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Abstract

Markowitz advanced the theory of portfolio construction, dividing the work into two
stages of security selection and capital allocation. He did not address security selection,
but established a new method to allocate capital. Since then, much has been written
regarding each stage while the investment industry grew and its performance was exam-
ined through a variety of lenses. This thesis contributes to the literature by examining
the interaction between these two stages of portfolio construction. Each stage impacts
performance, but an examination of the interaction is missing from the literature. A
deeper understanding of the interaction provides opportunity for practitioners to im-
prove portfolios and gives a base for future research to refine the understanding.

The research begins by holding 1,000 US large capitalization stocks constant while ap-
plying a panel of capital allocation methods. Despite starting a fixed set of securities,
differences in performance and risk characteristics are documented. Markowitz identified
the objective superiority of risk adjusted returns over just returns, so my work applies
the Sharpe ratio as the measurement unit. Differences in Sharpe ratios across the panel
of allocation methods are tested for robustness using a bootstrap test.

With a hierarchy of Sharpe ratios established, the next step varies the security selection
and observes the change in Sharpe ratios. Security selection is implemented with one
year perfect foresight which is a limit condition for the potential of stock picking. When
applying good and bad security selection it is observed that the hierarchy of Sharpe
ratios is unstable in the presence of security selection. The bootstrap robustness test
shows the hierarchy can invert with statistical significance. This is the first step in un-
derstanding the dependence of the optimal capital allocation method in the presence of
security selection skill.

Toward the goal of optimal Sharpe ratio portfolios, I examine portfolios constructed
with perfect foresight into return, volatility, and correlations. Optimized portfolios
are dominated by low correlation securities, not by high returning securities. Con-
versely, by first selecting the highest returning securities possible, you crowd out the
optimal Sharpe solution. Reward curves are built for selecting securities based on re-
turns, volatility, and correlation. The shape of the correlation reward curve is like the
low volatility anomaly.

Because low correlation securities dominate optimized Sharpe ratio portfolios, perfect
correlation selection is applied. Stock level and portfolio level characteristics are docu-
mented in the cross section of years. Then the method is applied to the panel of alloca-
tion methods to create return time series and Sharpe ratios. The bootstrap robustness
test applied to the Sharpe ratios of the allocation methods shows that even in the ab-
sence of perfect correlation selection, nearly any level of success achieved in correlation
selection creates robust improvements in the Sharpe ratio.
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Introduction

Over the last 30+ years, I have been responsible for both internal management of capi-

tal and for allocating capital to external money managers. Inevitably, the presentations

from external managers turn into ‘story-time’ and I am regaled with anecdotes about

the most interesting companies that they have ‘discovered’ and how this skill has led to

their superior returns. Usually I don’t contest their stock picking skills, but eventually

I ask them how they allocate capital across their selected securities. The most common

answer given is that they ’conviction weight’ their holdings.

Conviction weighting is simply a discretionary method used to allocate more money into

the stocks that they feel most strongly about. The academic literature for equity portfo-

lios is well developed in regard to systematic capital allocation methods outperforming

relative to basic market capitalization weights. Researchers such as (Brinson, Hood, and

Beebower 1995) and others have examined the question of selection versus allocation in

the setting of multiple asset classes. The conclusions of these studies indicate that the

allocation decision is significantly more important than selection. If this were true when

focused on an equity portfolio, it would be curious why managers spend so much time

on the task of security selection. This gap between the academic literature and the man-

ager stories incited my curiosity. What are the connections between security selection

skills and capital allocation methods? What drives optimal portfolio formation? What

implications does this have for active equity managers?

In the research presented here, I have pursued these questions theoretically by exam-

ining the intersection between a universe of securities with and a panel of allocation

methods

Through my research I have found that within the single asset class of equi-
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ties, security selection can be helpful but is not the dominant path toward

improvement. In addition, I find that the optimal choice of an allocation

method is dependent on proficiency in security selection.

To begin, I start back at the beginning of portfolio construction with Harry Markowitz

who projected the complexity of portfolio construction on to the two tasks of security

selection and capital allocation, focusing his work on the latter.

“The process of selecting a portfolio may be divided into two stages. The

first stage starts with observation and experience and ends with beliefs about

the future performance of available securities. The second stage starts with

the relevant beliefs about future performances and ends with the choice of

portfolio.” (Markowitz 1952)

Markowitz’s research focused on the second stage of portfolio construction: capital allo-

cation. He identified the benefits of incorporating the relationships (correlation) between

securities to optimize the risk adjusted return of a portfolio. Separate strains of litera-

ture and work have focused on each of the two stages, but the connection between each

stage has not been extensively explored. My research connects these two stages and fo-

cuses on the relationship between security selection and capital allocation in pursuit of

designing more optimal portfolios.

This research is important to both investment managers as well as investors who allo-

cate their capital to professional managers. For investment managers, understanding

this relationship more clearly can lead to a more effective focus of resources which in

turn may lead to improving the outcomes for their investors. For investors who allocate,

the methods identified in this research allow for a more detailed analysis of manager

returns.
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Chapter 1 is a survey of the existing literature related to the themes of this research

project.

Chapter 2 begins by focusing on the potential value available from well known and

commercially available allocation methods. Across a 50 year history of US large cap

stocks, a hierarchy of Sharpe ratios emerges suggesting that value can be created by

following allocation methods which differ from the more common method of market

capitalization weighting. But what appears evident in the time series is not always sta-

tistically significant. Across the full matrix of results, an advanced method for checking

the significance of the Sharpe ratio differences is applied which shows that ‘all that glit-

ters is not gold’.

Chapter 3 extends the research by introducing security selection into the analysis.

The application of ‘near perfect foresight’ is applied to the universe of securities. The

first application of this method is to show the minimum amount of security selection

expertise required, in the limit, to sufficiently improve the market cap weighting when

compared against the panel of alternative allocation methods. The tool is then extended

further to each of the allocation methods to show that the conclusions of statistical

significance related to the hierarchy of Sharpe ratios established in Chapter 2 is not

invariant to security selection. The important conclusion is that the optimal choice of an

allocation method is highly dependent on the level and persistence of security selection

skill.

Chapter 4 finds that portfolios with the highest possible Sharpe ratios are dominated

by low correlation securities, not by the highest returning securities. In fact, by building

a subset of stocks with the highest returns each year, you crowd out the potential for

maximizing the Sharpe ratio. The reward curve of Sharpe ratio, by selecting securities

based on performance is quite steep, but bad selections can offset good selections. By

contrast, the reward curve for picking stocks based on volatility is positive across all
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four quartiles and is confirmed when combining the stocks into a portfolio. Using what

we see from the creation of optimal Sharpe ratio portfolios, I examine the reward curve

for portfolios where security selection is based on pair-wise correlations. The shape of

the correlation based reward curve is like that of the volatility reward curve, but is even

steeper when selecting the lowest quartile of pair-wise correlations.

Chapter 5 applies the methods from Chapter 3 and examines the impact of applying

perfect foresight to selecting securities based simply on pair-wise correlations. The effect

of this method is examined first in the cross section of years and then in a time series

approach. Bootstrap robustness tests are applied to show the significance of this method

at nearly any level of success.

Each of the chapters highlights the importance of the interaction between security selec-

tion and capital allocation when forming a portfolio. For the researcher, these papers

can point the way toward developing better methods to integrate volatility and correla-

tion forecasts. For the practitioner, these papers show the importance of understanding

and connecting these two stages of portfolio formation while highlighting the smaller

role that security return forecasting should play in their process.
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Chapter 1

A Review of the Literature



1 A Review of the Literature

1.1 Introduction

As I will review in this section, there exists a growing body of literature which examines

performance of portfolios using a variety of lenses. Much of the work is empirical and

tries to explain the shadows created by managers who have attempted to build opti-

mal portfolios through time. Some of the literature is theoretical and focused on either

security selection or capital allocation.

This thesis expands on the existing literature by examining the interaction effect be-

tween security selection and capital allocation while highlighting where significant im-

provements are possible and refuting the practitioner’s dominant focus on return fore-

casting.

My literature review begins with the work of (DeMiguel, Garlappi, and Uppal 2009),

who points us toward a fourth century rabbi who espoused portfolio formation with an

equal allocation methodology. It is also noted that portfolio construction is found in

the Babylonian Talmud1 where an equally weighted, three asset portfolio is espoused: a

third in land, a third in merchandise, and a third ready to hand. However, not much else

is written on this topic until (Markowitz 1952) is published.

In the first lines Markowitz states:

“The process of selecting a portfolio may be divided into two stages. The

first stage starts with observation and experience and ends with beliefs about

the future performance of available securities. The second stage starts with

the relevant beliefs about future performances and ends with the choice of

1https://www.jewishvirtuallibrary.org/babylonian-talmud-full-text
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portfolio.” (Markowitz 1952)

With this introduction, the search for portfolio improvements begins and continues to

this day.

Although Markowitz laid the foundations of portfolio selection, scholars since have not

been in unison on which methods to use, the practicality of implementing the methods,

the approach to measuring performance, or the overall success of the investment man-

agement industry. The breadth of literature makes clear there exist multiple methods

for constructing portfolios and for measuring the outcome of these applications.

The literature will be reviewed within the following framework:

• Components of Portfolio Construction

– Security Selection

– Capital Allocation

• Applications of Active Management

– Styles

– Timing

– Trading

– Unobserved Actions

• Active Share

• Methods of Performance Measurement

– Measuring Activity

– Choosing the Benchmark
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– Choosing the Performance Metric(s)

• Can Managers Beat the Market?

– Maybe ’No’

– Maybe ’Yes’

• Mechanics

– Data Availability & Quality

– Calculation Methods

• Robustness

– Construction Tools

– Performance Verification

1.2 Components of Portfolio Construction

Markowitz set the task of portfolio selection into two main stages: security selection

and capital allocation. While the literature related to each component is reviewed be-

low, these are not entirely separate and distinct steps. The authors of (Amenc, Goltz,

and Lodh 2012) point out that methods within each step of the process have various

advantages and drawbacks, they are not competing elements but can be used success-

fully in combination to reach the investor’s objective. This is a key observation which

my research expands upon.

1.2.1 Security Selection

“The first stage starts with observation and experience and ends with beliefs

about the future performance of available securities.” (Markowitz 1952)
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While Markowitz focused his paper on the capital allocation question he did note that

a best method for security selection was likely to be the combination of statistical tech-

niques and the ’judgment of practical men’. The combination of these two elements has

been greatly expanded in the literature since that time.

Portfolios are simply collections of individual securities selected from the array of all

securities available across the globe. While the first step is security selection, often the

opportunity set is narrowed by a stated objective of the fund or by an investment policy

rule. Criteria to narrow an opportunity set may include country/geography, asset class,

market capitalization, or factor exposure. An example of a restricted opportunity set is

US Equity Large Capitalization Value. The authors of (Clarke, Silva, and Sapra 2011)

caution however, that investors should be aware of the inefficiencies that can be created

by each of the constraints and the interaction effect of multiple constraints.

Within the literature related to security selection, there are documented many system-

atic yet fundamentally based strategies. In the early part of this literature, (Treynor

and Black 1973) picked up this thread from Markowitz and applied a level of mathe-

matical rigor to security selection. Today there exists an enormous literature from the

practitioner’s side which suggests a variety of methods for picking better stocks. As com-

putational capabilities have increased, this literature is now flavored with elements of

artificial intelligence and other advanced data science methods. This dissertation is not

focused on the method to pick to stocks correctly, but instead focuses on the interdepen-

dence of this skill with the optimal choice for capital allocation method and the drivers

of optimal Sharpe ratio portfolios.

1.2.1.1 Discretionary Security Selection The absence of a systematic approach

to security selection is by definition discretionary. An investment manager may be fol-

lowing a heuristic, but the lack of any systematic method gives rise to a category which
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can not be analyzed directly. Despite not following an established set of decision rules,

literature related to characteristics of the equity market may be guiding the success of

managers who follow a discretionary approach to security selection.

An example of these equity market characteristics is (Ang et al. 2006) who examine the

cross section of volatility and expected returns to find that stocks with high idiosyn-

cratic volatility have abysmally low average returns. This follows on from the earlier

work of (Fama and French 1992) who began to show that a stock’s exposure to common

fundamental factors such as size, and book to market, could help to explain much of the

difference in returns.

Idiosyncratic risk arises in security selection, but a deeper understanding of this compo-

nent may impact returns. This insight was offered by (Goyal and Santa-Clara 2003) who

find a significant positive relation between average stock variance and the return of the

market. The authors find that variance of the stock market by itself has no forecasting

power over the market return. However, idiosyncratic risk explains most of the variation

of average stock risk through time and it is idiosyncratic risk that drives the forecasta-

bility of the stock market. This finding is at odds with the theoretical literature which

posits that only systematic risk should be priced in the markets as investors can easily

diversify away idiosyncratic risk.

According to (Sebastian and Attaluri 2016), exposure to factors seems to have explained

a large degree of superior performance in strategies through time. However, it is the

discretionary skill of adaptation that may have led to persistence in performance.

There is evidence that a discretionary approach to selection may add value. In the work

of (Baker et al. 2010), the authors examine the performance of stocks traded by mutual

funds around the announcement of earnings. New purchases tend to outperform similar

stocks and new sales tend to under-perform similar stocks. This skill however seems to
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be waning since the passage of Rule-FD from the SEC which mandated fair and even

disclosure of information to investors.

1.2.1.2 Systematic Security Selection Following a clear set of rules defines the

category of systematic security selection. These methods are highly varied, but as they

have fully disclosed rules, they can be analyzed and their properties examined.

Departing from the common starting point of security selection based on capitalization,

(Arnott, Hsu, and Moore 2007) introduce the concept of fundamental indexation which

begins to narrow the set of securities according to their fundamental characteristics such

as book value, cash flow, revenue, sales, and dividends. The soundbite logic is provided

by Benjamin Graham who said:

“In the short run, the market is a voting machine, but in the long run, it is a

weighing machine.”

The success of this approach appears to be another empirical violation of the simple

CAPM model. This work was greatly expanded by (Clare, Motson, and Thomas 2013).

The explanation of success through fundamental characteristics of stocks in the Arnott

paper is refuted by (Perold 2007) who find that fundamental indexing is just a form of

quantitative value investing and if value stocks are systematically mispriced, this is the

source of the return and not the headwind of capitalization weighting.

Depending on the investment beliefs of the manager, other systematic strategies may be

designed. Examples may include focuses on growth stocks or deep value stocks. While

the literature documents many of these approaches, it is an open topic on whether se-

curity selection matters at all. A question examined in this thesis asks to what degree

security selection impacts overall performance relative to the impact of capital allocation
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and how the two stages interact to impact the risk-return efficiency of a portfolio.

1.2.2 Capital Allocation

“The second stage starts with the relevant beliefs about future performances

and ends with the choice of portfolio.” (Markowitz 1952)

After securities are selected for inclusion, the next stage in the process is to allocate

capital across the securities. The general objective is to find the best portfolio for the

next period with an optimal trade-off between return and risk. Without imposed limits,

the possible allocation weight combinations are infinite. Often however, there are limits

on characteristics such as: short vs. long positions, minimum and maximum position

size, leverage constraints, etc. Within the existing constraints, managers must find a

way to allocate their capital across the selected securities.

Active equity managers appear to spend an excess of resources on analysis for security

selection relative to the effort expended on considering the method of capital allocation.

This stands in contrast with (Clare, Motson, and Thomas 2013), (DeMiguel, Garlappi,

and Uppal 2009) and others who show that by simply abandoning a market capitaliza-

tion weighting scheme and following an alternative allocation methodology, superior

results have been possible over a long time period. The form of capital allocation most

available to index investors today is capitalization weighting. In this approach, the com-

panies with the largest market value are given the greatest weight in the portfolio. This

is not necessarily the most efficient way to allocate capital, but it does have character-

istics of high liquidity, low transaction volumes, and low costs that make it attractive.

Deviations from this method exist in both discretionary and systematic formats. Capital

allocation is in the domain of the active portfolio manager.
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Despite the predominance of products based on capitalization weighted indices, it is

commonly attacked in the academic and practitioner literature. One example, (Hsu

2006) shows that the sub-optimality arises because cap-weighting tends to overweight

stocks whose prices are high relative to their fundamentals and underweight stocks

whose prices are low relative to their fundamentals. In essence, the cap-weighted in-

dex is ’anti-value’. A detailed mathematical proof shows that the cost of sub-optimality

is equal to the square of the noise of the stock prices. Another example of this decompo-

sition is shown in (Martellini 2008) who shows that the efficiency of cap-weighted indices

can only be warranted at the cost of heroic assumptions.

Two papers in particular were helpful in the overview of these various approaches. The

work of (Kolm, Tütüncü, and Fabozzi 2014) and (Cremers et al. 2018) surveyed the

literature over the last several decades and illuminated the expansion of new allocation

methods.

1.2.2.1 Discretionary Capital Allocation This form of allocation is defined sim-

ply as the absence of a systematic approach. Any form of human judgment applied

would be considered discretionary. Through many manager interviews I have heard

them describe their portfolio as ‘conviction weighted’. This particular form of allocation

gives more capital to a managers ‘best ideas’ which may change through time. Often

these methods rely on the experience of the individual manager and their interpretation

of current market conditions. In addition, the conviction weighting is being driven by

the first stage of security selection and not by the optimal combination of the relation-

ships (correlation) between securities.

Most active managers understand that correlations are an important component of total

portfolio volatility, but my research will show that correlations are the primary potential

driver of optimal Sharpe ratio portfolio and should also be incorporated during the
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security selection stage.

The discretionary form of allocation is not studied within this thesis as the methods

are not disclosed, may be influenced by behavioral issues, and are hard to categorize.

Anecdotally, these discretionary approaches appear to be the most predominant form of

allocation method followed by active US equity mutual funds.

1.2.2.2 Systematic Capital Allocation Beyond discretionary allocation methods,

there is a growing set of systematic capital allocation methods which are well described

and examined in the literature. The work of (Clare, Motson, and Thomas 2013) sorted

these methods into sensible categories of heuristic, optimization, and random methods.

Heuristic: Heuristic forms of allocation follow simple rules that can be calculated

in closed form. Examples of this category are equal weighting, inverse volatility,

and diversity weights, among others.

Optimization: Optimization forms of allocation cannot be calculated in closed

form and must be solved by numerical routine. Examples of this type are mini-

mum variance, maximum diversification, and risk efficient weights, among oth-

ers.

Random: An unlimited number of random methods could be applied to the alloca-

tion decision, however (Clare, Motson, and Thomas 2013) introduce the monkey

portfolio and the Scrabble weight as examples in this category.

Starting at the beginning, (Markowitz 1952) explained the use of a mean-variance op-

timization method, and despite its relative simplicity, it is still not widely used in prac-

tice. (Michaud 2014) points out that optimizers make conceptual demands on portfolio

managers and may move counter to politics which often exist within organizations. In
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addition, these methods require knowledge of statistical methods and are not necessarily

intuitive. This may help to explain the predominance of conviction weighting by active

US equity managers.

(Clare, Motson, and Thomas 2013) use a panel of systematic allocation methods to ob-

serve general performance characteristics when applied to large capitalization US equity

portfolios from 1968 through 2011. All of the alternative capital allocation methods

(including random weighting schemes) would have produced a better risk-adjusted per-

formance than a capitalization weighted approach, yet there isn’t a single method that

dominates all other methods in all time periods. Each method has a set of assumptions

under which the method proves to be optimal.

The authors follow the established methodologies in the literature where they existed.

For Diversity Weights, they follow the work of (Fernholz, Garvy, and Hannon 1998),

while for equal risk contribution they reference the work of (Maillard, Roncalli, and

Teiletche 2008). Finally, for maximum diversification method, the work of (Choueifaty

and Coignard 2008) is cited.

Departing from the methods already established in the literature, (Clare, Motson, and

Thomas 2013) test a random selection method which they call the ”monkey” portfolio

by randomly drawing with replacement from a pool of available securities and giving

each draw 0.1% weight until all capital is allocated. The authors create ten million

runs of this type and examine the superiority of these random portfolios over the cap-

weighted approach.

(Amenc, Goltz, and Lodh 2016) takes issue with the superiority of random ”monkey”

portfolios and shows that the strategies employed by commercially available approaches,

termed ’Smart Beta’ products are not ’monkey business’. The authors also criticize the

work of a related approach, (Arnott et al. 2013) which looked at inverting the logic of
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various allocation methods. The criticism exists because the authors did not invert the

stock selection step in their analysis. Once this is added to the analysis, the inverted

strategies do worse.

Diversification is said to be the ‘only free lunch on Wall Street’. Reducing the risk of a

portfolio without necessarily diminishing the returns is an improvement by Markowitz’s

definition. But this concept of diversification previously lacked specifics. A formal mea-

sure of diversification is introduced by (Choueifaty and Coignard 2008) which they

called the Diversification Ratio. This ratio is defined as the weighted sum of the risks of

each security divided by the risk of the combination of the weights. Formally, this is:

Diversification Ratio =

n∑
i=1

wiσi

σp

where wi is the weight of stock i, σi is the standard deviation of stock i, and σp is the

standard deviation of the portfolio combination of all stocks.

The full set of portfolio invariance properties of the diversification ratio are laid out in

(Choueifaty, Froidure, and Reynier 2011).

(Chow et al. 2011) conducted observational work on a similar set of methods, but with

an extension across US and global equity markets. Their work found that any of these

systematic allocation methods can be mimicked by combinations of the other strategies

which spanned the market, value, and size factors. With this finding and acknowledging

that there were already too many methods available to follow, they suggest that the

analysis of implementation costs are a better method of evaluation than are back-test

returns. In sample, returns comparisons can show differences, but with the addition

of robustness checks, ex ante there can be no conclusion of the return dominance of a

single systematic method.
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In Chapter 2 of this thesis, the same robustness methodology is applied to the differ-

ences in Sharpe ratios with a contrasting conclusion. This implies that systematic cap-

ital allocation methods may not create significant differentials in return but can create

significant improvements in risk-return efficiency.

The most simplistic of the systematic methods, equal weighting, is put forth in the very

rigorous (DeMiguel, Garlappi, and Uppal 2009) as the benchmark by which to measure

all other approaches, both systematic and discretionary. In this simple method, capital

is allocated equally among all selected securities. The authors examine 14 capital alloca-

tion methods against seven different data sets and make observations based on returns,

Sharpe ratios, and certainty equivalents.

Nearly all systematic allocation methods require estimating parameter inputs such as

volatility and correlation. A major contribution of this work is showing an analytical

method for correctly estimating the length of period required for estimating the parame-

ters of the simple mean-variance method which would out-perform an equally weighted

method. The required period would be excessively longer than any person’s career

or lifetime. For a 50 asset portfolio, the period needed would approach 6,000 months,

which is 500 years. The authors conclude that equal weighting is a superior approach

except when the number of assets is very large and an optimization method may find a

more diversified combination.

Beyond simply describing methods and examining back-tests of systematic capital al-

location methods, several authors including (Maillard, Roncalli, and Teiletche 2008)

and (Choueifaty, Froidure, and Reynier 2011) explored the mathematical properties of

these approaches and showed the similarities, differences, and highlighted the specific

assumptions under which each approach is optimal.

And yet with all of the approaches explained and analyzed, it is still incredibly hard for
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investors to select and access these approaches (Amenc, Goltz, and Lodh 2012). In this

work they show a wide variety of commercially available offerings and the lack of trans-

parency given, the layers of complexity arising from the interaction of multiple decisions,

and the inability to examine the track record shown. Within this important work, they

refute that the out-performance of the systematic capital allocation approaches is simply

due to exposure to small cap stocks or other known factors. By restricting the security

set, significantly superior performance still exists. This thesis will extend this work by

examining the interaction between security selection and capital allocation. Robustness

checks are applied to the results.

One of the more obscure allocation methods was described by (Bera and Park 2008)

who introduce diversification using the maximum entropy principle. The method at-

tempts to account for the non-normality of financial data and the effect this has during

the specification of the covariance matrix. The approach also attempts to overcome the

well known issues with mean-variance optimization, which include the low diversification

and concentration issues that arise as a function of misspecified covariance matrices.

The maximum entropy approach begins with a realization that the maximum likelihood

approach is inconsistent due to not knowing the true density function. It then attempts

to ”extract useful information about the unknown density from a given data by impos-

ing some well-defined moment functions in analyzing financial time-series data.” By

doing this, the authors show that model misspecification can be reduced. This new den-

sity is the maximum entropy density which is used in the Engle/Bollerslev style ARCH

framework.

The authors also compare their approach to the Bayes Stein approach which uses es-

timator shrinkage. This work is significant because it is but a sample of works which

point out the shortcomings of using a point estimate approach to creating the inputs

to optimizations. By thinking of the parameters of return, volatility, and correlation as
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probability distributions, rather than specific values, their approach accounts for the

inherent uncertainty in these values and directly shrinks the optimized weights toward a

reasonable prior, such as market cap weighted or equal weighted.

Attempting to refute the source of value emanating from a systematic allocation method,

in (Arnott et al. 2013), the authors invert the logic of several strategies. If the origi-

nal logic produced superior returns over cap-weighted indices, then inverting the rules

should produce worse results, but this was not the case, and they generally performed

better than the original strategies. The source of the superior performance is claimed to

be created from factor exposure to small cap and value tilts.

In a multi-asset class setting, (Chaves et al. 2011) tests the properties of the risk parity

approach and the conditions under which this method would excel. While the approach

is sensitive to asset class selection, returns do not need to be estimated. However, the

authors fail to address the sensitivity issues related to estimating the parameters of the

covariance matrix.

In another paper comparing systematic approaches, (Clarke, Silva, and Thorley 2012)

examine the computational requirements of three major approaches. The restrictions

of computer processing speed seem to have been alleviated since the publication of this

article, but the authors create a framework to logically explain why any given asset is

included in the risk based portfolios and show the reasoning for the weight computed.

The comparison of approaches is simplified by (Carvalho, Lu, and Moulin 2012) where

the authors begin with an equal weight portfolio and show how each approach is simply

a nested case of the preceding strategies. The net exposure differences between nested

methods are based on simple beta and alpha tilts. This is a good explanation for less

mathematically inclined practitioners.

An outside perspective is offered by (Fabozzi, Huang, and Zhou 2010) who publish
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in the Annals of Operations Research. While the omnipotence of the mean-variance

approach exists in theory, the practice is not as ubiquitous as expected. Referencing

Robert Merton who said that the challenge is to put “the rich set of tools” into practice

but concluded that “I see this as a tough engineering problem, not one of new science.”

The operations research angle means that the authors take the parameter estimates as

given and examine the robustness of the methods applying these estimates. This is a

very detailed mathematical paper and exposes many of the strengths and weaknesses of

the various systematic allocation methods.

The collection of systematic methods continues to grow and with it the complexities of

interaction terms from the layers of decisions. While it seems evident that efficiency is

gained from this class of allocation method, the existing literature does not examine the

relative importance of these methods versus security selection. The analytical work in

this thesis will cover this gap in the literature.

1.3 Applications of Active Management

The literature reviewed to this point outlines the major methods for constructing port-

folios. The next strain of literature examines empirical applications of these tools. The

pursuit of superior performance requires the application of a combination of active man-

agement tools which will create different, and hopefully superior, performance.

1.3.1 Styles

Active management of funds may be implemented using particular styles of investing.

Rather than analyzing the full universe of potential securities, managers may limit the

scope of their investment to companies that display some combination of characteristics.

The particular characteristics chosen form the manager’s style.
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The work of (Fama and French 1992) helped to explain the dispersion in stock returns

that was not being captured by the simple asset pricing models of (Sharpe 1964) or

(Lintner 1965). It was observed that a regression of stock returns on the returns of the

general market (β) was inadequate to explain the full set of returns. Factors such as the

market capitalization or book to price were able to more fully explain the cross section

of stock returns. In a widely cited work, (Carhart 1997) added to the factor model work

with the inclusion of momentum.

Investment beliefs have been formed from the historical observations of these style fac-

tors and are used today in the management of funds with particular objectives. A recent

book by (Ang 2014) captures the practitioner view of these style investing processes and

how they are implemented.

1.3.2 Timing

Well before much of the literature referenced herein, (Fama 1972) examined methods

possible for deciphering the effects of ‘selectivity’ from the effects of ‘timing’. In this

regard, timing is the ability to predict general market price movements and adjust a

portfolio to benefit from this activity. Later, (Cremers and Petajisto 2009) also cite the

ability for managers to adjust their holdings and benefit from timing the market.

Identifying managers who can beat the market through timing is a direct challenge to

the efficient market hypothesis. However, using daily data, (Bollen and Busse 2001)

show that approximately 40% of managers in their study were able to add value through

market timing. This is a direct contradiction of the previous work of (Treynor and

Mazuy 1966) who show no evidence of managers ability to time the market correctly.

Finally, (Jiang, Yao, and Yu 2007) use portfolio holdings to examine whether timing

skill is applied successfully. The authors find that on average managers do have positive
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timing ability at the one month and twelve month horizons. Additional statistical ro-

bustness checks are added over previous literature. The funds with the best timing abil-

ity tend to have greater industry concentrations and are tilted toward small cap stocks.

Funds that become too big can’t trade enough stock to impact their overall returns.

It is the conclusion of (Huang, Sialm, and Zhang 2011) that funds that engage in timing,

by shifting their risk dynamically through time, fare worse than funds that maintain

stable risk profiles.

1.3.3 Trading

The effect of active trading was examined by (Wermers, Chen, and Jegadeesh 2000).

The authors showed that preference for liquidity may be hurting fund manager returns

and that trade performance is positive for growth funds but insignificant for income

oriented funds. High turnover funds seem to capitalize on their stock selection abilities

by trading and timing frequently. Stocks that are widely held by mutual funds do not

outperform the general population of stocks but more heavily traded stocks can add

positive returns.

The authors of (Pastor, Stambaugh, and Taylor 2017) find that the time series rela-

tion between turnover and performance is stronger than the cross sectional relation.

In addition, they find that the turnover relation to performance is stronger for funds

trading less liquid stocks while the level of turnover is correlated across funds. Profit

opportunities vary over time and some funds exhibit the ability to identify and exploit

these opportunities. While the active management industry may not provide superior

net returns to its investor (consistent with both theory and evidence), it creates a valu-

able externality in that the combined trading of active funds helps to correct prices and

thereby enables more efficient capital allocation.
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1.3.4 Unobserved Actions

Due to the difference in timing between quarterly portfolio holdings disclosure and daily

net asset value (NAV) reporting, not all performance can be attributed because some ac-

tions are unobserved. In the work of (Kacperczyk, Sialm, and Zheng 2008), the authors

show that the average gap in performance is near zero which implies that the aggregate

result of interim manager actions creates virtually no value but is just enough to offset

transaction costs. However, past return gaps tend to persist so funds that add value

through unobserved actions continue to add value while those that destroy value con-

tinue as well. It is impossible to disentangle what actions are being taken during the

gap of time and the return gap that is created.

1.4 Active Share

In an attempt to create superior performance, the applications of active management

strategies create portfolios that are different than their benchmarks. In 2009, a new

metric called Active Share (AS) was introduced by (Cremers and Petajisto 2009) and

has now gained widespread commercial acceptance with firms such as Morningstar and

many financial advisors. The AS metric was intended to measure how ‘different’ a given

portfolio is from its comparison benchmark and to create a link between the level of

‘active management’ and the potential for improved returns.

The stages of security selection and capital allocation are combined into a single mea-

sure that seems to be intuitive. The measure is based on current holdings of the port-

folio rather than being based on historical return differences that are used to calculate

tracking error.
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The mathematical representation of Active Share is:

ActiveShare =
1

2

N∑
i=1

|wfund,i − windex,i|

where wfund,i and windex,i are the portfolio weights of asset i in the fund and in the

index, and the sum is taken over the universe of all assets included in the fund and the

index.

Tracking error is a measure of the historical return difference between a fund and its

benchmark. Tracking error looks backward Using returns from a portfolio and an index:

TrackingError =

√√√√√√
N∑
i=1

(Rfund −Rindex)2

N − 1

where Rfund is the return of the fund, Rindex is the return of the comparison index, and

N is the number of return period observations.

The difference between the two measures is that tracking error looks backward at re-

turns while Active Share is calculated from the differences in current holdings between

a fund and its benchmark. Active Share is represented as a more accurate way of mea-

suring manager activity rather than simply looking at ex post tracking risk. This is

because a high stock concentration manager who diversifies across industries will look

less active than a diversified manager who rotates holdings among sectors.

The key claim of Active Share is that it predicts relative performance and is robust

against factors such as turnover, expense ratio, and the number of stocks in a portfolio.

In addition, the Carhart alpha model (FF4) does not explain any significant relationship

between Active Share and Performance.

Petajisto updated their work (Petajisto 2013) to incorporate the history of the 2008
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financial crisis period, extend the sample size of funds examined, and point out more

explanations for why this measure predicts performance. In addition, a new set of anal-

ysis is introduced using market volatility as a potential explanatory variable for perfor-

mance.

While the idea of Active Share seems intuitive, the concept came under heavy attack

from (Frazzini, Friedman, and Pomorski 2016) who find that the empirical evidence for

the measure is not very robust. The difference in out-performance between high and

low Active Share funds is driven by the strong correlation between Active Share and the

benchmark type and does not predict actual returns. Within individual benchmarks,

Active Share is as likely to correlate positively with performance as it is to correlate

negatively. Therefore, the authors conclude that Active Share is not useful for selecting

managers.

