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Abstract 

Religious reasoning (the processes through which religious beliefs are formed) has been investigated 

by two different approaches. First, explanation theories portray religious reasoning as arising for 

explaining salient aspects of reality. Second, motivation theories interpret religious reasoning as 

driven by other motives, for example fostering community bonding. Both approaches have provided 

fundamental insight, yet whether they can be reconciled remains unclear. To address this, I propose 

a unifying computational theory of religious reasoning expressed in mathematical terms. Although a 

mathematical approach has been rarely applied to study religion, its advantage is describing a 

phenomenon clearly and formally. Relying on a Bayesian decision framework, the model comprises 

three key elements: prior beliefs, novel evidence, and utility. The first two describe the processes 

classically interpreted by explanation theories, while utility captures phenomena highlighted by 

motivation theories. By reconciling explanation and motivation theories, this proposal offers a unifying 

computational picture of religious reasoning.  
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1. Introduction 

Religion is an important phenomenon characterising all known human cultures. Although the 

definition of this multifaceted concept remains highly controversial, a common perspective conceives 

religion as encompassing (i) a set of beliefs viewing important aspects of life as influenced by 

supernatural agents such as gods and spirits, and (ii) a set of practices available to interact with those 

agents (e.g., Boyer, 2001; Tylor, 1871; Stark & Finke, 2000). A classical question in the scientific study 

of religion is where religious beliefs come from. The theories that have attempted to answer this 

question are many, but I suggest grouping them in two families. The first family (explanation theories) 

includes accounts proposing that religious beliefs arise primarily for explaining salient aspects of life 

and reality (e.g., Andersen, 2019; Barrett, 2000; Boyer, 2001; Guthrie, 1993; Hogg et al., 2010; 

Iannaccone, 1998; McCauley, 2017; Schjoedt et al., 2013; Stark & Finke, 2000; Taves & Asprem, 2017; 

Tylor, 1871). Some of these accounts emphasise pure epistemic needs, implying that religion’s 

attempt to explain is an end in itself (e.g., Hogg et al., 2010; Tylor, 1871). Other explanation theories 

conceive religious beliefs as specific forms of inference produced by the brain when presented with 

certain types of stimuli (e.g., Barrett, 2000; Boyer, 2001; Guthrie, 1993; McCauley, 2017; Van Leeuwen 

& van Elk, 2019). Finally, a third group of explanation theories attribute a central role to utilitarian 

motives such as securing well-being after death (Iannaccone, 1998; Stark & Finke, 2000). According to 

these views, the final goal of religion is utilitarian and not epistemic, but explanations afforded by 

religion are still considered as necessary to fulfil utilitarian goals. Hence religious beliefs are still 

understood as attempts to explain, and utilitarian goals are thought not to bias these beliefs. A point 

where explanation theories disagree is to what extent religious beliefs (and human beliefs in general) 

are rational. Some scholars have argued that, after all, common people reason rationally, albeit 

constrained by their brain’s limited capacity (Simon, 1997). Religious reasoning would be no exception 

(Andersen, 2019; Iannaccone, 1998; Stark & Finke, 2000; Taves & Asprem, 2017). For example, it has 

been argued that apparently bizarre religious beliefs expressed by “primitive tribes” appear irrational 

only from the privileged perspective of modern science, but sound clever solutions if looked from the 
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tribes’ internal perspective (Evans-Pritchard, 1937). However, other scholars have highlighted the 

ubiquity of biases and illogicities in human reasoning, casting doubts on whether human beliefs can 

be considered rational, or even bounded rational (Shermer, 2002; Wolpert, 1994). According to these 

scholars, religious beliefs would represent paradigmatic examples of human fundamental irrationality. 

Another debated issue among explanation theories regards the influence of evolution. When 

examining how religious beliefs develop, some scholars downplay the role of innate factors and 

advocate a central role for experience and learning. For example, individuals’ beliefs about God are 

suggested to reflect early experience with parents (Cassibba et al., 2008; Granqvist et al., 2007; 2010). 

Conversely, other scholars argue that key aspects of religion emerge from how the human brain has 

been shaped by evolution (e.g., Boyer, 2001; McCauley, 2017). For instance, our innate tendency to 

interpret certain sensory experiences in terms of agency would be at the root of religion’s emphasis 

on supernatural agents such as gods and spirits (Atran, 2002; Bloom, 2007; Barrett, 2000; Guthrie, 

1993). 

Contrary to explanation theories, motivation theories postulate that religious beliefs do not derive 

from an attempt to explain life and reality. Other motives would be critical. To illustrate the difference 

between explanation and motivation theories, consider a person arbitrating between the hypothesis 

that existence continues after death versus the hypothesis that existence ceases after death. 

According to explanation theories, the person will endorse the hypothesis more in line with available 

evidence. Conversely, according to motivation theories the person will endorse the hypothesis that 

satisfies motives such as avoiding anxiety, independent of its fit with evidence. In other words, 

motivation theories postulate that some forms of motivated reasoning underly religious beliefs 

(Kunda, 1990; Willer, 2009). A multiplicity of views exists regarding which motives might drive the 

formation of religious beliefs. Following Hume (1757) and Freud (1927), comfort theories propose that 

religious beliefs develop primarily to sedate anxiety, especially death anxiety (Atran & Norenzayan, 

2004; Norenzayan & Hansen, 2006; Swan, 2019; Willer, 2009; Vail et al., 2010). Inspired by Marx and 

Engels (1945), other theories build on the notion of ideology and view religious beliefs as developed 
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by the ruling class to promote its interests (Jost et al., 2014; Williams, 1996; Fanon, 1963; Fulton, 

1987). Within this tradition, scholars such as Gramsci (1971) have argued that lower classes too can 

develop religious beliefs in support of their interest, and not only as the result of hegemonic influences 

exerted by ruling classes (Williams, 1996; Fulton, 1987). A third tradition of motivation theories can 

be traced back to Kant’s idea that religious beliefs arise to legitimise and spread moral rules (Batson 

et al., 1993; Saroglou, 2011; Vitell et al., 2009). Finally, following early intuitions of Durkheim (1912), 

some scholars have claimed that religious beliefs are developed to foster bonding and feelings of 

belonging within a community (Baumeister, 1991; Krause & Wulff, 2005; Pargament et al., 1983).  

Explanation and motivation theories have both contributed to shed light on fundamental aspects of 

religion. However, the co-existence, and even thriving, of such different perspectives represents a 

conundrum if one aims at understanding religion as a unitary phenomenon (though some remain 

sceptics about this aim, yet parsimony continues to motivate scholars to search for a unifying 

framework to understand religion). Is there any possible solution? Can one choose one of the two 

perspectives? (and within it, can one specific account be selected?). This seems a difficult choice, as 

each perspective offers explanations for certain aspects which remain hard to interpret by the other 

perspective. Many scholars today believe the two perspectives ultimately need to be integrated (Atran 

& Norenzayan, 2004; Swan, 2019). But how? To date, the question of whether the two perspectives 

can be integrated in a meaningful way remains open. The goal of this paper is to address this question 

and offer a possible way to reconcile explanation and motivation theories of religion under a unifying 

framework. To illustrate its principles in a formal and clear way, the framework is described adopting 

computational modelling. Such computational approach has rarely been applied to the investigation 

of religion, perhaps because this is often viewed as a phenomenon which is too complex and ineffable. 

