

City, University of London Institutional Repository

Citation: Kasapidis, G. A., Paraskevopoulos, D. C., Repoussis, P. P. & Tarantilis, C. D.

(2021). Flexible job shop scheduling problems with arbitrary precedence graphs. Production
and Operations Management, 30(11), pp. 4044-4068. doi: 10.1111/poms.13501

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26312/

Link to published version: https://doi.org/10.1111/poms.13501

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Flexible Job Shop Scheduling Problems with Arbitrary

Precedence Graphs

Gregory A. Kasapidis1, Dimitris C. Paraskevopoulos2, Panagiotis P. Repoussis3, and Christos

D. Tarantilis4

1Department of Management Science and Technology, Athens University of Economics and

Business, 76 Patission street, 10434, Athens, Greece, gkasapidis@aueb.gr

2The Business School (formerly Cass), City, University of London, 106 Bunhill Row, EC1Y

8TZ, London, UK, dimi@city.ac.uk

3Department of Marketing and Communication, School of Business, Athens University of

Economics and Business, 76 Patission street, 10434, Athens, Greece, prepousi@aueb.gr

4Department of Management Science and Technology, Athens University of Economics and

Business, 76 Patission street, 10434, Athens, Greece, tarantil@aueb.gr

Abstract

A common assumption in the shop scheduling literature is that the processing order of the

operations of each job is sequential; however, in practice there can be multiple connections and

finish-to-start dependencies among the operations of each job. This paper studies flexible job shop

scheduling problems with arbitrary precedence graphs. Rigorous mixed integer and constraint pro-

gramming models are presented, as well as an evolutionary algorithm is proposed to solve large

scale problems. The proposed heuristic solution framework is equipped with efficient evolution

and local search mechanisms as well as new feasibility detection and makespan estimation meth-

ods. To that end, new theorems are derived that extend previous theoretical contributions of the

literature. Computational experiments on existing benchmark data sets show that the proposed

solution methods outperform the current state-of-the-art. Overall, 59 new best solutions and 61

new lower bounds are produced for a total of 228 benchmark problem instances of the literature.

To explore the impact of the arbitrary precedence graphs, lower bounds and heuristic solutions are

generated for new large-scale problems. These experiments illustrate that the machine assignment

flexibility and density of the precedence graphs, affect not only the makespan, but also the difficulty

of producing good upper bounds.

Keywords: Flexible Job Shop Scheduling, Mathematical Programming, Constraint Program-

ming, Evolutionary Algorithms

Received: August 2019; accepted: May 2021 by Kouvelis Panos after two revisions.

2

1 Introduction

Hard-to-solve production scheduling problems have attracted significant attention in the liter-

ature (Jin et al. 2002, Caglar Gencosman et al. 2016). An important class of problems that is

often encountered in manufacturing shop floors is the Job Shop Scheduling Problem (JSSP). The

JSSP seeks to schedule a set of jobs. Each job consists of a set of operations that are processed

by a set of machines. Each operation can be processed by only one machine and each machine

can process one operation at a time. The operations of a job must be processed in a prede-

fined chained order and the objective is to minimize the total length of the schedule, i.e., the

makespan. The JSSP can be used to model a wide variety of scheduling problems (Zhang et al.

2019), yet real-world settings may involve more complex constraints and operational realities.

A well-known generalization of the JSSP is the Flexible Job Shop Scheduling Problem

(FJSSP). In the FJSSP each operation can be processed by a set of parallel unrelated ma-

chines and the processing times may vary per machine. The FJSSP provides a more realistic

modeling framework and thus, a wide range of variants have been introduced. Sequence de-

pendent setup times (Shen et al. 2018), fuzzy processing times (Gao et al. 2016) and random

machine breakdowns (Xiong et al. 2013) are notable examples of features that have been studied

in the FJSSP literature. Despite research efforts on exact methods (Ku and Beck 2016, Demir

and Kürşat Işleyen 2013, Roshanaei et al. 2013), the FJSSP literature is currently dominated by

metaheuristic algorithms that aim to solve large-scale problems. Among early approaches, one

may distinguish the Tabu Search (TS) methods presented in Brandimarte (1993), Dell’Amico

and Trubian (1993), Dauzère-Pérès and Paulli (1997), and Mastrolilli and Gambardella (2000).