The debate raged on over this measure of manager activity and the forecasting of skill

based returns with a rebuttal to the criticism and the publication of (Cremers 2017). In

this further demonstration of the power of Active Share, the author lays out three pil-

lars of active management as the triad of knowledge, judgment, and effective application.

The authors do concede that even among high Active Share managers, only those with

long holding periods tend to create superior performance.

While Active Share does seem to measure how different a portfolio is relative to its

benchmark, it does not answer the question posed by this thesis. How does the capital

allocation method interact with security selection in pursuit of superior portfolio effi-

ciency? Active Share can not answer this question because it entangles the two stages of

portfolio formation.
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1.5 Methods of Performance Measurement

The application of active management creates inevitable performance differences. The

aim of active management is to ‘out-perform’ the comparison portfolio. Since managers

know that their performance is being measured relative to a benchmark, there is the

possibility that these measures can be manipulated as was shown by (Goetzmann et al.

2007). The author finds that while moral hazard exists, to measure performance fairly

the metric should be manipulation proof and not reward information free trading.

1.5.1 Choosing the Benchmark

For a measure of relative performance to be meaningful, the choice of comparison port-

folio should also be appropriate. It makes no sense to compare a bond portfolio to a

stock portfolio and claim victory if performance is better. But what are the right ways

to compare? Several methods have been introduced in the literature.

Early in the literature, (Treynor 1965) showed a simple early version of how to rate

the management of investment funds, noting early on that the choice of comparison is

extremely important. This importance is echoed in (Grinblatt and Titman 1989) who

caution about the possibility of overestimating risk due to market timing abilities and

the failure of investors to earn positive risk adjusted returns due to increasing risk aver-

sion. The authors of (Grinblatt and Titman 1994) show in a mathematically rigorous

manner that the choice of benchmark is incredibly important to measuring success and

that when a mean-variance inefficient benchmark is used, erroneous inferences arise.

1.5.1.1 Style Benchmarks As (Brown and Goetzmann 1997) explain, styles are

buckets that are used to characterize managers. Benchmarking performance is seem-
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ingly more relevant when managers of the same style are compared against each other,

but style consistency is required. There is complexity in this process however as the In-

vestment Company Institute (ICI) classifications are too broad to carry much meaning.

Allowing managers to select their own styles can lead to moral hazard and incorrect

choices and allows managers to change their style benchmark election through time to

game the measure of relative performance.

For a style benchmark to be meaningful, it must be assigned objectively and empirically.

The authors provide an algorithm to aid in classifying funds by style using likelihood

ratio tests. Tests of their methods show significant improvement over manager selected

styles.

An extension of the style model builds a reference portfolio from the characteristics of

the portfolio being examined. In (Daniel et al. 1997) the authors construct benchmarks

that match the fundamental characteristics of the stocks in the subject portfolio using

market capitalization, book to market ratio, and prior year returns. Additional ‘char-

acteristic timing’ and ‘characteristic selectivity’ measures are developed to detect these

skills in the subject portfolios.

1.5.1.2 Characteristic Benchmarks While the factor approach to benchmarking

manager alpha used regression of historical returns, the work of (Daniel et al. 1997)

introduced a slightly different method. The characteristic approach uses the fundamen-

tal characteristics of the current holdings to map to a set of benchmark holdings. The

goal is the same as with factor models, which is to isolate the true value added by the

manager.

1.5.1.3 Factor Models With the addition of momentum, (Carhart 1997) moved

the work forward in explaining the persistence in mutual fund performance. The factor
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models helped to push forward the explanation of returns and create a new benchmark

for manager performance. Rather than using just market returns to explain fund per-

formance, the factor models extended the analysis to a multivariate regression. This

minimized the unexplained error term α, which is assumed to be the value added by the

manager in a particular period. Factor models have shown to be useful in measuring the

performance alpha of a manager.

1.5.2 Choosing the Performance Metric

Markowitz’s second tenet solidly rejects return as the only metric for judging the suc-

cess of a portfolio, arguing that without perfect foresight, diversification is necessary to

achieve an acceptable outcome.

“The hypothesis (or maxim) that the investor does (or should) maximize

discounted return must be rejected.” ”Diversification is both observed and

sensible; a rule of behavior which does not imply the superiority of diversifi-

cation must be rejected both as a hypothesis and as a maxim.” (Markowitz

1952)

A simple return comparison is not appropriate as the portfolio construction process was

a choice based on risk and return, so it is only logical to also have a two dimensional

measure for inspecting the success of the process. But which metric of the multiple

available should be used?

The work of (Chen and Knez 1996) states clearly that any admissible portfolio perfor-

mance measure should satisfy four minimal conditions: assign zero performance to the

reference portfolio, be linear, continuous, and nontrivial. These conditions can only exist

in a market free from arbitrage.
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Some examples of two dimensional performance metrics are:

SharpeRatio =
ri − returnf

σi

TreynorRatio =
ri − returnf

βi

where ri is the return of the investment, rf is the return on the risk free rate, σi is the

standard deviation of the returns of the investment, and βi is the slope coefficient of the

linear regression between the returns of the investment and the returns of the market.

Another example is the Calmar ratio which uses the rolling 36 month annualized returns

in the numerator and the maximum drawdown in the denominator. Whereas the first

two metrics above measure performance relative to an external benchmark, the Calmar

measures performance relative to its own path.

Many other metrics exist which incorporate other components such as draw-down, skew-

ness, partial deviations, etc. It is the responsibility of the investor to determine which

set of metrics most closely resemble their risk aversion parameters and then calculate

and compare these metrics.

1.6 Performance Attribution

Finally, there exists a body of literature related to performance attribution. Robust ex-

planations of performance have been documented by (Fama 1972), (Bollen and Busse

2001), (Brinson, Hood, and Beebower 1995) and others which explained excess perfor-

mance variability by decomposing it into elements such as policy, timing, and security

selection. Three additional works of importance in this area are (Ibbotson 2010), (Xiong

et al. 2010), and (Ibbotson and Kaplan 2000). While their work is helpful, in each case,

these works focus on portfolios containing multiple asset classes and are an ex-post
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explanation of excess return while my research is focused on documenting the interde-

pendence of security selection and capital allocation method, and examining the drivers

of optimal Sharpe ratio portfolios.

1.7 Can Managers Beat the Market?

For all the funds that exist and all the various ways that managers can apply compo-

nents of active decision making, the big question remains: can managers beat the mar-

kets? As we reviewed in the previous section, the answer depends on the reference port-

folio and the statistic used for comparison.

In one of the earliest studies of manager performance, (Sharpe 1966) noted that each in-

vestor must exhibit their own preferences about the trade-off of risk and return and that

a manager cannot directly observe the preferences of investors. All that the manager

can do is establish a fund and invite investors with similar preferences to join.

Following Sharpe, (Jensen 1968) also examines the performance of a group of early mu-

tual fund managers and finds no evidence of a managers ability to pick stocks and that

performance holds very little evidence that any individual fund was able to do signifi-

cantly better than that which we expected from mere random chance. His findings hold

even in the case of gross returns.

In the following period, (Malkiel 1995) updates the analysis with a larger database at a

later date range and finds similar conclusions but adds that strategies built on buying

the ‘hot hand’ also do not work well.

Whether the data support the ‘Yes’ or ‘No’ answer, the authors of (Baks, Metrick, and

Wachter 2001) suggest that a returns based analysis may be too simplistic and that a

Bayesian approach which incorporates more data points such as cash flows into the fund,
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age of the manager, education, SAT scores, etc. With additional data points, even very

skeptical prior beliefs can lead to rational and economically significant allocations to

active management.

1.7.1 Maybe ‘No’

The majority of the literature seems to document the inability of active managers to

outperform. The work of (Carhart 1997) is commonly cited. Carhart created a unique

data set which corrected for survivorship bias in the returns databases. His finding

is that common factors in stock returns and investment expenses almost completely

explain persistence in equity mutual funds’ mean and risk adjusted returns.

Carhart developed an extension of the Fama and French factor model (FF3) by incor-

porating momentum as an additional factor (FF4). With his FF4 model he shows that

persistence in fund performance alpha can not be seen in the data and that the turnover

of funds in the top quartile of return performance is roughly 80% each year. The only

significant persistence not explained by these common factors was with the worst per-

forming funds. Carhart’s conclusion was that “the results do not support the existence

of skilled or informed mutual fund portfolio managers.”

With a decomposition of returns across the categories of selectivity, timing, and style,

(Wermers 2000) showed that managers create approximately 1.3% per year from stock

selection, lose 0.7% due to non-stock holdings, and lose another 1.6% due to transac-

tion costs and expenses. The net loss is approximated at 1% per year for the industry

while at the same time supporting the claim that managers can add value through stock

selection.

In three important papers, researchers looked to differentiate skill from luck. The au-

thors of (Cuthbertson, Nitzsche, and O’Sullivan 2008), (Fama and French 2010) and
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(Barras, Scaillet, and Wermers 2010) identify managers in the categories of skilled, un-

skilled, and lucky. In general, the performance of the group of all managers have a per-

formance that is very similar to the total market. They acknowledge that since there are

other investors who are not in the funds, that overall it is not appropriate to conclude

that fund investing alpha is a zero-sum game. However, less than 1% of managers show

persistent performance that is distinguishable from luck.

In (Berk and Binsbergen 2015), the authors look at performance from a dollar perspec-

tive so that larger funds have more weight in the analysis of the question. In their anal-

ysis, the average fund generates $3.2 million per year of skill-based alpha which can

persist for as long as ten years. Measuring skill via dollars extracted is a way to neutral-

ize the effect of declining alpha on increasing assets under management. The authors

note that an important economic fundamental is that agents earn rents only if they have

a competitive advantage. However, as money managers are some of the most highly paid

professionals, this tenet seems to be violated as net of costs, this group of managers

shows no skill and any alpha created is extracted by high costs.

In a very different view on under-performance, the authors of (Glode 2011) cite the logic

of investing in under-performing funds. Asset pricing theory states that the return pre-

mium is not a function of variance but of covariance. So investing in funds that under-

perform in general are economically consistent if their covariance in negative states of

the world is lower. Mutual fund investing and negative expected fund performance can

simultaneously arise in a setting with skilled fund managers facing rational investors.

1.7.2 Maybe ‘Yes’

A minority of the literature documents some managers who outperform. The Active

Share authors in (Cremers and Petajisto 2009) and (Petajisto 2013) show persistent
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out-performance as the Active Share Measure increases, although this was thoroughly

challenged in the practitioner literature.

Managers who can out-perform apply a set of time varying skills as shown in (Kacper-

czyk, Nieuwerburgh, and Veldkamp 2014). Stock picking is evident in booms and market

timing is evident in recessions. Even more important is that the same managers that

show proof of stock selection skills also display market timing abilities. Unconditional

returns of these top quartile skilled managers is 0.50% to 0.80% per year better than

other funds. To emphasize this ability, the authors suggest a new measure that weights

stock picking skills during recessions and weights market timing skills during recessions

which are less common.

Using a bootstrap analysis of the joint distribution of performance measures (alphas)

across all funds to extract luck from skill, the authors of (Kosowski et al. 2006) find

that a sizable minority of managers really do pick stocks well enough to more than cover

their costs. Bootstrap analysis indicates that the superior alphas of these managers do

persist, but are highly concentrated in growth oriented funds.

1.7.3 Performance Inconclusive

At a high level, it is impossible to conclude from the literature that professional money

managers have been able to consistently apply their expertise to regularly add return to

the investment process. We do see various ways in which pockets of alpha are created by

some managers, but between the effects of high economic rents, and the inconsistency of

the performance, it seems nearly impossible for investors to have chosen how or where to

invest their money in actively managed strategies.

Could it be that professional managers are applying their resources less effectively than

possible? This thesis will quantify the relative effects of security selection and capital
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allocation methods which may create opportunity for managers to apply their resources

more effectively.

1.8 Mechanics

Research leading to a clear conclusion requires the application of a careful methodology

to clean data and analyzed using the most applicable statistics in a robust manner. This

is not a simple undertaking. As we see in the progression of techniques in the time series

of the literature, much has occurred in the last 50 years to allow for this type of analysis

to be completed. Today we are in a new age where massive computational power is

available to researchers for a tiny cost. This is allowing for old questions to be analyzed

in new ways, and this thesis will take advantage of these previous mechanical advances

and this new computational leap forward.

1.8.1 Data Availability & Quality

By mandate of the US Securities and Exchange Commission (SEC), the holdings and

returns for US Equity Mutual Funds has been the most widely available data source for

studying the effects of active management. The consistency of the data and the combi-

nation of data elements needed to perform empirical testing was not always present in

the form that now exists.

A breakthrough of collecting, cleaning, and correcting bias issues in the data was from

the work of (Carhart 1997) who brought together data from January 1962 to Decem-

ber 1993 using Micropal/Investment Company Data, Inc. (ICDI), FundScope Magazine,

United Babson Reports, Wiesenberger Investment Companies, and the Wall Street Jour-

nal. Survivorship bias is a major issue in the raw data as by 1993 about one third of

total funds in the database had ceased operations.
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An analysis of the quality of the data was completed more recently by (Elton, Gruber,

and Blake 2001) who found that the CRSP return data still retains upward biases and

that data from manager mergers are inaccurately recorded about half of the time. Dif-

ferences in returns between CRSP and Morningstar are a problem for older data and

smaller funds. While work to remove survivorship bias has been successful, errors of

omission are also significant and have the same effect. In the end, all data sets have

errors but it is important to recognize and correct for known systematic errors.

1.8.2 Methods

A wide array of analytical methods is seen across the literature. A sampling of the cate-

gories and approaches is represented here.

1.8.2.1 Portfolio Formation In (Chow et al. 2011) and similar approaches, portfo-

lios are formed independently using a disclosed set of rules. An example of this would

be selecting the 500 largest capitalization stocks and forming a portfolio for analysis.

This approach differs from simply using the standard S&P 500 which may have slightly

different constituents and weightings due to corporate actions, etc. but lends itself well

to reproducible research.

1.8.2.2 Rebalancing Some research uses single periods of rebalancing, such as an-

nual, for their analysis. Other approaches include (Maillard, Roncalli, and Teiletche

2008) who build their back-tests on a rolling sample approach and rebalanced each

month.

1.8.2.3 Data Sets & Metrics The very rigorous work of (DeMiguel, Garlappi, and

Uppal 2009) go beyond a range of formation and rebalancing methods by extending
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their work with multiple metrics and applications to an array of domestic and interna-

tional equities.

1.8.2.4 Parameter Estimation Where sample estimates are used as inputs for

optimization, the better analytical research pieces vary the parameters for calculation.

For example, in (Ledoit and Wolf 2004), the authors use a variety of input parameters

for testing their approach.

A full review of analytical methods is beyond the scope of this literature review. How-

ever, it is important to have a sense of the array of techniques and the tendency of the

most rigorous research to employ an array of these techniques.

1.9 Methods of Robustness

Research conclusions are based on observations of the data and the statistics calcu-

lated. The best quantitative methods are applied to glean insights which are reasonably

correct. This becomes difficult when the calculations can be accomplished in multiple

ways or the output of the calculations are too close to know for certain if a difference

is probable. Fortunately in the past 50 years, there have been researchers who focused

on improving the methods of robustness, and today the best research work incorporates

these new tools.

1.9.1 Construction Tools

Many approaches to portfolio construction rely on estimated parameters such as volatil-

ity and correlation measures. When these parameters are used within an optimization,

errors in the estimation are magnified in the optimization output. While there are sev-
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eral methods for smoothing these errors, the standard approach appears to be (Ledoit

and Wolf 2004) which introduces a shrinkage process for minimizing estimation errors.

This approach is now widely followed throughout the practice and is referenced often in

the literature.

Another interesting view into this issues is (DeMiguel and Nogales 2009) which was pub-

lished in the Journal of Operations Research. The authors cite the important work of

(Merton 1980) who had shown that the error introduced when estimating mean returns

is much smaller than the error from estimating the covariance matrix. To combat this

issue, (DeMiguel, Garlappi, and Uppal 2009) introduce robust estimators. The unique

contributions of this work was to show how to compute the portfolio policy that mini-

mizes a robust estimator of risk by solving for a single nonlinear program with a focus

on minimum variance. Previous research had only been able to show this solution in a

two step approach to the calculation.

1.9.2 Performance Verification

Performance measurement statistics (e.g. Sharpe, Treynor, or Calmar ratios) are typi-

cally point estimates made from a time series of returns. Comparing two point estimates

however is not conclusive. The statistic being analyzed is a sample estimate of the true

statistic and therefore it has a range of confidence. It may be that two investment man-

agers with different performance measures are statistically indistinguishable due to the

confidence bands needed around the sample statistic.

The work to understand this effect was originally published by (Jobson and Korkie

1981) where the authors looked at the Sharpe and Treynor ratios. They found that for

comparisons between just two managers, the Sharpe z − statistic is well behaved but if

multiple managers are compared, the χ2 statistic is more appropriate. Interestingly, they
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also found that the Treynor measure is not well behaved and is therefore unsatisfactory

for comparisons. While the work was thorough, corrections were made by (Memmel

2003).

In a further work, the authors of (Ledoit and Wolf 2008) pointed out that the previous

tests are not valid if the distributions have heavier tails than normal or are of a time-

series nature. In this frequent case, robust estimators can be constructed by forming a

studentized time series bootstrap confidence interval for the difference in Sharpe ratios.

If zero is not contained within this interval, than it can be declared that the two ratios

are different with a high degree of confidence. The method introduced by the authors is

used extensively in my research.

High quality research relies on high quality methods and calculations. Use of a robust

performance verification method is critical and will be implemented within this thesis.

1.10 Contribution to the Literature

Constructing an optimal portfolio for tomorrow and beyond is an impossible task with-

out perfect foresight or luck. Yet professional managers are persistently employed to

apply their expertise despite widespread evidence of under-performing even simple repre-

sentations of broad markets.

A survey of the existing literature reveals a great set of work on portfolio construction,

yet only a small set of literature exists which compares the relative effectiveness of secu-

rity selection and capital allocation within the portfolio formation process. Of the few

pieces, (Maillard, Roncalli, and Teiletche 2008) does examine whether superior returns

from systematic capital allocation can still exist when controlling for factors such as

the small cap bias. The authors do some introductory work in the relative importance

of these two decision steps. Beyond this, very little is found to answer my particular
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questions.

In a series of four papers, I examine the relationship between security selection and

capital allocation in new ways. While the nature of the problem does not lend itself

to deriving a closed form answer, looking at the issue from four different perspectives

allows for a deeper understanding and hopefully leads to more efficient allocation of

professional resources. By addressing this gap in the literature, it is hoped that my

work serves as a base for future research while creating improved portfolio efficiency for

investors in the future.
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Chapter 2

The Hierarchy of Sharpe Ratios



2 The Hierarchy of Sharpe Ratios: Observed vs. Significant

2.1 Introduction

The purpose of this thesis is to examine the interconnected nature of security selection

and capital allocation, describe the relationship, and then to explore the drivers of op-

timal Sharpe ratio portfolios. This chapter takes the first step toward untangling this

connection between selection and allocation. I start by holding security selection as

constant and robustly examining the benefits of systematic capital allocation. In works

cited in my literature review, such as (Clare, Motson, and Thomas 2013; Arnott et al.

2010; Martellini 2008) and others, there are purported benefits that systematic capital

allocation methods have over the market capitalization method. In subsequent chap-

ters, security selection is introduced as a variable which helps to further untangle the

relationship between the two stages of portfolio formation.

2.2 The Opportunity Sets: Security Selection vs. Capital Allocation

There are two stages of portfolio formation according to Markowitz. Each of these po-

tential opportunities to improve a portfolio are summarized in Figure 1 and Figure 2.

The opportunity set for security selection within the largest 1,000 stocks each year ap-

pears enticing as shown in Figure 1. On average, the yearly range of performance be-

tween the top and bottom quartile of stocks is nearly 40%. And while this varies over

time, the normal range is wide enough to consider each year a potential ‘stock picker’s

market’.

Selecting the best performing stocks and avoiding the worst performing stocks from this

wide range would seem like a rich source for harvesting alpha. In addition, we see that
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Figure 1: Annual Returns - Top 1,000 Largest Stocks

The top panel displays the 25th and 75th percentile returns for the 1,000 largest stocks by market cap-

italization in the data set each year. The bottom panel displays the inter-quartile range (top quartile -

bottom quartile) of returns each year.

the distribution of equity returns in any particular year is highly and positively skewed

as stocks can only drop by 100% while they can rise an unlimited amount. Picking win-

ners would seem to more easily offset picking losing stocks.

The opportunity set for portfolio diversification as shown in Figure 2 is more difficult to

discern as its benefit is non-linear. The data set shows that mean monthly return corre-

lation between stocks in the 1,000 largest capitalization opportunity set have remained

low and stable around 0.27 which provides a rich source for creating diversification ben-

efits to a portfolio. A few studies have also focused on the potential for stability in the

hierarchy of the correlation structure as an additional diversification benefit that can be

harvested.
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Figure 2: Mean Annual Correlation - Top 1,000 Largest Stocks

The figure above shows the mean correlation each year between the top 1,000 stocks as well as the mean

observation of all years with a 1 standard deviation band. The standard deviation band is calculated at

each year in the time series and is intended to show the tight range around the low mean correlation.

From a näıve perspective, security selection may appear to be an easier source of poten-

tial alpha as higher returns from the stocks selected will create higher returns for the

portfolio overall. However, good stock picks may be offset by bad stock picks and the

net effect of security selection alpha is easily neutralized. Returns each year and across

individual equities are inconsistent, but low and stable correlations in the cross section

of returns are a reliable method to create portfolios with lower volatility which manifests

in higher risk-adjusted returns (e.g. Sharpe ratio) across time.

However, while there is no known source of employment data disclosing the count of

equity analysts vs. portfolio managers, active equity managers appear to spend a dis-

proportionate share of effort on picking stocks. Typically with an active equity manager

there are multiple analysts for each portfolio manager.

The skills required to operate in each of these opportunity sets are disparate. The skills

of fundamental security analysis are quite different from the mathematical skills re-

quired to understand the complexities and embedded assumptions in various capital
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allocation methods.

A possible explanation for the dominant focus on security selection may be that the fa-

miliarity of the fundamental analysis process is carried over during the promotion from

analyst to portfolio manager. Another possible explanation is that the mathematics of

portfolio optimization methods are outside the familiar business school training of many

investment professionals.

When given responsibility for both security selection and capital allocation, portfolio

managers tend to rely on their ‘best ideas’ that have emanated from the security selec-

tion stage rather than harvesting from the rich source of diversification benefit which is

embedded in the capital allocation methods. Another explanation may be that ‘stock

stories’ are more easily understood. Explaining performance due to Apple vs. Lehman

Brothers is more comprehensible than an explanation related to an unanticipated shift

in the hierarchy of correlations.

Moving beyond a capitalization weighted allocation method to an alternative method

which emphasizes the benefit of diversification would seem to be a value added ap-

proach, but as we will show, selecting the optimal allocation method is not as clear as

picking a method with a higher ex-post mean Sharpe ratio. By applying a robust boot-

strap method to examine the differences in Sharpe ratios, the hierarchy of performance

improvement is less clear.

2.3 Selection vs. Allocation

But first, it is important to clarify the meaning of the terms ’security selection’ and

’capital allocation’.

These two terms refer to the two stages of portfolio formation as described by (Markowitz
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1952). Security selection is the process of beginning with a full set of available invest-

ment choices, and through some process narrowing this set down to a smaller subset for

potential inclusion in the portfolio. The reduction from the full set may be accomplished

in a variety or combination of methods. For example, it could be narrowed by charac-

teristics of the stocks such as capitalization size, country, industry or sector, or factor

exposure such as growth vs. value. The narrowing of the set may also occur by discre-

tionary method such as fundamental valuation techniques applied to company financial

statements or interviews with management. It could also be accomplished in a system-

atic method such as screening for trend/momentum or other quantitative characteristic.

And combinations of these methods are also available. An example of a combination is a

’quantamental’ manager who uses quantitative methods applied to fundamental charac-

teristics to systematically select stocks. The potential methods of security selection are

endless and are a reason why I later introduce a method to select securities as a limit

condition that bounds all of the potential methods contemplated here.

The second term is ’capital allocation’ which in certain parts of the world may be re-

ferred to as a ’weighting scheme’. The meaning of the term is the method by which

available capital is spread across the securities that were selected in the first stage of

portfolio formation. Again, there are numerous ways to accomplish this step. Purely

discretionary methods are sometimes called ’conviction weighting’ and are carried over

from the sense of certainty that arose during the security selection stage. Other methods

are systematic and include many of the methods studied in this thesis, such as equal

weight, minimum variance, etc.
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2.4 Capital Allocation Methods

2.4.1 Methods Available But Not Chosen

Two comprehensive reviews of the variety of allocation methods are (Chow et al. 2011)

and (Clare, Motson, and Thomas 2013). These studies document a wider variety of

allocation methods than are examined in this thesis. The additional methods listed

here were not selected for study simply because in the time that in the 10 years plus

that they have been documented, none of them have gained any substantial existence

in commercially available investment funds. While there are many potential reasons for

their lack of popularity, the practical nature of my questions led me to constrain the

panel of methods examined to those that have gained traction in practice.

The additional methods observed in the literature, but not selected for my panel, are:

• Risk Cluster Equal Weight - the basic equal weight method is subject to the stock

universe selected and may end up with an over allocation to a set of stocks that

is tightly clustered in risk space. This method attempts to overcome this issue by

clustering stocks based on their correlations and then equal weighting the clusters.

• QS Investors’ Diversification Based - this method moves a step further than the

previous method by first bucketing stocks into countries and sectors and then

equal weighting the buckets. While the simple equal weighted portfolio can show

significant changes in the risk and return characteristics of the resulting portfolio,

an advantage of this method is that it more closely matches the risk and return

characteristics of the starting capitalization weighted reference portfolio.

• Diversity Weighting - Alternative allocation methods can produce significant

tracking error against a cap weighted reference portfolio. The diversity weighting
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method solves for this through an interpolation method between the two allocation

methods with a focus on tracking error.

• Fundamental Weighting - there is a nearly limitless set of methods that can be

derived under this banner. But in general, fundamental weighting takes character-

istics of the underlying companies (such as sales, book value, etc.) and uses them

to systematically weight the securities. This approach can create a wide variety of

allocation methods depending on the set of fundamental characteristics used in the

blending approach.

• Mean Variance Optimization - this method, set in place by (Markowitz 1952), was

the foundation to portfolio formation. Before this method, there did not exist

much in the way of systematic allocation methods. The approach uses estimates

of return, volatility, and correlation to form an efficient frontier from which an in-

vestor could choose a most efficient portfolio. Researchers have pointed out several

inherent issues with the methodology which likely prevent it from being widely

used in practice today. From the array of concerns raised, there are two main is-

sues that rise to the top. First is that this optimization method maximizes the

errors of the estimates. Very small differences in any of the parameters can create

vastly different resulting portfolios. The second main issue is that portfolios found

along the frontier can be highly concentrated, with very few positions. These are

likely the reasons why this method is not widely observed in practice today. Even

for those who employ the method as a starting point, constraints on concentra-

tion limits are typically used and these are often binding and cause the resulting

frontier to be substantially below the unconstrained frontier.

• Maximum Sharpe Ratio version 1 (MSRv1) - this method attempts to improve

upon the minimum variance portfolio which does not incorporate expected returns.

For minimum variance to be the optimal portfolio, all stocks must have the same
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expected returns. As this is not likely, the MSRv1 incorporate an expected return

based on a static ratio of return per unit of volatility at the stock level. With this

additional assumption for the return input, the MSRv1 optimizes for Sharpe ratio.

• Maximum Sharpe Ratio version 2 (MSRv2) - this method follows the same reason-

ing as MSRv1 but rather than assume stock level returns are a static relationship

to the full distribution of volatility, the method ties expected return for each stock

to the level of downside volatility. Again, with a new assumption for expected

returns, this additional input is used to optimize for the maximum Sharpe ratio.

• Risk Efficient - this method is closely related to MSRv2. Stocks are clustered

into deciles based on downside volatility, and then the median downside volatility

of each decile is used to proxy for the expected returns in that decile. Once all

deciles are measured for median downside volatility and the stocks in the deciles

have proxied expected returns, then the portfolio is optimized to find the portfolio

with the highest expected return relative to the portfolio standard deviation. This

may still create a very concentrated portfolio of stocks and so the method imposes

further restrictions with regard to individual stock constituent weights.

• Random Weight - this method of weighting stocks is often seen in the literature

as a simple comparison against systematic methods. Random weighting can be

achieved in an unlimited number of ways and so does not lead to a method which

can be simply documented and applied. This makes the approach helpful for a

research based approach, but is not practical in application. Clearly there are no

commercially available products based on this method.

• Systematic/Random - an advance on the purely random methods, this set of meth-

ods begins with an assignment of values to the stocks which have no true mathe-

matical or sensible link. For example, Nick Motson describes a Scrabble weighting

scheme which assigns Scrabble scores to the letters in the tickers of the stocks.
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Then the scrabble score is summed for each stock and weights are assigned as the

proportion of the stock score to the total score of all available stocks. Other sys-

tematic/random methods could certainly be created. And while these methods

don’t contain an accessible set of fundamental logic, they are useful for checking

whether the benefits observed in any of the other methods are significantly dif-

ferent from a random approach. This gives these methods a value in helping to

verify what might be observed in more fundamentally logical approaches. Methods

in this category are never observed in practice and so have been excluded from

examination in my panel of allocation methods.

2.4.2 Capital Allocation Methods Chosen For Examination

While the literature describes a wide variety of systematic allocation methods, the panel

chosen for this study is a subset of methods that are commercially more available today.

The allocation methods examined in this thesis are: market capitalization (MC), equal

weight (EW), inverse volatility (IV), equal risk (ER), minimum variance (MV), and

maximum diversification (MD). In the existing literature, the MV and MD methods are

optimized using both 1% and 5% maximum position size limits. I have followed this

approach and the two variants of the approaches are denoted as MV1, MV5, MD1, and

MD5.

To conduct this analysis, it is necessary to rebuild much of the data and methods used

in previous literature. The methods and data used for this work are described fully

in Appendix 1. Each of these portfolios are formed annually using the 1,000 largest

capitalization US equities. A full explanation of the data and methods for constructing

these portfolios are described in the appendix of this thesis as well as a set of summary

statistical characteristics which is shown in Table 17 in Appendix 1.
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While there are documented improvements in Sharpe ratio from alternative allocation

methods, ‘not everything that glitters is gold’. As a starting point, the purpose of this

chapter is to more clearly define the hierarchy of Sharpe ratios across a panel of alloca-

tion methods and to examine their robustness.

Each of the selected allocation methods was tested across the full 50 year history (1968

- 2017), with the set of available stocks each year being the 1,000 largest market capi-

talization companies in the database. A summary of the results and characteristics is

displayed here in Table 1. Each of the performance and risk statistics summarized in the

table is explained in detail in Appendix 1 of this thesis.

2.4.3 Description of Capital Allocation Methods

It has been well documented in previous studies such as (Chow et al. 2011) and (Clare,

Motson, and Thomas 2013) that following any one of a range of alternative capital al-

location methods would have led to superior returns and/or return efficiency. In these

previous studies, the authors analyzed a wide range of methods and parameters. My

study begins by selecting a panel of established and practical allocation methods and fo-

cuses on documenting the drivers of Sharpe ratios. To maintain focus on the interaction

effect, a smaller set of allocation methods have been chosen which are more prevalent

commercially and have wider practical appeal.

For purposes of clarity, the term used in this paper is ‘capital allocation method’ which

has the same implied meaning as ‘weighting scheme’ which is a more common term in

some parts of the world. In either form, this step in the portfolio formation process is

concerned with spreading the available money across the securities which have been

selected for the portfolio.
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2.4.3.1 Market Capitalization Market capitalization weighting is the most com-

monly available form of allocation method for investing passively and this is seen in

the major market indices such as the S&P 500. While this allocation method is shown

historically to have returns which are inferior to other allocation methods, it is highly

efficient in a practical manner. As market capitalization of each security changes due to

price movements each day, the weights change in unison requiring no trading turnover

until the index is reformed.

The CRSP database provides share price and the number of shares outstanding each

month. These two elements are multiplied together to create the market capitalization

for each stock each period.

For consistency across the panel of allocation methods, I form a market capitalization

weighted portfolio from the 1,000 largest securities available each year rather than use a

market provided index which would have slightly different securities than would be used

in my other allocation methods. This is an approach that is observed in the literature.

The weighting for each stock (wi) is found by dividing the individual stock’s market

capitalization by the sum of all stock’s market capitalization on the date of index forma-

tion.

wi =
MktCapi
N∑
i=1

MktCapi

(1)

The weights for the index are calculated using data from the last day of each year and

the index is reformed and held without rebalance for the following year until the process

is repeated. While this is not necessarily the exact selection and rebalance method that

commercially available indices such as the Russell 1,000 implement, it is a method that

can be applied consistently across a panel of allocation methods for this study and is
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consistent with methods employed in existing literature.

2.4.3.2 Equal Weight In a well documented study, (DeMiguel, Garlappi, and Up-

pal 2009) show the benefits and simplicity of an equal weight allocation methodology.

By following an equally weighted method, there are no parameters to estimate, and the

weight calculation is trivial as it is simply the inverse of the number of stocks selected

for inclusion in the index.

wi =
1

N
(2)

In addition to describing the simplicity and robustness of the equal weighted method,

the authors show the period of historical data that would be required in order to accu-

rately estimate parameters for other methods in order to outperform the simple equal

weighted approach. A sample mean variance optimization based portfolio with 50 assets

would require 6,000 monthly observations in order to accurately estimate the covariance

matrix and outperform the simple equal weighted method.