However, I explore the possibility that a computational approach can offer a clear and precise 

characterisation of key aspects of religion, although surely some of the subtleties will elude this 

account. Because the mathematical formalism adopted is Bayesian decision (Bishop, 2006), the model 

described here is referred to as Bayesian Decision Model of Religion (BDMR). The paper is structured 
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as follows. The next section (section 2) describes the model in detail. Afterwards (section 3), the role 

of prior beliefs and evidence (two key elements of the model) is examined together with their link 

with explanation theories. This is followed by a treatment of the role of utility in the model and its 

relevance for motivation theories (section 4). Next, the model is examined considering empirical 

research about the psychology of religion (section 5). Finally, the BDMR is discussed with respect to 

more general issues (section 6). 

 

2. The Bayesian decision model of religion 

Humans have constantly to choose among different interpretations of the experiences they make. 

Sometimes religious interpretations for these experiences are available. An interpretation can be 

defined as religious when a phenomenon is viewed as dependent on the power or action of spirits or 

gods. Sometimes a religious interpretation might compete with other religious interpretations, other 

times it might compete with interpretations with no religious content. As an example of two 

competing religious interpretations, an individual might wonder whether her illness is effectively 

God’s punishment for a bad action, or it is the product of a persecution of an ancestor’s spirit. The 

individual might consider these possibilities against a non-religious explanation which interprets the 

illness as contagion from a family member. This paper aims at examining how people reason when 

religious hypotheses are under consideration, a process I refer to as religious reasoning. To explain 

this process, I pursue a computational approach, in other words I seek to identify the first principles, 

or the basic meaning, of a psychological phenomenon (i.e., I focus on the computational level of 

analysis, adopting Marr’s famous terminology).  

In contemporary psychology and neuroscience, one of the most influential computational 

perspectives interprets the brain as a Bayesian inference machine (Clark, 2013; Friston & Kiebel, 2009; 

Knill & Pouget, 2004; Oaksford & Chater, 2007; Rao & Ballard, 1999). The key idea is that, when novel 

evidence is experienced, the brain integrates new information with prior knowledge in an optimal 
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fashion. This simple and elegant idea has contributed to understand a variety of phenomena across 

several domains, from perception to social interaction. Recently, this idea has been fruitfully extended 

to the study of religion (Andersen, 2019; Schjoedt et al., 2013; Taves & Asprem, 2017; Van Elk et al., 

2016), specifically adopting a predictive coding framework (Clark, 2013; Friston & Kiebel, 2009; Rao & 

Ballard, 1999). For example, predictive coding has been proposed to explain how prior cultural 

knowledge leads some individuals to interpret certain experiences in religious terms, namely as 

manifestations of spirits or gods (Taves & Asprem, 2017). I argue that a Bayesian inference approach 

(and predictive coding) is well-equipped for interpreting explanation theories of religion. This is 

because the latter theories and Bayesian inference both are built upon assuming a motivation for 

being accurate. However, Bayesian inference (and predictive coding) seems inadequate to interpret 

motivation theories, because the latter highlight motives which go beyond accuracy seeking. In order 

to account for motivation theories, I propose to extend Bayesian inference (and predictive coding) to 

the notion of Bayesian decision (Bishop, 2006). The idea of the latter is that utility maximization, and 

not accuracy maximization, is the ultimate principle guiding religious reasoning. In this framework, 

being accurate is just a means for increasing utility (though accuracy remains important, otherwise 

reward is less likely to be collected).  

The model I propose corresponds to a standard Bayesian decision framework which I have 

implemented adopting the formalism of Bayesian networks (Bishop, 2006). The network is 

represented graphically in Fig. 1 (a more formal description is offered in the Appendix). It describes 

the beliefs an agent entertains about certain important variables that are relevant for religious 

interpretations. The variables included in the model are represented by rectangles (for categorical 

variables) and circles (for continuous variable). Arrows indicate probabilistic dependencies among 

variables. The first variable in the model is Hypothesis (Hyp), representing a categorical variable 

reflecting mutually exclusive claims, some of which include religious interpretations. For example, one 

claim might be that an illness is God’s punishment for recent misbehaviour (a religious hypothesis), 

and the alternative claim that an illness is due to a frequent interaction with an infected patient (a 
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non-religious hypothesis). Note that each claim can include several statements, provided that 

ultimately the claims remain mutually exclusive. For example, one claim might be that an illness is due 

to a frequent interaction with an infected patient combined with God’s punishment for recent 

misbehaviour. The alternative statement might be that an illness is due to a frequent interaction with 

an infected patient combined with a weak immune system. Note that the two hypotheses are still 

mutually exclusive. The first hypothesis can be treated as religious, because it includes at least one 

religious statement. The second hypothesis can be treated as non-religious, because it includes no 

religious statements. Hyp plays the central role within the BDMR, because the final result of the model 

is arbitrating among the different hypotheses implemented by Hyp. The second variable in the model 

is Prior Belief System (PBS). This represents a categorical variable reflecting a set of more general 

alternative views on the world, personal life, and society. For example, one view might be that God 

often intervenes in people’s life to guide their behaviour, and the alternative view that God is usually 

uninterested in mundane affairs. The variable Hyp depends on PBS, as the arrow going from the latter 

to the former indicates. For example, someone tending to view God as interventionist (PBS) will also 

tend to attribute higher likelihood to the hypothesis that the illness reflects God’s punishment (Hyp).  

In the model, both Hyp and PBS are treated as hidden (or latent) variables, as they cannot be observed 

directly but need to be inferred indirectly. For example, one does not know for sure whether God 

tends to be interventionist or not (PBS), nor whether the illness is God’s punishment or not (Hyp). In 

addition to these two hidden variables (Hyp and PBS), the model includes two variables that are 

directly observed: a direct evidence (DirE) and a social evidence (SocE). These two variables are 

believed to be the consequence of Hyp, as indicated by arrows going from the latter to DirE and SocE. 

This probabilistic relation implies that observing the values of the two sensory variables (DirE and 

SocE) helps inferring the values of the two hidden variables (Hyp and PBS), as will be explained below. 

Note that in the BDMR the distinction between DirE and SocE is important, because it emphasizes the 

different roles played by different sources of information. DirE concerns direct evidence conveyed via 
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own sensory experience. For example, one may consider a dream about God expressing 

disappointment as sensory evidence relevant for inferring whether the illness is God’s punishment or 

not. SocE concerns indirect information conveyed by other individuals. This captures the fact that, for 

humans, others’ opinions are critical for informing own opinions, especially in religious matters. Think 

to the knowledge we acquire via word of mouth, via books, or via other media (also non-verbal 

communication may be conceived as social evidence). In my example, a trusted family member may 

express an opinion about the cause of the illness (this advice is reflected in SocE). Both DirE and SocE 

are represented by continuous variables. In my example, negative values for DirE or SocE correspond 

to evidence supporting the religious hypothesis (i.e., the illness is God’s punishment). Importantly, 

each evidence variable (DirE and SocE) is associated with a weight (formally, a precision parameter; 

see Appendix) which determines how influential that evidence is during inference.  

Finally, the BDMR includes a Hypothesis Decision (HDec) variable and an Expected Outcome (EOut) 

variable. HDec is categorical and indicates which hypothesis of the variable Hyp is accepted as true 

and is used to guide behaviour. For example, HDec may include the following two categories: (i) accept 

the religious hypothesis (and spend time praying; assuming that praying can help winning God’s 

favour) and (ii) accept the non-religious hypothesis (and do not pray, since praying is time consuming). 

