature causes the engine to be less 

sensitive to engine knock. Hence the engine can have higher compression ratio and this will 

increase the engine efficiency [9] . Direct injection can also be combined with turbo-charging to 

http://en.wikipedia.org/wiki/Fuel_efficiency
http://en.wikipedia.org/wiki/Power_(physics)
http://en.wikipedia.org/wiki/Fuel_injection
http://en.wikipedia.org/wiki/Carburetor
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increase the specific power output of the engine [11]. This could be exploited to downsize the 

engine and to further increase the fuel economy.  

On the other hand, direct injection also has drawbacks. The shorter time available for mixture 

preparation greatly increases the accuracy and precision requirement for injectors. In addition, it 

needs higher injection pressure for better atomization and mixture homogenization. Moreover, 

parasitic losses increase as the pressure can be up to 20 MPa (200 bar) , compared to PFI pressure 

of 0.3-0.7 MPa [9]. Furthermore, problems with soot emission may arise at full load operation.  

Besides all these, SIDI engines have more complex control systems with more complex fuel 

injection components. This is the main barrier for simple conversion of typical Port fuel injection 

to direct injection engine. The key question for engine manufacturing company is that adding 

complexity required to produce SIDI engine will be justify by fuel economy [12]. 

In SIDI engines, engine speed is controlled by the engine control unit/engine management 

system (ECU/EMS), which regulates fuel injection function and ignition timing, instead of having 

a throttle plate that restricts the incoming air supply [12]. 

In this engine, The engine management system continually chooses among three combustion 

modes: ultra lean burn, stoichiometric, and full power output. Each mode is characterized by 

the air-fuel ratio. The stoichiometric air-fuel ratio for gasoline is 14.7:1 by weight (mass), but ultra 

lean mode can involve ratios as high as 65:1 (or even higher in some engines, for very limited 

periods). These mixtures are much leaner than in a conventional engine and reduce fuel 

consumption considerably [13]. 

Ultra lean burn or stratified charge mode:  This mode is used for light-load running conditions, 

at constant or reducing road speeds, where no acceleration is required. The fuel is not injected at 

the intake stroke but rather at the latter stages of the compression stroke. The combustion takes 

place in a cavity on the piston's surface which has a toroidal or an ovoidal shape, and is placed 

either in the center (for central injector), or displaced to one side of the piston that is closer to 

the injector. The cavity creates the swirl effect so that the small amount of air-fuel mixture is 

optimally placed near the spark plug. This stratified charge is surrounded mostly by air and 

residual gases, which keeps the fuel and the flame away from the cylinder walls. Decreased 

combustion temperature allows for lowest emissions and heat losses and increases air quantity 

http://en.wikipedia.org/wiki/Engine_control_unit
http://en.wikipedia.org/wiki/Engine_control_unit
http://en.wikipedia.org/wiki/Lean_burn
http://en.wikipedia.org/wiki/Stoichiometric
http://en.wikipedia.org/wiki/Air-fuel_ratio
http://en.wikipedia.org/wiki/Gasoline
http://en.wikipedia.org/wiki/Stratified_charge
http://en.wikipedia.org/wiki/Otto_cycle
http://en.wikipedia.org/wiki/Piston
http://en.wikipedia.org/wiki/Toroid
http://en.wikipedia.org/wiki/Oval
http://en.wikipedia.org/wiki/Spark_plug
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by reducing dilation, which delivers additional power. This technique enables the use of ultra-lean 

mixtures that would be impossible with carburetors or conventional fuel injection [4].  

Stoichiometric mode: This mode is used for moderate load conditions. Fuel is injected during 

the intake stroke, creating a homogeneous fuel-air mixture in the cylinder. From the 

stoichiometric ratio, an optimum burn results in a clean exhaust emission, further cleaned by 

the catalytic converter [4]. 

Full power mode: This mode is used for rapid acceleration and heavy loads (as when climbing a 

hill). The air-fuel mixture is homogeneous and the ratio is slightly richer than stoichiometric, 

which helps prevent detonation (pinging). The fuel is injected during the intake stroke in this 

mode [4]. 

It is also possible to inject more than once during a single cycle. After the first fuel charge has 

been ignited, it is possible to add fuel as the piston descends. The benefits are more power and 

economy, but certain octane fuels have been seen to cause exhaust valve erosion. 

 Other Companion Technologies 

Direct injection may also be accompanied by other engine technologies such as variable valve 

timing (VVT), variable length intake manifolding (VLIM), and turbocharging. Exhaust gas 

recirculation (EGR) may help reduce the high nitrogen oxides (NOx) emissions that can result from 

burning ultra lean mixtures.  Modern turbocharged engines use continuous cam phasing in place 

of EGR. 

Tuning up an early and precise direct injection event to generate higher power is difficult, since 

the only time it is possible to inject fuel is during the induction phase. Conventional port fuel 

injection engines can inject throughout the 4-stroke sequence, as the injector squirts onto the 

back of a closed valve. In SIDI engines, a direct injection is limited to the intake stroke of the 

piston. As the RPM increases, the time available to inject fuel decreases. Newer SIDI systems that 

have sufficient fuel pressure to inject even late in compression phase do not suffer to the same 

extent; however, they still do not inject during the exhaust cycle. Hence, all other factors being 

equal, a SIDI engine needs higher-capacity injectors to achieve the same power as a conventional 

engine [4].  

http://en.wikipedia.org/wiki/Otto_cycle
http://en.wikipedia.org/wiki/Catalytic_converter
http://en.wikipedia.org/wiki/Engine_knocking
http://en.wikipedia.org/wiki/Variable_valve_timing
http://en.wikipedia.org/wiki/Variable_valve_timing
http://en.wikipedia.org/wiki/Variable_length_intake_manifold
http://en.wikipedia.org/wiki/Turbocharging
http://en.wikipedia.org/wiki/Exhaust_gas_recirculation
http://en.wikipedia.org/wiki/Exhaust_gas_recirculation
http://en.wikipedia.org/wiki/Nitrogen_oxide
http://en.wikipedia.org/wiki/Lean_burn
http://en.wikipedia.org/wiki/Four-stroke_engine
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 SIDI Fuel Injection System 

The fuel injection system in a SIDI engine is a key component that must provide the desired 

mixture cloud over the entire operating range of the engine. A well-atomized fuel spray must be 

produced for all operating conditions. Fuel injection systems must have the capability of providing 

both late injection for stratified-charge combustion at part load, as well as injection during the 

intake stroke for homogeneous-charge combustion at full load. At full load, a well-dispersed fuel 

spray or mixture plume is desirable to ensure a homogeneous charge for even the largest fuel 

quantities. At part load a well-atomized compact spray or mixture plume is desirable to achieve 

rapid mixture formation and controlled stratification. In addition, the fixed location of the ignition 

source makes it quite difficult to operate in the part load for other than full load. This imposes a 

critical additional requirement on the fuel mixture formation process of this type of engine. The 

mixture cloud that results from fuel vaporization must be controlled both spatially and temporally 

in order to obtain stable combustion. For part-load operation, the injection system should provide 

the capability for rapid injection late in the compression stroke into an ambient pressure of up to 

1.0 MPa. The fuel injection pressure is very important for obtaining both effective spray 

atomization and the required level of spray penetration. A higher fuel injection pressure reduces 

the mean diameter of the spray approximately as the inverse square root of the pressure 

differential Pinj - Pcyl [13].The use of a high fuel injection pressure, such as 20 MPa, will enhance 

the atomization but will most likely generate an over-penetrating spray, resulting in fuel wall 

impingement. The fuel pressures that have been selected for most of the current prototype and 

production SIDI engines range from 4 to 12 MPa, which are quite low when compared with diesel 

injection system pressures of 50–200 MPa, but are relatively high in comparison with typical PFI 

injection pressures of 0.3–0.7 MPa [13]. 
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Figure 1-1 Typical direct-injection, spark-ignition engine system layout [13] 

Based on recent researches, it has been concluded that common-rail injection systems can 

meet these exact requirements. As it is shown in Fig. 1-1 shows a low-pressure fuel pump 

delivers fuel to the high-pressure pump. The high pressure pump delivers the fuel to the 

common rail with more than 200bar pressure. A pressure sensor and regulator are installed 

on the common rail. Injection pressure and duration are controlled electronically from the 

electronic control unit (ECU). Other values such as intake air mass and temperature, throttle 

valve position, manifold pressure and oxygen concentration in the exhaust gases are all 

calculated by sensors. Following a certain evaluation of these data, the ECU then drives 

various actuators, and controls fuel injection pressure and duration and spark plug timing. 

Finally, the injector is responsible for the injection of the required amount of the fuel into 

the combustion chamber. 
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 Combustion Systems in SIDI 

 

The trend in the global automotive industry is toward small yet powerful engines. 

Manufacturers from Europe, the U.S., and even China are embracing downsizing concepts 

to build increasingly compact and economical low displacement engines which continue to 

offer equivalent levels of performance and driving enjoyment thanks to turbocharging. The 

fuel which the injectors spray into the combustion chamber is so finely atomized that it can 

be ignited directly without having to mix it in the combustion chamber. This enables higher 

engine compression, which translates into greater efficiency. The direct injection 

technology also makes a major contribution to improved cylinder cooling. All that flows 

through the open intake valve in the intake duct is fresh air. High-pressure injection valves 

inject the fuel directly into the combustion chamber. This cools the combustion chamber, 

making basic compression higher thanks to the decreased propensity to knock. The 

economical consumption and low emissions of gasoline direct injection are due to the 

precise metering, preparation, and distribution of air and fuel for each individual 

combustion cycle. In combination with downsizing and turbocharging, gasoline direct 

injection offers the potential to reduce consumption and CO2 emissions by some 15 

percent. [14] 

Three different combustion systems, i.e., spray-guided, wall-guided and air-guided, in the 

stratified operation SIDI engine have been proposed, as shown in Figure 1-2. 
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Figure 1-2  Spray guided, wall guided, air guided concepts in SIDI systems [15] 

 

The SIDI engine mainly works using two different charge formation mechanisms, depending 

on the load and the engine speed: the homogeneous charge operating with stoichiometric 

mixtures, and the stratified charge with an overall lean AFR composition at low load and up 

to medium speed operation. Figure 1-3 shows the different mechanisms of mixture 

formation in homogeneous and stratified charge mode. Combining these two different 

charge formation mechanisms it is possible to take the maximum advantage in terms of 

fuel-economy. Figure 1-4 shows a diagram of the optimal charge formation mechanism as 

function of the engine load and speed: the SIDI engine runs with a stratified charge and with 

lean mixtures during low load/speed operation, and runs with a ‘‘homogeneous’’ charge at 

higher load/speed points. [15] 

 

Figure 1-3  The different mechanisms of mixture formation in homogeneous and stratified charge mode. 

[15] 
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Figure 1-4 A diagram of the optimal charge formation mechanism as function of the engine load and 

speed  [16] 

 SIDI injectors 
During the development of the SIDI injector, the fuel injector gradually becomes a key 

component because the SIDI injector needs to provide the capability to operate on both 

homogenous and stratified charge combustion under different injection strategies. When 

the engine operates on homogenous charge conditions, a well-atomised and well-mixed 

dispersed fuel spray distribution is required under the conditions of early injection and low 

in-cylinder pressure. When the engine operates on stratified charge conditions, a well-

atomised, compact and repeatable spray structure is required under higher in-cylinder 

pressure and late injection in order to obtain the fast mixture formation and controlled 

stratification. To fulfill the above requirements for the SIDI engine, three different standard 

types of SIDI injectors are widely used. [17] 

The differences between the types of nozzle can be identified by the way in which they open 

and close as shown in figure 1-5. The injection mechanism for the outward-opening nozzle 

consists of liquid passing thorough the cross plane of the nozzle and producing a self-

forming spray cone angle when the valve opens. The multi-hole and swirl nozzle are 

designed as the inward opening structure in order to generate swirl flow in the nozzle 
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upstream for a better mixture. The characteristics of the multi-hole nozzle can be identified 

by its sharp and individual jet structure. [17] 

 

Figure 1-5 Three different standard types of SIDI injectors which are widely used [12] 

By using the multi-hole nozzle, a partially homogenous mixture condition in the chamber 

can be established due to the insufficient spray atomisation quality. The distributions of the 

partially homogenous mixture contain an enriched mixture and lean mixture regions which 

result in different flame speeds during the combustion process. The flame speed 

accelerates in the enriched mixture region of each individual spray jet and then slows down 

in the lean region between each spray jet. To improve the lean mixture regions in the 

combustion chamber, increasing the number of nozzle holes and the hole’s diameter are 

the common way to solve this issue. However, increasing the amount of hole numbers may 

result in a deposit formation and then cause higher hydrocarbon and soot emissions. [13] 

To compare the outward-opening nozzle with the inward-opening nozzle, it can be seen 

that the advantage of the outward-opening lies in its production of a uniform structure of 

a hollow cone spray and also it is less affected from the chamber pressure for the spray 

angle. This allows the possibility of controlling the droplet size and injection mass flow rate 

by using multi-injection at a short injection duration time. [13] 
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 Multi-hole Injectors 

The main part of the injection system is the injector which produces an atomized spray 

inside the combustion chamber. Figure 1.6 shows the different parts of a typical multi-hole 

injector. [18] 

The high-pressure injector and the high-pressure pump are designed for system pressures 

up to 200 bar. Up to seven individually positioned injection holes enable the spray pattern 

to be adapted flexibly to different combustion chambers. The engine control unit performs 

all the different functions that are required of an efficient engine management system. 

These include selecting the right injection pressure and the right moment to inject the fuel. 

To do this, the electronic control unit calculates thousands of times a minute exactly how 

the injection process should be performed. [19] 
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Figure 1-6 Cross-section of a multi-hole fuel injector [18] 

 

The main requirements of the SIDI injector are [13]: 

1. flexibility in adopting the spray pattern to the combustion chamber design 

2. stability in spray characteristics in each cycle 
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3. minimal variation in spray characteristics from unit to unit 

4. a small value of spray mean drop size (well atomized spray) 

5. more spray penetration control 

6. more control on the sac volume spray 

7. more resistance to deposit formation 

8. more resistant to cavitation erosion 

9. ability to operate at higher temperatures 

The SIDI injector should be designed to deliver a precisely metered fuel quantity with 

symmetric and highly repeatable spray geometry, and must provide a highly atomized fuel 

spray having a Sauter Mean Diameter (SMD) of generally less than 25 µm. In fluid 

dynamics, Sauter mean diameter (SMD, d32 or D[3, 2]) is an average of particle size. It is 

defined as the diameter of a sphere that has the same volume/surface area ratio as a 

particle of interest.   

The sac volume within the injector tip is the volume of fuel, resulting from the previous 

injection, which is not at the fuel line pressure; therefore it reduces the acceleration of the 

injected fuel and degrades the fuel atomization. In general, the smaller the sac volume, the 

fewer large drops will be generated when the injector opens.  

Another requirement is that needle bounce on closure should be avoided, as it results in 

uncontrolled atomization consisting of larger droplets. It also contributes to increases in the 

UBHC and particulate emissions. Needle bounce on opening is not nearly as important as 

that on closure, but should be controlled.  

 Multi-hole injector vs other injectors 

This injector type has been utilised extensively in SIDI engines as well as diesel engines for 

many years. An important advantage of the multi-hole injector is the flexibility in terms of 

spray orientation and structure. There are typically two main types of multi-hole injectors: 

VCO which stands for valve covered orifice and mini-sac which is the model that is in our 

study. Figure 1-18 (a) shows inside section view of VCO multi-hole injector figure 1-18 (b) 

shows the spray from a mini-sac injector. The number of holes can be varied from 5 up to 

12 holes. The holes are generally placed in a peripheral location with the extra possibility to 

http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Diameter
http://en.wikipedia.org/wiki/Volume
http://en.wikipedia.org/wiki/Surface_area
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include holes in the centre as well. It was seen that the ratio of hole-length over hole-

diameter (L/D) affects considerably the air entrainment, atomisation quality and 

penetration length of the emerging spray jet. Each jet presents a remarkable spray stability 

and cycle-to-cycle repeatability. All these advantages make the multi-hole injector a good 

candidate for the spray guided applications. Figure 1-7 shows a cross section of a multi-hole 

injector and the corresponding spray structure. 

✓  

(a)         (b) 

Figure 1-7 (a) Schematic model of a VCO (valve covered orifice) multihole injector , (b) Spray of 6-hole 

injector [20] 

On the other hand, for a rail pressure of up to 100bar, multi-hole injector presents a poorer 

atomisation quality than the swirl atomizer. At higher pressure, atomisation improves at a 

satisfying level, However beyond 200 bar, the spray over penetrates leading to excessive 

wall impingement. The inward opening design of this injector implies the presence of an 

initial liquid mass trapped in the sac volume. Since this trapped fuel in the sac volume is 

isolated from the rail pressure, the atomisation at the start of the injection will be very poor 

and a significant amount of fuel entering the cylinder as large liquid droplets. In addition, 

the multi-hole atomiser has the problem of nozzle contamination by high temperature 

carbon soot due to its relatively small hole diameter (0.07-0.25mm) [9]. Another problem 

is associated with the cavitation erosion which will cause damage to the nozzle surface. 

Cavitation erosion of metals is characterised by local impacts of fluid against the metallic 
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surface due to collapse of bubbles, resulting in progressive loss of original material from the 

solid surface, in the vicinity of the active cloud within a liquid. Some problems related to 

cavitation are vibration in hydraulic machines, change in hydrodynamic flow, noise, thermal 

and light effects like luminescence, besides erosion wear. Erosion wear has demanded 

special attention of researchers and engineers in many applications eg. hydraulic machine 

components, high pressure injectors, etc. This is due to the high costs associated to 

preventive and corrective maintenance of the components, which are continually exposed 

to cavitation. For these reasons the design and the layout of this injector inside the cylinder 

has to be optimised not only for the best spray adaptability and stability but also to minimize 

the erosion wear inside the nozzle. 

 Controlled injector opening operation:  

In this system, the electronic control unit records the triggering signal during the injection 

and determines the optimum timing for opening and closing the injector needles. This 

enables the electronic control unit to calculate the actual injection quantities of each 

individual injector and adjust this as required. This regulated control system allows even the 

tiniest quantities of fuel to be injected with minimal tolerances. The typical opening and 

closing event for the injector is 0.6 ms. [19] 

 

 

Figure 1-8 Controlled timing of the injector opening and closing events. The typical opening and closing 

event for the injector is 0.6 ms. [19] 
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 Laser drilled holes 

The high quality of the drilled holes in the injector helps ensure particularly good 

combustion of the fuel and helps reduce emissions at the same time. The gasoline is injected 

directly into the cylinder at high pressure (200 bar) through five to seven tiny laser-drilled 

holes. The sharp edges and smooth inner walls of the holes ensure that the fuel is atomized 

into extremely small droplets. The finer the spray achieved, the greater its surface area. This 

leads to particularly good contact with the oxygen in the air so that virtually all the gasoline 

is burned on ignition. For efficient, clean combustion, it is important to prevent droplets of 

injected fuel from being impinged and deposited on the walls of the cylinder or the surface 

of the piston. Such deposits result in poor-quality combustion. By drilling the five to seven 

holes in the injection nozzle with similar or different diameters, the best possible control 

over fuel distribution in the combustion chamber could be achieved. The diameters range 

from 0.25 millimeters down to 0.1 millimeters. The smallest openings allow less gasoline 

though, the larger ones slightly more. This creates a specific spray pattern in the cylinder, 

enabling the fuel to be used to maximum effect. [19] 

 

Until recently, the technology for producing nozzle holes has been the Electrical Discharge 

Machining (EDM) technique. It has been developed to create close-spaced round holes with 

a taper. Limitations of EDM technology include long cycle times per hole, creation of molten 

metal, electrode consumption and the inability to create non-round holes. It also includes 

inability to create stepped-nozzles (counterbore) as shown in figure 1-9. [20]  
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Figure 1-9 X-ray tomography of the tip of a multi-hole steeped injector. The inner hole and the 

counterbore are drilled using laser drilling technology. [21] 

On the other hand, the development of femtosecond fiber lasers has made laser drilling 

viable for manufacturing injector nozzles including stepped-nozzle holes. Femto-second 

laser technology removes material at the molecular level without generating heat 

(ablation). This enables part machining to precise geometries with no thermal damage to 

the material (no melting, burrs, discoloration, recast, etc.  Figure 1-10 compares femto-

second laser drilling surface finish quality with EMD and pico-second laser drilling. [20] 
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Figure 1-10 a) Comparison between EDM and femto-second laser surface finish  b) femto-second laser 

hole (left) and pico-second laser (right) [20] 

No post processing steps are required to achieve acceptable consistent hole geometry. As 

compared to the Pico-second laser the hole edge is more consistent and avoids spatter 

recast debris for the laser entrance side [22]. 

 

 Injector tip wetting 

Injector tip wetting – i.e. liquid fuel remaining on the tip of the injector after the end of 

injection – is a source of particulate emissions. The underlying fluid dynamics are poorly 

understood and, while it is known that changes in injector design can lead to significant 

improvements in particulate emissions, clear correlations have only been found for some 

injector design parameters. [23]  

a) a) 

b) 
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Figure 1-11 (a) shows high-speed visible light images of spray and tip wetting of a two-hole 

injector, field of view 1.5 × 1.5 mm2 . Injection of n-heptane at 200 bar; the injection 

duration is 2ms. 

 

(a)                   (b) 

Figure 1-11 (a) High-speed visible light images of spray and tip wetting of a two-hole injector, field of view 

1.5 × 1.5 mm2 . Injection of n-heptane at 200 bar; the solenoid is energized for 1.5 ms and the injection 

ends at around 1.8 ms. (b) Fuel distribution and the wetted areas on injector tip, 4 ms AESOI, the white 

colored areas shown are saturated film formation, it is clear that the maximum film formation is inside 

the inner circle of the nozzles [23] 

Figure 1-11 (b) shows Fuel distribution and the wetted areas on injector tip, 4 ms AESOI, 

the white colored areas shown are saturated film formation, it is clear that the maximum 

film formation is inside the inner circle of the nozzles closer to the injector axis shown by 

yellow arrow. It is not yet fully understood why the inner circle has higher film formation 

than the outer surface. [23] 

 

 Cavitation in multi-hole fuel Injectors 

Cavitation is the phenomenon of vaporous pocket formation inside liquids, due to a drop in 

the local static pressure [24]; it commonly appears in hydraulic pumps, turbines, propellers, 

rudders, in high pressure fuel injection systems and in heart valves [25]. In general, 

cavitation causes flow blockage and choking and reduces the discharge coefficient of the 

nozzle, while the collapse of cavitation structures may lead to cavitation erosion damage 

with detrimental consequences on the reliability and maintenance of relevant devices.  

Two main type of cavitation are recognized inside the nozzle of the injector including 

geometric and string cavitation.  
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      (a) 

            

      (b) 

Figure 1-12 Different types of cavitation in transparent realsize models of SIDI injector: (a) Geometric 

cavitation  (b) initiation and development of string cavitation [7] 

It is believed that cavitation can enhance the turbulence inside the nozzle and the primary 

breakup and atomization of the spray. However it is also believed that cavitation can create 

instabilities in the nozzle flow and can affect the spray cone angle and ultimately can lead 

to misfire in the engine. In addition to this, cavitation causes erosion and material wear 

which will ultimately damage the internal geometry of the nozzle and can lead to poor 

performance in spray cycle to cycle stability  [1] [2] [4] [7] [25].  

Figure 1-13 shows the link between cavitation and erosion damage sites in a multi-hole 

injector. [26] 

 

Figure 1-13 Link between nozzle erosion shown by SEM image of a cross-section of a nozzle (left) and the 

cavitation sites predicted by simulation of high acoustic pressure contour plots (right) [26] 
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Apart from the aforementioned effects, in the field of fuel injection systems, cavitation 

plays a detrimental role in jet formation, stability and atomization, affecting the combustion 

process and finally the performance and emissions of modern engines. For all the previous 

reasons, significant effort has been put in the investigation of cavitating flows and 

prediction/quantification of its related effects both with experimental and 

numerical/simulation techniques, in order to prevent negative aspects or harness any 

positive potential [25]. 

 

 A critical review  

 

Considering all factors discussed in this chapter, a short-term solution for CO2 reduction 

that is viable more quickly is the hybridization of direct injection gasoline engines. A direct 

switch from gasoline to gasoline-mild-hybrid can deliver 11%, and a further 23% in reducing 

CO2 in moving to full hybrid. [27] As these numbers demonstrate, there are immediate-

term options for significant fuel efficiency improvement and, hence, CO2 reduction of the 

order of 30% or more. [28] 

With regards to the emission problem with current IC engines, a critical review to mention 

is that a distinction should be made between pollutant emissions and the CO2 emissions 

from combustion engines. CO2 emissions necessarily accompany any hydrocarbon 

combustion. The CO2 is directly proportional to the hydrocarbon fuel that is consumed, 

which is continually being reduced by technological improvements. [28] 

In the medium-to-long term, there is even greater scope for improving engines by co-

designing biofuel/engine systems for optimal performance. Considering all the facts that 

has been discussed from the beginning of this chapter, it is important to note that there are 

still no real alternatives that can compete with the SIDI engines over the entire range of 

applications that they cover and that, even today, SIDI engines are undergoing continuous 

further improvement. [29] These developments make it even more challenging for 

competing technologies to gain advantage over the SIDI engines.  
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Focusing on transport, the demand for energy is very large. There are around 1.2 billion 

light-duty vehicles (LDVs) and around 380 million heavy-duty vehicles in the world, and 

these numbers are growing. These numbers are not comparable with 5 million EVs sold 

worldwide today. In addition, the daily demand for liquid fuels exceeds 11 billion liters 

(23000 million tons oil equivalent per year). [28]  

All alternatives, whether they are alternatives to IC engines or alternatives to petroleum-

based liquid fuels, face very significant barriers to fast adoption. But, ill-informed 

mischaracterizations of combustion have led to the belief that the IC engines are 

experiencing its final years of its existence. [30] The conclusion obtained here is that, for 

the foreseeable future, road and off-road transport will be characterized by a mix of 

solutions involving internal combustion engines (ICEs) as well as battery and hybrid 

powertrains.  Therefore it is necessary to continue researching on fundamental studies in 

direct injection systems used in IC engines in order to improve the design of fuel injectors 

and understand how different parameters in the injection system including design and 

operational parameters such as nozzle geometry, pressure, cavitation, erosion, etc can 

affect the in-nozzle flow and spray breakup and atomisation in order to achieve optimized 

combustion. 

 

 Aims and objectives  

 

The importance of cavitation inside multi-hole injectors has been addressed in many 

previous investigations and they are given in next chapter. They have quantified the 

cavitation formation and its development and the spray characteristics and atomisation. 

Different types of geometrical and vortical cavitation have been identified and their 

advantages and disadvantages has been discussed. Among the advantages, cavitation can 

increases atomisation and therefore enhance fuel vaporisation, which lead to better engine 

performance with higher efficiency and lower emission. On the other hand, it is believed 

that uncontrolled cavitation can induce instability in the jet spray cone angle that may 
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change the spray plume directed towards the spark plug. This may cause misfire in the 

stratified charge mode combustion operation. In addition, the bubble collapses which 

resulted from intense cavitation clouds can produce shockwaves near the surface of the 

nozzle holes. The impact force of this shockwave is so much that it can cause surface 

erosion. All, in all, the influence of cavitation on the formation and stability of the emerging 

jet spray characteristics is not fully established and needs to be investigated further. 

Another important issue is the influence of the nozzle tip design and the stepped-hole 

nozzle on the internal flow and ultimately the performance of the injector and that it can 

influence the atomisation of the spray. Thus the spray from a new stepped-nozzle multi-

hole injector will be fully characterised and compared with previous conventional injectors. 

Also the wetting of the tip of the nozzle which can cause unburned hydrocarbons should be 

minimised. Thus the main aims of the current research work are to address these 

outstanding issues through the following experimental investigation: 

• The first phase of the experimental investigation was to visualise the in-nozzle flow 

and cavitation development inside a 15-times transparent enlarged model of a 

conventional multi-hole injector (6-holes symmetric) using high-speed visualisation 

(Mie Scattering) technique. The in-nozzle cavitation and near-nozzle exit jet spray 

were visualised simultaneously and were quantitatively analysed to stablish the 

link between the cavitation and emerging jet spray instability, and to enhance our 

understanding further. A new optical configuration has been designed for the 

injector model that allowed the visualization of up to 50,000 fps with high quality 

images; an improvement on imaging frame rate of up to 2.5 times compared to the 

previous works who used the same model and the same experimental equipment. 

• In the second phase of the experimental investigation, a new enlarged model 

injector was designed that was geometrically similar to phase 1 model but 7-times 

larger than the real injector; the new model was manufactured in house utilising a 

Computer Aided Design software. The new model allowed an enhanced 

simultaneous visualisation of the in-nozzle flow and near-nozzle jet spray and a 

comparison between the two different enlarged models. In this phase, the new 
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transparent model was uniquely designed in SOLIDWORKS to provide almost the 

same viewing depth-of-the-field of the camera (DoF of less than 1mm) for the in-

nozzle flow region and the near-nozzle exit jet spray, which allowed both flow 

regions to remain optically sharp, which, in turn, it helped to improve the image 

analyses greatly. The results revealed different stage of cavitation at different 

cavitation numbers. It was observed that cavitation and the string directionality 

can affect the spray jet axis. It also revealed that the hydraulic flip happens much 

earlier than expected and at lower cavitation numbers compared to the 15 times 

enlarged model. It also reveals that a stochastic ligament spray with much lower 

velocities is being formed at the vicinity close to the upper part of the nozzle exit 

where the air entrainment seems to be maximum which can ultimately result in 

stochastic tip wetting of the nozzle. The wetting phenomena can happen inside the 

counter bore stepped-hole region of the nozzle or on the curved surface on the tip 

of the injector nose 

• In the third phase of the experiment, a real-size stepped injector test rig was 

designed and manufactured using SOLIDWORKS which enabled the injector to 

rotate along the axis of the needle 360⁰ freely and allowed high-speed visualization 

of the spray plume from different angles. A CAD model of the injector was also 

designed from scratch in SOLIDWORKS which allowed the assemply to be rotated 

and configured and enhanced the views of the stepped holes from different angles 

for visualization. It also enabled the measurement of the spray tip penetration and 

cone angle from different viewing angles. It further allowed the visualisation of the 

overall spray behaviour and very near-nozzle exit spray which is also important for 

PDA setup. 

• In the fourth phase of the experiment, a Fiberflow Dantec PDA measurement 

system was setup to measure spray characteristics including droplet diameters and 

velocities at the very near-nozzle area of the injector (1mm from it) up to a distance 

35mm from injector, to investigate early breakup. Due to the very closed-spaced 

compact arrangement of the nozzle holes located at the injector tip region, high 
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attention was given to the setup and location of the probe position at the edge of 

the injector tip. In order to do this, the zero point of the traverse reference system 

was carefully chosen using a novel technique which ensured that it was exactly 

located on the symmetric axis of the injector tip. In addition, one of the nozzle jet 

sprays was carefully isolated and the optical mounting was rotated and aligned in 

a specific direction that allowed the spray droplets to have maximum exposure to 

the PDA detector system while travelling through the probe region, and therefore 

minimising the attenuation of the transmitting beam and collecting scattered light; 

this was possible only by designing a new model of the injector that allowed 3D 

rotation of the assembly in CAD software in order to find the best possible 

arrangement for PDA measurement; this new arrangement was done accordingly 

in the real-size model which allowed full measurement of droplets diameter and 

velocity across the jet spray at 1mm away from the exit.  

 

 Outline of the thesis 
 

The current thesis comprises of seven chapters. Chapter 1 presents an intoruction to the 

growing market of gasoline direct injection systems and the underlying reason behind why 

it is still a dominant market. The brief explanation comprises drawbacks, benefits and 

targets of the new direct injection systems including the multi-hole injection system and 

the technology involved. Chapter 2 contains a literature reviews of some of the most recent 

papers about gasoline direct injection. More specifically, it reports the review of literature 

about investigation on enlarged models, spray characterisation and publications on the 

multi-hole gasoline fuel injectors. Every paper or document reported includes the name of 

the corresponding authors, the description of experimental set up, Technique and the main 

findings and conclusion. Chapter 3 examines the breakup theory and some fundamentals 

of the experimental techniques used in the current research. Chapter 4 reports the 

methodology used in this research which is subdivided into 4 phases: phase one and two 
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which includes the visulisation of the in-nozzle flow and near nozzle spray in 15 times and 

7 times transparent model of a 6 hole gasoline stepped multi-hole injector, respectively. 

Phase three involves visualization of the spray in a real-size gasoline stepped-hole multi-

hole injector and reports on performance of the spray including analysis on structure, tip 

penetration, cone angle and some near-nozzle analysis of the spray. And finally phase four 

contains full analysis on PDA measurement of the spray in the real-size stepped multi-hole 

injector. Chapter 5, 6 and 7 presents the results of this research. Chapter 5 includes results 

from visulisation of the enlarged models of injectors (7 and 15 times enlarged models). In 

this chapter the link between geometric and string cavition and erosion of the nozzle is 

addressed. The influence of geometric and string cavitation and shedding on spray stability 

has been addressed too. The formation of stochastic ligament spray is also visualized. 

Chapter 6 presents the results of visulisation of real-size spray and comparison of the 

structure, tip penetrataion, cone angle of the current injector with two other models of 

multi-hole injectors which has been investigated in the group. Chapter 7 contains results of 

the full PDA measurement of the spray at different distances from the nozzle exit and the 

error analysis of the PDA measurement. Chapter 8 contains conclusion and 

recommendations for further work in the area of experimental research on the mult-hole 

injector. The bibliography of the references of publication and documentation cited 

throughout the thesis is then presented followed by the appendices. 
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2   Chapter 2 : Literature Review 

 Introduction 

 

This chapter provides literature review of some of the most important papers for in-nozzle 

flow and spray characteristics of fuel injection systems which are focused on dense fuel 

sprays i.e high pressure gasoline fuel injection systems. Section 2.2 consists of a table with 

Part A, B and C.  

Part A in section 2.2 presents the summarized tabular format of the papers in the literature 

on the subject of internal nozzle flow. This topic is primarily focused on SIDI injectors but 

also includes relevant diesel injector literature. Within this topic is any research focused on 

the internal flow upstream from the nozzle exit. The papers are in chronological order 

starting with the most recent papers. As the research on the near-nozzle atomistation of 

the stepped-nozzle multi-hole injector is relatively rare, there are currently very few paper 

on the characterisation of the spray in this region and also this type of injectors.  

Part B in section 2.2 is focused on the spray characterisation of gasoline sprays. The bulk of 

this topic is experimental data from overall spray characterisations using either the Mie 

scattering or Phase Doppler Anemometry or Xray phase contrast imaging. Very few of the 

most recent papers are focused on characterization of stepped-nozzle while there is a lack 

of near-nozzle data for this type of injector. However, there is a small proportion of work 

which includes some data from the near nozzle spray region. Part C presents a few 

examples of miscellaneous papers related to this research.  

Section 2.3 provides a summarized storytelling of the literature review for the relevant 

papers which have investigated the in-nozzle flow and and the jet spray. 

Finally section 2.4 identifies the gaps in the literature review and identifies the key papers 

in this field. 
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 Major findings in the literature review 

 

Part A: In-nozzle flow 

paper Major findings 

Dimitri 

Mamaikin et al 

2020 [7] 

 

The velocity field upstream of the hole reveals a slightly faster flow on 

the outer side of the injector due to the impact of throttling in the 

needle seat. The static pressure distribution shows the minimum 

pressure region in the upper, inner side of the hole. This region was 

observed to be the recirculation area of the flow due to relatively high, 

local flow deflection. The outlet velocity was found to be around 120-

130 m/s. 

Tekawade et al. 

2019 [31]  

 

The cavitation layer arises from known azimuthal variations in the 

inlet corner radius and extends, at some angles, the full length to the 

exit of the nozzle potentially causing hydraulic flip. A flow blockage of 

up to 30% is observed at the nozzle exit. Simulations predict the 

asymmetric, strongly cavitating flow as shown by the experimental 

results 

Torelli et al. 

2019 [32] 

 

Manufacturing tolerances and needle radial motion are responsible 

for orifice-to-orifice mass flow rate differences. Needle motion 

variability is responsible for shot-to-shot inconsistencies. Cavitation in 

the orifices and at the needle seat correlate strongly with radial 

needle motion. Cavitation within the orifices might increase shot-to-

shot variability by reducing the orifice cross-sectional areas and 

discharge coefficients. Cavitation might lead to local erosion of the 

nozzle internal geometry, leading to even higher variability with time 

Karathanassis et 

al. 2018 [6] 

 

In geometrical layouts where wall curvature affects the flow, vortex 

cavitation is promoted over cloud cavitation. Frequency analysis of 

cavity radius allowed estimations on the recirculation intensity found 

to be in agreement with the cavitating-vortex theoretical model by 

Pennings et al. 2015. Measurements of the flow turbulence PTV 
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demonstrating that turbulence is suppressed in the presence of well-

established cavitation according to Koukouvinis et al. (2017) 

Koukouvinis et 

al. 2017 [33] 

 

Cavity shedding, collapse and vortex cavitation (string cavitation) has 

been visualized. Sheet cavity formed at the edge of the orifice 

entrance, oscillating at a Strouhal number of ~0.35-0.38, based on 

orifice diameter and average flow velocity (attached cavity shedding 

period of 78-95 μs for high and low cavitation number operation 

respectively. Attached cavity collapses at ~2 mm from nozzle inlet. 

Shed cavities collapse at 7-8 mm downstream the entrance. Existence 

of counter rotating vortices 2mm downstream of the nozzle entrance 

(with 95 micro second shedding period corresponding to CN=1.5) and 

2.5 mm downstream of the nozzle entrance (with 78 micro seconds 

shedding period corresponding to CN=2.18). At Cn = 1.5 shows a peak 

of turbulent kinetic energy at ~ 2 mm downstream the orifice 

entrance. High cavitation number operation shows two peaks, one at 

~ 1mm downstream the entrance and another at ~ 8 mm downstream 

the entrance. Experimental results indicate that the isosurfaces of 

25%, 50% and 75% liquid reach ~ 6 mm, 7 and 8mm respectively. 

Liquid fraction distribution does not match very well with simulation 

rise and collapse of a cavitation structure at the trailing edge of the 

cavitation cloud from vapour pressure from ~0.172 bar to 200 bar 

within 2 μs. Single cavity collapse and collapse cascade are shown. 

Two distinct erosion sites relates to attached cavity collapse at length 

of 0-5mm and detached cavity at length of 5-10mm collapse. 

N. Mitroglou et 

al 2014 [34] 

At low needle lifts, string vapour structures were observed and found 

to be air entering the low pressure region of the nozzle flow and 

extending upwards towards the hole inlet, rather than cavitation 

extending down from the sac volume. Once these vortex structures 

reached the hole inlet and interacted with geometric cavitation, the 

spray cone angle was found to vary from approximately 20o to a 
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maximum of 55o . At higher lifts there appears to be little change in 

the behaviour of the flow, other than the level of geometric cavitation 

being enhanced. It is stated that string cavitation, while promoting 

atomisation, is particularly unstable. However, geometric cavitation 

has been shown to be more stable and exhibiting a good balance 

between atomisation and stability. 

Nouri et al 2012 

[35] 

General observations of cavitation with respect to needle lift show the 

same trends as the other extensive research done using large-scale 

models. Lower needle lifts were shown to exhibit reduced geometric 

and string cavitation occurrence and intensity. While the cavitation 

structures present in both nozzles were found to be the same (due to 

almost identical inlet conditions), the longer hole length nozzle was 

found to exhibit fewer and more stable cavitation structures at the 

nozzle exit. Higher fluid viscosities were found to slightly suppress the 

intensity of the cavitation, especially at the onset of cavitation within 

the nozzle. •The effect of fluid viscosity or L/D on the spray was not 

investigated. 

Aleiferis et al 

2010 [36] 

The effects of back pressure, fuel type, nozzle diameter and injector 

body temperature on the cavitation number were demonstrated. 

Nozzle diameter was shown to have the greatest effect for a given fuel 

while at sub atmospheric back pressures a small increase in 

temperature was shown to have a marked effect on the cavitation 

number. Cavitation bubbles have been observed to exit the nozzle 

before conditions of choking are experienced in the nozzle. At the 

critical cavitation number the dominance of cavitation over chamber 

pressure is apparent with respect to the spray cone angle. The onset 

of cavitation rapidly increases the spray cone angle of the spray by 

1.2o despite only a decrease of 0.15 MPa in chamber pressure. As 

expected, decreasing back pressure or increasing injection pressure 

reduces the spray cone angle. However, when crossing the region of 
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the critical cavitation number, the spray cone angle rapidly increases 

before returning to the original trend. Film cavitation on the upper 

edge of the nozzle hole entry was observed under all conditions for all 

fuels and nozzles. Under most conditions the spray was found to be 

asymmetric due to the film cavitation at the top edge of the nozzle 

hole entry. 

Tropea et al. 

2009 [37] 

For all nozzles, two counter rotating vortices were observed in the 

cross plane of the spray. One was found to exhibit four vortices in the 

near nozzle region that quickly broke up into two. As expected, higher 

turbulence levels in the spray improved breakup but it was observed 

that vortices in the cross plane retarded breakup. 

Andriotis et al 

2008 [38] 

String cavitation structures were found to be present in all nozzles and 

inception was observed to both begin in the sac volume and through 

the mechanism of air being drawn into the centre of the nozzle exit 

due to the high vorticity of the nozzle flow. The frequency of string 

cavitation appearance was correlated to the Strouhal number of large 

scale vortices present in the nozzle hole. Two different flow regimes 

containing string cavitation structures have been observed within the 

nozzle. The first is where the cavitation string interacts with the 

geometric cavitation and the second where the string is confined to 

one half of the nozzle and doesn't interact with the geometric 

cavitation. Both have been observed in all nozzles in all injectors. It 

has been shown that the discharge coefficient of the nozzles increases 

at lower needle lifts due to the cavitation being less well developed 

and that the fewer the nozzle holes; the greater the discharge 

coefficient. It has been stated that relatively, tapered holes are more 

sensitive to variations in spray cone angle. This is because the 

suppression of geometric cavitation in these nozzle holes means that 

the minimum cone angle is lower yet the widening of the cone due to 

string cavitation (a maximum) is equal between tapered and non-
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tapered holes. The tapered nozzle design exhibits significantly lower 

spray cone angles than that of the cylindrical nozzle; particularly the 

bottom angle when in a non-cavitating state. 

Gavaises et al 

2009 [4] 

With a tapered (converging) nozzle hole, it was found that string 

cavitation was the dominant cavitation structure observed while with 

a parallel hole both regimes were present. In both cases greater 

needle lifts resulted in more fully developed and reduced intensity 

cavitation. In the tapered hole it was observed that often the string 

cavitation would form from the nozzle exit where-as with a parallel 

hole it often formed at the hole entry as a result of geometrically 

induced cavitation bubbles appearing close to the hole axis.  Contrary 

to previous research, the Reynolds number was shown to have an 

effect on the probability of the appearance of strings in the nozzle 

hole. However, the cavitation number and needle lift are the 

dominant factors. 