One note of caution is provided by (Chow et al. 2011). The authors state that “A no-

table feature of equal weighting is that the resulting portfolio risk-return characteristics

are highly sensitive to the number of included stocks. Although the S&P 500 Index and

the Russell 1,000 Index have nearly identical risk-return characteristics over time, the

equal-weighted S&P 500 portfolios and the equal-weighted Russell 1,000 portfolios have

dramatically different risk-return characteristics.”

2.4.3.3 Inverse Volatility The inverse volatility allocation method attempts to

distribute risk more equally across the set of available stocks while estimating a single

parameter, volatility. As a result, one measure of diversification (effective number of
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stocks) is increased dramatically over the market capitalization method.

The method also attempts to capture a documented low-volatility anomaly whereby

stocks with lower volatility have been shown to have higher risk adjusted returns. Build-

ing on their previous work from 1972, (Baker and Haugen 2012) show in a simple and

transparent way that this anomaly has presented itself across long periods of time (US

1926 - 1990) and across the world (33 global stock markets during 1990 - 2011).

To create the weights for each stock in my study, the standard deviation of each stock

(σi) is estimated using the previous 5 years of monthly returns. By using the inverse of

this measure ( 1
σi

), this allocation method shifts weight from stocks with higher volatility

to stocks with lower volatility. The weight for each stock then is given by:

wi =
1
σi

N∑
i=1

(
1
σi

) (3)

The inverse volatility method combines increased diversification with harvesting the

low-risk anomaly. While the method uses a single estimated parameter (standard devia-

tion), the assumption under which this method would produce the optimal risk adjusted

portfolio is that correlations are uniform across all securities.

2.4.3.4 Equal Risk Contribution When the uniform correlations assumptions

required for optimality of the inverse volatility method are not realized, then groups

of highly correlated stocks receive larger allocations of risk. By including correlations

between stocks into the allocation process, the equal risk contribution method accounts

for the non-uniform correlation structure.

Estimating a second parameter introduces additional risks to the calculation. Calcu-

67



lating the weights which provide an equal contribution to risk from each stock does

not have a closed form solution and must be solved using optimization. Optimization

methods tend to amplify estimation errors, and this method now encounters estimation

problems, especially as the covariance matrix is highly dimensional with up to 1,000

stocks.

To minimize the effect of these estimation errors, the analysis employs the shrinkage

method described in (Ledoit and Wolf 2004) which condenses the outlier observations to-

ward the central values in a systematic way and reduces the amplification of errors pro-

duced by the optimizer. The calculations are performed in Python using sklearn.covariance.LedoitWolf.2

Use of this shrinkage method is extended for all allocations in my research that require a

covariance matrix.

All of the allocation methods examined in this study require long only positions (wi ≥ 0)

with a constraint to be fully invested

(∑N
i=1wi = 1

)
. To solve for the weights which

produce an equal contribution to risk of each stock we follow the method described by

(Maillard, Roncalli, and Teiletche 2008) and first define the minimization function.

Let w be the vector of weights and let Σ be the covariance matrix. Then the volatility

of the portfolio is defined as:

σ(w) =
√
w′Σw (4)

The risk contribution of each asset within the portfolio is given as:

σi(w) = wi × ∂wiσ(w) (5)

2https://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
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From this is constructed the vector of marginal contributions (∂wiσ(w)) as:

c(w) =
Σw√
w′Σw

(6)

The solution for the weights is given by the optimization:

argmin
w

N∑
i=1

[√
w′Σw

N
− wi · c(w)i

]2
(7)

The minimization routine for this analysis was constructed with the Python ‘SciPy’

package using the sequential least squares programming (SLSQP) method.3

2.4.3.5 Minimum Variance In a traditional mean-variance optimization approach,

three parameter estimates are required: returns, volatilities, and correlations. Returns

are the most difficult to forecast and errors in the estimated returns create large errors

in an optimization output even when using a covariance shrinkage model. If it can be

assumed that all stock returns are the same, then the optimal solution can be found by

estimating just the volatility and correlation (as in the equal risk method) and solving

for the weights that minimize the risk of the portfolio.

Depending on the parameter estimates, this allocation method may create a very con-

centrated set of weights. To prevent this possibility of concentration, my analysis follows

the method of previous academic studies in limiting the maximum position size to 1%.

For comparison purposes relative to the maximum diversification approach, I also in-

clude maximum position sizes at 5%. As above, this analysis requires long only positions

(wi ≥ 0) and constrained to be fully invested (

N∑
i=1

wi = 1).

To solve for the weights which produce a minimum variance portfolio, the minimization

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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function is defined so that w is the vector of weights and Σ is the covariance matrix.

The optimal weights are found by:

min
w

(w′Σw) subject to


N∑
i=1

wi = 1

0 ≤ wi ≤ max%

(8)

2.4.3.6 Maximum Diversification Assuming that all stocks have the same return

is unlikely to be true. (Choueifaty and Coignard 2008) propose an optimization method

to maximize the diversification of a portfolio by instead assuming that returns are pro-

portional to the risks of each stock. With Rf being the risk free rate, and the expected

return given by E(Ri), this relationship is given by:

E(Ri)−Rf = γσi (9)

where γ > 0 is the proportion of return per unit of risk.

The second major contribution of (Choueifaty and Coignard 2008) is the quantifiable

measure of diversification known as the Diversification Ratio (DR).

DR =

N∑
i=1

wiσi

σp
(10)

DR is the ratio of the weighted sum of the individual stock volatilities (
∑N

i=1wiσi) to

the fully correlated and weighted sum of volatilities given by the portfolio volatility (σp).
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Solving for the vector of weights that maximizes the diversification ratio is given by:

max
w

(
w′σ√
w′Σw

)
subject to


N∑
i=1

wi = 1

0 ≤ wi ≤ max%

(11)

For comparison purposes relative to the minimum variance approach, I use maximum

position sizes of 1% and 5%. As can be seen in Table 17, even at these lower position

size limits, the approach can lead to a small selection of securities for the portfolio.

The original work of (Choueifaty and Coignard 2008) was based on stocks in the S&P500

index from 1990 to 2008 and used 250 days of data to construct the parameter estimates

required for the covariance matrix. Position limits were set at 10% but were additionally

limited to month end weights which complied with UCITS III4 rules. This restriction

included a maximum limit of 40% on the sum of individual stock weights which exceed

5%. Even with these additional restrictions, setting position limits at this level often

leads to very concentrated portfolios.

My simplified yet comparable approach (which does not include the UCITS restrictions)

is calculated across the time frame of 1968 to 2017, from a universe of 1,000 stocks.

This method on average carried an effective number of stocks of just 24. Using this

method but with 10% position limits, I observe that although the methodology max-

imizes the ex-ante DR, the ex-post DR is only slightly above that of the market cap

weighted method and on average below all of the other methods examined in this study.

I do not include the 10% max position size version in my analysis but do note the effects

of a high concentration risk as will be shown in my research when combining the steps

of capital allocation with perfect stock selection.

4https://www.esma.europa.eu/databases-library/interactive-single-rulebook/ucits
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2.5 Properties of the Returns

The wide array of data presented in Table 1 gives an opportunity to describe some of

the notable differences observed in the characteristics of the statistics. Each of the allo-

cation methods can be compared against the base method of market capitalization and

against the other alternative capital allocation methods.

2.5.1 Returns:

The metric of return is a measurement of the payment that investors earn over a period

of time, presumably for the assumption of some risk. Any estimate of this metric will

be imperfect due to issues such as auto-correlation, mean reversion at long horizons,

etc. In addition, observations of stock returns over various horizons depict a distribu-

tion which is not normal. Therefore the calculation of an unbiased estimate of return is

problematic.

In an early paper, (Blume 1974) documented the biases that exist with both arithmetic

and geometric returns. In general, arithmetic returns are biased to the upside while

geometric returns are biased to the downside. The author developed four unbiased es-

timators of return and showed their efficiency. In a subsequent paper, (Jacquier, Kane,

and Marcus 2003) showed that the unbiased estimate is a weighted average between

arithmetic and geometric returns. For short periods, arithmetic is heavily weighted and

as the horizon return begins to approach the estimation period data, geometric is most

heavily weighted.

Advanced methods for correcting for these biases and designing an efficient estimator

was proposed by (Jacquier 2005).

An arithmetic return estimate is constructed as the simple mean of the observed single
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Table 1: Summary statistics for various capital allocation methods, 1968 - 2017

MC EW IV ER MV1% MV5% MD1% MD5%

Geom Ret % 10.2 11.7 12.2 12.0 11.6 11.2 11.4 10.9

Arith Ret % 11.4 13.3 13.5 13.3 12.4 11.9 12.4 12.0

Skewness -0.39 -0.35 -0.33 -0.38 -0.40 -0.66 -0.60 -0.65

Excess Kurtosis 1.77 2.16 2.46 2.54 3.63 2.72 2.44 2.47

Ann Vol % 15.1 17.0 15.5 15.2 11.9 11.3 13.8 14.3

Down Vol % 9.6 10.7 9.6 9.4 7.3 7.0 8.8 9.3

Track Error % 5.4 4.9 4.8 7.2 8.0 6.3 7.6

Max DD % -50.5 -52.2 -49.5 -48.9 -38.6 -36.8 -42.7 -45.5

DaR 5% -33.7 -27.6 -26.2 -25.5 -19.9 -19.1 -21.5 -22.3

CDaR 5% -45.1 -42.9 -44.0 -43.5 -35.1 -33.7 -34.8 -37.7

Sharpe Ratio 0.44 0.50 0.56 0.56 0.64 0.63 0.55 0.50

Modified Sharpe 0.17 0.19 0.21 0.20 0.22 0.21 0.20 0.18

Sortino Ratio 0.70 0.80 0.92 0.91 1.06 1.03 0.88 0.79

Info Ratio 1.88 2.06 2.1 1.4 1.3 1.6 1.3

Ret / DaR 0.32 0.45 0.48 0.49 0.59 0.59 0.55 0.51

Effect # Stocks 138 1,000 877 831 113 52 113 44

Divers Ratio 2.04 2.16 2.13 2.21 2.33 2.35 2.65 2.80

Avg Turnover % 8.8 13.0 12.5 13.9 36.8 43.2 40.3 47.0

Active Share 47.1 49.2 52.1 84.8 90.1 88.0 93.6

MC: ’Market Capitalization’ holds all 1,000 stocks and weights the holdings annually based on the relative
market capitalization of each stock to the total market capitalization of all stocks on that date. EW:
’Equal Weight’ holds all 1,000 stocks and weights each stock equally. IV: ’Inverse Volatility’ gives more
weight to stocks with lower volatility and less weight to stocks with higher volatility as measured monthly
over the previous five year. ER: ’Equal Risk’ holds all 1,000 stocks, weights solved by optimization
method whereby the marginal contribution of each stock to total portfolio risk is equalized. MV1%/5%:
’Minimum Variance’ holds a subset of the available stocks where weighting is based on an optimization
which finds the portfolio with the minimum total variance, subject to maximum position sizes of 1% or
5%. MD1%/5%: ’Maximum Diversification’ holds a subset of stocks each year with weights based on an
optimization which maximizes the ex-ante diversification ratio (DR) of the portfolio using volatility and
correlation data monthly from the previous five years. Position sizes are limited to 1%, 5%. Statistical
calculations contained in this table are explained in the appendix of this chapter.

period returns. Geometric returns are calculated as the single period return that would

allow an investor to earn the total compounded return observed over the sample period.

For the analysis in this dissertation, both metrics are calculated and any biases that
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would appear from using these estimates for forecasting future returns are inherent

symmetrically across each of the allocation methods. With a more thorough basis for

understanding return estimates, the focus now turns to a comparative look across the

return statistics of each allocation method.

In general we see that both geometric and arithmetic returns for the market capital-

ization approach are the lowest while those of inverse volatility and equal risk are the

highest. All alternative allocation methods outperform the market capitalization ap-

proach for both geometric and arithmetic return measures for the 50 years of this study.

For the purpose of this research I focus on the arithmetic returns rather than geometric

returns. Each has particular merits and restrictions.

2.5.2 Return Distribution Normality:

Distributions with negative skew have more observations in the left tails than would be

implied by the normal distribution. This is a bad characteristic for investors and should

require a higher return premium as compensation for this risk. Skewness for the market

capitalization and the three allocation methods (EW, IV, ER) that contain all 1,000

stocks are relatively well behaved. But for the minimum variance and the maximum

diversification approaches, negative skewness is more pronounced with the worst obser-

vations being at the 5% maximum position size for each of these optimization methods.

Kurtosis measures the weight in both tails together. A normal distribution has a kur-

tosis of 3. This analysis shows excess kurtosis or the amount in excess of a normal dis-

tribution. The market capitalization approach has the lowest observed excess kurtosis

at 1.77. By contrast, the minimum variance methods shows the highest levels of excess

kurtosis.

The combination of excess kurtosis and negative skew are especially bad and would nat-

74



urally be expected to warrant a higher return premium as compensation. The worst

combinations of excess kurtosis and skew are observed in the minimum variance meth-

ods. While the additional premium required for this combination is not seen simply in

the returns of these approaches, they do show the highest ratios of reward vs. risk such

as Sharpe, Sortino, and Return/DaR which is consistent with this expectations. The

Modified Sharpe ratio (explained below) accounts for these elements of non-normality in

the distributions of returns.

2.5.3 Volatility:

The volatility for the market cap weighted portfolio sits in the middle of all of the other

approaches. Equal weight has the highest volatility which may be due to the size bias

that would naturally exist in a method which spreads the allocation weights equally rela-

tive to an approach which is highly concentrated in the largest capitalization names. As

would be expected, the minimum variance approaches show the lowest realized volatility

but this is clearly a function of the metric that is optimized during the construction of

the portfolio.

2.5.4 Drawdown:

The are three metrics to examine in this area. All values are calculated on a monthly

basis and indicate the loss from a previous peak in value.

Maximum drawdown is the single largest loss event experienced over the entire his-

tory. While most of the other allocation methods show improvements in this area, the

equal weight method has larger losses during the worst single event. The greater size of

drawdowns seen in the market cap method are likely functions of the effective concen-

tration of these portfolios into a very few stocks. The large drawdowns from the equal
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weight method may be explained by the increased exposure to smaller cap securities.

Drawdown at Risk (DaR 5%) examines the distribution of all drawdown events and

denotes the size of the 5% worst event. It is important to note that each complete event

(peak to trough to peak) is treated as a single observation for the distribution. Once

we move beyond examining just the single largest drawdown event, the DaR 5% tells a

different story. Every other allocation method has better metrics with improvements in

the range of 6.1% to 14.6% better than MC. During a relatively normal sized drawdown

event, any method other than the market capitalization allocation method performed

better across this time frame.

The final metric is the Conditional Drawdown at Risk (CDaR 5%) which examines

the average size of the drawdown which is in excess of the DaR 5%. CDaR 5% calcu-

lates the mean loss that occurs when the loss is within the left tail. Maximum draw-

down is the single worst observation in the distribution and it will have a direct impact

on the CDaR calculation. It is interesting to note that despite the equal weight method

having larger absolute maximum drawdowns, the market capitalization method still

exhibits the highest CDaR 5%.

2.5.5 Reward vs. Risk:

For both the Sharpe ratio and Sortino ratio, the market capitalization method shows

the lowest mean statistics. As noted above, the minimum variance (1% max position &

5% max position) methods appear to be clear winners for nominal risk adjusted returns,

but this will be challenged with robustness testing. These higher risk adjusted returns

may be the required compensation for the combination of negative skew and excess

kurtosis that these strategies exhibit as the Modified Sharpe Ratio (below) for each

of these methods are in line with the other allocation methods. All other allocation
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methods appear to outperform the market capitalization method, but this will be tested.

The Sharpe Ratio was originally proposed by (Sharpe 1966) as the reward to variabil-

ity ratio. In it’s original form, the equation given was:

R/V =
Ai − p
Vi

(12)

with Ai being the return of the investment, p being the risk free rate, and Vi being the

standard deviation of the returns on investment i. Ai was described by Sharpe as the

‘average annual rate of return’. Unfortunately, there is no single statistical measure

known as ‘average’ and so I default to the most simple approach which is the arithmetic

average of returns. Practitioners sometimes use geometric averages.

The Sharpe ratio is a common measure of risk adjusted returns, however as the denom-

inator is simply the standard deviation of the return series, it suffers from being indis-

criminate relative to distributions with high levels of skew and excess kurtosis which are

generally disliked by investors.

The Modified Sharpe was originally suggested by (Favre and Galeano 2002) and then

by (Gregoriou and Gueyie 2009). The Modified Sharpe ratio replaces the denominator

of the original Sharpe ratio (standard deviation of returns) with a modified Value at

Risk (mVaR) calculation which accounts for the extreme observations more fully by

incorporating skew and excess kurtosis. With a standard parametric VaR measure, a

z-score is used as a scalar on the standard deviation of the observations. The mVaR

calculation uses a Cornish Fisher expansion to adjust the z-score for the non-normality

of the distribution before scaling the standard deviation observation.

The mVaR ratios are not directly comparable to standard Sharpe ratios. They are how-

ever more comparable to each other as each has been properly adjusted for the first four
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moments of their distributions.

A case in point can be made by looking at the ratios for the IV and ER allocation meth-

ods. Standard Sharpe ratios are both 0.52 while the modified Sharpe ratios are differ-

ent. As ER has slightly more negative skew and a higher excess kurtosis, the modified

Sharpe is slightly lower with 0.21 (IV) and 0.20 (ER). In cases where distributions have

extreme third and fourth moments, the modified Sharpe is key to adjusting these ratios

and leveling the comparisons for risk adjusted returns.

The Information Ratio is highest with the inverse volatility and equal risk contribu-

tion methods which is a function of the low tracking error that these method exhibit.

As tracking error is the denominator of the information ratio, the methods with the

highest tracking errors (minimum variance and maximum diversification) have the low-

est information ratios. These two methods have the largest differences in construction as

will be shown with Active Share and while there are risk adjusted performance advan-

tages to straying from the benchmark, the excess tracking risk and information ratios

are negatively impacted by these approaches.

2.5.6 Diversification:

There are several ways to consider diversification. The most simplistic approach is sim-

ply the number of stocks in the portfolio. The market capitalization, equal weight, in-

verse volatility, and equal risk methods the portfolios hold all 1,000 stocks that are avail-

able on each date. The minimum variance and maximum diversification portfolios hold

a smaller subset of stocks due to the optimization routine preferring some stocks to

carry zero weight.

Another measure of diversification to consider is the Effective Number of Stocks

which is a function of the allocation weights. This metric is calculated as the inverse of
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the Herfindahl-Hirschmann Index (HHI)5 which is a measure of concentration.

HHI =

N∑
i=1

w2
i (13)

The inverse of the HHI is the Effective Number of Stocks. Large weights to a few stocks

will make this ratio smaller while low weights to many stocks will make this ratio larger.

Despite holding 1,000 stocks, the market capitalization method is only effectively influ-

enced by 138 stocks. This is in stark contrast to the equal weight method which holds

the same exact stocks but in equal proportion so that the effective number of stocks

held is exactly 1,000. Similarly, the inverse volatility and the equal risk portfolios have

very high effective number of stocks and would appear to be more diversified than the

market capitalization method, even though they all own the same set of stocks each

year. With a smaller set of stocks held and relatively large concentration weights, the

minimum variance and maximum diversification methods display a metric for effective

number of stocks that is less than the market capitalization method.

A third method to consider is the Diversification Ratio which is a function of weights,

volatilities, and the correlations between securities. While the maximum diversifica-

tion method seeks to maximize this ratio ex-ante, the ratio presented in Table 17 on

page 237 is the ex-post result. Again we see the market capitalization method being the

least diversified and all other allocation methods are superior in this ratio. As noted

previously but not included in our analysis, while the maximum diversification (10%

max position) is the least constrained version which attempts to maximize this ratio,

it barely shows any difference relative to the most concentrated method which is the

market capitalization. There appears to be a wide spread between the optimization of

5https://corporatefinanceinstitute.com/resources/knowledge/finance/

herfindahl-hirschman-index-hhi/
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this ratio ex-ante and the ex-post resulting DR when position sizes are allowed to range

quite high.

2.6 Turnover:

The market capitalization method has the lowest turnover at 8.8% per year on average.

This is unsurprising as the weights of stocks in the portfolio float with changes in value

and are only influenced by names being added or deleted from the universe once per

year. The second lowest set of turnover is seen with the three methods that hold the

same set of 1,000 stocks but have their weights changed independently from the value

of the stocks. These are the equal weight, inverse volatility, and equal risk contribution

methods. Finally, the minimum variance and maximum diversification methods change

the subset of stocks held and solve for a new set of weights each period which drives

their average annual turnover much higher than the other methods.

A final metric shown was put forth by (Cremers and Petajisto 2009). Active Share

(AS) uses the current holdings to measure the ’active bets’ that a manager is making

relative to the benchmark. The authors explain the measure as 100 minus the overlap-

ping position weights. AS can increase as stocks are either included or excluded and as

the weights of stocks vary relative to their weights in the benchmark.

“Active management” tends to refer to managers who engage in security selection. How-

ever, according to ranges of AS set by the authors, all of the alternative allocation meth-

ods in this study show AS scores in the range of active management even though none

of them are engaging in intentional stock selection. Equal weight, inverse volatility, and

equal risk contribution hold all of the same stocks as the benchmark but only vary their

weights. Minimum variance and maximum diversification hold a subset of stocks and so

the higher AS measure are a function of both of these variables. Minimum variance and
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maximum diversification methods show AS scores in the range of 85-95.

2.6.1 Turnover and Transactions Costs

While all of the capital allocation methods chosen for my panel have higher returns,

they also have higher turnover ratios. This means that in order to maintain the alloca-

tion method, there is more trading each year in all of these methods than there is in the

market capitalization method. Increased trading may indicate higher costs and thereby

lower returns. Adjusting these return streams for potential costs would seem to be a

logical way to try to compare strategies on a more even basis.

The market capitalization method still has some turnover. Each year, some stocks de-

crease in value while others increase. Some firms merge together or there are spin-offs

that change the composition. All of these events have cause an annual one-way turnover

in the market capitalization method of 8.8% per year. In order to make an adjustment

for trading costs, the comparison should only use the additional turnover of the alterna-

tive strategies above the reference method, market capitalization weighting. The other

allocation methods range from a low of 12.5% (IV) to a high of 47% (MD5%).

It seems logical that more trading would diminish the realized returns of these strategies

over time. But adjusting the returns downward for assumed transactions costs is fraught

with potential errors which are described below.

• Market Structure - over the 50 year period in examination, the market structure

has greatly changed. Dealers have entered and left the market, hedge funds and

high speed traders have become larger players, and retail trading has increased

dramatically. Also, market regulation has changed for each of these participants.

As a market is just a collection of traders, this shifting market structure has had a
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meaningful change on the liquidity and costs for all market participants.

• Commission Rates - the explicit costs of trading have fallen dramatically over the

last 50 years. In addition, the commission rates paid by traders of various size can

vary greatly. Large traders pay very small explicit commissions, while small retail

traders have paid much higher prices in the past.

• Bid/Ask Spreads - crossing the bid/ask spread is an implied cost of trading. As

the market structure has changed over the past 50 years, the bid/ask spreads in

stocks has generally decreased. In addition, the spread is not the same for all

securities and can even change for a single security across time. Making a single

assumption for all stocks across the full 50 year time frame would create potential

errors in the return assumptions.

• Trade Size - trading very small or very large order sizes can have an impact on

the total cost of the trade. The size of the trade and sophistication of the trader

can allow the order to access additional liquidity in dark pools or find off market

liquidity with dealers through a ’Request for Quote’ (RFQ) process.

• Constellation of Liquidity - it is not just the market in the single common stock

that impacts the total cost of the trade. The full constellation of liquidity must

be considered which includes stocks with high correlations, listed options markets

in the common stock, capital structure trades vs. corporate bonds in the same

issuer, and futures markets. All of these factors contribute to the total liquidity

of a stock and each of these factors is constantly in flux which makes assumptions

about liquidity and total cost of trade very difficult to estimate.

• Timing - the speed at which the trade must occur can also impact the total cost of

trading. If a trade must happen instantaneously the cost naturally rises. However,

if a trade can be filtered into the market over several minutes, hours, or days, then

the total cost can be expected to decline.
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• Frequency - high speed algorithms available today make the management of a

trade order very specialized. The ability to slice orders into tiny pieces within the

depth of the top of the market book can help to decrease the overall cost. Also,

the ability to float the order on the bid or offer side without crossing the spread

helps to provide liquidity to the market and can actually make the net cost of the

trade negative. Intelligent trade order management can create small profits which

implies that the strategies with higher turnover could actually be sources of profit

for the strategies rather than the initial expectations of decreasing returns.

With all of these potential factors impacting the total cost of trading, it is easy to see

that a single set of assumptions for each of these items across the full 50 years would

be impossible. Adjusting returns downward for trading costs is not a feasible way to

approach this problem.

The standard approach within the literature is to look at the problem from the other

side and extract the net costs of the additional trading that would be required in order

to make the two strategy returns equal. Then this total cost can be considered whether

it appears reasonable or not. This general approach has been used in many papers in-

cluding (Clare, Motson, and Thomas 2013).

In the table above, the per trade marginal cost is computed which would make the al-

ternative allocation method returns equal to the market capitalization method. The

top section of the table shows the annualized returns of each strategy, and the marginal

returns of the panel of allocation methods relative to the market capitalization method.

The second section displays the annualized turnover of each strategy, and the marginal

turnover of the panel of allocation methods relative to the market capitalization method.
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Table 2: Marginal Trading Cost Analysis

MC EW IV ER MV1 MV5 MD1 MD5

Return % 10.2 11.7 12.2 12.0 11.6 11.2 11.4 10.9

Marginal Return % 1.5 2.0 1.8 1.4 1.0 1.2 0.7

Turnover % 8.8 13.0 12.5 13.9 36.8 43.2 40.3 47.0%

Marginal Turnover % 4.2 3.7 5.1 28.0 34.4 31.5 38.2

Implied Cost % 35.7 54.1 35.3 5.0 2.9 3.8 1.8

The table above shows the computed total cost of trading required in order to reduce the annualized returns
of the panel of allocation methods downward to equal the returns of the market capitalization method.
The method of computing the implied costs is to divide the marginal return percentage by the marginal
turnover percentage.

The implied costs percentage is then computed as:

Implied Cost% =
Marginal Return%

Marginal Turnover %

The first three strategies in the panel (EW, IV, ER) all have the highest marginal re-

turns and the lowest marginal turnover. This gives implied costs of 35.3% to 54.1%.

Clearly these costs of trading appear far in excess of the expected costs for large capi-

talization US stock trading. However, the MV and MD strategies have higher marginal

turnover and lower marginal annual returns. This has the effect of decreasing the im-

plied costs into the single digit percentage levels. These range from a low of 1.8% to a

high of 5.0%. While it is impossible to know the liquidity of the exact stocks traded on

the dates traded, an unskilled trader may begin to encounter actual costs that approach

these levels.

My analysis of transactions costs is inline with the observations from existing literature,

which is validation of the methods that I have used to create these portfolios. And while

this style of analysis can call into question the ability to achieve the returns of some of
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these strategies, this argument has been made in other literature and is not the focus of

my questions and analysis.

Acknowledgement of increased turnover and potential transactions costs is important to

preserve the practical nature of this thesis. However, the focus of my research is in two

parts. First, I show how the ability to choose stocks well or poorly impacts these various

allocation methods. Second, I show how selecting stocks based upon returns has less

impact than selecting stocks based on correlations. The relationships that I will show in

the research are preserved in the presence of transactions cost differences.

2.6.2 Factor Exposures

2.6.2.1 Fama-French 3 Factor Model (FF3): This asset pricing model, devel-

oped by (Fama and French 1992), extends the original single factor capital asset pric-

ing model (CAPM) by including exposure sensitivity to firm size and valuation ratios.

These additional factors have been shown to provide greater explanation for individual

equity returns and help to increase the R2 of the regression.

Exposures (betas) for the monthly returns of each portfolio allocation method are shown

in Table 18 relative to the factors of market, size, and value as provided by Kenneth

French6. Calculations are based on a multiple regression analysis and calculated in

Python using the Statsmodels7 package which is documented by (Seabold and Perktold

2010).

It is important to note that although I have constructed a market capitalization weighted

portfolio as the benchmark for our analysis, our methodology differs slightly from that

used for the creation of the factor returns. Stock inclusion may be slightly different, and

6https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
7https://www.statsmodels.org/stable/index.html
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Table 3: Fama-French Three Factor Model, 1968 - 2017

MC EW IV ER MV1 MV5 MD1 MD5

Intercept 0.00% -0.02% 0.00% 0.00% 0.12% 0.12% 0.07% 0.04%

t-stat -0.07 -0.47 0.67 0.85 1.94 1.78 1.12 0.54

Market 0.99 1.04 0.96 0.94 0.71 0.65 0.81 0.79

t-stat 216.87 102.22 90.40 91.57 48.81 41.54 55.88 43.67

SMB -0.12 0.27 0.17 0.17 0.04 0.05 0.18 0.22

t-stat -17.94 18.75 10.93 11.60 1.88 2.15 8.47 8.36

HML 0.06 0.27 0.33 0.30 0.27 0.25 0.21 0.20

t-stat 8.16 17.62 20.05 18.90 12.19 10.60 9.69 7.36

R2 0.99 0.96 0.94 0.94 0.81 0.76 0.86 0.80

Monthly excess returns above the risk free rate for each allocation method are regressed against the
following set of standard factors as collected from: http://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/index.html. The website contains full information on the formation of the factor return sets.
Market: excess return above the 1 month US Treasury Bill of the value weighted return of all CRSP firms
incorporated in the US and listed on NYSE, AMEX, or NASDAQ exchanges with a share code of 10 or
11. SMB: Small Minus Big - the average return on the three small portfolios minus the return of the
three big portfolios. HML: High Minus Low - the average return on the two value portfolios minus the
average return on the two growth portfolios. Capital allocation methods: MC - market capitalization, EW -
equal weight, IV - inverse volatility, ER - equal risk, MV1 - minimum variance 1% max position size, MV5
-minimum variance 5% max position size, MD1 - maximum diversification 1% max position size, MD5 -
maximum diversification 5% max position size

we rebalance annually while the factor return portfolios are rebalanced quarterly.

• Intercept: The intercept in the equation is the additional performance not ex-

plained by the combination of factor exposures solved in the multiple regression.

Using a factor lens, the intercept is the unexplained performance alpha (α). Given

the performance improvements that are seen in the gross return numbers for the

alternative allocation methods, the difference in the intercepts relative to our ver-

sion of the market cap portfolio are quite small as most of the performance is

explained by combining market returns with a few additional factors.
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The t-statistic is shown for each value of the intercept. Our null hypothesis is that

the true alpha of any of these allocation methods is zero. Using a two tailed test

at the 95% confidence level, this would make the critical value equal to 1.96 which

would cause us to reject the alphas for all of the methods although the alpha for

MV1 is very close to being significant.

Minimum variance portfolios are in several characteristic ways the most different

than other allocation methods and have the largest intercepts although we have to

reject these values at the 95% confidence level and assume that they are possibly

zero.

• Market: The market exposure factor is the excess return of a value weighted

portfolio of stocks above the risk free rate. For the three methods which hold all

1,000 stocks, the market exposure is quite high and very near that of the market

capitalization method in our panel. As minimum variance and maximum diversi-

fication hold fewer stocks and have dramatically different weightings, the portion

of returns attributable to the overall market are significantly lower. All of the

t-statistics are significant for the market coefficients.

• Size (SMB): The size factor captures the return of small versus big stocks (mar-

ket capitalization) within a portfolio. A positive value suggests more exposure

to smaller capitalization stocks than in the market portfolio. As expected, all of

the allocation methods examined in this study show more exposure to smaller

capitalization stocks. This is by design as the market cap weighted portfolio con-

centrates its exposure in the largest stocks available. Of the methods that hold all

1,000 stocks each year, equal weight has the most exposure to smaller cap stocks.

All of the t-stats are significant with the exception of MV1 which is close to the

threshold.

• Value (HML): The value factor captures the excess return of cheap stocks rela-
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tive to expensive stocks. This is measured through the book to market ratio. The

full panel of allocation methodologies display additional exposure to the value fac-

tor in the range of 0.20 - 0.33. This is reasonably significant with all of the t-stats

above the threshold limit of 1.96.

• R Squared: The allocation methods which hold the full 1,000 stocks (equal

weight, inverse volatility, equal risk) are very well explained by the factors in the

model with a minimum R2 of 0.94. While the factor model explains less of the

optimized methods (minimum variance, maximum diversification) returns, the R2

is still relatively high. It is noticeable that the more concentrated strategies (max

position sizes of 5%) have lower explanatory power by the factor model.

2.7 The Hierarchy of Sharpe Ratios

2.7.1 Why Focus on Sharpe Ratio?

Of all the statistical characteristics which have been described for our panel of capital

allocation methods, my research focuses on the risk adjusted returns as given by the

Sharpe Ratio.

(Markowitz 1952) set the stage for this risk-adjusted focus before (Sharpe 1966) pro-

posed his famous ratio.