EOut reflects the expected outcome of this decision and depends both on Hyp and HDec. EOut is 

represented by a continuous variable where negative values correspond to punishment and positive 

values to reward. For example, EOut describes the outcome expected to occur (i) if the religious 

hypothesis is true and I accept it (and spend time praying), (ii) if the non-religious hypothesis is true 

and I accept it (and do not pray), (iii) if the religious hypothesis is false but I accept it (and spend time 

praying) (iv) if the non-religious hypothesis is false but I accept it (and do not pray). 

The BDMR realizes Bayesian decision by following a sequence of inference steps and eventually 

deciding which hypothesis to accept. Specifically, the model infers the consequences (in terms of 

reward or punishment) of accepting different hypotheses considering evidence from DirE and SocE. 
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Eventually, the hypothesis associated with the best consequence is accepted. More formally, this 

inference and decision process works as follows. DirE and SocE are observed and inference follows 

multiple step. At each step, one different category of HDec is considered as observed and the posterior 

probability of EOut given DirE, SocE and HDec (i.e., P(EOut|DirE, SocE, HDec)) is calculated. This is 

repeated for all possible categories of HDec. After inference, decision follows, whereby the category 

of HDec associated with the best EOut (i.e., the highest posterior utility value) is chosen (note that, in 

a Bayesian framework, choice of one hypothesis does not entail that remaining hypotheses are fully 

eliminated; all hypotheses remain available, each associated with a “strength” value, formally 

corresponding to the posterior utility value).  

It is important to highlight that, in the BDMR, the selected hypothesis is not necessarily the best 

supported by evidence (i.e., the one that maximizes accuracy), but the one associated with the best 

consequences (i.e., the one that maximizes expected utility). This emphasis on utility maximization 

distinguishes Bayesian decision theory from Bayesian inference. For example, the model predicts that 

an individual will be more likely to endorse the religious hypothesis if rejecting this hypothesis is 

perceived as too risky if the hypothesis is eventually true. Based on this reasoning, the model predicts 

that, when one is more frightened by the illness, the religious hypothesis will be more likely to be 

endorsed, because rejecting the possibility that the illness is God’s punishment (and not praying for 

receiving God’s help to heal) will be evaluated as too risky if this hypothesis is actually true.  

However, note that accuracy is still fundamental in the BDMR. This is because accepting a hypothesis 

which is poorly supported by prior beliefs (PBS) and by evidence (DirE and SocE) is scarcely rewarding, 

implying that such hypothesis will be discarded. By integrating accuracy and utility drives during 

religious reasoning, the BDMR offers a principled solution for reconciling explanation and motivation 

theories of religion, respectively (see below). 

According to the BDMR, what is the phenomenological implication of accepting one hypothesis over 

the other? I propose that the implication is that, phenomenologically, an agent will believe that the 
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accepted hypothesis is true even if, as explained above, it does not necessarily enjoy more support 

from evidence. In other words, the BDMR postulates that agents are blind to the inference/decision 

process described above; they simply perceive the accepted hypothesis as true, without being aware 

that their perception is the product of utility maximization. In other words, the model assumes a form 

of motivated reasoning (Kunda, 1990; Willer, 2009) or self-deception during belief formation. Why 

should this occur? Following Trivers (2011), in an evolutionary perspective beliefs can be understood 

as having a fundamental pragmatic nature in as much as they enable one to achieve goals. To be 

effective, beliefs would need to satisfy three fundamental requisites. First, they would need to 

describe the world with some accuracy, an aspect the BDMR captures by attributing importance to 

evidence and prior beliefs (if these are ignored, goals will rarely be obtained). Second, they would 

need to take utility into account, also in line with the BDMR. Third, because the human species has 

adapted through coordinating complex social behaviour, beliefs will need to persuade others. Only if 

this occurs, beliefs will ultimately be effective. In this perspective, self-deception during reasoning 

might have evolved as an effective strategy to persuade others (a possibility which has received 

empirical support; Smith et al., 2017; Schwardmann & Van der Weele, 2019).         

In short, the BDMPR explains religious reasoning by relying on a Bayesian decision framework. This 

proposes that individuals consider prior belief systems together with novel evidence to infer the 

consequences of accepting alternative hypotheses, eventually endorsing the hypothesis associated 

with the highest utility. This inference/decision process is postulated to be subconscious, and to 

ultimately result in the perception that the accepted hypothesis is true at the phenomenological level. 

Below, I will examine the role of each element of the model in the genesis of religious reasoning. 

 

3. Prior beliefs, evidence, and explanation theories 

The BDMR assigns a pivotal role to prior belief systems, captured by the variable PBS (Fig. 2A). This 

variable can reflect several forms of prior knowledge that can be grouped in three categories. First 
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(prior religious beliefs), it can simply describe prior beliefs about supernatural agents. In the example 

above, PBS represents the prior belief that God tends to intervene in people’s life versus the 

alternative belief that God tends to abstain from intervening.  

To introduce the second and third categories of prior beliefs, remember that the BDMR is arbitrating 

among hypotheses regarding supernatural agents. Considering that direct evidence about 

supernatural agents is normally scarce, knowledge about agents in the real world can be informative 

on the characteristics of supernatural agents. In other words, prior knowledge about real agents can 

provide clues about supernatural agents. Following this reasoning, the second type of prior beliefs 

(prior interpersonal beliefs) concerns knowledge of interpersonal relationships. These beliefs are 

analogous to the notion of social script and describe the behaviour expected by others in certain social 

contexts (Abelson, 1981). Building on the concept of internal working model in attachment theory 

(Bowlby, 1969), prior interpersonal beliefs can also concern intimate relationships such as with 

parents or partners. There is empirical support for the idea that religious beliefs are linked with beliefs 

about relational figures (Cassibba et al., 2008; Granqvist et al., 2007; 2010). For example, a link has 

been observed between attachment style (reflecting beliefs about parents) and beliefs about God, 

with distant parents associated with God viewed as distant, and caring parents associated with God 

viewed as caring (Granqvist et al., 2007). As an example of how this can be implemented in the BDMR, 

one can assign to PBS the category “intimate relational figures are distant” versus the category 

“intimate relational figures are caring”. Like prior interpersonal beliefs, the third type of prior beliefs 

(prior social beliefs) also leverage on knowledge about real agents, but now on a broader scale, namely 

focusing on how society and politics are organized. In other words, these prior beliefs suggest that the 

“supernatural” society (encompassing the gods, spirits and their relationships) is organized like the 

human society. Durkheim first suggested that religious views reflect the structure of society (1912). 

He noted that societies organized in clans often develop totemic religions based on spirits symbolized 

by animals, each connected to one clan. As another example, many antiquity cultures such as the 

Greeks and the Mesopotamians were organized in independent, and often competing, city states. 
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These cultures developed a polytheistic religion where multiple gods were acknowledged and where 

each city established a particular devotion for one deity (e.g., Athens for Athena and Babylon for 

Marduk). This perspective also raises the possibility that universal monotheistic religions such as 

Christianity and Islam initially benefited from large multinational empires (the Roman and the Arab 

empire, respectively). Living in a vast empire where ethnic differences were politically unimportant 

might have supported the belief in one and universal God (though certainly this was one of many 

factors, and surely it is not sufficient for the development of monotheism - as studying other ancient 

empires and other civilizations indicates). To represent this last example using the BDMR, one can 

assign to PBS the category “the emperor (or calif) is the main political authority” versus the category 

“the city elderly council is the main political authority”. The former category would support the 

hypothesis (expressed in Hyp) “There is only one God” and the latter category would support the 

hypothesis “There are multiple gods”. In short, the BDMR posits a fundamental role for prior beliefs 

in religious reasoning and identifies several types of such beliefs including religious, interpersonal and 

social beliefs. 