Gavaises et al 

2008 [26] 

Shows similar erosion images to the previous paper in 2007. The use 

of a grooved VCO needle has been shown to significantly reduce 

cavitation intensity and collapse in these regions but the suppression 

of cavitation likely degrades the atomisation due to the increased 

emissions observed when using this nozzle. Experiment and 

simulation have suggested the discharge coefficient can be reduced 

by 8% as a result of cavitation at low needle lifts with increases as the 

needle lifts. AT low needle lifts string cavitation was observed in all 

nozzles regularly except the normal VCO nozzle with no groove. At all 

lifts the tapered nozzles only exhibited string cavitation while the 

cylindrical showed evidence of fully developed cavitation with strings 

at high needle lifts. All variations on the standard VCO showed much 

lower acoustic pressures and cavitation erosion after testing. It is 

thought that the needle groove allows the fluid to turn into the nozzle 

hole more easily, particularly at low lifts, while the tapered nozzle 



Chapter 2                                                                     Literature review 

 
 

63 

suppresses geometric cavitation. It is stated that string cavitation is 

unlikely to be the cause of surface erosion in injector nozzles because 

experimental evidence shows that they do not collapse near the 

surface but remain in the central region of the nozzle passage. 

Andriotis et al 

2007 [1] 

String cavitation structures were found to originate at the cores of 

recirculation zones. It was also found that air sucked in at the exit of 

the nozzle holes could initiate cavitation. Cavitation strings were 

found to be a function of both needle lift and nozzle hole entrance 

shape. A variation of up to 10% in mass flow rate of the nozzles was 

recorded due to the presence of cavitation structures choking the 

nozzle flow. Through extrapolation string cavitation is expected to be 

present in shorter time scales than an injection event in a real size 

nozzle, showing that they are able to influence the hole-to-hole and 

cycle-to-cycle repeatability of the spray 

Nouri et al 2007 

[39] 

The visualisation revealed that the flow into the nozzle holes 

originated either from the incoming annular flow above the six 

injection holes or from the deflected annular flow inbetween two 

adjacent injection holes. This flow regime was a possible cause for the 

formation of vortices in the sac volume between the needle face and 

the two adjacent injection holes. Needle strings first appeared in the 

multihole gasoline injector prior to the formation of geometric 

cavitation structures. The onset of cavitation was found to be when 

the cavitation number approached 0.7 - 0.9 and presented a well 

developed structure for CN higher than 1 when needle strings started 

to disappear. Following the disappearance of the needle strings 

another type of string cavitation known as vortex strings were found 

to appear. 
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Part B: Gasoline Spray Characterisitics 

Spencer et al. 

2019 [40] 

 

Under non-flash boiling conditions, it was found that the injection 

pressure dictates the length of the spray penetration before collapse 

occurs, with an increase in pressure resulting in an increase in this 

length. The mid-sized of the three-hole diameters tested there was 

found to produce a spray that more readily collapsed than that of the 

smaller or larger hole diameters under flash boiling conditions, the 

convergent hole had a greater propensity to exhibit spray collapse. 

The larger droplet size resulted in a lower level of droplet breakup in 

comparison to the smaller diameter holes, because of the lower fluid 

velocity of the large hole. 

Battistoni et al. 

2018 [41] 

 

Comparison between experimentally measured and predicted 

interfacial area profiles reveals the potential of the USAXS 

measurement to distinguish regions of continuous liquid structures 

and finely atomized droplets. In central regions of the spray, the 

projected surface area profile may be related to the degree of 

atomization of the liquid jet; local minima may indicate regions of 

poorly atomized spray comprised of larger liquid structures and 

detached droplets, whereas local maxima may indicate regions of 

completely atomized spray.  

Duke et al 2017 

[8] 

 

plume-to-plume variations in the mass fluxes from the holes can 

cause large-scale asymmetries in the entrainment field and spray 

structure. Both internal flow transients and small-scale geometric 

features can have an effect on the external flow. It is difficult to 

optically access individual plumes. Strong entrainment effects and 

persistent unsteadiness in the spray after the needle reaches full lift 

limit the usefulness of steady- state analysis. The sharp turning angle 

of the flow into the holes also causes an inward vectoring of the 
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plumes relative to the hole drill angle, which increases with time due 

to entrainment of gas into a low-pressure region between the plumes. 

The plumes were found to have a decreasing targeting angle with 

increasing distance from the nozzle. PDA reveals a time-dependent 

motion of the plumes toward the nozzle centerline. Therefore the 

spray does not have a true ‘steady state’. The x,y wobble does not 

cause any appreciable change in the flow area into the sac. However, 

the z motion may lead to asymmetric and time-varying inflow to the 

sac and to the nozzle hole flow. This points toward the need for 

transient simulation efforts which include the details of the internal 

nozzle geometry. 

Moon et al. 

2017 [42] 

 

The fuel with lower surface tension promoted the spray atomization 

The effects of fuel property and injection pressure on spray 

atomization became saturated from a certain Weber number (critical 

We0). The critical We0 decreased as the nozzle hole length decreased. 

The relative velocity (ratio of spray center velocity at certain axial 

location to initial injection velocity) at the atomization termination 

location appeared almost identical (0.72) regardless of the injection 

condition. It indicated that the faster spray deceleration caused by the 

promoted initial flow breakup and dispersion brought the atomization 

termination location closer to the nozzle due to rapid attenuation of 

liquid-gas relative velocity, which is denoted as ‘trade-off relationship 

between the degree of initial flow breakup and potential atomization 

distance 

Zigan et al. 2012 

[43] 

The investigation shows that the viscosity of the fuel plays an 

important role in the breakup and spray characteristics of the 

emerging spray. Thus it is important to select the appropriate fuel 

when using working fluids other than gasoline in optical experiments. 

For a given Re, a reduced viscosity enhances turbulence within the 

nozzle and appears to result in a narrower spray cone angle with 
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increased penetration over the resultant spray from a higher viscosity 

fluid. Elevating the temperature increases the Re and thus has the 

same effect. Using a higher viscosity fluid appears to enhance the 

spray breakup even at low Weber numbers. Thus it can be stated that 

the Reynolds number plays an important role, along with the Weber 

number, in spray breakup. 

Zigan et al. 2011 

[45] 

Comparison of a range of alkanes showed that iso-octane, while being 

a good representative of gasoline, was inferior to n-heptane in terms 

of kinematic viscosity for example. The type of fuel used was found to 

have a big influence on the size of the recirculation zone at the outer 

edge of the spray with the biggest difference coming from the high 

volatility fuels, especially late in the injection. Axial fuel propagation 

was relatively unaffected by the fuel type while radial propagation 

showed high sensitivity to the fuel characteristics. As the volatility of 

the fuel reduced, the droplet sizes of the fuel increased as expected. 

with gasoline having an average droplet size about 50% great than iso-

octane. In nearly all respects the in-house 3-component fuel was 

found to better represent gasoline than the single component fuels 

tested. This was especially true of the evaporation characteristics and 

its effect on fuel distribution. 

Marchi [44] According to the Weber number trend, the secondary breakup takes 

place up to an axial location of 20mm (27mm in jet direction). This 

result was in agreement with the mean diameter distribution which 

shows a reduction from 14µm to 7µm (50%) within 27mm from the 

injector tip. At axial location beyond 40mm, phenomena such as 

turbulence and recirculation could promote droplet collision and, 

therefore, coalescence represented in PDA plots by bimodal 

distribution corresponding to a group of very fine droplets and a 

group of agglomerated droplets. 
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Nouri et al 2007 

[45] 

The overall spray cone angle was found to be almost independent of 

injection pressure. A higher chamber pressure resulted in a reduced 

tip penetration length due to increased drag. Spatial velocity profiles 

were jet-like at all axial locations with the maximum residing along the 

spray cone axis. Temporal velocity profiles were shown to increase 

rapidly during the SOI, remain almost constant during the main part 

of the injection and then decrease during needle closing. The 

chamber pressure was shown to have a much larger effect on the 

droplet size than injection pressure. Higher rail pressures slightly 

reduced the droplet size where-as higher chamber pressures 

significantly increased the droplet size due to coalescence. 

Mitroglou 2006 

[46] 

When the dwell time between the two injection events in a double 

injection strategy is longer than 0.5ms it was found that the second 

injection event was unaffected by the first. For dwell times under 

0.5ms, it was observed that a significant amount of pre-spray 

preceded the second injection event. This was very dependent on the 

injection pressure. Higher injection pressures were found to result in 

an earlier SOI for the second injection event. Contrary to previous 

research, injection pressure was found to have an apparent effect on 

the needle opening rate. PDA results showed that the droplet 

velocities in the second injection event were higher, even with a 1ms 

delay. This implies that the flow inside the sac volume of the injector 

has still not stabilised after 1ms. 
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Part C: Mischellaneous papers 

Leicke et al. 

2018 [23] 

Increased injection pressure is consistently found to decrease tip 

wetting and particulate emissions and tip wetting is most pronounced 

when flash-boiling of the spray occurs. It is only in the front view 

configuration of the injector tip that the tip wetting can be quantified 

and this is only after the injection finishes while the side view 

visulisation highlight the temporal evolution of spray structure and 

liquid film formation and facilitate a distinction between films formed 

during the quasi-steady phase of the spray or deposited on the tip as 

the injection ceases. It is not yet fully understood why the inner circle 

has higher film formation than the outer surface 

 

Reits et al 2019 

[28] 

 

IC engine research have a bright future, in contrast with some widely 

distribu. The power generation and the vehicle and fuel industries are 

huge, representing trillions of dollars per year, with a massive 

infrastructure. The power generation industry will not become fully 

renewable and transport will not become fully electric for several 

decades. Highly efficient ‘‘fully flexible’’ engines with hybridized 

solutions will be a big part of sought-after efficiency improvements, 

as well as emission/GHG reductions 

Sivathanu et al. 

2017 [47] 

 

Higher ambient and injection pressure result in higher transient peak 

surface area which gradually decreases as we move toward lower 

ambient and injection pressure. This was attributed to fine spray at 

the higher injection and ambient pressures leading to higher drop 

surface area while a merging of plumes leading to smaller drop 

surface area. 

Befrui et al 2016 

[48] 

 

VOF-LES analysis of the ECN spray G seat flow and the near-field 

primary atomization coupled to a Lagrangian stochastics simulation 

method adopting the discrete droplet model (DDM), found that there 

is notable interaction of spray with the counter-bore walls. 
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 Summary of the literature review 

 

Fuel injection methods and strategies have been developed extensively during the history 

of the IC engine [49] [50] . Multi-hole injectors are wildly used in both diesel and gasoline 

engines and have many advantageous such as their flexibility in terms of number of holes 

and their arrangements which can be fitted to different combustion cylinder head, their 

ability to produce stable spray which is critical for spray guided concept, and their ability to 

be used at high injection pressure to ensure enhanced atomization and evaporation [39]  

[51]. Successful fuel delivery depends on controlled, reliable and consistent injection 

events. The structure and stability of the fuel spray depends on the design of the injector, 

and the injection parameters such as the injection pressure and duration, ambient pressure 

and temperature, and fuel temperature [52] [53]. Experimental studies of in-nozzle flow 

characteristics, in particular, cavitation in enlarged transparent model multi-hole injectors 

and spray characteristics of real size multi-holes have been extensively investigated by City 

research group [1] [2] [3] [4] [5] [26] [38] [46] [54] [55] [56]  [57]  [58] [59] [60]  [61]  [62]. 

Different optical methods e.g. Mie scattering spray visualization using a high-speed camera, 

LDV, PDA, PIV and PLIF have been used to characterise in-nozzle flow, spray shape/cone 

angle/penetration, special distribution of droplets size/velocity and fuel mixture 

distribution at different operating condition. The results of in-nozzle flow of enlarged 

models showed that the dominant flow phenomenon within fuel injectors is the cavitation 

which, in turns, influences the spray liquid break up and plays a major role in spray stability.  

Arcoumanis et al. [63] showed that needle eccentricity was found to influence the internal 

annulus flow inside the injector and consequently affect the nozzle flow and local cavitation 

structures. Cavitation within the nozzle holes of multi-hole SIDI injectors can lead to 

significant spray instabilities which can cause problems in combustion when operating in 

stratified mode. Therefore knowledge of in-nozzle flow characteristics, in particular the 

cavitation formation, its development and its link with liquid break-up at the exit of the 

nozzle hole is essential. This call for a closer look into the details of the link between 

cavitation and emerging spray in order to establish how cavitation influence spray shape, 
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instability and break up. From previous researches, the high speed flow visualization was 

found to be the best method to start investigating the development of cavitation inside the 

nozzle injector as it identifies different type of cavitating flows, their mechanisms, their 

developments and the regions they occur; the results are detailed enough that can also be 

used to validate the in-nozzle flow calculation by CFD models. Imaging of the flow inside 

the injector nozzle has identified the formation of three different types of cavitation as a 

function of the cavitation number, CN [59]. The first is needle cavitation, in the vicinity of 

the needle, which penetrates into the opposite hole when it is fully developed. The second 

is the well-known geometric cavitation originating at the entrance of the nozzle hole due 

to the local pressure drop induced by the nozzle inlet hole geometry. Finally, and at the 

same time as the onset of geometric cavitation, string type cavitation can be formed inside 

the nozzle sac and hole volume having a strong swirl component as a result of the large 

vortical flow structures present there; these become stronger with increasing CN [59]. Its 

link with geometric cavitation creates a very complex two-phase flow structure in the 

nozzle holes which seems to be responsible for hole-to-hole and cycle-to-cycle spray 

variations [59]. Arcoumanis et al (2000) [64] showed that geometric and string cavitation 

structures were observed to occur at different cavitation and Reynolds numbers. It has 

been revealed that cavitation strings are found at the areas of flow circulation and they 

originate either from pre-existing cavitation sites forming at sharp corners inside the nozzle 

where the pressure falls below the vapour pressure of the flowing liquid, or even from 

suction of outside air downstream of the hole exit [60]. Arcoumanis et al (2001) identified 

two types of film cavitation; pre-film and film. In this study, string cavitation only appeared 

at high lifts in the real size injector but at all lifts in the enlarged model. Interaction between 

string cavitation and film cavitation was also observed [60]. The converging nozzle, coupled 

with greater nozzle inlet radius, was found to suppress cavitation under all test conditions. 

The highly cavitating cylindrical nozzle was found to have a greater individual spray cone 

angle, particularly at the start of injection [65].  The previous studies have provided 

experimental data with regards to the questions about string cavitation origin, area of 

formation, lifetime and influence on the nozzle hole flow [1] [4]. Information for their 

frequency of formation, time of development, frequency of appearance and size within the 
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injection hole has been also reported [1] [4]. The frequency of appearance of strings has 

been correlated with the Strouhal number of the large-scale vortices developing inside the 

nozzle volume [1]. Cavitation erosion has been observed at different locations within the 

nozzle. These have included the top surface inside the nozzle hole next to its entry, the 

3o'clock and 9c'clock hole side-inlets as well as at the needle seat area [26]. The cavitating 

flow regimes associated with these erosion sites correspond to geometrically-induced hole 

cavitation, the string cavitation and the needle seat cavitation, respectively [26]. Large 

variations in the instantaneous fuel injection quantity of individual injection holes have 

been recorded when a cavitation string is observed inside them [1]. Combination with 

model predictions has revealed that the observed reduction in the individual hole flow rate 

is partially due to the increased vapor fraction inside the hole when a string is present; the 

vortex flow developing upstream of the hole entry is the main reason for the observed 

trend [1]. Extrapolation based on model predictions for real-size injectors operating at 

realistic injection pressure indicates that cavitation strings are expected to appear within 

the time scales of typical injection events [1]. Flow images indicate string cavitation, can be 

formed from outside air trapped in the core of recirculation zones persisting up to the exit 

of nozzle holes. The formation of cavitation strings is enhanced with increasing flow rate 

(and thus increasing cavitation number) while it is less sensitive to needle lift. Cavitation 

strings may travel upstream the injection hole entry well inside the nozzle’s sac volume but 

with a reduced frequency of appearance compared to their presence inside the injection 

hole [38]. Nozzles with tapered holes also suppress formation of geometric cavitation and 

have also been proved erosion-free. However, experiments performed in enlarged 

transparent nozzle replicas have provided evidence of string cavitation structures formed 

inside the different nozzle designs. The nozzles with the grooved needle have been found 

to enhance formation of string cavitation, in an unsteady and non-repeatable mode. The 

formation of cavitation strings was maximized at lower lifts of the grooved needle in the 

tapered hole nozzle. Interestingly enough, the grooved nozzle designs dominated by string 

cavitation have been found to result in increased engine exhaust emissions,  while nozzles 

with tapered converging holes have been found to satisfy both durability to surface erosion 

and engine exhaust emissions [2] [5]. The most recent study has provided a number of 
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experimental data for string cavitation regarding their origin and their immediate effect on 

spray instabilities [62]. Presence of such string structures is found to alter the spray 

dispersion angle significantly and induce random instabilities. At later stages during the 

injection event and at times when flow is fully developed inside the hole, string cavitation 

is identified to initiate at the hole entry [62]. The absence of string cavitation has been 

demonstrated stable effects on spray dispersion angle and subsequent atomisation quality. 

The location of cavitation strings relative to the geometric-induced cavitation inside the 

hole is strongly connected to the instability of upper or lower spray boundary [62]. The 

velocity field upstream of the hole reveals a slightly faster flow on the outer side of the 

injector due to the impact of throttling in the needle seat [7]. The cavitation layer arises 

from known azimuthal variations in the inlet corner radius and extends, at some angles, 

the full length to the exit of the nozzle potentially causing hydraulic flip with flow blockage 

of up to 30% is observed at the nozzle exit [31]. It was observed that manufacturing 

tolerances and needle radial motion could be responsible for orifice-to-orifice mass flow 

rate differences [32]. Measurements of the flow turbulence using particle tracking 

velocimetry (PTV) demonstrate that turbulence is suppressed in the presence of well-

established cavitation according to Koukouvinis et al [6]. Sheet cavity formed at the edge 

of the orifice entrance were observed to oscillate at a Strouhal number of ~0.35-0.38, based 

on orifice diameter and average flow velocity. Here an attached cavity shedding period of 

78-95 μs was observed for high and low cavitation number operation respectively. [33]  

In the work of Mitroglou [46]., PDA results showed that the droplet velocities in the second 

injection event were higher, even with a 1ms delay. This implies that the flow inside the 

sac volume of the injector has still not stabilised after 1ms. In conventional multihole 

injector, spatial velocity profiles were jet-like at all axial locations with the maximum 

residing along the spray cone axis. Temporal velocity profiles were shown to increase 

rapidly during the SOI, remain almost constant during the main part of the injection and 

then decrease during needle closing. The chamber pressure was shown to have a much 

larger effect on the droplet size than injection pressure. Higher rail pressures slightly 

reduced the droplet size where-as higher chamber pressures significantly increased the 

droplet size due to coalescence [39]. In the work of Marchi [44] in piezo injector, according 
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to the Weber number trend, the secondary breakup takes place up to an axial location of 

20mm (27mm in jet direction). This result was in agreement with the mean diameter 

distribution which shows a reduction from 14µm to 7µm (50%) within 27mm from the 

injector tip. At axial location beyond 40mm, phenomena such as turbulence and 

recirculation could promote droplet collision and, therefore, coalescence represented in 

PDA plots by bimodal distribution corresponding to a group of very fine droplets and a 

group of agglomerated droplets. Zigan et al [43] showed that he type of fuel used was found 

to have a big influence on the size of the recirculation zone at the outer edge of the spray 

with the biggest difference coming from the high volatility fuels, especially late in the 

injection. It was also shown that axial fuel propagation was relatively unaffected by the fuel 

type while radial propagation showed high sensitivity to the fuel characteristics.  

Moon et al [42] showed that the critical We0 decreased as the nozzle hole length decreased. 

It was also shown that the relative velocity (ratio of spray center velocity at certain axial 

location to initial injection velocity) at the atomization termination location appeared 

almost identical (0.72) regardless of the injection condition. It was also shown that the 

effects of fuel property and injection pressure on spray atomisation became saturated from 

a certain Weber number [42]. Duke et al. [8] showed that after PDA measurement, a time-

dependent motion of the plumes appears toward the nozzle centerline. Therefore the 

spray does not have a true ‘steady state’. Battistoni et al. [41] distinguishes the regions of 

continuous liquid structures and finely atomized droplets within the near-nozzle jet using 

Xray phase contrast. In central regions of the spray, the projected surface area profile may 

be related to the degree of atomization of the liquid jet; local minima may indicate regions 

of poorly atomized spray comprised of larger liquid structures and detached droplets, 

whereas local maxima may indicate regions of completely atomized spray. This shows the 

presence of multi-modal jet peaks inside the cross-section of the spray plume. Finally 

Spencer et al  [40] shows that in a stepped-hole nozzle injector, the larger droplet size 

resulted in a lower level of droplet breakup in comparison to the smaller diameter holes, 

because of the lower fluid velocity of the large hole. 
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 Identifying the Gaps in the Literature Review 

 

The first gap identified in the literature, is that how and why complex cavitation structures 

form and their influence on the internal flow and resultant spray. Complex structures such 

as multiple cavitation strings in the same nozzle, interconnecting strings and interaction of 

different types of cavitation have been observed in enlarged models with some clarity. 

However, while it has been suspected that similar conditions are found within real 

injectors, there has been no progress in identifying the more complex of these due to the 

limitations of imaging inside real injectors.   

The second gap is the difficulties of simultaneous visualisation of the internal nozzle flow 

and subsequent spray from either real size or enlarged optical models. Previous attempts 

have often tried to match internal flow imaging with spray structure by separate imaging 

of the two systems but this misses the proper correlation required to really make 

meaningful conclusions. In addition, the enlarged model used for simultaneous imaging 

were all x15 times or bigger and there is a need to use smaller enlarged models. 

The third gap is the influence of the presence of stepped-hole which can affect the in-nozzle 

flow pattern and ultimately influence the breakup and atomization of the near-nozzle jet 

spray. In order to find the link between in-nozzle flow and near-nozzle spray, experimental 

investigation including high speed imaging and PDA needs to be conducted for the full spray 

to compare the spray characterisitcs with the conventional multi-hole  injector. Most 

importantly, PDA experiments should be conducted in order to quantify the full spray 

characteristics for the overall spray and also the near-nozzle spray characteristics and 

obtain a better understanding of the performance of the stepped- injector and the 

influence of the design of the injector on atomisation of the near-nozzle jet spray compared 

to conventional multi-hole injectors. Besides this, the near-nozzle atomization should be 

quantified and compared with the previous results in other injectors.  

The fourth gap which was one of the most important ones was the lack of presence of 

instantaneous 2-D contour plot of velocities and droplet sizes in the literature review. This 

should be quantified and obtained by means of a MATLAB code since the 2-D countor plots 
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presented by BSA software in PDA technique in the literature review are average quantities 

over the whole duration of the spray. This was also not reported in the previous works. 
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3 Chapter 3: Breakup Theory & Experimental Techniques in Gasoline 

Fuel Sprays 
 

 Introduction 

The internal flow and the spray structure of a new stepped multi-hole injector in an enlarged 

model injector and real size injector have been investigated in this thesis to have a better 

understanding of the in-nozzle flow structure within the stepped nozzle, especially cavitation 

formation and its development, the link between the vortical strings cavities and the formation 

of spray and its stability. Also, to map and characterise temporal and spatial fuel spray in terms 

of simultaneous droplets velocity and size measurement and to establish the spray-to-spray 

variation (flapping), the phenomena that have an important role in the behaviour of the overall 

spray-guided Spark Ignition Direct Injection (SIDI) system. These have been possible by the use of 

an in house designed transparent enlarged model injector and an optical fuel spray chamber. 

These helped to overcome the difficulties encountered in the observation (qualitative) of the 

internal flow and spray using Mie scattering high speed visualization, and also quantitative flow 

and spray analysis performed using PDA technique. In this chapter, the atomization and breakup 

theory will be first explained and then the experimental techniques used in this work will be 

covered. 

 Breakup Theory 

‘As soon as the liquid phase exits the nozzle, the surrounding gas and processes within the liquid 

phase – or more precisely the interplay between aerodynamic forces, surface tension and 

viscosity of the liquid – start to disintegrate the surface and break up the liquid core into 

ligaments, blobs and large droplets. This process is therefore called primary or liquid breakup’ 

[66]. It is characterised by the following dimensionless numbers: 

Weber number The Weber number describes the relation between inertial and surface tension 

forces. It is defined as: 
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𝑊𝑒𝑙 =  
𝜌𝑙𝑣𝑙

2𝑑𝑙 

𝜎
    or    𝑊𝑒𝑔 =  

𝜌𝑔𝑣𝑙
2𝑑𝑔 

𝜎
 

With 𝑑𝑙as the diameter of the liquid droplet (or the nozzle), 𝜌𝑙and 𝜌𝑔  as the density of the liquid 

(or the air), 𝑣𝑙the relative velocity between the droplet (or the liquid jet) and the surrounding air 

and 𝜎 as the surface tension of the liquid.  

In a most recent paper in 2017 [67] Bonhoeffer et al categorised spray breakup processes into 

five different regimes as shown in figure 3-1: Dripping (I), Rayleigh breakup (II), First wind-induced 

breakup (III), Second wind-induced breakup (IV), and Atomization (V) [68]. The interface between 

different regimes can be defined by the corresponding Weber numbers.  

 

Figure 3-1 Illustration of the breakup regimes of round liquid jets in the quiescent air. Impact of outlet velocity 

on breakup length of injected liquid from a circular nozzle; I: Dripping; II: Rayleigh breakup; III: First wind-

induced breakup; IV: Second wind-induced breakup; V: Atomization. [68] 

Due to the contribution of the density of the surrounding gaseous medium, ρg in regimes III-V, 

the Weber number Weg affected by the surrounding gas is used for these regimes. 

Different regimes in Fig. 3-1 are described by [68] as follows:  
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I: In the dripping regime, the outlet velocity is very low; therefore, the liquid accumulates at the 

nozzle tip until it drips from it.  

II: In the Rayleigh regime, with increasing velocity, an axis-symmetrical jet is generated, which 

breaks up into single droplets of uniform size.  

III: In the first wind-induced breakup, a further increase in outlet velocity leads to a decreasing 

breakup length, mainly caused by air friction. 

IV: In the second wind-induced breakup, even higher velocities and increased air resistance lead 

to surface rupture and separation of single droplets from the jet.  

V: At very high velocities, atomization occurs, where the separation into small droplets occurs 

right at the nozzle exit with the breakup length being close to zero. 

It is possible that the droplets break up multiple times, if the momentum force is still sufficiently 

large compared to the surface tension force. The point when the droplet’s momentum runs out 

and Weber number goes below the critical number is where its smallest diameter is achieved. 

This critical Weber number allows an estimation of the smallest droplets to encounter under the 

given parameters. For liquids with low viscosity this is Wecrit =12.5. This means if the Weber 

number is below 12.5, there is no further atomization and the spray is fully atomized. [66] 

Reynolds number Another non-dimentional number associated with spray atomization 

characteristics is the Reynolds number which is the ratio of inertial forces to the viscous forces as 

follows: 

𝑅𝑒 =  
𝜌𝑙𝑣𝑙𝑑𝑙 

𝜇
 

Ohnesorge number The Ohnesorge number (Oh) describes the relation between the damping 

characteristics of the viscous forces and the surface tension. Oh is depending on the fluid 

properties and geometric conditions, only [66] 

𝑂ℎ =  
𝜂

√𝜎𝜌𝑑
=

√𝑊𝑒

𝑅𝑒
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Beyond a certain point the Rayleigh capillary instability no longer exists and Kelvin– Helmholtz 

instabilities become more dominant. At higher velocities of the jet, aerodynamic forces starts to 

affect the atomization and also the turbulence level in the liquid jet starts influencing the 

atomization. These effects were first characterized by Ohnesorge (1936). 

According to Yarin, Tropea [69] “The process of atomization involves the generation of drops from 

bulk fluid, achieved using a wide variety of atomization concepts, depending on the desired local 

drop number, size and velocity flux densities, as well as on the bulk fluid and its properties, e.g. 

pure liquids, dispersions, suspensions, emulsions, etc.” 

Different mode of breakup regimes according to Yarin, Tropea are shown in figure 3-2 as a 

function of Reynolds and Ohnesorge number. It is used to estimate whether the atomization is 

poor or strong. For example, the strong atomization of gasoline and diesel injectors lies in the Oh 

of range 0.01<Oh<0.1, and  Re>10000.  

 

Figure 3-2  shows different modes of breakup according to Ohnoserge and Reynolds number (Yarin, Tropea, 

2017) [69] 

The Ohnesorge diagram can only reflect the properties of the liquid phase or fuel. However, 

studies have shown the additional and nonnegligible influence of gas density on the atomization 

process. Increasing gas density leads to higher inertial force in the gas phase and, hence, 

accelerated atomization. Figure 3-3 shows the three-dimensional diagram, including the ratio of 

the gas / fluid density. 
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Figure 3-3 shows the three-dimensional diagram of the Ohnesorge/Reynolds atomisation, including the ratio of 

the gas / fluid density. 

The disintegration of a liquid sheet into drops is an important part of primary atomization. The 

droplet sizes occurring from the sheet disintegration depends on two factors: First is the mode of 

disintegration and second is the sheet thickness; Three modes of liquid sheet disintegration have 

been identified: rim, wave instabilities and sheet perforation.  

Under equilibrium conditions, the internal pressure at any point on the drop surface, PI, is just 

sufficient to balance the external aerodynamic pressure PA and the surface tension pressure Pσ 

so that 

PI = PA + Pσ 

“A drop can remain stable as long as a change in air pressure at any point on its surface can be 

compensated by a corresponding change in pσ such that pI remains constant. However, if pA is 

large compared with pσ, then any appreciable change in pA cannot be compensated by a 

corresponding change in pσ to maintain pI constant.” [66] 

“When a liquid jet emerges from a nozzle as a continuous body of cylindrical form, the 

competition set up on the surface of the jet between the cohesive and disruptive forces gives rise 

to oscillations and perturbations. Under favorable conditions, the oscillations are amplified, and 

the liquid body disintegrates into drops. This process is sometimes referred to as primary 

atomisation”. [66] 
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If the size of the droplets that are formed from primary breakup exceed the critical size, they 

further disintegrate into drops of smaller size. This process is known as secondary atomization. 

Normally if the Weber number is higher than 13 the secondary atomization is still taking place.  

The  instability  that  occurs  at the  interface  between two  horizontal  parallel streams of different 

velocities and densities is called Kelvin-Helmholtz instability. This is also when there is velocity 

shear in a single continuous fluid. The Kelvin-Helmholtz type instabilities trigger the appearance 

of axisymmetric modulations on the surface of the liquid. This is caused by shear forces induced 

between the slow moving liquid and the fast moving gas stream. These axisymmetric waves then 

undergo transverse azimuthal modulations once the gas velocity reaches a critical 

value.The Rayleigh–Taylor instability, or RT instability, is an instability of an interface between 

two fluids of different densities which occurs when the lighter fluid is pushing the heavier fluid. 

At azimuthal wave crests, ligaments are formed and then stretched but the fast moving gas 

relative to the liquid. Eventually they are stretched beyond a stable length and they are broken 

into droplets through capillary instability. It is suggested that Rayleigh-Taylor instability is the 

cause of the azimuthal perturbation [70]. The underlying effects in droplet disintegration and 

atomization are the Kelvin-Helmholtz (KH) and Rayleigh-Taylor (RT) instabilities, as well as 

boundary layer stripping due to the gas force acting on the droplet that causes secondary 

atomisation. The gas-liquid interface experiences unstable wave growth (KH instabilities), while 

the surface tension counteracts this. Hence, smaller droplets disintegrate from the surface and a 

slow reduction in the number of droplets occurs. RT instabilities cause the droplets to break into 

fragments, as illustrated in Figure 3-4. [71] 

 

Figure 3-4 Rayleigh Taylor and Kelvin Helmholtz instabilities [71] 

https://en.wikipedia.org/wiki/Instability
https://en.wikipedia.org/wiki/Interface_(chemistry)
https://en.wikipedia.org/wiki/Fluid
https://en.wikipedia.org/wiki/Densities
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Haenlein [72] identified four distinct regimes of breakup in the disintegration of a liquid jet:  

1. Drop formation without the effect of air. This is the same mechanism investigated by 

Rayleigh. It is also called varicose regime.  

2. Drop formation with the influence of air. In this mode, when the jet velocity goes up, the 

aerodynamic forces of the gas come into effect and tend to accentuate the waves formed 

under regime 1 

3. Drop formation because of the waviness of the jet. This regime is linked with the increased 

influence of aerodynamic forces and lessened influence of surface tension. It is also called 

sinuous regime 

4. Complete disintegration of the jet, that is, atomisation. In this regime, the liquid is broken 

up at the nozzle in a chaotic and irregular manner. 

 

Figure 3-5 Breakup regime according to Haenlein [66] 

In the current study, the emphasis is on the 4th regime which is atomisation. From practical point 

of view, the atomisation regime is not easily described and is still subject to research. [66] 

Ohnesorge classified the data according to the relative importance of gravitational, inertial, 

surface tension, and viscous forces. 
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“At low Re the jet disintegrates into large drops of fairly uniform size. This is the Rayleigh 

mechanism of breakup” 

“At intermediate Re, the breakup of the jet is by jet oscillations with respect to the jet axis. The 

magnitude of these oscillations increases with air resistance until complete disintegration of the 

jet occurs. A wide range of drop sizes is produced” 

“At high Re, atomization is complete within a short distance from the discharge orifice.” 
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(a) 

 

(b) 

Figure 3-6 Breakup regime according to (a) Ohnesorge [66] and (b) Reits [30]  

In a key study, Reitz attempted to resolve some of the uncertainties surrounding the Ohnesorge 

chart. 

According to Reitz [30], the following four regimes of breakup are encountered as the liquid 

injection velocity is progressively increased. 
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1. Rayleigh jet breakup. This is caused by the growth of axisymmetric oscillations of the jet 

surface, induced by surface tension. Drop diameters exceed the jet diameter.  

2. First wind-induced breakup. The surface tension effect is now augmented by the relative 

velocity between the jet and the ambient gas, which produces a static pressure 

distribution across the jet, thereby accelerating the breakup process. As in regime 1, 

breakup occurs many jet diameters downstream of the nozzle. Drop diameters are about 

the same as the jet diameter.  

3. Second wind-induced breakup. Drops are produced by the unstable growth of short 

wavelength surface waves on the jet surface caused by the relative motion of the jet and 

the ambient gas. This wave growth is opposed by surface tension. Breakup occurs several 

diameters downstream of the nozzle exit. Average drop diameters are much less than the 

jet diameter.  

4. Atomization. The jet disrupts completely at the nozzle exit. Average drop diameters are 

much less than the jet diameter. 

 

Table 3-1 Classification of breakup regime according to Reitz [30] 

 

According to Miesse [73] and Reitz [30], the regime starts to form at We g > 40 and We g > 13, 

respectively. 

Stability Curve: 

Many investigators have characterized jet behavior by determining experimentally the 

relationship between jet velocity and breakup length. The latter is defined as the length of the 

continuous portion of the jet, measured from the nozzle to the breakup point where drop 

formation occurs. [66] 



 
 
Chapter 3             Breakup Theory & Experimental Techniques 

 
 
 

86 

 

Figure 3-7 Jet stability curve indicating change of breakup length with jet velocity.   [66] 

Laminar Flow Region: 

The general shape of the length–velocity curve is shown in Figure 3-7. The initial dashed portion 

of this curve below A corresponds to drip flow. Point A shows the lower critical velocity where 

the drip flow changes to jet flow. From A to B, the breakup length L increases linearly with velocity. 

This part of the curve corresponds to disintegration of the jet due to surface forces as studied by 

Rayleigh and Weber. 

Upper Critical Point: 

According to Haenlein [72] point B on the stability curve corresponds to the change in the breakup 

mechanism from varicose to sinuous.  

Influence of lo/do Ratio:  

Hiroyasu et al studied the breakup of high-velocity water jets under conditions similar to those 

occured in diesel engines. Figure 3-8 (a) shows the measured values of breakup length obtained 

for several nozzle lo/do ratios at jet velocities up to 200 m/s when injecting into air at normal 

atmospheric pressure. This figure shows breakup length increasing with injection velocity up to a 

maximum at around 60 m/s. After this point, any further increase in jet velocity causes breakup 

length to decline. The influence of lo/do on breakup length shows no clear trend. In the range of 
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jet velocities of most practical interest, that is, >50 m/s, it is of interest to note that for lo/do 

ratios of 10 and 20, breakup length may be increased by either reducing the lo/do ratio to 4 or 

increasing it to 50. [66] 

  

(a) 

 

(b) 

Figure 3-8 (a) Effect of L0/D0 ratio and jet velocity on breakup length for low ambient pressure P = 0.1 MPa. (b) 

Effect of L0/D0 ratio and jet velocity on breakup length for high ambient pressure P = 3 MPa. [66] 

Similar data on the effect of L0/D0 on L, obtained at an ambient air pressure of 3 MPa (30 atm) 

are shown in Figure 3-8 (b). At this high pressure, the influence of L0/D0 is clearly much less 

pronounced, presumably because the aerodynamic effects on the jet surface now far outweigh 

the hydrodynamic instabilities generated within the liquid upstream of the nozzle exit. 

Influence of ambient pressure and coflowing air and transverse airflow on the breakup length has 

also been studied but these factors and their relationship with breakup length is outside the scope 
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of this work. Another factor that is believed to affect the breakup is cavitation which is discussed 

in the section 3.3. 

The quality of atomization can be characterized by a number of representative droplet diameters. 

The use of mean diameters instead of the complete droplet distribution simplifies the calculations 

of mass transfer and flow processes. The notation of mean diameters has been initially developed 

by Mugele and Evans (1951).  

The “geometrical” or arithmetic mean diameter D (or D10), is the mean diameter. Several 

additional mean diameters providing other useful information are respectively, the “surface area” 

mean diameter, D20, the “volume mean diameter”, D30 and the “Sauter Mean Diameter” (SMD), 

D32. A list of mean diameters and their related field applications are given in table 3-2. These 

mean diameters can be expressed differently based on the droplet diameter exponents p and q 

in the equation below: 

 𝑫𝒑𝒒 =  [
∑ 𝒏𝒊 .𝑫𝒊

𝒑
 ∞

𝒊=𝟏

∑ 𝒏𝒊 .𝑫𝒊
𝒑

 ∞
𝒊=𝟏

]

𝟏

(𝒑−𝒒)

       Equation 1 

Di: Diameter of the ith droplet:  

ni: Number of the ith droplet  

p and q : Values 0, 1, 2, 3, or 4 

Table 3-2 Mean diameters and their field of application [68] 
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SMD corresponds to values of p = 3 and q = 2 in the above equation due to volumetric and surface 

dependence. Using the example in figure 3-9, different mean diameters are deduced from the 

calculations for the histogram of spherical droplet distribution. Due to volumetric and surface 

area dependence, D32 and D43 are strongly representative of the large droplets even if their 

number density is less in numbers in comparison with the small droplets. 

 

Figure 3-9 Example of different mean diameters calculated using Eq. 1. It is deduced from the histogram of droplet 

size distribution. [68] 

 Experimental techniques for investigation of cavitating flows 

Cavitation in micro-nozzles have been extensively investigated utilising high-speed shadowgraphy 

and other optical techniques. Mauger et al. [74]  has discussed a summary of optical visualization 

techniques, involving Schlieren, shadowgraphy and interferometry in the field of cavitation in a 

simplified, high pressure 2D channel. Mitroglou et al [34] investigated the in-nozzle flow and near-

nozzle spray in a real size diesel injector. In this study, the metallic tip of the injector was replaced 

with a transparent material made of quartz. The experiment was conducted under realistic 

operation conditions of the injector i.e. a pressure pulse up to 600 bar, while observing cavitation 

formation in the sac and nozzles of the injector. The authors focused on the formation of 

cavitating vortices which are also termed as "string cavitation" in the fuel injection industry. It is 

known that string cavitation increases spray cone angles [43]. Similarly, Hult et al [75] examined 

the cavitating flow patterns in a marine diesel injector utilising high-speed shadowgraphy. In this 
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study, the vortical structures formed at the nozzle was visualized and their influence on the near 

nozzle jet behavior was investigated.  

Although optical methods provides valuable knowledge in understanding cavitation structures, it 

should be noted that the intensity of the elastic forward scattering from cavitation clouds does 

not correlate with the actual density of the liquid/vapour mixture [33]. Additionally, cavitation 

may block the optical path which prevents further observation of the cavitation structures along 

the optical path. For this reason, quantitative experimental techniques have been developed and 

employed to study and gain insight in the density distribution of cavitating flows. Such techniques 

rely on the attenuation of powerful photon or particle beams due to the presence of sample 

material along their path. [33]. Notable examples are X-ray absorption and X-ray phase contrast 

imaging methods. 

 

 Experimental techniques for studying sprays 
 

According to Lefebvre [76], there are different experimental techniques available for studying 

sprays like mechanical, electrical and optical methods. In this classification, Xray methods are 

considered to be a part of optical methods. However according to Linn [77] for dense sprays such 

as gasoline fuel sprays a few of these optical techniques are used. In this chapter some of the 

optical techniques are reviewed and the benefits and drawbacks are discussed. 

3.4.1 Lorenz-Mie light scattering  

In general, large particles scatter more light than smaller ones. It should be also noted that 

particle sizes affect the spatial distribution of the scattered light as shown in Figure 3-10. 
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Figure 3-10 Spatial distribution of the scattering light intensity emmited from droplets/particles with different 

diameter compared to the wavelength of the incident beam. [78] 

For large particles the ratio of forward to backward scattered light can be in the order of 102  to 

103, while smaller particles scatter more evenly. For large particles direct surface reflection 

generally dominate the scattered light, and the intensity is thus roughly proportional to the 

square of the particle diameter For smaller particles diffraction play a major role in the light 

scattering, and polarisation of the incident light has significant influence. [78] 

When a particle is illuminated with an electromagnetic light wave, the electric field of the wave 

will cause the electrons and protons (electric charges) to oscillate. The acceleration caused by the 

oscillation of these electric charges results in radiation of electromagnetic energy in all directions. 

This radiation is called scattered radiation.  If a particle is divided into small regions in such a way 

that each of these regions are characterized by a dipole moment, the incident wave will cause 

each of these dipoles to oscillate. These oscillations will create scattered wavelets that are 

emitted by each region of the particle in all directions. Scattering is thus the result of the sum of 

all these wavelets. [79] 

The size of a scattering particle can be represented with the non-dimensional parameter χ defines 

as: 

𝛘 = 𝟐𝛑𝐫/𝛌                                   Equation 2 
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where r is the particle radius and λ is the light wavelength. Based on the value of χ, the three main 

scattering regimes are then characterized as negligible scattering, Rayleigh scattering, Mie 

scattering and geometric scattering as shown in figure 3-13.  [80].  

χ <0.002 : Negligible scattering 

0.002< χ <0.2 : Rayleigh scattering 

0.2 <χ<2000 : Mie scattering 

χ >2000: Geometric Scattering 

As it could be seen from figure 3-11, the fuel spray droplet sizes are normally within the Mie 

scattering regime when studies by laser light and white light. 

 

Figure 3-11   Scattering regimes related to the Particle size and Wavelength [80] 

Figure 3-12 compares Mie scattering and Rayleigh scattering regimes and the spatial intensity of 

the light that is emitted from a particle in different directions in each of these regimes. It can be 

seen that if the particle is smaller the intensity of the forward scattering (refracted light) reduces 

while the intensity of the backward scattering (reflected light) increases.   
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Mie scattering:          

 

 

 

Rayleigh scattering: 

 

Figure 3-12: Scattering regimes related to the Particle size and Wavelength. 

Figure 3-13 shows an incident ray of light with a spherical droplet and the scattering orders which 

happens consequently after the incident beam interacts with sphere. It is obvious from the figure 

that there are different modes of scattering. The order of scattering is shown by P. When P=0, the 

beam is partially reflected and partially transmitted (refracted) into the sphere. The part of the 

beam that is reflected is known as P=0. When the transmitted light penetrates inside the sphere, 

it will have another scattering which is referred to P=1. Here part of the beam is reflected inside 

the sphere and part of it is refracted outside the sphere. The refracted light outside the sphere is 

called first order refracted P=1. This continues in a similar manner until 2nd order and 3rd order 

refracted lights are formed consequently as shown in figure 3-13. 