“The hypothesis (or maxim) that the investor does (or should) maximize dis-

counted return must be rejected. If we ignore market imperfections the forego-

ing rule never implies that there is a diversified portfolio which is preferable

to all non-diversified portfolios. Diversification is both observed and sensible;

a rule of behavior which does not imply the superiority of diversification must

be rejected both as a hypothesis and as a maxim.”
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Sharpe’s work was an expansion of the earlier work by (Treynor 1965) who first incorpo-

rated the volatility of a fund’s return into a method for predicting future performance.

Sharpe emphasized the point made by Markowitz earlier:

“The key element in the portfolio analyst’s view of the world is his emphasis

on both expected return and risk.”

In (Modigliani and Modigliani 1997), the authors further explain Markowitz’s assertion

that returns are ”an incomplete measure of the performance of a portfolio because it ig-

nores risk.” An alternative measure of ’Risk Adjusted Performance’ (RAP) is introduced

which is intended to be easier for investors to understand. The method adjusts all port-

folio returns to match the market risk of the benchmark and allow for easy comparison

of returns which they assert is grounded in finance theory but easier to understand.

Since the publication of (Sharpe 1966), many authors have expanded on the work with

more complicated versions which account for higher moments, non-normality, etc. Addi-

tionally, (Hwang, Xu, and In 2018) use a focus on tail risk to explain the performance

differences between näıve and optimal allocation. These two examples show the growing

complexity of the literature with regard to risk adjusted performance.

Sharpe ratios have several assumptions built in with regard to the distribution. As finan-

cial time series data does not adhere to a normal distribution, the resulting statistics of

Sharpe ratios can have peculiarities. In (Lo 2002), the author explains how the Sharpe

ratio can not be expanded with the square root of time assumption, and how annual

Sharpe ratios can be overstated to a large degree because of serial correlation. All of

this can negatively impact the ranking of fund returns making them less valid in a hier-

archy.

The modified Sharpe ratio has a fair degree of complexity where the denominator is
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a Cornish-Fisher expansion of a normal z-score incorporating kurtosis and skewness.

While this appears to be a more complete way to represent the true risk or a distribu-

tion, it creates other issues. First, it is not easily interpreted by investors. Second, it

is not directly comparable with the original Sharpe ratio measure. However, for the

purpose of comparison, Table 17 shows the calculation of the Modified Sharpe Ratio

(mVaR) for each allocation method and the Appendix contains the mathematical de-

scription.

While there are benefits to more advanced measures of risk adjusted performance, the

downside is that they are not easily understood. From a practitioner’s perspective the

focus will be on the most commonly quoted of risk-adjusted ratios, the Sharpe Ratio8,

with the knowledge that its simplicity masks some of the true complexity of risk ad-

justed performance.

In addition to simplicity of the calculation, and market acceptance of the measure, the

authors of (Eling and Schuhmacher 2007) show that the choice of measure rarely mat-

ters when ranking the risk adjusted performance of funds. Using the Sharpe ratio and

12 other performance measures, a study of 2,763 hedge fund returns show that when

using any of these measures, the result is a nearly identical rank ordering.

It is widely documented that portfolio returns are not normally distributed and have

serial correlation. All of this can create issues with fairly representing the risk of a port-

folio, the basis for all risk adjusted performance measures. But despite the proliferation

of methods for judging risk adjusted performance, and the sophistication of alternative

measures, very little difference in the rankings is observed. Additionally, the investment

marketplace has widely accepted Sharpe ratio as the default risk adjusted measure of

performance. For this combination of reasons, and given the practical nature of my ex-

8Sharpe originally named this the “reward to variability ratio” but authors began to refer to it as
the Sharpe ratio and this has been accepted in the literature.
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amination, a focus on the original Sharpe ratio was selected.

2.7.2 Hierarchy - Initial Results

A scan of the Sharpe Ratios calculated for each allocation method across the 50 year

time horizon yields a hierarchy of risk adjusted performance. Initial results confirm prior

literature showing that all systematic allocation method Sharpe ratios are higher than

that of the market capitalization method.

Figure 3: Hierarchy of Sharpe Ratios

The figure above shows the average annual Sharpe ratio of each allocation methodology estimated using

monthly returns over the 50 year period of 1968 - 2017.

It is important to note however that while these results are generally in line with prior

literature observations, they are calculated over a longer time horizon. The works of

both (Clare, Motson, and Thomas 2013) and (Chow et al. 2011) both include the finan-

cial crisis of 2008 and are extended to 2011. This thesis has the same starting date of

1968, but is extended beyond 2011 to include 2017. During that additional six year pe-

riod, the extremely easy monetary policy of the central banks around the world led to

the continuation of a great bull market in equity returns.
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It may be that the hierarchy of Sharpe ratios has changed over shorter periods of time.

Researchers have used shorter time periods to show the instability of a single obser-

vation. Often this is done in decades, given such as 1970 - 1979. These are arbitrary

starting and ending periods. While not the focus of this research, if an analysis of the

characteristics of a strategy were to be the focus of study, then it may be that a defi-

nition of economic epochs could be used to show this shift in hierarchy. This may take

the form of a bull market vs. bear market period, or periods of easy monetary policy

vs. tight monetary policy as examples. These epochal definitions may be designed in a

nearly unlimited number of ways.

However, as the time period expands, the estimation of the hierarchy converges to the

true hierarchy. A 50 year period now available for examination gives more probability to

observing a risk adjusted performance hierarchy that represents the true characteristics

of these allocation methods.

These initial results require further examination as they are simple point estimates for

a single period of time. To understand this hierarchy more fully, we need to examine

the robustness of each pair of Sharpe ratios. The matrix of differences between each

allocation method is shown in Table 4. The values in the matrix represent the gross

difference between each of the pairs of allocation methods across the entire 50 year time

period.

2.8 Robustness Test - Description

The observed Sharpe ratios form a hierarchy. But these measurements are ex-post point

estimates and as such can not be relied upon with precision. It cannot be said for cer-

tain that the Sharpe ratio estimate for inverse volatility (0.50) is greater than the es-

timate for equal weight (0.44). In order to properly assess that the observed (but es-
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EW IV ER MV1 MV5 MD1 MD5

MC -0.06 -0.12 -0.12 -0.20 -0.19 -0.11 -0.06

EW -0.06 -0.06 -0.14 -0.13 -0.05 -0.05

IV 0.00 -0.08 -0.07 0.01 0.06

ER -0.08 -0.07 0.01 0.06

MV1 0.01 0.09 0.14

MV5 0.08 0.13

MD1 0.05

Table 4: Sharpe Ratio Differences

The table above shows the observed difference between two Sharpe ratios over the 50 year test period. The
number is constructed as the row header minus the column header. For the entry in the upper left of the
table, this would be the observed Sharpe ratio of the MC method less the observed Sharpe ratio of the EW
method. The number is negative as EW has a higher observed Sharpe ratio than the MC method.

timated) hierarchy is significant, we must robustly test for the differences between all

Sharpe ratios.

The original method for performance hypothesis testing was given by (Jobson and Ko-

rkie 1981) who developed an asymptotic distribution of the estimator. This test was

later corrected by (Memmel 2003). However, in (Ledoit and Wolf 2008), these original

tests are shown to be invalid for distributions that have excess kurtosis or are based on

a time series of returns due to serial correlation. Kurtosis is a common problem with fi-

nancial market returns, while serial correlation is less problematic for liquid markets and

more of an issue for hedge funds and illiquid investments. Their research proposed the

use of a robust inference method which constructs a studentized time series bootstrap

confidence interval for the difference between two Sharpe ratios. The difference of the

two ratios is considered significant if zero is not contained in the interval calculated.

To complete these tests, my analysis has benefited from the open source code of (Ledoit
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and Wolf 2008) which is available in both MATLAB and R format.9

The algorithm to test the difference between Sharpe ratios begins by fitting a semi-

parametric model to the observed data. The next step creates a set of bootstrapped

time series by using various block lengths. In a normal bootstrap procedure, returns

are drawn one at a time with replacement from a set of observed data. To overcome the

issue with serial correlation, returns are selected in blocks of sequential dates chosen at

random. For monthly returns with block size = 2, adjacent months are chosen together

to form the bootstrap of the required length. In the calibration phase of this procedure,

various block sizes are tested. The block size that produces a distribution which most

closely matches that of the semi-parametric model within a set confidence level is the

optimal block size.10

While the calibration of the optimal block size for each set of Sharpe ratio differences

converges to its own answer, for a consistent comparison I have used a block size of 5

as the average observed in the calibration stage. It is important to note that the mean

difference in Sharpe ratios (∆̂) does not change with different block sizes and that the

p-value of the difference is relatively insensitive to the choice of block size within a rea-

sonable range. In addition, in Tables 5 and 6, I denote both the 95% and 90% confi-

dence levels to adequately account for the slight changes in p-values that may occur

from selecting a block size other than the most optimal for each Sharpe ratio pair.

While Table 4 is shown in terms of annualized Sharpe ratios, the code for the robust-

ness test of (Ledoit and Wolf 2008) uses monthly Sharpe ratios. As explained in (Lo

2002), monthly Sharpe ratios do not convert to annual Sharpe ratios through the sim-

ple multiplication by
√

12 except under very specific circumstances. This difference in

9https://www.econ.uzh.ch/en/people/faculty/wolf/publications.html#9
10The calculation of optimal block size is computationally intensive. On an i7 processor @ 3.4 GHz

with 32gb RAM and running the MATLAB code, it can easily take 5-10 hours to converge to the answer
depending on the number of block sizes submitted for testing.
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monthly vs. annual Sharpe ratios does not impact the analysis or its conclusions, only

the presentation of levels between Table 4 and Table 5.

Figure 4: Statistical Significance of Sharpe Ratio Differences

The figure above shows the distribution of monthly Sharpe ratio differences for each allocation method-

ology relative to the market cap allocation method. The dashed vertical lines denote a two-tailed 95%

confidence interval. When zero is contained within this confidence band, then the null hypothesis can

not be rejected and it must be assumed that the true difference in Sharpe ratios is equal to zero.

2.8.1 Robustness Test - Example Results

Each of the visuals in Figure 4 shows the difference between the market capitalization

method and one of the other allocation methods in the panel. The distributions are cal-

culated from the robust bootstrap testing. Each distribution includes the standard de-
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viation of the results of a simulation of 5,000 bootstrap tests on the difference between

two Sharpe ratios.

For example, in Figure 4, the chart in the upper left is the distribution of monthly

Sharpe ratio differences between the market cap method and the equal weight method.

The mean of the distribution is above the zero line which is consistent with our results

from Table 4. However, this visual gives more information which extends beyond a sim-

ple ex-post point estimate.

The mean and the standard deviation from the bootstrap simulations form the orange

distribution curve. The two vertical dashed lines depict +/- 1.96σ for a two tailed 95%

confidence band. Since the zero value is contained within the 95% confidence band, I

can not reject the null hypothesis that the difference between Sharpe ratios is indistin-

guishable from zero. While it first appeared that the equal weight allocation method has

a superior Sharpe ratio, this cannot be accepted as our test shows a lack of statistical

significance.

In Figure 4, the left most entry on the second row shows the same information for the

difference between MC and the MV1 (blue curve). As zero is not contained within

+/- 1.96σ bands, we can conclude that the Sharpe ratio for the Minimum Variance 1%

method is superior to the Market Cap method with statistical significance.

Showing all of the distributions graphically in one collection is visually difficult. The

full set of results is shown in Table 5. The MC vs. EW distribution (orange curve) is

also summarized in the top left entry in Table 5. The ’Diff’ value of -0.012 is the mean

difference in monthly Sharpe ratio (MC minus EW). The corresponding p-value of 0.38

means that we only have a 62% probability that the equal weight method has a superior

Sharpe ratio than the market cap method. This is directionally intuitive but not statis-

tically significant. Therefore, we cannot conclude that EW Sharpe ratio is above that of
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the MC Sharpe ratio.

For MV1 (blue curve), the ’Diff’ value is -0.058 and the p-value is 0.007 which means

that we have a 99.3% probability that the MV1 method has a superior Sharpe ratio

than the MC method. This is directionally intuitive and statistically significant. We can

therefore reject the null hypothesis.

2.8.2 Robustness Test - Results Summary

EW IV ER MV1 MV5 MD1 MD5

MC Diff -0.012 -0.031 -0.031 -0.058 -0.056 -0.031 -0.017

p-value 0.380 0.026 0.026 0.007 0.018 0.091 0.404

EW Diff -0.019 -0.019 -0.046 -0.044 -0.019 -0.005

p-value 0.000 0.001 0.022 0.046 0.188 0.760

IV Diff -0.000 -0.027 -0.025 -0.000 0.014

p-value 0.967 0.112 0.198 0.998 0.415

ER Diff -0.027 -0.025 0.000 0.014

p-value 0.090 0.180 0.992 0.386

MV1 Diff 0.002 0.027 0.041

p-value 0.777 0.032 0.015

MV5 Diff 0.025 0.039

p-value 0.091 0.021

MD1 Diff 0.014

p-value 0.133

Table 5: Significance Testing of Monthly Sharpe Ratio Differences

In the table above, the ’Diff’ is the mean observed monthly difference of a bootstrap test between two
Sharpe ratios. The number is constructed as the row header minus the column header. For the entry in the
upper left of the table, this would be the observed mean Sharpe ratio of the MC method less the observed
mean of the EW method. The number is negative as EW has a higher observed Sharpe ratio than the MC
method. p-value is the significance level of the observed statistic. For a 95% confidence score the p-value
must be less than or equal to 0.050; statistically significant difference values are noted with red or blue text.
Values with 95% confidence are bold text while values with 90% confidence are non-bold text.

Using the method described in (Ledoit and Wolf 2008), for the differences of the 28
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Sharpe ratio pairs, 10 of them are statistically significant at the 95% confidence level

and 14 are significant at the 90% confidence level. In the simple ex-post point estima-

tion of each Sharpe ratio over the 50 year period show in Table 17 and in Figure 3, all

of the alternative allocation methods outperform the market cap allocation method.

However, with the application of the robustness test, the same conclusions cannot be

made. Observations for each method are reviewed below.

Market Cap (MC): While the MC method Sharpe ratio is dominated by all other

methods in the simple ex-post comparison, using the advanced bootstrap method, the

picture changes slightly. There is no statistical difference in Sharpe ratios between MC

and either the EW or the MD approaches. At the 90% confidence level, MD1 Sharpe

ratio is above that of MC.

Equal Weight (EW): In the hierarchy displayed in Figure 3, the EW method is dom-

inated by all other methods except for MC. When viewing this through our bootstrap

testing approach, most of these differences are confirmed with the exception of both

MD1 and MD5 where a statistically significant claim cannot be made. Additionally, the

MV5 Sharpe ratio is superior, but only at the 90% confidence level.

Inverse Volatility (IV): The table has already summarized the statistically signifi-

cant claims of IV Sharpe being superior to MC and EW. However, no further claims

can be made as the p-values all fail to indicate any true difference between IV and the

remainder of the allocation methods.

Equal Risk (ER): Like the IV method, ER dominance is observed over MC and EW

Sharpe ratios. At the 95% confidence level there can be no further claims about the

differences with the remainder of the allocation methods. At the 90% confidence level

however, MV1 dominates ER.

Minimum Variance (MV): MV1 and MV5 both dominate the MC and EW Sharpe
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ratios at the 90% level. There is no statistically significant difference between MV1 and

MV5. In addition, both MV1 and MV5 dominate the MD1 and MD5 methods at the

90% confidence level.

Maximum Diversification (MD): Only the MC method appears to be dominated

by the MD1 method and only at the 90% confidence level. Due to the wide standard

error of the MD Sharpe ratios in the bootstrap tests, there are no other statistically

significant claims that can be made about their dominance. Visual evidence of this can

be seen in the width of the pink distributions in Figure 4.

Minimum Variance 1% (MV1) approach is the most frequent winner, dominating five of

the seven other methods. Four of the superior Sharpe ratio claims can be made at the

95% confidence level while one can only be made at the 90% confidence level. Market

cap is the clear laggard, reliably under-performing 4 of the 7 other methods at the 95%

confidence level and an additional one at the 90% confidence level.

2.9 Conclusion

Over the past 50 years, many new methods have been developed for both security se-

lection and capital allocation. With enormous amounts of capital seeking higher risk

adjusted returns, work toward improving each of these stages is potentially valuable.

Each stage in the formation of a portfolio can either add or subtract value.

Previous literature has established the capital allocation methods that were chosen for

the panel in my study. Each of these research studies were noted during the descrip-

tion of the capital allocation methods earlier in this chapter. A subsequent study from

(Chow et al. 2011) compared each of the strategies and showed that each of these strate-

gies was almost entirely explained by the common factors of market, value, and size

with a conclusion that implementation costs were a better way to examine their out-
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comes. A further study by (Clare, Motson, and Thomas 2013) showed that while all

of the alternative capital allocation methods outperformed the market cap method, an

investor should not be fooled by randomness. A fully random allocation method would

also have performed quite well relative to the market cap method. Finally, a study by

(Thomas, Clare, and Motson 2013) focused on using fundamental factors to create port-

folios and these were not easily explained away by randomness.

This chapter extends the existing literature in a couple of ways. First the time frame of

the previous studies ends in 2011 while my research extends until 2017, marking a full

50 years. Second, I apply a robustness check to the allocation methods to check whether

the results observed in the point estimates of the Sharpe ratios are robust.

This chapter shows that there are capital allocation methods that can be universally em-

ployed (with a little expertise and computing power) which have provided a head start

in the pursuit of improving risk adjusted returns. However, with the benefit of a more

robust testing method, the clarity fades around a view that using just any systematic

allocation method will help to improve the risk adjusted returns over a market capital-

ization method. All of the methods appear valid using a single sequence of historical

returns but only a few stand up to more robust tests.

Minimum variance is nearly the exception as it statistically dominates four methods

(MC, EQ, MD1, MD5) at the 95% confidence level and dominates ER at the 90% level.

While not statistically significant, an 89% probability remains that MV1 is superior to

the IV method. This is remarkable but confirms the point made earlier about Figure

2. The minimum variance allocation method uses no return data but fully derives the

diversification benefits from the low and stable structure of the covariance matrix.

Even though we now see that ‘all that glitters is not gold’ for our capital allocation

methods, this is just the first step in the analysis. So far, we have left security selection
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fixed, while examining the impact of capital allocation. In the next chapter, security

selection is introduced and the relationship between the two stages begins to emerge and

the conclusions shift further.
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Chapter 3

Security Selection &

The Contours of Sharpe Ratios



3 Security Selection & The Contours of Sharpe Ratios

There are two stages in the Markowitz framework: security selection and capital allo-

cation. In the prior chapter, we held security selection fixed (largest 1,000 stocks by

market capitalization) while examining the hierarchy of Sharpe ratios across a panel of

capital allocation methods. To understand the true nature of the hierarchy of Sharpe ra-

tios, the analysis required a bit of complication with the introduction of the robustness

tests. Now security selection is introduced to the process. By contrast, the effect of pos-

itive and negative security selection on Sharpe ratios is easy to intuit. By consistently

picking better or worse stocks, we expect that all portfolio Sharpe ratios should rise or

fall.

What becomes significantly more complex however, is understanding the interaction

effect between any two processes. To examine the interaction between the two stages of

portfolio formation, security selection is now applied across our panel of capital alloca-

tion methods. In the prior chapter, we made statistically robust conclusions about the

risk adjusted performance differences between allocation methods. What we will now

see in this step is a landscape of conclusions that shift as positive and negative security

selection are applied.

The analysis begins by introducing a simple method for security selection. This sim-

ple approach is applied to a single capital allocation method (market capitalization)

to isolate the interaction effect of a single variable against the panel of fixed allocation

methods. Robustness checks are applied. Then the same security selection method is ap-

plied to all capital allocation methods at the same time. This has the effect of creating a

contour of Sharpe ratio differences across the landscape of positive and negative security

selection tilt. Robustness checks are then applied across each contour and we observe

that initial conclusions can vary significantly.
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The key finding from this chapter is that the optimal choice of a capital allocation

method depends upon the ability to select stocks. Poor security selection skills can be

mitigated by protective allocation methods while positive security selection skills can be

amplified by using the right allocation method. The new conclusions are verified using

the same robust bootstrap method to verify differences between Sharpe ratios and their

potential improvements.

3.1 Security Selection

Aside from fully discretionary (and thereby non-replicable) security selection methods,

there are a myriad of systematic security selection techniques. As the goal of this anal-

ysis is to study the interaction effect, I do not pursue a path to prove which of these

methods is better than any other. Instead, I introduce a simple method which, at the

limit, will have the most pronounced effects (positive and negative) on the selection

stage of portfolio formation.

Security selection is simply a process to move from the full 1,000 stocks available each

year in the data set to a smaller set. There are likely infinite ways that to create the

security selection process in order to observe this interaction. Fundamental character-

istics of stocks could be used to tilt the security set upward or downward (size, value,

momentum, etc.) with a nearly unlimited combination of parameters. Purely quantita-

tive approaches could also be employed for this purpose (momentum, trend filters, etc.)

Fundamental and quantitative approaches could be combined and an unlimited number

of parameters for each method could be used.

Following any of these methods may systematically tilt the security set upward or down-

ward which would be helpful in observing the effect on Sharpe ratios. However, fol-

lowing any of these methods or combinations of methods would create a bias in why a
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certain set of factors was selected with the necessary accompanying parameters. For this

reason, security selection with near perfect foresight was chosen as a boundary condition

that requires no parameters and no intended biases.

A simplistic, yet unrealistic method for selecting stocks is still appropriate here as the

purpose of the analysis is not to suggest a way to pick stocks, but rather to study the

interaction effect between the selection and allocation stages of portfolio formation.

3.1.1 Security Selection with Near Perfect Foresight

Markowitz famously wrote about the process of selecting a portfolio:

“The first stage starts with observations and experience and ends with beliefs

about the future performances of available securities.” (Markowitz 1952)

From this vantage point, perfect foresight would allow us to choose the single best per-

forming security for the next period and put all of our money into that one holding. But

he also cautioned against holding a single security.

“The hypothesis (or maxim) that the investor does (or should) maximize dis-

counted return must be rejected. Diversification is both observed and sensible;

a rule of behavior which does not imply the superiority of diversification must

be rejected both as a hypothesis and a maxim.” (Markowitz 1952)

If the objective of portfolio formation were simply to achieve the highest returns pos-

sible, irrespective of risk, then perfect foresight would select the one stock with the

highest returns. However, Markowitz clearly rules this out as a practical path and sets

in place the superiority of diversification.
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Diversification is only possible with more than one security. This analysis seeks to un-

derstand how the Sharpe ratios from a panel of allocation methods change in the pres-

ence of security selection (positive and negative). So to form portfolios from sets of

securities with better and worse performance, we need a method to pick stocks each year

to feed into the allocation methods and observe the resulting Sharpe ratios.

As the existing literature points out, there is a vast array of methods espoused for select-

ing stocks. These can be from any combination of discretionary or systematic, and from

fundamental and quantitative. Each of these methods can select from a wide variety

of inputs (financial statement ratios, relative momentum, etc.) and parameters (1 year

look-back, rolling 3 years, etc.). Any method that we might use in our analysis can be

adapted with a slight change in parameter set or inclusion of an additional data point.

And any method that we use may work well in a particular year and poorly in a later

year.

For this reason, I introduce the concept of near-perfect foresight. It is not achievable

in practice, but it is simple to implement, reliably creates the stock return bias that is

needed for answering my particular questions, and leaves intact the requirement of di-

versification that Markowitz established. Near-perfect foresight is a boundary condition

method in that it is the best outcome that can be achieved while preserving diversifica-

tion. No other method of security selection could outperform near-perfect foresight and

retain the same potential for diversification.

So if perfect foresight implies picking one single best winner, then my versions of near-

perfect foresight would be identifying in advance a range of stocks with the biggest gains

or losses in the following year and removing them from the set of available securities.

This method leaves intact the potential for diversification by continuing to work with a

large set of available securities while reliably improving or degrading the return profile

of the potential portfolios.
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The approach is implemented by using a one year look ahead when forming the port-

folios. As before, it begins with the 1,000 largest capitalization stocks available in the

data set at the end of the year. I then look ahead a full year and rank the performance

of each stock that is available for the portfolios. Portfolios are formed with advance

knowledge by systematically removing the best or worst performing stocks based on

performance in the following year.

3.2 Positive Selection & Market Capitalization

To keep the first step of this analysis simple, I begin by applying only positive secu-

rity selection to a single capital allocation method, market capitalization. Using the

near perfect foresight approach, I look ahead one year and remove the worst perform-

ing stocks. This is done in batches of 5 stocks up to a maximum of 100 stocks being

removed. Each year when the portfolios are formed, the one year look ahead and screen-

ing is implemented to create a positive tilt in returns and Sharpe ratios.

Figure 5: Upward tilted market capitalization weighting method

The figure above documents the increase in MC Sharpe ratio when removing the worst performing

stocks using a look-ahead tilt. Stocks are removed in batches of 5 up to 100. The 5 worst performing are

removed first, then the worst 10, etc.
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The positive security selection tilt is only applied at this point to the MC method while

all other allocation methods remain formed with the fixed set of 1,000 largest capital-

ization stocks. Figure 5 shows the impact of this process on the market cap line (black)

while the other allocation lines remain static. This result is as expected.

As poor performing stocks are eliminated from the market cap weighted portfolio, Fig-

ure 5 shows the rise in the Sharpe ratio relative to the other allocation methods which

do not have any security selection applied. This increase in Sharpe ratios is not pre-

cisely linear but rises as expected. However, as demonstrated in the previous chapter,

this comparison of the point estimates of Sharpe ratios is too simplistic and lacks the

robustness of a studentized bootstrap method of comparison.

For example, Figure 5 shows that the MC Sharpe ratio is above the EW Sharpe ra-

tio once the bottom 15 stocks are eliminated each year. However, from the robustness

checks earlier in Table 5, it can’t be claimed that EW method was better than MC

method using the full 1,000 stock set. In order to determine a statistically significant

improvement in Sharpe ratios, both a simplistic security selection process and the stu-

dentized bootstrap method of comparing differences in Sharpe ratios must be applied.

Table 6 combines security selection with a robust Sharpe ratio test. The columns of the

table represent the panel of alternative allocation methods while the rows relate show

the MC method with increasing levels of perfect foresight security selection applied. The

identification of MC+10 means that the returns of the MC method have been tilted

higher (’+’) by removing the worst 10 performing stocks each year. ’Diff’ values are

constructed as the row method minus the column method. For example the first entry

in the upper left of -0.012 implies that the EW method Sharpe ratio is higher than the

MC method Sharpe ratio. Positive values which are statistically significant are denoted

with blue text and negative values which are statistically significant are denoted with

red text. Values which are significant at the 95% level are also placed in bold text while
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EW IV ER MV1 MV5 MD1 MD5

MC Diff -0.012 -0.031 -0.031 -0.058 -0.056 -0.031 -0.017

p-value 0.380 0.026 0.022 0.007 0.018 0.091 0.404

MC+10 Diff -0.003 -0.022 -0.022 -0.049 -0.047 -0.022 -0.008

p-value 0.835 0.114 0.105 0.017 0.036 0.229 0.697

MC+20 Diff 0.005 -0.015 -0.015 -0.041 -0.039 -0.014 -0.000

p-value 0.720 0.294 0.285 0.048 0.078 0.420 0.978

MC+30 Diff 0.013 -0.007 -0.007 -0.033 -0.031 -0.007 0.007

p-value 0.337 0.633 0.636 0.107 0.177 0.709 0.723

MC+40 Diff 0.020 0.000 -0.000 -0.027 -0.024 0.000 0.014

p-value 0.141 0.984 0.989 0.201 0.275 0.989 0.484

MC+50 Diff 0.027 0.008 0.008 -0.019 -0.017 0.008 0.022

p-value 0.048 0.574 0.570 0.345 0.448 0.675 0.299

MC+60 Diff 0.036 0.016 0.016 -0.010 -0.008 0.017 0.030

p-value 0.008 0.217 0.202 0.614 0.722 0.358 0.141

MC+70 Diff 0.045 0.026 0.026 -0.001 0.001 0.026 0.040

p-value 0.002 0.044 0.050 0.964 0.960 0.149 0.053

MC+80 Diff 0.053 0.034 0.034 0.007 0.009 0.034 0.048

p-value 0.000 0.010 0.009 0.730 0.679 0.057 0.023

MC+90 Diff 0.062 0.043 0.043 0.016 0.018 0.043 0.057

p-value 0.000 0.002 0.002 0.435 0.413 0.018 0.006

MC+100 Diff 0.070 0.051 0.051 0.024 0.026 0.051 0.065

p-value 0.000 0.000 0.000 0.227 0.225 0.005 0.003

Table 6: Monthly Sharpe Ratio Comparisons With Security Selection: Market Cap
method

In the table above, the ’Diff’ is the mean observed monthly difference of a bootstrap test between two
Sharpe ratios. The number is constructed as the row header minus the column header. For the entry in the
upper left of the table, this would be the observed mean Sharpe ratio of the MC method less the observed
mean of the EW method. The number is negative as EW has a higher observed Sharpe ratio than the MC
method. p-value is the significance level of the observed statistic. For a 95% confidence score the p-value
must be less than 0.05. Table cells where the difference values are positive and statistically significant
are colored in blue. Table cells where the difference is negative and statistically significant are colored
in red. Bold cells in color indicate 95% confidence while non-bold cells in color indicate 90% confidence.
Each row compares the allocation method with a certain number of poorly performing stocks removed (e.g.
MC+10 is the market cap method tilted upward by removing the 10 worst performing stocks from the
stock universe each year.)
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values significant only at the 90% level are non-bold.

The application of a robustness check makes evident that for the MC method to pro-

duce a higher Sharpe ratio than EW method and be statistically significant, the original

observation of removing the bottom 15 stocks each year is insufficient. Instead it would

be necessary to remove the worst performing 50 stocks each year. The feasibility of

achieving this level of near perfect foresight in security selection with 50 years of contin-

uous persistence considerably undermines the notion that security selection can reliably

be implemented on a market cap weighted portfolio in pursuit of producing superior risk

adjusted returns.

Observations about the panel of alternative allocation methods are made below:

• Equal Weight (EW): Without security selection, a simple ex-post point esti-

mate of the Sharpe ratio of the EW approach appears superior to the MC method.

Yet no such claim can be made under the approach of a robust test of their dif-

ference. Even in the presence of relatively high levels of perfect security selection,

EW is statistically indistinguishable from the MC method. Only after the appli-

cation of removing the 50 worst performing securities from MC every year for 50

years in a row do we observe Sharpe ratio improvements of MC that are reliably

better than EW without security selection.

• Inverse Volatility (IV): The IV method has shown a statistical robustness over

the MC method without any security selection. In the presence of lower levels of

security selection, the two methods become indistinguishable until at least 70 or

7% of securities are correctly removed every year for 50 years in a row. Only at

this heightened level of prescience does the MC method significantly outperform

the IV without security selection.

• Equal Risk (ER): Identical to the IV method, the ER method has shown a sta-
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tistical robustness over the MC method without any security selection. In the

presence of lower levels of security selection, the two methods become indistin-

guishable until at least 70 or 7% of securities are correctly removed from MC every

year for 50 years in a row.

• Minimum Variance (MV): This allocation method is the most robust against

an MC portfolio at any observed level of security selection. In addition to statis-

tically dominating the MC method without security selection, the MV methods

retain dominance all the way through the perfect elimination of the 20 worst se-

curities each year for the MC method. Remarkably, even at very high levels of

security selection (from MC+20 up to MC+100), there is no statistically signifi-

cant difference in the Sharpe ratios. The MV allocation method Sharpe ratio can

not be dominated by the MC method even at the highest level of security selection

used in our study.

• Maximum Diversification (MD): At 90% confidence, the MD1 method ap-

pears superior to the MC method without any security selection expertise. The

two methods are indistinguishable starting from lower levels of security selection

(MC+10) up through relatively high levels (MC+70) of security selection. The

wide range over which the two methods are indistinguishable from each other is

mainly due to the high standard error that the MD Sharpe ratios display in boot-

strap testing. Only at the higher levels of security selection (MC+70 and higher)

do the MC methods with positive security selection begin to dominate the Sharpe

ratio of MD methods without security selection.

3.3 Simultaneous Security Selection tilt

If security selection skill is available to the portfolio manager, it can be applied in com-

bination with any capital allocation method. In the previous section, the impact of se-
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curity selection tilt on the MC allocation method appeared to be relatively linear. How-

ever, in the next step I apply the same ‘near perfect foresight’ method to all allocation

methods simultaneously. By extending the security selection tilt across the full panel of

allocation methods, a non-linear impact on Sharpe ratios is documented. Simultaneously

applying security selection and capital allocation methods creates a landscape of Sharpe

ratio differences which highlight the interaction effect created by the combination of

selection and allocation.

3.3.1 Simultaneous Positive Security Selection

As before, the process begins with the full set of 1,000 largest market capitalization

stocks each year. Using a one year look ahead on returns, stocks are removed from the

full set in batches of 5. To keep moving ahead in small steps, only positive security

selection tilt is applied as before, but now it is applied across the full panel of capital

allocation methods.

Figure 6: Sharpe ratios with Positive Security Selection tilt

The figure above documents the effect that a positive security selection tilt has on the Sharpe ratios

across the full panel of allocation methods. Upward security selection tilt is created by removing the

worst performing stocks each year. Statistics are reflected across the period of study, 1968 - 2017.
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Figure 6 highlights the non-linear impact on Sharpe ratios despite the application of

identical security selection tilt. For example, the MD methods (pink lines) sit near the

bottom of the hierarchy in the absence of security selection (far left of graphic). How-

ever, as the positive security selection tilt increases (moving toward the right), the MD

methods exhibit amplified Sharpe ratios and begin to outperform the Sharpe ratios for

all other methods.