Note that in the BDMR prior beliefs can be treated as context-dependent (a similar approach is 

proposed by Taves & Asprem, 2017). In other words, in one context (e.g., a particular place, time, or 

with particular interlocutors) one claim might be assigned higher prior probability than another claim, 

while in a different context the opposite might occur. Take an individual entertaining prior beliefs 

regarding Christian faith against atheism. In one context (e.g., when attending the Christmas eve 

mass), prior beliefs supporting Christian faith might prevail over atheism, while in a different context 

(e.g., at the disco during new year’s eve), prior beliefs supporting Christianity might be overshadowed 

by atheism. Because of such context-dependent nature of prior beliefs, within the BDMR reasoning 

will also be context-dependent, meaning that a hypothesis will be more likely to be accepted when 

consistent with prior beliefs. The context-dependent nature of religious beliefs is now supported by 

substantial evidence (Bialecki, 2017; Legare & Visala, 2011; Legare et al., 2012; Luhrmann, 2018; 

Shtulman & Legare, 2019; Shtulman & Lombrozo, 2016). For example, in many domains explanatory 
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coexistence has been observed, occurring when people alternate between natural and supernatural 

explanations of phenomena like illness (Legare & Visala, 2011; Legare et al., 2012; Shtulman & Legare, 

2019; Shtulman & Lombrozo, 2016). Anthropological investigations have also documented religious 

and mundane attitudes alternating within the very same persons, a phenomenon described by 

distinguishing between a faith frame (guiding behaviour in holy contexts) and an everyday frame 

(guiding behaviour in mundane contexts) (Luhrmann, 2018). 

In addition to prior beliefs, the BDMR proposes that available evidence impacts substantially on 

religious reasoning (Fig 2B). Two types of evidence are postulated by the model, one pertaining direct 

observations (DirE) and the other concerning information gathered from social sources (SocE). 

Regarding the latter, it is evident how social sources such as sacred texts and priests are often 

influential in the formation of religious beliefs. A similar influence can be ascribed to the own family 

and community, as well as to media such as magazines and television. For example, it has been 

observed that people are more likely to endorse religious views handed down by their parents 

(Granqvist et al., 2007; Stark & Finke, 2000). In the BDMR, information provided by social sources is 

implemented by the variable SocE. Consider the case above arbitrating between the hypothesis that 

an illness is God’s punishment and the hypothesis that the illness is due to a frequent interaction with 

an infected patient. For example, a family member or a priest might express an opinion supporting 

the first hypothesis. This opinion is represented by the BDMR as a SocE observation and is considered 

during reasoning. Importantly, the model attributes a weight to this information which determines 

how influential this will be during reasoning. For example, family members might be considered as 

ignorant on religious matters, and hence their opinion might be considered only marginally. On the 

contrary, the priest’s opinion might be considered as highly reliable and hence weighted heavily during 

reasoning.  

The second type of evidence implemented by the BDMR concerns direct observation acquired via own 

senses (DirE). For example, one might believe that certain observations (e.g., pain which increases 
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when walking next to the church) fit better with the hypothesis that an illness is God’s punishment, 

and that other observations (e.g., viewing other people getting sick after interacting with infected 

patients) fit better with the hypothesis that the illness is due to a frequent interaction with an infected 

patient. As for SocE, direct observation is also associated with a weight which determines its relevance. 

Empirical evidence indicates that certain experiences such as dreams, ecstatic states, and visions are 

often treated as particularly relevant during religious reasoning (Bulkeley, 2016), possibly because 

these experiences are difficult to understand in terms of everyday life. For example, one might 

consider dreams as particularly revealing and hence weight them heavily during religious reasoning. 

By relying on prior beliefs (PBS) and observations (SocE and DirE), the BDMR offers an interpretation 

of explanation theories of religion expressed in formal computational terms. These theories suggest 

that the primary drive for religion is to explain salient aspects of life and reality. The BDMR captures 

this perspective by proposing that explanations can be derived by integrating prior beliefs and novel 

evidence. Prior knowledge appears in three forms, as religious beliefs available a priori, as 

expectations about interpersonal relationships, and as knowledge about the structure of society. 

Novel evidence can concern information gathered from social actors such as people, media, and 

institutions, as well as from the own perception. In the next section, I will examine one last key 

element of the model, namely the utility component, and I will analyse its connection with motivation 

theories of religion. 

 

4. Utility and motivation theories 

Although prior beliefs and observations are fundamental elements of the BDMR, they are unable to 

account for aspects of religion highlighted by motivation theories. The latter propose that religious 

beliefs ultimately do not arise from an attempt to explain, but from other motives such as promoting 

community bonds, exerting power, reducing anxiety, or supporting moral rules. The BDMR takes these 

motives into account by including a utility component implemented by the variable EOut (Fig. 3). 
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Consider the example above arbitrating between the claim that an illness is God’s punishment for 

recent misbehaviour (a religious hypothesis), and the alternative statement that an illness is due to a 

frequent interaction with an infected patient (a non-religious hypothesis). By relying on EOut, the 

model asks: what is the consequence (in terms of utility) of accepting the religious hypothesis (and 

spending time praying) if this is true? And if it not true? What is the consequence of accepting the 

non-religious hypothesis (and not spending time praying) if this is true? And if it is not true? Based on 

the answer to these questions (and on estimating how likely each hypothesis is based on prior 

knowledge (PBS) and evidence (DirE and SocE)), the model eventually accepts one hypothesis as true. 

In other words, in addition to considering the likelihood of the hypotheses, the model postulates that 

considerations about their utility have an immediate impact upon reasoning. Phenomenologically, the 

proposal is that individuals are blind to these considerations about utility, and think that their beliefs 

are the result of factual considerations only.  

As another example of the role of utility in the model, consider the hypothesis “kings are chosen by 

God” versus “kings happen to rule by chance”. Explanation theories propose that a medieval king 

would ponder the different evidence in favour or against each hypothesis and select the most 

plausible thereof. Conversely, motivation theories argue that, independent of any evidence, that king 

would be biased towards the first hypothesis because this promotes his own personal interests; such 

bias would act unconsciously. Following motivation theories, the BDMR explains the bias favouring 

the first hypothesis as deriving from the questions: what is the consequence (in terms of utility) of 

accepting the hypothesis “kings are chosen by God” if this is true? And if it not true? What is the 

consequence of accepting the hypothesis “kings happen to rule by chance” if this is true? And if it is 

not true? Answering these questions would lead to a bias for the first hypothesis: its rejection would 

appear as costlier (in terms of own interest) than rejecting the alternative. In line with motivation 

theories, this reasoning process is postulated to be unconscious. 
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The utility associated with rejection and acceptance of each hypothesis depends on the specific value 

attributed to the possible outcomes. The BDMR proposes that different utility values can be attributed 

by different individuals, and that the same individual might attribute different values in different 

contexts (Kahoe, 1985; Saroglou, 2011) (why certain utility values are attributed to outcomes is not 

the focus of the model). Again, consider the example above comparing a religious versus non-religious 

hypothesis. One individual facing this dilemma might not be frightened at all by the illness. Such 

indifference would imply a large cost if the religious hypothesis is accepted (and time is spent praying 

for receiving God’s help to heal - under the assumption that time spent praying is costly) but the 

hypothesis turns out to be false (and hence praying turns out to be useless). Hence, this individual will 

be likely to accept the non-religious hypothesis. On the contrary, another individual facing the same 

dilemma might be extremely frightened by the illness. For this person, a large cost occurs if the 

religious hypothesis is rejected (and prayer is not performed) but the hypothesis turns out to be true 

(and hence God’s help to heal is not received). The second individual will be likely to accept the 

religious hypothesis.  