 

Figure 3-13 Shows an incident ray of light with a spherical droplet and the scattering orders which happens 

consequently after the incident beam interacts with sphere [78] 
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3.4.2 Laser Doppler Velocimetry (LDV) 

Laser doppler velocimetry measures the velocity of small particles or droplets that are moving in 

the fluid of interest. The velocimeter can provide local velocity measurements of every particle 

moving through a very small egg-shaped region, usually called control or measuring volume. Since 

fluid is usually have droplets by itself or seeded with thousands of particles, the laser Doppler 

technique samples the flow velocity at discrete times corresponding to the passage of particle 

through the measuring volume.  

To perform its task, for a single velocity component, LDV need two laser beams crossing at one 

point as it is shown on Figure 3-14. 

When these two beams intersect with each other, they create an ellipsoidal measuring volume 

which has got fringe patterns due to interference effect of electromagnetic waves. This 3D fringe 

pattern is shown in figure 3-15. The separation distance of the fringes is  

𝐝𝐟 = 𝛌/𝟐𝐬𝐢𝐧 (
𝛉𝒃

𝟐
)        Equation 3 

Using the seperation distance one can obtain the velocity of the droplet. This method is called 

Laser Doppler Velocimetry. This technique was first developed in early 70’s by Durst 1971 and 

Farmer 1972. 

Assuming one particle moves through the measuring volume, it scatters light when it reaches a 

bright fringe, and scatters no light as it passes a dark fringe. This result in a fluctuating pattern of 

scattered light intensity which produce an oscillating signal, named Doppler burst, similar to the 

one shown in Figure 3-17. The frequency of this signal νD (known as Doppler frequency) is 

proportional to the speed of the particle. If the distance df between two neighbouring fringes is 

known, the speed u of the transient particle can be state using the following equation: 

 𝐮 =  𝑽𝑫 . 𝐝𝐟         Equation 4 

When a droplet passes over the interference fringes, it scatters light proportional to its intensity 

according to figure 3-16. This light signal is collected by a lens and focused onto a photo-detector 

which converts the light intensity fluctuations into voltage fluctuations as shown in figure 3-17. 

When a droplets moves from one bright point to the next, the voltage signal creates a peak to 

peak curve. The rate of intensity variation ie the number of peaks per seconds  is called the 

Doppler frequency. The time for a droplet to travel the distance between two fringes has an 
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inverse relationship with the doppler frequency. If the frequency is higher, that means the time 

that it takes for one droplet to move from one peak to the next peak is shorter which means its 

velocity is higher.  

 

 

Figure 3-14 Configuration of the LDV transmitter: Two gaussian laser beams with wavelength of λ intersecting 

with each other and creating an ellipsoidal probing volume with horizontal planes referred to as fringe pattern 

(shown in brighter color) [81] 

 

 

 

 

 

 

(a)                                                                                                        (b) 

Figure 3-15 Top: shows side view and section view of an ellipsoidal fringe patterns, Middle: 3D view of the 

ellipsoidal fringe pattern and the corresponding lengths dx, dy and dz. Bottom: A spherical droplet passing through 

the probing volume and the refracted light pattern created by the droplet [54] [81] 
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When a spheric droplet passes the probing volume it will reflect light according to figure 3-16 (a) 

and (b). Here a droplet with a diameter of 30 microns is shown as an example. If the intensity of 

the light over the surface of the droplet is projected onto xy plane in a polar coordinate, the 

resulting figure could be shown in figure 3-16 (c). 

   

(a)                          (b) 

 

(c) 

Figure 3-16 (a): A spherical droplet passing through the probing volume and the reflected light pattern from its 

surface on the receiver detector (LDA1 signal). (b): A 3D droplet with 30 µm diameter and the 3D light intensity 

contour plots shown on the surface of the droplet. (c) : The 2D contour plot of light intensity on the droplet surface 

with 100µm diameter while moving through the probing volume [81] 

3.4.2.1 SIGNAL PROCESSOR UNIT 

To obtain the needed information and accuracy for LDV experiments, consideration must be given 

to the electronic equipment necessary to transform the raw signals from the detector into 

velocity information.  In the interest of this thesis, the method analysed is a BSA flow software 

signal processing that includes as well frequency spectra analysis. The features of this technique 

are summarised in Figure 3-17 and 3-18. The basic working principle can be explained in three 

steps: 
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First, the processing unit is supplied with the continuous random amplitude signal illustrated in 

Figure 3-17 that occur when there are many particles moving through the scattering volume. 

Signals of this type are characterized by amplitude and phase fluctuations. The processor has to 

separate every particle burst from the others and check the SNR; only burst enough with 

acceptable signal to noise ratio are validated and sent to the next step.  

Second, using a set of high pass filters adjustable by external PC, the processing unit filters out 

the accidental noise from the true signal.  

Finally, assuming particle velocity constant during its permanence in the control volume, the 

processor uses the low pass filter and calculates the doppler frequency νD applying spectral 

analysis of the burst signal as shown in figure 3-17. 

 

 

Figure 3-17 BSA software signal processing steps [82] 

Since the velocity is carried by the frequency νD of the signal, directional information cannot be 

determined by a stationary fringe system. In fact, if a particle is now assumed to traverse the 

fringes with the same velocity but in opposite direction, it will also induce a signal with the same 

frequency νD (blue curve Figure 3-18). The solution is to shift the frequency of one or both the 

laser beams, this result in fringes that are essentially moving inside the control volume.  
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Figure 3-18  Schematic representation of frequency shift [82] 

Now consider the situation in which the laser is operated with a frequency shift νsf. A particle 

travelling with speed +u that, in stationary fringe system, produces a Doppler frequency νD will 

now experience a total shift of the sum of νsf and νD. Vice versa, if the flow is moving in the 

opposite direction, a particle travelling at the speed -u, that with no frequency shift, generates 

the same frequency νD, will now produce a signal of total shift of the difference between νsf and 

νD. This is shown by the violet curve of Figure 3-18. It is worth noting that laser wave length λ has 

no effects on the movement of the travelling fringes. 

Signal processing unit not only provide the speed of the particle but also compare the signal with 

other detectors and provides other data such as, droplet diameter, the particle transient time, 

count numbers, etc. The method by which the droplet diameter would be calculated is explained 

in PDA technique in the next section. 

3.4.3 Phase Doppler Anemometry (PDA) 

Using a second photo-detector, the LDV system can be modified in order to measure not only the 

droplet velocity but also the droplet diameter. This method is called Phase-Doppler Anemometry 

(PDA). When two detectors are placed at slightly different scattering angles and record the 

Doppler signal, the phase of the two signals will slightly be different than each other. This changes 

of phase 𝛥Φ is shown in figure 3-19. It could be shown that this phase change is linearly 

proportional to the diameter, D, of spherically homogeneous (constant index of refraction) 
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particles when the signal detected is dominated by only one scattering mode. Illustration of the 

PDA principle is shown in figure 3-19. [78] 

 

Figure 3-19 Left - Illustration of the PDA principle where a droplet is crossing the probing volume and the 

refracted light which is turned into an electric signal in the detectors – Right : Two consecutive signals recorder 

with phase shift of ΔΦ  [78] 

In figure 3-20, the phase shift 𝛥Φ is shown to be directly related to the droplet diameter D. A 

consideration could be made that the droplet is a thick lens with diameter of D and focal length 

f. Therefore a small droplet with small D will act as a small lens with small f and a large droplet 

with larger values of D will act as a large lens with longer focal length as shown in figure 3-20. 
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Figure 3-20 shows that a small droplet with small D will act as a small lens with small f and a large droplet with 

larger values of D will act as a large lens with longer focal length [81] 

Therefore as shown in the figure 3-20 and 3-21, dmag which is the magnified distance between 

the two refracted light beams could be mathematically shown as: 

𝐝𝐦𝐚𝐠 =  (𝐑 − 𝐟). 𝐝𝐟/𝐟         Equation 5 

And since R>>f then it could be written as  

𝐝𝐦𝐚𝐠 = 𝐑 . 𝐝𝐟/𝐟 ~ 𝐑 . 𝐝𝐟/𝐃          Equation 6 

which means the distance between the two reflected beams is inversly proportional to the 

diameter of the droplet.  

Figure 3-21 shows the configuration of 2 detector PDA system. Here θb is the angle between the 

two beams and Ψ is the angle of detector 1 (and 2) with respect to YZ plane and θs is the angle of 

receiver axis with respect to Z axis. 
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Figure 3-21 configuration of the simple 2 detector Phase Doppler Anemometry system. [78] 

It should be noted that when the medium is transparet the first order refraction is normally used 

which is the case in our experiment. Here is the formula: 

∆∅ =
−2𝜋𝐷

𝜆
 

𝑛𝑟𝑠𝑖𝑛𝜃𝑏 sin 𝜓

√2(1 + 𝑐𝑜𝑠𝜃𝑠 cos 𝜓 cos 𝜃𝑏)(1 + 𝑛𝑟
2 − 𝑛𝑟√2(1 + 𝑐𝑜𝑠𝜃𝑠 𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜃𝑏)

 

Equation 7 

where nr is the real part of the droplet refractive index. Since fuel sprays are transparent, first 

order refraction is used and the best possible answer will be obtained when the receiver is 

positioned at the Brewster’s angle with respect to Z axis (which is the transmitter axis) ie 

  𝛉𝐬 =  𝒕𝒂𝒏−𝟏𝟐(𝟏/𝒏𝒓)        Equation 8 

This angle is generally between 30◦ and 80◦. For water droplet of refractive index n = 1.33 in air 

and for parallel polarized light this angle equals 70◦ (Saffman 1986, Wigley 1994). In this 

experiment the angle of 70◦ has been used for PDA measurement. 

3.4.3.1 PDA technique errors 

PDA technique has been corrected from several sources of errors. The first one, known as 

“Gaussian beam defect”, is related to the detection of unwanted scattering modes, and explained 

as follows:  
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As shown in figure 3-22, the reflected light from the top droplet and refracted light from the 

bottom droplet may have roughly equal intensities . This problem occurs also for laser beams 

with approximately uniform intensity profile or for top hat intensity profiles but the problem is 

much more difficult to control for Gaussian beams (Bachalo 2000). This is shown in figure 3-22 

where depending on the position of the droplet, reflected (P=0) and first order refracted (P=1) 

light can have similar intensities.  

 

Figure 3-22 Gaussian beam defect: depending on the position of the droplet, reflected (P=0) and first order 

refracted (P=1) light can have similar intensities. [78] 

The second source of error, also related to the detection of unwanted scattering modes, is “the 

slit effect”. It occurs when the droplets traverse an edge of the detection volume. This is shown 

in figure 3-23. Here the non-detection of the beams is the source of error since some 

information is missing. 

 

Figure 3-23  Slit effect: for particle trajectories at one edge of the slit projection, unwanted scattering mode 

dominates. [78] 
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The third source of errors is the detection of phase shifts greater than 360◦. This occurs when 

measuring sprays with high variations in droplets size ie gasoline fuel sprays. To avoid this 

problems, a third detector is used in practice as shown in figure 3-24 providing a second 

determination of the phase shift and serves to place the measurement in its appropriate cycle 

[78]. 

 

Figure 3-24,  3 detector PDA system which is also referred to as PDPA [83] 

The maximum particle size that can be unambiguously measured with two detectors corresponds 

to the inverted blue graph of Diameter as a function of Φ 1-2 from which Dmax is obtained when Φ 

1-2=360 as depicted in figure 3-25. Reducing the distance between the detectors can extend the 

particle size range. This however, will also reduce the measurement resolution. Using three 

detectors provides a large measurable size range which corresponds to the red graph of Diamater 

as a function of Φ 1-3 from which Dmax is obtained when Φ 1-3=360.  This combination will provide 

both a high measurement range ( Φ 1-3 graph shown in red)  and a high measurement resolution 

(Φ 1-2 graph shown in blue colour). 
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Figure 3-25 Resolving the Φ ambiguity issue in a two detector system (Φ 1-2)  is achieved by using a third 

dectector and calculating Φ 1-3 which can enable the system to measure droplets with higher diameter values 

[83] 

Another limitation in PDA measurements is known as “droplet shape effects”. When probing non-

spherical particles, errors related to the non-sphericity are introduced in the measurement. These 

errors can result in overestimation of droplet diameters up to 45%. [78] In modern PDA 

instruments, the sphericity validation is performed by comparing the phase differences measured 

from two pairs of detectors and rejecting the detected sample whose deviation exceeds a certain 

amount as shown in figure 3-26. 
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Figure 3-26 The sphericity validation in 3 detector system is performed by comparing the phase differences 

measured from two pairs of detectors Φ 1-2 and Φ 1-3 and rejecting the detected sample whose deviation 

exceeds a certain amount. [84] 

The fifth source of error is referred to “multiple occupancy” and appears when several droplets 

occupy the probe volume. The last source of error introduced in PDA measurements is caused 

by multiple scattering and attenuation processes. 

 Planar and Dual PDA for measurement of fine particles 

For the measurements of fine particles (D<=10µm), another optical arrangement called the 

“Planar configuration” has been developed by Naqwi (1991) which has higher precision compared 

to standard configuration. The planar PDA positions the two laser beams, their electric vector and 

the two detectors all on the same plane (XY plane in figure 3-27). 
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Figure 3-27 Planar configuration of the 2 detector PDA system [78] 

The most advanced PDA system has been developed by Tropea et al. (1995) as shown in figure 3-

28. It is called Dual-PDA which has been used in the current study. It combines the standard PDA 

(figure 3-21) with the planar configurations (figure 3-27). In order to differentiate in the same 

setup each configuration, two laser wavelengths λ = 514.5 nm (green) and λ = 488 nm (blue) are 

generated from an argon-ion laser and the emitted signal detected by two pairs of photo-

detectors (one pair for each wavelength). By means of this arrangement, the system is able to 

reduce the Gaussian beam defect and the slit effect allowing considerable improvements in the 

measurement accuracy of mass flux and droplet concentration. [79] 

 

Figure 3-28 Dual PDA configuration with 4 detectors, two for vertical velocity measurement (D1 and D2) and 2 

for horizontal measurement (D3 and D4) [79]  
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A comparison with other PDA instruments given by Dullenkopf et al. (1998) demonstrates the 

high performances and accuracy of the technique. The Dual-PDA is actually the most reliable 

instrument for spray characterization and offers simultaneous measurements of droplet size, 

velocity, flux, number density and time-of-arrival statistics. However, in phase-Doppler  

measurements, only local information is extracted, and the complete characterizations of sprays 

is time consuming.  
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4 Chapter 4: Methodology  
 

 Introduction 

In this chapter, the methodology and the experimental techniques that were utilised during the 

current research will be explored and further discussed.  

 High-Speed Visualisation (Mie Scattering) of 15-times Transparent Enlarged 

Model of injector Test Rig (Low-pressure) 

The first set of experiments involved high speed imaging of 15 times enlarged model of a 

conventional Bosch mutli-hole injector. The experimental rig which has been used in this 

experiment has been developed in the group at City University as shown in figure 4-1. [85]  

A multistage centrifugal pump was used to provide upstream pressure for water as the working 

fluid in the transparent 15-times enlarged model of SIDI multi-hole injector. The flow-rate was 

measured by an ultrasonic flow-meter. The injection pressures were varied from 1bar to 5bar and 

the spray which was formed out of each nozzle was injected into the atmosphere and was 

collected by 6 hoses. Water was collected in a tank and was pumped again into the enlarged 

model which was fixed on the test rig. The enlarged injector assembly has a needle lift mechanism 

accompanied by a micrometer to set the exact needle height. The needle will be fixed at a given 

position and it will remain in that position during the measurements. The flow inside the nozzles 

is continuous, i.e. steady state flow condition; This means that transient nature of the flow and 

the influence of the needle opening and closing processes are absent. 
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Figure 4-1 The schematic diagram of the closed loop steady-state flow rig of the transparent large-scale injector 

showing the flow circuit and the CCD camera 

4.2.1 15-times enlarged model of the injector 

The use of an enlarged 3-D transparent model of the nozzle injector is essential to examine the 

flow through scaled up injectors with geometry similar to those of real-size production or 

prototype injectors. Figure 4-2 show the real size and the enlarged model of a six-hole mini sac 

type nozzle for gasoline direct injection.  Figure 4-2 shows the six holes in the prototype real-size 

injector that are symmetrically positioned in the nozzle tip at an angle of 45° to the injector axis 

forming an overall spray cone angle of 90°. Figure 4-2 also shows a section view and an isometric 

view of Perspex nozzle. All the dimensions of the prototype real-size multi-hole nozzle were 

enlarged by a factor of 15 with nozzle hole diameter and full lift height being 2.1mm and 1.05mm, 

respectively. Although a novel method has been developed at the group [86] for matching 

refractive index of the working fluid and the Perspex (refractive index 1.49), due to the 

hazardeous nature of the working fluid, water was used as a working fluid with refractive index 

of 1.33. Although some light distortion at the liquid-solid interfaces was expected, but this would 

not affect the conclusion of the present investigation since the objective of this work was to 
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visualise and image the cavitation processes and the near-nozzle cone angle under different 

operating conditions and under continuous light source. 

 

Figure 4-2  Real-size and large-scale injector. 

The enlarged transparent nozzle has a diameter (D) of 2.1mm and length (L) of 5.7mm 

(corresponding to the diameter of 140𝜇m for the real-size nozzle. The needle lifts were set to a 

quarter (0.26mm), half (0.52mm), three-quarters (0.78mm), and full lift (1.04mm) respectively.  

 

 

        

Figure 4-3 Three-dimensional models of the real size injector prototype and the large-scale 6-hole nozzle: (a) 

geometry of the symmetric injection nozzles (b) Schematic of imaging nozzle area and the actual image of in-nozzle 

flow. 
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At the exit holes, the flow is expanded initially before entering into another pipe with diameter 

six times bigger than that of the nozzle holes which direct the exit flow into the tubes leading to 

the tank; the exit hole configuration can also be seen in figures 4-3.  

 

Figure 4-4 shows the configuration of the needle seat area and the minimum distance between 

the needle and the sac volume when the needle valve is closed. The radius of the needle was 

designed to be 18mm which corresponds to 15-times enlarged model of that in a real-size 

injector.  

     

Figure 4-4  Needle seat and sac geometry: (a) Cross-section of the 15-times enlarged model of the conventional 

injector (b) X-ray tomography of the sac volume of a SIDI Spray G stepped-nozzle injector [21] 

4.2.2 Measurement of 15-times enlarged model 

Measurements with this model have been carried out at different injection pressures and needle 

lifts which are listed in tables below.  

Table 4-1 Experiment Conditions 
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CN=3.12 

 

Re=27100 

 

Re=39600 
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Re=40600 

 

 

CN= 4.15 
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Re=48200 
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Re=50200 

 

CN=5.22 

 

Re=31700 

 

 

Re=49700 

 

 

Re=50700 

 

 

Re=50700 

 

 

The needle lift was set using a micrometre with uncertainty of ±0.005mm. To achieve the full lift 

condition, the needle was raised 1.05mm above the fully closed position. This means the 

uncertainty in the full lift position used for this experiment was 0.48% which is acceptable for 

this study. The flow rate was measured by the ultrasonic flow meter with a resolution of ±0.002 

l/s giving a maximum error of 1% at the lowest flow rate. The pressure upstream of the nozzle 

was measured using a pressure transducer with an accuracy better than 1 %. The cavitation 

number, CN, and the Reynolds number, Re, are calculated in the Labview program based on the 

following definitions: 
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where   Pinj, Pback and Pvapour are the injection pressure upstream of the nozzle, back pressure 

downstream of the nozzle and vapour pressure, respectively. Since the spray is injected into the 

atmosphere, Pback  is the atmospheric pressure. D is the nozzle hole diameter, Uinj is the nozzle 

hole mean velocity, n is the number of holes (6), Qt is the total flow rate through the injector, Ah 

is the cross section area of an individual nozzle hole and n is the liquid kinematic viscosity.  

Although the experiment runs at steady state conditions, but due to highly turbulent flow 

structure through the nozzles and, in particular, the cavitation phenomena at injection holes, the 
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flow is expected to behave transiently and to have short time scales. This behaviour is virtually 

impossible to capture with conventional imaging (CCD camera) techniques. Since it is important 

to gain knowledge about the dynamics of cavitation inception and formation processes, high-

speed digital video technique was the primary method used for this study. Many of the previous 

experiment to visualise the cavitations inside the nozzle holes were done using the shadowgraphy 

technique. In this study, the cavitations were visualised by means of Mie-scattering technique 

using a high speed camera and the lighting set up. The images were captured with Photron 

Fastcam SA1-1 camera with a frame rate of 50,000 fps for a resolution of 198x688 pixels and a 

shutter speed of 1/177000s-1. Two continuous ARRI M8 light sources was used which provided 

16,200 lux  per area of Ø 1.3m circle at 5m distance to provide sufficient light for the non-

intensified CCD imaging chip [87]. The directions of the light sources were obtained through trial 

and error with chosen angles of about 15 and 60 degrees, for left and right lights, respectively  

 

Figure 4-5  Photograph of the lighting set up 
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In such position reflection from surfaces of injector nozzle is minimised and reflection from the 

cavitating region and bubbles is maximised. To gain desired magnification, extension tubes were 

placed before the main NIKKOR 135mm lens. A black coating was placed on the rear face of 

injector model to have a uniform and consistent black colour in the background of images and to 

minimize background light noise which helped to obtain images with much better definition. 

Therefore, the bubbles appear brighter than background and can be tracked and analysed easier. 

Moreover, this will allow measuring the spray cone angle due to clear boundary between the 

liquid jet and the surrounding air. An in-house Matlab image-processing software was modified 

which was previously used for real-size spray angle measurement using polyfit function of the 

threshold boundary curve. In this mode, the small effect of ligaments at the spray edge is not 

being taken into consideration because the resolution of the real-size spray is not high enough 

for this purpose. After modification, the Matlab code was able to measure the angle of the near-

nozzle spray for enlarged model which included the effect of spray ligament creation and 

separation from the nozzle exit (The code is presented at the appendix).  

Further analysis was done on spray cone angle using Matlab programme. The definitions used for 

spray cone angles are shown in Figure 4-6 which shows an individual jet spray with the overall 

cone angle, top and bottom half angle, nozzle axis and jet spray axis; the latter may move above 

or below the nozzle axis depending on in-nozzle geometrical and vortex cavitation. The nozzle 

axis has been used as the reference 0 degree angle for the presentation of the results. The cone 

spray angles were measured at different CN numbers for different needle lifts. There were 40 

different cases and limited samples of the results are presented here.  Different angles of each 

individual spray were measured including upper angle, lower angle, spray axis angle and the cone 

angle for all the cases. The spray edges were calulated using the polyfit function in Matlab. At 

first, a point with maximum brightness (ie 200) will be chosen with a default threshold value (i.e 

40%). Using this threshold, the boundary of the spray where the points have the value of 80 (200* 

40%) will be detected and highlighted in green colour. The x and y values of these points are then 

calculated by the code. Then a polyfit will be obtained for the x and y values and the angle of the 

spray edge will be ultimately calculated.  The original code is given in the appendix. Figure 4-6 

shows the region where the near-nozzle angles were measured in Matlab by detecting the upper 
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and lower edges of the spray. A linear fit will then be applied to the jet boundary and the angle is 

mearued based on the horizontal  

 

 

 

 

 

 

Figure 4-6. Top angle, bottom angle, spray axis angle, and the overall cone angle as measured by Matlab Software; 

nozzle axis angle is used = 0) 

 High-Speed Visualisation (Mie Scattering) of 7-times Transparent Enlarged 

Model of injector Test Rig (Low-pressure) 

In another set of experiments, a 7-times transparent enlarged model was manufactured and 

assembled on the enlarged model test rig and the internal flow characteristics of the flow was 

visualised using high speed video imaging. The advantage of this model compared to the 15-times 

model was the possibility of visualising the in-nozzle flow and the near-nozzle spray 

simultaneously. 

The experimental set up for this configuration is shown in figure 4-7. Due to the fact that the size 

of the nozzle was half of that of the previous investigation, A long telescopic extension tube was 

used on the CCD camera to maximise the magnification ratio of the screening area that can yield 

acceptable results. A multistage centrifugal pump provides the upstream pressure in the 

transparent enlarged model. Working fluid is water at 25°C. The injection pressure was varied 

from 0.5 bar to 3bar and the sprays from each nozzle hole were injected into the atmosphere and 

were collected back into the supply tank. A 100mm diameter focusing lens with the focal length 

of 300mm was used to increase the light intensity around the nozzle area to more than 2 million 

Lux. Three set of 45° hot mirrors were used to filter out infrared wavelength in order to protect 

the Perspex nozzle from high temperatures. To ensure capturing high quality images, 2 set of 

cooling fans were used to decrease the temperature further around the nozzle and also to remove 

the water mists of the spray away from the near nozzle towards the suction collector to avoid 
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fouling the imaging window. The injector assembly has a needle lift mechanism adjusted by a 

micrometre to set the exact needle height. The flow inside the nozzles is continuous, i.e. steady 

state flow condition, which means that transient nature of needle during its opening and closing 

processes is absent. The enlarged transparent model is geometry similar to the real-size injector 

and operates at similar Reynolds numbers. 

 

Figure 4-7 Experimental setup of the 7-times enlarged model of injector with the schematic diagram of flow circuit 

(left); (b) Close-up of transparent nozzle injector assembly.  

 

Figure 4-8 Close-up of the in-nozzle flow and the very near-nozzle jet spray (as it emerges into the stepped-nozzle) 

Figure 4-8 shows step-by-step magnification of the in-nozzle flow and the very near-nozzle jet 

spray as it emerges into the stepped-nozzle. 
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Figure 4-9  Different orthographic and 3D zoom views of a novel design of the transparent model  

1mm 

129 µm 

External flat surface 

Internal Sac-volume surface 

s 



 
 
Chapter 4                            Methodology 

 
 
 

118 

Figure 4-9 shows different orthographic and 3D zoom views of a novel design of the transparent 

model which allowed simultaneous in-nozzle flow and near-nozzle spray visualization using CAD, 

the machining of the nozzle were done in a manner that the minimum distance between the inner 

edge of the viewing window and the curved surface of the sac volume is around 100 µm.  

 

   
(a)         (b) 

Figure 4-10 Needle seat and sac geomety: (a) Cross-section of the 7-times enlarged model of the conventional 

injector (b) X-ray tomography of the sac volume of a SIDI Spray G stepped-nozzle injector [21] 

Figure 4-10 shows the needle seat and sac geometry. On the left side, the cross-section of the 7-

times enlarged model of the conventional injector (b) X-ray tomography of the sac volume of a 

SIDI Spray G injector [21] 

 Spray visualization in real-size high pressure injector 

In this part of the experiment, a closed loop system of continuous recirculating fuel flow was used, 

which consisted of all the necessary components needed to meet the optimum conditions for a 

successful injection. The experiments were performed in a laboratory that was specifically 

designed for investigations on engines and fuel injection system. The whole experimental setup 

can be divided into two system. On one hand, the fuel injection system with its different parts for 

providing repeatable injections and on the other the high-speed imaging system for capturing and 

saving the images at the same time. The fuel which was used was iso-octane HPLC grade (99.9% 

purity). Table 4-2 shows the physical properties of the fuel which was used and compare it with 

other fuel properties.  
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Table 4-2 shows the physical properties of the fuel which was used (Iso-octane) and compare it with other fuel 

properties. 

A stepped-nozzle (injector 3) has been investigated in this thesis and was compared with two 

other previous models - a non-step injector model (injector 1) – and a stepped-nozzle (injector 2) 

which has been investigated in the group before.  

Table 4-3 A comparison of the two previous injectors in previous works [88] and [89] 

 

A Photron FASTCAM SA1.1 was used to take the spray images. This high-speed camera provides 

megapixel resolution to 5400 fps and reduced resolution to 675000 fps. The camera needed to 

be set up with detailed accuracy to capture the injection sprays with the best quality. The figure 

4-11 shows the schematic of the configuration of the real-size injection test rig. [90] 
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Figure 4-11 Schematic diagram of the test rig for spray visualization of high pressure injector [90] 
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Injector: 

The injector used for this project was a Bosch multi-hole step-nozzle injector. It consisted of 7 

holes each with stepped nozzle exit design. Figure 4-12 shows the magnified tip of the injector 

under microscope. 

 

           

(a)                   (b) 

Figure 4-12 The tip of the injector under examination (a) magnified image of the tip of the injector under 

microscope. (b) the injector design in CAD 

The exact geometry of the tip of the injector and the hole configuration could be obtained using 

figure 4-12 a. It is then used to create the 3D conceptual design on the right. Although the 

dimensions of these holes were not provided, it was possible to calculate them thanks to the very 

close up high-resolution image. The captured image clearly shows the step nozzle; thus, it was 

possible to calculate the diameter of the step. Through manual calculation by using the pixel size 

and the injector tip diameter, it was found that the step size of the nozzle is approximately 380±5 

µm and the actual nozzle size is approximately 190±5 µm. Thus, the ratio between the step and 

the actual nozzle is around 0.5. This suggest the diameter of actual nozzles is half the step nozzle 

diameter. Figure 4-12 b shows that the injector has a symmetry plane which is shown by the 

yellow centre line. It should be noted that each of the stepped-nozzle in this injector is directed 

in a specific angle, this is to maximise the effectiveness of the spray. The injector was investigated 

at 0° and 90° rotational configuration. 
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Figure 4-13 shows the side view of the CAD model of the injector 3. The position of the stepped 

holes are shown on the magnified tip of the injector which is overlapped with a real photo of the 

near-nozzle spray.  

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4-14 shows the bottom view of the CAD model of the injector 3. The position of the stepped 

holes are shown on the magnified tip of the injector.  

Figure 4-13 Side view of the CAD model of the injector under investigation – magnified tip of the injector and 

a real photo of the injector tip showing the relative size of the tip of the injector 

Figure 4-14 3D view of the the injector: designed in CAD and the whole configuration from the 

bottom view 
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The overall injection system consists of several parts which could produce pressurised fuel spray 

such that of inside of a combustion chamber. Although inside an actual combustion chamber 

there would be presence of chamber pressure, this parameter was not considered for this 

measurement. The fuel was injected into the atmospheric condition. To allow the injector to be 

mounted stably on the optical table while allowing rotation, a base was designed and 

manufactured utilising dual axial roller bearings to allow smooth rotation with zero axial 

movement under vibrational input, the base was mounted on four pillars and included a ceramic 

insulating spacer. [88] 

 

(a)         (b) 

Figure 4-15 Mounting designed for rotation of the injector (a) 3-D view of the mounting design (b) side view of the 

mounting design showing the non-rotating and the rotating parts [88] 

The injector was bolted onto the metal plate which mounted onto a secure structure, which can 

rotate 360° (shown on Figure 4-15), and this structure was bolted onto the table surface so that 

there is no vibration produced, as this could affect the fuel spray characteristics. For this 

experiment the injector was rotated to 90° for symmetrical spray configuration. The view of the 

different sprays produced at different injector rotation angle is shown in figure 6-3 in chapter 6. 

Figure 4-16 shows the assembly of the injector on the rotating platform. 
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                         (a)             (b) 

Figure 4-16  The injector mounting which can rotate 360 degrees (a) an image of the injector mounted on the 

rotating platform fitted with a suction tube (b) 3D design of the injector fitted on the rotating platform 

Figure 4-17 shows the camera setup and the lighting setup for visualization of the spray under 

investigation.  

 

Figure 4-17  The camera setup and lightning for recording images 

The macroscopic characteristic of the spray is one which can be analysed through physical 

analysis either qualitatively or quantitively. The quantitative characteristics of the spray can be 
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analysed in the software defined with the following physical parameters: Spray tip penetration, 

Spray cone angle as shown in figure 4-18. The focus of the visualization of the spray was to find 

the spray tip penetration and cone angle in order to prepare the test rig for PDA measurement. 

 

Figure 4-18  A schematic of the spray breakup length and spray angle. [91] 

Figure 4-19 shows the Matlab interface and the spray tip penetration and cone angle analysis. 

The first image in the row from left shows the initial regions chosen to calculate these parameters 

before running the Matlab software. The second image shows an instance of the Matlab 

programme running and calculating the spray cone angle profile (green curve which is not visible 

due to overlap with the pink line), and the linear fit of the polyfit (pink line), the spray edge profile 

(blue dots) and the spray maximum tip penetration (purple line). For the edge detection, the 

images were first changed to binary mode. Then the single pixels were removed and the boundary 

was found using bwmorph filter. This boundary is shown on the image in green colour which is 

not visible due to overlap with the pink line. After this step, a linear fit was applied to the 

boundary using Polyfit in Matlab. 
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(a)           (b) 

Figure 4-19  An in-house Matlab code which was developed to measure near-nozzle spray cone angle and 

penetration for different individual jets 

An effort was also made to calculate the near-nozzle angle of the spray according to the length 

scales introduced in Hiroyasu & Array ( figure 4-20 ). It was assumed that the liquid core of the 

spray is fully atomized in the step region and therefore the angle region started very close to the 

nozzle exit. The maximum deviation of the spray edge angles was 7 degrees, which gives a 

maximum angle intensity of 7/8.83=0.79, which means that the statistical error in mean cone 

angle for 2000 images would be 2 x 0.79/√2000 = 0.018 or 1.8% with 95% confidence level and 

the corresponding standard deviation would be 2 x 1/√2 × 2000 = 0.032 or 3.2% according to 

Yanta estimation. 

 

Figure 4-20 Internal structure of complete and incomplete spray [92] 
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 PDA measurement of real-size high pressure injector 

The first step of the PDA measurement involved the setup of the nebuliser and the PDA 

transmitter and receiver configuration. A nebuliser with average droplet size of 5µm was used in 

for the setup according to figure 4-21. 

 

Figure 4-21 A nebuliser used for setup of the PDA system 

The probe volume has an elliptic shape with dx= 0.04767mm , dy = 0.04734mm and dz = 

0.3989mm. The fringe spacing is 2.168 µm. The beam half angle is 6.815 degrees which means 

the total beam angle is 13.68 degrees.  

Firstly the main laser beam was setup on maximum and the output was measured to be around 

100 units. The power of the laser in the probing volume is much lower than the main beam due 

to the losses in the system. An eye-piece was used to locate the probing volume below the 

injector while the spray was being injected at high pressure. In order to gain accurate 

measurement the final setup was made available by using BSA flow software. This was done after 

tuning the PDA receiver detectors by changing the high voltage (LDA1 = 850 volts, LDA2 = 900 

volts, LDA3 = 910 volts, LDA4 = 910 volts, to get maximum data rate and validation and spherical 

validation. 
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The angles for the PDA setup was chosen to be 70 degree which is common in PDA 

measurement of fuel spray droplet. This is due to the maximum refraction that is produced at 

this angle from droplets.  

 

Figure 4-22 Setting the distance between the measurement volume and the transmitter/receiver 

In the next step the validation and spherical validation of the LDA signals for the nebuliser were 

checked using the BSA software. The results were 98% validation for LDA1 signal and 99% 

validation for LDA4 signal. The spherical validation was also 98% which shows a very high accurate 

mesaurement. The criteria for accurate measurement of the droplet size was the ratio between 

the measured volumetric flow rate and the actual volumetric flow rate. The measured volumetric 

flowrate can be obtained by the total volumetric flux of the droplets at the probing volume. This 

value could be approximated using the equation below considering 100% sphericity and 

detection. 

V= ∑ni (1/8 πDi
3) 

In the next step, the nebuliser was removed and the PDA system was directed on to the injector 

test rig using the traverse as shown in figure 4-23. The PDA set up at this stage of the experiment 

was set where the transmitting and receiving optics are also shown. Firstly the injector was 

rotated 110 degree according to figure 4-24 (a) and (b) in order to isolate one of the sprays which 

is mostly vertical and can offer maximum exposure for the laser light and the reciever. The angle 

of the receiver and the transmitter was set to 70 degrees. 
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Figure 4-23 Shows the configuration of the PDA system 

As can be seen in the figure 4-24 (a) and (b), the spray has been rotated 110 degrees in order to 

provide better exposure for laser experiment. The transmitting laser beams and the receiving 

optics were set up to minimize the effect of beam and scattered light attenuation to collect full 

spray signal near the injector exit where the spray is very dense. The data were collected 

continuously during the injection process and up to 100000 samples were collected over many 

injection cycles for each measuring location. 

The measurements were done continuously for each location until a fixed sample of data was 

reached or a maximum sampling time is passed whichever occurred sooner. The data were then 

changed to cyclic ensembles using Matlab functions. This was done for short duration of start of 

the injection (ASOI) up to 2ms ASOI up to axial distance of 35 mm from the injector tip. The 

collected information of time, velocity and the size were resolved over a time interval of 0.05 

ms to obtain the ensemble-averages. The number of validated samples in 0.05 ms time interval 

varied from 1000 to 8000 samples with maximum statistical uncertainty of ~2.5% in the mean 

velocity value. 
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Figure 4-24 a) shows the 0 angle configuration of the spray for visualization of jet 1 , 3 and 4. b) The injector was 

rotated 110° to isolate jet 1 for the PDA measurement 

The PDA experimental set-up is also shown in Figure 4-24 including transmitter and receiver. The 

laser transmitting and receiving optics were mounted on a traverse with resolution of 0.05mm 

(50µm), which allowed the control volume to be located to any positions within the spray. Before 

starting the PDA measurement acquisition, it was necessary to set up the experimental rig and to 

align the instrumentation. The optical receiver and the transmitting optics were set up according 

to angle of 70 degree and focal distance of 310mm. Adjustment were then carried out by traverse 

in order to achieve the highest burst signal possible. After the optics were set, the zero reference 

point was aligned with the control volume, which was chosen on the centre of the injector exit. 

Once the center of the injector and nozzle exit had been determined, the traverse was set to zero 

reference point by a optically aligning the traverse in the same location. This process is further 

explained in the next section. It is very difficult to isolate other sprays due to compact nature of 

the hole arrangements, however the injector axis was rotated 110 degree which allowed the 

favourite spray under examination to be as isolated as possible. 
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Figure 4-25 The PDA setup from another view 

 Setting up the reference point for PDA measurement 
In the next step, the zero reference point was setup according to figure 4-26. It could be seen 

from the figure 4-27 that at x=0,y=0, z=0 mm the laser beam has a mostly symmetric gaussian 

distribution. When the laser beam was moved up to x=0, y=0 and z=0.1mm (as in figure 4-27), 

the gaussian distribution is decreased to almost Full Width Half Maximum (FWHM) and the 

beam is still visible. By moving the laser beam even upper to X=0, Y=0, Z=0.1, as shown in figure 

c, the gaussian distribution of the beam disappears, however a small arc is still visible in the 

images. Figures e and f shows the position of the arc which is moved in the X direction when X= 

0.5 and X = -0.5 respectively. 

 

 

 

 

 

Figure 4-26 Setting up the reference point for PDA measurement at the distance of ±50µm below the physical 

edge of the injector tip. 
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                                            c)                                                              e) 

 

 

 

 

 

Ensuring that the reference point remains the same between each round of the experiment. 

 

(a)                       (b) 

Figure 4-28: (a) The image of the laser beam taken by a fixed camera located closed to the reference point, (b) an 

image of the reference point in another round of measurement 

X=0 , y=0 , z=0 

X=0 , y=0 , z=0.05 

X=0 , y=0 , z=0.1 X=0.5 , y=0 , z=0.1 X=-0.5 , y=0 , z=0.1 

a) 

b) 

d) 

Figure 4-27 Setting up the zero reference point on the tip of the injector axis using a high magnification camera 

and the traverse system 
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x 

y 

Figure 4-29 Different distance along z direction at which the measurement were done 

A common source of uncertainty in the near-injector region of dense sprays was reported by 

[93], [94] and although it had no effect on size measurement accuracy [93], the effect of high 

droplet density can be considerable which may cause the system to fail in detecting droplets 

during the main injection period.  In order to achieve good results, it was necessary to minimise 

attenuation of the laser beam and the most appropriate way of achieving this was to turn the 

injector at 110º angle. This allowed the isolated jet spray to be exposed fully to the laser light 

coming from the transmitter and to be visible by the receiver without any obstruction by any 

other jet spray. 

 Measurement strategy for 100 bar: 

The measurement was done at the axial distance of 1, 2.5, 5, 10, 15, 20, and 35mm from the 

nozzle tip. 
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In order to start with the PDA measurement, a particular mesh needs to be specified in the BSA 

software with x and y limits at a specific height of z. In order to choose the distance needed for 

coarse grid measurement of x and y of the isolated spray, mean grayscale image of 10 photos of 

the isolated pair of jet 1 captured at 1.5 ms ASOI shown for 20 bar and 100 bar from 0 angle side 

view according to figure 4-30 (a) . This was necessary in order to guide the traverse during 

measurement according to the mesh specified in BSA software. 

 

 

 

Figure 4-30 a) shows 3D and 2D Front view of jet 1 and the coordinate system x,y,z for the 

movement of the traverse. It also demonstrates the velocity of the jet 1 by Vz which is along z 

direction. The radial velocity Vr is negligible and is one order of magnitude smaller and 

therefore is not included in the calculations. The angle of transmitter and receiver with respect 

to the X direction is also shown in the figure 4-31 which is 70 degrees.  

 

 

Figure 4-30 a) Mean grayscale image of 10 photos of the isolated pair of jet 1 captured at 1.5 ms ASOI 

shown for 20 bar and 100 bar from 0 angle side view.  
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The data were collected for injection duration of 2ms at the pressure of 100 bar and up to 

100000 samples were collected over many injection cycles for each measuring location.  

Jet 1 

X 
Y 

 Vz 

Transmitter Receiver 
Transmitter 

35° 35° 

(0,0,0) 

X 

Z 
Y 

Z 

X 
Y 

Jet 1 
Jet 2 Jet 3 (0,0,0) 

Figure 4-31 Top: 3D and 2D Front view of jet 1 and the coordinate system x,y,z for the movement of 

the traverse.  
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 Coarse grid measurement at z = 1mm  

The first round of the measurement involved setting up the traverse for rough grid measurement 

of an area of 2mm x 4mm (this area is called region 1) for the below the nozzle exit at the height 

of 1mm away from the nozzle with grid length of 0.4mm in both X and Y direction. Region 1 is 

shown in figure 4-32. It was necessary to obtain this figure to find the approximate location and 

the contour plots of velocities of the isolated jet 1. It was also necessary to find the relative 

position of jet 2 and 3 as shown in figure 4-32. 

 

Figure 4-32  An example of rough grid measurement of jet velocities contour plots at the distance of 1mm below 

the nozzle exit, the black square shows the fine grid (region 2) measurement obtained based on the count 

numbers of data collected 

In figure 4-32, the traverse started to measure from the point of (-2,-2) at the bottom left corner 

and finished the measurement at the point of (2,0) at the top right corner. In this configuration, 

the PDA system was able to measure up to 66 points with minimum count number of 1 sample 

and maximum count number of 10000. It was observed that the number of counts for point 1, 2, 



 
 
Chapter 4                            Methodology 

 
 
 

137 

and 3 are very low which are referring to the dark blue part of contour plot in figure 4-32. This 

clearly shows that point 1, 2 and 3 are not representing enough information on the core or the 

edge of the jet. It also shows that the mesh is too big to resolve the distribution with enough 

precision. Therefore, the area of the measurement was reduced to a smaller window and the grid 

size was reduced from 0.4 mm to 0.1 mm in the next step in order to obtain better resolution and 

velocity profiles.  