Several additional observations appear visually. Without security selection, equal weight

appeared to outperform market cap. This claim was rejected when robustness checks

were applied. Now, in the presence of positive security selection, the spread between

these two lines (MC - black, EW - Orange) begin to diverge and it might be possible to

make new claims about their relationship. This will be examined with robustness checks

across this new landscape.

At each point along the landscape of security selection tilt, the original claims of robust

differences between Sharpe ratios must be reexamined for each pair. But before robust-

ness checks are applied, let’s extend this approach to examine the landscape across a

negative security selection tilt.

3.3.2 Simultaneous Negative Security Selection

Negative security selection is crafted using the same method as for positive security

selection tilt in the previous section. Instead of removing batches of 5 worst performing

stocks each year, I remove the best performing stocks in batches of 5 up to a total of

100. Another difference to note in Figure 6 is that the horizontal axis started at zero

(left side) and moved upward toward the right. To reflect the opposite action in this

section, I reverse the axis to demonstrate the negative impacts of poor security selection.

As with positive security selection tilt, there are some interesting observations which
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Figure 7: Sharpe ratios with Negative Security Selection tilt

The figure above documents the effect that a negative security selection tilt has on the Sharpe ratios

across the full panel of allocation methods. Downward security selection tilt is created by removing the

best performing stocks each year. Statistics are reflected across the period of study, 1968 - 2017.

appear visually, and these also will be checked for robustness in a following section.

Maximum diversification methods (pink lines) exhibit accelerating under-performance

in the presence of negative security selection skills. They appear to markedly underper-

form all other methods relatively early in the landscape. Equal risk (green) and inverse

volatility (red) methods have an early advantage on market cap method, but as negative

security selection increases, this lead is diminished. Minimum variance (blue) methods

appear to maintain their lack of sensitivity to poor security selection.

3.3.3 Security Selection - Full Landscape

Figure 8 combines both positive and negative security selection into a single visual. At

the center of the graph (zero on the horizontal axis), the original hierarchy of Sharpe

ratios is displayed. Moving to the right shows the shifting hierarchy in the presence of

positive security selection while moving to the left shows the shifting hierarchy in the
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presence of negative security selection.

Figure 8: Sharpe Ratios with Positive and Negative Security Selection Tilt

The figure above documents the effect of both positive and negative security selection on the Sharpe

ratios across the full panel of allocation methods. Statistics are reflected across the period of study, 1968

- 2017.

There are two types of shifts that we observe in the panel of allocation method Sharpe

ratios. One type of shift has a non-linear element, while the other type of shift is a dif-

ference in the slope of the nearly linear changes. Each of these acts to change the hierar-

chy at the endpoints of the security selection tilt range.

3.4 Individual Contours - Examples

This chapter highlights the instability of the hierarchy of Sharpe ratios in the presence

of security selection. To show this effect clearly, robustness checks must be applied to

each pair of Sharpe ratios along the entire landscape of security selection tilt. In the

following subsections, I highlight a few examples of the shifting contours in the pairs of

Sharpe ratios. A full set of visual contours is provided in Appendix 2.
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3.4.1 Market Cap vs. Equal Weight

Let’s start with a first example. Back in the previous chapter, Figure 4, the top left

chart showed the robustness check of the EW Sharpe ratio vs. the MC Sharpe ratio.

While EW appeared to have a Sharpe ratio superior to the MC allocation method, due

to the width of the confidence band of a two tailed bootstrap test, we could not reject

the null hypothesis that the Sharpe ratios are equal.

Applying a range of security selection across both the market cap weighted portfolio and

the equal weighted portfolio has a significant impact on the probability that the equal

weight method is superior to the market cap method.

Figure 9: Sharpe ratio contour: MC vs. EW

The top panel above documents the probability distribution of the difference in monthly Sharpe ratios

between two allocation methods across a range of security selection tilt. The solid line is the estimated

value while the dashed lines represent a 95% confidence interval. The vertical axis is the monthly Sharpe

ratio difference of the MC method minus the monthly Sharpe ratio of the EW method. When the zero

horizontal line is contained within the 95% probability distribution, then the null hypothesis (the true

difference is zero) can not be rejected. The bottom panel gives the p-value for the two tailed test. When

the p-value is below 0.05, there is at least a 95% confidence that the true value of the difference in

Sharpe ratios is not zero.

The tests previously conducted on the difference in monthly Sharpe ratios between the
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market cap and equal weight allocation methods could not reject the null hypothesis

and had to conclude that the true difference in monthly Sharpe ratios was not statisti-

cally different than zero. However, now when the probability distribution is estimated

across the landscape of security selection tilts, a different conclusion emerges.

By looking at the full range of security selection tilts, we see that the initial inability

to conclude a difference in Sharpe ratios gives way to a significant conclusion in the

presence of sufficient security selection skill. It is now possible to conclude that once a

manager is able to accurately remove 20 or more of the worst performing stocks each

year from the basket of 1,000 large cap stocks, the Sharpe ratio of the equal weight

allocation method rises more quickly than the market cap method. The improvement

in Sharpe ratios is non-linear and beyond the 20 stock selection level, the difference in

Sharpe ratios is now statistically significant.

With this particular allocation method pair, no significant conclusions can be made

in the presence of negative security selection skills. While the estimated difference in-

creases, indicating that market cap is becoming superior to equal weight, the zero hori-

zontal line stays within the 95% confidence interval which means that the null hypothe-

sis cannot be rejected.

This is just a first example of the non-invariance displayed by the hierarchy of Sharpe

ratios when security selection is applied. In simple terms it means that in the absence

of security selection, there is no statistically significant improvement in a portfolios out-

come from choosing the EW allocation method rather than the MC allocation method.

However, if a manager can apply a certain level of positive security selection, the choice

of the equal weight allocation method can improve the outcome of the Sharpe ratio with

a high degree of statistical significance.
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3.4.2 Market Cap vs. Minimum Variance 5%

In the previous section we saw an example of a strategy pair without a significant con-

clusion at the beginning. But by applying positive security selection, the conclusion

changed and we saw the superiority of the equal weight allocation method. This type

of shift in conclusion is not always the same. Each pair of allocation methods reacts

differently to the application of security selection tilt.

Figure 10: Sharpe ratio contour: MC vs. MV5%

The top panel above documents the probability distribution of the difference in monthly Sharpe ratios

between two allocation methods across a range of security selection tilt. The solid line is the estimated

value while the dashed lines represent a 95% confidence interval. The vertical axis is the monthly Sharpe

ratio difference of the MC method minus the monthly Sharpe ratio of the MV5% method. When the

zero line is contained within the 95% probability distribution, then the null hypothesis (the true differ-

ence is zero) can not be rejected. The bottom panel gives the p-value for the two tailed test. When the

p-value is below 0.05, there is at least a 95% confidence that the true value of the difference in Sharpe

ratios is not zero.

In Figure 10, the allocation pair shows a different contour across the landscape of secu-

rity selection. In the absence of security selection, we can make a statistically significant

conclusion that the MV5 method is superior to the market cap method. And with both

positive and negative security selection applied, this conclusion does not change. In a
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head to head match up across the full range of security selection, our initial conclusion

is invariant. The MV5 method wins over across the entire range of security selection tilt.

3.4.3 Market Cap vs. Maximum Diversification 5%

Figure 11: Sharpe ratio contour: MC vs. MD5%

The top panel above documents the probability distribution of the difference in monthly Sharpe ratios

between two allocation methods across a range of security selection tilt. The solid line is the estimated

value while the dashed lines represent a 95% confidence interval. The vertical axis is the monthly Sharpe

ratio difference of the MC method minus the monthly Sharpe ratio of the MD5% method. When the

zero line is contained within the 95% probability distribution, then the null hypothesis (the true differ-

ence is zero) can not be rejected. The bottom panel gives the p-value for the two tailed test. When the

p-value is below 0.05, there is at least a 95% confidence that the true value of the difference in Sharpe

ratios is not zero.

The final example shown is one in which the conclusion inverts with significance at the

ends of our selection tilt range. Figure 11 starts with no significant conclusion in the

absence of security selection. With poor security selection however, the market cap

allocation method become significantly superior at the extremes of the range examined.

This conclusion shifts from neutral to statistically significant around -90.

In the presence of positive security selection, the conclusion inverts entirely. At +15 in
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security selection tilt, the maximum diversification method begins to be significantly

superior to the market cap allocation method.

The maximum diversification allocation methods amplify the security selection tilt. It

is interesting that positive security selection appears to benefit the MD5 methods more

than negative security selection impairs the Sharpe ratio difference of this match-up vs.

MC. This particular pair of allocation methods is one of the very few that is observed

with complete inversions in conclusion in the presence of security selection.

3.5 Landscape Summary

In the preceding sections, a few examples of the landscape contours have been shown

which demonstrate the types of shift in conclusion that occur in the presence of security

selection tilts. The full set of 28 visuals for each pair of allocation methods that are

tested follow at the end of the chapter.

One way to summarize all of the shifting conclusions is provided in the combination of

Table 7 and Table 8. Table 7 displays changes in conclusion in the presence of positive

security selection tilt while Table 8 displays changes in conclusion in the presence of

negative security tilts.

A complete explanation of the entries in the tables is required. The first entry in the up-

per left of Table 7 compares the Sharpe ratio difference created by the row (MC) minus

the column (EW). The first row of each entry is the difference (‘Diff’) observed at the

starting point of zero security selection tilt. In this case the entry of ’?/-’ indicates that

there is no statistical significance (‘?’) observed at the starting point, but the conclusion

shifts to negative (‘-’) with statistical significance. A negative conclusion means that the

row (MC) minus the column (EW) is now a negative value and statistically significant

at the 95% confidence level.
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EW IV ER MV1 MV5 MD1 MD5

MC Diff ?/- - - - - ?/- ?/-

Level +20 +5 +10

EW Diff -/? -/? -/? -/? ?/- ?/-

Level +25 +45 +10 +5 +20 +60

IV Diff ?/- ? ? ?/- ?/-

Level +45 +40 +65

ER Diff ? ? ?/- ?/-

Level +40 +70

MV1 Diff ? +/?/- +/?

Level +5/+95 +5

MV5 Diff + +/?

Level +5

MD1 Diff ?

Level

Table 7: Changes in the significance test of monthly Sharpe ratio differences in the
presence of positive security selection tilt

In the table above, the ‘Diff’ is the robust conclusion for the difference of monthly Sharpe ratios for two
allocation methods. The table is constructed so that the value is row minus column. Where there are two
values (e.g. ?/-) this indicates the initial conclusion (?) followed by the ultimate difference (-) at some level
of security selection tilt. The ‘Level’ indicates at which level of security selection the ‘Diff’ switches. If
there is no value in the ‘Level’ row, then the initial conclusion remains constant throughout the range of
security selection.
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EW IV ER MV1 MV5 MD1 MD5

MC Diff ? -/? -/? - - ? ?/+

Level -10 -10 -85

EW Diff - - - - ? ?

Level

IV Diff ?/+ ?/- ?/-/? ?/+ ?/+

Level -95 -45 -55/-85 -40 -15

ER Diff ?/- ?/- ?/- ?/-

Level -10 -40 -40 -10

MV1 Diff ? + +

Level

MV5 Diff + ?/+

Level -5

MD1 Diff ?/+

Level -15

Table 8: Changes in the significance test of monthly Sharpe ratio differences in the
presence of negative security selection tilt

In the table above, the ‘Diff’ is the robust conclusion for the difference of monthly Sharpe ratios for two
allocation methods. The table is constructed so that the value is row minus column. Where there are two
values (e.g. ?/-) this indicates the initial conclusion (?) followed by the ultimate difference (-) at some level
of security selection tilt. The ‘Level’ indicates at which level of security selection the ‘Diff’ switches. If
there is no value in the ‘Level’ row, then the initial conclusion remains constant throughout the range of
security selection.
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The second row of this cell entry shows the level of positive security selection tilt at

which the conclusion shifts. In this case, EW becomes superior to MC allocation method

and statistically significant once we achieve a +20 level of positive security selection tilt

occurs.

Some of the conclusions never change. For example, the second entry in the top row ex-

amines MC minus IV. In this case, IV is superior to MC at all levels of positive security

selection. Therefore, the entry is ‘-’ and has no level at which the conclusion shifts. This

is also the case for entries such as IV minus MV1 (3rd row, second entry). In this case,

there is no statistically significant conclusion (‘?’) in the absence of security selection or

anywhere along the range of positive security selection tilt.

A few entries in the tables have conclusions that shift more than once. The MV1 mi-

nus MD1 begins with a ’+’ which indicates that minimum variance is superior. It then

shifts to inconclusive (‘?’) at +5 of security selection tilt. Finally it shifts to minimum

variance being inferior (‘-’) at the +95 level of positive security selection tilt.

Of the 28 pairs examined, only 11 pairs showed consistency in the original conclusion

based on no security selection tilt. The majority, 17 of 28 pairs, had a statistically signif-

icant shift in their shape across the landscape of positive security selection tilt.

Table 8 shows the same information with the application of negative security selection

tilt. On the negative security selection tilt side of the landscape, half of our conclusions

shift while half stay the same.

Only 3 pairs remain with their original conclusions throughout the full range of security

selection tilt. MV1 and MV5 always outperform the MC method, while MV1 vs MV5 is

consistently inconclusive.
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3.6 Conclusion

This chapter creates a bridge between two large strands of existing literature. Following

(Markowitz 1952) who laid out the two stages of portfolio formation, one strand of lit-

erature has followed the route to finding better ways to select securities while the other

strand has followed the route to improve upon capital allocation method. This chapter

spans these two paths in the literature by examining how security selection can unevenly

impact various capital allocation methods.

This chapter began by creating a simple yet robust method of security selection as a

tool for extracting the interaction effect between the stages of portfolio formation. The

‘near-perfect foresight’ method allowed us to highlight the non-invariance of the hier-

archy of Sharpe ratios in the presence of security selection. A variety of contours was

documented across the landscape of security selection tilt.

In the prior chapter we established an initial view of the hierarchy of Sharpe ratios, yet

with the application of a robust test found that ‘all that glitters is not gold’. Now we

see a similar shift in our conclusions. When security selection tilt is applied, the contour

of each pair reacts differently and can further shift our prior conclusions. This is tested

in the same robust framework as before.

The key finding of this chapter is that the optimal choice of a capital allocation methods

depends upon the ability to pick stocks. Poor security selection skills can be mitigated

by protective allocation methods while positive security selection skills can be amplified

by using the right allocation method.

We have now taken a few steps forward in understanding the drivers of optimal portfolio

construction. In the next chapter, we use ‘near-perfect foresight’ to highlight the key

drivers of optimal Sharpe ratio portfolios.
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Chapter 3

Appendix



3.7 Sharpe Ratio Contours

3.7.1 Description of Contours

The figures that follow are a collection of Sharpe ratio contours across a range of secu-

rity selection bias. These figures are referenced in and explained in Chapter 3. Each

figure in this section follows the same formatting guidelines which provide for clarity.

The horizontal axis gives a range of security selection bias and is the same for both

panels. The center point of the horizontal axis reflects no selection tilt while to the left

is a negative selection tilt and to the right is a positive selection bias. Security selection

tilt is based on the ‘near perfect foresight’ approach described in Chapter 3.

The top panel is a contour with the solid mid-line giving the point estimate of the

monthly Sharpe ratio difference while the dashed line bands form the two tailed con-

fidence interval at 95%.

The lower panel gives the p-value of the test and values below the solid black line indi-

cate that the test has achieved at least a 95% confidence. The null hypothesis is that

the true difference of Sharpe ratios between the pair of allocation methods is zero. p-

Values below 0.05 allow us to reject the null hypothesis and conclude a difference exists.

A subsection in this appendix has been created for each row in the matrices shown in

Table 7 and Table 8.
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3.8 Market Cap vs. Panel of Allocation Methods

Figure 12: Sharpe ratio contour: MC vs. EW

Figure 13: Sharpe ratio contour: MC vs. IV
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Figure 14: Sharpe ratio contour: MC vs. ER

Figure 15: Sharpe ratio contour: MC vs. MV1
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Figure 16: Sharpe ratio contour: MC vs. MV5

Figure 17: Sharpe ratio contour: MC vs. MD1
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Figure 18: Sharpe ratio contour: MC vs. MD5
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3.9 Equal Weight vs. Panel of Allocation Methods

Figure 19: Sharpe ratio contour: EW vs. IV

Figure 20: Sharpe ratio contour: EW vs. ER
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Figure 21: Sharpe ratio contour: EW vs. MV1

Figure 22: Sharpe ratio contour: EW vs. MV5
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Figure 23: Sharpe ratio contour: EW vs. MD1

Figure 24: Sharpe ratio contour: EW vs. MD5
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3.10 Inverse Volatility vs. Panel of Allocation Methods

Figure 25: Sharpe ratio contour: IV vs. ER

Figure 26: Sharpe ratio contour: IV vs. MV1
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Figure 27: Sharpe ratio contour: IV vs. MV5

Figure 28: Sharpe ratio contour: IV vs. MD1
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Figure 29: Sharpe ratio contour: IV vs. MD5
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3.11 Equal Risk vs. Panel of Allocation Methods

Figure 30: Sharpe ratio contour: ER vs. MV1

Figure 31: Sharpe ratio contour: ER vs. MV5
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Figure 32: Sharpe ratio contour: ER vs. MD1

Figure 33: Sharpe ratio contour: ER vs. MD5
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3.12 Minimum Variance 1% vs. Panel of Allocation Methods

Figure 34: Sharpe ratio contour: MV1 vs. MV5

Figure 35: Sharpe ratio contour: MV1 vs. MD1
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Figure 36: Sharpe ratio contour: MV1 vs. MD5
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3.13 Minimum Variance 5% vs. Panel of Allocation Methods

Figure 37: Sharpe ratio contour: MV5 vs. MD1

Figure 38: Sharpe ratio contour: MV5 vs. MD5
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3.14 Maximum Diversification 1% vs. Panel of Allocation Methods

Figure 39: Sharpe ratio contour: MD1 vs. MD5
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4 Low Correlations Are The Dominant Feature Of Optimal

Sharpe Ratio Portfolios

4.1 Chapter Introduction

The three inputs to the Sharpe ratio are portfolio returns, the risk free rate, and the

standard deviation of the portfolio returns (volatility). Going more deeply into the for-

mula, portfolio returns are formed from individual stock returns, correlations, and the

capital weights applied to the stocks.

This chapter highlights the significance of the correlation structure when configuring

portfolios with optimal Sharpe ratios. This finding stands in contrast with what appears

to be significantly more practitioner effort focused on predicting security returns when

attempting to build optimal portfolios.

In the past, analysts pursued security selection through the fundamental analysis of

securities by analyzing spreadsheets, visiting companies, and other approaches such

as talking to management and suppliers. Today, the analysis for security selection has

advanced through the use of non-traditional methods which include big data, artificial

intelligence, machine learning, and the mining of alternative data sets such as satellite

imagery, mobility tracking data, and social media.

The finding of this chapter indicates that there is cause for at least an equal amount

of effort to be dedicated toward the discovery of methods to optimize the correlations

between securities rather than on the relative returns between securities.

This chapter demonstrates that portfolios with optimal Sharpe ratios are dominated by

harvesting low correlations, not by selecting stocks with high returns.
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4.2 Optimal Sharpe Ratio Portfolio - A Model

4.2.1 Model Purpose

To study the effect of each input to the Sharpe ratio, it is necessary to isolate the indi-

vidual impacts of returns, volatilities, and correlations in an optimal setting. To do this,

a theoretical construct is introduced which is not practical for implementation, but is

simple and used as a tool only for analysis. The portfolio construction method is called

the Optimal Sharpe ratio portfolio (OSR).

4.2.2 Near-Perfect Foresight

In the previous chapter, the concept of near-perfect foresight was introduced. For the

purpose of this chapter, the near-perfect foresight method of security selection is ex-

tended to assist with the OSR portfolio formation. A description of the security selec-

tion method is also warranted here.

If the objective of portfolio formation were simply to achieve the highest returns pos-

sible, irrespective of risk, then perfect foresight would select the one stock with the

highest returns. However, Markowitz clearly rules this out as a practical path and sets

in place the superiority of diversification.

Diversification is only possible with more than one security. This analysis seeks to un-

derstand how the Sharpe ratios from a panel of allocation methods change in the pres-

ence of security selection (positive and negative). So to form portfolios from sets of

securities with better and worse performance, we need a method to pick stocks each year

to feed into the allocation methods and observe the resulting Sharpe ratios.

As the existing literature points out, there is a vast array of methods espoused for select-
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ing stocks. These can be from any combination of discretionary or systematic, and from

fundamental and quantitative. Each of these methods can select from a wide variety

of inputs (financial statement ratios, relative momentum, etc.) and parameters (1 year

look-back, rolling 3 years, etc.). Any method that we might use in our analysis can be

adapted with a slight change in parameter set or inclusion of an additional data point.

And any method that we use may work well in a particular year and poorly in a later

year.

For this reason, I introduce the concept of near-perfect foresight. It is not achievable

in practice, but it is simple to implement, reliably creates the stock return bias that is

needed for answering my particular questions, and leaves intact the requirement of di-

versification that Markowitz established. Near-perfect foresight is a boundary condition

method in that it is the best outcome that can be achieved while preserving diversifica-

tion. No other method of security selection could outperform near-perfect foresight and

retain the same potential for diversification.

So if perfect foresight implies picking one single best winner, then my versions of near-

perfect foresight would be identifying in advance a range of stocks with the biggest gains

or losses in the following year and removing them from the set of available securities.

This method leaves intact the potential for diversification by continuing to work with a

large set of available securities while reliably improving or degrading the return profile

of the potential portfolios.

The approach is implemented by using a one year look ahead when forming the port-

folios. As before, it begins with the 1,000 largest capitalization stocks available in the

data set at the end of the year. I then look ahead a full year and rank the performance

of each stock that is available for the portfolios. Portfolios are formed with advance

knowledge by systematically removing the best or worst performing stocks based on

performance in the following year.
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For this chapter, the original near-perfect foresight approach used in the last chapter

is now extended to include a one year look-ahead into the additional characteristics of

volatility and correlation.

4.2.3 OSR Model Definition

The OSR may seem similar in name to an existing systematic portfolio construction

method called the Maximum Sharpe ratio (MSR). The OSR method differs significantly

from the MSR. A portfolio constructed using MSR uses historical data to estimate the

returns and covariance matrix. The weights are the solution which provides the maxi-

mum Sharpe ratio portfolio given the estimated parameters.

Rather than using historical information to estimate parameters and then to optimize

portfolio weights, the OSR method introduced here is forward looking and based on

the same concepts from the near-perfect foresight used in the previous chapter. The

OSR method creates the most efficient portfolio that could have been constructed with

one-year perfect foresight into returns, volatilities, and the correlation matrix.

If the parameter estimates used for the MSR portfolio turned out to be perfect, then the

MSR portfolio would equal the OSR portfolio.

To find the weights for the OSR portfolio, the maximization requirement is given by:

argmax
w

N∑
i=1

[wiri]−Rf
√
w′σw

The result of the maximization routine produces the vector of weights for each stock in

the portfolio with wi being the weight of each asset, ri being the return of each asset,

Rf being the risk free rate, and
√
w′σiw being the standard deviation of the portfolio.
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The notations of w and w′ are the vectors of the weights from the resulting maximiza-

tion.

Some of the allocation methods used in my previous chapters have required an opti-

mization using the covariance matrix which is formed from historical estimates. Because

optimizers amplify the impact of covariance outliers, the matrix is normally adjusted

according to the shrinkage routine of (Ledoit and Wolf 2004).

Quite important to note however, is that in the case of the OSR portfolio, I do not use

the shrinkage method for the covariance matrix because I am not estimating this param-

eter but instead am looking ahead one year with perfect foresight.

4.2.4 OSR Portfolio Formation

Before beginning to focus on the performance characteristics of the OSR, it is impor-

tant to examine the consequences of the allocation method on the size of the security

set selected. While the overall method is not achievable without perfect foresight, the

portfolios resulting from the maximization routine should not be overly concentrated in

a small set of securities.

In the near-perfect foresight portfolios used in Chapter 3, I restricted the method to

removing a small subset of the best or worst performing securities to create a reason-

able return tilt in the universe of available stock returns. The tilt was entirely based

on foresight into returns, not volatilities or correlations. The method used in Chapter

3 of removing a few stocks preserved a large portion of the available securities so that

diversification remained possible. Had full perfect foresight been used, an unreasonably

small set of securities would have been used in the formation of the portfolios. Perfect

foresight in our context would have started with batches of the 5 best or worst securities.

This is too small of a subset to be reasonably considered.
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By contrast, the OSR method uses full perfect foresight but seeks a more complex ob-

jective. Because the optimization functions on a ratio of portfolio returns and standard

deviation, and because there are low and stable correlations in the cross section of re-

turns, a reasonable number of securities are selected each year as shown in Figure 40.

The OSR method imposes two important restrictions on the weights of individual securi-

ties. First, so as to maintain a comparison with the other allocation methods studied in

our panel, a maximum security size of 5% is allowed. Also, so as to reduce the number

of insignificant positions, a minimum position size of 0.01% (1 basis point) is imposed.

Figure 40: OSR Portfolio: Number of Stocks Selected

The figure above displays the number of stocks selected from the top 1,000 market capitalization uni-

verse each year to form the optimum Sharpe ratio (OSR) portfolio with perfect foresight. The mean

observation across the time series is 131. By accounting for the concentration of security weights in the

OSR, the figure also displays the effective number of stocks in the OSR, with a mean observation of 46.

The number of stocks selected is a simple measure of the starting point each year. How-

ever, the Effective Number of Stocks (described in Appendix 1) measures the concen-

tration impact of the weighting that the OSR portfolio ultimately selects. It is this

measure of concentration which can be compared to prior academic studies to check the
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reasonableness of the concentration of the OSR portfolios.

4.2.5 Concentration - Academic & Practical Reference Points

There is a section of the literature which relates portfolio concentration (measured in

various ways) to the observed performance. But summary data on what comprises a

concentrated fund is limited. This is due in part to the discretionary nature of how to

classify a concentrated portfolio. However, a few academic studies have shown data on

concentrated manager cohorts which can be referenced to check the reasonableness of

the portfolio sizes.

Even though a stock set of 131 is significantly smaller than the 1,000 stocks that I start

with each period, it is in line with the findings of (Fulkerson and Riley 2019) who study

portfolio concentration from 1999 through 2014. In their study, the median number of

stocks is around 180 while the first quartile by selection size is around 140. As will be

shown later, the starting point for my analysis will be an equally weighted portfolio of

the most optimal stocks. Equal weight portfolios have an effective number of stocks

equal to the total number of stocks as there is no concentration effect. This connects the

work of (Fulkerson and Riley 2019) to my starting point as a reasonable reference.

In the years 1970, 1980, and 1987, the OSR process produces the minimum stock selec-

tion sets of 23, 26, and 25. While these are the lowest levels observed in the OSR data

set, it is within the observed range of securities used by concentrated active equity man-

agers. This range of holdings is supported in research by (Cremers and Pareek 2016), a

study that spanned both US equity mutual funds as well as institutional portfolio hold-

ings from 13-F filing. Of 39,555 portfolios examined, the mean holding size was 117 with

a standard deviation of 195. The smallest portfolio held just 10 stocks.

In practice, offerings in the marketplace are observed that advertise high levels of stock
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concentration. A search of Morningstar for concentrated managers shows top results as:

1. Alliance Bernstein Concentrated Growth Fund. Ticker (WPASX). ”Approximately

20 primarily US large-cap stocks”. https://www.alliancebernstein.com/funds/

us/equities/us/growth/concentrated-growth.htm

2. Lazard US Equity Concentrated. Ticker (LEVIX). ”The strategy typically in-

vests in 15–35 companies with market capitalizations generally greater than $350

million.” https://www.lazardassetmanagement.com/us/en_us/investments/

strategy/us-equity-concentrated-strategy/s81

After referencing both the academic studies and a review of market offerings, the concen-

tration of the OSR portfolios in any year seems reasonable.

4.2.6 OSR Model Design Summary

The OSR portfolio is clearly not achievable without perfect foresight. However, just as

with the near-perfect foresight method crafted for security selection, the OSR perfect

foresight method is created as a boundary condition for the purpose of studying and

quantifying the potential contributions available from security selection and allocation

method.

4.3 Performance Attribution of the OSR Portfolio

This section will examine the performance of the OSR method and illustrate how low

correlations are the key driver of portfolios with optimal Sharpe ratios.
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4.3.1 Comparison Portfolios

It is accepted that the OSR is not an achievable construction method due to lack of

perfect foresight, but is used as a tool to examine the contribution to performance im-

provements that are possible from varying the available securities and adjusting the

capital weighting methods.

To explore these parameters in greater detail, the full perfect foresight OSR method can

be compared with three other portfolio allocation methods.

First, the opposite of perfect foresight is no foresight. The equal weight (EW) method

using the full 1,000 largest capitalization stocks is the embodiment of no foresight.

Second, perfect security return selection is examined. This method focuses purely on

selecting the highest returning securities without regard for volatility or correlations.

For the comparison in this section of analysis, we will assume perfect foresight with

regard to security performance and select the 20 best performing stocks each year. Since

the OSR method is formed with a max position of 5% in any single stock, then a set

of the 20 best performing stocks has the greatest level of concentration that would be

allowable under the OSR method. This makes the two methods comparable in potential

concentration.

For the final comparison method, the stocks selected for the OSR portfolio are equally

weighted, not optimally weighted. The full OSR method knows all of the returns, volatil-

ities, and correlations for the full set of 1,000 stocks a full year in advance. The OSR

method both selects the optimal security set, and applies the perfect weighting scheme

to maximize the Sharpe ratio. For the final comparison, the optimal weights are omitted

and only an equal weight portfolio of the OSR securities is shown. By equal weight-

ing the OSR selected stocks, we can isolate the impact of security selection in the OSR
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optimization.

Figure 41: OSR Performance Comparison

The figure above displays the annual return vs. risk for each allocation method through the 50 years of

the study, 1968 to 2017. Each dot represents a single year within the study period for each method of

portfolio construction.

4.3.2 Initial Performance Observations

The median Sharpe ratio of the EW 1,000 Stocks (green) is in line with the previous

summaries of performance that have been shown in the opening chapters and in the

data summary in the appendix. This is the baseline for the comparisons as there is no

security selection, no optimal weighting, and no foresight.

The median Sharpe ratio of the portfolios which select the 20 best performing stocks

each year (blue), is significantly above the EW portfolios. This is not much of a surprise,

however, my expectation was for these observations to be substantially higher than 5.54.

Annualized returns are significantly higher, but annualized volatility also increases which

reduces the observed Sharpe ratios. The ability to perfectly pick the top 20 stocks each
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year is no doubt an advantage (even if unattainable) over the EW method, and accounts

for a 4.73 points increase in median Sharpe ratio.

The OSR method (red) with full perfect foresight exhibits median Sharpe ratios over

127. Again, these are clearly unattainable in practice, but it is curious how these enor-

mous gains in efficiency are derived. The red dots show improvements in annual returns

over the EW (green), but the main source of improvement is the enormous reduction in

portfolio volatility. This can be seen by the clustering of the red dots around the zero

level of annualized volatility.

The clustering is a function of volatility and correlation of the individual stocks, but it

is not yet clear from the portfolio performance which parameter is the key driver of the

optimal Sharpe ratios.

Finally, EW of the OSR stocks (black dots) are the same stocks that are used to con-

struct the OSR (red) portfolios. By equal weighting the OSR stocks, the performance

aspect can be isolated from the weighting aspect. From this we see that the black dots

are slightly better in terms of annual performance than the green dots (no selection,

EW), but are significantly less volatile even with an equal weighting.

The black dot portfolios are clearly not picking the highest returning stocks despite hav-

ing perfect foresight into performance. These portfolios are being formed from stocks

with slightly better performance than average, but with some combination of lower

volatility stocks with lower average correlations. This means that the enormous improve-

ment in the Sharpe ratios of the red portfolios is being harvested primarily from the

volatility and correlation combinations within the security set. Harvesting these charac-

teristics is optimized through perfect weightings.
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4.3.3 Time Series Isolation

Now we move from portfolio results to examining the inputs of the underlying stocks.

To see the comparison of the return, volatility, and correlation elements in more detail,

the full study scatter plot approach is now shown in time series format. For each year,

the mean observation of the stocks in each portfolio is shown for each parameter. This

allows an annual comparison as another way to see how each of the annual dots match

up with each other.

The three methods shown in the following charts all use equal weights of the securities

which levels the field for a fair comparisons. The OSR (red) portfolios are not included

as they are just a special optimal weighting of the black dot portfolios.

Figure 42: Average Security Performance Comparison

The figure above displays the annual mean return of the securities selected for inclusion in the allocation

methods.

4.3.3.1 Mean Annual Returns In Figure 42, the scatter plot of Figure 41 comes

to life year by year with observations of the mean annual returns of the component
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stocks. Each of the methods selects securities that have better mean performance than

the full set of 1,000 stocks. The 20 best performing securities (blue) are significantly

above the full 1,000, as expected. These portfolios are formed from the very top of the

range of security performance available each year.

The EW of OSR (black) portfolios at first appear to select only marginally better se-

curities than the full 1,000 securities available each year (green). However, on closer

inspection, the vertical scale of the graphic makes it difficult to see that the mean per-

formance of the EW OSR securities is still meaningfully above the EW 1,000 stocks.