The value attributed to outcomes might sometimes depend on a unique motivation, such as 

promoting community bonding, and other times on multiple motivations that need to be integrated, 

such as both promoting bonding and increasing the own power (Saroglou, 2011). The relative 

importance of each motive might differ across individuals and across contexts, for example with some 

people favouring bonding promotion over power increase, and other people the other way around.   

The inclusion of the utility component enables the model to interpret motivation theories, and to 

reconcile them under a unifying framework. It is well established that a central human drive is to 

promote social bonds and a sense of belonging (Baumeister, 1991; Baumeister & Leary, 1995). 

Empirical data support the possibility that this drive is critical in religion (Baumeister, 1991; Krause & 

Wulff, 2005; Pargament et al., 1983). Within the BDMR, this notion can be implemented by EOut in 

such a way that a religious hypothesis will be more likely to be endorsed when its acceptance is viewed 
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as facilitating bonds and sense of belonging. This notion is analogous to motivation theories which 

explain religion as deriving from encouraging a sense of group belonging and group bonding 

(Baumeister, 1991; Krause & Wulff, 2005; Pargament et al., 1983). A second fundamental human drive 

is to increase the status, power, and economic wealth of the self and of the own group (sometimes at 

the expense of other people and other groups) (Jost et al., 2014; Williams, 1996; Fanon, 1963; Fulton, 

1987). This drive can also be implemented by EOut, implying that a religious hypothesis will be more 

likely to be endorsed when its acceptance is viewed as promoting the status, power, and economic 

wealth of the self and of the own group. This reasoning is analogous to motivation theories which 

explain religious beliefs as an ideology embraced by a social class or group to promote its interest (Jost 

et al., 2014; Williams, 1996; Fanon, 1963; Fulton, 1987). A third important human motivation consists 

in promoting moral behaviour and justice (Turiel, 2002). Such motivation has been linked with religion 

(Bloom, 2012; McKay & Whitehouse, 2015), in line with the finding of a positive association between 

religiosity and willingness to be a moral and virtuous individual (Batson et al., 1993; Vitell et al., 2009). 

A motivation for promoting morality and justice can be captured by EOut in such a way that a 

hypothesis will be more likely to be endorsed when its acceptance is viewed as supporting morality 

and justice. This reasoning is analogous to motivation theories which explain religious beliefs as 

reflecting an effort to promote morality and justice (Batson et al., 1993; Saroglou, 2011; Vitell et al., 

2009). 

One last group of motivation theories of religion (comfort theories) proposes that religious beliefs are 

embraced because they suppress fear and anxiety (especially death anxiety) (Atran & Norenzayan, 

2004; Norenzayan & Hansen, 2006; Swan, 2019; Willer, 2009; Vail et al., 2010). This suppression would 

occur because religious beliefs would call upon positive interpretations of life and reality and dismiss 

negative interpretations. For example, in this perspective belief in an after-life is proposed to emerge 

because it suppresses the thought that spiritual life ends with material death, a thought which is 

assumed to elicit anxiety. The BDMR implicates an alternative perspective, because according to this 

model the belief selected is not necessarily the most positive interpretation but, crucially, the one 
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more costly to reject. As an example, consider someone highly scared by an illness and arbitrating 

between the hypothesis that the illness will not be contracted if God is prayed, but it will be contracted 

otherwise, versus the hypothesis that the illness will not be contracted anyway. Comfort theories 

would predict that (other things being equal) the second hypothesis will be endorsed, because it is the 

most positive, and hence the one which best suppresses anxiety. Conversely, the BDMR postulates 

that the first hypothesis will be endorsed, because, although it is more anxiety-provoking, it is the 

costliest to reject. If this hypothesis is rejected and God is not prayed, the risk of contracting the illness 

increases. I argue that the perspective offered by the BDMR fits better with the fact that religious 

beliefs often appear to enhance, rather than inhibit, negative emotions (Boyer, 2001; Atran & 

Norenzayan, 2004). For example, there are cultures (e.g., the ancient Greeks and Mesopotamians) 

where gods and spirits have prevalently an ambivalent, or even negative, attitude towards humans 

(Boyer, 2001). Also, some religions do not focus on the afterlife, or have a rather gloomy view of it 

(Boyer, 2001). These beliefs appear as fuelling, rather than suppressing, anxiety. However, note that 

the BDMR predicts that emotions such as anxiety influence religious reasoning, albeit not in the way 

suggested by comfort theories. This prediction occurs because emotions have an impact on the utility 

values attributed to the different outcomes, hence affecting religious reasoning. The research on the 

role of emotions on religious reasoning has focused on anxiety (especially regarding death) and has 

produced mixed findings (Jong & Halberstadt, 2017; Jong et al., 2018), although in general it suggests 

that anxiety is influential. Within this literature, an observation which appears as robust is that feeling 

a loss of control over the environment favours religious over non-religious beliefs (Kay et al., 2008; 

2010; McGregor et al., 2010; Whitson & Galinsky, 2008). This observation is compatible with the 

BDMR, as described in the next section in details.  

In short, the inclusion of a utility component is a critical feature of the BDMR which allows the model 

to interpret motivation theories of religion. The idea is that beliefs are more likely to be endorsed 

when they encourage motives such as fostering group bonding and sense of belonging, supporting the 

status and power of the self and the own group, and promoting morality. Importantly, these motives 
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can be fulfilled only if an individual appraises reality with some degree of accuracy. For example, a 

careful examination of reality is necessary to identify which beliefs are better suited for supporting 

group bonding. The requirement of appraising reality accurately is often disregarded by motivation 

theories, but it is emphasised by the BDMR (and by explanation theories) thanks to the role played by 

prior beliefs and evidence that I have discussed above. 

  

5. Empirical implications 

One of the central aims of this paper is to introduce a framework that can help interpreting empirical 

observations and generating new predictions. To this aim, adopting a computational approach has 

several advantages in as much as it relies on a precise and formal description. To illustrate how the 

BDMR can be adopted to interpret empirical phenomena, this section examines the model in the 

context of recent empirical research about the psychology of religion. 

Substantial evidence has shown that humans exhibit an innate propensity to interpret certain sensory 

experiences in terms of agency (Atran, 2002; Bloom, 2007; Barrett, 2000; Guthrie, 1993). This 

propensity appears early in childhood and has been observed among different cultures (Barrett, 2000; 

Guthrie, 1993). These observations have inspired the proposal that a bias towards agency-detection 

is at the root of religion’s emphasis on supernatural agents such as gods and spirits (Atran, 2002; 

Bloom, 2007; Barrett, 2000; Guthrie, 1993). However, there is poor evidence that an agency-detection 

bias plays a causal role in the formation of religious beliefs (Van Elk & Van Leeuwen, 2019). In light of 

this, there is still debate on the precise role of agency-detection in religion (Van Elk & Van Leeuwen, 

2019). According to a recent proposal (Van Elk & Van Leeuwen, 2019), religious beliefs can be 

distinguished in general and personal beliefs, where the former concern broad statements 

transmitted by the own culture (e.g., “God speaks with people having true faith”), and the latter 

concern interpretations of direct experience (e.g., “This morning God talked to me while I was 

praying”). When exposure to certain conditions elicits an agency experience (i.e., the perception that 
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some agent is present), this would be interpreted by relying on general beliefs, eventually leading to 

the formation of personal beliefs (Van Elk & Van Leeuwen, 2019). For example, someone believing 

that “God reveals himself to people having true faith”, and who has an agency experience during the 

morning prayer, might interpret the experience as “This morning God joined me while I was praying”. 