The coarse grid measurement were done for all z values of 1mm, 2.5mm, 5mm, 10mm, 15mm, 

20mm, and 35mm in order to present the contour plots of velocities and to obtain the location of 

the center of jet 1. The estimated center of the jet 1 were then used as a reference point for more 

precise measurement of finer grid contour plots of velocities for each case. 

Looking at figure 4-32, one can realize that the peak velocity (red zone) of the jet 1 is located 

approximately at the position of (-0.5, -1). The next step was to use the information already 

obtained as a reference to create a finer grid region #2 with smaller grid of 0.1 mm which covers 

a smaller area of a 1mm x 1mm square around the approximate center of the jet with coordinated 

of (-0.5, -1). Therefore, it was concluded that the region 2 for finer grid measurement could be 

selected in such a way that x changes from 0 to -1 and y changes from -0.5 to -1.5. This area can 

confidently present the 2D contour plot of jet 1 at the distance of 1mm away from the nozzle. 

This could be verified by near-nozzle shadowgraph in figure 4-30. 

Figure 4-33 shows the velocity contour plot for the fine mesh region (#2) (also shown in figure 4-

33 in the black box). Here the grids are 0.1mm x 0.1mm. The measurement starts from point 1 (-

1,-1.5) at the left bottom corner and ends at the point 121. 

Using with grid distance of 0.1 mm. It can be seen from figure 4-33 that due to the finer meshing, 

the values of velocity measurements are more precise and can resolve up to mean velocities of 

around 90 m/s at the center of the jet compared to 80 m/s in the case of rough meshing. From 

figure 4-33, it will be concluded that the center of the jet 1 approximately point (-0.2, -1) 
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Figure 4-33 velocity contour plot for the fine mesh region (#2).  

Therefore it is concluded to change the location of the region (#2) to a new region (#3) with same 

size and resolution in a manner that the center of jet 1 will be overlapped with the geometric 

center of the region (#3) ie the middle of the square. The new region 3 will be a new area of 1mm 

x 1mm in which X values changes from 0.3 to -0.7 and Y values changes from -0.5 to -1.5 as shown 

in figure 4-34. 

 

Figure 4-34  Velocity contour plot for the fine grid measurement region #3 at the distance of 1mm below the 

nozzle exit. The grid minimum distance is 0.1 mm. 
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In figure 4-34, traverse started to measure from the point of (-0.7, -1.5) at the bottom left corner 

and finished the measurement at the point of (0.3, -0.5) at the top right corner. In this 

configuration the PDA system was able to measure up to 121 points with maximum count number 

of 10000 samples and minimum count number of around 2500. After examination of the data, it 

was found that the limits of the mesh have enough number of samples (20000). It was concluded 

that the length chosen for the grid which is 1mm x 1mm is acceptable and therefore the next step 

of the measurement was carried out using this information. In the next section, the very fine 

measurement of the velocity profile of jet 1 is explained. 

 Very fine grid measurement at z= 1mm (50 microns grid) 

In this section, the very fine measurement of the velocity profile of jet 1 is explained.  

 

Figure 4-35 In the very fine mesh grid, there are 42 points from top to the  and 21 points from right to left for 

measurement of the velocity profiles along x direction. Also there are 20 points from bottom to the top and 20 

points from top to the bottom for measurement along y axis. The distance between each point is 0.05 mm. 

In this configuration, the grid minimum distance is 0.05 mm (50 µm). Here there are 20 points 

from left to right and another 20 points from right to left for measurement of the velocity 

profiles along x direction. Also there are 20 points from bottom to the top and 20 points from 

top to the bottom for measurement along y direction.  
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 Average Velocity distribution at height of 1mm along y axis 

 

 

Figure 4-36  Contour plot of velocities for the very fine mesh measurement along y axis at the height of 1mm. 

The traverse started moving along y from (-0.2, -1.5) to (-0.2, -0.5) and then move right along x for 0.05 mm to (-

0.15, -0.5) and then move down to (-0.15, -1.5). The x axis has been exaggerated. 

Table 4-4 A list of data in the measurement while the traverse moves from point 1 to point 7 the number of 

samples were maintained at 100,000.  
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 Velocity profile at height of 1mm along x axis 

 

 

Figure 4-37  Contour plot of velocities for the very fine mesh measurement along x axis at the height of 1mm. 

The traverse started moving along a zig-zag pattern. The y axis has been exaggerated. 

Table 4-5 A list of data for the velocity measurement in very fine mesh configuration at the distance of 1mm 

along x axis.  
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 Diameter profile at distance of 1mm along y axis 

Figure 4-38 shows the contour plot of the diameter of the droplets measured for jet 1 at the 

distance of 1mm along the y axis of the jet. It should be mentioned that the axis has been 

exaggerated. It can be observed that the range is from 4µm to around 7µm. 

 

 

Figure 4-38  shows the contour plot of the diameter of the droplets measured for jet 1 at the distance of 1mm 

along the y axis of the jet. 

Table 4-6 The data for the droplet statistics in very fine mesh configuration at the distance of 1mm along y axis. 
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It should be mentioned that the y axis has been exaggerated. It can be observed that the range 

is from 4µm to around 7µm. This is important to note since it shows that the validated 

droplets are atomised to a good level.  

 

 Diameter profile at distance of 1mm along x axis 

 

 

 

Figure 4-39  shows the contour plot of the diameter of the droplets measured for jet 1 at the distance of 1mm 

along the x axis of the jet. 

Table 4-7 The data for the droplet statistics in very fine mesh configuration at the distance of 1mm along x axis. 

 

 

 



 
 
Chapter 4                            Methodology 

 
 
 

144 

 Creating temporal graphs  

The PDA measurement can yield valuable information on velocity and size distribution of the jet 

spray. This is evident from the cyclic ensemble data collection shown in figure 4-41. An 

algorithm was used to calculate the mean of velocity graphs Vz (red color) and also the RMS 

values (green color) as shown in the figure 4-40.  

It can be seen from figure 4-41 that the counts per window is above 6000 samples per 

windowing frame when the windowing frame was around 0.1ms. This shows quiet high number 

of samples which has been acquired in the measurement at the distance of 1 mm downward 

the nozzle exit over the whole range of the diameter of the jet spray. The counts per window 

rate will increase as the distance z increases and it reaches to 8000 counts per window. This 

shows that there is reasonable level of reliability on the results being presented. It would be 

more meaningful to use and interpret the graphs using the mean and RMS values onwards. 

Since the number of data collection for each point for the very fine grid measurement was 

100000 samples, it was possible to calculate the average mean and RMS values using very short 

time windows from start to finish. The duration of the windowing frame was initially chosen 

from smallest possible values up to 50 µs. This was a 2-fold decrease in the windowing frame 

with same number of samples compared to previous work done in the group which was 0.1ms. 

It was decided initially to use this duration (50 µs) for calculating the mean and RMS values on 

the graphs and investigating short time scale phenomena and mapping temporal graphs at 

different heights with each other. After careful investigation, it was observed that a 0.1ms will 

also be sufficient to resolve short time scale phenomenos as shown in figure 4-41 (yellow lines).  
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It is also useful to note that during the injection, there are normally 3 different phase which are 

referred to needle opening phase, main injection event and needle closing events which are 

shown in figure 4-41. 

 

 

 

 

 

 

 

 

 

Averaging window ~  0.05ms  

Figure 4-40 Examples of instantaneous variation of droplets velocity and definitions of temporal ensemble 

average over a time window of 0.05ms.  

Figure 4-41  Different phase of the injection events referred to as 1. needle opening event, 2. Main injection 

event, 3. Needle closing event 
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 Error Analysis and statistical method for PDA system 

 

There are several sources of uncertainty in laser-Doppler anemometry which will cause a wider 

probability density function of Doppler frequency than compared to the velocity. These 

uncertainties are:  

− Mean velocity gradient broadening,  

− Small scale turbulence broadening (length scale),  

− Finite transit time broadening (time scale),  

− Brownian motion (random trajectory) ,  

− Line width of laser  

− Electronics characteristics and noise.  

 

There are also sources of systematic error such as:  

− The velocity biasing error   

− The orientation of the laser beams relative to the geometry  

− Positional error introduced by the milling table  

− Visual procedure error when locating the measuring volume at a given reference point. 

 

The total Doppler variance σT
2 equals the sum of the velocity variance and broadening effects 

and, assuming total independence and randomness of its constitutive terms, is given by: 

σ2
T

 = σ2
velocity + σ2

broadening  since σ2(x+y) = σ2x + σ2y       

And 

σ2
broadening = σ2

mean gradient + σ2 turbulence
 + σ2

Finite transit time
 + σ2

Brownian + σ2
Laser + σ2

instrument + σ2
others 
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Mean velocity gradients lead to a broadening of probability density function across the measuring 

volume and to a mean velocity bias which, according to Durst et. al. (1981), can be corrected, 

respectively, via 

𝝈𝟐𝒎𝒆𝒂𝒏 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕 = (
𝒍𝒎

𝟒
)

𝟐

(
𝒅𝑼

𝒅𝒓
)

𝟐

+ ⋯ ..   Equation 9  

      

𝑼 𝒕𝒓𝒖𝒆 − 𝑼 𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 = (
𝒍𝒎

𝟒
)

𝟐

+
𝒅𝟐 𝑼

𝒅𝒓𝟐 … ..     Equation 10   

where the higher order terms of the expansions are negligible. As it is evident, these broadenings 

are important in the region where the velocity gradient is strongest like near the wall regions. In 

the current investigation, these effects were negligible as the measurements inside the spray 

were mainly at the locations where the velocity gradient in the probing volume was minimum. 

Turbulence intensifies the finite transit time broadening in frequency domain instruments. A 

second turbulent effect results from the small-scale turbulent fluctuations in velocity within the 

probing volume and can be accounted by: 

𝝈𝟐𝒕𝒖𝒓𝒃𝒖𝒍𝒆𝒏𝒄𝒆 =
𝟐

𝟏𝟓
(

𝒍𝒎

𝟒
)

𝟐

(
𝟒𝝅 𝒔𝒊𝒏 𝝋

𝝀
)

𝟐 𝜺

𝝂
     Equation 11  

where  is the energy dissipation rate per mass, for a small angle  , 𝜈 is the kinematic eddy 

viscosity, lm is the Prandtl’s mixing length and assuming local and a scattering volume size of the 

order of the Kolmogorov length scale (smallest length scale in the system).  

Finite transit time broadening occurs when more than one particle is within the measuring 

volume but is limited in frequency counting system. Using a slit of 100m in the receiving optics 

will limit the scattering volume to be focused at the centre of the probing uniform. Beside this, 

utilizing an appropriate validation circuitry with 2 planar detectors for transverse measurement 

in the current system will ensure that only one particle within the scattering volume will be 

validated. 

Broadening introduced by the deviation of the laser light from monochromatic is negligible in this 

experiment since the laser light is indeed monochromatic with wavelength of 514nm and 488nm.  
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Broadening by the Brownian motion is important for very slow laminar flows and since the nature 

of the flow here in this experiment is turbulent this broadening is also negligible.  

In addition to above, velocity bias effects can be significant in turbulent flow measurement when 

ensemble averaging is used to calculate the mean velocities. Particles of higher velocity will cross 

the measuring volume more than those of low velocity, and therefore the calculated velocity 

becomes biased toward higher value. This  was shown by McLaughlin and Tiederman (1973). A 

one directional correction shows negligible error for turbulence intensities up to 15% but an error 

of 10% for a turbulence intensity of around 40%. Therefore, bias corrections have to take into 

account the duration of the burst, the particle arrival rate and its relation to turbulence time scale 

(Durst et al (1981)) but these calculation are out of scope of this work. 

It should be mentioned however that ensemble averaging is an accurate estimate of time 

averaging whenever the time scale of the particle arrival rate is less than the turbulent integral 

time scale if sampling technique and velocity are uncorrelated or if the sampling time scale is 

much greater than the turbulent integral scale. Under other conditions an appropriate sampling 

technique will be necessary to remove the correlation between velocity time consuming an 

alternative is the use of a time weighting approach such as that one proposed by Dimotakis (1976) 
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         Equation 12  

Where Kt is the duration of the Doppler signal when its amplitude varies from maximum to half 

maximum.  

Another source of bias, but in the opposite direction, is introduced by the existence of a 

correlation between Doppler frequency (velocity) measured by the photomultiplier and the 

particles residence time inside the measuring volume. That is to say that the fast moving droplets 

with small residence time produce low Doppler signal amplitudes, while the slow moving droplets 

with large residence time produce large signal amplitudes, and therefore biasing velocities 
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towards lower values, as shown by Durão and Whitelaw (1979). Both effects are opposite and 

become negligible when taken together for a wide range of flows and relationships between 

particle, sampling and turbulent time scales, as illustrated in Durão et al (1980).  Vafidis (1985) 

used the above equation and reported a mean velocity bias of +2% and a 5% broadening of the 

rms velocities in regions of high turbulence when comparing with non-corrected data. 

In this study the turbulence intensity for measurement of the near-nozzle to far-field region of 

the spray was lower than 20%. Therefore, for the measurement of spray droplet velocities, the 

uncertainties of both velocity biasing effects are small and negligible.  

The gradual definition of cut-off frequencies in band pass filters means that its misuse is another 

source of bias because signal that might lie outside bandwidth or very close to the edges will not 

be considered. In the present systems, passive band pass filters were used with sharp cut-off 

edges and therefore this biasing effect was negligible. At the same time, the signals pdf 

distributions were monitored all the time to ensure all the Doppler frequencies are detected.  

The relative statistical error of a sample of finite size on both mean and rms velocities can be 

estimated by Gaussian velocity probability function by 

S

Cmean
N

u
ZError


=         Equation 13   

S

Crms
N

ZError
2

1
=          Equation 14  

Where NS and u are the sample size and turbulence intensity with ZC=1.98 for 95% confidence 

level, Yanta and Smith [95]. In the present measurements the number of samples per measuring 

point were of order 3000 to 6000 (for example see distance of 10mm) giving a maximum statistical 

error of 0.73% in the ensembled mean and 2.5% in the rms of the velocity fluctuations for a 20% 

turbulence intensity. 

There are axial and radial positional errors due to the method used to locate the control volume 

inside measuring region. This relies on visual observation of the beam crossing at a reference 
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point, which can lead to an uncertainty of about 1/8 th of the measuring volume length, i.e. 50m; 

here the method of positioning the reference point was improved this error by 400% compared 

to Andrea Marchi experiment where the positional errors were 200m. The tip of the injector 

(lowest part of the injector nose) was used as the reference point for all measurements at each 

distance. The movement of traverse was monitored in all three directions with digital gauges with 

a resolution of ±50m. 

 

4.15.1 PDA, size accuracy 

Droplet diameter measurements were collected continuously over many injection cycles. The 

ensemble-averages were then calculated using a Matlab code over a time window of 0.1 ms which 

was found to be sufficient to resolve temporal changes of the fluctuations in the droplet 

diameters. The total number of samples in each position of the measurements varied from 50,000 

to 100,000, and the number of validated samples in the 0.1 ms time interval varied from 3000 to 

6000 samples with maximum statistical uncertainties of around 2% in the ensembled mean and 

5.6% in the rms values. 

Wigley (1993) and Hardalupas et al (1994) have explained in details the uncertainties and 

limitation associated with the PDA measurements. An important source of uncertainty in the 

near-injector region was the attenuation of the laser beams and the scattered light due to high 

concentrations of droplets. The phase-Doppler results have presumption that droplets are 

spherical and, since sprays are known to include ligaments in the near field, this is a potential 

source of uncertainty very close to the injector. The verification system of the counter should 

have rejected non-spherical droplets and only accepted droplets with sphericity of up to 90%. 

This was confirmed by phase diagrams which shows the rate of rejection of the non-valid 

measurements. In order to minimize the beam and scattered light attenuation, an injector stand 

holder was designed and assembled to set up the injector orientation accurately; this 

arrangement made great improvement in data collection in the core spray near the exit nozzle as 

demonstrated in the results section.  



 
 
Chapter 4                            Methodology 

 
 
 

151 

In the present study a four Photomultipliers (PM) system (Dual PDA Dantec dynamics) was used 

to maintain a high measurement resolution and to remove measurements ambiguity. This was a 

significant improvement compared to all previous measurements done in the group since all the 

previous measurements were using 3 PM and was not utilizing coincidence validation. With this 

system, the same droplet size was measured twice with two different pairs of PMs positioned at 

two different locations. One PM pair (1 and 2) was positioned with relatively large separation 

from each other in the vertical direction to provide very high sensitivity (resolution) and smaller 

size range, while the other pair (3 and 4) had a shorter separation with larger size range and lower 

resolution. With this arrangement, two independent size measurements, the 2-jump 

uncertainty (an inherent problem with PDA system) is fully removed and the ambiguity of the 

droplets sphericity will be minimised. The later depended on the validation level which can be set 

by the user; in this experiment a tolerance of about 5 to 10% was used between the two set of 

size measurements and implies the level of ambiguity in droplets sphericity.  

There are other minor sources of uncertainties like oscillations in phase-diameter curve, low 

signal-to-noise ratio due to low intensity or extinction which can introduce biasing towards larger 

droplet size, Gaussian intensity profile in the measurement volume and phase changes which can 

be due to droplet surface distortions and multiple scattering effects. All these effects can be 

minimise by proper set up of the transmitting and receiving optics as described in PDA setup in 

this chapter. 
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5 Chapter 5: In-nozzle Flow Measurement in Enlarged Model 

Injectors 
 

 Introduction 

Although the importance of cavitation inside multi-hole injectors has been addressed in many 

previous investigations where the cavitation formation and its development, fuel spray 

characteristics and atomisation have been reported, the effect of cavitation (both geometrical 

and vortex structures) on the emerging jet spray and its stability, liquid breakup and atomisation 

is not yet fully understood. A part of the current research work was then focused to address some 

of the above issues by conducting an experimental study on the initiation and development of 

different type of cavitation inside two 3-D transparent enlarged models (7- and 15-times) of 

symmetric 6-hole conventional SIDI injectors. The aims are to quantify the effects of the cavitation 

on the near nozzle jet spray in terms of jet cone angle and its stability and to visualize the near-

nozzle spray as it emerges from the nozzle into the stepped-hole section of the injector or into 

the ambient atmosphere. Special attention has been paid to design the optical model injectors to 

allow simultaneous imaging of the in-nozzle flow and the exiting spray jet to be able to establish 

the influence of in-nozzle cavitation on the emerging jet spray. Thus, High speed camera has been 

used to visualize the in-nozzle flow and emerging spray simultaneously with images of high clarity 

and resolution. In the first section of the chapter, the results of visualization of in-nozzle flow and 

near-nozzle spray in 15-times enlarged model injector is presented and discussed first. In this 

regard, the 15 times enlarged model has a stepped-section through which the near-nozzle exit 

spray could be visualized too. It was found in the 15 times transparent model that for some cases, 

the stepped section has limitations for visualizing the near-nozzle emerging spray. Therefore, in 

the second part of the chapter, the results of visualization of the in-nozzle flow and near-nozzle 

spray will be discussed and explained in the 7-times enlarged model which does not have a 

stepped section but has the advantage of a unique design which provides for the first time, good 

quality image for simultaneous in-nozzle flow and near-nozzle jet spray. Finally, the link between 
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the in-nozzle flow on the near-nozzle spray in the stepped hole will be anticipated and 

established. It is expected that the stepped-nozzle would improve the performance of the 

breakup/atomisation processes due to the fuel flow going through sudden expansion within the 

confined stepped that promotes the turbulence and interaction with surrounding air. This plus 

the burst of the cavitation bubbles would help earlier breakup of the fuel and lead to rapid 

atomisation in the stepped section of the nozzle. 

 

 Results for 15 times enlarged model 

In this section, in-nozzle flow including the geometrical and vortex cavitation structures together 

with the emerging liquid spray jet are visualised using a high-speed camera in a 15 times 3-D 

enlarged transparent model as described in methodology chapter. The results obtained from the 

enlarged model test rig are presented and discussed in the following order; first the cavitation 

development at different needle lifts and cavitation number, CN, is investigated. This will be 

followed by the identification of geometrical cavitation and the string cavitation in the nozzle and 

how these types of cavitation can cause erosion and material wear. In the next step, the effect of 

geometric and vortical cavitation on the emerging spray and cone angle will be presented 

followed by some analysis on the emerging jet spray.  

5.2.1 Cavitation Development 

Figure 5-1 shows cavitation development as a function of CN for the lowest measured lift (quarter 

lift, left column) and at full lift (right column). Here the injection pressure was kept the same for 

both needle lifts which has caused a smaller Reynolds number at the lower lift due to flow losses 

through much smaller flow passages between the needle and injector body. All results are given 

in figure 5-1. The results at CN = 1.04 and at the quarter lift show no sign of cavitation at this lift 

which is in agreement with all previous results obtained in similar geometry. As CN is increased 

the geometric cavitation and string cavitation are developing inside the nozzle so that at CN=4.15, 

the geometric cavitation and string cavitation are covering up to half of the length of the nozzle 

and at CN= 5.22 they are fully developed covering the whole length of the nozzle hole with the 

formation of the well-known horse shoe film cavitation. The results at full lift (right column) and 

CN=1.04 show no obvious geometric cavitation apart from occasional pockets of vapour which 
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was absent at the quarter of lift, and therefore this cavitation number was taken as the onset of 

the cavitation. In addition, a persistence narrow vortex was observed at full lift which was fully 

developed along the nozzle and originated from the sac volume. This suggests that increasing 

needle lift will increase the flow momentum and its turbulence within the sac, which allow the 

vortices to gain more speed (strength) and forcing it to loss pressure at its core to cavitate.. 

Increasing the cavitation number from 1.04 to 2.09 will dramatically change the cavitaton regimes 

inside the nozzle so that at CN=2.09, the geometric cavitation is almost fully developed covering 

up to the exit of the nozzle as well as a strong string cavitation along the axis of the nozzle. At 

higher cavitation numbers, CN=3.12 and higher, the flow becomes fully developed and a line of 

separation is clearly visible on the flow inside the nozzle hole which indicates the envelope of the 

horse shoe film cavitation. It is also clear that the extension of both geometrical and vortex 

cavitations to the exit of the nozzle has affected the jet spray shape and trajectory. 
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Figure 5-1. Cavitation development at quarter lift (left column) and full lift (right column) at different CNs. 

The results are in agreement with previous studies in similar geometry and that the comparison 

between the quarter and full lifts shows a clear delay in the onset of the cavitation and its 
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development with the quarter of the lift (lowest measured) at all measured CN numbers which 

may be due to considerable loss of flow (axial and radial) momentum. This could be due to much 

narrower flow passage that increased friction loss and hence suppression of turbulence inside the 

sac volume and nozzle hole, which in turn will affect the pressure gradient and therefore the 

formation and development of cavitation. The more turbulent the flow is, the Reynolds number 

will be higher and this means the cavitation number will also be higher based on our definition. 

This means the flow is more likely to form cavitation. Another useful observation is on the 

emerging spray with CN so that the jet spray becomes brighter as the CN increases. This suggests 

that cavitation enhances liquid jet break up/atomization and thus improving the intensity of the 

scattered light. This is expected as at higher CN more bubbles collapse inside the nozzle and also 

as they exit from the nozzle which will help and accelerate the liquid breakup outside and 

consequently better atomization however cavitation can sometimes lead to instability which can 

cause poor atomisation. It should also be mentioned that cavitation can sometimes cause 

instability in the spray structure and might create poorer atomization. 

5.2.2 Geometrical cavitation  

The following image sequences, presented in figure 5-2, characterise the behavior of geometrical 

cavitation bubbles of the upper left side of the nozzle when they interact and trap within the 

recirculation zone. The recirculation zone can clearly be seen to have a suction effect (which is 

caused by the recirculation zones and the pressure drop at the top left corner of the nozzle).Here 

the highlighted bubble (dashed circle) is trapped within the low pressure zone and moves in the 

opposite to the direction of the mean fluid flow due to the presence of the adverse pressure 

gradient near the wall forcing the flow moves towards the nozzle entrance.. The velocity vector 

remains horizontal, which suggests that the highest vapour fraction is at the top edge of the 

nozzle entry. The backward movement of the bubble without tangential motion indicates the 

maximum recirculation at the top of the nozzle. 
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Figure 5-2. Image sequences of in-nozzle flow cavitation and spray at full lift, P5 (V1), Re=50200, CN=5.22.  
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Figure 5-3. Image sequences of in-nozzle flow cavitation and spray at full lift, P4 (V2), Re=45300, CN=4.15,  

Similarly in Figure 5-3, the sequence of images show that the highlighted bubbles generated near 

the nozzle entrance on  the envelope of the horse shoe film cavitation are convected towards the 

low pressure zone near to upper part of the nozzle wall. These are moving upwards and towards 

the recirculation zone having almost no horizontal component of velocity vector. This may imply 

suction generated by the low pressure zone, although exclusion of the string vortex cavity causing 

a circumferential motion on the bubbles may not be discarded.  
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Figure 5-4. Left: Impact of the vortex cavitation on geometric at Full Lift, P4, bar CN = 4.15, and Re=45300; possible 

erosion. Right: SEM of cavitation erosion inside the nozzle hole and the relative acoustic pressure [26] 

 

Another interesting observation was the interaction between the geometrical and vortex 

cavitation and an example is presented in Figure 5-4, which clearly shows the displacement and 

rolling of the leading edge of the geometric cavitation on the top surface near the hole entry at 

full lift, P=4 bar, bar CN = 4.15, and Re=45300. It shows that at t=0ms the edge of the envelope of 

the horseshoe film cavitation is rolling up forming a string along its edge. This can well be due to 

the interaction between the horseshoe film cavitation along the upper part of the nozzle hole and 

the strong vortex cavitation along the core of the nozzle hole. At t=0.067ms the newly formed 
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string along the edge of the horseshoe cavitation becomes stronger and shifted up towards the 

upper wall surface  zone in the recirculation region. At t=0.133ms, the string is shifted further up 

towards the top of the nozzle.  Also at t=0.067s and 0.133s, the presence of a large corkscrew 

vortex cavitation is clearly evident which appears at the lower part of the nozzle hole with large 

tangential velocity component and carries a considerable momentum thus affecting flow around 

it, turning the horseshoe cavitation clockwise and dispersing any other smaller bubbles 

tangentially towards the top of the nozzle as well as along it. The tangential shift of the 

geometrical cavitation around the nozzle hole axis caused by this vortex is apparent from the 

images over 0.2ms time lapse over which the whole structure of the horseshoe film cavitation has 

been changed. Such events occur periodically, perhaps due to the main vortex having a period of 

its own depending on its strength and size which varies from time to time and affects the in-nozzle 

flow accordingly and create more flow instability. In addition, it is expected that during such 

intermittent periods (when the horseshoe cavitation undergoes such drastic changes including 

shifting up towards the upper wall surface, deformation and break down) the newly formed 

smaller strings and bubbles will burst as they get close to the upper wall causing localised erosion 

on the upper nozzle surface as  shown by [26]. This has been further investigated on another 

possibility of bubble burst and the results are shown in Figure 5-5. 

 Figure 5-5 shows the displacement and possible impact of bubble pockets on the top surface 

of the nozzle at full lift, P = 4 bar, CN = 4.12, and Re=45400. Here, in both cases at different 

instances, bubbles generated in the near inlet nozzle region are tracked in 4 consecutive images 

over 0.1ms time.  These pockets of bubbles are moving upwards towards the upper wall surface 

zone having almost no horizontal component of the velocity vector. The observed movement 

suggests that the bubble pockets propagate vertically upwards in the near entry region of the 

nozzle. It is obvious that the flow inside the nozzle has components in all three directions since 

the flow is 3 dimensional with all axial, radial, and tangential components of velocity around a 

vortex. Since the flow imaging has been obtained using a single camera, the observed flow is only 

in two dimensions. Thus, it can be concluded that the bubble motion observed is the combination 

of axial and tangential component of the velocity vector. A simple velocity calculation was made 

from images of Figures 5-5 using Photron Fastcam software, when a distinct bubble pocket was 
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tracked crossing the centre line of the nozzle. The vertical (or tangential) velocity of the bubble 

pocket was found to be almost 20m/s whereas the mean axial velocity calculated from the flow 

rate measurement was 17.14 m/s. This may imply that the main vortex having a relatively strong 

tangential velocity would affect the bubbles movement when they are entering the nozzle inlet 

forcing them to move upwards towards the upper surface and their possible burst as they get 

close to the wall. This again may suggest that the vortex rotation would bring more bubbles 

available to the vicinity of the maximum erosion which has been observed by SEM in another 

nozzle hole as it is shown in figure 5-4.  

 

 

The velocity of the bubbles are very significant and of similar order of the flow itself. When the 

bubble burst through micro-burst process with velocities much higher (by order of magnitude) 

when they get near the surface where the pressure in recovered their possible impact would 

result on  further erosion. In a real-size nozzle, periodic burst of the bubble pockets entering the 

nozzle on the top surface can contribute to erosion in that region due to high velocity impact 

(over 100m/s). It should be mentioned that flow inside a nozzle is very sensitive to the design of 

     t = 0.000ms 

     t = 0.033ms 

     t = 0.066ms 

     t = 0.100ms 

Figure 5-5.  Left: Cavitation film break up and possible impact of bubble pockets to the top surface at full Lift, P 

= 4 bar, CN = 4.12, and Re=45400; Right: Cavitation break up at the nozzle entrance and possible migration of 

the bubble pockets towards the top corner of the nozzle hole. 
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the sac volume and that SEM of the real-size nozzle will provide a better comparison regarding 

the maximum erosion region. 

Figure 5-6 shows an instant that two counter (highlighted) rotating vortex cavitation coexist at 

the same time inside the nozzle hole originated from the top and bottom side of the nozzle at the 

inlet and get closer together as they convected downstream so that they almost merged together 

nearer to the exit. It is difficult to locate the origin of these vortices at the inlet but by comparing 

this with SEM image of cavitation erosion at the nozzle entrance [26] , shown on the right of 

Figure 5-6, it can be speculate that one of these vortex is likely to be developed at 3 o’clock 

position and the other at 9 o’clock position around nozzle entry within the sac volume. Although 

the SEM image is from another nozzle with slightly different sac volume design, it could be seen 

that the two counter rotating vortices might be responsible for this type of erosion. 

 

Figure 5-6. Left: Two counter rotating strings developed inside the nozzle hole at Full Lift, P = 4 bar, CN = 4.15, 

and Re=45300, Right: SEM image of cavitation erosion at the nozzle entrance [26] 

5.2.3 Effect of cavitation on the emerging spray angles 

Investigations have suggested that string cavitation can alter the spray cone angle and can induce 

instability in the spray pattern [4]. Effects of string formation on the spray cone angle were further 

analysed to acquire any link between such vortex structure development and the change in the 

near-nozzle spray pattern. 

Figure 5-7 shows the position of the strings inside the nozzle hole affecting the spray axis angle 

and cone angle at full lift for low CN (left). The column shows the directionality of a vortex at low 

CN number and its link to spray axis and cone angle. At CN=1.05, in the first image (t=0) the string 

is aligned almost horizontally along the centreline of the nozzle. It was observed, for all similar 

cases, that the resulting cone angle has an axis parallel to that of the nozzle or string. In the second 

image (t=0.333ms) the string is tilted downwards so that the downstream part of the string is 

close to the bottom of nozzle exit. The result shows that the spray cone axis has also tilted 

downwards below the original nozzle axis. In the third image, (t=7ms), the downstream part of 
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the string pointing towards the top of nozzle exit and it shows that the spray cone axis has tilted 

above the original axis. Therefore, this behaviour might suggest that the spray cone angle being 

affected by the directionality of induced string cavitation. 

 

  

Figure 5-7. Directionality of the vortex cavitation and its effect on spray at Full Lift for:  CN=1.05, P=1 bar and 

Re=26100;  

 It is interesting to note that more liquid breakup can be seen on the lower edge of the 

emerging spray in the second image and on the upper edge of the emerging spray in the third 

images which are corresponded to the locations of the exiting strings.  Vortex axis carries radial 

momentum with lowest pressure observed at the centre of such vortex producing string 

cavitation. Therefore, wherever string cavitation is seen the vortex effects become visible. Tilt of 

vortex away from spray cone axis results in spray cone axis angle being altered in the same 

direction.  

5.2.4 Reverse Vortex Structure 

 At injection to atmosphere at low cavitation numbers, with no geometrical cavitation, a 

transient reverse vortex structure was found to be initiated outside the nozzle near its exit in 

tenth of a millisecond and moved into nozzle towards its inlet and developed/ and maintained its 

structure inside the nozzle for several milliseconds. This vortex structure was randomly appeared 

in the nozzle due to its transient nature. The reverse vortex advances and grows, in the absence 

of the geometric cavitation. This phenomenon is an air entrainment into the nozzle from exit 
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rather than cavitation. The mechanism is related to the presence of a vortical structure of the 

liquid flow inside the nozzle [2, 4]; this usually happens when the liquid flow entering into nozzle 

from sac volume has different velocities (momentums) around the nozzle inlet. The reverse air 

entrainment occurs when the pressure in the core of vortex drops below atmospheric pressure 

and allows the air to be sucked into the nozzle from the exit.  

 Figure 5-8 describes the development of reverse vortex structure at different time sequence 

and quarter needle lift, 0.85bar injection pressure and CN=0.88. This structure develops in 

cavitation numbers below 1, which signifies onset of cavitation generally. In the second image at 

t=0.33ms air starts to penetrate into the nozzle hole from the exit and move towards the inlet 

with time so that at a time t=2.33ms it passes the inlet and penetrates into the sac volume. It is 

interesting to note that, in this case, in fact there are two string structures coiled together as they 

move into the nozzle, which can clearly be observed in the images at t=1.0ms onwards. The two 

strings rotate in the same direction. There appears to be a phase difference of π radians between 

the two helically wound strings particularly at t= 1.66 and 2.33ms. This reverse vortex structure 

was even present at CN up to 1.77 at quarter needle lift without geometrical cavitation being 

observed. For cavitation numbers greater than 1.84 at quarter needle lift, no reverse vortex 

structure was detected. This is perhaps due to the fact that increasing the upstream pressure will 

result in a more uniform flow into the nozzle and weaken the strength of the liquid vortex, which 

in turn will increase of the pressure in the core of the vortex to above atmospheric and thus it 

would be much more difficult for the air to penetrate into the nozzle inside the vortical structure. 

That is why this phenomenon is much less frequent at full lift for the low CN and almost none at 

higher CN numbers.  

 Increasing the needle lift for the same low cavitation number seems to decrease the duration 

of the air entrainment and penetration inside the nozzle. This could be well due to the fact that 

increasing the needle lift will increase Reynolds number, which means higher momentum, better 

mixing and more turbulence in the flow within the sac volume. This suggests that the flow into 

the nozzle has a more uniform velocity around the nozzle inlet and therefore reducing the 

possibility of formation of the liquid vortex inside the nozzle and weakening its strength (or 

intensity). As a result this can allow a pressure recovery of the liquid vortex  especially at its core 
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where the pressure is high enough to resist against the air being sucked into the nozzle from 

outside. Consequently the air wouldn’t penetrate more easily into the nozzle hole and hence the 

duration of the penetration of such a structure will be decreased.  

 Effect of pressure on development of reverse vortex was examined by maintaining the needle 

lift at quarter lift and varying the pressure from 0.6 bar to 1.77 bar corresponding to CN numbers 

of 0.62 to 1.83, respectively. Although only individual cases were taken, without averaging, no 

correlation can be found between the injection pressure and the duration of penetration of such 

vortex development at lower cavitation numbers. Further observation showed that duration of 

such events can vary even in the very similar operating conditions.  

Figure shows the development of air entrainment (reverse Vortex) Structure inside the nozzle at 

1/4 lift, CN=1.04, Re=13700. It is suggested that the driving force that causes the air to have 

inverse flow is the pressure garadient between the ambient pressure outside the nozzle and the 

low pressure zone along the axis of the vortical structure inside the nozzle. 
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Figure 5-8. Development of air entrainment (reverse Vortex) Structure inside the nozzle at 1/4 lift, CN=1.04, 

Re=13700 

Figures 5-9 and 5-10 shows the time sequence of two air entrainment structures developing inside 

the nozzle at the same condition of quarter lift and CN=1.04 and Re=13700, but at two different 

times t1 and t2. The left column shows air entrainment structure at t1, in which one string can be 

identified. However, the second column, t2, shows two helically wound strings, particularly at 
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t=1.3ms which suggests that there can be different modes of operations for these strings. The 

two strings rotate in the same direction.  

  

 

Figure 5-9. Images of air entrainment sequences at 

quarter lift, P1 (V1), Re=13700, CN=1.04, t1=Frame: 

5490-5540. 

 

Figure 5-10. Images of air entrainment sequences at 

quarter lift, P1 (V1), Re=13700, CN=1.04, t2=Frame: 

890-930 
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Figure 5-11. Image sequences of in-nozzle string cavitation and its impact on emerging spray at quarter lift, P3 (V1), 

Re=26100, CN=3.12, Frame 682-690 
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In Figure 5-11, a string is observed being generated at the nozzle entry, travelling towards the exit 

and entering the spray. The string is larger at the entry, shrinking towards the nozzle exit as 

expected due to pressure recovery in the region further downstream, causing the collapse some 

of the cavitating structure. However, the spray cone angle has been affected significantly when 

comparing frame t=0, when no cavitation can be observed at the exit, to frames t=0.2-0.267ms, 

when the string has entered the exit and the spray cone angle is significantly increased outwards. 

By measuring the cone angle an increase from approximately 20˚ to 60˚ is observed in the very 

near-nozzle area of the jet, caused by the string cavitation.  

  

Figure 5-12. Image sequences of in-nozzle string cavitation and its impact on emerging spray at quarter lift, P2 (V2), 

Re=23300, CN=2.09, Frame: 2064-2128 

In Figure 5-12, effect of string cavitation on emerging spray via the cone angle is observed. String 

begins to develop at t=0 with a spray cone angle of around 15o. The propagation of the string 
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towards the nozzle exit causes the spray cone angle to increase so that  amaximum spray cone 

angle is observed at t=0.933ms of around 60o where the string is more developed and extended 

up to middle of the nozzle. In addition, the results show that the spray cone angle is correlated 

with the status of the string cavitation, for example, the spray angle at t=2.1ms is very similar to 

that of t=0 where the state of string cavity structures and its development are also similar. Thus, 

it is very evident that the string cavitation would clearly affect the emerging spray pattern and 

stability. Furthermore, the periodic fluctuations of the cone angle about the spray axis have  

clearly been observed causing an intermittent  wave-like instability on spray pattern. 
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Figure 5-13. Image sequences of in-nozzle string cavitation and its impact on emerging spray at quarter lift, P1.77, 

Re=19500, CN=1.84, Frame: 14117-14127 

Further image analyses made in Figure 5-13 where it shows the sequence of two string structures 

that are intracting at quarter lift and a CN of 1.84.. The phase difference between the two 

interacting strings remains approximately π radians. A cloud of bubbles is tracked in figure 5-13 

(left column), from t=0 to t=0.333ms. Observed movement suggests that these cloud propagates 

both horizontally and vertically along the nozzle. It is observed in previous images that the string 

is 3 dimensional (3D) and has components in all three directions since the flow inside the nozzle 

is 3D with both radial and axial components of velocity around the vortex. Due to the use of a 

single camera, the flow is observed only in 2D. Thus, it can be concluded that the vertical motion 

observed is the vertical component of the radial velocity vector. Measurements were taken for 

Figures 5-13, using Photron Fastcam software, where in the distinct bubble structure, positioned 
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on a string, was tracked crossing the centre line of the nozzle, where vertical velocity is assumed 

equal to the radial velocity vector. Similarly axial velocity was also tracked and calculated. This 

was done for a number of cases and thus, estimated average velocities are as follow in Table 5-1. 

 

Table 5-1. Axial and Radial Velocity Measumerent at quarter lift, P1.77, Re=19500, CN=1.84, Frame: 14117-14127 

 Axial Velocity Calculation Radial Velocity Calculation 

ΔX 

(pixels/frame) 

Vx (m/s) ΔY 

(pixels/frame) 

Vy (m/s) 

Prior to centre 

line 

16 7.2 11 4.9 

At the centre line 12 5.4 14 6.3 

Past the centre 

line 

14 6.3 12 5.4 

Mean  6.3  5.5 

 

 

It can be observed from table 5-1 that the mean axial velocity measured in Fastcam software is 

6.3m/s compared to 7.44m/s of that has been measured by flowmeter. The difference between 

these two values could be partially due to the light distortion between the nozzle and the Perspex. 

It can also be because of the fluctuations in the discharge coefficient caused by cavitations in each 

nozzle. However, it suggests that the mean radial velocity calculated in Fastcam software can be 

validated to have the same error. It can be seen from the table 5-1 that the mean radial velocity 

is 5.5m/s which shows a very significant radial component compared to that of 6.3m/s of axial 

velocity. It can be clearly seen from figure 5-13 that the spray cone angle is affected by the radial 

velocity component of the in-nozzle flow. 
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Figure 5-14. quarter lift, P5 (V1), Re=31100, CN=5.28, Frame: 1063-1070 

Figure 5-14 shows a sequence of the flow at quarter lift and CN=5.28. A bubble, along a narrow 

string structure, becomes visible at the bottom part of the nozzle, below the centre line at t=0. 

Theses distinct bubble structures, positioned on a string, were tracked crossing the centre line of 

the nozzle, at t=0.133ms in the same manner as in figure 5-14. It can be seen that the bubbles will 
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fade in the last two sequences. This has been done for a number of similar cases and the 

measured average values are presented in table 5-2. 

 

Table 5-2 Axial and Radial Velocity Measurement at quarter lift, P5 (V1), Re=31100, CN=5.28, Frame: 1063-1070 

 Axial Velocity Calculation Radial Velocity Calculation 

ΔX 

(pixels/frame) 

Vx (m/s) ΔY 

(pixels/frame) 

Vy (m/s) 

Prior to 

centre line 

22 9.9 19 8.55 

Past the 

centre line 

20 9 17 7.65 

Mean  9.45  8.1 

 

It can be observed from table 5-2 that the mean axial velocity measured in Fastcam software is 

9.45m/s compared to 11.47m/s of that has been measured by flowmeter. The difference between 

these two values suggests higher fluctuations in the discharge coefficient caused by cavitations 

at the pressure of 5bar and CN=5.28. However, it suggests that the mean radial velocity 

calculations in Fastcam software can be still validated to have the same error as axial velocities. 

It can be seen from the table 5-2 that the mean radial velocity is 8.1m/s which shows again a very 

significant radial component compared to that of 9.45m/s of axial velocity. It can be clearly seen 

from figure 5-14 that the spray cone angle is severely affected by the radial velocity component 

of the in-nozzle flow.  
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Figure 5-15. Quarter lift, P5 (V1), Re=31100, CN=5.28, Frame: 1230-1232 

 

Table 5-3 Axial and Radial Velocity Measurement at quarter lift, P5 (V1), Re=31100, CN=5.28, Frame: 1230-1232 

 Axial Velocity Calculation Radial Velocity Calculation 

ΔX 

(pixels/frame) 

Vx (m/s) ΔY 

(pixels/frame) 

Vy (m/s) 

Prior to 

centre line 

24 10.8 17 7.65 

Past the 

centre line 

22 9.9 19 8.55 

 

Figure 5-15 shows 3 frames of the sequence of the flow at quarter lift, injection pressure of 5bar 

and CN=5.28, where a bubble structure is tracked in the near of the nozzle exit area in the same 

condition as in figure 5-14. Similar bubbles have been tracked for a number of cases and Table 5-

3 shows the mean axial and radial velocity components of the bubbles being tracked. It is clear 

from the table 5-3 that both the mean axial and radial velocities are very close to each other 

having the values of 9.9m/s and 8.5m/s, respectively. Having a closer look at the upper angle of 

the spray, it can be seen that the splashes on the surface of the exit hole cause significant light 

distortion which prevents visualising the upper angle edge. However the lower angle of the spray 
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could be clearly seen at t= 0.067ms having the value of about 45 degree where there seems to be 

no splashes on the exit hole surface thus having much less light distortion. This confirms that the 

magnitudes of both axial and radial velocities are very close to each other and that the spray can 

have a cone angle of about 90 degree. 