It is now clear that the large improvement in the OSR portfolios are not being derived

primarily from perfect foresight into security performance. This evidence stands in con-

trast to the effort being expended in the industry to select securities with superior per-

formance.

Figure 43: Average Security Volatility Comparison

The figure above displays the mean annualized volatility each year of the securities selected for inclusion

in the allocation methods.
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4.3.3.2 Mean Annual Volatility The mean volatility of the stocks in each of the

allocation methods is more similar than the returns that we saw in Figure 42. The

higher returns of the top 20 stocks are accompanied by higher volatility throughout the

time series. The mean volatility of the OSR stocks is very similar to the mean volatility

of the full 1,000 stocks available each year in our study.

This observation further explains that volatility differences are not the driver of the

large Sharpe ratio improvements. All else being equal, lower volatility securities could

lower the volatility of the portfolio (denominator of the Sharpe ratio) and increase the

Sharpe ratio. But this is not what is happening with OSR portfolios.

Figure 44: Average Pairwise Correlation Comparison

The figure above displays the mean pairwise correlation of the securities selected for inclusion in the

allocation methods.

4.3.3.3 Mean Pairwise Correlations It is quite clear from Figure 44 that the

OSR method is selecting securities with dramatically lower mean pairwise correlation.

The mean pairwise correlations of the top 20 performing stocks are indistinguishable
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from those of the full set of 1,000 stocks.

Looking at the time series of mean annual input characteristics makes clear that the

OSR portfolios are constructed from optimal weighting being applied to a set of securi-

ties with the richest set of diversification potential.

4.3.4 Security Selection Crowds Out Diversification Benefits

A portfolio formation process that starts with security selection based on predicted

returns directly limits the potential diversification benefits of the portfolio. As portfolios

become more concentrated, this potential benefit is severely limited and even perfect

selection based on returns can not overcome the cost of limited diversification.

To show that low correlations are much more important than security selection in the

creation of optimal Sharpe ratio portfolios, we now look more closely at the top 20 per-

forming securities each year. In our previous analysis shown in Figure 41, the blue dots

of the Top 20 performing securities are shown with equal weights. This was done to

maximize the contribution possible from security performance selection, while limiting

the concentration to the same level as possible with the OSR portfolios.

However, when the concentration constraint of maximum 5% in any security is relaxed,

the limiting effect of primarily focusing on stock level performance can be quantified.

Figure 45 starts with the same blue dots from Figure 41. These are equally weighted

portfolios of the top 20 performing securities selected each year with perfect return fore-

sight. These portfolios had meaningfully higher Sharpe ratios than EW of the full 1,000

securities, as expected. By comparison, OSR portfolio Sharpe ratios were more than 20

times higher than these Sharpe ratios. One main difference is that OSR portfolios also

included optimal weights.
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Figure 45: Optimizing the 20 Best Performing Stocks

The figure above displays the Sharpe ratio improvements that are available by optimizing the weights of

the 20 best performing stocks each year.

In Figure 45, we start from the same top returning securities used for the blue dots, but

then fully relax the weighting concentration limits and optimize the Sharpe ratios by

varying the weights.

With free reign to concentrate the portfolio in a very dramatic way, as shown in Figure

46, the median Sharpe ratios improve to 12.64, which is more than double the starting

values. While these are incredibly high and unattainable Sharpe ratios, they are still

only about 10% of the Sharpe ratios of the OSR portfolios.

This approach started with perfect security return selection as the first step in the for-

mation of the portfolio. This was followed by setting the weighting for each of the stocks

in the portfolio. Both of these steps were done with perfect foresight. The net effect of

engaging in security return selection first is to limit the potential diversification benefits

of the portfolio and reduce the potential Sharpe ratio. Even perfection in return based

stock selection can have limiting effects on potential portfolio Sharpe ratios.
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Figure 46: Selection and Weighting of Optimize 20 Best Performing Stocks

The figure above displays the number of stocks selected and the effective number of stocks used when

starting from a selection set of the 20 best performing stocks each year, and then allowing the weights

to fully float in order to optimize the Sharpe ratio. As in previous optimization methods, the minimum

security size allowed is 0.01% (1 basis point). Securities with weights below 1 basis point are set at zero.

Availability of the lowest pair-wise correlations are a necessary condition to creating

portfolios with optimal Sharpe ratios. The consequence of engaging in security selection

as the primary step to forming a portfolio, is that it creates an inherent limit on the

improvement to the Sharpe ratio of any portfolio.

4.4 One Perfect Foresight

4.4.1 Introduction

Selection of securities for portfolios could be made using not only returns, but also

volatilities or correlations. As they are all inputs to the Sharpe ratio, each of them have

varying effects. But each has a different potential to contribute to an optimal portfolio.
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Examining each of these parameters in isolation reveals another important view into the

landscape of these characteristics. To expose the landscape of contribution to Sharpe

ratio, we begin by forming portfolios with perfect foresight into just one of the parame-

ters.

4.4.2 Method

The landscape of contribution to Sharpe by parameter is evident when we isolate these

components and sort them into quartiles.

For the return quartile portfolios, a one year perfect foresight is applied to the full 1,000

stocks each year and stocks are ranked according to their returns. Quartile 4 contains

the 250 worst performing stocks each year, while Quartile 1 contains the 250 best per-

forming stocks. The same method is used for forming portfolios based on volatility and

correlation where Quartile 4 contain low correlation stocks or stocks with the lowest

pairwise correlations. Quartile 1 contain stocks with the highest volatility or highest

pairwise correlations.

This method is implemented each of the 50 years in our study and median Sharpe ratios

are observed for each perfect foresight parameter and for each quartile. These 12 obser-

vations form the rough landscape of perfect foresight by parameter. The landscape will

be examined with higher granularity in the next chapter.

4.4.3 Observations

4.4.3.1 Returns In Figure 47, the blue line references portfolios formed with perfect

foresight into the returns of the stocks each year. Quartile 4 represents portfolios formed

by an equal weight of the bottom performing 250 stocks each year, while Quartile 1
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Figure 47: The Landscape of Perfect Foresight by Parameter

The figure above displays the median Sharpe ratio of portfolios formed with perfect foresight into each of

the single parameters and sorted by quartile.

represents portfolios form by an equal weight of the top 250 performing stocks each

year.

As expected, stocks with higher annual performance naturally form portfolios with

higher Sharpe ratios than those with lower performance. Relative to the parameters

of volatility and correlation, the slope of the line is steeper indicating a greater reward

for selecting well. The consequence of selecting badly is accompanied by a significant

penalty.

4.4.3.2 Volatility In the same way, the green line represents portfolios formed with

perfect foresight into the volatility of stocks. Quartile 4 represents low volatility stocks

while Quartile 1 represents high volatility stocks. Initially it seems perplexing that high

risk is not accompanied by higher returns and higher Sharpe ratios. But the slope of

this line conforms to the work of (Baker and Haugen 2012) who point out that “The
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fact that low risk stocks have higher expected returns is a remarkable anomaly in the

field of finance.” Their work looked at the returns of individual stocks relative to volatil-

ity, however, in this analysis, the anomaly manifests itself in the resulting portfolios in

the same way.

The low volatility anomaly is exploited by the Minimum Variance portfolio allocation

method which showed remarkable robustness in the tests of Chapters 2 and 3.

While there is benefit for correctly selecting low volatility stocks, the penalty for incor-

rectly selecting high volatility stocks still allows for a positive Sharpe ratio. This is in

contrast to the penalty seen for incorrectly selecting securities based on return perfor-

mance.

4.4.3.3 Correlation In a similar manner, the red line is formed by stocks sorted

with perfect foresight into quartiles of pair-wise correlations. Quartile 4 has the lowest

pair-wise correlations while Quartile 1 has the highest pair-wise correlations. In the

lowest quartile of pair-wise correlation, we also see an acceleration of the benefit to

Sharpe ratios.

It is remarkable that the level and slope of this line is quite similar to that of the port-

folios sorted into volatility quartiles. There appears to be a low correlation anomaly at

the portfolio level, however, these results only apply to a portfolio formed with equal

weights and will be examined more closely in the next chapter.

4.4.3.4 Landscape The landscape of Figure 47 contains several interesting obser-

vations. First, the return slope is very steep. This may seem to attract the attention

of practitioners to predict the best returns. Success analyzing stocks in this manner

can lead to relative return performance. However, errors in this approach can just as
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easily be costly and net out potential gains. The difficulty in predicting the returns of

individual securities create offsetting positive and negative gains may make it hard to

persistently outperform a portfolio without any security selection.

By contrast, even the worst quartile of selection for volatility or correlation still yield

positive (albeit below market) Sharpe ratios. This lack of penalty is further enhanced by

a payoff for picking the best quartiles of volatility or correlation stocks which show at or

above the benefits of being between the second and first quartile of security selection.

The shape of this landscape gives rise to the analysis in the final chapter which will

examine the correlation benefit and the effect it has on the panel of allocation methods.

4.4.3.5 Portfolio Combinations Another way to view this isolation by parameter

is to examine the scatter plots of all of the resulting portfolios which are formed by the

best quartile for the individual parameter.

Figure 48: Portfolios Formed With One Perfect Foresight

The figure above displays the annual return vs. risk for portfolios that are formed with one perfect

foresight.
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The starting point for Figure 48 are the black ’+’ markers which represent annual port-

folios formed by the equal weight of the full 1,000 stocks each year. The blue dots rep-

resent portfolios formed by the top quartile of stock returns each year, and have the

highest resulting Sharpe ratio. The green dots represent the portfolios formed by the

bottom quartile of stock volatility each year. The red dots are the portfolios formed by

the bottom quartile of mean pairwise correlations each year.

4.5 Conclusion

It was (Markowitz 1952) who showed the impact of correlations between securities on

the risk-return efficiency of a portfolio. Before this time, it was not known how the set

of available portfolio could be chosen so as to form a frontier of efficiency. This was a

foundational work that clearly showed the impact of these inter-relationships on a total

portfolio.

But Markowitz also pointed out the importance of the security selection work, which he

did not address in his paper. This chapter of my research adds to the literature by find-

ing a method to measure the relative importance of accurate security selection versus

accurate correlation forecasting.

This chapter has demonstrated the dominance of the correlation structure in driving

portfolio efficiency. Whereas most practitioner effort is spent on predicting the relative

returns of individual stocks, portfolio efficiency gains are significantly more available

from harvesting the diversification benefits of a low and stable correlation structure.

It may seem counter-intuitive that by prioritizing security selection in the process of

forming portfolios, the diversification benefits can be severely limited. This limitation

can not be mitigated through relative performance improvements of security selection.
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For both researchers and practitioners, a greater amount of effort should be expended

on exploiting correlations as the starting point of portfolio formation. If the generalized

hierarchy of correlation can be more accurately forecast, then it can be harvested in the

form of higher Sharpe ratios. Portfolios with optimal Sharpe ratios are dominated by

harvesting low correlations, not by selecting stocks with high returns.

The next chapter sets out to examine the stability of the hierarchy of correlations and

to show the impact of harvesting low pairwise correlations on the panel of allocation

methods.
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Chapter 5

Correlation Selection



5 Correlation Selection

5.1 Introduction

The previous chapter started from the end point of an optimal Sharpe ratio portfolio

given one year of perfect foresight into all stock characteristics (return, volatility, correla-

tion). This approach highlighted that perfectly optimal portfolios are dominated by low

correlation stocks, not by high returning stocks. This chapter moves forward with this

information to examine the specific effects of selecting stocks based on correlation. This

will be termed ‘correlation selection’.

The analysis of correlation selection will be taken in three parts, aided by the tool of

perfect foresight which is now applied to correlation selection.

• In the first section, perfect correlation foresight is applied to examine the impact

on the returns, volatilities and correlations of the available stocks.

• In the second section, a broad range of correlation selection is translated into time

series of returns to document improvement or degradation in portfolio Sharpe

ratios.

• In the final section, the robustness of the Sharpe ratios differences is tested to

show the absolute levels of correlation selection that would be required to change

portfolio Sharpe ratios with statistical significance.

The purpose of the analysis is to more clearly understand how stock selection and cap-

ital allocation interact. It is not the intent of this research to suggest methods to more

accurately select stocks from a variety of methods. But a deeper understanding of the
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drivers of optimal Sharpe ratio portfolios may help to focus future efforts toward com-

bining robust stock selection with optimal capital allocation methods.

5.2 Refined Method of Selection

In the previous chapter, a simple method of examining stocks by quartiles was shown in

Figure 47. In this approach, the full 1,000 stocks in the correlation matrix were sorted

by the quartile of their mean pairwise correlation vs. all other securities. While this

approach allowed us to see the rough landscape of perfect foresight when applied to

correlation, it lacked the level of detail required for a more refined analysis.

While we don’t see correlation forecasting much in practice, there is a smaller set of

literature which points toward this objective, but with a high degree of mathematical

complexity. Given what has been observed with many equity portfolio manager’s willing-

ness or ability to use complex mathematical tools, the methods in the literature would

certainly be a stretch for them to implement.

For the analysis in this chapter, we need a reliable way to bias the set of available securi-

ties up and down just on correlation. While we may have selected from the set of meth-

ods seen in the literature, any method chosen would not have reliably created the effect

we need in order to study the interaction of correlation directly on portfolio Sharpe ra-

tios. In some years, our chosen method would work well, and in others it would work

poorly.

For this reason, I extend the near-perfect foresight method from the prior two chapters

to the correlation parameter for our set of stocks. It is acknowledged that this approach

is not practical, yet the reasons remain the same as for our near-perfect foresight into

returns. Potential diversification is preserved with this approach. In addition, we view

this method as a boundary condition such that any other method could not achieve a
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better result while preserving the diversification benefit. It’s purpose is to create a spe-

cific set of outcomes so that the relationship between correlation and portfolio Sharpe

can be studied with the highest degree of clarity.

For the analysis in this chapter, perfect one year foresight is now applied to correlation,

and a broad range of correlation selection is applied. To create the correlation tilts, the

process begins with all 1,000 stocks which are ranked by their mean pairwise correlation

to all other stocks.

As a first step in creating portfolios tilted toward lower correlating stocks, the stock

with the highest ranking of mean pairwise correlation is removed. Conversely, for creat-

ing portfolios tilted toward higher correlating stocks, the stock with the lowest ranking

of mean pairwise correlations is removed.

The process of removing stocks is conducted one at a time. This method is required

because the rankings may change as stocks are removed. A stock may have a high or

low mean pairwise correlation, but the impact of its removal on the mean correlation of

the other stocks is not known.

Once a single stock has been removed, the rankings are recalculated and the process

repeats to remove either high or low ranked stocks to continue the process of tilting the

portfolio toward higher or lower correlating stocks. The process is repeated until the

portfolio has reached its desired size. In the following sections, both higher and lower

correlation tilts are analyzed on portfolio sizes from 1,000 down to 2.

Due to high computational intensity, portfolios which are formed with optimization

methods (ER, MV, and MD), are analyzed in increments of 100. The looping process to

remove stocks is still completed one stock at a time, but the portfolios are then formed

once increments of 100 have been achieved in the selection process.
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5.3 Stock Characteristics

As stocks are systematically removed from the beginning set of 1,000 available names,

there are observable changes in the characteristics of the remaining stocks. As a first

step in the analysis, this section shows the changes in return, volatility, and correlation

of the remaining stocks. This is an important first step to understand because in the

following sections, portfolios are then constructed from these stocks and it is helpful to

understand the inputs to the portfolios. The results at this stage are a cross section of

annual observations.

For each of the charts within this section, the perspective of analysis is a single year.

Each grey line in the charts represents a single year from the 50 years of history con-

tained within this study. To create each line, a single year of returns is considered, while

looping through the selection method described above. This process is followed for port-

folios that tilt toward higher and lower correlations. The mean observation across the

years is then plotted in a bold color line.

Also, within this section only, as portfolios are not being formed, it was computation-

ally efficient to analyze all sizes of portfolio from 1,000 to 2 in increments of one. This

creates a very fine level of detail to analyze changes in stock characteristics.

In a later section, the individual years are compiled to create time series that are exam-

ined for characteristics. This will be a switch from cross sectional analysis of years to a

time series perspective.

5.3.1 Mean Stock Returns

The first characteristic documented is the change in mean annual returns for the stocks

that remain in portfolios with correlation tilts.
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Figure 49: Change in Mean Stock Return - Tilt to Lower Correlation

For each of the 50 years in the study, the chart displays a line showing the change in mean return of

the remaining stocks after an increasing number of high correlation stocks are removed with perfect

foresight.

While each year of analysis would show a different level of returns, the characteristic to

observe is the change in mean returns that occurs from correlation tilting. Figure 49 is

designed to show the change in mean stock return on the vertical axis. The horizontal

axis shows the size of the resulting portfolio as the tilt is applied.

At the far left of the chart, all of the lines converge to 0% change as there is no cor-

relation tilt applied yet, with a full 1,000 stock portfolio. As the individual year lines

proceed toward the right side of the chart, the resulting portfolio size is getting smaller

as stocks are removed and the remaining stocks have lower mean pairwise correlation.

A small number of stocks being removed has very little effect on the mean return, but

the resulting distribution of changes to returns increases in dispersion as fewer stocks

remain in the portfolio. The mean of the observations is also smooth as few stocks are

removed but as the remaining portfolio size approaches 100 or smaller, the mean line
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becomes less stable.

The key observation from this first look is that by removing high correlation stocks,

the remaining stocks have higher returns on average. This low correlation anomaly will

carry significance as we begin to build portfolios in the later sections of this analysis.

Figure 50: Change in Mean Stock Return - Tilt to Higher Correlation

For each of the 50 years in the study, the chart displays a line showing the change in mean return of the

remaining stocks after an increasing number of low correlation stocks are removed with perfect foresight.

While similar to the previous figure, Figure 50 shows the resulting mean return when

portfolios are tilted toward higher correlating stocks. As expected, the mean return

line falls as the portfolios become smaller. However, the distribution of returns across

the years for each size portfolio is dramatically wider and less stable than when tilting

toward lower correlations.

In Figure 51, the individual year lines are removed to make clear the spread in returns

that occurs from being able to perfectly remove stocks based on high vs. low correlation

in the following year. As seen from the two previous figures, not only are the means of
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Figure 51: Correlation Selection: Mean Stock Return Comparison

The figure above shows a comparison of the change in mean stock return when tilting toward higher and

lower correlation stocks.

the return distributions different, the standard deviation of the distributions is different.

Lower correlating stocks have a more narrow dispersion of annual return differences

while higher correlating stocks have a wider dispersion of return differences.

If correlation selection is feasible in the absence of perfect foresight, this method would

seem to have application to return forecasting for both traditional ’long-only’ portfolios

as well as ’long-short’ portfolios.

In this view of a single characteristic, lower correlating stocks have higher mean returns

and higher correlating stocks have lower mean returns. Portfolios built from lower cor-

relating stocks would not only help to increase returns but would also naturally help to

decrease portfolio volatility, but only if stock volatility were unchanged by correlation

selection. As shown in the next section, this is not an appropriate assumption.
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5.3.2 Mean Stock Volatility

Mean stock volatility is the next characteristic to examine in the presence of perfect

correlation tilting.

Figure 52: Change in Mean Stock Volatility - Tilt to Lower Correlation

For each of the 50 years in the study, the chart displays a line showing the change in mean annualized

volatility of the remaining stocks after an increasing number of high correlation stocks are removed with

perfect foresight.

As seen in Figure 52, when tilting stocks toward lower correlations, we observe a rela-

tively smooth increase in the mean volatility of the remaining stocks. The pattern is

similar to that of the increase in mean stock returns, but in smaller sizes of portfolios,

the effect of increasing volatility is especially present. Also, the distribution of the obser-

vations is relatively narrow and only become unstable at portfolio sizes of approximately

100 or less.

By contrast we see in Figure 53 that when tilting toward higher correlating stocks, there

is little decline in the mean stock volatility. However, the distribution of the mean stock

volatility at each level of portfolio size is dramatically wider.
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Figure 53: Change in Mean Stock Volatility - Tilt to Higher Correlation

For each of the 50 years in the study, the chart displays a line showing the change in mean annualized

volatility of the remaining stocks after an increasing number of low correlation stocks are removed with

perfect foresight.

Lower correlation stocks appear to have higher mean volatilities, while higher correlation

stocks have a very wide range of volatility and no appreciable difference is observed in

the cross section of years when selecting based on correlation alone.

In Section 5.3.1, selecting stocks based on lower correlations improves mean annual

returns. However, we can now see that stocks with lower correlations also give rise to

higher mean volatilities. These two forces work against each other in the Sharpe ratio

of portfolios built with correlation selection. The net impact of these opposing forces

within a portfolio will be determined by the correlation between the securities.

Will the lower correlation of the securities be enough to offset the higher mean volatil-

ity? Before we answer that question, let’s first observe how correlations change when

tilting the portfolios.
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Figure 54: Correlation Selection: Mean Stock Volatility Comparison

The chart shows a comparison of the change in mean stock volatility when tilting toward higher and

lower correlation stocks.

5.3.3 Mean Stock Correlations

It is intuitive that as portfolios are tilted toward higher or lower correlations (with per-

fect foresight), that the resulting mean correlations will shift in the desired direction.

For this section however, the method of displaying the change in stock correlations is

slightly different. The vertical axis of Figure 55 measures the observed correlations

rather than the change measured from the full 1,000 stock portfolio. The starting point

of 0.27 should be familiar with observations made in the introduction of Chapter 2 and

shown in Figure 2.

Tilting toward smaller portfolios, the observations of the mean correlations for each year

proceed in relatively smooth and symmetric fashion toward higher and lower levels. At

portfolios of 200 stocks, the spread in mean correlation is approximately 0.30. At the

extremes of small portfolios, mean correlations approach 0.8 for higher correlations and
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Figure 55: Change in Mean Stock Correlation

The figure shows a comparison of the change in mean pair-wise stock correlation when tilting toward

higher and lower correlation stocks.

approach -0.3 for lower correlations. The spread at these extremes is close to symmetric.

5.3.4 Stock Characteristic Summary

This section of the analysis focused on the changes in the mean return, volatility, and

correlation of individual securities when perfect foresight is used to select securities

based on correlation alone. To conduct the analysis, each of the 50 single years in the

study were used, and mean observations were calculated from the cross section of years.

The analysis highlighted changes in each characteristic. The next step is to move from

mean stock level characteristics to observing the impact on the cross section of annual

portfolios.
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5.4 Portfolio Characteristics

This next section moves forward from observing the mean characteristics of individual

stocks and begins to observe the net impact on portfolios which are constructed from

these stocks. As noted in Section 5.3.2, the impact of correlation selection is not easily

anticipated in advance. When selecting stocks with lower correlations, returns appeared

to increase while volatility also increased. We now combine these stocks together to take

the first step in observing the net effect on portfolios.

For this section, a simple equal weighted approach will be used to observe the early

differences in portfolio characteristics. In the next section, the full panel of capital allo-

cation methods will be applied in combination with correlation tilting.

5.4.1 Portfolio Return

With an equal weight method applied for this section of analysis, there is no change

from the results displayed in Figure 51. The mean observation is created with an equal

weight and so in respect to equal weighted portfolio returns, the two concepts are equiv-

alent.

5.4.2 Portfolio Volatility

Changes in portfolio volatility are not quite as obvious. Portfolio volatility is a combina-

tion of weights, volatilities, and correlations. In the previous section we saw offsetting

results for returns vs. volatilities. Low correlation stocks have higher returns but also

have higher volatilities. The correlation tilts will be the deciding factor when observing

portfolio volatility.
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Figure 56: Change in Portfolio Volatility

The figure shows a comparison of the change in portfolio volatility when tilting toward higher and lower

correlation stocks.

From Figure 56, it is now apparent to see that the tilts in correlation have a very clear

effect on portfolio volatility. Tilts toward higher correlation securities drive portfolio

volatility higher despite using stocks with slightly lower mean volatility. Tilts toward

lower correlation securities drive portfolio volatility lower despite using stocks with

clearly higher volatility.

Changes in portfolio volatility are dominated by changes in correlations. This effect

is clear as portfolio volatility moves in the opposite direction of mean stock volatility.

At portfolio sizes of 200, the difference in volatility between portfolios tilted toward

higher or lower correlation securities can be approximately 10% of annualized volatility.

Even in traditional ’long-only’ portfolios, correctly forecasting correlations would have a

significantly positive impact on portfolio volatility.
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5.4.3 Portfolio Sharpe Ratio

The focus of this dissertation work has been to more clearly understand how the ele-

ments of security selection and capital allocation interact. A clearer understanding may

help to drive work toward improving the efficiency of portfolios, which has been the

objective since Markowitz first wrote his seminal paper on portfolio construction.

The next step is to combine the elements observed from perfect correlation selection to

display the impact on our objective function, the Sharpe ratio.

Figure 57: Change in Portfolio Sharpe Ratio

The figure above shows a comparison of the change in portfolio Sharpe ratio when tilting toward higher

and lower correlation stocks.

Lower correlating securities have higher observed mean returns and this is a positive

impact to the numerator of the Sharpe ratio. Despite having higher mean volatilities,

the declining mean pairwise correlations more than offset the higher individual stock

volatilities and create portfolios with lower mean volatility. This is a net positive to the

denominator of the Sharpe ratio.

181



The shape of Figure 57 is interesting because it is not symmetrical. This is a reflection

of the observation made from the difference in volatilities. But the absolute change in

Sharpe ratios is helpful to quantify. For portfolios of 200 securities, ‘long-only’ portfolios

could achieve mean annual improvement in Sharpe ratio of approximately 0.4 with per-

fect correlation. Conversely, for portfolios of 200 securities with perfectly bad correlation

selection would suffer approximately 0.2 decline in mean annual Sharpe ratio.

5.4.4 Portfolio Characteristics Summary

Having moved from observing mean stock characteristics in the cross section of years,

this section of analysis combined the stocks into portfolios to observe mean changes in

portfolio characteristics. This analysis was also conducted using a cross section of years.

The next step in the research is to make two adaptations. The first change is to move

beyond equal weight and apply the full panel of capital allocation methods, while the

second change is to pivot from a cross section of annual observations to the creation of

time series of returns.

5.5 Capital Allocation Methods

This dissertation has used a panel of capital allocation methods to examine the inter-

action effect between security selection and capital allocation. The previous sections

of analysis focused on a cross section of annual observations and only used the equal

weight portfolio as a method for making this observation. In this section of analysis, a

pivot is made from cross sectional annual observations to the creation of time series of

returns. Within this context, each of the capital allocation methods previously used in

this dissertation are applied to quantify the interaction between capital allocation, and

securities selected using perfect foresight into correlation.
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For each of the charts in this section, a brief explanation of the design is warranted.

The horizontal axis displays the time series, beginning from 1968 through 2017 and

comprising the 50 years in the study. The vertical axis denotes the growth of $1 over

time and is in log scale to reduce the dramatic spread in results which makes the visual

observation of volatility more prominent.

Each chart contains four time series. The first is the growth observed when invested in

the risk free rate. The second line displays the growth when invested in the allocation

method applied to the full 1,000 stocks available. While a wide range of correlation

selection has been calculated, the next two lines display the growth when invested in 200

stock portfolios with tilts toward higher and lower correlation securities.

For all methods considered, portfolio sizes between 1,000 and 100 were created in in-

crements of 100. However, displaying the full spectrum of these lines on a single chart

becomes quite confusing. Therefore the choice was made to only display two additional

lines near the endpoints of the range of analysis. Full details of the returns, volatilities,

and Sharpe ratios for each of these portfolios is contained within Figure 75 at the end of

this chapter.

5.5.1 Capital Allocation Method - Market Capitalization

This section will highlight and explain the market capitalization method as one of the

eight capital allocation methods applied during the analysis. The full explanation for

the MC method is given in Section 6.3.1 of this dissertation.

The patterns seen by applying correlation selection tilts with the market capitalization

method are similar to those seen with the other seven allocation methods, and so to

avoid repetition of observations, the time series charts and summary tables are collected

in an appendix at the end of this chapter.
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The previous observations made in the cross section of years is evident also in the time

series. Portfolios built from lower correlation securities (green line) have higher overall

returns in the time series than do portfolios built from higher correlating securities (red

line). Visually it is also evident to see the difference in portfolio volatility. The green

line is visibly smoother than the red line.

The change in realized volatility is the most striking difference. For example, with the

market cap weighted portfolio, simple arithmetic returns are actually higher for port-

folios built with a tilt toward higher correlation. However, the significant increase in

realized volatility steeply degrades the geometric returns and creates a lower level than

portfolios tilted toward lower correlation stocks. This shift is a highlight of the value of

lower correlations within a portfolio context.

One exception regarding the pattern of observations is related to the minimum vari-

ance and maximum diversification methods. Because these methods are optimizations

using the information seen with perfect foresight, there is little to no improvement as

portfolios tilt toward lower correlations. But there are more dramatic breakdowns with

portfolios that begin to exclude these low correlation securities. The shape of this obser-

vation will be made more apparent in the next section.
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Figure 58: Time Series of Returns: Market Capitalization

The figure above shows a comparison of the time series of returns when tilting toward higher and lower

correlation stocks and applying the market capitalization method of capital allocation.

200 Low 1,000 200 High

Geom Return % 11.55 11.43 9.36

Arith Return % 11.95 10.18 12.77

Volatility % 8.47 15.06 24.98

Sharpe Ratio 0.84 0.44 0.32

Table 9: Time Series Summary - Market Capitalization

The table above summarizes metrics for the allocation method when correlation selection is applied across
the 50 year period in the study, 1968 - 2017.

5.6 Sharpe Ratios

The correlation tilts created for this analysis are created each year and on top of these

tilts, the panel of capital allocation methods have been applied. Just as we saw in Chap-

ter 3 when security selection was applied with perfect foresight into returns, the Sharpe
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ratios of the capital allocation methods did not respond symmetrically. Instead, uneven

changes were observed across the panel of allocation methods.

Figure 59: Panel of Allocation Method Sharpe Ratios Across Correlation Selection

The figure above shows a comparison of the Sharpe ratios for each of the capital allocation methods in

the study panel and across a range of correlation selection tilts.

Figure 59 shows the Sharpe ratios for each of the capital allocation methods in our

study panel and applied across a range of correlation selection tilts. There are several

observations that can be made about these results.

First, these methods can be visually sorted into two categories: those with convex

shapes (MC, EW, IV, ER) across the full range of tilts, and those with seemingly piece-

wise functions (MV, MD). At first this appears quite odd, but the full explanation is a

simple matter of the optimization function.

The MV and MD functions optimize for variance or diversification. These capital allo-

cations use a correlation matrix with the benefit of one year perfect foresight. As such,

they reach their optimal levels when the full set of securities is available to choose from.

At tilts which exclude higher correlation securities (to the left of the graph), they suf-
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fer very little degradation as these aren’t the securities that the optimizer is generally

choosing. This flat Sharpe ratio pattern continues with little variation all the way down

to 200 stock portfolios. This is because these capital allocation methods are constrained

by either 1% or 5% maximum positions which equates to 100 or 20 stocks. Each of these

levels is below the 200 stock threshold.

Conversely, as the tilt moves toward higher correlation securities (to the right of the

graph), the lowest correlation securities are being dropped sequentially and these are

exactly the type of securities that these optimized methods choose. As a result, the

Sharpe ratio declines rapidly.

By contrast, the other methods are not optimizing an objective function like variance or

diversification and do not follow the same pattern of Sharpe ratios across the range of

tilts. MC only uses current market capitalization for weights and can improve as lower

correlation securities are more available, but does not choose weights based on correla-

tion. EW is a simple equal weight and uses no parameter estimate to choose weights,

but does benefit as lower correlation stock are generally more available. Inverse variance

does not use correlation for weighting. Only ER is using correlation information, but as

variance is a larger component of the covariance matrix, the variance parameter dom-

inates. By definition, ER is placing equal risk into each security and even with a fully

known correlation matrix, the method will more closely approximate EW than MV or

MD.

A few relative notes are also warranted. For the methods displaying a convex function

(MC, EW, IV, ER), the correlation tilts appear to have uniform influence with the ex-

ception of MC which displays less benefit at the more extreme tilts toward lower correla-

tion stocks. This observation is in line with a similar observation for MC made in Chap-

ter 3 when we applied perfect foresight to the selection of stocks based upon returns.

MC again shows very little responsiveness to an ability to correctly select securities.
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With the MV and MD functions, there is an observed difference in the concentration

limits. For the MV method, the more concentrated version (5% max position size,

dashed blue line) benefits from correctly picking securities based upon correlation. Con-

versely, for MD, the more concentrated version (5% max position size, pink dashed line)

does not do as well as the less concentrated version. Why is this the case?

Again, this is due to the function being maximized during the optimization. Both meth-

ods have advance knowledge of correlation and use it in the optimization process. How-

ever, MV is minimizing variance, which will pick securities with the lowest combination

of volatility and correlation. MD is maximizing the diversification ratio which will tend

to pick securities with the best combination of high volatility and the low correlations.

So within the low correlation universe, they are picking nearly opposite securities.

Therefore, MD concentrates into higher volatility securities at the cost of Sharpe ratio,

while MV concentrates into the lower volatility securities to the benefit of it’s Sharpe

ratio. This observation also lines up with those made in Chapter 3 regarding MV vs.

MD when selecting with perfect foresight into returns.

5.7 Sharpe Ratio Robustness

As a final step in this chapter, it will be helpful to know whether an ability to correctly

pick stocks based on correlation would yield robust improvements in Sharpe ratio, or if

these increases are just a mirage without justification. If benefits were possible, it would

be good to know how accurate the correlation selection would need to be to crate robust

improvements in Sharpe ratios. This is similar to the analysis conducted in Chapter 3

for return based stock selection.