In the field of population-based algorithms, Gao et al. (2008) developed a hybrid genetic algo-

rithm combined with variable neighborhood descent, González et al. (2015) proposed a Scatter

Search (SS) method coupled with Path Relinking (PR), Yi et al. (2016) presented a memetic al-

gorithm, and Wu and Wu (2017) developed an evolutionary algorithm based on quantum physics

principles. It is also worth referring to the discrepancy search algorithm and the harmony search

algorithm proposed by Ben Hmida et al. (2010) and Yuan et al. (2013), respectively.

The FJSSP assumes that the processing order of the operations of a job is sequential. Never-

theless, in practice the operational hierarchies are not always linear and multiple dependencies

among the operations of each job may occur. For example, in assembly shop floors several

components and sub-assemblies are processed in parallel until the assembly of the final product

(Komaki et al. 2018). With this topic in mind, Alvarez-Valdes et al. (2005) studied a FJSSP

3

with precedence relations between the jobs. A similar case is studied by Vilcot and Billaut

(2008) where different precedence relations exist among the operations of a job, allowing for an

operation to have multiple predecessors but at most one direct successor. Birgin et al. (2013)

is, according to our knowledge, the first work that refers to the problem as the extended flexi-

ble job-shop scheduling problem (eFJSSP). The authors present a Mixed Integer Programming

(MIP) model for the eFJSSP together with a set of benchmark problem instances. More recently,

Lunardi and Voos (2018) developed a discrete firefly algorithm for the eFJSSP and Yu et al.

(2017) extended the mathematical formulation of Birgin et al. (2013) to include job priorities

and sequence flexibility.

Motivated by the practical importance of the eFJSSP as well as the sparse eFJSSP literature,

our paper makes methodological contributions and proposes new solution methods, it makes

theoretical contributions on how to efficiently explore neighborhood structures, and it studies the

impact of important problem properties, i.e., the flexibility of having multiple unrelated parallel

machines and the density of the precedence graphs. This paper presents MIP and Constraint

Programming (CP) formulations and comparisons are made with the MIP model of Birgin et al.

(2013) for the eFJSSP. The proposed CP model in particular, seems to perform very well and

produces several new improved lower and upper bounds for both the FJSSP and the eFJSSP.

For solving large-scale problems, this paper also presents a hybrid evolutionary algorithm. This

heuristic solution framework uses adaptive memory structures to keep track of the search history,

as well as local search algorithms that use critical path based neighborhood structures. To

that end, efficient neighborhood evaluation schemes are proposed that employ new methods

for makespan estimation and early feasibility detection. New theorems are derived that extend

and generalize previous theoretical results from the work of Dauzère-Pérès and Paulli (1997) for

the case of arbitrary precedence graphs. Computational experiments using various well-known

benchmark data sets demonstrate that the proposed solution methods outperform the existing

state-of-the-art solution approaches for both the FJSSP and the eFJSSP, while improved results

and new optimal solutions are reported. Furthermore, experiments using existing, as well as

new data sets for the eFJSSP are performed to explore how the flexibility and the density of

the precedence graphs affect the solution process and the associated solution cost. The new

data sets contain medium and large-scale problem instances considering precedence graphs with

various densities. These experiments assess the efficiency, effectiveness and scalability of the new

solution methods. In every case, we report lower and upper bounds and we discuss the effect of

4

the precedence graphs on the solution quality as well as on the time needed to produce optimal

or near optimal solutions. Lastly, various managerial insights are also extracted.

The remainder of this paper is organized as follows. Section 2 describes the MIP and CP

formulations, as well as some definitions and propositions that are used throughout the paper.

Section 3 presents the proposed evolutionary algorithm along with its components. In Section 4,

we present the details of the computational experiments and results, finally the paper concludes

in Section 5 by also providing some future research prospects.