 

The near-nozzle jet spray was analysed in MATLAB for the average value of 2000 images for each 

experimental condition. It should be emphasized that the flow under consideration is a 

continuous flow and considering the nature of in-nozzle two phase flow which may introduce 

ambiguity in the overall average results.  

It should be mentioned that for the case of 1/4  lift and for the injection pressure of 1bar, The 

intensity of the bright area within the spray was not enough to capture the exact spray edges. 

Hence the Matlab code was not able to detect the edge of the spray. In addition, for higher 

pressures of 3, 4 and 5 bar at 1/4 lift, there were significant amount of splashes which prevents 

the software to calculate the angles. For the rest of the cases, 2000 images were analysed for 

each experimental condition. The maximum deviation of the spray edge angles was 7 degrees, 

which gives a maximum angle intensity of 7/8.83=0.79, which means that the statistical error in 

mean cone angle for 2000 images would be 2 x 0.79/√2000 = 0.018 or 1.8% with 95% confidence 

level and the corresponding standard deviation would be 2 x 1/√2 × 2000 = 0.032 or 3.2% 

according to Yanta estimation [95]. Figures 5-16 to 5-19 shows the scatter plot of the upper angle, 

lower angle, axis angle and the cone angle variation in each cases. Figure 5-16 shows that the 

upper angle of the spray measured with respect to the horizontal line. The upper angles are 

assumed negative and the lower angles are positive.  

 

Figure 5-16 Upper Angle measured in Matlab software (in negative values) 
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It can be observed from figure 5-16 that the upper angles are varying between 0 to 7 degrees for 

all the cases. However the main domain is between 3 to 7 degrees corresponding to 85% of the 

cases.  It is also evident that for the very low injection pressure at needle lift of 1/4, half and 3/4 

(Case 3, 4, 11, 12 and 22), the upper angle is almost horizontal.  

 

Figure 5-17 Lower Angles measured in Matlab software (in positive values) 

 

Figure 5-17 shows the lower angle of the spray in positive values. Once again it is obvious from 

the figure that the lower angle varies within the range of -1 to 8 . However 90% of the cases are 

within the range of 1 to 4 degrees. The negative value of the lower angle (Case 18, 2/4 needle lift, 

CN = 2.08) suggests that it has been contracted towards the axis rather than being expanded from 

the axis of the spray. It can also be seen that for needle lifts of 3/4 and full, the lower angle tends 

to be reduced and obtains more stability as the injection pressure and the CN number increases.  

 

Figure 5-18 Axis Angles measured in Matlab software 

Figure 5-18 shows the changes in the axis of the spray in all the measured cases. It can be seen 

that for low injection pressure of 1bar, the plot has peaks with positive values. It can also be 

observed that the spray axis changes from positive values at low injection pressures to negative 

values at high injection pressures. The effect of the pressure on the stability of the spray is also 

observed. 
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Figure 5-19 Cone Angles measured in Matlab Softwarees 

 

Figure 5-19 shows the spray cone angles for all the measured cases. It can be claimed from the 

chart that as the pressure increases at the needle lifts of 3/4 and 4/4, the Cone angle decreases 

and tend to have an assymptode of about 8 degree. 

 

 

Figure 5-20 Effect of Pressure on Spray Cone angle at Full Lift. 

 

Figure 5-20 shows variations of the overall cone angles as a function injection pressure (or CN) 

and shows a steady decrease in cone angle with pressure up to P=4bar and then it became almost 

uniform from 4 to 5bar. This may be expected as the pressure increases the flow momentum and 

turbulence will increase too which makes the emerging jet stronger and less susceptible to small 

in-nozzle flow variation.  
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Figure 5-21 Effect of Needle Lift (right) on Spray Cone angle at CN = 2.09. 

 

Figure 5-21 shows variations of the cone angle as a function of needle lift at a given pressure and 

shows that the angle increases with lift. As mentioned earlier on the flow losses occur when the 

needle lift is reduced which causes lower flow momentum and suppressing the turbulence. This 

suggests that there would be a higher level of diffusion at the higher lift causing larger cone 

angles. In addition, as it has been shown above, the in-nozzle cavitation at the lowest lift was 

suppressed (delayed) and less intense compare to those at the full lift which implies less influence 

on the emerging jet and therefore smaller cone angles at the lower lifts.  

 

 Results for 7 times enlarged model 

 

Sample images of the results for 7 times enlarged model are shown in Fig. 5-22. A sequence of 

images of the in-nozzle flow and the emerging spray at quarter lift and full lift at cavitation 

numbers of CN = 1, 1.5, 1.75, 2, and 2.5. Cavitation was not present at CN range between 0.75 to 

1.0. Increasing cavitation above 1 induces cavitation in the nozzle and resulted to full film 

cavitation at CN=2 at full lift. It can be claimed that as the cavitation number rises from 1.0 to 2, 

the upper near-nozzle spray angle increases due to cavitation as can be seen from the images 

shown in Fig. 5-22. 
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Figure 5-22 Cavitation development at quarter lift (left column) and full lift (right column) at different CNs for 7 

times enlarged model. 
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As cavitation number gradually increases from 1.5 to 2.0, the geometric cavitation becomes more 

intense and stretches down the nozzle towards the exit. Another observation is that the structure 

of the geometric cavitation on top of the nozzle undergoes a transition with increase in CN from 

a cluster of bubbly cloud vapour at CN=1.5 into a smoothly horseshoe film cavitation as evident 

from images at CN=2 respectively; At full lift, as CN increases further from 2 to 2.5, the film 

cavitation is stretched out and will reach the nozzle exit. Consequently, a pocket of air will be 

sucked into the upper part of the nozzle and hydraulic flip will occur. This will have huge impact 

on the structure and the angle of the upper and lower edge of the near exit spray.  It can be seen 

from Fig. 5-22 that the majority of the visible volume of the fluid (VOF=1) is located at the lower 

half of the nozzle.   

Figure 5-23 shows a sequence of cavitation shedding at CN = 2 captured at 200000 frames per 

second at CN=2. The whole sequence covers a time duration of 150 µsec. there is a 25 µsec 

between each image. It was observed that these cavitation structures are expanding and 

contracting with a frequency of shedding of 8-12 KHz. 

 

      

Figure 5-23 Cavitation shedding at the inlet of the nozzle at 200,000 frame per second, the frequency for shedding 

was observed to be 8 to 12 KHz 
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5.3.1 CFD simulations 

Fig 5-24 shows the contour plots of the instantaneous VOF at t = 25 μs ASOI for fuel pressure of 

20MPa using the lagrangian VOF model for a similar SIDI fuel injector [96]. Although the pressure 

condition in this work [96] is much higher than the pressure conditions in the current study, 

similarities are observed in the structure and VOF distribution of the real-size injector and the 7 

times enlarged model which emphasizes the importance of using enlarged model. It is argued 

here that the“bubbles”shown in the VOF plot in Figure 5-24 (in the sac volume and nozzle 

entrance) is not due to cavitation, but due to the slow scavenging of the air in this region (at the 

start of simulation) by the liquid flow. However, further work needs to be done to understand 

how these complex flows interact with the surrounding air and how primary breakup is induced. 

                                               

Figure 5-24  Contour plots of the instantaneous VOF fields of in-nozzle flow and the very near-nozzle spray in 

gasoline stepped  multi-hole injector at t = 25 μs ASOI (fuel pressure = 20MPa) [96] 

 

Figure 5-25 shows CFD simulation of a similar SIDI nozzle configuration using the cavitation 

modelling at 0.1 ms ASOI at pressure of 200 bar using Ansys. It is clear from the figure 5-25 that 

there are 2 distinct cavitation regimes, one is the string cavitation and the other is geometric 

cavitation. 
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Figure 5-25 Contour plots of instantaneous VOF  field of in-nozzle flow and near-nozzle spray at on the mid-plane 

of gasoline stepped multi-hole injector 

Figure 5-26 shows a similar SIDI nozzle configuration and the 3D simulation for the ligaments' 

breakup [97]. Here an Eulerian-Eulerian method was used where all phases share a single 

velocity field. Mass transfer between fuel and fuel vapour is considered with the use of the 

Rayleigh-Plesset cavitation model. Turbulence is considered with the RANS approach, where 

flow variables are decomposed into mean and fluctuation terms. Stochastic impact of 

turbulence is considered through the two additional transport equations of the k-ω-SST 

turbulence model. These are used to close the system of partial differential RANS equations for 

mass and momentum conservation. [97] 

 

Figure 5-26 Contour plot of VOF field and velocity vector of in-nozzle floe and near-nozzle spray in stepped-

multihole injector [97] 
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It could be seen in figure 5-26 that the VOF of the flow is higher on the outer part of the nozzles. 

This is due to the angle of the axis of the nozzle with respect to the injector axis. It is also clear 

that void areas are visible where possible geometric and string cavitation are taking place. [97] 

 

 

 

 

 

 

 

 

Figure 5-27 Contour plot of VOF field and velocity vector of in-nozzle flow and near-nozzle spray in stepped-

multihole injector at 200 bar injection pressure [97] 
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5.3.2 Breakup regimes 

Fig 5-28 shows a sequence of 6 consecutive images of the in-nozzle flow and the emerging spray 

at CN = 2.0 during 100μs. The sequence depicts the near-nozzle structure of the spray with the 

extension of the smooth curved line that is stretched out of the nozzle. At t = 0, a pocket of 

bubbles was observed at the lower part of the nozzle inlet. This moves down and reaches the 

nozzle exit at t=100μs. This shows that the average velocity of this pocket is around 20m/s. 

However the upper part of the spray has much lower velocity (around 7m/s; tracked by the bold 

yellow circles) compared to the bottom part of the nozzle where the bulk of the liquid exists.  

 

 

 

  

 

 

 
Figure 5-28 a) Comparison of the velocity field at the upper part where a stochastic ligament experience breakup 

and the lower part of the very near-nozzle spray where the main jet exists (CN=2)  

Figure 5-29 suggests three different mechanisms seen responsible for breakup of different parts 

of the near-nozzle spray in the 7-times enlarged model.  a)  The stochastic ligament breakup at 

the upper part of the spray b) The stochastic sheet (shell) breakup at the upper part of the spray. 

c) Main jet breakup at the lower part of the spray. In all these breakup regimes cavitation and 

turbulence and aerodynamic drag forces play an important role. Note the inverse T shape of the 

jet spray at the exit. 

t = 0μs 

t = 20μs 

t = 100μs 

t = 80μs 

t = 60μs 1mm 

t = 40μs 
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Figure 5-29 Possibility of three different mechanisms seen responsible for breakup of different parts of the near-

nozzle spray.  a)  The stochastic ligament breakup at the upper part of the spray b) The stochastic sheet (shell) 

breakup at the upper part of the spray. c) Main jet breakup at the lower part of the spray d) tip wetting at the 

upper part of the nozzle tip where cavitation/hydraulic flip occurs 

Figure 5-30 shows a schematic for the stochastic ligament spray region created at the sides of 

the spray. 

 

 

 

 

 

Figure 5-30 a) The stochastic ligament spray and the main spray of the near-nozzle jet proposed in this study also 

proposed in [98]   
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5.3.3 Nozzle tip wetting 

Figure 5-31 shows the breakup of the stochastic ligament spray (frame rates up to 100,000fps) 

being formed at the upper side of the nozzle exit which could ultimately contribute to the nozzle 

tip wetting in the areas where cavitation/hydraulic flip occurs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-31 the yellow arrow shows the breakup of the stochastic ligament spray being formed at the upper side 

of the nozzle exit which could ultimately contribute to the nozzle tip wetting in the areas where 

cavitation/hydraulic flip occurs 

 

(b)                   (b) 

Figure 5-32 (a) High-speed visible light images of spray and tip wetting of a two-hole injector, field of view 1.5 × 

1.5 mm2 . Injection of n-heptane at 200 bar; the solenoid is energized for 1.5 ms and the injection ends at around 

1.8 ms. (b) Fuel distribution and the wetted areas on injector tip, 4 ms AESOI, the white colored areas shown are 

saturated film formation, it is clear that the maximum film formation is inside the inner circle of the nozzles [23] 

 

t = 0μs t = 20μs t = 40μs t = 60μs t = 80μs t = 100μs 
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5.3.4 Directionality of string cavitation 

Figure 5-33 shows a sequence of the position of the strings inside the nozzle hole affecting the 

geometric cavitation region and consequently resulting in a change in spray axis angle and cone 

angle at quarter lift for CN=2 during time resolution of 200μs. The figure shows the directionality 

of the vortex and its link to spray axis and cone angle. In the first image (t=0) at the bottom of the 

column the string is inclined downward along the centreline of the nozzle. It was observed that 

the resulting cone angle has an axis inclined downward to that of the nozzle or string. In the 

second image (t=100μs) the string is tilted slightly upward from its original position so that it 

merges with the geometric cavitation region.  

 

     (a)                     (b) 

Figure 5-33  Left (a) Directionality of the vortex cavitation and its effect on spray at Full Lift, Right (b) The 

corresponding cross-sectional image of the string geometric locus, (Gavaises et al 2008) 

The result shows that the spray cone axis has also tilted upward above the original nozzle axis. In 

the third image, (t=200μs), the string is completely merged with the geometric cavitation region 

t = 0μs 

t = 100μs 

t = 200μs 
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and will create shedding with the frequencies of 8-12 KHz mainly visible at the top of nozzle exit 

and it shows that the spray cone axis has tilted above the original axis. Therefore, this behaviour 

confirms the spray cone angle being affected by the directionality of induced string cavitation. 

For this model further analysis was done on spray cone angle using Matlab programme just as 15 

times enlarged model. The definitions used for spray cone angles for 7 times enlarged model are 

shown in Figure 5-34 which shows an individual jet spray with the overall cone angle, top and 

bottom half angle, nozzle axis and jet spray axis; the latter may move above or below the nozzle 

axis depending on in-nozzle geometrical and vortex cavitation. The nozzle axis has been used as 

the reference 0 degree angle for the presentation of the results. The cone spray angles were 

measured at different CN numbers for different needle lifts.  

 

Figure 5-34 Top angle and bottom angle for 15 times enlarged model as measured by Matlab Software; nozzle 

axis angle is used = 0 

Figure 5-35 and 5-36 shows variations of the upper and lower angle (respectively) of the 7 times 

enlarged model as a function of CN numbers for quarter and full lift. The results show that the 

absolute value of the angle increases with increase in CN numbers. It could be claimed that as 

cavitation number increases for both lifts, the cavitation collapse of bubbles will increase the 

turbulence of the flow which will result in greater radial velocities and will lead to this increase in 

the upper angles for both lifts. However as mentioned earlier for the 15 time enlarged model, 

losses occur when the needle lift is reduced from full to quarter half which causes lower flow 
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momentum and suppressing the turbulence. This suggests that there would be a higher level of 

diffusion at the higher lift causing larger cone angles. In addition, as it has been discusses for 15 

times enlarged model, the in-nozzle cavitation at the lowest lift was suppressed (delayed) and 

less intense compared to those at the full lift which implies less influence on the emerging jet and 

therefore smaller cone angles at the lower lifts. It can be seen that for CN of 2.5 the upper angle 

was not clearly present due to the hydraulic flip. 

 

 

Figure 5-35 Effect of CN Number on Upper Angle 

 

 

Figure 5-36 Effect of CN Number on Lower Angle 
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 Summary 

 

In this chapter, high-speed visualisation (Mie Scattering) technique was used to visualise the in-

nozzle flow and cavitation development inside a 15-times transparent enlarged model of a 

conventional multi-hole injector (6-holes symmetric). The near-nozzle exit jet spray was also 

visualised simultaneously and quantitatively measured along with the in-nozzle flow cavitation to 

further understand the effect of cavitation on the near-nozzle jet spray instability. Geometric and 

string cavitation was observed in the nozzle and their site of occurrence was visualized. It was 

seen that both geometric and string cavitation can influence the stability of the near-nozzle exit 

spray. A reverse backwards vortex were also observed inside the nozzle at low cavitation numbers 

which affected the spray structure and cone angles. Two counter rotating strings were observed 

at high cavitation numbers which caused a highly turbulent in-nozzle flow. The directionality of 

the string cavitation and the spray angle was also visualized. Here is the summary of the main 

findings from the 15-times enlarged model. 

• The interaction between the geometrical and vortex cavitation shows the displacement 

and rolling of the leading edge of the geometric cavitation on the top surface near the 

hole entry at full lift and high cavitation and Reynolds number.  

• The displacement and possible impact of bubble pockets on the top surface of the nozzle 

at full lift and high cavitation and Reynolds number were also visualised and analysed. 

The bubbles burst through micro-burst process with velocities much higher (by order of 
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magnitude) when they get near the surface where the pressure in recovered and their 

possible impact would result on further erosion. 

• Two counter (highlighted) rotating vortex cavitation coexist at the same time inside the 

nozzle hole originated from the top and bottom side of the nozzle at the inlet and get 

closer together as they convected downstream so that they almost merged together 

nearer to the exit. 

• Directionality of the vortex cavitation and its effect on spray at Full Lift were visualized 

which shows that the position of the string inside the nozzle might affect the spray 

angles. 

• At injection to atmosphere at low cavitation numbers, with no geometrical cavitation, a 

random transient reverse vortex structure was found to be initiated outside the nozzle 

near its exit in tenth of a millisecond and moved into nozzle towards its inlet and 

developed/ and maintained its structure inside the nozzle for several milliseconds. It was 

found that increasing the needle lift for the same low cavitation number seems to 

decrease the duration of the air entrainment and penetration inside the nozzle. 

• It was observed that string cavitation can influence the size of the cone angle. It was seen 

that as the string cavitation is reached towards the end of the nozzle, the cone angle 

increases significantly. 

• The variations of the overall cone angles as a function injection pressure (or CN) was 

analysed which shows a steady decrease in cone angle with pressure up to P=4bar. 

• The variations of the cone angle as a function of needle lift at a given pressure shows that 

the angle might increases with increasing the needle lift. 
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In the second phase of the experimental investigation, a new original 7-times enlarged model of 

the same injector was designed and manufactured utilising a CAD software that allowed an 

enhanced simultaneous visualisation of the in-nozzle flow and near-nozzle jet spray. In this phase, 

the transparent model was uniquely designed in SOLIDWORKS that allowed both in-nozzle flow 

region and the near-nozzle exit spray region to remain optically sharp enough in the same depth-

of-the-field region of the camera (DoF of less than 1mm) . The main contribution of the author 

was to enhance the visualization technique that allowed simultaneous visualization of the link 

between in-nozzle flow pattern and the near-nozzle jet spray. The main finding in this phase are: 

• The structure of the geometric cavitation on top of the nozzle undergoes a transition with 

increase in CN from a cluster of bubbly cloud vapour into a smoothly horseshoe film 

cavitation;  

• Cavitation shedding at CN = 2 was captured at 200,000 fps. 

• It was seen that a pocket of air will be sucked into the upper part of the nozzle at CN higher 

than 2 and hydraulic flip occurs. This will have huge impact on the structure and the angle 

of the upper and lower edge of the near exit spray and will ultimately result in the 

formation of a stochastic ligament spray at the top side of the nozzle.   

• The possibility of three mechanisms are likely to be responsible for the breakup of the 

near-nozzle spray at high  CN numbers in enlarged model. The first mechanism is the 

stochastic ligament breakup at the upper part of the spray at the 12 o clock position. These 

ligaments are likely to be the resultant of the interaction of the highly turbulent flow inside 

the nozzle and the upper surface of the nozzle close to the nozzle exit. The second 

mechanism is likely to be the stochastic sheet (shell) breakup which is likely to be formed 
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circumferentially on both sides of the nozzle wall located at first and fourth quadrant at 

the cross section of the nozzle exit. The last mechanism responsible for the breakup is the 

main jet breakup at the lower part of the spray. In all these breakup regimes cavitation 

and turbulence and aerodynamic drag forces play an important role. 

• It was observed that the stochastic ligament spray can contribute to tip nozzle wetting at 

the upper part of the nozzle. 

• It was observed that the string cavitation inside the nozzle hole affects the geometric 

cavitation region and consequently resulting in a change in spray axis angle and cone 

angle. 

• The results show that the absolute value of the angle increases with increase in CN 

numbers. 

• It was revealed that the hydraulic flip happens earlier than expected and at lower 

cavitation numbers compared to 15 times enlarged model.  
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6 Chapter 6: Spray Visualisation in Real-size High-pressure 

Experimental Test Rig 
 

  Introduction 

 

In this chapter, fuel spray characteristic from the stepped multi-hole nozzle have been 

investigated by visualising the spray using a high speed camera at different operating 

conditions. Table 6-1 provides the running conditions of  the fuel jet spray  investigated 

under different injection pressures and durations. The injection pressures were chosen 

in a manner to represent the working pressure range of the injector (40-180 bar) with 

100 bar set as the upper limit due to limitations of the fuel injection system at the time.  

Pressures lower than 40 bar were also investigated to obtain the full set results. 

Table 6-1 Operating conditions for the experiment for visualisation of the real size spray 

      Duration 

Pressure 

0.6 0.65 0.7 0.8 0.9 1 1.5 2 2.5 

20        x  

30        x  

40        x  

50        x  

60        x  

80        x  

100 x x x x x x x x x 
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It should also be noted that some previous spray results [88] and [89] from two different 

injectors has been presented for comparison. Some details of the current injector and 

the other two types of injector are shown in table 4-3 in methodology chapter. Injector 

1 and 2 are from previous works and injector 3 is the one used in the current study. 

 Volumetric and mass rate flow analysis 
 

Figure 6-1 and 6-2 shows the syringe which was used for volumetric efficiency 

measurement. The fuel was injected into an isolated syringe and up to 2000 injections at 

different duration and pressure were measured.  The total mass was then calculated on 

a 0.1 milligram precision scale (10-4 gram). The volume was then isolated and calculated 

by multiplying the total mass by the specific volume of the fuel. Afterwards, the mass 

rate per injection and the volume per injection for the current injector at 3 different 

pressures was measured by dividing the values by 2000.  

It is clear that as the pressure increases the flowrate increases too. It is also clear that 

during 1ms and 2ms the flow rates increases linearly with time.  
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Figure 6-1 Mass flow rate per injection for the current injector at 3 different pressures 

 

Figure 6-2 Volumetric flow rate per injection for the current injector at 3 different pressures 

 

 Settings for Mie scattering and shadowgraphy  

Due to compact multi-hole nozzles arrangement and also because of the asymmetric 

spray pattern, it was impossible to separate all the spray jets individually for imaging.  

Thus,  during the spray visualisation, it was decided to analyse spray cone angle for two 
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sprays overlapped on each other. Tables 6-3 below shows the camera setting with 

different magnification ratios used to visualise the overall spray and the near-nozzle 

spray. 

Table 6-2 shows the camera setting with different magnification ratios used to visualise the overall 

spray and the near-nozzle spray 

Mie Scattering 

Class Overall Spray  

Angle 0 

Overall Spray 

Angle 90 

Near-nozzle  

3 holes 

Pixel/mm ratio 8.5 8.4 84 

Magnification 

(ratio of object 

size to CMOS 

image size) 

0.3 0.3 3 

Image size (pixels) 384x672 384x672 384x320 

Shutter 

speed/framerate 

1/309000 sec 

20000 fps (50 µs) 

1/309000 sec 

20000fps (50 µs) 

1/309000 

40000fps (25µs) 

 

Table 6-3 Shadowgraph setup of camera 

Shadowgraph 

Class Near-nozzle  

3 holes 

Near-nozzle 

1 hole 

Pixel/mm ratio 84 84 

Magnification 3 3 

Image size 384x320 128x320 
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Shutter 

speed/framerate 

1/2700000 

40000fps (25µs) 

1/2700000 sec 

80000fps (12.5 µs) 

 

 Initial development of the spray 

In figure 6-3 the plane of view of the injector spray is presented from 5 different 

rotational angles.  

 

 

(a)            (b)                      (c)               (d)          (e) 

Figure 6-3 Spray visualization at 100 bar injection shown from different angles (a) 0 degree  (b) 20 degree 

(c) 45 degree  (d)  90 degree  (e) 180 degree 

Out of these views, only 0 degree and 90 degree configurations has been investigated 

further. 

From the time of the start of needle lift, till it is fully lifted, there is a transient phase 

present where the spray structures, macroscopic and microscopic, are continually 

changing due to the transient movement of the needle which causes rapid changes in 

pressure in the sac volume and in the nozzle itself which will ultimately influence the 

transient development of the spray in this phase as the first parts of the spray is exiting 

the nozzle. It is known that the AESOI (After Electronic Startof Injection) time is the time 

when the electronic trigger takes place. It is also known that the ASOI (After Start of 
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Injection)  time is defined as the time when the spray is visible for the first time from the 

nozzle which is 0.65 ±0.05 ms AESOI. By observing the injector needle pulse graph, the 

transient phase exists between 0.65 ms AESOI and 0.7 ms AESOI approximately which is 

equal to 0 ms to 0.05 ms ASOI. The ASOI is defined as the time when the spray is visible 

for the first time from the injector. Development of the spray after the transient phase 

and creation of the fully developed spray is seen by the distinct characteristics of the 

spray at varying pressure, as shown in Figure 6-4. 
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Figure 6-4 Images showing spray development of injector 3 and the existence of transient phase at 

different pressures and times ASOI.  

 

 

 

10mm 
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 Overall spray pattern 

 

In the next phase, the overall spray pattern was visualised as a function of time ASOI. 

After the overall spray pattern is shown, the structure of the spray is compared with 

Bosch multi-hole conventional injector (#1) with straight nozzles. This is important in 

order to understand the effect of stepped hole on the spray structure and how the fuel 

and air is mixed in the combustion chamber before the spray is fully evaporated. It was 

decided to study the spray characteristics only under atmospheric condition in order to 

gain a better insight into how to conduct the PDA measurement with enough spray 

visualisation backup. Therefore the effect of back pressure was not the focus of our 

study. In this manner, the spray tip penetration and cone angles were also calculated, 

and the results are presented in this chapter. The near-nozzle exit spray is also visualised 

in order to gain better understanding of the structure and the shape of the jet spray and 

the phenomena dominating the breakup of the jet. 

Fig 6-5 shows the sequence for the overall spray structure of the stepped-nozzle Bosch 

injector.  The injector is operating at 100 bar rail pressure and 2ms driver pulse duration.  

There are 7 holes in this injector and only 5 of the jets are visible from the view shown 

in figure 6-5. The sequence begins at 0.1ms ASOI and continues in 0.1ms time steps. It 

could be seen from figure 6-5 that the core of the jet is wider compared to conventional 

injectors in figure 6-6 with enhanced atomisation and has a more irregular pattern in the 

fully developed mode. There seems to be more instability in the spray and the two 

middle jets are sometimes flapping from one side to another side creating a snake shape 
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pattern. This is more evident towards the end of the injection event as could be seen 

from figure h to i. It can also be seen that the spray tip vicinity is also more atomised 

compared to the conventional injector. 

Another feature which is evident from the structure of the spray in figure 6-5 is the A 

shape of the spray and the interaction between the adjacent jets. This shows that there 

is a high amount of air entrainment from the surrounding air which causes the two 

adjacent jets to interact with each other and create an A shape. 

It was observed that there is high interaction between each jet and the adjacent jet and 

therefore a distinct boundary between each jet is not recognisable as the spray develops 

further downstream in comparison with conventional multi-hole in figure 6-6 where 

there is a clear boundary between each jet and less interaction is visible between each 

individual jets. 
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Figure 6-5 The overall spray structure of the stepped-nozzle Bosch injector.  The injector is operating at 

100 bar rail pressure and 2ms driver pulse duration.  The sequence begins at 0.1ms ASOI and continues 

in 0.1ms time steps.  

An example of the overall spray structure of the conventional Bosch injector is shown 

in figure 6-6.  The injector is operating at 120 bar rail pressure and 2ms driver pulse 

injection duration. The sequence begins at 0.125ms ASOI and continues in a time step 

of 0.125ms [88]. Here the centre of the jet is clearly very bright indicating the presence 

10mm 
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of the core of the jet spray, and the tip of the spray is sharp and narrow. This is perhaps 

due to lack the presence of a step in the conventional injector which is subject to lesser 

amount of early-air entrainment and therefore exhibit a sharper and brighter patterns 

alongside the axis of the jet. 

 

Figure 6-6 An example of the overall spray structure of the conventional Bosch injector(#1).  The 

injector is operating at 120 bar rail pressure and 2ms driver pulse duration. The sequence begins at 

0.125ms ASOI and continues in 0.125ms time steps [88] 

The overall jet penetration of the stepped-nozzle injector was compared with that of the 

conventional injector. It was found that the overall tip penetration of the current injector 
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(stepped-hole nozzle) was almost 50mm at 0.75ms ASOI (1.5ms AESOI) according to the 

graph in figure 6-14 which is similar to that of the conventional injector at the same ASOI 

of 0.75ms according to figure 6-6. Due to the fact that the size of the stepped-hole nozzle 

was not precisely provided, it is not possible to directly compare the penetration 

together however disregarding the design of the injector, it could be concluded that both 

injector exhibits more or less same performance with relation to tip penetration length. 

6.5.1 Effect of injection duration on spray pattern 

 

The effect of injection duration on the spray characteristics was also investigated.  There 

are two reasons for this. The primary goal is to find out the time required as the minimum 

injection duration to produce a stable injection. This is particularly important for multiple 

injection strategies as well as the minimum load capacity of the engine in stratified mode 

[88]; The second reason is to determine whether any changes in injection duration during 

the stable range resulted in any changes to the spray structure.   

It should also be mentioned that two different side viewing angles were examined for 

the spray pattern with respect the central axis of the injector. One angle was 90 degree 

and the other angle was 0 degree. In the 90-degree configuration the spray pattern has 

a symmetric shape similar to 6 hole conventional injector but with an extra hole located 

in the middle of the spray pattern. The cone angles in this configuration has been 

measured and reported to be around 73±2 degrees at pressure of 100 bar. Also, that the 

extra jet is vertical which is evident in the figures 6-9 compared to conventional injector 
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in figure 6-6. In addition, the spray was visualised from 0-degree angle. In this 

configuration, the spray has asymmetric shape and the tip penetration was calculated 

for this configuration. Due to the compact configuration of the injector holes it was not 

possible to isolate one spray and therefore a pair of sprays were isolated.  The only 

option was to isolate a pair of sprays with the optics arranged such that the rear spray 

remained out of focus and entirely obscured by the visualised spray in the foreground. 

Figure 6-7 shows the overall spray structure of the stepped-nozzle injector for the 

duration of 1 ms.  The injector is operating at 100 bar rail pressure and is sprayed into 

the ambient pressure.  The sequence begins at 0.1ms ASOI and continues in 0.1ms time 

steps. It could be observed that at the start of the spray, there are some irregularities in 

the structure of the spray ie the core of the two brighter jets are sometimes wobbling 

and snaking into right or left side. This shows that even at lower injection duration there 

are instabilities in the structure of the spray.  
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Figure 6-7  Sequence images of the overall spray structure of the stepped-nozzle Bosch injector (#3) at 

100 bar rail pressure and 1ms driver pulse duration; the sequence begins at 0.1ms ASOI and continues 

in 0.1ms time steps.  
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Figure 6-8 The overall spray structure of the stepped-nozzle Bosch injector.  The injector is operating at 

100 bar rail pressure and 0.7ms driver pulse duration.  The sequence begins at 0.1ms ASOI and 

continues in 0.1ms time steps.  

Figure 6-8 shows the overall spray structure of the stepped-nozzle Bosch injector.  The 

injector is operating at 100 bar rail pressure and 0.7ms driver pulse duration.  The 

sequence begins at 0.1ms ASOI and continues in 0.1ms time steps. It could be seen that 

the spray exhibit a more irregular shape while being injected at shorter duration. 

 

 

 

10mm 
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6.5.2 Effects of Varied Injection pressure on spray pattern 

Figures 6-9, 6-10, 6-11 and 6-12 shows the spray visualisation of the current injector 

under investigation (injector #3) at 0.25ms, 0.5, 0.75 and 1 ms ASOI and 2ms driver pulse 

duration for varying rail pressures. The images are at 120 bar, 60 bar, 40 bar and 20 bar 

rail pressure, respectively. It is obvious that the pressure increases the tip penetration at 

similar ASOI time. Figure 6-13 shows the spray visualisation of Magneti Marelli injector 

(injector #2) at 0.25ms ASOI and 2ms driver pulse duration for varying rail pressures. The 

images are at 120 bar, 60 bar, 40 bar and 20 bar rail pressure, respectively. Comparing 

the images of 6-9 and 6-13, it could be seen that at the same conditions, the resultant 

spray from injector 3 (stepped hole Bosch) is more denser and has high interaction 

between adjacent jets while the structure of the jets in injector two (Magneti Marelli) is 

spaced more widely with clear boundary between each jet. It could be seen from figure 

6-14 that the penetration of the current injector at 100 bar at 0.25 ASOI (0.9 AESOI) is 

around 22mm. This is also visually shown in figure 6-9. It could be seen from figure 6-13 

that the penetration of injector 2 at the pressure of 120 bar at 0.25 ms ASOI is around 

23mm. this shows that injector 2 and 3 exhibits similar performance with respect to tip 

penetration however it should be mentioned that a direct comparison could not be made 

between the two injectors here since the internal design of the two injectors are 

different than each other and also the exact size and angle of the holes of each nozzles 

are different. It has been shown in [88] that the internal design of Magneti Marelli has a 

guide for the needle movement which is different than that of the current injector and 
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can influence the internal flow inside the hole and ultimately the tip penetration of the 

spray. 

 

 

 

 

 

 

 

 

 

Figure 6-9 The spray visualisation of the injector under investigation at 0.25ms ASOI and 2ms driver 

pulse duration for varying rail pressures. The images are at 100 bar, 60 bar, 40 bar and 20 bar rail 

pressure, respectively. 

 

 

 

 

 

 

 

 

 

Figure 6-10 The spray visualisation of the injector under investigation at 0.5ms ASOI and 2ms driver 

pulse duration for varying rail pressures. The images are at 100 bar, 60 bar, 40 bar and 20 bar rail 

pressure, respectively. 
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Figure 6-11 The spray visualisation of the injector under investigation at 0.75ms ASOI and 2ms driver 

pulse duration for varying rail pressures. The images are at 100 bar, 60 bar, 40 bar and 20 bar rail 

pressure, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 6-12 The spray visualisation of the injector under investigation at 1ms ASOI and 2ms driver 

pulse duration for varying rail pressures. The images are at 100 bar, 60 bar, 40 bar and 20 bar rail 

pressure, respectively. 
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Figure 6-13 The spray visualisation as a reference point for comparison from one nozzle of Magneti 

Murelli injector (injector 2) at 0.25ms ASOI and 2ms driver pulse duration for varying rail pressures. 

The images are at 120 bar, 60 bar, 40 bar and 20 bar rail pressure, respectively. 

 Spray tip penetration and cone angle 

Understanding the changes in the overall cone angle and the spray penetration at varying 

injection pressure in multi-hole injectors, is of great importance. There are a few reasons 

behind this. One reason is that during the late compression injection event (stratified 

mixture) when the spray will travel towards the piston with a speed comparable with the 

piston speed and possibility any spray impingement on the piston cylinder, which could 

result in unburned hydrocarbon production and incomplete combustion. Another reason 

is again to prevent impingement of the spray plume on the wall of the cylinder for the 

homogeneous mixture during the intake injection. Spray penetration should be studied 

in order to understand the boundary of the physical spray and the maximum spatial limit 

each individual jet can reach in order to fully adapt and utilise the spray pattern inside 
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the combustion chamber. Hence, the effect of varying injection pressure will be first 

investigated in the next section. The injection pressure of 50 and 100 bar was 

investigated.  

 Effects of Varied Injection pressure on maximum spray tip 

penetration  

The effect of injection pressure on the spray penetration has been examined in this 

section. It is important to characterise the tip penetration as a function of time in order 

to obtain a good set of experimental result that could be used as a reference for 

verification of theoretical models. 

In figure 6-14 the spray penetration for two different pressure of 50 bar and 100 bar is 

shown. It can be seen that the spray penetration has higher values when the pressure is 

100 bar compared to the curve of 50 bar. These figures have been obtained from average 

of 50 injections in Matlab Software. It could be seen in the figure that the slope of both 

curves are steeper from 0.8ms AESOI (0.15ms ASOI) until 1.2 ms AESOI (0.55ms ASOI) . 

From 1.2ms AESOI onwards there is a slight decrease in the slope of both curves. This 

happens at the distance of 30mm away from nozzle for the pressure of 50 bar and at the 

distance of around 40mm away from nozzle with 100 bar pressure. This slight decrease 

could be due to the the aerodynamic drag of the ambient air which can reduce the speed 

of the fully atomised droplets significantly. The calculations for the standard deviation 

for the spray tip penetration was done for 50 images for each local ASOI times and are 

shown in figure 6-14.  

The equation for calculation of the standard deviation is: 

 𝑺 =  √∑
(𝒙−𝒙)̅̅ ̅𝟐

𝒏−𝟏
         Equation 15 

As an example, for 1ms ASOI the standard deviation was calculated from the 

penetration values of 50 images to be 2.1mm at 100 bar injection pressure. 
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Figure 6-14  Comparison of the jet tip penetration(mm) at injection pressures of 50 bar and 100 bar. 

In another effort the spray tip penetration for the three regions shown in figure 6-15 

was obtained and compared with each other. The combined results are presented in 

Figure 6-16. 



 
 
 
Chapter 6                       Spray Visualisation in Real-size High pressure Experimental Test Rig 

216 

 

Figure 6-15  Schematics of the spray tip penetration in the case of multiple axial tip penetration in 3 

different regions  

It is clear from Figure 6-16 that the penetration in the centre region is the maximum in 

any time ASOI. However, it could also be seen that the right region has a slightly higher 

penetration than the left region. This is ofcourse expected due to the the difference 

between the angles of each jet plus the difference in the discharge coefficient for each 

hole under turbulent conditions and also perhaps existence of a flapping central jet 

which affects the adjacent jets around itself.  
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Figure 6-16 The spray axial tip penetration for 3 different regions at 50 bar pressure. It is clear from the 

images that the center region has higher tip penetration compared to the right and left regions.  

 

Figure 6-17 The spray axial tip penetration for 3 different regions at 100 bar pressure. It is clear from 

the images that the center region has higher tip penetration compared to the right and left region.  
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 Effects of Varied Injection Pressure on Spray Cone Angle 

 

It is also important to investigate the effect of injection pressure on the spray cone angle. 

This is particularly of importance because the spray needs to be injected in the 

combustion chamber in a side-mounted position and the overall cone angle determines 

the range over which the fuel is translated and mixed with air inside the combustion 

chamber. This is important for fuel mixture preparation in the combustion chamber and 

reaching a stoichiometric combustion in homogeneous mode. It is also important for 

stratified combustion mode when a short duration spray is injected closed to the vicinity 

of the spark plug. Any instability in the cone spray angle can perhaps cause misfires or 

unburned hydrocarbons which is not ideal for a complete clean combustion. 

Figure 6-18 shows cone angle for the spray at pressure of 50 and 100 bar at different 

ASOI times. It could be seen that the average spray cone angle for 50 bar was found to 

be 63.2 degrees. This was 72.1 degrees at 100 bar. There was an increase of around 9 

degrees from 50 bar to 100 bar. For mean calculation for each graph, 50 images were 

analysed for each ASOI time. The standard deviation was also obtained from equation 

16 for each case. The maximum standard deviation for the sample mean was found to 

be 0.12 degrees. 
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Figure 6-18 Spray mean cone angle measurement 

 

 Mie scattering of near nozzle at different angles 
 

In this section, the near-nozzle Mie scattering visualisation of 3 jets of the spray at 

different angles of 0, 20, 90, and -90 configuration will be shown. At the beginning, the 

nozzle design was studied under the microscope with high magnification ratio. The 

injector was rotated at different angles and the spatial change in the location of the 

nozzle hole configuration was studied. This was important to obtain a better 2D 

understanding of the position of each of the jet spray at the near-nozzle area. Figure 6-
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19 shows a magnified photo of the tip of the injector and the hole that was under 

investigation. 

                                          

Figure 6-19 shows a magnified photo of the tip of the injector and the hole that was under 

investigation. 

Using this information, one can better isolate the jets when for visualisation, 

shadowgraph and PDA measurement. This is important for the next section where in the 

shadowgraph configuration the jet cone angle will be analysed. In addition to this, the 

shape and size of the core jet can approximately be measured using both Mie scattering 

and shadowgraph technique. this data will be used in PDA measurement in the next 

chapter. 

In general, the individual spray jet angle can be calculated by isolating one of the sprays. 

As this was not possible in the experiment due to the very narrow spacing configuration 

of the nozzle holes, two of the spray jets were isolated and overlapped on each other 

and the jet angle was calculated for them. This is clear from the figure 6-20 a) below 

which shows the 0 degree configuration.  
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Figure 6-20 shows the tip of the injector was photographed under high magnification condition in 

order to obtain the best angle for spray visualisation, shadowgraph and PDA measurement. 

 

 Shadowgraphy of near-nozzle jet spray (0 angle) 

Figure 6-21 shows examples of high speed Mie scattering technique and near-nozzle 

shadowgraphy used to visualize the spray structures in order to obtain qualitative 

characteristics of the spray and more importantly to prepare the test rig for PDA 

measurement. In addition to this, the shape and size of the core jet can be measured 

optically and this data will be used in PDA measurement in the next chapter. 

 

 

a) b) 

c) d) 
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In this section, the near-nozzle shadowgraphy visualisation of the spray at 0 angle 

configuration is briefly presented. This study is important to understand the location of 

each jet at the very-near nozzle vicinity of the tip of the injector. At the beginning of the 

injection, a shadowgraph of 3-hole nozzle configuration has been studied as in figure 6-

Figure 6-21 Examples of high speed Mie scattering technique and near-nozzle shadowgraphy used to 

visualize the spray structures 

Jet 1 
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22. For the first step, the near-nozzle shadowgraph setup was configured in a manner 

that the tip of the injector would be visible.  

 

Figure 6-22 Shadowgraphy of 3 jet near the nozzle 

It can be seen from figure 6-22 that the tip of the spray is fairly atomised with small 

droplets sharply visible in the image. It is also evident that jet 1 is almost vertical from 

this view. Later on when conducting PDA measurement, axial component of the jet 1 is 

calculated using PDA system. Also one can find information about the standard deviation 

of the changes in the edge of the near-nozzle jet spray. It could be seen from figure 6-23 

that there is high fluctuations in the brightness of the images at the edge of the spray. 
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Figure 6-23 Brightness fluctuation of the stochastic ligament spray region 

                                  

(a)         (b)                       (c) 

Figure 6-24 (a) Average of 100 images of shadowgraph of the near-nozzle jet spray at 50 bar (b) 

Falsecolormap of the standard deviation of the  Brightness fluctuations at the edge of the jet 1 which 

shows that the maximum standard deviation is around 30.  (c) Temporal variation of the fluctuations 

of the brightness from 20 to 200 at a point highlighted in yellow square in figure 6-24 (b). Here 0 is 

assumed to be pure black and 256 is pure white. The Matlab code is given in the appendix. 