This proposal fits with the BDMR. General beliefs can be represented by PBS; for example, a person 

might consider two alternative prior beliefs: “God reveals himself to people having true faith” versus 

“God never reveals himself to individuals”. Personal beliefs can be represented by Hyp: for example, 

the person might evaluate two possible hypotheses: “This morning God joined me while I was praying” 

versus “This morning my uncle briefly entered in the room while I was praying”. The model would also 

assume that the hypothesis “This morning God joined me while I was praying” is more likely if the 

statement “God reveals himself to people having true faith” is true. Finally, an agency experience can 

be represented by DirE. What happens when an agency experience occurs? The model predicts that 

the consequence depends on the prior probability associated with the two prior beliefs (implemented 

in PBS). Someone assigning higher probability to the statement “God reveals himself to people having 

true faith” will tend to believe that “This morning God joined me while I was praying” after the agency 

experience occurs. This example shows that the BDMR proposes a role for agency detection which is 

similar to recent proposals (Van Elk & Van Leeuwen, 2019). 

The way the BDMR interprets agency detection is analogous to explanations offered by predictive 

coding (Andersen, 2019; Schjoedt et al., 2013; Taves & Asprem, 2017; Van Elk et al., 2016). The latter 

has been recently proposed to interpret important processes underlying the psychology of religion, 

such as how prior cultural knowledge drives formation of religious beliefs (Taves & Asprem, 2017). 

PBS, Hyp, DirE and SocE allow the BDMR to implement Bayesian inference, which also underlies 

predictive coding. Hence, phenomena that can be fruitfully described by predictive coding can be 

captured equally well by the BDMR. However, by including the utility component, the BDMR offers a 

way to go beyond predictive coding and explain phenomena where apparently puzzling emotional and 

motivational processes are at play. As an example, consider research showing that feeling lack of 
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control enhances religious faith (Kay et al., 2008; 2010). In a study, participants were asked to 

remember a recent positive event during which they felt having no control (Kay et al., 2008). After 

remembering the event, participants were more likely to report enhanced belief in God. Predictive 

coding does not seem to offer much insight on this effect. Appealing to comfort theories, some have 

interpreted this effect as occurring because lack of control would elicit anxiety, and because believing 

in God would suppress such anxiety (Kay et al., 2010). However, against this explanation, in the 

experiment the event to remember was positive, and consistently participants reported no change in 

affect. This casts doubts on whether anxiety played any role. An alternative interpretation is offered 

by the BDMR. This proposes that the experimental paradigm (requiring to remember an event 

characterised by lack of control and subsequently to report the strength of the belief in God) might 

induce participants to wonder what forces drive their everyday life, and to consider three alternative 

hypotheses: the self, God, or uncontrollable external forces. Focusing on a poorly controllable event 

(evoked during the experiment) would support the God hypothesis and the uncontrollable-external-

forces hypothesis at the expense of the self hypothesis. But how to arbitrate between the God and 

the uncontrollable-external-forces hypothesis? Here the BDMR proposes that a key role is played by 

the utility component, implemented by EOut. The participant would ask: what happens (in terms of 

utility) if the God hypothesis is true and I accept it (and, say, respect God’s commandments)? And if I 

reject it (and ignore God’s commandments)? What happens if the uncontrollable-external-forces 

hypothesis is true and I accept it? And if I reject it? For most people, answering these questions might 

favour the God hypothesis over the uncontrollable-external-forces hypothesis. This is because 

rejecting the God hypothesis (and ignore God’s commandments) if this turns out to be true would 

appear as highly costly: God favour will not be won. Moreover, accepting the uncontrollable-external-

forces hypothesis does not seem very appealing, even if this turns out to be true: by definition, 

uncontrollable external forces remain impossible to discipline. In other words, the BDMR proposes 

that the effects found in these experiments (Kay et al., 2008; 2010) might occur because rejecting the 
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possibility of God’s existence is perceived to be costlier than rejecting the possibility that life depends 

on uncontrollable forces.  

In short, I have discussed two examples of how the BDMR can be adopted to interpret empirical 

phenomena. The model subsumes predictive coding, meaning that in some cases the two can be used 

interchangeably. However, by including a utility component, the model goes beyond predictive coding 

and offers explanations for cases where motivational and emotional factors influence religious beliefs.   

 

6. Discussion 

This paper introduces the BDMR, which offers a computational framework for reconciling explanation 

and motivation theories of religion. Key elements of the BDMR are prior beliefs and (direct and social) 

evidence (which allows the model to describe explanation theories) and expected utility (which allows 

the model to describe motivation theories). It is important to highlight that the BDMR operates at a 

computational level, in other words it seeks to identify the first principles, or the basic meaning, of a 

psychological phenomenon (though this level of analysis speaks also to the implementation (e.g., 

neural) level, as both will need to be ultimately integrated together). Such level of analysis 

presupposes that a psychological phenomenon is ultimately rational, in the sense that it is grounded 

on processes that are adaptive for survival and reproduction. A different level of analysis focuses on 

the fine-grained mechanisms underlying religious reasoning. At this level, empirical research has 

found several biases and illogicities (Shermer, 2002; Wolpert, 1994). This has led some scholars to 

consider religious reasoning as fundamentally irrational, implying that exploring its computational 

principles can be considered as futile (Wolpert, 1994). However, two considerations can be made 

against this argument. First, similar biases and illogicities are observed also when reasoning does not 

involve any religious hypothesis (Shermer, 2002). Hence, it remains dubious whether in everyday life 

reasoning becomes more irrational when it comprises religious content. Second, both religious and 

non-religious reasoning can be viewed as guided by bounded rationality (Stark & Finke, 2000). In this 
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view, biases and illogicities, interpreted as cognitive shortcuts adopted by the brain because of its 

limited computational capacity, still produce satisfying results. Linked to this issue is the question of 

whether religious and non-religious reasoning are driven by similar or different processes. The 

perspective offered by the BDMR suggests that similar processes might be engaged.  

This paper has emphasised the connection between the BDMR and previous theories of religion, both 

explanation and motivation accounts. The frameworks with the strongest analogies with the BDMR 

are the predictive coding (Andersen, 2019; Schjoedt et al., 2013; Taves & Asprem, 2017; Van Elk et al., 

2016) and rational choice (Iannaccone, 1998; Stark & Finke, 2000) approach; so much so that the 

BDMR can be conceived as a synthesis of the two. The BDMR and predictive coding are substantially 

equivalent when examining explanation theories. However, predictive coding is insufficient to account 

for motivation theories. To address this, the BDMR extends predictive coding to Bayesian decision 

(Bishop, 2006) and utility maximization. Notably, predictive coding has been recently generalised to 

explain emotional and motivational processes (e.g., Friston et al., 2015; Seth, 2013). An interesting 

question for future research is whether this revised formulation of predictive coding can integrate 

explanation and motivation theories in a way analogous to the BDMR.  