2 Preliminaries

This section provides the basic definitions and, in particular, Section 2.1 introduces the notation

that is used throughout the paper and paves the way for Section 2.2 and Section 2.3 that present

the MIP and CP models, respectively. In the remainder of the paper, we will refer to the problem

as the Flexible Job Shop Scheduling with Arbitrary Precedence Graphs, as opposed to the term

eFJSSP, since we believe it is more suitable.

2.1 Notation

The FJSSP with arbitrary precedence graphs can be depicted as follows. There exists a set of

jobs J = {1, . . . , l} and a set of available machines M = {1, . . . ,m}. We define two dummy

operations i◦u and i∗u for each job u ∈ J , which correspond to the first and the last operations

of the job respectively. Each job u consists of a set of operations Ou, including the dummy

operations. There exists a set Ω that includes all the operations of the problem, Ω =
⋃l
u=1Ou.

Let n = |Ω| denote the total number of operations. Each operation i ∈ Ω can be executed

on a set of available machines Mi ⊆ M and has a processing time pi,k, where k ∈ Mi. Each

operation is executed once by a single machine, the machines can execute only one operation

at a time and no pre-emption is allowed. Note that for the dummy operations i◦u and i∗u, we

assume Mi◦u=Mi∗u=∅ and pi◦u,k = pi∗u,k = 0, for all k ∈ M . The flexibility fx of the problem

can be defined as a metric of the degrees of freedom regarding the assignment of operations to

different machines, and it can be calculated as 1
n

∑n
i=0 |Mi|.

For depicting the FJSSP with arbitrary precedence graphs, we adapt the disjunctive directed

graph representation as introduced by Mastrolilli and Gambardella (2000) for the FJSSP. Let 0

represent the start node of the schedule that it is connected to the first operation of each job u

of the problem i◦u. Similarly, let ∗ represent the end of the schedule that it is connected to the

5

last operation i∗u of each job u.

Definition 1. A disjunctive graph D(V,A ∪ E) consists of a set of nodes (operations) V =

Ω ∪ {0, ∗}, a set of conjunctive directed arcs A and a set of disjunctive arcs E . The conjunctive

directed arcs dictate the relations among the operations of the same job. The disjunctive arcs

dictate all possible connections between operations of the same machine.

Figure 1 provides an example of a typical disjunctive graph for the FJSSP with arbitrary

precedence graphs within the operations of each job that consists of two jobs (i◦1− i∗1 and i◦2− i∗2),

three machines, four operations per job and different precedence graphs per job.

*0

21

Machine 1
Machine 2
Machine 3

2i

1i

1i

2i

43

7

8

6

5

Job precedence

Figure 1: A disjunctive graph of an FJSSP problem with arbitrary precedence
constraints with two jobs, three machines and a total of eight operations

For every job u ∈ J , a precedence graph GPu = (Ou, Au) can be defined, where Au contains

the conjunctive arcs that represent the precedence relations between the operations Ou of a job

u. Note that A =
⋃l
u=1Au and GPu ⊂ D. For every operation i, the sets PJi and SJi denote

the immediate job predecessor and successor operations, respectively. Note that PJi ⊂ Ω and

SJi ⊂ Ω. Figure 2 shows an example of a job precedence graph. Sets PJi and SJi can have an

arbitrary cardinality, while in the case that |PJi| ≤ 1 and |SJi| ≤ 1 is true for all i ∈ Ω, then

the problem is equivalent to the simple FJSSP with chain-like precedence graphs. Note that

there is no hierarchy on the processing order of the predecessors or successors of an operation,

thus all operations of the sets PJi and SJi are equivalent.

On the basis of the above, the density δu of the precedence graph GPu of job u is calculated

in this paper as follows:

δu =

∑|Ou|
j=1 |SJj |

|Ou|(|Ou| − 1)
(1)

6

1i

1i

1

2

3

5 6

4

7

8 9

10

11

12

13

14

15

17

16

18

19

20

21

22

23
24

25

26

27

28

29

30

Figure 2: A job precedence graph with 30 operations

The problem’s density δ is defined in this paper as the average density of all l precedence

graphs as follows:

δ =
1

l

l∑
u=1

δu (2)

Given a disjunctive graph D(V,A ∪ E), an arc (i, j) ∈ A ∪ E represents the immediate

connection from node i to node j (i 6= j). Set A can be expressed as follows:

A = {(i, j),∀i ∈ Ω, ∀j ∈ SJi} ∪ {(j, i),∀i ∈ Ω, ∀j ∈ PJi} (3)

Set E can be expressed as the union of all the disjunctive arc sets Ek for each machine k of

the problem.