Figure 6-23 shows average of 100 images of shadowgraph of the near-nozzle jet spray at 

50 bar. It can be seen that both edge of the spray are visible and therefore a Matlab 

analysis was performed in order to obtain the level of fluctuations in the brightness of 

the pixels which is shown in figure 6-24 (b). Falsecolormap of the standard deviation of 

the brightness fluctuations at the edge of the jet 1 shows that the maximum standard 

deviation is around 30. Figure 6-24 (c) presents the temporal variation of the fluctuations 

of the brightness of the highlighted yellow point in figure 6-24 (b). It is clear from figure 
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6-24 (c) that the brightness values vary from 20 to 200. Here 0 is assumed to be pure 

black and 256 is pure white. This is expected as the edge of the spray has lower velocity 

and is less denser and therefore the fluctuations of the brightness is higher compared to 

the core of the spray. 

 Impingement at different heights 
 

In this section, the impingement of the spray on the transparent surface will be visualised 

using a novel method that utilize simultaneous visualization of the impingement 

phenomena from side view and bottom view using one camera in order to find the 

approximate x,y coordinates of the centre of the jet 1 plume at the early stage of 

impingement after the impact  on the transparent surface. In order to do this, two 

transparent glass was grided and was configured 90 degree with respect to each other 

according to figure 6-25. 

 

 

 

 

 

 

45 degree mirror 

Camera 

Transparent 

gridded glass 

Figure 6-25 Configuration of two transparent gridded glass which allowed simultaneous visualisation 

of the spray impingement from two different views 

Transparent 

gridded glass 
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The results of the early stage of the spray impingement are shown in figure 4-26. 

       

(a)          (b)           (c)  

Figure 6-26 Impingement of the spray from side view and bottom view: (a)The mirror was perfectly  

aligned in such a way that the grids in both view are aligned with each other. The yellow line in (a) 

extends and aligned with bottom view which shows the centre of the injector (b) impingement of the 

upper right jet is shown (c) impingement of the lower right jet is shown which is jet 1 under 

investigation. The tilting angle is around 5 degrees. 

In order to obtain the centre of impingement further qualitative analysis was conducted. 

Figures 6-27 to 6-29 shows the impingement of the tip of jet 1 on the transparent plate 

which was fitted in order to obtain qualitative information about the location of the core 

of jet 1 when it impinges on the plate at different ASOI times and at different distances. 

It is clear from figure 6-27 that the angle of the centroid of jet 1 at the early stage of 
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impingement at the height of 20mm is measured to be approximately 250 degree with 

respect to horizontal line. Therefore, the rotation angle of 360 – 250 = 110 degree is 

necessary in order to isolate jet 1 in a manner that can provide maximum exposure for 

receiving optics for the PDA measurement. This angle has been measured in other 

heights of 30mm and 40 mm and the results are approximately 250 degrees which is 

similar to 20mm height. 

 

Figure 6-27 Angle of the optical centroid of the isolated jet impingement on the flat surface at 20mm 

distance away from the tip at 0.35ms ASOI 
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Figure 6-28  Angle of the optical centroid of the isolated jet impingement on the flat surface at 30mm 

distance away from the tip at 0.5ms ASOI  

 

Figure 6-29 Angle of the optical centroid of the isolated jet impingement on the flat surface at 40mm 

distance away from the tip at 0.8ms ASOI 
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 Summary 

 

In this chapter, a real-size injector test rig was designed and manufactured using 

SOLIDWORKS which enabled the stepped injector to rotate along the axis of the needle 

360⁰ freely and allowed high-speed visualization of the spray plumes from different 

angles. It also enabled the measurement of the spray cone angle from different angles. 

It further allowed the investigation of the full spray structure, near-nozzle and very near-

nozzle exit spray behaviors by means of visualization and helped to setup the PDA system 

for in the next part of the experiment. The new findings of the spray visualisation are: 

• The core of the jet is wider compared to conventional injectors has a more 

irregular pattern in the fully developed mode 

• Two middle jets are flapping from one side to another side creating a snake shape 

pattern. 

• The structure of the spray in the fully developed mode exhibits an A shape which 

is believed to be due to the compact and dense nature of arrangement of hole 

which allow higher interactions between the adjacent jets and high air 

entrainment in-between each individual jets. 

• It was observed that there is high interaction between each jet and the adjacent 

jet and therefore a distinct boundary between each jet is not recognisable as the 

spray develops further downstream in comparison with conventional multi-hole 
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where there is a clear boundary between each jet and less interaction is visible 

between each individual jets. 

• The overall jet penetration of the stepped hole Bosch injector (injector #3) was 

compared with conventional  straight-hole Bosch injector (injector #1). It was 

seen that at ASOI of 0.75ms (AESOI 1.5ms), the tip penetration for the stepped 

hole nozzle was around 50mm which was similar to the tip penetration for the 

conventional multi-hole at the same ASOI. Due to the fact that the exact size and 

angles of the stepped-hole nozzle was not provided, it is not possible to directly 

compare the penetration together but discarding the internal design, it could be 

claimed that both injectors are operating within same range in terms of tip 

penetration. 

• The overall jet penetration of the stepped hole Bosch injector (injector #3) was 

also compared with Magneti Marrelli stepped hole injector (injector #2). It could 

be seen that the of the penetration of the stepped hole Bosch injector at 100 bar 

at 0.25 ASOI (0.9 AESOI) is around 22mm which is similar to the penetration of 

stepped hole Magneti Marrelli injector at the pressure of 120 bar at 0.25 ms ASOI 

which is also around 23mm. It should be mentioned that a direct comparison 

could not be made here again since the internal design of the two injectors are 

different than each other and also the exact size and angle of the holes of each 

nozzles are potentially different. However disregarding these facts, it could be 
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seen that both injectors are operating more or less at the same range in terms of 

tip penetration. 

• It could be seen that as the pressure increases from 50 bar to 100 bar the spray 

cone angle increase from around 64 degree to 72 degrees. It can be seen that the 

range of variation of the spray angle for all cases is around 2-3 degrees.  
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7 Chapter 7: PDA measurement of the spray in Real-size High-

pressure Experimental Test Rig 
 

 Introduction 

 

In this chapter the results of the PDA measurement of the spray will be presented and 

discussed. The coarse grid measurement results will be discussed first, followed by the 

fine grid measurement to provide the overall behavior of the spray in terms of droplets 

axial velocity and size distribution in x-y plane at different axial (z) locations. Temporal 

and spatial distributions of droplets axial velocity and diameter will be presented next 

for different y-locations and at different z-locations to quantify and characterize the 

performance of the injector. The weber number at the maximum velocity points (core of 

the spray) at each z location will be discussed and compared with previous works. 

Temporal profiles present the variation in droplet velocities and diameters throughout 

the injection process, over a time window of 0.1 ms, at a given measuring point that is 

located along x or y axis of the jet. Spatial velocity profiles/contour plots present all 

measuring points located at a cross-section of the jet at certain time after the electronic 

start of injection (AESOI) that is representative of the entire injection process. 

 

 



 
 
 
Chapter 7                                                                                   PDA measurement 

233 

 Coarse grid results 

 

In a polar cylindrical coordinate system, a droplet can have two velocity components. 

One is axial component, which is parallel to the z axis, denoted as Vz, which corresponds 

to LDA1 signal. Another is the radial component which, denoted as Vr, can vary in any 

direction in the (x,y) or (r,θ) planes. As mentioned before in methodology chapter, in this 

study a 2-D component (orthogonal) PDA system was used and it was aligned with spray 

axis in such a way to measure the Vz component directly, and the other component Vr 

(LDV4 signal) would be a combination of x,y or r,θ components. ; LDA4 signal calculates 

the velocity which is perpendicular to the blue beams. Since the tilting angle is around 5 

degrees, the magnitude of the axial component Vz (LDA1) on average could be around 9 

times bigger than that of the radial component, Vr (LDA4), and only the axial velocity 

measurements has been reported. 

The first round of the measurement involved setting up the traverse for coarse grid 

measurement of an area of 2mm x 4mm (this area is called region 1) at the distance of 

1mm below the nozzle exit with grid length of 0.4mm in both X and Y directions. The 

adopted co-ordinate system is shown in figure 7-1(a) with its origin (0, 0, 0) on the 

injector axis as shown in figures 7-1(a) and (b). The selected region 1 is shown in figure 

7-1 (b), which covers the three adjacent spray jets 1, 2 and 3. Figure 7-1(c) shows the 

contour plot of axial velocity at z=1mm. It was necessary to obtain this contour velocity 

plot to find the approximate location of the high velocity core jets and the geometry and 

shape of the cross section of jets. The plot also provides information of jet spray 
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interactions and also identifies the relative positions of jet 2 and 3 as shown in figure 7-

1(c). 

As it can be seen from figure 7-1(c), the traverse started to measure from the point at 

the bottom left corner (x=-2mm, y=-2mm) on a 11 x 6 grid (11 points along x and 6 points 

along y direction) and finished the measurement at the point of (2, 0) at the top right 

corner. In this configuration, the PDA system was able to measure up to 66 points, and 

at each point 10000 sample data were collected. 

From figure 7-1(c) the core of the three jets can be clearly identified with maximum 

velocity regions of up to 90m/s as shown in red color. The region which is in dark blue 

color corresponds to lowest velocities i.e. 0-10 m/s which means there is no physical 

droplet/jet spray within this region. The pale blue contour corresponds to velocities of 

up to 30 m/s which could be considered as the edge of the spray where the interaction 

between aerodynamic drag forces of the ambient stagnant air and the moving spray 

droplets are taking place and can be contributed to air entrainment. The green contour 

plots are densely spaced which shows the highest velocity gradient region of the spray 

increasing from 30m/s to 70m/s over a short distance and ultimately reaching 90 m/s at 

the core of the sprays. The approximate coordinate of the core of jet 1 is assumed to be 

a point inside the red/amber region with highest velocities ie (-0.4 ± 0.2, -0.9 ± 0.2). The 

error of ± 0.2 is due to the grid size which will be reduced to ±0.025 when using a finer 

grid in the next section. Another observation is that the center of jet 2 and 3 are in 

symmetric positions in accordance to their physical position as shown in the figure 7-
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1(b). The coordinates of the center of jet 2 is approximately located at the point (1.5, -

0.4) while the center of jet 3 is located at the point of (-1.5, -0.4). This shows that these 

two jets are aligned horizontally with respect to the x axis and this can possibly provide 

maximum visibility for the probing volume while scanning jet 1 at the very near-nozzle 

distance of 1mm.  

By further observing figure 7-1(c), it can also be seen that jet 1 and 2 has higher velocities 

compared to jet 3. Considering the coarse grid that was used for this measurement, this 

could be partially due to the fact that the measuring point may have not been exactly 

located at the core of the jets, and partially due to the longer scattering optical path for 

jet 3 (see figure 7-1(b)) causing more attenuation in scattered light coming from jet 3 as 

it has to pass through the dense jet spray 1 before reaching the photodetector, and thus 

weaker signal and less validated data from it compared to jets 1 and 2. Another 

interesting observation is the interaction region between jets 1&2 and 1&3 where the 

results show uniform velocity distribution with average droplet velocities of 60 m/s.   
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Figure 7-1  Coarse grid measurement set up. (a) Coordinate system at z=1mm; (b) multi step nozzle 

holes layout; (c) Impingement on a 45 degree plate showing tilting anle of 5 degrees from side view d) 

Contour plot measurement of axial velocity distributions, averaged over the entire injection period, for 

the three spray jets at z=1mm, 100 bar injection pressure and 2ms injection duration. 

It should be mentioned that the velocity information which is shown in the contour plot 

of figure 7-1-(c) is the time-averaged velocity of all the data that has been obtained over 

the complete cycle of injections of 2ms from start to finish which includes the opening 

and the end of injection velocities. This indicates that the maximum temporal velocity 

that a droplet will obtain during the main injection event ie at 1.5ms after electronic start 
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Jet 2 
Jet 3 

a) b) c) 

d) 

Jet 1 
Jet 2 

Jet 3 



 
 
 
Chapter 7                                                                                   PDA measurement 

237 

of injection (AESOI) could be higher than the time-averaged values shown in the contour 

plot. As mentioned in methodology chapter, a novel in-house Matlab code was 

developed to create the 2-D temporal contour plot of velocities/droplets diameter of the 

jet as a function of time at each z location in order to compare the instantaneous changes 

in these values as the jet develops and completes one injection cycle. This is discussed in 

section 7.3.3.  

7.2.1 Coarse grid time-averaged contour plot of velocities 

 

The coarse grid measurement were done for all distances of z= 1mm, 2.5mm, 5mm, 

10mm, 15mm, 20mm, and 35mm in the x,y plane. The selection of measurement planes 

was based on the primary and secondary droplet break-up lengths, which are believed 

to be less than 2.5mm and 10mm for straight nozzle respectively based on previous 

works [46]. However it is believed that these lengths are shorter with the step nozzle 

which can be realized by comparing the spray images near the nozzle exit and more 

accurately by comparing diameters obtained from PDA from near the nozzle. 

This was to obtain contour plots of velocities at different z locations and to plot the 

temporal and spatial features of the centre of the jet and the relative size and shape of 

the jet diameter along x and y axis in all z locations. The location of peak axial velocity of 

jet 1, i.e. maximum Vz, at each z location will be considered as the core center of the jet 

1 for the corresponding z plane. The estimated center of the jet 1 is used as a reference 

point for creation of fine grid contour plots of velocities for each z in order to find a more 
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accurate position of the centre and to create time-averaged/temporal and spatial 2-D 

contour plot/graphs of velocities. 

Figure 7-2 shows the 2-D contour plot of mean axial velocities for coarse grid 

measurement in x-y plane at different z locations from z=1mm to z=35 mm for an 

injection pressure of 100 bar and an injection duration of 2ms; the presented velocities 

are time averaged over the entire injection period. Careful measurements were taken to 

find the boundaries of the jet 1 and to identify the diameter of the spray jet 1 along the 

y-direction within the measuring grid. It can be seen from figure 7-2 that in all contour 

plots, the pale blue area of the jet is included in the grid length and the blue curve is 

almost tangent to the lowest limit of the grid with velocities of around 10-20m/s. 

Contour velocity distributions at different z-locations in figure 7-2 are similar to that 

described above in figure 7-1(a) for z=1mm, but the magnitude and the location of the 

core centre are different at each z-location. It is evident from figure 7-2 that the velocities 

decrease constantly with increase in z so that at the centre of jet 1 the velocity decreased 

from around 90 m/s at the distance of 1 mm to around 40 m/s at the distance of 35 mm 

away from tip of the nozzle.  
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Figure 7-2  Coarse grid contour plot measurement of axial velocity distributions, averaged over the 

entire injection period, for the three spray jets at different z locations, 100 bar injection pressure and 

2ms injection duration. (a) z=1mm; (b) z=2.5mm; (c) z=5mm; (d) z=10mm; (e) z=20mm; (f) z=35mm. 

By further looking at the results presented in figure 7-2, it could be found that the 

centre of jet 1 with highest velocity peaks are located at following coordinates (± 

0.1mm error) corresponding to each z location:  

a) z=1mm   b) z=2.5mm 

c) z=5mm d) z=10mm 

e) z=20mm f) z=35mm 
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Table 7-1  (x,y) Coordinate of the centre of jet 1 at different z locations using the coarse grid method 

Z location (x,y) Coordinate of the centre 

of jet spray 

1 (-0.4,-1) 

2.5 (-0.5,-1.2) 

5 (-1.2,-1.3) 

10 (-2.5,-2) 

20 (-4.5,-2.5) 

35 (-6.5,2.3) 

 

Although the internal geometries of this injector (particularly the trajectory of the 

nozzles), the results clearly show a shift of the jet core centre away from injector axis 

and is expected to be aligned by the nozzle axis.  

 Fine grid results 

 

The approximate x-y coordinates of the maximum velocity contour plots extracted from 

the coarse grid measurement have been used as a reference for defining a finer grid 

measurement with grid length of 0.1mm and a higher resolution of 11 x 11 (totally 121 

points) over a smaller region in x and y direction for each z location. This was to ensure 

that only jet 1 is isolated and investigated while maintaining a higher accuracy. It was 

also necessary to focus on only one jet due to the limitations in the amount of fuel 

available. The velocity/droplet diameter contour plots of jet 1 are therefore obtained 
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with higher accuracy which will yield more insight into the spatial and temporal behavior 

of the jet 1 at different z locations. 

7.3.1 Fine grid time-averaged contour plots of velocities 

 

Figure 7-3(a to f) shows the time-averaged contour plots of velocities of jet 1 in the fine 

grid mode measured over the entire cycle of injection at different z locations for 100 bar 

injection pressure and 2ms injection duration. The contour plots have been obtained by 

BSA software and the data from the measurements has been postprocessed further in 

Matlab to create temporal contour plots of velocities which will yield novel 

understanding of the jet structure at different z locations. 

It can be observed from figure 7-3(a) that the maximum time-averaged velocity of the 

center of the jet at the distance of z=1mm is around 90m/s. It is also evident that this 

maximum velocity is almost the same for z=2.5 mm (figure 7-3(b)) from nozzle exit while 

there is a slight change in the velocity contour plots. It could be seen from figure 7-3(c to 

f) that this time-averaged velocity at the centre of the jet 1 decreases to around 80, 72, 

50 and 40m/s at the locations of z=5, 10, 20 and 35mm respectively. This continuous 

decrease is due to the loss of momentum of the droplets partially due to the secondary 

breakup nearer to the injector, and more importantly due to aerodynamic drag forces 

which is exerted on the surface of these droplets causing droplets deceleration and the 

transfer of momentum from the fuel droplets to the air molecules. It is obvious that as 

the distance z increases, the sharp edge of the contour lines becomes smoother. This is 
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believed to be partially due to the aerodynamic drag forces in front of the spray that 

resists against the high velocity regions of the spray as the spray develops further 

downstream the nozzle and partially due to the air entrainment from the side of the jet 

which could have similar effect.  
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a) z=1mm b) z=2.5mm 

c) z=5mm 

e) z=20mm f) z=35mm 

d) z=10mm 

Figure 7-3 Fine grid contour plot measurement of axial velocity distributions, averaged over the entire injection 

period, for the spray jet 1 at different z locations, 100 bar injection pressure and 2ms injection duration. (a) 

z=1mm; (b) z=2.5mm; (c) z=5mm; (d) z=10mm; (e) z=20mm; (f) z=35mm. 
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By looking further into figure 7-3 a to f, it could be seen that the approximate location of 

the x-y coordinates of the maximum velocity regions (Vz) which are shown in red color 

are as follows: 

Table 7-2 (x,y) Coordinate of the centre of jet 1 at different z locations using the fine grid method 

Z location (x,y) Coordinate of the centre of jet spray 

1 (-0.2,-1) 

2.5 (-0.5,-1.2) 

5 (-1.2,-1.3) 

10 (-2.2,-1.7) 

20 (-4.5,-2.2) 

35 (-6.8,-2.5) 

 

These x-y coordinates will be used as a reference for another round of measurement in 

which the grid is using the highest resolution possible offered by the traverse system 

(0.05 mm) according to methodology which is explained in chapter 4 and the results are 

presented as temporal graphs for each point and spatial graphs along y-axis later in this 

chapter. 

7.3.2 Fine grid time-averaged contour plot of droplet diameters 

 

Figure 7-4(a to f) shows the time-averaged 2-D contour plot of the droplet diameters 

over the entire period of injection in x-y plane in the fine grid measurement mode at 

each z locations from z=1mm to z=35 mm at 100 bar injection pressure and 2ms injection 
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duration. Comparing the overall contour plots of mean diameters in figure 7-4 in each z 

location with velocity contour plots in figure 7-3 in the same z location, it is evident that 

the peak value of the mean dimeter is located in the vicinity of the core jet where 

maximum velocity also occurs. This was expected as the larger droplets with higher mass 

possess higher momentum and thus larger velocity. This is a typical characteristic of the 

jet flow where the x-y location of the maximum velocity and droplet size coincides with 

each other. 
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Further looking at the figures 7-3 and 7-4 , it seems that there is a slight difference 

between the location of the peak of velocities and droplet diameters. This could be partly 

Figure 7-4 Fine grid contour plot measurement of droplet diameter distributions, averaged over the entire 

injection period of jet 1 at different z locations, 100 bar injection pressure and 2ms injection duration. (a) 

z=1mm; (b) z=2.5mm; (c) z=5mm; (d) z=10mm; (e) z=20mm; (f) z=35mm. 

a) Z=1mm b) Z=2.5mm 

c) Z=5mm d) Z=10mm 

e) Z=20mm f) Z=35mm 
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due to the complex nature of the flow inside the nozzle, especially when it is expanded 

in the stepped-nozzle, which may cause the emerging jet to be more turbulent and 

unstable with some intermittent flapping and ultimately results in slight amount of shift 

in the x-y location of the maximum values of velocities compared to that of droplet 

diameters.  

Looking further into figure 7-4(a to f), it could be found that the time-averaged maximum 

droplet diameter (D10) at the center of the jet decreases steadily from 7.5 µm at 1mm 

to 5.5µm at 10mm and to 5.2µm at 35mm as shown in figure 7-5 below. It could be also 

seen that D32 at the centre of the jet also decreases steadily from around 18.5 µm at Z= 

1mm to around 11 µm at Z = 35mm.  

 

Figure 7-5 Time-averaged maximum droplet diameters (D10 and D32) variation at the center of the jet 

It should be mentioned again that the values presented in figures 7-3 and 7-4 are the 

time averaged values over the entire injection period and it is essential to obtain 
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temporal contour plots of the velocities/diameters using a novel in-house Matlab code. 

The results of temporal contour plots/graphs of velocities and droplet diameters are 

presented in the next following sections. Nevertheless a comparison of the results 

between the mean droplet diameters of the current stepped multi-hole injector (7.5 µm 

at 100 bar and z=1mm) with a conventional straight multi-hole injector [46] (~15 µm at 

120 bar and z=2.5mm) and an outward opening pintle-type injector [54] (~13 µm at 200 

and z=5mm) shows a good advantage of the current injector relative to the other two 

injectors and suggest it has a better atomization capability; note that all three cases 

considered here have used the same PDA system. The improved atomization 

performance can be due to the stepped part of the current injector where the fuel 

undergoes through a sudden expansion process whereby the flow becomes 3-D and 

highly turbulent and becomes susceptible to earlier breakup and rapid atomisation; this 

will be discussed more later in this chapter. 

7.3.3 Fine grid temporal contour plot of droplet velocities 

 

It would be difficult to estimate the exact location of the primary/secondary breakup by 

only looking at the time-averaged velocity/diameter contour plots presented in figure 7-

3 and 7-4 since they only present the average values of these quantities over the entire 

injection period. Therefore, it is necessary to obtain the temporal droplet 

velocity/diameter contour plots at different AESOI time in order to investigate any 

instantaneous change in shape/structure of spray and therefore reach a better 

understanding of the primary/secondary breakup regions. As mentioned in the 
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methodology chapter, a novel Matlab code was written in order to batch process the 

data obtained from BSA software for all the measured points in the x-y grid and the 

temporal contour plot of the velocity/diameter for 3 different AESOI time during the 

main injection event. The Matlab code is given in the appendix which has the capability 

to calculate the temporal contour plots (of parameters such as velocity, droplet 

diameter, SMD, Weber number etc.) at any AESOI with any windowing time based on 

the user selection. In this study 3 AESOI time were chosen. These include 1ms, 1.5ms and 

2ms AESOI which are considered to be at the start, in the middle and at the end of the 

main injection cycle. In all these AESOI times, the needle is fully open. The temporal 

velocities/droplet diameters are calculated over a time window of 0.05ms as explained 

in methodology which is a good improvement compared to previous work of Marchi [54] 

without any compromise on the number of samples collected within this time window. 

Figure 7-6 a-l shows the fine grid temporal 2D contour plots of velocities at different 

AESOI time at different locations near the nozzle exit. Each row has 3 contour plots which 

presents the temporal jet velocities at 1ms, 1.5ms and 2ms AESOI from left to right at a 

sprecific z location. As an example, the first row shows the temporal velocity contour 

plots at z=1mm for the start of injection (left plot - 1ms AESOI), at the middle of injection 

(centre plot- 1.5 ms AESOI), and at the end of injection (right plot – 2 ms AESOI). All the 

three plots are related to the main injection event as described in the methodology.  

It is evident in figure 7-6a that the core of the jet (yellow contours) reaches temporal 

velocities of up to 120m/s as evident from the colorbar. As expected, these temporal 
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maximum velocities are higher than the time-averaged maximum values seen in figure 

7-3a. This is a new finding in our understing of the temporal behaviour of the spray at 

different AESOI.  

In addition, it has been reported in the previous works in multihole injectors [46] [88] 

that when the jet is fully developed during the main injection event i.e. from 1ms to 2ms, 

the average velocity values of the jet will remain constant. However, no information was 

provided in the literature review on the details of the temporal contour velocity plots 

and how they change their shape and values over time from start to the end of the main 

injection. It is clear from figures 7-6 a to c that the y length of the main body of the jet 

(yellow region) decreases in size from 0.6mm in figure 7-5a to 0.4 mm in figure 7-5c. This 

can be due to the trapped fuel left over inside the nozzle from previous injection, which 

comes out in the next injection with an expanded tip spray (as was shown in spray image 

of 6-21, and also in accordance with other previous works) and then recover to fully 

develop size later. It is also clear from comparing figure 7-6a with figure 7-6c that the 

average velocity of the yellow region at 2ms is slightly smaller as evident from the 

colorbar. This clearly shows the transient behaviour of the jet (micro-jets) during the 

main injection event. It also suggests that the discharge coeficient of the nozzle might 

change and perhaps slightly reduce during the main injection event. 

Another observation from figures 7-6 a to c is that there are a few local peaks which are 

shown by red circles as 1, 2, 3, and 4. This suggests that the main core of the jet might 

be comprised of actual 4  smaller jets which will be referred to ‘micro-jets’ or ‘sub-jets’ 
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from now on in this work which are tightly close to each other like a T shape at the 

beginning of the main injection event. This has been proposed in figure 5-28 in the 7 

times enlarged model where the very near nozzle jet is comprised of stochastic ligament 

spray with lower ratios of VOF. It suggests that the lower parts of the jet is actually where 

the VOF ratio is much lower. 

Furthermore, it is clear from figure 7-6a to c that the y coordinates of these local peaks 

(1,2,3,4) are changing as AESOI time changes from 1ms to 1.5ms and to 2ms. By 

comparing figure 7-6 a and b in more details, it could be found that the y coordinates of 

the top local peaks 1, 2 and 4 moves downward by 0.1 mm from -0.8mm in figure 7-6a 

to -0.9mm in figure 7-6 b while the y coordinate of the bottom local peak 3 moves 

upward by 0.1mm from -1.2mm in figure 7-6a to -1.1mm in figure 7-6b. This will result 

the microjets to get closer to each other in the y direction and also results in the overall 

jet (yellow region) to be contracted in shape along y direction as shown in figure 7-6 a 

and b. This trend continues from figure 7-6 b to figure 7-6 c where the top peaks 1, 2, 

and 4 of the microjets are further moving downward while the bottom peak 3 is moving 

upward. This ultimately results in peak 2 and 3 to be merged into a single peak. It also 

reults in the overall jet (yellow region) to be further contracted in shape along y direction. 

This may be due to the injection-to-injection instability caused within the stepped part 

of the nozzle and appears in figure 7-6 (a and b) as the measurements have been 

obtained over many cycles of injection. This provides us with new insights into the 
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understanding of the underlying dynamics of the jet spray in the stepped -hole and the 

very near nozzle region. 

Another observation from figure 7-6 a to c is that the velocity of the centre of each 

individual micro-jets (1,2,3,4) may not change over time from 1ms to 1.5 ms. This will 

result in the color of the centre of the microjets to reamin almost same in bright yellow 

(120m/s) at 1ms, 1.5ms. However it seems that when jet 2 and 3 merges together at 

2ms, the velocities seems to reduce slightly and the color changes to dark yellow 

(110m/s). 

In addition to this, it is clear from figures 7-6 a to c that the temporal velocity of a fixed 

point in the centre of the contour plots at z=1mm ie (-0.2,-1) will slightly increase during 

the main injection event as the centre of microjet ‘2’ moves down and approches the 

centre point of the contour plot (-0.2,-1) from 1ms to to 2ms. This behaviour is later 

demonstrated in the temporal velocity graphs of the center of the jet at z=1mm ie (-0.2,-

0.9) and (-0.2, -1.05) in figures 7-8 d and e where the tempoal velocity graphs are 

increasing at these fixed points in space during the main injection event from values 

around 90m/s at 1ms to values around 110m/s at 2ms AESOI. It could be claimed that 

the temporal velocities at these fixed points in the centre of the jet are increasing due to 

the dislocation of microjet ‘2’ moving downward by 0.1mm from 1ms to 2ms. This 

phenomenon has not been reported in previous works which involves experimental 

technique including Mie scattering, shadowgraphy, X-ray phase contrast imaging, SLIPI, 

or other techniques.  
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Figure 7-6 Fine grid temporal 2-D contour plot measurement of axial velocity distributions, averaged 

over 0.05ms, for the spray jet 1 at 3 different AESOI times (1ms, 1.5ms and 2ms) at z location of of 1, 

2.5 and 5 mm, 100 bar injection pressure and 2ms injection duration. 
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(b): z=1mm, 1.5ms AESOI (a): z=1mm, 1ms AESOI (c): z=1mm, 2ms AESOI 

(e): z=2.5mm, 1.5ms AESOI (d): z=2.5mm, 1ms AESOI (f): z=2.5mm, 2ms AESOI 

(h): z=5mm, 1.5ms AESOI (g): z=5mm, 1ms AESOI (i): z=5mm, 2ms AESOI 
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Figures 7-6 d to f (middle row) shows the 2-D temporal contour plots of velocities at 

z=2.5mm for 3 different AESOI times of 1ms, 1.5ms, 2ms. It is evident from the figure 

that the contour plot of velocities at z=2.5mm have similar shape and structures to those 

observed at z=1mm (figure 7-6 (a to c)). More specifically, it can be seen from figure 7-6 

d that at 1ms AESOI, the overall jet (yellow region) is comprised of 4 distincts smaller jets 

refered to as ‘micro-jets’ with T-shaped structure similar to what has been observed at 

z=1mm at 1ms AESOI. The y coordinates of the three upper micro-jets (1,2 and 4) of the 

contour plots shown in red circle in figure 7-6d stretches and moves downward, similar 

to that at z=1mm, by around 0.3mm from -1mm at 1ms AESOI to -0.7mm at 2ms AESOI 

during the main injection event while the lower peak (3) moves upward slightly by 

0.2mm from -2.2mm at 1ms AESOI to -2mm at 2ms AESOI. These figures confirms that 

the jet is being contracted during the main injection event and the effect is still visible at 

z=2.5mm. This will once again confirm that the discharge coeeficient of the nozzle might 

actually slightly reduce during the main injection event. 

In addition to this, it is clear from figures 7-6 d to f that the temporal velocity of a fixed 

point in the centre of the contour plots at z=2.5mm ie (-0.5,-1.5) will slightly increase 

during the main injection event as the centre of microjet ‘2’ moves down and approches 

the centre point of the contour plot ie (-0.2,-1) from 1ms to to 2ms. This behaviour is 

similar to what has been observed at z=1mm. It could be claimed that the temporal 

velocities at these fixed points in the centre of the jet are increasing due to the 

dislocation of microjet ‘2’ moving downward by 0.1mm from 1ms to 2ms. This fact can 
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be verified in the next section by observing the temporal velocity graphs at the centre of 

the jet at z=2.5mm in figure 1-1 in Appendices which actually confirms that the velocities 

are increasing from around 100m/s to 110 m/s from 1ms to 2ms during the main 

injection event. It was seen in this section that the temporal contour plots exhibit very 

useful information on the instantaneous values of velocities at each point in the x-y plane 

at a specific z location. In addition, the results show a possibility of spray instability which 

can be attributed to the injection-to-injection instability. Similarlys, the temporal 

contour plots of droplet diameters have been obtained in the next section and will be 

discussed in order to enhance our understanding of the near-nozzle spray structures. 

7.3.4 Fine grid temporal contour plots of droplet diameters 

Figure 7-7 (a to c) shows the fine grid temporal contour plot of droplet diameters at 3 

different AESOI time of 1ms, 1.5ms, 2ms at z=1mm away from the nozzle exit. Similar to 

the velocity contour plots at z=1mm, it can be seen that there are 4 distincts diameter 

peaks in the same locations where the velocity peaks are located in figure 7-6a and this 

again confirms the presence of the so-called ‘sub-jets’ or ‘micro-jets’ at these locations. 

It can be seen that the cross section of the jet exhibit a T-shape which may probably due 

to the presence of air entrainment penetration in those parts of the jet where velocities 

are much smaller. 
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Figure 7-7 Fine grid temporal 2-D contour plot measurement of droplet diameter distributions, 

averaged over 0.05ms, for the spray jet 1 at 3 different AESOI times (1ms, 1.5ms and 2ms) at z=1mm, 

100 bar injection pressure and 2ms injection duration. 

It can be seen from figure 7-7 a to c that the maximum droplet diameter values drop 

from around 10 μm at 1ms to 8μm at 1.5ms and finally decreases to around 6.5 µm at 

2ms AESOI. This can be confirmed from the temporal droplet diameter graphs at the 

centre of the jet in section 7.4.2 in figure 7-9 e where the droplet diameter values 

decrease constantly from around 10 μm to 6.5 µm during the main injection event. The 

underlying reason behind this could be due to the fact that as the spray velocities 

increases, the turbulence and the cavitation also increases inside the injector and this 

will lead to higher atomisation level and ultimately smaller droplet sizes. 

 Temporal velocity and droplet diameter graphs  

The next step in the experiment was to use the PDA system to quantify the spray 

characteristics by obtaining the temporal variation of droplet velocity and  diameter of 

the jet spray along its y diameter. The path along which the measurements have been 

made, was chosen to pass through the highest velocity regions of the jet or the so called 
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(b): z=1mm, 1.5ms AESOI (a): z=1mm, 1ms AESOI 
(c): z=1mm, 2ms AESOI 
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‘sub-jets’ or ‘micro-jets’ which were seen in the previous section using minimum grid 

value of 0.05 mm according to the method explained in methodology chapter in section 

4.9 and 4.15. The results were obtained along the y-direction of the jet for z locations of 

1, 2, 5, 10, 20, and 35 mm and are presented in the next sections. Due to the similarity 

in analysis, some of the graphs are attached in the appendix. 

7.4.1 Temporal velocity at z = 1mm 

The temporal velocity/diameter graphs of 21 points along y axis of the jet has been 

obtained at z = 1mm and x=-0.2mm for the duration of 2 ms and injection pressure of 

100 bar using an original Matlab software code. The x location of this round of 

measurement was selected according to the method explained in section 4.9 in 

methodology in order to measure maximum velocity region of the jet. However, only 8 

points are presented here in the figure 7-8 a to h. Each point is located at a distance of 

0.15mm away from the next point along y and hence the graphs are presented in a 

uniform order from a to h along the arbitrary diameter of the jet. The temporal variation 

of velocity profiles illustrated describe fully the injection process from start to finish.  

According to Mitroglu [46], in a conventional multi-hole injector, the temporal velocities 

are sharply increasing from values close to zero to maximum velocity during the needle 

opening period. They will maintain their maximum value during the main injection event 

and will drop sharply again to values close to zero during the needle closing event [46]. 

This sharp change in the temporal velocity graphs is believed to be the result of the 

presence of slow-moving large droplets that passes through the measuring volume of 
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the PDA system at the beginning and at the end of the injection event. These large 

droplets are formed from the stagnant liquid fuel which is trapped in the sac-volume 

before the injection needle opens and while the needle closes. It is clear that for 

conventional injectors, these droplets have lower velocities both at the beginning and at 

the end of the injection event and therefore a critical weber number will possibly not be 

reach during these phases. This means that the possibility of secondary atomisation is 

minimum. However, figure 7-6 a shows that there is a slight difference in the temporal 

graph of the non-stepped multi-hole injector and the stepped-nozzle injector. Here in 

the stepped-nozzle injector, the temporal graph does not feature a clear sharp increase 

at the beginning of the injection at z=1mm. Instead, the initial velocities are starting from 

much higher values and will remain at their maximum values before being decreased 

sharply to near-to-zero values following the needle closing event. It could be claimed 

that the presence of the stepped section of the nozzle can confine and direct the 

trajectory of bigger droplets/ligaments along the axis of the nozzle. These slow-moving 

large droplets/ligaments are then collided with high velocity jet which is produced at the 

beginning of the main injection event and will be pushed and perhaps further 

disintegrated into smaller droplets/ligaments. This will ultimately result in enhanced 

primary breakup and secondary atomistaion of these slow-moving large 

droplets/structures. This is evident from the smaller droplet diameters detected by the 

PDA system compared to those of conventional non-stepped nozzles [46].  
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Another observation from figure 7-8 a is that at y=-1.5mm, the temporal velocities are 

stable at 50m/s with RMS values of around 20m/s for the whole duration of the main 

injection event ie from 1ms to 2ms. As evident in figure 7-8 b at y= -1.35mm, the 

temporal graphs exhibit similar shape with constant velocities of 50m/s with RMS values 

of 20m/s similar to y=-1.5mm. This suggest that these two points have similar temporal 

behaviour and that there is a uniform low velocity region with minimum thickness of 

around 150µm where the spray velocities are not changing during the main injection 

event from 1ms to 2ms. This is believed to be the outer part of the spray which is under 

the influence of stochastic ligament breakup. These stochastic ligaments are usually 

formed in the regions where the ratio of the volume of fluid (VOF) is small compared to 

the core of the liquid jet in the nozzle as a result of interaction of the outer part of the 

jet with the cylindrical surface of the counterbore stepped section [8].  

As the observation continues along y axis, it could be found in the next graph at y= -1.2 

in figure 7-8 c that the velocities are increased from around 50m/s to 70m/s compared 

to the previous velocity graph at y=-1.35mm. It is also clear from figure 7-8 c that the 

temporal graph at y=-1.2mm exhibit an increasing trend itself. Here the temporal 

velocities are increasing from around 70m/s at 1ms AESOI to 80m/s at 2ms AESOI. This 

contradicts with the previous claim that the jet velocities are fully developed (maintain 

a constant velocity) during the main injection event. In fact, this increase even though 

only around 10m/s, shows that there is a continuous transient phase during the main 

injection event. The transient nature of the far-field spray at z=15mm has been reported 
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recently in the work of Duke et al. where the angle of the far-field spray decreases 

towards the injector axis during the main injection event. However no study has been 

done on the transient nature of the near-nozzle spray and for the first time this has been 

done in this work according to the knowledge of the author.  

The transient nature of the near-nozzle spray evolution during the main injection event 

is also evident at y=-1.05mm and y= -0.9mm in figures 7-8 d and e respectively, where 

the increasing trend in the velocity graphs are clearly visible. In figure 7-8 d where y=-

1.05mm, the temporal velocities are increasing from around 90m/s at 1ms AESOI to 

around 100m/s at 2ms AESOI during the main injection event which is an increase of 

10m/s. Finally, in figure 7-8 e, at y=-0.9mm, the temporal velocities are increasing from 

around 100m/s to 110m/s during the main injection event from 1ms to 2ms. This 

increasing trend has not been reported in any previous works before.  
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Figure 7-8 Temporal variation of average axial velocity over a time window of 0.05ms at z = 1mm, x=-

0.2mm and at different  y locations for 100 bar injection pressure and 2ms injection duration.  

  

a) y=-1.5mm b) y=-1.35mm 

c) y=-1.2mm 

e) y=-0.9mm 

d) y=-1.05mm 

f) y=-0.75mm 

g) y=-0.6mm h) y=-0.5mm 



 
 
 
Chapter 7                                                                                   PDA measurement 

262 

Moving on to the next point in figure 7-8e where y=-0.9mm to figure 7-8f where y=-

0.75mm, a sudden drop of velocity from 120m/s to 65m/s is clearly visible. It could be 

concluded that y=-0.9mm is where the maximum velocity of the jet takes place and this 

point could be used as a reference point for maximum velocity in the x-y plane at z=1mm.  

It could be seen that the temporal jet velocities continue to decrease from 65m/s at y= -

0.6mm in figures 7-8g to 60m/s at y=-0.5mm. This suggest that the measurement path 

has passed the high velocity core of the jet at this point. Here velocities of around 30m/s 

are observed with RMS values of around 20m/s. Finally, it could be seen from the final 

graph in figure 7-8 h at y=-0.5mm that the velocities at this point are not further 

decreased and maintain rather constant value of around 30m/s. Here, the shape and 

structure of the graph suggest similar behaviour to the previous point at y=-0.6mm 

where the velocities are also around 30m/s. This suggest that the high velocity region is 

finished and the stochastic ligament spray region is reached. 

The temporal analysis of velocities for z=1mm has been extensively investigated in this 

section however the results of other locations of z are attached in the appendices. Since 

the analysis of the temporal behaviour of other locations would be similar to the example 

explained above, therefore further explanation of other z locations is above the scope of 

this work. 

7.4.2 Temporal droplet mean diameter at z = 1mm 

After analysis of the temporal velocity graphs of the jet along y axis at z=1mm and x=-

0.2mm (section 7.4.1), it would be useful to examine the temporal droplet mean 
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diameter graphs of the jet along the same path at z = 1mm for the duration of 2ms and 

injection pressure of 100 bar using the Matlab software code. The x location of this round 

of measurement was selected according to the method explained in section 4.9 in 

methodology which was used to measure maximum velocity region of the jet similar to 

previous section. 8 points are presented here in the figure 7-9a to h similar to the 

temporal velocity graphs (figure 7-8a to h). Each point is located at a distance of 0.15mm 

away from the next point along y axis and hence the graphs are presented in a uniform 

order from a to h along the arbitrary diameter of the jet.  

It has been observed in the work of Marchi [54] that at the start of injection and at the 

end of injection, the droplet mean diameter is much bigger compared to the main 

injection event. Here in the stepped-nozzle injector, the temporal graph of droplet mean 

diameter does not feature this kind of behaviour. Instead, the size of the droplet 

diameters at the start of injection exhibit very small values which is similar to those of 

the main injection event (5-10µm). It is only at the end of injection after the needle 

closing event that the size of the droplets starts to get increased and becomes larger (10-

15 μm) as shown in figure 7-13 a to e. As previously observed from the temporal velocity 

graphs, it could be speculated that the presence of the stepped section of the nozzle can 

confine and direct the trajectory of larger droplets/ligaments along the axis of the nozzle. 

These slow-moving large ligaments/droplets are then followed by a powerful higher 

velocity jets and will be pushed and perhaps further disintegrated into smaller 

droplets/ligaments at the beginning of the injection. This will consequently enhance the 
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primary breakup and the secondary atomistaion at the very near-nozzle area of the jet. 

Therefore, much smaller droplet diameters will be formed and detected by the PDA 

system.  

It is evident from figures 7-9 (a to e) that from start of injection up to around 2.3ms AESOI 

the mean diameter values are remained below 10μm. It is only after 2.3ms that the mean 

diameter values will increase sharply from values below 10 µm to maximum values 

around 15 µm. This is obviously the result of the needle closing event. It should be 

mentioned that although the resulting droplet diameters produced during this phase are 

larger than to those of the main injection event, however these values are still lower 

than the mean droplet diameters reported in a non-stepped conventional injector at 

similar conditions at z locations further away from the nozzle exit [46]. This proves the 

higher performance of the stepped-nozzle injector compared to that of non-stepped 

nozzles. 