The notion that utility maximization is pivotal in religion is central to the BDMR as much as it is to the 

rational choice model (Iannaccone, 1998; Stark & Finke, 2000). However, I highlight two fundamental 

differences between the BDMR and the rational choice model. First, the BDMR (similar to predictive 

coding) describes explicitly how individuals consider prior beliefs and evidence in the formation of 

their beliefs, while the rational choice model does not focus on this. Second, and more fundamentally, 

the rational choice model can be ultimately considered an explanation theory because it presupposes 

that utility does not affect religious beliefs. In other words, the religious beliefs are conceived as 

attempts to describe life and reality accurately. Utility does not have any influence at the time when 

beliefs are formed, coming into play only later when these beliefs are considered to make choice. 

Coherent with this assumption, proponents of the rational choice model have criticised motivation 
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theories because the latter would presuppose a role for motivation in affecting religious beliefs (Stark 

& Finke, 2000). On the contrary, the BMDR proposes that utility comes into play immediately during 

religious reasoning, implying that religious beliefs are not the consequence of a pure attempt to 

explain, but also of other motives highlighted by motivation theories. Notably, this does not affect the 

general idea that religious reasoning is rational, although now in pragmatic, rather than epistemic, 

terms.   

The model focuses on a specific aspect of the psychology of religion: belief formation. It is important 

to integrate this within a broader picture which aims at explaining religious behaviour. In some cases, 

the link between belief and behaviour might be direct and automatic (e.g., consider someone praying 

everyday under the conviction that this is necessary for salvation). Other times, behaviour might 

emerge from deliberative processes based on weighting costs and benefits of different courses of 

action (e.g., some scholars have proposed that careful deliberation often underlies religious 

conversion; Lofland & Stark, 1965; Long & Hadden , 1983). An interesting avenue for future research 

is to adopt computational modelling for exploring the processes linking religious beliefs and 

behaviour. With this regard, a common assumption is that behaviour is the consequence of beliefs. 

However, some scholars have argued that religious behaviour is often the cause of religious beliefs 

(e.g., Argyle, 2006). In other words, individuals might first participate in religious activities and then 

provide post-hoc justification for their participation. This phenomenon can be explored adopting the 

BDMR: this model is suitable to investigate post-hoc rationalizations following performance of 

religious behaviour.  

In short, I introduce a model of religious reasoning which examines the underlying computational 

principles. The model has an integrative scope as it attempts to reconcile different, and often 

competing, perspectives, acknowledging that each perspective sheds light on essential aspects of 

religion. The model can provide a conceptual framework for further theoretical and empirical 

investigations. Moreover, because the notion of Bayesian decision (on which the BDMR is built upon) 
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represents a promising general framework, the model can bridge research on religious reasoning with 

research on other forms of reasoning.  

 

6. Appendix 

Consider the example above arbitrating between the claim that an illness is God’s punishment for 

recent misbehaviour (a religious hypothesis), and the claim that an illness is due to a frequent 

interaction with an infected patient (a non-religious hypothesis). Prior beliefs are that God often 

intervenes in people’s life versus the alternative view that God is usually uninterested in mundane 

affairs. Formally, the model is a mixture of Gaussians. The joint probability can be written as:  

P(PBS, Hyp, HDec, EOut, DirE, SocE) = P(PBS) P(HDec) P(Hyp|PBS) P(DirE|Hyp) P(SocE|Hyp) P(EOut|Hyp, HDec) 

PBS is a categorical variable with number of categories equal to 𝑛𝑃𝐵𝑆 and where each category is 

associated with a probability. In the example, one can set 𝑛𝑃𝐵𝑆 = 2, PBS = Int if God is interventionist, 

and PBS = NoInt if God is not interventionist. The probability of God being interventionist is P(PBS = 

Int) = x and the probability of God not being interventionist is P(PBS = NoInt) = 1 - x (where 0 ≤ x  ≤ 1). 

Hyp is also categorical, with number of categories equal to 𝑛𝐻𝑦𝑝. Considering the example, one can 

set 𝑛𝐻𝑦𝑝 = 2, Hyp = Rel for the religious hypothesis (the illness is God’s punishment), and Hyp = NoRel 

for the non-religious hypothesis (the illness is due to interacting with an infected patient). The 

conditional probabilities for Hyp are P(Hyp = Rel | PBS = Int) = y, P(Hyp = NoRel | PBS = Int) = 1 – y, 

P(Hyp = Rel | PBS = NoInt) = z, P(Hyp = NoRel | PBS = NoInt) = 1 – z (where 0 ≤ y  ≤ 1 and 0 ≤ z  ≤ 1). 

HDec is also categorical, with the number of categories 𝑛𝐻𝐷𝑒𝑐 = 𝑛𝐻𝑦𝑝. In the example, HDec = RelAcc 

when the religious hypothesis is accepted (or, equivalently, when the non-religious hypothesis is 

rejected) and HDec = NoRelAcc when the religious hypothesis is rejected (or, equivalently, when the 

non-religious hypothesis is accepted). Probabilities for HDec are P(HDec = RelAcc) = u and P(HDec = 

NoRelAcc) = 1 - u (where 0 ≤ u  ≤ 1).  
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DirE is a Gaussian variable conditioned on Hyp. Its conditional probability can be defined as: 

P(DirE I Hyp = k) = 𝒩(µ𝐷𝑖𝑟𝐸|𝑘 , 1 𝜆𝐷𝑖𝑟𝐸
2⁄ ) 

Here, every category of Hyp k has its own associated average µ𝐷𝑖𝑟𝐸|𝑘; for instance the model will 

include µ𝐷𝑖𝑟𝐸|𝑅𝑒𝑙  (conditional on the religious hypothesis being true) which is different from 

µ𝐷𝑖𝑟𝐸|𝑁𝑜𝑅𝑒𝑙 (conditional on the non-religious hypothesis being true). The parameter 𝜆𝐷𝑖𝑟𝐸
2 reflects 

the weight or precision of DirE and in the model it is equal for all levels of Hyp (in principle, a specific 

weight for each level of Hyp can be implemented). A similar logic applies to SocE, where the 

conditional probability is: 

P(SocE I Hyp = k) = 𝒩(µ𝑆𝑜𝑐𝐸|𝑘 , 1 𝜆𝑆𝑜𝑐𝐸
2⁄ ) 

Also for SocE, every category of Hyp k has its own associated average µ𝑆𝑜𝑐𝐸|𝑘; for instance the model 

will include µ𝑆𝑜𝑐𝐸|𝑅𝑒𝑙  (conditional on the religious hypothesis being true) which is different from 

µ𝑆𝑜𝑐𝐸|𝑁𝑜𝑅𝑒𝑙 (conditional on the non-religious hypothesis being true). The parameter 𝜆𝑆𝑜𝑐𝐸
2 reflects 

the weight or precision of SocE and in the model it is equal for all levels of Hyp (in principle, a specific 

weight for each level of Hyp can be implemented).  