Ek =
⋃
{(i, j) : k ∈Mi ∩Mj , i 6= j,∀i, j ∈ Ω}

E =
⋃
Ek, ∀k ∈ m

Note that for the sake of simplicity, we can exclude from sets A and E the following sets of

arcs: {(0, i◦u), ∀u ∈ J} and {(i∗u, ∗), ∀u ∈ J}.

Definition 2. A solution s is defined as a pair (α, π), where α is a vector that represents the

assignment information of operations to machines and π is a table of vectors that represents the

sequence of operations executed at each machine.

More specifically, let α = {α(i),∀i ∈ Ω}, where α(i) ∈ Mi, and π = {πk,∀k ∈ M}, where

πk denotes the permutation of operations processed by machine k. For the sake of completion,

every permutation πk starts and ends with two dummy operations m◦k,m
∗
k ∈ Ω that denote the

start and the end operations of machine k, respectively. Note that Mm◦k
= Mm∗k

= {k} and

7

pm◦k,k = pm∗k,k = 0, for all k ∈ M . Note that given π, one can derive the assignment vector α,

but for the sake of simplicity α is also included in the definition of a solution.

Let us consider the problem illustrated by Figure 1. A solution consists of the permuta-

tion vectors of the executed operations per machine, for example π1 = (m◦1, 6, 8,m
∗
1), π2 =

(m◦2, 1, 4, 2,m
∗
2), π3 = (m◦3, 5, 3, 7,m

∗
3) and π = {π1, π2, π3}. On this basis, one can also deter-

mine the assignment vector, in this example α = (2, 2, 3, 2, 3, 1, 3, 1).

We use pmi (and smi) to denote the machine predecessor (and successor) of operation i

assigned to machine α(i) in a solution s(α, π).

Definition 3. A directed acyclic graph G = (V, E∗) ⊂ D can be used to represent a solution

s. The set of directed arcs E∗ ⊂ A∪E corresponds to the existing machine precedence relations

between operations assigned to the same machine as well as the directed arcs that represent

precedence relations between operations of the same job.

Definition 4. Given a solution graph G = (V, E∗), ρ(i, j) with i, j ∈ Ω represents the longest

directed path {i, o1, o2, ..., oz−1, oz, j} between i and j. The sequence o1 to oz denotes all inter-

mediate operations of the corresponding path. The time length of ρ(i, j) is denoted as L(i, j).

Since the graph G is directed, for any path that exists between two operations i, j holds that

L(i, j) > 0. If there is no path connecting the two operations, then L(i, j) = 0. To calculate

L(i, j), we need the start and the completion times of the operations in the path. For each

operation i its start and completion times can be calculated in O(n) using a labeling algorithm

(Adams et al. 1988).

The sets Pi and Si contain all the predecessors and successors of an operation i in the solution

graph G, respectively. That is Pi = {v,∀v ∈ Ω : L(v, i) > 0} and Si = {v,∀v ∈ Ω : L(i, v) > 0}.

Note that PJi ⊂ Pi and SJi ⊂ Si.

Definition 5. The cost of a solution s, namely the makespan of the schedule Csmax, is defined

as the length of the longest path from 0 to ∗, i.e., L(0, ∗). For the sake of brevity, in some cases

we may omit the superscript that denotes the corresponding solution.

Definition 6. The head times ri denote the difference between the start time of the schedule

and the start time of an operation i. The head times are also equal to the length of the longest

path from node 0 to operation i, i.e., ri = L(0, i).

Definition 7. The tail times qi denote the difference between the completion time Ci of the

operation i and the makespan Cmax, i.e., qi=Cmax − Ci.