Fortunately, we have a useful test developed by (Ledoit and Wolf 2008) and used in

Chapter 2 and 3 of this thesis. A description of the test is set in Section 2.4 of this
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thesis. In brief, the test uses a robust inference method which constructs a studentized

time series bootstrap confidence interval for the difference between two Sharpe ratios.

To test our hypothesis that correctly selecting securities based upon correlation alone

produces superior Sharpe ratios, we will set the base return stream equal to the returns

achieved with the full 1,000 stock portfolio for each method. We then run the MATLAB

code provided by the authors to test the difference in Sharpe ratios for each level of tilt

and for each allocation method. The test code output provides a p-value which indicates

whether the observation is significantly different from the null hypothesis, which in this

case is that the true difference in Sharpe ratios is zero.

As an example of the convex functions, we can examine the result of the Sharpe ratio

robustness test for the EW allocation method as seen in Figure 60.

Figure 60: Sharpe Ratio Robustness Test: Equal Weight

The top panel shows the monthly difference in Sharpe ratio (δ̂) across a range of correlation selection

tilts with the p-value plotted in the lower panel. P-values below 0.05 are significant at the 95% level.

The top panel shows the change in monthly Sharpe ratio as measured by the robustness

test, with a 95% confidence band as calculated by the standard error. In the center of

the chart, the lines converge at the full 1,000 stock portfolio and there is no standard
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error. As the portfolios are tilted to higher and lower correlating securities, the standard

error increases and the band around the monthly change in Sharpe ratio (δ̂) widens.

The bottom panel shows the p-value of the Sharpe ratio difference test at each point

in the range of correlation tilting. For almost every point in the range of the convex

functions, the p-value of these tests sits well below the 0.05 threshold for significance

at the 95% level. This indicates that across the broad range, almost every amount of

change in Sharpe ratio due to correlation selection is meaningful and statistically robust.

As the Sharpe ratio tests for MC, IV, and ER are all quite similar to the EW test here

in Figure 60, the other charts have been included in the appendix of this chapter.

The optimized allocation methods show a different profile in the robustness tests. This

difference in profile is echoed in Figure 59. As an example of the difference, the chart

for Minimum Variance 1% is shown in Figure 61 while the other variants are included in

the appendix.

Figure 61: Sharpe Ratio Robustness Test: Minimum Variance 1%

The top panel shows the monthly difference in Sharpe ratio (δ̂) across a range of correlation selection

tilts with the p-value plotted in the lower panel. P-values below 0.05 are significant at the 95% level.
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With the optimized functions, like Minimum Variance, the left and right side of the pan-

els show very different profiles. On the left side, where the portfolios are tilting toward

lower correlation securities and the higher correlating securities are being removed, the

difference appears flat. Again, this is due to the fact that the optimized allocation meth-

ods all tend toward low correlation securities and have very high concentration limits.

The 1% max position size will have around 100 securities while the 5% max position size

will have around 20 securities. These are all below the 200 portfolio size limit that is

tested in this spectrum.

By removing high correlation securities, nothing meaningful is changing with the securi-

ties being selected and so no significant difference shows up in the monthly Sharpe ratio

difference (δ̂). Toward the right side of the top panel, the low correlations securities pre-

ferred by the optimizer are being systematically removed and the level of Sharpe ratio

difference changes very quickly.

In the bottom panel, the p-value displays a very different profile. On the left side with

the removal of high correlation securities, despite having very small standard errors, the

monthly Sharpe ratio difference is close to zero and even a very small standard error

does not allow for a statistically significant difference. The p-values on the left side are

quite high and none are significant.

On the right side of the bottom panel, despite having standard errors that are increas-

ing, the monthly Sharpe differences are quite large and still results in statistically robust

differences.

As the remainder of the optimized method Sharpe ratio robustness tests are of similar

profile, they are all included in the appendix of this chapter.
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5.8 Conclusion

The previous chapter extended the literature to allow for a direct comparison between

the relative impact on portfolio Sharpe ratios emanating from returns based security

selection or correlation based security selection. It was clear from that work that correla-

tions dominated the impact on Sharpe ratios, even to the point of returns based security

selection crowding out optimal Sharpe ratios.

This chapter extends the literature by validating these observations with a robustness

check. Again, we bring the important work of (Ledoit and Wolf 2008) into the analysis

to verify our conclusions.

Building on the awareness from the previous chapter that optimal Sharpe ratio portfo-

lios are dominated by low correlation securities and not high returning securities, this

chapter set out to examine the interaction effect of pursuing an optimal process of cor-

relation selection. As in previous chapters, the concept of one year forward perfect fore-

sight was used to examine the interaction effect in the limit. Being able to see the best

potential outcome sets an outer boundary condition that limits the expectations for an

approach built on the method.

The first step was applying this perfect correlation foresight method to examine the

impact on pools of securities. Offsetting insights about how low correlation securities

relate to higher returns but also higher volatilities was revealed.

In the next step of the analysis, the range of correlation tilted securities was examined

in a portfolio context. This made clear that the low correlations more than offset the

higher volatilities as portfolio volatility fell as the correlation tilt increased. The lower

portfolio volatility paired with higher returns to create Sharpe ratios that increased. But

the increase in Sharpe ratios needed to be tested to check for statistical significance.
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To test for statistical significance, time series of returns were created for each allocation

method in our panel, and for each level of tilt applied in the range of 200 low correla-

tion to 200 high correlation. The same test method applied in Chapter 2 was useful.

In nearly every case, the time series of tilted returns showed a statistically significant

difference from the un-tilted (full 1,000 stock) portfolio.

This chapter has demonstrated that securities selected solely on the basis of low cor-

relation can have a positive impact on portfolio Sharpe ratio. This impact can be sta-

tistically significant even at very low levels of success. Knowing that optimal Sharpe

ratio portfolios are dominated by low correlation securities, while also seeing that even

low levels of correlation selection success can drive robust improvements in Sharpe ra-

tio should cause both researchers and practitioners to focus on this approach. Even a

moderate inclusion of correlation selection can have a robust impact on portfolio Sharpe

ratios.
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Chapter 5

Appendix



5.9 Time Series Returns of Capital Allocation Methods with Correlation

Selection

Figure 62: Time Series of Returns: Equal Weight

The figure above shows a comparison of the time series of returns when tilting toward higher and lower

correlation stocks and applying the equal weight method of capital allocation.

200 Low 1,000 200 High

Geom Return % 13.49 11.67 10.22

Arith Return % 13.82 13.29 14.71

Volatility % 7.68 17.01 28.58

Sharpe Ratio 1.17 0.50 0.35

Table 10: Time Series Summary - Equal Weight

The table above summarizes metrics for the allocation method when correlation selection is applied across
the 50 year period in the study, 1968 - 2017.
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Figure 63: Time Series of Returns: Inverse Volatility

The figure above shows a comparison of the time series of returns when tilting toward higher and lower

correlation stocks and applying the inverse volatility method of capital allocation.

200 Low 1,000 200 High

Geom Return % 13.73 12.17 11.03

Arith Return % 13.98 13.51 14.98

Volatility % 6.68 15.47 26.70

Sharpe Ratio 1.37 0.56 0.38

Table 11: Time Series Summary - Inverse Volatility

The table above summarizes metrics for the allocation method when correlation selection is applied across
the 50 year period in the study, 1968 - 2017.
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Figure 64: Time Series of Returns: Equal Risk

The figure shows a comparison of the time series of returns when tilting toward higher and lower correla-

tion stocks and applying the equal risk method of capital allocation.

200 Low 1,000 200 High

Geom Return % 13.32 11.67 10.37

Arith Return % 13.64 13.29 14.60

Volatility % 7.40 17.01 27.68

Sharpe Ratio 1.19 0.50 0.35

Table 12: Time Series Summary - Equal Risk

The table above summarizes metrics for the allocation method when correlation selection is applied across
the 50 year period in the study, 1968 - 2017.
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Figure 65: Time Series of Returns: Minimum Variance, 1%

The figure above shows a comparison of the time series of returns when tilting toward higher and lower

correlation stocks and applying the equal risk method of capital allocation.

200 Low 1,000 200 High

Geom Return % 13.65 13.42 12.19

Arith Return % 13.77 13.52 14.54

Volatility % 4.60 4.34 20.54

Sharpe Ratio 1.95 2.01 0.47

Table 13: Time Series Summary - Minimum Variance, 1%

The table above summarizes metrics for the allocation method when correlation selection is applied across
the 50 year period in the study, 1968 - 2017.
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Figure 66: Time Series of Returns: Minimum Variance, 5%

The figure above shows a comparison of the time series of returns when tilting toward higher and lower

correlation stocks and applying the equal risk method of capital allocation.

200 Low 1,000 200 High

Geom Return % 14.03 13.79 12.38

Arith Return % 14.12 13.87 13.59

Volatility % 3.96 3.81 14.72

Sharpe Ratio 2.35 2.38 0.60

Table 14: Time Series Summary - Minimum Variance, 5%

The table above summarizes metrics for the allocation method when correlation selection is applied across
the 50 year period in the study, 1968 - 2017.
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Figure 67: Time Series of Returns: Maximum Diversification, 1%

The figure above shows a comparison of the time series of returns when tilting toward higher and lower

correlation stocks and applying the equal risk method of capital allocation.

200 Low 1,000 200 High

Geom Return % 13.50 13.15 10.92

Arith Return % 13.61 13.26 13.76

Volatility % 4.50 4.47 22.67

Sharpe Ratio 1.96 1.89 0.40

Table 15: Time Series Summary - Maximum Diversification, 1%

The table above summarizes metrics for the allocation method when correlation selection is applied across
the 50 year period in the study, 1968 - 2017.
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Figure 68: Time Series of Returns: Maximum Diversification, 5%

The figure above shows a comparison of the time series of returns when tilting toward higher and lower

correlation stocks and applying the equal risk method of capital allocation.

200 Low 1,000 200 High

Geom Return % 11.54 12.26 10.54

Arith Return % 11.66 12.39 12.40

Volatility % 4.63 4.80 18.33

Sharpe Ratio 1.48 1.58 0.41

Table 16: Time Series Summary - Maximum Diversification, 5%

The table above summarizes metrics for the allocation method when correlation selection is applied across
the 50 year period in the study, 1968 - 2017.

201



5.10 Sharpe Ratio Robustness Tests

Figure 69: Sharpe Ratio Robustness Test: Market Capitalization

The top panel shows the monthly difference in Sharpe ratio (δ̂)) across a range of correlation selection

tilts with the p-value plotted in the lower panel. P-values below 0.05 are significant at the 95% level.
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Figure 70: Sharpe Ratio Robustness Test: Inverse Volatility

The top panel shows the monthly difference in Sharpe ratio (δ̂) across a range of correlation selection

tilts with the p-value plotted in the lower panel. P-values below 0.05 are significant at the 95% level.

Figure 71: Sharpe Ratio Robustness Test: Equal Risk

The top panel shows the monthly difference in Sharpe ratio (δ̂) across a range of correlation selection

tilts with the p-value plotted in the lower panel. P-values below 0.05 are significant at the 95% level.
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Figure 72: Sharpe Ratio Robustness Test: Minimum Variance 5%

The top panel shows the monthly difference in Sharpe ratio (δ̂) across a range of correlation selection

tilts with the p-value plotted in the lower panel. P-values below 0.05 are significant at the 95% level.

Figure 73: Sharpe Ratio Robustness Test: Maximum Diversification 1%

The top panel shows the monthly difference in Sharpe ratio (δ̂) across a range of correlation selection

tilts with the p-value plotted in the lower panel. P-values below 0.05 are significant at the 95% level.
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Figure 74: Sharpe Ratio Robustness Test: Maximum Diversification 5%

The top panel shows the monthly difference in Sharpe ratio (δ̂) across a range of correlation selection

tilts with the p-value plotted in the lower panel. P-values below 0.05 are significant at the 95% level.
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Figure 75: Correlation Selection Time Series Summary Statistics

The table above shows the summary statistics for the time series of returns built with the panel of

capital allocation methods and a range of portfolio sizes that have been tilted toward higher and lower

correlations. DeltaHat is the difference in monthly Sharpe ratios from the bootstrapping test while the

p-value is calculated as a two tailed test against the null hypothesis that the true difference in Sharpe

ratios is zero.
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6 Research Summary

6.1 Introduction

As an institutional portfolio manager and capital allocator for more than 32 years, I

have been perplexed by the process of portfolio formation that I have witnessed in prac-

tice. There appeared to be a lack of appreciation for the benefits of systematic capital

allocation methods, and for an over-reliance on security selection as a way to improve

portfolio returns and Sharpe ratios. A conflict existed in my mind between the liter-

ature that I read about the benefits of capital allocation methods and the more com-

monly employed ’conviction weighting’ that I was seeing in practice.

This intellectual conflict spawned a curiosity that led me to begin asking a series of ques-

tions which developed during the course of this research project. Each of the question

in turn was addressed as a chapter of this thesis, and below I summarize these questions

with my observations from the research work.

But good questions are more valuable than good answers. Sometimes that is because

they uncover things not previously discovered, but in the way that I think about the

value of a good question, the greatest value comes from the additional questions it un-

covers. My work is not a conclusion for these topics but a slight extension of the exist-

ing understanding. My hope is that these questions and observations give rise to more

good questions that can drive us all forward in the practice of portfolio formation and

management.
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6.2 Hierarchy of Sharpe Ratios

Much of the existing literature on capital allocation methods point toward improve-

ments in portfolio efficiency. However, most active US equity managers that I have

encountered do not use these systematic capital allocation methods but instead rely on

their conviction which is formed during the security selection process.

Security data over the past 50 years shows that stock returns were widely dispersed

giving rise to potential improvements in portfolios through returns based security selec-

tion. But the mean annual pairwise correlations are also quite low and stable giving the

potential to create substantial improvements in portfolio Sharpe ratios.

My expectation was that these two stages of portfolio formation must both be impor-

tant and connected somehow. But in order to first understand whether the purported

value of systematic allocation was true, I needed to test the robustness of the hierarchy

of Sharpe ratios across a commercially available panel of systematic capital allocation

methods.

While holding security selection fixed, and using the full 1,000 largest capitalization

stocks available each year, I establish an initial hierarchy of Sharpe ratios across the

methods. As seen in previous literature, the alternative allocation methods all appear

to be better than the market cap method, but were these robust? An application of

Ledoit’s studentized bootstrap robustness test, the initial conclusions begin to fade a bit.

Only about half of the initial observations are robust.

But this was just the first step, and only established the baseline. The question re-

mained about the connection between security selection and capital allocation method.
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6.3 Contours of Sharpe Ratios

The existing literature was focused on either security selection techniques or capital

allocation methods. My question focused on the interaction effect between these two

stages of portfolio formation and this type of testing had not been seen in the literature.

This next step forward created a bridge that spanned these two strains of the literature

and allow me to examine the dependency of capital allocation on the success or failure

of security selection.

To move into the next section of research, I needed to vary the set of securities available

to the allocation methods each year. While there is a very wide variety of methods

available for security selection, the required method would need to create a reliable bias

each year in the return profile of the available stocks. Fundamental and quantitative

methods were examined. While discretionary approaches are often observed in practice,

they don’t make for a robust method of examination. A systematic method was needed

in order to create the desired effect in a reliable manner.

A simple method of near-perfect foresight was crafted to examine this question. While

it is not achievable in practice, it is systematic and reliably creates the effect needed to

study the interaction between selection and allocation. In addition, the method created

a boundary condition where no other methods could be created to achieve the same

reliability while maintaining the potential for diversification.

This simple security selection method was applied across a range of positive and nega-

tive security return bias, giving the opportunity to see the landscape of selection impact

on portfolio Sharpe ratios.

The key insight from this part of the research was that the hierarchy of Sharpe ratios

was not invariant. Picking stocks well or poorly has an uneven impact on the Sharpe
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ratios of the various capital allocation methods. The Sharpe ratios of some allocation

methods responded in a non-linear way, and other responded in a linear way, but the

rate of change varied across the strategies.

This non-invariance across the range of security selection was then tested with the same

robustness methods used in the previous chapter. In most cases, the initial conclusions

about the hierarchy of Sharpe ratios changed at some point in the range of security

selection bias. In a few cases, the conclusions completely inverted toward the ends of the

spectrum on security selection bias.

It was shown from this work, that the optimal choice of a systematic capital allocation

method is dependent on the ability to successfully or poorly pick securities. Some alloca-

tion methods help to amplify good security selection skills while others help to moderate

the impact of poor security selection. Knowing this interaction effect is important to

creating a better process for portfolio formation and management.

6.4 Low Correlations Dominate

With a more robust understanding for the interaction effect between selection and al-

location, my next question was whether returns or correlation were more important to-

ward creating better Sharpe ratios. It appears that active US equity managers spend a

large amount of time focused on trying to select stocks that they think will outperform,

but not nearly as much time on how to allocate their capital across their selections.

Thinking of the Markowitz efficient frontier, picking stocks with higher returns lifts

the entire frontier upward in the risk-return space. Picking stocks with the lowest cor-

relations has the effect of creating a more curved frontier. While this impact may be

intuited, there is little way to intuit the interaction effect. Does picking stocks with

higher returns create a set with higher or lower correlations? Does picking a set with
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lower correlations generally increase or decrease median returns?

To study this interaction effect and answer the question of which element would have a

greater impact on lifting portfolio Sharpe ratios, I extended the logic from the previous

near-perfect foresight method and expanded it to this problem by now looking forward

and entire year on all characteristics of the stocks; return, volatility, and correlation.

With a full year look ahead on all elements, I then created Optimal Sharpe Ratio (OSR)

portfolios which were free to pick any combination of stocks to have the highest Sharpe

ratios. Again, this methodology is not practical for implementation, but it is highly

efficient to study the question in focus.

As a comparison, I also designed portfolios which would pick the 20 best performing

stocks each year and equal weight their holdings. This concentration of holdings was

selected as it was both inline with the most concentrated methods in my panel of alloca-

tion methods (MV5% and MD5%), as well as being inline with concentrated portfolios

that are commercially available to investors.

If picking the best performing stocks was the preferred path to higher Sharpe ratios,

these concentrated portfolio should be near equal with the OSR portfolios. But the

risk adjusted performance comparison wasn’t remotely close. Median annual Sharpe

ratios from OSR portfolios were nearly 23x the Sharpe ratios seen from the concentrated

portfolios built from the best performing stocks.

This was an interesting set of data points which indicate that picking top performing

stocks wasn’t the best way to go when trying to maximize Sharpe ratio. But we needed

to understand what kinds of stocks the OSR portfolios were picking. For this question,

the analysis moved to a time series to see each year how the selection sets compared.

With regard to return, the concentrated ’best returning stocks’ portfolios had vastly
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superior returns, as expected. The OSR stock returns were a little bit better than the

full 1,000 stock universe each year. For volatility, high returning stocks had a little more

volatility on average, but the OSR stock returns were virtually the same as the full

1,000 starting stock universe. However, while the concentrated ’best returning stocks’

had virtually identical mean pair-wise correlation to the full 1,000 starting stock uni-

verse, it was the OSR stocks that displayed very low mean pair-wise correlations.

The ’best returning stocks’ portfolios contained 20 holdings but had been constrained

to be equal weighted. As an attempt to help this portfolio even further, once the best

returning stocks had been selected, I then let the optimizer try to create the highest

Sharpe ratio by letting it look ahead a year to see the volatilities and correlations. This

would free the portfolio to maximize this information as a second step in the process.

While Sharpe ratios increased, they could not get anywhere close to the Sharpe ratios

from the portfolios that did not engage in security return selection as an initial step.

This is a very important observation as it indicates that even with exceptionally good

security selection based on future returns, this crowds out the potential for maximum

Sharpe ratio. But this is exactly what most equity managers are doing. They are trying

to pick the best returning stocks first and then allocate capital second. This approach

has the effect of limiting their ability to maximize Sharpe ratios.

This analysis points toward the relative importance of correlation versus returns in

building portfolios with the highest Sharpe ratios. But the stocks selected by the OSR

methodology were the best combination of all three. Following just the OSR method

doesn’t isolate correlation alone, it only indicates that this is the predominant character-

istic of the stocks chosen for the portfolios with the highest Sharpe ratio potential.

As a setup for the final stage of analysis, stocks were sorted into quartiles based first on

returns, then volatility, then correlation. Each quartile was compared for the resulting
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Sharpe ratio.

Stocks with the highest returns in general created the highest Sharpe ratios, but the

curve of reward vs penalty was very steep. Good picks here are easily offset with bad

picks. With the volatility sorting, stocks with lower volatility created portfolios with

higher Sharpe ratios. This is a portfolio extension of the low volatility anomaly that

had been previously documented in the literature. While low volatility stock created

portfolios with higher Sharpe ratios, even high volatility stocks created positive Sharpe

ratio portfolios, and the curve of reward vs risk was not nearly as steep as that seen

with stocks sorted by returns only.

Interestingly, stocks sorted by correlation quartile also displayed the same qualities as

the low volatility anomaly. However, we see in the shape of the reward vs risk curve an

even steeper impact for the quartile with the lowest correlating stocks.

This step in the research process more clearly highlighted the relative importance of

low correlations rather than high returning stocks. But the simplistic approach of using

quartiles pointed me toward the final section of research where the analysis would be

refined and become more complete.

6.5 Correlation Selection

The final stage of analysis needed to isolate the impact of security selection based on

correlation, rather than security returns. We see from the previous chapter that the

best Sharpe portfolios are dominated by low correlations, but if that type of selection

were possible, what impact would it have on returns and volatilities of the stocks and on

portfolios through time.

The first type of analysis conducted was examining the effect of near-perfect correla-
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tion selection on the cross section of stocks. Using one year look ahead bias to corre-

lation only, we saw that lower correlation stocks tended toward higher returns, while

higher correlation stocks tended toward lower returns. Taken as a single observation,

this would seem to be quite beneficial with higher returns and lower individual stock

correlations which should lead to lower portfolio volatility.

However, using the same near-perfect correlation selection, we saw that low correlation

stocks tended toward higher volatility, while higher correlation stocks had a very slightly

lower volatility. This complicated the first observation with regard to returns.

The objective was not to study individual stock characteristics but to observe the im-

pacts on portfolios. As we tended toward lower correlation securities, we saw returns

increasing and volatility increasing. Combining these securities into portfolios would

allow us to see if the low correlations helped to net out the impact of higher volatilities.

Indeed, a combination of lower correlation stocks did create portfolios with lower volatil-

ity, rather than higher volatility that we had seen in the cross section of stocks. This

shows that correlations are playing a larger role in portfolio Sharpe ratios.

The last part of the cross sectional analysis was to examine the Sharpe ratios and here

we see a large increase in Sharpe ratios for portfolios comprised of lower correlation

securities.

The next section of analysis on correlation selection was to transform the cross section

into time series analysis. For each of the capital allocation methods in the panel, they

were formed using three sets of stocks. First was the full 1,000 stocks, then the 200 low-

est pairwise correlation stocks, and finally the 200 highest pairwise correlation stocks.

The observations in the cross section transferred well to the time series. Portfolios

built with lower correlation stocks displayed higher returns, lower volatility, and higher

Sharpe ratios. In addition, the compounding effect of a lower volatility return stream
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was evident. This was not observable from the cross section.

Finally, the impact of correlation selection was studied across the panel of allocation

methods. Just as was observed with the selection of securities based upon returns, the

Sharpe ratios of portfolios built from lower correlation securities had uneven reactions.

While it seems that correlation selection could be quite helpful to portfolio Sharpe ra-

tios, it was not certain how good you would have to be at this skill in order to make a

robust difference in the resulting Sharpe ratio. Fortunately, the Ledoit robustness test

could be used here as well. The net result of all robustness tests shows that correlation

selection at almost any level has a positive and robust impact on portfolio Sharpe ratio.

This is in contrast to what was observed with security return forecasting. With return

forecasting, you had to exhibit substantial skill to make a robust positive impact on

Sharpe ratios.

6.6 Summary

My questions arose because of a conflict that I observed between the academic litera-

ture and the practice of portfolio formation. These questions led me down a path to

examine:

• Were the systematic allocation methods robustly better?

• How would security selection impact the choice of an allocation method?

• What stock level characteristics would dominate the best Sharpe ratio portfolios?

• How much correlation selection skill is needed to robustly improve Sharpe ratios?

Each of these questions led to observations that used existing approaches to build upon
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previous literature and expand the knowledge about the dynamics of portfolio forma-

tion. It is my hope that this work will help practitioners to close the conflict between

academic observation and practice, leading to better portfolio outcomes for investors.

Additionally, I hope that this work aids researchers who will have new and better ques-

tions to build upon this work.

6.7 Future Research

From this thesis, crafty researchers will certainly be able to ask even better questions

and follow the path forward. While many questions may arise, a logical extension of

this research would be to combine the observations herein with the literature on correla-

tion forecasting and the stability of correlation ranks. From the final part of analysis in

Chapter 5, we can see that any ability to improve security sets based on correlation can

bring a robust improvement in Sharpe ratios. Finding a way to bring this observation

into practice would certainly be a benefit to investment managers and their investors.
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7 Appendix 1

7.1 Introduction

Across each of the chapters there are common sets of data and methodologies which

must be fully described in order to proceed. To make each of the main chapters more fo-

cused, all of these elements are described in this appendix. In section 7.2 the sources of

the input data are described. Section 7.3 describes in detail each of the allocation meth-

ods and how they are calculated. Finally, section 7.5 compares the return, statistical

characteristics, and factor loadings of each of the allocation methods.

7.2 Data

7.2.1 Sources

Multiple data sources are needed to construct the portfolios using the panel of allocation

methods. Equity data (returns, market capitalization, prices, and share classifications)

are collected from the CRSP/Compustat merged database as made available from the

Wharton Research Data Service (WRDS) 11 the website of Kenneth French at Dart-

mouth University12 is the source for 1 month US Treasury Bill rate (as provided by

Ibbotson & Associates, Inc.) and for factor returns for market, size, and value.

11https://wrds-www.wharton.upenn.edu
12http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.html
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7.2.2 Time Frame

To calculate the weights for the allocation methods which require an optimization rou-

tine, 5 years of historical monthly returns are used to estimate the covariance matrix.

Figure 76 displays the number of stocks available in the CRSP database since 1951.

This study uses the 1,000 largest capitalization stocks available each year. The starting

date of 1968 was chosen which allowed for at least 2,000 stocks with 5 years of history.

Even in the early years of the study, this starting date provides enough stocks to screen

at most the top half as ”large cap”.

Figure 76: Number of stocks available in the CRSP database

The figure above represents the number of stocks available in the CRSP database each month which

meet the selection criteria for this analysis. ETFs and ADRs are excluded from the full database as

well as issues that CRSP does not classify as common equity shares. The dashed line represents the

minimum number of 1,000 stocks needed for this analysis.

7.2.3 Exclusions

For the purpose of this analysis, all listings which are not classified as common stocks

are excluded. This excludes listings such as exchange traded funds (ETFs), American

Depository Receipts (ADRs), and other classifications which are not the common shares

of corporations.
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7.2.4 Delisting Returns

Monthly returns for all common shares are collected from the database. Some listings

disappear from the database due to merger/acquisition, bankruptcy, delisting require-

ment, or other event. Since only full month returns are provided in the main database,

when these events happen mid-month, the returns of that month are not reported in the

main data set. For example, the bankruptcy of Lehman Brothers on September 15, 2008

would not have been fully recorded in the main data set.

Delisting month returns are provided by CRSP in a separate table. The returns in this

analysis are enhanced with partial month delisting returns. While the overall effect is

small, including these additional data points enriches the data set.

Additionally, I considered the work of (Shumway 1997) who documents a delisting bias

in the stock return data of CRSP. While I have included the delisting returns provided,

the author points out that there are many delistings for which returns are missing. By

researching news feeds, Shumway creates a probable rate of return for the average miss-

ing delisting return. In addition, he also shows his analysis by assuming that all missing

returns are replaced by a -100%. The effect on the overall data set is significant in that

it creates a positive bias in the returns of the full data set. However, when the data set

is sorted into size deciles, the impact is greatly diminished for the largest size deciles.

The author concludes that “Including delisting returns of -1 reduces the performance

of small stocks substantially, but it does not affect large stocks’ returns”. My analysis

focuses only on the largest capitalization stocks available each year. For this reason, the

assumptions about missing delisting returns is not included in my analysis.
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7.3 Panel of Capital Allocation Methods (Weighting Schemes)

It has been well documented in previous studies such as (Chow et al. 2011) and (Clare,

Motson, and Thomas 2013) that following any one of a range of alternative capital al-

location methods would have led to superior returns and/or return efficiency. In these

previous studies, the authors analyzed a wide range of methods and parameters. My

study begins by selecting a panel of established and practical allocation methods and fo-

cuses on documenting the drivers of Sharpe ratios. To maintain focus on the interaction

effect, a smaller set of allocation methods have been chosen which are more prevalent

commercially and have wider practical appeal.

For purposes of clarity, the term used in this paper is ‘capital allocation method’ which

has the same implied meaning as ‘weighting scheme’ which is a more common term in

some parts of the world. In either form, this step in the portfolio formation process is

concerned with spreading the available money across the securities which have been

selected for the portfolio.

7.3.1 Market Capitalization

Market capitalization weighting is the most commonly available form of allocation

method for investing passively and this is seen in the major market indices such as the

S&P 500. While this allocation method is shown historically to have returns which are

inferior to other allocation methods, it is highly efficient in a practical manner. As mar-

ket capitalization of each security changes due to price movements each day, the weights

change in unison requiring no trading turnover until the index is reformed.

The CRSP database provides share price and the number of shares outstanding each

month. These two elements are multiplied together to create the market capitalization
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for each stock each period.

For consistency across the panel of allocation methods, I form a market capitalization

weighted portfolio from the 1,000 largest securities available each year rather than use a

market provided index which would have slightly different securities than would be used

in my other allocation methods. This is an approach that is observed in the literature.

The weighting for each stock (wi) is found by dividing the individual stock’s market

capitalization by the sum of all stock’s market capitalization on the date of index forma-

tion.

wi =
MktCapi
N∑
i=1

MktCapi

(14)

The weights for the index are calculated using data from the last day of each year and

the index is reformed and held without rebalance for the following year until the process

is repeated. While this is not necessarily the exact selection and rebalance method that

commercially available indices such as the Russell 1,000 implement, it is a method that

can be applied consistently across a panel of allocation methods for this study and is

consistent with methods employed in existing literature.

7.3.2 Equal Weight

In a well documented study, (DeMiguel, Garlappi, and Uppal 2009) show the bene-

fits and simplicity of an equal weight allocation methodology. By following an equally

weighted method, there are no parameters to estimate, and the weight calculation is

trivial as it is simply the inverse of the number of stocks selected for inclusion in the
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index.

wi =
1

N
(15)

In addition to describing the simplicity and robustness of the equal weighted method,

the authors show the period of historical data that would be required in order to accu-

rately estimate parameters for other methods in order to outperform the simple equal

weighted approach. A sample mean variance optimization based portfolio with 50 assets

would require 6,000 monthly observations in order to accurately estimate the covariance

matrix and outperform the simple equal weighted method.

One note of caution is provided by (Chow et al. 2011). The authors state that “A no-

table feature of equal weighting is that the resulting portfolio risk-return characteristics

are highly sensitive to the number of included stocks. Although the S&P 500 Index and

the Russell 1,000 Index have nearly identical risk-return characteristics over time, the

equal-weighted S&P 500 portfolios and the equal-weighted Russell 1,000 portfolios have

dramatically different risk-return characteristics.”

7.3.3 Inverse Volatility

The inverse volatility allocation method attempts to distribute risk more equally across

the set of available stocks while estimating a single parameter, volatility. As a result,

one measure of diversification (effective number of stocks) is increased dramatically over

the market capitalization method.

The method also attempts to capture a documented low-volatility anomaly whereby

stocks with lower volatility have been shown to have higher risk adjusted returns. Build-

ing on their previous work from 1972, (Baker and Haugen 2012) show in a simple and
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transparent way that this anomaly has presented itself across long periods of time (US

1926 - 1990) and across the world (33 global stock markets during 1990 - 2011).

To create the weights for each stock in my study, the standard deviation of each stock

(σi) is estimated using the previous 5 years of monthly returns. By using the inverse of

this measure ( 1
σi

), this allocation method shifts weight from stocks with higher volatility

to stocks with lower volatility. The weight for each stock then is given by:

wi =
1
σi

N∑
i=1

(
1
σi

) (16)

The inverse volatility method combines increased diversification with harvesting the

low-risk anomaly. While the method uses a single estimated parameter (standard devia-

tion), the assumption under which this method would produce the optimal risk adjusted

portfolio is that correlations are uniform across all securities.

7.3.4 Equal Risk Contribution

When the uniform correlations assumptions required for optimality of the inverse volatil-

ity method are not realized, then groups of highly correlated stocks receive larger allo-

cations of risk. By including correlations between stocks into the allocation process, the

equal risk contribution method accounts for the non-uniform correlation structure.

Estimating a second parameter introduces additional risks to the calculation. Calcu-

lating the weights which provide an equal contribution to risk from each stock does

not have a closed form solution and must be solved using optimization. Optimization

methods tend to amplify estimation errors, and this method now encounters estimation

problems, especially as the covariance matrix is highly dimensional with up to 1,000
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stocks.