Finally, EOut is a Gaussian variable conditioned on both Hyp and HDec. Its conditional probability is: 

P(EOut I Hyp = k, HDec = j) = 𝒩(µ𝐸𝑂𝑢𝑡|𝑘,𝑗 , 𝜎𝐸𝑜𝑢𝑡
2 ) 

This indicates a specific average exists for each combination of Hyp and HDec. For instance, the model 

comprises µ𝐸𝑂𝑢𝑡|𝑅𝑒𝑙,𝑅𝑒𝑙𝐴𝑐𝑐 (the expected outcome if the religious hypothesis is true and it is correctly 

accepted), µ𝐸𝑂𝑢𝑡|𝑅𝑒𝑙,𝑁𝑜𝑅𝑒𝑙𝐴𝑐𝑐 (the expected outcome if the religious hypothesis is true but it is wrongly 

rejected), µ𝐸𝑂𝑢𝑡|𝑁𝑜𝑅𝑒𝑙,𝑁𝑜𝑅𝑒𝑙𝐴𝑐𝑐 (the expected outcome if the non-religious hypothesis is true and it is 

correctly accepted), µ𝐸𝑂𝑢𝑡|𝑁𝑜𝑅𝑒𝑙,𝑅𝑒𝑙𝐴𝑐𝑐 (the expected outcome if the non-religious hypothesis is true 

but it is wrongly rejected). The parameter 𝜎𝐸𝑜𝑢𝑡
2  reflects the uncertainty about the outcome and in the 
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model it is equal for all combinations of Hyp and HDec (although in principle one can also implement 

a specific weight for each combination). 

The model is used to make inference. For inference, the variables DirE and SocE are observed, while 

the other variables are not. The inference process includes multiple inference steps. At each step, for 

each level of HDec j, the model infers the conditional probability of EOut given the observed values 

for DirE and SocE and given HDec = j. This corresponds to the posterior Gaussian distribution: 

P(EOut| DirE , SocE, HDec = j) = 𝒩(µ𝐸𝑂𝑢𝑡|𝐷𝑖𝑟𝐸,𝑆𝑜𝑐𝐸,𝑗, 𝜎𝑃𝑂𝑆𝑇
2 ) 

Where µ𝐸𝑂𝑢𝑡|𝐷𝑖𝑟𝐸,𝑆𝑜𝑐𝐸,𝑗  is the posterior average for the expected outcome (the parameter 𝜎𝑃𝑂𝑆𝑇
2  

reflects the posterior uncertainty). For example, µ𝐸𝑂𝑢𝑡|𝐷𝑖𝑟𝐸,𝑆𝑜𝑐𝐸,𝑅𝑒𝑙𝐴𝑐𝑐 will be the posterior average if 

the religious hypothesis is accepted and µ𝐸𝑂𝑢𝑡|𝐷𝑖𝑟𝐸,𝑆𝑜𝑐𝐸,𝑁𝑜𝑅𝑒𝑙𝐴𝑐𝑐 is the posterior average if the non-

religious hypothesis is accepted. 

After these inferences are made, the model makes a decision by choosing the hypothesis associated 

with the highest posterior µ𝐸𝑂𝑢𝑡|𝐷𝑖𝑟𝐸,𝑆𝑜𝑐𝐸,𝑗. For instance, it will either choose to accept or reject the 

religious hypothesis (or, equivalently, to reject or accept the non-religious hypothesis, respectively). 
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Fig 1. Bayesian network representing the model. Its variables are: Prior Belief Systems (PBS), Hypothesis (Hyp), 
Direct Evidence (DirE), Social Evidence (SocE), Hypothesis Decision (HDec), and Expected Outcome (EOut). 
Categorical and continuous variables are represented by rectangles and circles, respectively. Arrows indicate 
probabilistic causal relations from one variable to another. Shaded variables are those considered to be 
observed at each inference step.  
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Fig. 2. Simulation of the model. The simulated scenario is discussed also in the main text and arbitrates between 
the claim that an illness is God’s punishment for recent misbehaviour (a religious hypothesis) and the claim that 
an illness is due to a frequent interaction with an infected patient (a non-religious hypothesis). Hyp includes two 
categories (religious hypothesis vs non-religious hypothesis), PBS includes two categories (God is interventionist 
(Int) vs God is not interventionist (NoInt)), and negative values of DirE or SocE support the religious hypothesis. 
The y axis reflects the posterior outcome utility value of accepting the religious hypothesis minus the posterior 
outcome utility value of accepting the non-religious hypothesis. A: The x axis reflects the prior probability for 
PBS = Int. Different lines indicate different values for DirE (for all lines, SocE = 0, the precision parameter for DirE 

𝜆𝐷𝑖𝑟𝐸
2 = 0.005, the outcome of accepting the non-religious hypothesis when it is true (𝜇𝐸𝑂𝑢𝑡|𝑁𝑜𝑅𝑒𝑙,𝑁𝑜𝑅𝑒𝑙𝐴𝑐𝑐) is 

equal to zero, the outcome of accepting the non-religious hypothesis when it is false (𝜇𝐸𝑂𝑢𝑡|𝑅𝑒𝑙,𝑁𝑜𝑅𝑒𝑙𝐴𝑐𝑐) is equal 

to -10, the outcome of accepting the religious hypothesis when it is true (𝜇𝐸𝑂𝑢𝑡|𝑅𝑒𝑙,𝑅𝑒𝑙𝐴𝑐𝑐) is equal to zero, the 

outcome of accepting the religious hypothesis when it is false (𝜇𝐸𝑂𝑢𝑡|𝑁𝑜𝑅𝑒𝑙,𝑅𝑒𝑙𝐴𝑐𝑐) is equal to -10). B: The x axis 

reflects the value of DirE. Different lines indicate different values of the precision parameter for DirE 𝜆𝐷𝑖𝑟𝐸
2 (for 

all lines, P(PBS = Int) = 0.5 and other parameters are as above). Note that an equivalent pattern would be 
produced if SocE was manipulated instead of DirE. 
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Fig. 3. Simulation of the model. The simulated scenario is discussed also in the main text and arbitrates between 
the claim that an illness is God’s punishment for recent misbehaviour (a religious hypothesis) and the claim that 
an illness is due to a frequent interaction with an infected patient (a non-religious hypothesis). Hyp includes two 
categories (religious hypothesis vs non-religious hypothesis), PBS includes two categories (God is interventionist 
(Int) vs God is not interventionist (NoInt)), and negative values of DirE or SocE support the religious hypothesis. 
The y axis reflects the posterior outcome utility value of accepting the religious hypothesis minus the posterior 
outcome utility value of accepting the non-religious hypothesis. The x axis reflects the difference between the 
expected outcome of accepting the religious hypothesis when it is false (𝜇𝐸𝑂𝑢𝑡|𝑁𝑜𝑅𝑒𝑙,𝑅𝑒𝑙𝐴𝑐𝑐) and the expected 

outcome of accepting the non-religious hypothesis when it is false (𝜇𝐸𝑂𝑢𝑡|𝑅𝑒𝑙,𝑁𝑜𝑅𝑒𝑙𝐴𝑐𝑐). Different lines indicate 

different values for DirE (for all lines, P(PBS = Int) = 0.5, SocE = 0, the precision parameter for DirE 𝜆𝐷𝑖𝑟𝐸
2 =

0.0012, the expected outcome of accepting the non-religious hypothesis when it is true (𝜇𝐸𝑂𝑢𝑡|𝑁𝑜𝑅𝑒𝑙,𝑁𝑜𝑅𝑒𝑙𝐴𝑐𝑐) is 

equal to zero, the expected outcome of accepting the religious hypothesis when it is false (𝜇𝐸𝑂𝑢𝑡|𝑁𝑜𝑅𝑒𝑙,𝑅𝑒𝑙𝐴𝑐𝑐) is 

equal to -10, the expected outcome of accepting the religious hypothesis when it is true (𝜇𝐸𝑂𝑢𝑡|𝑅𝑒𝑙,𝑅𝑒𝑙𝐴𝑐𝑐) is equal 

to zero).  

 