Looking further into the graphs of figure 7-9 individually, a more detailed information 

could be extracted from each graph at each y location. As an example, it could be seen 

from figure 7-9 a that at y=-1.5mm, the temporal droplet mean diameter values are 

around 6 μm with RMS values of around 2µm. Moving to the next graph in figure 7-9 b 

at y=-1.35, the temporal droplet mean diameter are exhibiting similar values to that of 

the previous point at y=-1.5mm. This trend is almost the same up until graph 7-9 d at y= 

-1.05mm where there is a slight increase in the mean droplet diameters to values around 

7μm. It is at point y= -0.9 where maximum droplet diameters of around 10μm is observed 
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during the main injection event. The droplet mean diameters drops to smaller values of 

around 7 µm with some minor fluctuations. It then continues to drop at y=-0.6mm when 

it reached 5µm. It is then remain at 5μm for the point of y =-0.5. 

An interesting observation in the temporal mean diameter graphs in figure 7-9 a to h is 

that the increasing tail of the graph which is the result of the needle closing event is 

getting smaller in size as y increases from -1.5mm to -0.5mm. This clearly suggests that 

the larger droplets, that are formed at the end of injection as a result of needle closing 

event, are more produced at the outer side of the jet at y=-1.5mm (which is closer to the 

PDA instrument and is further away from the injector axis) than the inner side of the jet 

at y-0.5mm (which is closer to the injector axis). It is interesting to realise that the side 

where y=-1.5 is the location where the jet is more stable in terms of droplet diameter 

values during the main injection event. This phenomenon has not been reported in any 

previous work and has been observed for the first time according to the knowledge of 

the author. It could be claimed that the large droplets are more likely to be formed from 

the outer side of the jet rather than the inner side of the jet. One justification which could 

perhaps explain the reason behind this phenomenon could be obtained by referring back 

to the observations gained from the 7-times enlarged model. It was seen in figure 5-28 

in the enlarged model that the main part of the jet with high VOF ratio is located actually 

at the bottom side of the spray according to figure 5-28. This was due to the hydraulic 

flip at the top side of the spray. It could be  
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a) y=-1.5mm b) y=-1.35mm 

c) y=-1.2mm d) y=-1.05mm 

e) y=-0.9mm f) y=-0.75mm 

g) y=-0.6mm h) y=-0.5mm 

Figure 7-9 Temporal variation of average mean diameter over a time window of 0.05ms at z = 1mm, x=-

0.2mm and at different  y locations for 100 bar injection pressure and 2ms injection duration.  
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claimed that the hydraulic flip might happen at the inner side of the nozzle which is closer 

to the injector axis and therefore the main jet is formed at the outer edge of the spray. 

It is only by the enlarged model visualisation that this behaviour could be explained in 

the real-size model. Therefore, utilising the enlarged models has been proved useful in 

enhancing the current understanding of the underlying behaviour of the needle closing 

event observed in the temporal mean diameter graphs in the real-size stepped nozzle 

injector under investigation. 

 Velocity and mean droplet diameter distributions 

In this section spatial velocity and mean droplet diameter distribution of the jet spray is 

presented at different z locations. For this reason, both average and instantaneous 

distributions are presented which can yield important information and can shed light 

into new findings with regards to the characteristics of the spray in terms of velocity and 

droplet diameter 

7.5.1 Average axial velocity and mean droplet diameter distribution  

The spatial velocity and diameter profiles averaged over the duration of main injection 

event (1ms to 2ms as shown in figure 7-10) have been obtained for all z locations using 

the Matlab code. These results are presented in figure 7-11 a to e. In each figure in 7-11 

a to e, the droplet velocity (Vz) and diameter profiles along y axis are compared in the 

same z location. In addition, the maximum velocity and droplet diameters could be 

compared between different z locations. 
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The results shown in figure 7-11 a to e show a jet-like profile with peak velocity values at 

the centre of the jet for all the z locations. However there is a very slight shift of 0.05mm 

between the peak of velocity and the peak of diameter values in some cases. It is also 

evident from figure 7-11 a, b and c that the spray exhibit higher stochastic behavior at 

the left edge where velocity remains around 50m/s and RMS values are smaller. This 

region is believed to be caused by flapping of the spray and has been only reported 

recently by Thevenin et al in [98]. The flapping is believed to be caused partially by the 

instabilities ie the turbulence and cavitation inside the smaller nozzle and also partially 

by the early air entrainment that the counterbore provides for the jet and partially due 

to the impact of the ligaments coming out of the smaller nozzle with the inner surface of 

the counter bore. Here the stochastic ligaments are being contained and bounced back 

by the inner surface of the counter bore of the stepped section of the nozzle.  

In another observation, it could be seen from figure 7-11 a that at z=1mm the maximum 

velocity achieved is around 120m/s at point y=-0.95. It can also be seen that the 

stochastic ligament spray might exist on the right side of the spray where the RMS values 

Figure 7-10 Spatial velocity averaged over a time window of 1ms from 1ms to 2ms AESOI 

1ms 
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of velocities starts to decrease. It could be claimed that the stochastics spray region on 

both sides of the spray has velocities of less than 60m/s.  

It could be seen from figure 7-11 b and c that the maximum velocity drops to 115m/s 

and 110m/s while the stochastic ligament spray region velocity are less than 60m/s and 

continues to drop. The sudden drop of 10m/s of the uniform velocity region of the left 

side of the spray (stochastic ligament spray) from z=2.5 to z=5mm shows that there is 

high amount of air entrainment and aerodynamic drag forces which ultimately cause the 

jet to lose momentum and perhaps disintegrates into smaller ligament/droplets. It could 

therefore be claimed that the stepped-nozzle can enhance the atomization of the spray 

by exposing the outer part of the spray to high amount of early air-entrainment through 

the process of stochastic ligament spray formation and flapping. 

It could be seen from figure 7-11 d that at z=10mm, the maximum velocity drops to 

100m/s. It is then in figure 7-11 e that the maximum velocity drops significantly to 80m/s 

and the left side of the spray is continuously losing momentum.  It is clear that at this 

point the velocity of the stochastic ligament spray region is not a constant line with zero 

gradient and instead it has a positive gradient. This is due to the intense air entrainment 

which gradually change the profile from a zero gradient to a positive gradient region with 

much more efficient air entrainment. 

It could also be seen that the maximum diameter changes from 8µm at z=1mm to around 

5 µm at z=20mm. It should once again be mentioned that the values shown in  
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figure 7-11 are average values and later on in section 7.5.2, the instantaneous values 

will be further investigated.  
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It would be useful to compare the average velocity distribution of the near-nozzle jet 

spray at z=1mm with the in-nozzle velocity distribution of a transparent model of Bosch 

HDEV 5 injector which has been obtained by using micro-PIV and ultra high speed 

imaging technique at the same pressure of 100 bar identical to our study. Figure 7-12 

shows the average 2D velocity and pressure distribution (contour plots) in a nozzle of 

transparent model of HDEV5 Bosch stepped injector [7]. The velocity and pressure 

e) Z=20mm 

d) Z=10mm c) Z=5mm 

Figure 7-11 Spatial axial velocity and mean diameter graphs averaged from 1ms to 2ms at different z 

locations  
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distribution inside the sac volume and the nozzle are shown by color contours. It could 

be seen from figure 7-12a that the maximum velocity reaches up to 120 m/s near the 

exit of the nozzle. It could also be seen from figure 7-12 b that the maximum pressure of 

around 100 bar occurs inside the sac volume where the flow is stagnant. It is clear that 

the right edge of the nozzle has a sharper edge than the left side. Therefore cavitation is 

more likely to occur at the upper right side of the nozzle due to the sudden drop in the 

local pressure as a result of sudden change of direction of the flow. This is evident from 

the zero-pressure region in figure 7-12 b at the upper right side of the nozzle which is 

shown in dark blue color. It is also evident from figure 7-12a that the core of the flow 

inside the nozzle exists mainly on the left side as has been seen in the 7 times enlarged 

model in chapter 5. This means the maximum velocity distribution of the flow inside the 

nozzle is much more on the left side than the right side at the exit of the nozzle.  

 

(a)        (b) 

Figure 7-12 Average 2D velocity and pressure distribution (contour plots) in a nozzle of transparent 

model of HDEV5 Bosch stepped injector (identical to the injector used in our study) [7] 
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Figure 7-13 a shows the 5 lines which crossed through the axis of the nozzle at equal 

distance which are located from nozzle inlet to the nozzle exit. The velocity graphs along 

these lines are obtained and presented in figure 7-13b. It could be seen from figure 7-

13b that along line 1, the velocity graphs are around 100m/s starting from the left side 

and up to three quarters of the diameter of the nozzle. It is evident that the velocities on 

line 1 suddenly drops on the far right side of the diagram, and this is due to the presence 

of low pressure zones which can cause cavitation which blocks the flow. It could be seen 

from figure 7-13 b that as the number of the line increases, the velocities increase too. 

It is evident that at the exit of the nozzle, the average velocity is around 120m/s. This is 

exactly in agreement with the PDA measure of the near-nozzle spray at locations of 

z=1mm which was obtained in this study.  

 

(a)        (b) 

Figure 7-13  (a) Average 2D velocity and distribution (contour plot) in a nozzle of transparent model of 

HDEV5 Bosch stepped injector (identical to the injector used in our study)  (b) Average velocity 

distribution along y axis of the nozzle similar to the current study [7] 

Diameter ratio along y axis 
Y axis 
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7.5.2 Instantaneous axial velocity and mean droplet diameter distribution 

In this section the instantaneous spatial velocity and diameter graphs of the jet spray at 

3 different times at the start, middle and end of the main injection event will be 

presented and compared at each z location shown in figure 7-15 a to o. Each row shows 

the instantaneous profiles at 3 different time of 1ms (left), 1.5ms (middle) and 2ms 

(right) at a specific z location. The sampling window chosen for these 3 times was 0.1ms 

shown in figure 7-14.  

 

 

 

 

 

 

 

This will allow small changes in the profile to be detected and will yield a better 

understanding of the changes in the spatial velocity and diameter profiles as a function 

of time in each z location. It will also exhibit quantitative characteristics of the jet spray 

dynamics as it develops during the main injection event.  

Figure 7-15 a to c (first row) shows the spatial velocity and diameter graphs of the jet 

spray along y direction at 1ms (left), 1.5ms (middle) and 2ms(right) AESOI at z=1mm. It 

is evident from figure 7-15a that at the start of the main injection event, maximum 

Figure 7-14 Instantaneous spatial velocity and droplet diameter were presented at 1ms , 1.5ms and 

2ms averaged over a time window of 0.05ms 

0.05ms 

0.05ms 



 
 
 
Chapter 7                                                                                   PDA measurement 

275 

velocity of the jet reached 120m/s at 1ms AESOI at y=-0.85mm while the maximum 

droplet diameter reached 10µm. It could be observed from figure 7-15b that after 0.5ms 

at 1.5ms AESOI, the velocities still remains at around 120m/s however the position of 

the peak of the velocity profile moves slightly to the left to point y=-0.9mm. It could be 

seen from the diameter profile in figure 7-15b that maximum droplet diameter is 

reduced to 8µm. It is then evident from figure 7-15c that at the end of injection event at 

2ms, the maximum velocity of the jet reduces slightly to around 110m/s while the 

location of the peak of the velocity moves further to the left to point y=-1mm. It could 

also be seen that the maximum dimeter at the end of injection is reduced further to 

around 7 µm. The continuous shift of the maximum velocity region of the jet (although 

only 0.15mm) and the reduction of the droplet diameter from 10 µm to 7 µm from start 

to the end of the main injection event at point z=1mm indicates that the jet flow has a 

transient nature even during the main injection event which could be due to the 

increasing turbulence and instabilities inside the nozzle as a result of cavitation and 

turbulence increase inside the in-nozzle flow as see in chapter 5 and also due to the 

continuous air-entrainment at the near-nozzle jet. This in fact implies that the in-nozzle 

flow has a transient nature by itself during the main injection event and this behaviour 

can influence the characteristics of the spray particularly the maximum droplet diameter 

in the near-nozzle region of the spray which reduces from 10µm to 7 µm in one injection 

cycle.  
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Another observation from figures 7-15a to c is that the thickness of the high velocity 

region of the jet is reduced from 1ms to 2ms shown by yellow horizontal arrow. It could 

be clearly seen from figure 7-15a that the thickness of the jet which contains velocities 

higher than 80m/s (region between the two maximum RMS values) is equal to the length 

of the yellow arrow which is around 0.4mm. It is clear from figure 7-15b and c that this 

thickness reduces to 0.3mm and 0.2mm respectively. This clearly shows the contraction 

and the transient nature of the jet during the main injection event as has been 

demonstrated before in the section 7.3.3 in figure 7-6 (a) to (c) by using contour plot of 

velocities at similar instantaneous times during the main injection event. This behaviour 

was not seen in previous works and for the first time, it is reported in this work. 

Figure 7-15 d to f (second row) shows the spatial velocity and diameter graphs of the jet 

spray along y direction at 1ms (left), 1.5ms (middle) and 2ms(right) AESOI at z=2.5mm. It 

is evident from figures 7-15d to f that similar behaviour and trend is seen here for 

z=2.5mm compared to z=1mm. Firstly, it is evident from figure 7-15d that the maximum 

velocity of the jet is around 120m/s at 1ms AESOI at y=-0.9mm while the maximum 

droplet diameter reached 9µm. It could be observed from figure 7-12e that after 0.5ms 

at 1.5ms AESOI, the velocities still remains at around 120m/s however the position of 

the peak of the velocity profile moves slightly to the left to point y=-1mm. It could also 

be observed from the diameter profile in figure 7-15e that maximum droplet diameter 

is reduced to 7.5µm. This is in line with the results obtained at z=1mm. It is then evident 

from figure 7-15f that the maximum velocity of the jet reduces slightly to around 110m/s 
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while the location of the peak of the velocity moves further to the left to the point y=-

1.1mm. It could also be seen from figure 7-15f that the maximum dimeter at the end of 

injection is reduced further to around 6.5 µm. All these trends for z=2.5mm are in line 

with the results observed for z=1mm here. The continuous reduction of the droplet 

diameter from 9 µm to 7 µm from start to the end of the main injection event for 

z=2.5mm , similar to z=1mm, confirms the transient nature of the droplet diameter which 

can influence the dynamics of the spray in terms of velocity distribution and droplet 

diameter. It can also be sees that the change in the location of the peak velocity is 0.2mm 

which is greater than 0.15mm for z=1mm. This shows that the angle of the near-nozzle 

jet spray will perhaps slightly change as reported in Duke et al recently. [8] 

Another observation with regards to the velocity profile of the jet at z=2.5mm is that the 

thickness of the high velocity region of the jet is reduced from 1ms to 2ms shown by 

yellow horizontal arrow similar to z=1mm. It could be clearly seen from figure 7-15d that 

the thickness of the jet which contains velocities higher than 80m/s (The region between 

the two maximum RMS values) is equal to the length of the yellow arrow which is around 

0.8mm. It is clear from figure 7-15e and f that this thickness reduces to 0.7mm and 

0.6mm respectively. This behaviour has been demonstrated before in figure 7-6 d to f 

where the jet is being contracted which shows the transient nature of the jet spray. 

Similar trends are seen for z=5, 10 and 20mm. 
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(a): z=1mm, 1ms AESOI 

(b): z=1mm, 1.5ms AESOI 

(c): z=1mm, 2ms AESOI 



 
 
 
Chapter 7                                                                                   PDA measurement 

279 

 

   

 

 

 

 

 

Figure 7-15 Spatial velocity and diameter graphs at 1ms (left), 1.5ms(middle), 2ms(right) ASOI injection for 

different z locations at 100 bar injection pressure and 2ms injection duration 

 

 

  

(d): z=2.5mm, 1ms AESOI (e): z=2.5mm, 1.5ms AESOI 
(f): z=2.5mm, 2ms AESOI 

(g): z=5mm, 1ms AESOI (h): z=5mm, 1.5ms AESOI (i): z=5mm, 2ms AESOI 

(j): z=10mm, 1ms AESOI (k): z=10mm, 1.5ms AESOI (l): z=10mm, 2ms AESOI 

(m): z=20mm, 1ms AESOI (n): z=20mm, 1.5ms AESOI (o): z=2mm, 2ms AESOI 
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contraction and instability of the jet during the main injection event as has been 

demonstrated before in the section 7.3.3 by using contour plot of velocities at similar 

instantaneous times during the main injection event. 

7.5.3 Comparison of temporal droplet diameter (D10) and SMD (D32) graphs  

Figure 7-16 shows temporal mean diameter (D10) (blue colour) and SMD (D32) (red 

colour) for two y locations on the same z plane. As an example in the first row, figure 7-

16 (a) shows the SMD and diameter graphs at z=1mm, y=-1.5mm which is located on the 

edge of the spray while figure 7-16 (b) shows the SMD and diameter graphs at z=1mm, 

y=-1.05mm which is located at the centre of the jet. From observing the overall trends 

of the SMD graphs at the edge of the spray (red color) in figures 7-16 (a) (c) ( e) and (g) 

at z= 1, 2.5, 5, and 10mm respectively, it could be seen that the SMD graphs at the edge 

of the spray remains almost constant around 10 µm (or less) for the duration of the main 

injection event (ie 1ms to 2ms) followed by a sharp increase during the closing event of 

the needle. It is also clear from figures 7-16 (a) (c) ( e) and (g) (z= 1, 2.5, 5, and 10mm 

respectively) that the SMD graphs at the edge of the spray during the main injection 

event (ie from 1ms to 2ms) has almost similar values compared to diameter graphs (blue) 

with only slight difference. On the other hand, it is clear from figures 7-16 (b) (d) (f) and 

(h), that the SMD values at the centre of the jet at any z location are between 2-3 times 

higher than the average droplet diameters. This is perhaps due to the higher velocity and 

droplet size at the core of the spray compared to the edge of the spray that can increase 

the SMD values up to threefold. It is also interesting to note from figure 7-16 (b) that at 

the z locations closer to the nozzle exit (ie z=1) and in the centre of the spray, SMD values 

are starting from around 30µm at the start of the injection event (ie 1ms) and are 

reducing to 20 µm towards the end of injection (ie 2ms) and this shows that there is a 

decreasing trend in the temporal SMD graphs at the centre of the jet very close to the 

nozzle exit.  
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(a): z=1mm, y=-1.5mm 

b)  

Figure 7-16 Temporal mean diameter (D10) and SMD (D32) for two y locations (edge on the left and centre of the 

jet on the right) at different z locations for 100 bar injection pressure and 2ms injection duration 

 

 

  

(c): z=2.5mm, y=-2.4mm 

y=-2.4mm 

(d): z=2.5mm, y=-1.2mm 

 

(e): z=5mm, y=-3mm 

y=-3mm 

(f): z=5mm, y=-1.3 

(g): z=10mm, y=-3.5mm (h): z=10mm, y=-1.4mm 

 

(b): z=1mm, y=-1.05mm 

 

a)  
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This could be due to the increasing trend in the number of samples passing through the 

probing volume during the main injection event. 

7.5.4 Instantaneous mean droplet diameter (D10) and SMD (D32) distribution 

Figure 7-17 (a) to (o) shows the instantaneous mean droplet diameter and SMD 

distribution along y axis for 3 AESOI time of 1ms, 1.5ms, and 2ms for different z locations. 

Each row shows the graphs related to same z location. It could be seen from all the cases 

that there is a jet shape for all the graphs with a peak at the centre of the graph. It could 

also be seen that the peak of the SMD is more or less located at the same position as the 

peak of the diameter graphs. 

It is apparent from figure 7-17 a to c that, at z=1mm, the instantaneous SMD distribution 

at 1ms AESOI has higher peak compared to 1.5ms and 2ms respectively. This was also 

shown in the previous section where there is a decreasing trend in the temporal SMD 

graph in figure 7-16 b. This trend is also evident at z=2.5mm in figures 7-17 d to f where 

the peak of the instantaneous SMD graph reduces from 30µm at 1ms AESOI to around 

20µm AESOI. 

It could be seen from figure 7-17 (g) to (o) that for the z locations of 5mm and above, the 

SMD distribution does not change significantly from the start to the end of the main 

injection event.  



 
 
 
Chapter 7                                                                                   PDA measurement 

283 

  

  

 

(a): z=1mm, AESOI=1ms 

c)  

(b): z=1mm, AESOI=1.5ms 

d)  

(c): z=1mm, AESOI=2ms 

e)  
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Figure 7-17 Spatial mean diameter (D10) and SMD (D32) along y axis at 1ms (left), 1.5ms (middle), 

and 2ms (right) ASOI injection for different z locations at 100 bar injection pressure and 2ms 

injection duration 

 

 

 

 

(d): z=2.5mm, AESOI=1ms 

h)  

(e): z=2.5mm, AESOI=1.5ms 

g)  

(f): z=2.5mm, AESOI=2ms 

f)  

(g): z=5mm, AESOI=1ms 

k)  

(h): z=5mm, AESOI=1.5ms 

j)  

(i): z=5mm, AESOI=2ms 

i)  

(j): z=10mm, AESOI=1ms 

l)  

(k): z=10mm, AESOI=1.5ms 

m)  

(l): z=10mm, AESOI=2ms 

n)  

(m): z=20mm, AESOI=1ms 

q)  

(n): z=20mm, AESOI=1.5ms 

p)  

(o): z=20mm, AESOI=2ms 

o)  
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7.5.5 Temporal Weber Number graphs  

Figure 7-18 (a) to (h) shows the temporal weber number analysis for different y and z 

locations at 100 bar injection pressure and 2ms injection duration. Each row in the figure 

is related to the same z with different y location. As an example, figure 7-18 (a) shows 

the temporal weber number at the edge of the jet where z=1mm and y=1.5mm while 

figure 7-18 (b) shows temporal weber at the centre of the jet where z=1mm and y= -

1.05mm. It could be seen that the weber number for the centre of the jet is higher than 

that of the edge of the jet. At the edge of the jet the weber numbers are very low close 

to zero which means that the spray is fully atomised and there is no more atomisation. 

This behaviour is same for all z locations. It is also evident that the Weber numbers at 

the centre of the jet are rather constant and less than 10 for all the z locations. It 

demonstrated that the critical weber number of 12.5 has been reached earlier and this 

means that the secondary atomisation is happening either inside the stepped-hole or at 

z locations smaller than 1mm from the nozzle tip. 
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Figure 7-18 Temporal Weber Number Analysis for two different y locations (edge on the left and centre of jet 

on the right) at different z locations for 100 bar injection pressure and 2ms injection duration 

 

 

  

(a): z=1mm, y=-1.5mm 

s)  

(b): z=1mm, y=-1.05mm 

 

r)  

(c): z=2.5mm, y=-2.4mm 

y=-2.4mm 

(d): z=2.5mm, y=-1.2mm 

 

(e): z=5mm, y=-3mm 

y=-3mm 

(f): z=5mm, y=-1.3 

(g): z=10mm, y=-3.5mm (h): z=10mm, y=-1.4mm 
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7.5.6 Instantaneous spatial Weber Number distribution  

Figures 7-19 (a) to (o) shows the instantaneous spatial Weber Number distribution 

along y axis at different z locations for 3 different times of 1ms, 1.5ms and 2ms AESOI 

for the pressure of 100 bar and the injection duration of 2ms. It is clear that the weber  

 

 

 

 

(a): z=1mm, AESOI=1ms 

t)  

(b): z=1mm, AESOI=1.5ms 

u)  

(c): z=1mm, AESOI=2ms 

v)  
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Figure 7-19 Spatial Weber Number Analysis along y axis at 1ms (left), 1.5ms (middle), and 2ms (right) ASOI 

injection for different z locations for 100 bar injection pressure and 2ms injection duration 

 

 

  

(d): z=2.5mm, AESOI=1ms 

y)  

(e): z=2.5mm, AESOI=1.5ms 

x)  

(f): z=2.5mm, AESOI=2ms 

w)  

(g): z=5mm, AESOI=1ms 

bb)  

(h): z=5mm, AESOI=1.5ms 

aa)  

(i): z=5mm, AESOI=2ms 

z)  

(j): z=10mm, AESOI=1ms 

ee)  

(k): z=10mm, AESOI=1.5ms 

dd)  

(l): z=10mm, AESOI=2ms 

cc)  

(m): z=20mm, AESOI=1ms 

hh)  

(n): z=20mm, AESOI=1.5ms 

gg)  

(o): z=20mm, AESOI=2ms 

ff)  
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number distribution has a jet shape. It is evident from figure 7-19 (a) to (c), the peak of 

the weber number distribution drops from values around 8 at 1ms AESOI to 5 at 1.5ms 

AESOI and continues to decrease to around 2 at 2ms AESOI. This decreasing trend is also 

evident for z=2.5mm in figures 7-19 d to f while the weber numbers have almost same 

values as z=1mm. However for z location of z=5mm and above (ie figure 7-19 (g) to (o), 

the peak of the Weber number distribution is less than 5 and does not change 

significantly during the main injection event from 1ms AESOI to 2ms AESOI. 

7.5.7 Comparison of the performance of the injector with respect to the 

previous works  

Figure 7-20 (a) shows the peak values of Weber number at the centre of the jet at 

different z locations averaged over 1ms during the main injection event. It is clear that 

the Weber numbers are less than critical weber number and are smaller than 12.5. 

Comparing the Weber numbers with the work of Andrea Marchi, it could be seen that 

the performance of the stepped injector is better than that of the pintle type injector. 
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(a)            (b) 

Figure 7-20 Weber number as a function of z for the current stepped-nozzle injector and the previous 

work of A. Marchi [44] 

 Summary 

In this chapter, a Fiberflow Dantec PDA measurement system was setup to measure 

spray characteristics including droplet diameters and velocities at different axial location 

from the very near-nozzle distance from the injector (z=1mm) up to a distance of 

z=35mm from the injector, to investigate early breakup. Due to the very closed-spaced 

compact arrangement of the nozzle holes located at the injector tip region, high 

attention was given to the setup and location of the probe position at the edge of the 

injector tip. In order to do this, the zero point of the traverse reference system was 

carefully chosen using a novel technique which ensured that it was exactly located on 

the symmetric axis of the injector tip. In addition, one of the nozzle jet sprays was 

carefully isolated and the mounting was rotated and aligned in a specific direction that 

allowed the spray droplets to have maximum exposure to the PDA detector system while 

travelling through the probe region. This alignment was configured to ensure that the 
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vertical projection of the droplet velocities are maximum while travelling through the 

probe region. The main finding of this phase of the measurements are as follow: 

• The new injector set up arrangement and optical set up ensured the minimum 

attenuation of the transmitting beams and collecting scattered light that allowed 

full measurements of droplets velocity and diameters across the spray at the 

vicinity of injector at z=1mm, which is a major achievement compared to previous 

works. 

•  It was found that the droplets can reach velocities of up to 120m/s at 100 bar. 

This was in very good agreement with the in-nozzle flow velocity of a stepped 

hole injector which was obtained by micro-PIV at the same injection pressure. 

This proved accuracy of the measurements to be very good at a distance of 1mm 

away from nozzle exit.  

• A comparison of the results between the mean droplet diameters of the current 

stepped multi-hole injector (7.5 µm at 100 bar and z=1mm) with a conventional 

straight multi-hole injector [46] (~15 µm at 120 bar and z=2.5mm) and an 

outward opening pintle-type injector [54] (~13 µm at 200 and z=5mm) shows a 

good advantage of the current injector relative to the other two injectors and 

suggest it has a better atomization capability; note that all three cases considered 

here have used the same PDA system. The improved atomization performance 

can be due to the stepped part of the current injector which could affect the 

internal flow turbulence where the fuel undergoes through a sudden expansion 
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process whereby the flow becomes 3-D and highly turbulent and becomes 

susceptible to earlier breakup and rapid atomization. 

• It was observed from the temporal velocity contour plots that the core of the 

velocity of the centre of the jet reaches 120m/s at 100 bar injection pressure. As 

expected, these temporal maximum velocities are higher than the time-averaged 

values at the centre of the jet. 

• It was seen that at z=1mm, due to the closed spacing compact arrangement of 

the holes, the space between the adjacent jets 1&2 and 1&3 is associated with 

average droplet velocities of up to 60 m/s which shows high interaction of 

adjacent jets with each other and therefore the formation of a more uniform 

spray with less visible boundary between adjacent jets.   

• Approximate x-y coordinates of the centre of the jet where maximum velocity 

(Vz) happens at each z location were obtained 

• It was obtained from the temporal contour plot of velocities that the y length of 

the main body of the jet decreases slightly over the main injection duration 

period and this suggests that although it is believed that the jet is in steady state 

during the main injection event, it is actually changing its shape and becomes 

slightly contracted during the main injection event. 

• It was observed from the temporal contour plot of velocities that the main core 

of the jet is comprised of 4  smaller jets which are referred to ‘micro-jets’ or ‘sub-

jets’ which are tightly close to each other like a T shape and this is in agreement 

with what was proposed in the 7-times enlarged model of the injector. 
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• It was observed that the y coordinates of the local peaks in the jet are changing 

as AESOI time changes from 1ms to 1.5ms and to 2ms. 

• It could be claimed that the temporal velocities at a fixed point of measurement 

at the centre of the jet could be either increased or decreased during the main 

injection event due to the dislocation of microjets which are located close to the 

point of measurement. 

• The presence of the local peaks were observed in the temporal droplet diameter 

contour plot in the same x,y location as they were observed in the temporal 

velocity contour plots. 

• It was observed from the temporal diameter contour plots that at z=1mm, the 

maximum droplet diameter values decrease from around 9 μm at 1ms to 7.5μm 

at 1.5ms and finally decreases to around 6.5 µm at 2ms AESOI. 

• A uniform low velocity region with minimum thickness of around 150µm was 

seen at the edge of the jet at z=1mm. This is the outer part of the jet which is 

under the influence of stochastic ligament breakup. These stochastic ligaments 

are usually formed in the regions where the ratio of the volume of fluid (VOF) is 

small compared to the core of the liquid jet in the nozzle as a result of interaction 

of the outer part of the jet with the cylindrical surface of the counterbore stepped 

section. 

• It was observed that the velocities obtained from the temporal velocity graphs 

are in good agreement with the velocities obtained from temporal velocity 

contour plots 
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• It was observed from the temporal velocity graphs that the spray velocity at the 

inner side of the jet edge (which is closer to the injector axis) has higher 

fluctuations compared to the temporal velocity graphs for the points which are 

located at the outer edge of the jet (further away from injector axis) . This is 

perhaps related to the existence of the low VOF region at the inner side of the jet 

where cavitation and hydraulic flip can possibly occurs and creates fluctuations 

in the temporal velocity graph of the spray. This can ultimately cause tip wetting 

on the inner side of the jet more than the outer side. 

• It was observed from the temporal graphs of droplet diameter that the larger 

droplets, that are formed at the end of injection at the tail of the graphs as a 

result of needle closing event, are more pronounced at the outer side of the jet 

where the core of the main jet exists (which is closer to the PDA instrument and 

is further away from the injector axis) than the inner side of the jet (which is 

closer to the injector axis). 

• It could be claimed from comparing the spatial axial velocity graphs at different z 

locations that the stepped-nozzle can enhance the atomization of the spray by 

exposing the outer part of the spray to high amount of early air-entrainment 

which ultimately results in reduction of velocity at the edges of the spray 

• Comparison of the spatial velocity graphs at z=1mm obtained by PDA 

measurement with the spatial velocity graphs obtained by micro-PIV technique 

shows very good agreement and precision of the PDA results. 
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• The SMD values at the edge of the spray at any z location is small (less than 10 

µm) and are slightly higher than the average droplet diameter values (5-6 µm) 

• The SMD values at the centre of the jet at any z location are higher (20-30 µm) 

and are between 3-4 times higher than the average droplet diameters (6-9 µm) 

• It was observed from instantaneous spatial SMD and droplet diameter graphs at 

z=1mm and z=2.5mm that the maximum SMD at the centre of the jet during the 

main injection event drops from around 30 µm to 20 µm. 

• It could be seen that the weber number for the centre of the jet is higher than 

that of the edge of the jet 

• It was observed that the Weber numbers at the centre of the jet are less than 10 

for all the z locations. This shows that there is likely no secondary atomisation 

happening from the point z=1mm onwards. It demonstrated that the critical 

weber number of 12.5 has been reached earlier before the point of z=1mm and 

this means that the secondary atomisation is happening either inside the 

stepped-hole or at z locations smaller than 1mm from the nozzle tip. 

• Comparing the Weber numbers with the work of Andrea Marchi on the piezo 

injector, it could be seen that the performance of the stepped multihole injector 

is better than that of the pintle type injectors 
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8 Chapter 8:   Conclusion and recommendation for further 

work 
 

 Conclusion 

 

The current research work aimed to address some of the issues associated with 

cavitation inside the multi-hole nozzle and its link to the spray stability and atomisation. 

In addition, spray characteristics and performance of a new design of a multi-hole 

injector was quantified by measuring droplets velocity and diameter across the spray and 

compared with other types of injectors. The results and main contributions are 

presented in four phases as follow: 

Geometric and string cavitation was observed in the nozzle and their site of occurrence 

was visualized. It was seen that both geometric and string cavitation can influence the 

stability of the near-nozzle exit spray. This has been reported before in previous works. 

The vertical (or tangential) velocity of the bubble pocket was found to be almost 20m/s 

whereas the mean axial velocity calculated from the flow rate measurement was 17.14 

m/s. A reverse backwards vortex were observed for the first time inside the nozzle at low 

cavitation numbers which affected the spray structure and cone angles. Two counter 

rotating strings were visulised for the first time at high cavitation numbers which caused 

a highly turbulent in-nozzle flow. The directionality of the string cavitation and the spray 

angle was also visualized for the first time. It was visualized for the first time that the 

interaction between the geometrical and vortex cavitation shows the displacement and 
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rolling of the leading edge of the geometric cavitation on the top surface near the hole 

entry at full lift and high cavitation and Reynolds number. The displacement and possible 

impact of bubble pockets on the top surface of the nozzle at full lift and high cavitation 

and Reynolds number were also visualised and analysed. The bubbles burst through 

micro-burst process with velocities much higher (by order of magnitude) when they get 

near the surface where the pressure in recovered and their possible impact would result 

on further erosion. It was shown that two counter (highlighted) rotating vortex cavitation 

coexist at the same time inside the nozzle hole originated from the top and bottom side 

of the nozzle at the inlet and get closer together as they convected downstream so that 

they almost merged together nearer to the exit. Directionality of the vortex cavitation 

and its effect on spray at Full Lift were also visualized as this has been reported in 

previous works.  At injection to atmosphere at low cavitation numbers, with no 

geometrical cavitation, a random transient reverse vortex structure was found to be 

initiated outside the nozzle near its exit in tenth of a millisecond and moved into nozzle 

towards its inlet and developed/ and maintained its structure inside the nozzle for 

several milliseconds. It was found that increasing the needle lift for the same low 

cavitation number seems to decrease the duration of the air entrainment and 

penetration inside the nozzle. It was observed that string cavitation can influence the 

size of the cone angle. It was seen that as the string cavitation is reached towards the 

end of the nozzle, the cone angle increases significantly. The variations of the overall 

cone angles as a function of injection pressure (or CN) was analysed which shows a 

steady decrease in cone angle with pressure up to P=4bar. The variations of the cone 
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angle as a function of needle lift at a given pressure shows that the angle might increases 

with increasing the needle lift. 

In the second phase of the experimental investigation, a new original 7-times enlarged 

model of the same injector was designed and manufactured utilising a CAD software that 

allowed an enhanced simultaneous visualisation of the in-nozzle flow and near-nozzle jet 

spray. In this phase, the transparent model was uniquely designed in SOLIDWORKS that 

allowed for the first time both in-nozzle flow region and the near-nozzle exit spray region 

to remain optically sharp enough in the same depth-of-the-field region of the camera 

(DoF of less than 1mm) . The main contribution of the author was to enhance the 

visualization technique that allowed simultaneous visualization of the link between in-

nozzle flow pattern and the near-nozzle jet spray. The main new findings in this phase 

are: 

The structure of the geometric cavitation on top of the nozzle undergoes a transition 

with increase in CN from a cluster of bubbly cloud vapour into a smoothly horseshoe film 

cavitation; Cavitation shedding at CN = 2 was captured at 200,000 fps. It was seen that a 

pocket of air will be sucked into the upper part of the nozzle at CN higher than 2 and 

hydraulic flip occurs. This will have huge impact on the structure and the angle of the 

upper and lower edge of the near exit spray and will ultimately result in the formation of 

a stochastic ligament spray at the top side of the nozzle.  Three mechanisms were seen 

to be responsible for the breakup of the near-nozzle spray at high  CN numbers. The first 

mechanism is the stochastic ligament breakup at the upper part of the spray at the 12 o 
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clock position. These ligaments could be the resultant of the interaction of the highly 

turbulent flow inside the nozzle as they emerge outside the nozzle. The second 

mechanism could be the stochastic sheet (shell) breakup which is believed to be formed 

circumferentially on both sides of the nozzle wall located at first and fourth quadrant at 

the cross section of the nozzle exit. The last mechanism responsible for the breakup is 

possibly the main jet breakup at the lower part of the spray. In all these breakup regimes 

cavitation and turbulence and aerodynamic drag forces play an important role. It was 

observed that the stochastic ligament spray may contribute to tip nozzle wetting at the 

upper part of the nozzle. It was also observed that the string cavitation inside the nozzle 

hole affects the geometric cavitation region and consequently resulting in a change in 

spray axis angle and cone angle The results show that the absolute value of the angle 

increases with increase in CN numbers. It was revealed that the hydraulic flip happens 

earlier than expected and at lower cavitation numbers compared to 15 times enlarged 

model.  

In the third phase of the experiment, a real-size injector test rig was designed and 

manufactured using SOLIDWORKS which enabled the stepped injector to rotate along 

the axis of the needle 360⁰ freely and allowed high-speed visualization of the spray 

plume from different angles. It also enabled the measurement of the spray cone angle 

from different angles. It further allowed the investigation of the full spray structure, 

near-nozzle and very near-nozzle exit spray behaviours by means of visualization and 

helped to setup the PDA system for in the next part of the experiment. The main finding 
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of the spray visualisations are: The core of the jet is wider compared to conventional 

injectors and has a more irregular pattern in the fully developed mode. Two middle jets 

are flapping from one side to another side creating a snake shape pattern. The structure 

of the spray in the fully developed mode exhibits an A shape which is believed to be due 

to the compact and dense nature of arrangement of hole which allow higher interactions 

between the adjacent jets and high air entrainment in-between each individual jets. It 

was observed that there is high interaction between each jet and the adjacent jet and 

therefore a distinct boundary between each jet is not recognisable as the spray develops 

further downstream in comparison with conventional multi-hole where there is a clear 

boundary between each jet and less interaction is visible between each individual jets. 

The overall jet penetration of the stepped hole Bosch injector (injector #3) was compared 

with conventional  straight-hole Bosch injector (injector #1). It was seen that at ASOI of 

0.75ms (AESOI 1.5ms), the tip penetration for the stepped hole nozzle was around 50mm 

which was similar to the tip penetration for the conventional multi-hole at the same 

ASOI. Due to the fact that the exact size size and angles of the stepped-hole nozzle was 

not provided, it is not possible to directly compare the penetration together but 

discarding the internal design, it could be claimed that both injectors are operating 

within same range in terms of tip penetration. The overall jet penetration of the stepped 

hole Bosch injector (injector #3) was also compared with magneti marrelli stepped hole 

injector (injector #2). It could be seen that the of the penetration of the stepped hole 

Bosch injector at 100 bar at 0.25 ASOI (0.9 AESOI) is around 22mm which is similar to the 

penetration ofstepped hole magneti marrelli injector at the pressure of 120 bar at 0.25 
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ms ASOI which is also around 23mm. It should be mentioned that a direct comparison 

could not be made here again since the internal design of the two injectors are different 

than each other and also the exact size and angle of the holes of each nozzles are 

potentially different. However disregarding these facts, it could be seen that both 

injectors are operating more or less at the same range in terms of tip penetration. It 

could be seen that as the pressure increases from 50 bar to 100 bar the spray cone angle 

increase from around 64 degree to 72 degrees.It can be seen that the range of variation 

of the spray angle for all cases is around 2-3 degrees. It was observed that the edge of 

the spray is less denser and therefore the fluctuations of the brightness in the 

shadowgraphs are higher at the edge of the spray compared to the core of the spray.  

The rotation angle of 360 – 250 = 110 degree is necessary in order to isolate jet 1 in a 

manner that can provide maximum exposure for receiving optics for the PDA 

measurement. 

In the fourth phase of the experiment, a Fiberflow Dantec PDA measurement system was 

setup to measure spray characteristics including droplet diameters and velocities at 

different axial location from the very near-nozzle distance from the injector z=1mm up 

to a distance of z=35mm from the injector, to investigate early breakup. Due to the very 

closed-spaced compact arrangement of the nozzle holes located at the injector tip 

region, high attention was given to the setup and location of the probe position at the 

edge of the injector tip. In order to do this, the zero point of the traverse reference 

system was carefully chosen using a novel technique which ensured that it was exactly 



 
 
 
Chapter 8                                                                                    Conclusion 

 

302 

located on the symmetric axis of the injector tip. In addition, one of the nozzle jet sprays 

was carefully isolated and the mounting was rotated and aligned in a specific direction 

that allowed the spray droplets to have maximum exposure to the PDA detector system 

while travelling through the probe region. This alignment was configured to ensure that 

the vertical projection of the droplet velocities are maximum while travelling through 

the probe region. The main finding of this phase of the measurements are as follow: The 

new injector set up arrangement and optical set up ensured the minimum attenuation 

of the transmitting beams and collecting scattered light that allowed full measurements 

of droplets velocity and diameters across the spray at the vicinity of injector at z=1mm. 