To minimize the effect of these estimation errors, the analysis employs the shrinkage

method described in (Ledoit and Wolf 2004) which condenses the outlier observations to-

ward the central values in a systematic way and reduces the amplification of errors pro-

duced by the optimizer. The calculations are performed in Python using sklearn.covariance.LedoitWolf.13

Use of this shrinkage method is extended for all allocations in my research that require a

covariance matrix.

All of the allocation methods examined in this study require long only positions (wi ≥ 0)

with a constraint to be fully invested

(∑N
i=1wi = 1

)
. To solve for the weights which

produce an equal contribution to risk of each stock we follow the method described by

(Maillard, Roncalli, and Teiletche 2008) and first define the minimization function.

Let w be the vector of weights and let Σ be the covariance matrix. Then the volatility

of the portfolio is defined as:

σ(w) =
√
w′Σw (17)

The risk contribution of each asset within the portfolio is given as:

σi(w) = wi × ∂wiσ(w) (18)

From this is constructed the vector of marginal contributions (∂wiσ(w)) as:

c(w) =
Σw√
w′Σw

(19)

13https://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html
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The solution for the weights is given by the optimization:

argmin
w

N∑
i=1

[√
w′Σw

N
− wi · c(w)i

]2
(20)

The minimization routine for this analysis was constructed with the Python ‘SciPy’

package using the sequential least squares programming (SLSQP) method.14

7.3.5 Minimum Variance

In a traditional mean-variance optimization approach, three parameter estimates are

required: returns, volatilities, and correlations. Returns are the most difficult to forecast

and errors in the estimated returns create large errors in an optimization output even

when using a covariance shrinkage model. If it can be assumed that all stock returns are

the same, then the optimal solution can be found by estimating just the volatility and

correlation (as in the equal risk method) and solving for the weights that minimize the

risk of the portfolio.

Depending on the parameter estimates, this allocation method may create a very con-

centrated set of weights. To prevent this possibility of concentration, my analysis follows

the method of previous academic studies in limiting the maximum position size to 1%.

For comparison purposes relative to the maximum diversification approach, I also in-

clude maximum position sizes at 5%. As above, this analysis requires long only positions

(wi ≥ 0) and constrained to be fully invested (

N∑
i=1

wi = 1).

To solve for the weights which produce a minimum variance portfolio, the minimization

function is defined so that w is the vector of weights and Σ is the covariance matrix.

14https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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The optimal weights are found by:

min
w

(w′Σw) subject to


N∑
i=1

wi = 1

0 ≤ wi ≤ max%

(21)

7.3.6 Maximum Diversification

Assuming that all stocks have the same return is unlikely to be true. (Choueifaty and

Coignard 2008) propose an optimization method to maximize the diversification of a

portfolio by instead assuming that returns are proportional to the risks of each stock.

With Rf being the risk free rate, and the expected return given by E(Ri), this relation-

ship is given by:

E(Ri)−Rf = γσi (22)

where γ > 0 is the proportion of return per unit of risk.

The second major contribution of (Choueifaty and Coignard 2008) is the quantifiable

measure of diversification known as the Diversification Ratio (DR).

DR =

N∑
i=1

wiσi

σp
(23)

DR is the ratio of the weighted sum of the individual stock volatilities (
∑N

i=1wiσi) to

the fully correlated and weighted sum of volatilities given by the portfolio volatility (σp).
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Solving for the vector of weights that maximizes the diversification ratio is given by:

max
w

(
w′σ√
w′Σw

)
subject to


N∑
i=1

wi = 1

0 ≤ wi ≤ max%

(24)

For comparison purposes relative to the minimum variance approach, I use maximum

position sizes of 1% and 5%. As can be seen in Table 17, even at these lower position

size limits, the approach can lead to a small selection of securities for the portfolio.

The original work of (Choueifaty and Coignard 2008) was based on stocks in the S&P500

index from 1990 to 2008 and used 250 days of data to construct the parameter estimates

required for the covariance matrix. Position limits were set at 10% but were additionally

limited to month end weights which complied with UCITS III15 rules. This restriction

included a maximum limit of 40% on the sum of individual stock weights which exceed

5%. Even with these additional restrictions, setting position limits at this level often

leads to very concentrated portfolios.

My simplified yet comparable approach (which does not include the UCITS restrictions)

is calculated across the time frame of 1968 to 2017, from a universe of 1,000 stocks.

This method on average carried an effective number of stocks of just 24. Using this

method but with 10% position limits, I observe that although the methodology max-

imizes the ex-ante DR, the ex-post DR is only slightly above that of the market cap

weighted method and on average below all of the other methods examined in this study.

I do not include the 10% max position size version in my analysis but do note the effects

of a high concentration risk as will be shown in my research when combining the steps

of capital allocation with perfect stock selection.

15https://www.esma.europa.eu/databases-library/interactive-single-rulebook/ucits
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7.4 Statistical Measures

7.4.0.1 Active Share: Active Share (AS) is the percentage of fund holdings that

are different from the benchmark holdings. A fund that has no holdings in common with

the benchmark will have an Active Share of 100%, and a fund that has exactly the same

holdings with exactly the same weights as the benchmark considered will have an Active

Share of 0%. With N being the number of stocks under consideration and wfund,i and

windex,i being the weights of stock i, the formula for Active Share is given by:

AS =
1

2

N∑
i=1

|wfund,i − windex,i| (25)

The current description from the authors states that Active Share can most easily be

calculated as 100% minus the sum of the overlapping portfolio weights. 16

7.4.0.2 Annualized Volatility: This is the measure of standard deviation of re-

turns. The figure is calculated using monthly returns and expanded to a yearly (annu-

alized) measure by multiplying the calculation by the square root of the periodicity, in

this case
√

12. r are the monthly return observations and T is the number of observed

periods in a year. The formula is given by:

AnnV ol = σr
√
T (26)

7.4.0.3 Arithmetic Returns: Arithmetic returns are the average period returns

without regard to sequence or compounding. Ra is the arithmetic return, N is the num-

ber of periods in the calculation, and ri is the individual period return. The formula is

16https://activeshare.info/about-active-share
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given by:

Ra =
1

N

N∑
i=1

ri =
r1 + r2 + r3...rN

N
(27)

7.4.0.4 ArithRet / DaR: This is the simple ratio of average annual return relative

to the 5% worst drawdown event observed. The metric captures a version of reward vs.

risk.

7.4.0.5 Average Turnover: The turnover ratio is an indication of the trading ac-

tivity within a portfolio. It is calculated by taking the sum of either the value of new

purchases or securities sold (whichever is smaller) as a fraction of the average portfolio

value. The turnover ratios in this analysis are an average of all of the individual year’s

turnover ratios.

7.4.0.6 Conditional Drawdown at Risk (CDaR 5%): CDaR is the average of

the worst drawdowns observed that are worse than DaR. For example, CDaR 5% would

give the mean drawdown that was observed in excess of the DaR 5% level.

7.4.0.7 Diversification Ratio(DR): The DR of a portfolio is defined as the ratio

of the weighted average volatility of individual securities in that portfolio, divided by

the volatility of the overall portfolio. The formula is given by:

DR =

N∑
i=1

wiσi

σp
(28)

with wi being the weight of a security, σi being the standard deviation of the returns of

a security, and σp being the standard deviation of the returns of the portfolio.

231



7.4.0.8 Downside Volatility: The downside volatility is a modification of the stan-

dard deviation concept where only observations below a minimum return are considered

in the calculation. For the purpose of this analysis, the minimum return was set at zero.

As with annualized volatility, the calculation is expanded at the square root of the ob-

served periods in a year. The formula is given by:

DownV ol =

N∑
i=1

(min(ri − 0, 0))

N

√
T (29)

7.4.0.9 Drawdown at Risk (DaR 5%): From a distribution of drawdown events,

the DaR is the level of drawdown which contains the portion of events specified. For

example, DaR 5% would be the level of drawdown at which 5% of the drawdown events

observed are worse, and 95% of the observed drawdowns are better.

7.4.0.10 Effective Number of Stocks: The Herfindahl-Hirschman index (HHI)

measures the concentration ratio of a number of firms in an industry. The inverse of this

index ( 1
HHI ) gives a measure of diversification. The variable wi is the percentage weight

of each stock in the portfolio. The formula is given by:

1
N∑
i=1

w2
i

(30)

7.4.0.11 Geometric Returns: Geometric returns are the geometric mean of a se-

quence of returns. Order of returns matters and the standard deviation of period re-

turns has a negative effect when compared to arithmetic returns. This type of calcula-

tion is appropriate where returns exhibit serial correlation and is the correct method to
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calculate growth in capital from a particular sequence of returns.

Rg is the geometric return, N is the number of periods in the calculation, and ri is a

single period return. The formula for geometric return is given by:

Rg =

( N∏
i=1

(1 + ri)

) 1
N

= N
√

(1 + r1)(1 + r2)(1 + r3)...(1 + rN ) (31)

7.4.0.12 Information Ratio (IR): The information ratio is a measure of returns

in excess of a benchmark relative to the tracking error between the two returns. Rb is

the benchmark return and TE (given below) is the tracking error between the two sets

of returns. The IR of the benchmark portfolio is zero. The formula is given by:

IR =
Rp −Rb
TE

(32)

7.4.0.13 Kurtosis: Kurtosis is a measure of the relative thickness in the tails of a

distribution. The kurtosis measure is the fourth standardized moment of a distribution.

Kurtosis = E
[(

X − µ
σ

)4]
=
µ4

σ4
(33)

Within the Python code used for this analysis, the kurtosis statistic is calculated from

the Scipy library as scipy.stats.kurtosis. 17

7.4.0.14 Maximum Drawdown(MDD): This statistic is the maximum loss from

a peak to a trough of a portfolio, before a new peak is attained. The statistic is ex-

pressed as a percentage loss from the peak in value. P is the peak value attained, L is

the lowest point subsequent to the peak before the peak value is recovered. The formula

17https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kurtosis.html
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is given by:

MDD =
P − L
P

(34)

7.4.0.15 Modified Sharpe Ratio: This ratio was first suggested by (Favre and

Galeano 2002) and (Gregoriou and Gueyie 2009) extending the original Sharpe ratio

to account for the extreme observations in a return series and more fully capture the

risk of the investment beyond the assumptions of a normal distribution embodied in

the standard deviation. rp is the return of the portfolio, rf is the risk free rate (for this

analysis: 3 month US Treasury Bill rate), mV aR is the modified Value at Risk at a

given confidence level (α), zα is the z-score for the given level of confidence (-1.65 with

95% confidence), zm is the z-score of a normal distribution for the given confidence

level with a Cornish-Fisher expansion to account for skewness and excess kurtosis, sp is

skewness and kp is kurtosis.

mSharpe(α) =
rp − rf

mV aRp(α)
(35)

where

mV aR(α) = rp − zm(σp) (36)

where

zm =

(
zα +

1

6
(z2α − 1)sp +

1

24
(z3α − 3zα)kp −

1

36
(2z3α − 5zα)s2p

)
(37)

7.4.0.16 Sharpe Ratio: The Sharpe ratio is a measure of return efficiency per unit

of risk. Returns above the risk free rate (excess return) are measured relative to the

standard deviation of all returns. Rp is the return of the portfolio, Rf is the risk free

rate (for this analysis: 3 month US Treasury Bill rate), σp is the annualized standard
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deviation of portfolio returns. The formula is given by:

Sharpe =
Rp −Rf

σp
(38)

7.4.0.17 Skewness: Skewness is a measure of the asymmetry of the probability dis-

tribution of a variable around its mean. The skewness value can be positive or negative,

or undefined. The skewness coefficient is the third standardized moment. X is a given

observation, µ is the mean of the sample observations, σ is the standard deviation of the

sample observations, and E is the expectation.

Skewness = E
[(

X − µ
σ

)3]
=
µ3

σ3
(39)

7.4.0.18 Sortino Ratio: The Sortino ratio is a return vs. risk efficiency ratio and

a variant of the Sharpe ratio. The return in the numerator are all returns above the

minimum acceptable return (which is zero for this analysis) and the denominator is the

downside volatility. The formula is given by:

Sortino =
Rp − 0

σp(Downside)
(40)

Within the Python code used for this analysis, the skewness statistic is calculated from

the Scipy library as scipy.stats.skew. 18

18https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.skew.html
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7.4.0.19 Tracking Error(TE): Tracking error is the standard deviation of the

difference in returns between a portfolio and its benchmark. The formula is given by:

TE =

√√√√√ N∑
i=1

(Rp −Rb)2

N − 1
(41)

7.5 Comparison of Capital Allocation Methods

The analysis begins by detailing the performance and statistical attributes of the panel

of allocation methods using the full 1,000 largest stocks available in the data set each

year.

7.5.1 Statistical Characteristics

Using the data and capital allocation methods described above, portfolios are formed

annually at the end of each calendar year. From the return series and portfolio holdings

for each method, a panel of statistics is calculated and shown in Table 17. The calcula-

tions for these statistical measures are fully described in the appendix of this research.

7.5.1.1 Returns: The metric of return is a measurement of the payment that in-

vestors earn over a period of time, presumably for the assumption of some risk. Any

estimate of this metric will be imperfect due to issues such as autocorrelation, mean

reversion at long horizons, et cetera. In addition, observations of stock returns over var-

ious horizons depict a distribution which is not normal. Therefore the calculation of an

unbiased estimate of return is problematic.

In an early paper, (Blume 1974) documented the biases that exist with both arithmetic
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Table 17: Summary statistics for various capital allocation methods, 1968 - 2017

MC EW IV ER MV1% MV5% MD1% MD5%

Geom Ret % 10.2 11.7 12.2 12.0 11.6 11.2 11.4 10.9

Arith Ret % 11.4 13.3 13.5 13.3 12.4 11.9 12.4 12.0

Skewness -0.39 -0.35 -0.33 -0.38 -0.40 -0.66 -0.60 -0.65

Excess Kurtosis 1.77 2.16 2.46 2.54 3.63 2.72 2.44 2.47

Ann Vol % 15.1 17.0 15.5 15.2 11.9 11.3 13.8 14.3

Down Vol % 9.6 10.7 9.6 9.4 7.3 7.0 8.8 9.3

Track Error % 5.4 4.9 4.8 7.2 8.0 6.3 7.6

Max DD % -50.5 -52.2 -49.5 -48.9 -38.6 -36.8 -42.7 -45.5

DaR 5% -33.7 -27.6 -26.2 -25.5 -19.9 -19.1 -21.5 -22.3

CDaR 5% -45.1 -42.9 -44.0 -43.5 -35.1 -33.7 -34.8 -37.7

Sharpe Ratio 0.44 0.50 0.56 0.56 0.64 0.63 0.55 0.50

Modified Sharpe 0.17 0.19 0.21 0.20 0.22 0.21 0.20 0.18

Sortino Ratio 0.70 0.80 0.92 0.91 1.06 1.03 0.88 0.79

Info Ratio 1.88 2.06 2.1 1.4 1.3 1.6 1.3

Ret / DaR 0.32 0.45 0.48 0.49 0.59 0.59 0.55 0.51

Effect # Stocks 138 1,000 877 831 113 52 113 44

Divers Ratio 2.04 2.16 2.13 2.21 2.33 2.35 2.65 2.80

Avg Turnover % 8.8 13.0 12.5 13.9 36.8 43.2 40.3 47.0

Active Share 47.1 49.2 52.1 84.8 90.1 88.0 93.6

MC: ’Market Capitalization’ holds all 1,000 stocks and weights the holdings annually based on the relative
market capitalization of each stock to the total market capitalization of all stocks on that date. EW:
’Equal Weight’ holds all 1,000 stocks and weights each stock equally. IV: ’Inverse Volatility’ gives more
weight to stocks with lower volatility and less weight to stocks with higher volatility as measured monthly
over the previous five year. ER: ’Equal Risk’ holds all 1,000 stocks, weights solved by optimization
method whereby the marginal contribution of each stock to total portfolio risk is equalized. MV1%/5%:
’Minimum Variance’ holds a subset of the available stocks where weighting is based on an optimization
which finds the portfolio with the minimum total variance, subject to maximum position sizes of 1% or
5%. MD1%/5%: ’Maximum Diversification’ holds a subset of stocks each year with weights based on an
optimization which maximizes the ex-ante diversification ratio (DR) of the portfolio using volatility and
correlation data monthly from the previous five years. Position sizes are limited to 1%, 5%. Statistical
calculations contained in this table are explained in the appendix of this chapter.

and geometric returns. In general, arithmetic returns are biased to the upside while

geometric returns are biased to the downside. The author developed four unbiased es-

timators of return and showed their efficiency. In a subsequent paper, (Jacquier, Kane,
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and Marcus 2003) showed that the unbiased estimate is a weighted average between

arithmetic and geometric returns. For short periods, arithmetic is heavily weighted and

as the horizon return begins to approach the estimation period data, geometric is most

heavily weighted.

Advanced methods for correcting for these biases and designing an efficient estimator

was proposed by (Jacquier 2005).

An arithmetic return estimate is constructed as the simple mean of the observed single

period returns. Geometric returns are calculated as the single period return that would

allow an investor to earn the total compounded return observed over the sample period.

For the analysis in this dissertation, both metrics are calculated and any biases that

would appear from using these estimates for forecasting future returns are inherent

symmetrically across each of the allocation methods. With a more thorough basis for

understanding return estimates, the focus now turns to a comparative look across the

return statistics of each allocation method.

In general we see that both geometric and arithmetic returns for the market capital-

ization approach are the lowest while those of inverse volatility and equal risk are the

highest. All alternative allocation methods outperform the market capitalization ap-

proach for both geometric and arithmetic return measures for the 50 years of this study.

For the purpose of this research I focus on the arithmetic returns rather than geometric

returns. Each has particular merits and restrictions.

7.5.1.2 Return Distribution Normality: Distributions with negative skew have

more observations in the left tails than would be implied by the normal distribution.

This is a bad characteristic for investors and should require a higher return premium as

compensation for this risk. Skewness for the market capitalization and the three allo-

cation methods (EW, IV, ER) that contain all 1,000 stocks are relatively well behaved.
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But for the minimum variance and the maximum diversification approaches, negative

skewness is more pronounced with the worst observations being at the 5% maximum

position size for each of these optimization methods.

Kurtosis measures the weight in both tails together. A normal distribution has a kur-

tosis of 3. This analysis shows excess kurtosis or the amount in excess of a normal dis-

tribution. The market capitalization approach has the lowest observed excess kurtosis

at 1.77. By contrast, the minimum variance methods shows the highest levels of excess

kurtosis.

The combination of excess kurtosis and negative skew are especially bad and would nat-

urally be expected to warrant a higher return premium as compensation. The worst

combinations of excess kurtosis and skew are observed in the minimum variance meth-

ods. While the additional premium required for this combination is not seen simply in

the returns of these approaches, they do show the highest ratios of reward vs. risk such

as Sharpe, Sortino, and Return/DaR which is consistent with this expectations. The

Modified Sharpe ratio (explained below) accounts for these elements of non-normality in

the distributions of returns.

7.5.1.3 Volatility: The volatility for the market cap weighted portfolio sits in the

middle of all of the other approaches. Equal weight has the highest volatility which

may be due to the size bias that would naturally exist in a method which spreads the

allocation weights equally relative to an approach which is highly concentrated in the

largest capitalization names. As would be expected, the minimum variance approaches

show the lowest realized volatility but this is clearly a function of the metric that is

optimized during the construction of the portfolio.
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7.5.1.4 Drawdown: The are three metrics to examine in this area. All values are

calculated on a monthly basis and indicate the loss from a previous peak in value.

Maximum drawdown is the single largest loss event experienced over the entire his-

tory. While most of the other allocation methods show improvements in this area, the

equal weight method has larger losses during the worst single event. The greater size of

drawdowns seen in the market cap method are likely functions of the effective concen-

tration of these portfolios into a very few stocks. The large drawdowns from the equal

weight method may be explained by the increased exposure to smaller cap securities.

Drawdown at Risk (DaR 5%) examines the distribution of all drawdown events and

denotes the size of the 5% worst event. It is important to note that each complete event

(peak to trough to peak) is treated as a single observation for the distribution. Once

we move beyond examining just the single largest drawdown event, the DaR 5% tells a

different story. Every other allocation method has better metrics with improvements in

the range of 6.1% to 14.6% better than MC. During a relatively normal sized drawdown

event, any method other than the market capitalization allocation method performed

better across this time frame.

The final metric is the Conditional Drawdown at Risk (CDaR 5%) which examines

the average size of the drawdown which is in excess of the DaR 5%. CDaR 5% calcu-

lates the mean loss that occurs when the loss is within the left tail. Maximum draw-

down is the single worst observation in the distribution and it will have a direct impact

on the CDaR calculation. It is interesting to note that despite the equal weight method

having larger absolute maximum drawdowns, the market capitalization method still

exhibits the highest CDaR 5%.
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7.5.1.5 Reward vs. Risk: For both the Sharpe ratio and Sortino ratio, the market

capitalization method shows the lowest mean statistics. As noted above, the minimum

variance (1% max position & 5% max position) methods appear to be clear winners for

nominal risk adjusted returns, but this will be challenged with robustness testing. These

higher risk adjusted returns may be the required compensation for the combination of

negative skew and excess kurtosis that these strategies exhibit as the Modified Sharpe

Ratio (below) for each of these methods are in line with the other allocation methods.

All other allocation methods appear to outperform the market capitalization method,

but this will be tested.

The Sharpe Ratio was originally proposed by (Sharpe 1966) as the reward to variabil-

ity ratio. In it’s original form, the equation given was:

R/V =
Ai − p
Vi

(42)

with Ai being the return of the investment, p being the risk free rate, and Vi being the

standard deviation of the returns on investment i. Ai was described by Sharpe as the

‘average annual rate of return’. Unfortunately, there is no single statistical measure

known as ‘average’ and so I default to the most simple approach which is the arithmetic

average of returns. Practitioners sometimes use geometric averages.

The Sharpe ratio is a common measure of risk adjusted returns, however as the denom-

inator is simply the standard deviation of the return series, it suffers from being indis-

criminate relative to distributions with high levels of skew and excess kurtosis which are

generally disliked by investors.

The Modified Sharpe was originally suggested by (Favre and Galeano 2002) and then

by (Gregoriou and Gueyie 2009). The Modified Sharpe ratio replaces the denominator
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of the original Sharpe ratio (standard deviation of returns) with a modified Value at

Risk (mVaR) calculation which accounts for the extreme observations more fully by

incorporating skew and excess kurtosis. With a standard parametric VaR measure, a

z-score is used as a scalar on the standard deviation of the observations. The mVaR

calculation uses a Cornish Fisher expansion to adjust the z-score for the non-normality

of the distribution before scaling the standard deviation observation.

The mVaR ratios are not directly comparable to standard Sharpe ratios. They are how-

ever more comparable to each other as each has been properly adjusted for the first four

moments of their distributions.

A case in point can be made by looking at the ratios for the IV and ER allocation meth-

ods. Standard Sharpe ratios are both 0.52 while the modified Sharpe ratios are differ-

ent. As ER has slightly more negative skew and a higher excess kurtosis, the modified

Sharpe is slightly lower with 0.21 (IV) and 0.20 (ER). In cases where distributions have

extreme third and fourth moments, the modified Sharpe is key to adjusting these ratios

and leveling the comparisons for risk adjusted returns.

The Information Ratio is highest with the inverse volatility and equal risk contribu-

tion methods which is a function of the low tracking error that these method exhibit.

As tracking error is the denominator of the information ratio, the methods with the

highest tracking errors (minimum variance and maximum diversification) have the low-

est information ratios. These two methods have the largest differences in construction as

will be shown with Active Share and while there are risk adjusted performance advan-

tages to straying from the benchmark, the excess tracking risk and information ratios

are negatively impacted by these approaches.

7.5.1.6 Diversification: There are several ways to consider diversification. The

most simplistic approach is simply the number of stocks in the portfolio. The market
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capitalization, equal weight, inverse volatility, and equal risk methods the portfolios hold

all 1,000 stocks that are available on each date. The minimum variance and maximum

diversification portfolios hold a smaller subset of stocks due to the optimization routine

preferring some stocks to carry zero weight.

Another measure of diversification to consider is the Effective Number of Stocks

which is a function of the allocation weights. This metric is calculated as the inverse of

the Herfindahl-Hirschmann Index (HHI)19 which is a measure of concentration.

HHI =

N∑
i=1

w2
i (43)

The inverse of the HHI is the Effective Number of Stocks. Large weights to a few stocks

will make this ratio smaller while low weights to many stocks will make this ratio larger.

Despite holding 1,000 stocks, the market capitalization method is only effectively influ-

enced by 138 stocks. This is in stark contrast to the equal weight method which holds

the same exact stocks but in equal proportion so that the effective number of stocks

held is exactly 1,000. Similarly, the inverse volatility and the equal risk portfolios have

very high effective number of stocks and would appear to be more diversified than the

market capitalization method, even though they all own the same set of stocks each

year. With a smaller set of stocks held and relatively large concentration weights, the

minimum variance and maximum diversification methods display a metric for effective

number of stocks that is less than the market capitalization method.

A third method to consider is the Diversification Ratio which is a function of weights,

volatilities, and the correlations between securities. While the maximum diversifica-

tion method seeks to maximize this ratio ex-ante, the ratio presented in Table 17 on

19https://corporatefinanceinstitute.com/resources/knowledge/finance/

herfindahl-hirschman-index-hhi/
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page 237 is the ex-post result. Again we see the market capitalization method being the

least diversified and all other allocation methods are superior in this ratio. As noted

previously but not included in our analysis, while the maximum diversification (10%

max position) is the least constrained version which attempts to maximize this ratio,

it barely shows any difference relative to the most concentrated method which is the

market capitalization. There appears to be a wide spread between the optimization of

this ratio ex-ante and the ex-post resulting DR when position sizes are allowed to range

quite high.

7.5.1.7 Turnover: The market capitalization method has the lowest turnover at

8.8% per year on average. This is unsurprising as the weights of stocks in the portfolio

float with changes in value and are only influenced by names being added or deleted

from the universe once per year. The second lowest set of turnover is seen with the

three methods that hold the same set of 1,000 stocks but have their weights changed in-

dependently from the value of the stocks. These are the equal weight, inverse volatility,

and equal risk contribution methods. Finally, the minimum variance and maximum di-

versification methods change the subset of stocks held and solve for a new set of weights

each period which drives their average annual turnover much higher than the other

methods.

A final metric shown was put forth by (Cremers and Petajisto 2009). Active Share

(AS) uses the current holdings to measure the ’active bets’ that a manager is making

relative to the benchmark. The authors explain the measure as 100 minus the overlap-

ping position weights. AS can increase as stocks are either included or excluded and as

the weights of stocks vary relative to their weights in the benchmark.

“Active management” tends to refer to managers who engage in security selection. How-

ever, according to ranges of AS set by the authors, all of the alternative allocation meth-
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ods in this study show AS scores in the range of active management even though none

of them are engaging in intentional stock selection. Equal weight, inverse volatility, and

equal risk contribution hold all of the same stocks as the benchmark but only vary their

weights. Minimum variance and maximum diversification hold a subset of stocks and so

the higher AS measure are a function of both of these variables. Minimum variance and

maximum diversification methods show AS scores in the range of 85-95.

7.5.2 Factor Exposures

7.5.2.1 Fama-French 3 Factor Model (FF3): This asset pricing model, devel-

oped by (Fama and French 1992), extends the original single factor capital asset pric-

ing model (CAPM) by including exposure sensitivity to firm size and valuation ratios.

These additional factors have been shown to provide greater explanation for individual

equity returns and help to increase the R2 of the regression.

Exposures (betas) for the monthly returns of each portfolio allocation method are shown

in Table 18 relative to the factors of market, size, and value as provided by Kenneth

French20. Calculations are based on a multiple regression analysis and calculated in

Python using the Statsmodels21 package which is documented by (Seabold and Perktold

2010).

It is important to note that although I have constructed a market capitalization weighted

portfolio as the benchmark for our analysis, our methodology differs slightly from that

used for the creation of the factor returns. Stock inclusion may be slightly different, and

we rebalance annually while the factor return portfolios are rebalanced quarterly.

• Intercept: The intercept in the equation is the additional performance not ex-

20https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
21https://www.statsmodels.org/stable/index.html
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Table 18: Fama-French Three Factor Model, 1968 - 2017

MC EW IV ER MV1 MV5 MD1 MD5

Intercept 0.00% -0.02% 0.00% 0.00% 0.12% 0.12% 0.07% 0.04%

t-stat -0.07 -0.47 0.67 0.85 1.94 1.78 1.12 0.54

Market 0.99 1.04 0.96 0.94 0.71 0.65 0.81 0.79

t-stat 216.87 102.22 90.40 91.57 48.81 41.54 55.88 43.67

SMB -0.12 0.27 0.17 0.17 0.04 0.05 0.18 0.22

t-stat -17.94 18.75 10.93 11.60 1.88 2.15 8.47 8.36

HML 0.06 0.27 0.33 0.30 0.27 0.25 0.21 0.20

t-stat 8.16 17.62 20.05 18.90 12.19 10.60 9.69 7.36

R2 0.99 0.96 0.94 0.94 0.81 0.76 0.86 0.80

Monthly excess returns above the risk free rate for each allocation method are regressed against the
following set of standard factors as collected from: http://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/index.html. The website contains full information on the formation of the factor return sets.
Market: excess return above the 1 month US Treasury Bill of the value weighted return of all CRSP firms
incorporated in the US and listed on NYSE, AMEX, or NASDAQ exchanges with a share code of 10 or
11. SMB: Small Minus Big - the average return on the three small portfolios minus the return of the
three big portfolios. HML: High Minus Low - the average return on the two value portfolios minus the
average return on the two growth portfolios. Capital allocation methods: MC - market capitalization, EW -
equal weight, IV - inverse volatility, ER - equal risk, MV1 - minimum variance 1% max position size, MV5
-minimum variance 5% max position size, MD1 - maximum diversification 1% max position size, MD5 -
maximum diversification 5% max position size

plained by the combination of factor exposures solved in the multiple regression.

Using a factor lens, the intercept is the unexplained performance alpha (α). Given

the performance improvements that are seen in the gross return numbers for the

alternative allocation methods, the difference in the intercepts relative to our ver-

sion of the market cap portfolio are quite small as most of the performance is

explained by combining market returns with a few additional factors.

The t-statistic is shown for each value of the intercept. Our null hypothesis is that

the true alpha of any of these allocation methods is zero. Using a two tailed test

at the 95% confidence level, this would make the critical value equal to 1.96 which
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would cause us to reject the alphas for all of the methods although the alpha for

MV1 is very close to being significant.

Minimum variance portfolios are in several characteristic ways the most different

than other allocation methods and have the largest intercepts although we have to

reject these values at the 95% confidence level and assume that they are possibly

zero.

• Market: The market exposure factor is the excess return of a value weighted

portfolio of stocks above the risk free rate. For the three methods which hold all

1,000 stocks, the market exposure is quite high and very near that of the market

capitalization method in our panel. As minimum variance and maximum diversi-

fication hold fewer stocks and have dramatically different weightings, the portion

of returns attributable to the overall market are significantly lower. All of the

t-statistics are significant for the market coefficients.

• Size (SMB): The size factor captures the return of small versus big stocks (mar-

ket capitalization) within a portfolio. A positive value suggests more exposure

to smaller capitalization stocks than in the market portfolio. As expected, all of

the allocation methods examined in this study show more exposure to smaller

capitalization stocks. This is by design as the market cap weighted portfolio con-

centrates its exposure in the largest stocks available. Of the methods that hold all

1,000 stocks each year, equal weight has the most exposure to smaller cap stocks.

All of the t-stats are significant with the exception of MV1 which is close to the

threshold.

• Value (HML): The value factor captures the excess return of cheap stocks rela-

tive to expensive stocks. This is measured through the book to market ratio. The

full panel of allocation methodologies display additional exposure to the value fac-

tor in the range of 0.20 - 0.33. This is reasonably significant with all of the t-stats
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above the threshold limit of 1.96.

• R Squared: The allocation methods which hold the full 1,000 stocks (equal

weight, inverse volatility, equal risk) are very well explained by the factors in the

model with a minimum R2 of 0.94. While the factor model explains less of the

optimized methods (minimum variance, maximum diversification) returns, the R2

is still relatively high. It is noticeable that the more concentrated strategies (max

position sizes of 5%) have lower explanatory power by the factor model.

7.6 Computational Intensity

A quick note is warranted with regard to computational intensity of the methods ex-

amined in this paper. For the market cap, equal weight, and inverse volatility methods,

solving for the weights for each security is trivial. For the equal risk, minimum variance,

and maximum diversification methods, the solution requires an optimization routine

which was implemented in Python with sequential least squares programming. The opti-

mization routines are computationally intensive because the covariance matrix contains

one million cells.

For my analysis I used an Amazon virtual machine with 48 cores and 192 GB of RAM.

For the simple methods, I was able to create 50 years of returns within 1 minute. How-

ever for the advanced methods, with basic (non-optimized) coding, the optimization

routines would regularly take up to 8 minutes per year, per method with some solutions

extending as long as 8 hours for a 50 year series of returns22. I assume that with code

developed more efficiently the speed of calculation would increase, but I make this note

for posterity about the current state of computing power and my experience crafting

the solutions for this research. Despite my use of advanced cloud based computing re-

22Optimization routines were constructed using Python SciPy sequential least squares programming
where tolerances were set to 1e− 08.
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sources, recent announcements from Google about their ability to demonstrate quantum

supremacy in computing will likely make the calculations in this research trivial in the

years ahead.
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