It was found that the droplets can reach velocities of up to 120m/s at 100 bar. This was 

in very good agreement with the in-nozzle flow velocity of a stepped hole injector which 

was obtained by micro-PIV at the same injection pressure. A comparison of the results 

between the mean droplet diameters of the current stepped multi-hole injector (7.5 µm 

at 100 bar and z=1mm) with a conventional straight multi-hole injector [46] (~15 µm at 

120 bar and z=2.5mm) and an outward opening pintle-type injector [54] (~13 µm at 200 

and z=5mm) shows a good advantage of the current injector relative to the other two 

injectors and suggest it has a better atomization capability; note that all three cases 

considered here have used the same PDA system. The improved atomization 

performance can be due to the stepped part of the current injector where the fuel 

undergoes through a sudden expansion process whereby the flow becomes 3-D and 

highly turbulent and becomes susceptible to earlier breakup and rapid atomization. It 

was observed from the temporal velocity contour plots that the core of the velocity of 
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the centre of the jet reaches 120m/s at 100 bar injection pressure. As expected, these 

temporal maximum velocities are higher than the time-averaged values at the centre of 

the jet. It was seen that at z=1mm, due to the closed spacing compact arrangement of 

the holes, the space between the adjacent jets 1&2 and 1&3 is associated with average 

droplet velocities of up to 60 m/s which shows high interaction of adjacent jets with each 

other and therefore the formation of a more uniform spray with less visible boundary 

between adjacent jets.  Approximate x-y coordinates of the centre of the jet where 

maximum velocity (Vz) happens at each z location were obtained. It was obtained from 

the temporal contour plot of velocities that the y length of the main body of the jet 

decreases slightly over the main injection duration period and this suggests that although 

it is believed that the jet is in steady state during the main injection event, it is actually 

changing its shape and becomes slightly contracted during the main injection event. It 

was observed from the temporal contour plot of velocities that the main core of the jet 

is comprised of 4  smaller jets which are referred to ‘micro-jets’ or ‘sub-jets’ which are 

tightly close to each other like a T shape and this is in agreement with what was proposed 

in the 7-times enlarged model of the injector. It was observed that the y coordinates of 

the local peaks in the jet are changing as AESOI time changes from 1ms to 1.5ms and to 

2ms. It could be claimed that the temporal velocities at a fixed point of measurement at 

the centre of the jet could be either increased or decreased during the main injection 

event due to the dislocation of microjets which are located close to the point of 

measurement. The presence of the local peaks were observed in the temporal droplet 

diameter contour plot in the same x,y location as they were observed in the temporal 
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velocity contour plots. It was observed from the temporal diameter contour plots that at 

z=1mm, the maximum droplet diameter values decrease from around 9 μm at 1ms to 

7.5μm at 1.5ms and finally decreases to around 6.5 µm at 2ms AESOI. A uniform low 

velocity region with minimum thickness of around 150µm was seen at the edge of the 

jet at z=1mm. This is the outer part of the jet which is under the influence of stochastic 

ligament breakup. These stochastic ligaments are usually formed in the regions where 

the ratio of the volume of fluid (VOF) is small compared to the core of the liquid jet in 

the nozzle as a result of interaction of the outer part of the jet with the cylindrical surface 

of the counterbore stepped section. It was observed that the velocities obtained from 

the temporal velocity graphs are in good agreement with the velocities obtained from 

temporal velocity contour plots. It was observed from the temporal velocity graphs that 

the spray velocity at the inner side of the jet edge (which is closer to the injector axis) 

has higher fluctuations compared to the temporal velocity graphs for the points which 

are located at the outer edge of the jet (further away from injector axis) . This is perhaps 

related to the existence of the low VOF region at the inner side of the jet where cavitation 

and hydraulic flip can possibly occurs and creates fluctuations in the temporal velocity 

graph of the spray. This can ultimately cause tip wetting on the inner side of the jet more 

than the outer side. It was observed from the temporal graphs of droplet diameter that 

the larger droplets, that are formed at the end of injection at the tail of the graphs as a 

result of needle closing event, are more pronounced at the outer side of the jet where 

the core of the main jet exists (which is closer to the PDA instrument and is further away 

from the injector axis) than the inner side of the jet (which is closer to the injector axis). 



 
 
 
Chapter 8                                                                                    Conclusion 

 

305 

It could be claimed from comparing the spatial axial velocity graphs at different z 

locations that the stepped-nozzle can enhance the atomization of the spray by exposing 

the outer part of the spray to high amount of early air-entrainment which ultimately 

results in reduction of velocity at the edges of the spray. Comparison of the spatial 

velocity graphs at z=1mm obtained by PDA measurement with the spatial velocity graphs 

obtained by micro-PIV technique shows very good agreement and precision of the PDA 

results. The SMD values at the edge of the spray at any z location is small (less than 10 

µm) and are slightly higher than the average droplet diameter values (5-6 µm). The SMD 

values at the centre of the jet at any z location are higher (20-30 µm) and are between 

3-4 times higher than the average droplet diameters (6-9 µm). It was observed from 

instantaneous spatial SMD and droplet diameter graphs at z=1mm and z=2.5mm that the 

maximum SMD at the centre of the jet during the main injection event drops from 

around 30 µm to 20 µm. It could be seen that the weber number for the centre of the jet 

is higher than that of the edge of the jet. It was observed that the Weber numbers at the 

centre of the jet are less than 10 for all the z locations. This shows that there is likely no 

secondary atomisation happening from the point z=1mm onwards. It demonstrated that 

the critical weber number of 12.5 has been reached earlier before the point of z=1mm 

and this means that the secondary atomisation is happening either inside the stepped-

hole or at z locations smaller than 1mm from the nozzle tip. Comparing the Weber 

numbers with the work of Andrea Marchi on the piezo injector, it could be seen that the 

performance of the stepped multihole injector is better than that of the pintle type 

injectors 
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 Recommendation for further work 

 

For the enlarged model, it could be recommended that the micro-PIV technique could 

be used in order to find contour velocities of the in-nozzle flow inside enlarged models 

of the injector and validate them by the current CFD codes. This could be done similar 

to the work of Mamaikin et al [7]. It could be recommended that the internal geometry 

of the injector would be obtained by means of X-ray tomography in order to replicate a 

3D transparent real-size of the same injector. The dimensions could also be used to 

create a realsize model in CAD software which could be used for valication of different 

CFD simulation codes. The transparent real-size could  be used for micro-PIV 

measurement of the internal flow as well as PDA measurement  of the very near-nozzle 

jet spray. the combined micro-PIV  of the in-nozzle flow of the transparent real-size 

model along with PDA of the same model at very near-nozzle distance similar to the 

current work may yield fascinating results which could then be used as a reference 

point for  CFD codes related to the mixure formation of the spray inside the 

combustion chamber. 

In addition, the Matlab code could be used in conjunction with the PDA system to 

design a sensor which can create instantaneous live 2-D velocity contour plot of 

continuous injections i.e. in airplane engines.
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10 Appendices 
 

 Appendice 1 – Temporal and Velocity graphs 

 

In this section the temporal velocity graphs are presented at different z values and for 

different y locations in each z location. The analysis of for each z location is similar to 

the analysis given for z=1 at section 7.4.1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
          Appendix 

 

323 

10.1.1 Temporal velocity graphs at z = 2.5mm, x=-0.5mm along y axis for 

duration of 2ms 

 

 

 
 

 

 

  

 
Figure 10-1 Temporal variation of average axial velocity over a time window of 0.05ms at z = 2.5mm, x=-0.5mm 

and at different  y locations for 100 bar injection pressure and 2ms injection duration.  

  

b) y=-2.1mm a) y=-2.4mm 

c) y=-1.8mm 

e) y=-1.2mm 

d) y=-1.5mm 

h) y=-0.4mm g) y=-0.6mm 

f) y=-0.9mm 
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10.1.2 Temporal velocity graphs at z =5mm, x=-2.3mm along y axis for duration 

of 2ms 

 

   

 

      

 

      

 

  

 

Figure 10-2 Temporal variation of average axial velocity over a time window of 0.05ms at z = 5mm, x=-2.3mm 

and at different  y locations for 100 bar injection pressure and 2ms injection duration.  

  

a) y=-3mm b) y=-2.55mm 

c) y=-2.1mm 

f) y=-0.85mm 

g) y=-0.4mm h) y= 0mm 

d) y=-1.75mm 

e) y=-1.3mm 
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10.1.3 Temporal velocity graphs at z =10mm, x=-3.4mm along y axis for 

duration of 2ms 

      

 

 

 

    

 

    

 

 

 

Figure 10-3 Temporal variation of average axial velocity over a time window of 0.05ms at z = 10mm, x=-3.4mm 

and at different  y locations for 100 bar injection pressure and 2ms injection duration.  

  

a) y=-3.5mm b) y=-2.9mm 

c) y=-2.3mm d) y=-1.7mm 

e) y=-1.1mm f) y=-0.5mm 

g) y=0.1mm h) y=0.5mm 
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10.1.4 Temporal velocity graphs at z =20mm, x=-4.6mm along y axis for 

duration of 2ms 

      

 

      

 

     

 

      

 

 

a) y=-6.5mm b) y=-5.3mm 

c) y=-4.1mm d) y=-2.9mm 

e) y=-1.7mm f) y=-0.5mm 

g) y=0.7mm h) y=1.5 

Figure 10-4 Temporal variation of average axial velocity over a time window of 0.05ms at z = 20mm, x=-4.6mm 

and at different  y locations for 100 bar injection pressure and 2ms injection duration.  
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In this section the temporal mean droplet diameter graphs are presented at different z 

values and for different y locations in each z location. The analysis of for each z location 

is similar to the analysis given for z=1 at section 7.2.2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
          Appendix 

 

328 

10.1.5 Temporal velocity graphs at z = 2.5mm, x=-0.5mm along y axis for 

duration of 2ms 

     

  

 

 

  

 

  

 

 

 

a) y=-2.4mm b) y=-2.1mm 

c) y=-1.8mm d) y=-1.5mm 

e) y=-1.2mm f) y=-0.9mm 

g) y=-0.6mm h) y=-0.4mm 

Figure 10-5 Temporal variation of average mean diameter over a time window of 0.05ms at z = 2.5mm, x=-0.5mm 

and at different  y locations for 100 bar injection pressure and 2ms injection duration.  
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10.1.6 Temporal mean diameter graphs at z =5mm, x=-2.3mm along y axis for 

duration of 2ms 

 

    

 

    

 

    

 

   

a) y=-3mm b) y=-2.55mm 

c) y=-2.1mm 
d) y=-1.75mm 

e) y=-1.3mm f) y=-0.85mm 

g) y=-0.4mm h) y= 0mm 

Figure 10-6 Temporal variation of average mean diameter over a time window of 0.05ms at z = 5mm, x=-2.3mm 

and at different  y locations for 100 bar injection pressure and 2ms injection duration.  
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10.1.7 Temporal mean diameter graphs at z =10mm, x=-3.4mm along y axis for 

duration of 2ms 

      

 

     

 

     

 

   

 

 

a) y=-3.5mm b) y=-2.9mm 

c) y=-2.3mm d) y=-1.7mm 

e) y=-1.1mm f) y=-0.5mm 

g) y=0.1mm h) y=0.5mm 

Figure 10-7 Temporal variation of average mean diameter over a time window of 0.05ms at z = 10mm, x=-3.4mm 

and at different  y locations for 100 bar injection pressure and 2ms injection duration.  
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10.1.8 Temporal mean diameter graphs at z =20mm, x=-4.6mm along y axis for 

duration of 2ms 

  

 

  

 

   

 

    

 

a) y=-6.5mm b) y=-5.3mm 

c) y=-4.1mm d) y=-2.9mm 

e) y=-1.7mm f) y=-0.5mm 

g) y=0.7mm 
h) y=1.5 

Figure 10-8 Temporal variation of average mean diameter over a time window of 

0.05ms at z = 20mm, x=-4.6mm and at different  y locations for 100 bar injection 

pressure and 2ms injection duration.  
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 Appendice 2 – Figures for superimposing the velocity countor plot 

 

                                              

 

                                                     

 

 
Figure 10-9 Superimposition of the velocity contour plots for the very fine grid measurement. The contour plots from  top to 
bottom are shown in the scale paper and the velocity legends are given in page: Z=1mm, Z=2.5mm, Z=5mm, Z=10mm, Z=15mm, 
Z=20mm, Z=35mm 

 

a) z=1mm b) z=2.5mm c) z=5mm 

e) z=20mm f) z=35mm d) z=10mm 
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 Appendice 3 - Matlab code for LDV and PDA measurements 
---------------------------------- 

City University Of London 

Milad Mirshahi 

2018 

------------------------------------ 

nw=40;        % (double)number of windowing frames for 

calculation of mean of velocity over time 

xl=3;            % (double) limit x-axis 

  

para=[0.8 1 1.4 1.6 1.9 2.1 0.8 2.1] ;         % (double) 3 

pair of time window for calculation of spatial mean ;   % 

(double) number of points to execute the code 

  

ReturnPoint=21; 

AlongX=0;    % (double) along x or along y 

  

x1=-0.2; x2=-0.2; gridX=.05;   % (all double) minimum 

maximum and grid length along x 

y1=-1.5; y2=-0.5; gridY=.05;    % (all double)  minimum 

maximum and grid length along y 

  

radialPositionX=x1:gridX:x2;      % (all double) grid 

generation fo x (only one number in case of along y 

measurement) 

radialPositionY=y1:gridY:y2;   % (all double) grid 

generation for y (only one number in case of along x 

measurement) 

  

  

if AlongX==1 

  radialPosition=  radialPositionX;  % (double) 

else 

  radialPosition=  radialPositionY;   % (double) 

end 

  

  

  

%---------------  Identify read Folder------------------- 

folder1=pwd;  %  (character) Identify current folder path 

and put it in folder1 for example when we are looking at 

data in Z1 folder the value is: 
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% folder1 = C:\Users\OneDrive - City, University of 

London\4 - PDA\My Flow Projects\Export - Doc\Z1\Z_1___X_-

0.2_0.05___Y_-1.5_-0.5_0.05 

  

%---------------  Identify write Folders------------------- 

  

filter=3; % double) 

  

folder2=[folder1,'\LDA',num2str(filter)];  % (character) 

define the path of folder LDA3  

% (which has been created manualy in windows before in the 

main folder)  

% for writing velocity graphs into it 

% here folder 2 = C:\Users\OneDrive - City, University of 

London\4 - 

% PDA\My Flow Projects\Export - 

% Doc\Z1\Z_1___X_-0.2_0.05___Y_-1.5_-0.5_0.05\LDA3 

  

folder3=[folder1,'\D',num2str(filter)];  % Character) 

%define the path of folder D3  

% (which has been created before in the main folder)  

% for writing diametr graphs into it 

%here folder3 =C:\Users\OneDrive - City, University of 

London\4 - 

%PDA\My Flow Projects\Export - 

%Doc\Z1\Z_1___X_-0.2_0.05___Y_-1.5_-0.5_0.05\D3 

  

folder4=[folder1,'\SMD',num2str(filter)];  % Character) 

%define the path of folder SMD3  

% (which has been created before in the main folder)  

% for writing SMD graphs into it 

%Here folder 4= C:\Users\OneDrive - City, University of 

London\4 - 

%PDA\My Flow Projects\Export - 

%Doc\Z1\Z_1___X_-0.2_0.05___Y_-1.5_-0.5_0.05\SMD3 

  

folder5=[folder1,'\Weber',num2str(filter)];  % Character) 

%define the path of folder SMD3  

% (which has been created before in the main folder)  

% for writing SMD graphs into it 

%Here folder 4= C:\Users\OneDrive - City, University of 

London\4 - 

%PDA\My Flow Projects\Export - 
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%Doc\Z1\Z_1___X_-0.2_0.05___Y_-1.5_-0.5_0.05\SMD3 

  

folder6=[folder1,'\LDA+D',num2str(filter)];  % Character) 

%define the path of folder LDA+D3  

% (which has been created before in the main folder)  

% for writing velocity diametr graphs into it 

%Here folder 5= C:\Users\OneDrive - City, University of 

London\4 - 

%PDA\My Flow Projects\Export - 

%Doc\Z1\Z_1___X_-0.2_0.05___Y_-1.5_-0.5_0.05\LDA+D3 

  

folder7=[folder1,'\D+SMD',num2str(filter)];  % Character) 

%define the path of folder D+SMD3  

% (which has been created before in the main folder)  

% for writing velocity diametr graphs into it 

%Here folder 5= C:\Users\Mina\OneDrive - City, University 

of London\4 - 

%PDA\My Flow Projects\Export - 

%Doc\Z1\Z_1___X_-0.2_0.05___Y_-1.5_-0.5_0.05\D+SMD3 

  

% -------------------- Read Z (height) of the folder as an 

input for function LDA3--------------- 

filelist   = dir(pwd);   % (structure) % Lists all the 

files including text,excel,matlab, etc ) in the current 

folder it has columns and each column could be char or 

double etc 

name       = {filelist.name};   % (cell) Create a cell 

'name' which is the name column extracted from  

% matrix of filelist which each element is the name of the 

files 

% in the current folder 

str=name{1,10};  % (char) create str as the file name of 

text file here it is:  

% 100 bar profile _ -110___Z_1___X_-0.2_0.05___Y_-1.5_-

0.5_0.05__CV72ms_VS195 - SNR2-S1000 -G6-

LV4_SU100k_SV10k_Pos14.txt 

newStr = extractBefore(str,"_Pos");  % (char) this create 

the string from start of str up to _Pos which is :  

% 100 bar profile _ -110___Z_1___X_-0.2_0.05___Y_-1.5_-

0.5_0.05__CV72ms_VS195 - SNR2-S1000 -G6-LV4_SU100k_SV10k 

ET=extractAfter(extractBefore(extractAfter(folder1,"Doc\"),

"\"),"Z");   % (char) reads height here it is 1mm which is  
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% string value of the number that appears after z in the 

grandparent folder of the current directory 

zz=str2double(ET)/100;  % (double)change z height from 

string to number and divide by 100 which is here 1/100 = 

0.01 for Z1 

  

  

  

%-------------------- Reading data from each text files i=1 

to 42 and creating dataset z(i) of all the points ---------

---------- 

for i=1:42 

filename = [newStr,'_Pos', num2str(i) ,'.txt'] ; % creates 

a variable which is like below where i goes from 1 to 42 in 

the loop for example when i is 1 it creates 

% filename = 100 bar profile _ 

% -110___Z_1___X_-0.2_0.05___Y_-1.5_-0.5_0.05__CV72ms_VS195 

- SNR2-S1000 

% -G6-LV4_SU100k_SV10k_Pos1.txt  or  _......pos2.txt when 

i=2 

full=fullfile(folder1,filename); %creates the full path + 

name of the text file for example when i is 1 it creates 

% % full = C:\Users\Mina\OneDrive - City, University of 

London\4 - PDA\My Flow Projects\Export - Doc\Z1\Z_1___X_-

0.2_0.05___Y_-1.5_-0.5_0.05\100 bar profile _ -

110___Z_1___X_-0.2_0.05___Y_-1.5_-0.5_0.05__CV72ms_VS195 - 

SNR2-S1000 -G6-LV4_SU100k_SV10k_Pos1.txt 

z{i}=readtable(full);  % z is 1x42 matrix in which each 

element is a table which has information of the text files 

for all the positions from 1 to 42, for example z(1)=z(1,1)  

has information of the text file .....pos1.text ,  

end 

  

  

  

  

%----------------------- Temporal Mean & RMS Velocity 

Analysis ------------------------------- 

% Calculation and plotting of mean & RMS velocity graphs 

(if needed using the filteration method which might not be 

used) and drawing 

% for 42 different graphs and saving them in LDA3 folder 
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for i=1:42 

mat=table2array(z{i});   %  mat is a 100000x9 array of the 

text file i of z(i) which means it does not have the title 

of the table but it has 100000 rows and 9 columns 

% the rows are measured instance for 1 particle and the 

columns are "AT [ms]","TT [us]","LDA1 [m/s]","U12 

[deg]","U13 [deg]","D [um]","AT{2} [ms]","TT{2} 

[us]","LDA4{2} [m/s]", 

  

 

[VzMeanii(i),VzStdii(i),VzMeanmm(i),VzStdmm(i),VzMeanff(i),

VzStdff(i),VzMeantt(i),VzStdtt(i)]=LDA3(mat,zz,nw,xl,para);  

% (1x1 double) temporal mean of the velocity for time 

window of para1 and para2 at position i will be calculated 

(42 positions) using function 

LDA3(matrix_data,Z,n,xl,param) which has these inputs: 

% mat=is the array of the table of data (the list of 

arrival time table) 

% nn=40;       is number of the windowing 

%  xl=3;       is the limit of x-axis 

% para=[t1 t2, ...] is the start and end of averaging 

window 

%the output meanV_pos(i) is one of the outputs of function 

LDA3  

  

basefile=num2str(i);  % creates a string of the number of 

file which is from 1 to 42 for figure output of LDA3 

function 

fullname=fullfile(folder2,basefile); % Here fullname will 

be C:\Users\Mina\OneDrive - City, University of London\4 - 

% PDA\My Flow Projects\Export - 

% Doc\Z1\Z_1___X_-0.2_0.05___Y_-1.5_-0.5_0.05\LDA3\1   or 

\2 or ... depend 

% on i value 

savefig(fullname) 

%saveas(gcf,fullname,'pdf') 

saveas(gcf,fullname,'jpeg') 

end 

close all 

  

  

%---------------Spatial Velocity Analysis------------------

-- 
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% Draw velocity profile (mean and RMS) as a function of 

position in LDA3 folder ---- 

% here VzMean(i) is LDAmean(i) and VzStd(i) is LDAstd (i) 

  

  

figure(1) 

plot(radialPosition,VzMeanii(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b',... 

    'MarkerFaceColor','b') 

title('Velocity Vz - Position along y axis ') 

xlabel('position along y axis (mm)'); 

ylabel('Velocity Vz (m/s)'); 

ylim([0 160]) 

hold on 

plot(radialPosition,VzStdii(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b') 

legend('Mean','RMS') 

fullnamev=fullfile(folder2,'V-y at 1'); 

savefig(fullnamev) 

saveas(gcf,fullnamev,'jpeg'); 

  

figure(2) 

plot(radialPosition,VzMeanmm(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b',... 

    'MarkerFaceColor','b') 

title('Velocity Vz - Position along y axis ') 

xlabel('position along y axis (mm)'); 

ylabel('Velocity Vz (m/s)'); 

ylim([0 160]) 

hold on 

plot(radialPosition,VzStdmm(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b') 

legend('Mean','RMS') 

fullnamev=fullfile(folder2,'V-y at t=1-5'); 

savefig(fullnamev) 

saveas(gcf,fullnamev,'jpeg') 

  

figure(3) 
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plot(radialPosition,VzMeanff(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b',... 

    'MarkerFaceColor','b') 

title('Velocity Vz - Position along y axis ') 

xlabel('position along y axis (mm)'); 

ylabel('Velocity Vz (m/s)'); 

ylim([0 160]) 

hold on 

plot(radialPosition,VzStdff(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b') 

legend('Mean','RMS') 

fullnamev=fullfile(folder2,'V-y at t=2'); 

savefig(fullnamev) 

saveas(gcf,fullnamev,'jpeg') 

  

figure(4) 

plot(radialPosition,VzMeantt(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b',... 

    'MarkerFaceColor','b') 

title('Velocity Vz - Position along y axis ') 

xlabel('position along y axis (mm)'); 

ylabel('Velocity Vz (m/s)'); 

ylim([0 160]) 

hold on 

plot(radialPosition,VzStdtt(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b') 

legend('Mean','RMS') 

fullnamev=fullfile(folder2,'V-y 1 to 2'); 

savefig(fullnamev) 

saveas(gcf,fullnamev,'jpeg') 

%--------------------Temporal Diameter Analysis------------

----------------------------- 

  

% calculation of mean diameters using the filteration 

method and drawing 

% 42 different graphs in D3 folder out of which 21 of them 

are filtered for 

% later post processing 



 
 
          Appendix 

 

340 

  

for i=1:42 

mat=table2array(z{i}); 

  

%-----Filteration of the end of injection data  

% if i==11 

%     inx=find(mat(:,3)>40); 

%     mat=mat(inx,:); 

% elseif i==12    

%     inx=find(mat(:,3)>50); 

%     mat=mat(inx,:); 

%      

% end 

% %-----end of filteration-------- 

  

  

[DMeanii(i),Dstdii(i),DMeanmm(i),Dstdmm(i),DMeanff(i),Dstdf

f(i),DMeantt(i),Dstdtt(i)]=D3(mat,zz,nw,xl,para);   % call 

function D3(matrix_data,Z,n,xl,param) 

basefileD=num2str(i); 

fullname=fullfile(folder3,basefileD); 

savefig(fullname) 

%saveas(gcf,fullname,'pdf') 

saveas(gcf,fullname,'jpeg') 

end 

close all 

  

  

%-----------------Spatial Diameter Analysis----------------

----- 

% Draw two Diemeter profile plot (mean and RMS) as a 

function of position in 'D3' folder here Dmean_pos(i) is 

Dmean(i) which is one of the uotput of function D3 

  

figure(1) 

plot(radialPosition,DMeanii(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r',... 

    'MarkerFaceColor','r') 

title('Diameter - Position along y axis') 

xlabel('Position along y axis (mm)'); 

ylabel('Diameter (\mum)'); 

ylim([0 20]); 
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hold on 

plot(radialPosition,Dstdii(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r') 

legend('Mean','RMS'); 

fullnamev=fullfile(folder3,'D-y at t=1'); 

savefig(fullnamev) 

saveas(gcf,fullnamev,'jpeg') 

  

figure(2) 

plot(radialPosition,DMeanmm(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r',... 

    'MarkerFaceColor','r') 

title('Diameter - Position along y axis') 

xlabel('Position along y axis (mm)'); 

ylabel('Diameter (\mum)'); 

ylim([0 20]); 

hold on 

plot(radialPosition,Dstdmm(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r') 

legend('Mean','RMS'); 

fullnamev=fullfile(folder3,'D-y at t=1-5'); 

savefig(fullnamev) 

saveas(gcf,fullnamev,'jpeg') 

  

figure(3) 

plot(radialPosition,DMeanff(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r',... 

    'MarkerFaceColor','r') 

title('Diameter - Position along y axis') 

xlabel('Position along y axis (mm)'); 

ylabel('Diameter (\mum)'); 

ylim([0 20]); 

hold on 

plot(radialPosition,Dstdff(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r') 

legend('Mean','RMS'); 

fullnamev=fullfile(folder3,'D-y at t=2'); 
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savefig(fullnamev) 

saveas(gcf,fullnamev,'jpeg') 

  

figure(4) 

plot(radialPosition,DMeantt(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r',... 

    'MarkerFaceColor','r') 

title('Diameter - Position along y axis') 

xlabel('Position along y axis (mm)'); 

ylabel('Diameter (\mum)'); 

ylim([0 20]); 

hold on 

plot(radialPosition,Dstdii(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r') 

legend('Mean','RMS'); 

fullnamev=fullfile(folder3,'D-y 1 to 2'); 

savefig(fullnamev) 

saveas(gcf,fullnamev,'jpeg') 

  

%--------------------Sauter Mean Dimater Analysis----------

------------------------------- 

  

% calculation of SMD for 

% 42 different graphs in SMD3 folder out of which 21 of 

them are chosen for 

% later post processing 

  

for i=1:42 

mat=table2array(z{i}); 

  

[SauterMeanDii(i),SauterMeanDmm(i),SauterMeanDff(i),SauterM

eanDtt(i)]=SMD3(mat,zz,nw,xl,para);   % call function 

SMD3(matrix_data,Z,n,xl,param) 

basefileD=num2str(i); 

fullname=fullfile(folder4,basefileD); 

savefig(fullname) 

%saveas(gcf,fullname,'pdf') 

saveas(gcf,fullname,'jpeg') 

end 

close all 
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% Draw  SMD profile as a function of position in 'SMD3' 

folder here SauterMeanDii(i) is SauterMeanDi(i) which is 

one of the uotput of function SMD3 

  

figure(1) 

plot(radialPosition,SauterMeanDii(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r',... 

    'MarkerFaceColor','r') 

title('Sauter Mean Diameter - Position along y axis') 

xlabel('Position along y axis (mm)'); 

ylabel('Sauter Mean Diameter (\mum)'); 

ylim([0 60]); 

fullnamev=fullfile(folder4,'SMD-y at t=1'); 

savefig(fullnamev) 

saveas(gcf,fullnamev,'jpeg') 

  

figure(2) 

plot(radialPosition,SauterMeanDmm(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r',... 

    'MarkerFaceColor','r') 

title('Sauter Mean Diameter - Position along y axis') 

xlabel('Position along y axis (mm)'); 

ylabel('Sauter Mean Diameter (\mum)'); 

ylim([0 60]); 

fullnamev=fullfile(folder4,'SMD-y at t=1-5'); 

savefig(fullnamev) 

saveas(gcf,fullnamev,'jpeg') 

  

figure(3) 

plot(radialPosition,SauterMeanDff(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r',... 

    'MarkerFaceColor','r') 

title('Sauter Mean Diameter - Position along y axis') 

xlabel('Position along y axis (mm)'); 

ylabel('Sauter Mean Diameter (\mum)'); 

ylim([0 60]); 

fullnamev=fullfile(folder4,'SMD-y at t=2'); 

savefig(fullnamev) 

saveas(gcf,fullnamev,'jpeg') 
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figure(4) 

plot(radialPosition,SauterMeanDtt(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r',... 

    'MarkerFaceColor','r') 

title('Sauter Mean Diameter - Position along y axis') 

xlabel('Position along y axis (mm)'); 

ylabel('Sauter Mean Diameter (\mum)'); 

ylim([0 60]); 

fullnamev=fullfile(folder4,'SMD-y 1 to 2'); 

savefig(fullnamev) 

saveas(gcf,fullnamev,'jpeg') 

  

  

%--------------------Weber Number Analysis-----------------

------------------------ 

  

% calculation of Weber number for 42 different graphs in 

Weber3 folder out of which 21 of them are chosen for 

% later post processing 

  

for i=1:42 

mat=table2array(z{i}); 

  

[Weberi(i),Weberm(i),Weberf(i),Webert(i)]=Weber3(mat,zz,nw,

xl,para);   % call function SMD3(matrix_data,Z,n,xl,param) 

basefileD=num2str(i); 

fullname=fullfile(folder5,basefileD); 

savefig(fullname) 

%saveas(gcf,fullname,'pdf') 

saveas(gcf,fullname,'jpeg') 

end 

close all 

  

% Draw Weber profile as a function of position in 'Weber3' 

folder here Weber(i) is Webernumber(i) which is one of the 

uotput of function SMD3 

  

figure(1) 

plot(radialPosition,Weberi(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r',... 

    'MarkerFaceColor','r') 
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title('Weber Number - Position along y axis') 

xlabel('Position along y axis (mm)'); 

ylabel('Weber Number'); 

ylim([0 40]); 

fullnamev=fullfile(folder5,'We-y at t=1'); 

savefig(fullnamev) 

saveas(gcf,fullnamev,'jpeg') 

  

figure(2) 

plot(radialPosition,Weberm(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r',... 

    'MarkerFaceColor','r') 

title('Weber Number - Position along y axis') 

xlabel('Position along y axis (mm)'); 

ylabel('Weber Number'); 

ylim([0 40]); 

fullnamev=fullfile(folder5,'We-y at t=1-5'); 

savefig(fullnamev) 

saveas(gcf,fullnamev,'jpeg') 

  

figure(3) 

plot(radialPosition,Weberf(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r',... 

    'MarkerFaceColor','r') 

title('Weber Number - Position along y axis') 

xlabel('Position along y axis (mm)'); 

ylabel('Weber Number'); 

ylim([0 40]); 

fullnamev=fullfile(folder5,'We-y at t=2'); 

savefig(fullnamev) 

saveas(gcf,fullnamev,'jpeg') 

  

figure(4) 

plot(radialPosition,Webert(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r',... 

    'MarkerFaceColor','r') 

title('Weber Number - Position along y axis') 

xlabel('Position along y axis (mm)'); 

ylabel('Weber Number'); 
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ylim([0 40]); 

fullnamev=fullfile(folder5,'We-y 1 to 2'); 

savefig(fullnamev) 

saveas(gcf,fullnamev,'jpeg') 

  

  

  

%--------------------V VS D Graph--------------------------

----------------------- 

  

figure(5) 

yyaxis left 

title('Velocity (Vz) & Diameter - Position along y axis') 

plot(radialPosition,VzMeanii(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b','MarkerFaceColor','b') 

ylabel('Velocity Vz (m/s)') 

xlabel('Position along y axis (mm)') 

ylim([0 160]) 

hold on 

plot(radialPosition,VzStdii(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b') 

yyaxis right 

plot(radialPosition,DMeanii(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r','MarkerFaceColor','r') 

ylabel('Diameter (\mum)') 

ylim([0 50]) 

% hold on 

% plot(radialPosition,Dstdii(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

%     'MarkerEdgeColor','r') 

% legend('Mean Velocity (Vz)','RMS Velocity (Vz)','Mean 

Diameter','RMS Diameter') 

legend('Mean Velocity (Vz)','RMS Velocity (Vz)','Mean 

Diameter') 

fullnamef=fullfile(folder6,'V vs D at t=1'); 

savefig(fullnamef) 

saveas(gcf,fullnamef,'jpeg') 

  

  

figure(6) 
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yyaxis left 

title('Velocity (Vz) & Diameter - Position along y axis') 

plot(radialPosition,VzMeanmm(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b','MarkerFaceColor','b') 

ylabel('Velocity Vz (m/s)') 

xlabel('Position along y axis (mm)') 

ylim([0 160]) 

hold on 

plot(radialPosition,VzStdmm(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b') 

yyaxis right 

plot(radialPosition,DMeanmm(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r','MarkerFaceColor','r') 

ylabel('Diameter (\mum)') 

ylim([0 50]) 

% hold on 

% plot(radialPosition,Dstdmm(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

%     'MarkerEdgeColor','r') 

% legend('Mean Velocity (Vz)','RMS Velocity (Vz)','Mean 

Diameter','RMS Diameter') 

legend('Mean Velocity (Vz)','RMS Velocity (Vz)','Mean 

Diameter') 

fullnamef=fullfile(folder6,'V vs D at t=1-5'); 

savefig(fullnamef) 

saveas(gcf,fullnamef,'jpeg') 

  

  

figure(7) 

yyaxis left 

title('Velocity (Vz) & Diameter - Position along y axis') 

plot(radialPosition,VzMeanff(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b','MarkerFaceColor','b') 

ylabel('Velocity Vz (m/s)') 

xlabel('Position along y axis (mm)') 

ylim([0 160]) 

hold on 
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plot(radialPosition,VzStdff(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b') 

yyaxis right 

plot(radialPosition,DMeanff(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r','MarkerFaceColor','r') 

ylabel('Diameter (\mum)') 

ylim([0 50]) 

% hold on 

% plot(radialPosition,Dstdff(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

%     'MarkerEdgeColor','r') 

% legend('Mean Velocity (Vz)','RMS Velocity (Vz)','Mean 

Diameter','RMS Diameter') 

legend('Mean Velocity (Vz)','RMS Velocity (Vz)','Mean 

Diameter') 

fullnamef=fullfile(folder6,'V vs D at t=2'); 

savefig(fullnamef) 

saveas(gcf,fullnamef,'jpeg') 

  

figure(8) 

yyaxis left 

title('Velocity (Vz) & Diameter - Position along y axis') 

plot(radialPosition,VzMeantt(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b','MarkerFaceColor','b') 

ylabel('Velocity Vz (m/s)') 

xlabel('Position along y axis (mm)') 

ylim([0 160]) 

hold on 

plot(radialPosition,VzStdtt(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b') 

yyaxis right 

plot(radialPosition,DMeantt(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r','MarkerFaceColor','r') 

ylabel('Diameter (\mum)') 

ylim([0 50]) 

% hold on 
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% plot(radialPosition,Dstdtt(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

%     'MarkerEdgeColor','r') 

% legend('Mean Velocity (Vz)','RMS Velocity (Vz)','Mean 

Diameter','RMS Diameter') 

legend('Mean Velocity (Vz)','RMS Velocity (Vz)','Mean 

Diameter') 

fullnamef=fullfile(folder6,'V vs D 1 to 2'); 

savefig(fullnamef) 

saveas(gcf,fullnamef,'jpeg') 

  

  

%--------------------D VS SMD Graph------------------------

------------------------- 

  

figure(9) 

yyaxis left 

title('Mean Diameter & Sauter Mean Diameter - Position 

along y axis') 

plot(radialPosition,DMeanii(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b','MarkerFaceColor','b') 

ylabel('Mean Diameter (\mum)') 

xlabel('Position along y axis (mm)') 

ylim([0 60]) 

yyaxis right 

plot(radialPosition,SauterMeanDii(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r','MarkerFaceColor','r') 

ylabel('Sauter Mean Diameter (\mum)') 

ylim([0 60]) 

legend('Mean Diameter (\mum)','SMD (\mum)') 

fullnamef=fullfile(folder6,'D vs SMD at t=1'); 

savefig(fullnamef) 

saveas(gcf,fullnamef,'jpeg') 

  

  

figure(10) 

yyaxis left 

title('Mean Diameter & Sauter Mean Diameter - Position 

along y axis') 

plot(radialPosition,DMeanmm(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 
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    'MarkerEdgeColor','b','MarkerFaceColor','b') 

ylabel('Mean Diameter (\mum)') 

xlabel('Position along y axis (mm)') 

ylim([0 60]) 

yyaxis right 

plot(radialPosition,SauterMeanDmm(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r','MarkerFaceColor','r') 

ylabel('Sauter Mean Diameter (\mum)') 

ylim([0 60]) 

legend('Mean Diameter (\mum)','SMD (\mum)') 

fullnamef=fullfile(folder6,'D vs SMD at t=1-5'); 

savefig(fullnamef) 

saveas(gcf,fullnamef,'jpeg') 

  

figure(11) 

yyaxis left 

title('Mean Diameter & Sauter Mean Diameter - Position 

along y axis') 

plot(radialPosition,DMeanff(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b','MarkerFaceColor','b') 

ylabel('Mean Diameter (\mum)') 

xlabel('Position along y axis (mm)') 

ylim([0 60]) 

yyaxis right 

plot(radialPosition,SauterMeanDff(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r','MarkerFaceColor','r') 

ylabel('Sauter Mean Diameter (\mum)') 

ylim([0 60]) 

legend('Mean Diameter (\mum)','SMD (\mum)') 

fullnamef=fullfile(folder6,'D vs SMD at t=2'); 

savefig(fullnamef) 

saveas(gcf,fullnamef,'jpeg') 

  

figure(12) 

yyaxis left 

title('Mean Diameter & Sauter Mean Diameter - Position 

along y axis') 

plot(radialPosition,DMeantt(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 
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    'MarkerEdgeColor','b','MarkerFaceColor','b') 

ylabel('Mean Diameter (\mum)') 

xlabel('Position along y axis (mm)') 

ylim([0 60]) 

yyaxis right 

plot(radialPosition,SauterMeanDtt(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r','MarkerFaceColor','r') 

ylabel('Sauter Mean Diameter (\mum)') 

ylim([0 60]) 

legend('Mean Diameter (\mum)','SMD (\mum)') 

fullnamef=fullfile(folder6,'D vs SMD 1 to 2'); 

savefig(fullnamef) 

saveas(gcf,fullnamef,'jpeg') 

  

%--------------------V VS SMD Graph------------------------

------------------------- 

  

figure(13) 

yyaxis left 

title('Velocity (Vz) & Sauter Mean Diameter - Position 

along y axis') 

plot(radialPosition,VzMeanii(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b','MarkerFaceColor','b') 

ylabel('Velocity (Vz) (m/s)') 

xlabel('Position along y axis (mm)') 

ylim([0 160]) 

yyaxis right 

plot(radialPosition,SauterMeanDii(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r','MarkerFaceColor','r') 

ylabel('Sauter Mean Diameter (\mum)') 

ylim([0 60]) 

legend('Velocity (Vz)','SMD') 

fullnamef=fullfile(folder6,'V vs SMD at t=1'); 

savefig(fullnamef) 

saveas(gcf,fullnamef,'jpeg') 

  

figure(14) 

yyaxis left 
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title('Velocity (Vz) & Sauter Mean Diameter - Position 

along y axis') 

plot(radialPosition,VzMeanmm(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b','MarkerFaceColor','b') 

ylabel('Velocity (Vz) (m/s)') 

xlabel('Position along y axis (mm)') 

ylim([0 160]) 

yyaxis right 

plot(radialPosition,SauterMeanDmm(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r','MarkerFaceColor','r') 

ylabel('Sauter Mean Diameter (\mum)') 

ylim([0 60]) 

legend('Velocity (Vz)','SMD') 

fullnamef=fullfile(folder6,'V vs SMD at t=1-5'); 

savefig(fullnamef) 

saveas(gcf,fullnamef,'jpeg') 

  

figure(15) 

yyaxis left 

title('Velocity (Vz) & Sauter Mean Diameter - Position 

along y axis') 

plot(radialPosition,VzMeanff(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b','MarkerFaceColor','b') 

ylabel('Velocity (Vz) (m/s)') 

xlabel('Position along y axis (mm)') 

ylim([0 160]) 

yyaxis right 

plot(radialPosition,SauterMeanDff(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r','MarkerFaceColor','r') 

ylabel('Sauter Mean Diameter (\mum)') 

ylim([0 60]) 

legend('Velocity (Vz)','SMD') 

fullnamef=fullfile(folder6,'V vs SMD at t=2'); 

savefig(fullnamef) 

saveas(gcf,fullnamef,'jpeg') 

  

figure(16) 

yyaxis left 
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title('Velocity (Vz) & Sauter Mean Diameter - Position 

along y axis') 

plot(radialPosition,VzMeantt(1:ReturnPoint),'-

o','color','b','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','b','MarkerFaceColor','b') 

ylabel('Velocity (Vz) (m/s)') 

xlabel('Position along y axis (mm)') 

ylim([0 160]) 

yyaxis right 

plot(radialPosition,SauterMeanDtt(1:ReturnPoint),'-

o','color','r','LineWidth',1.5,'MarkerSize',7,... 

    'MarkerEdgeColor','r','MarkerFaceColor','r') 

ylabel('Sauter Mean Diameter (\mum)') 

ylim([0 60]) 

legend('Velocity (Vz)','SMD') 

fullnamef=fullfile(folder6,'V vs SMD 1 to 2'); 

savefig(fullnamef) 

saveas(gcf,fullnamef,'jpeg') 

  

%--------------------Simultaneous D and SMD----------------

--------------------------------- 

for i=1:42 

mat=table2array(z{i}); 

  

%----- 

  

  

[b(i)]=DSMD3(mat,zz,nw,xl,para);   % call function 

DSMD3(matrix_data,Z,n,xl,param) 

basefileD=num2str(i); 

fullname=fullfile(folder7,basefileD); 

savefig(fullname) 

%saveas(gcf,fullname,'pdf') 

saveas(gcf,fullname,'jpeg') 

end 
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 Appendice 4 - Matlab code for mean and standdard deviation calculation for 

spray 
---------------------------------- 

City University Of London 

Milad Mirshahi 

2018 

------------------------------------ 

 

folder1='C:\Users\Milad\OneDrive - City, University of 

London\3 - Image processing - Spray\3 hole- 

shadowgraphy\X5_AP4_P100b_Dur2_FR40k_SS2m_R384-

320_A0deg_N200_10_V2'; 

 IMG = cell(151, 1) ; 

   

 for k = 1 : 50 

     if 0<k && k<10 

         l=['00',num2str(k)]; 

     elseif k>=10 && k<100 

         l=['0',num2str(k)]; 

     elseif k<=100 

         l=num2str(k); 

     end 

 filename = ['X5_AP4_P100b_Dur2_FR40k_SS2m_R384-

320_A0deg_N200_10_V2000',l,'.jpg']; 

full=fullfile(folder1,filename); 

IMG{k}=imread(filename); 

 end   

 x=306; y=148; %noghteye maximum std 

 sumImage=[]; 

 thisImage=[]; 

 lastImages=50; 

 firstImage=1; 

 numberofImage=lastImages-firstImage+1; 

for k = firstImage : lastImages 

  thisImage = double(IMG{k}); % Or whatever... 

  [rows columns numberOfColorBands] = size(thisImage); 

  % First do a check for matching rows, columns, and number 

of color channels.  Then: 

  if k == firstImage 
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    sumImage = thisImage; 

  else 

    sumImage = sumImage + thisImage; 

  end 

end 

meanImage = floor(sumImage / numberofImage); 

figure() 

imshow(meanImage,[]) 

  

for i=1:320 

    for j=1:384 

for k =  firstImage : lastImages 

  thisImage = double(IMG{k}); % Or whatever... 

  thisnumber(k-firstImage+1,1)=thisImage(i,j); 

if i==x && j==y 

 Keep=thisnumber;    

end 

end 

    stdPic(i,j)=std(thisnumber); 

    meanPic(i,j)=mean(thisnumber); 

    end 

     

end 

figure() 

plot (Keep) 

stdpicF=floor(stdPic); 

figure() 

imshow(stdpicF,[]) 

  

L=50; 

Fs=40000 

Y = fft(Keep); 

P2 = abs(Y/L); 

P1 = P2(1:L/2+1) 

P1(2:end-1) = 2*P1(2:end-1); 

f = Fs*(0:(L/2))/L; 

plot(f,P1)  

  

colormap jet 

figure() 

meanPicF=floor(meanPic); 

imshow(meanPic,[]) 

 