8

The head and tail times can also be determined as follows:

ri = max

(
max
∀e∈PJi

(
re + pe,α(e)

)
, rpmi + ppmi,α(i)

)
∀i ∈ Ω (4)

qi = max

(
max
∀e∈SJi

(
qe + pe,α(e)

)
, qsmi + psmi,α(i)

)
∀i ∈ Ω (5)

Definition 8. All operations included in ρ(0, ∗) are named critical. Critical operations have no

flexibility to move back and forth in the scheduling horizon, and thus they define the length of

the schedule, i.e., the makespan. An operation i is critical when Cmax = ri + pi,α(i) + qi.

Definition 9. A sequence of consecutive operations B = {o1, o2, ..., oe−1, oe} ⊆ πk processed

on the same machine k is considered as a critical block if all operations i ∈ B are critical and

|B| ≥ 2.

For the FJSSP with arbitrary precedence graphs, it is also important to provide the definition

of the redundant arcs and the maximum density of precedence graphs.

Definition 10. Let i, j be two nodes of a disjunctive graph D(V,A∪ E), so that a path ρ(i, j)

exists in A. If the conjunctive arc (i, j) also exists in A and |ρ(i, j)| ≥ 2, then the arc (i, j) is

labeled as redundant.

Given a precedence graph GPu of a job u, the maximum density δmaxu represents the density

of a fully saturated version of GPu that has the maximum possible number of non-redundant arcs.

Given an upper bound θ on the number of predecessors and successors per operation i ∈ Ju, the

maximum number of non-redundant arcs of GPu can be calculated as follows:

nRA = θ + (z1 − 1)θ2 + z2θ + max(z2, (1− z2)θ) (6)

where z1 = b |Ou|−2
θ c and z2 = (|Ou| − 2) (mod θ).

Based on nRA, the maximum density of GPu as follows:

δmaxu =
nRA

|Ou|(|Ou| − 1)
(7)

9

2.2 Mixed Integer Programming Formulation

The mathematical formulation presented in this section is inspired by the earlier works of

Roshanaei et al. (2013) and Shen et al. (2018). However, one major difference is that we adopt

a single index for indexing the operations that leads to a simpler notation.

Let Ci denote the completion time of operation i ∈ Ω. Let us also define a pair of binary

variables Yi,k and Xi,j,k. The former is equal to one if operation i is assigned to machine k; zero

otherwise. The latter is equal to one if operations i and j are assigned to the same machine k

and j is processed after i; zero otherwise.

minimizeCmax (8)

subject to:

m∑
k=1

Yi,k = 1 ∀i ∈ Ω (9)

Ci ≥ Cj +
m∑
k=1

Yi,kpi,k ∀i ∈ Ω,∀j ∈ PJi (10)

Ci ≥ Cj + pi,k −M(2 +Xi,j,k − Yi,k − Yj,k) ∀i, j ∈ Ω, ∀k ∈Mi ∩Mj (11)

Cj ≥ Ci + pj,k −M(3−Xi,j,k − Yi,k − Yj,k) ∀i, j ∈ Ω,∀k ∈Mi ∩Mj (12)

Ci ≥ 0 ∀i ∈ Ω (13)

Cmax ≥ Ci∗u ∀u ∈ J (14)

Xi,j,k ∈ {0, 1} ∀i, j ∈ Ω,∀k ∈M (15)

Yi,k ∈ {0, 1} ∀i ∈ Ω,∀k ∈M (16)

The objective (8) is to minimize the makespan Cmax. Constraints (9) ensure that each

operation is assigned to exactly one machine. Constraints (10) ensure that the job precedence

relations are satisfied, i.e., an operation is processed after all of its job predecessors are processed.

Constraints (11) and (12) enforce that there is no overlap between two operations scheduled on

the same machine. Note that the set of constraints (11) and (12) is empty when Mi ∩Mj = ∅,

whileM is a large number. Since the difference between Cj and Ci for any operations i, j cannot

exceed the makespan Cmax, a valid upper bound forM can be calculated as
∑

i∈Ω maxk∈Mi
pi,k.

Constraints (14) calculate the makespan, while constraints (13) make sure that the completion

times are positive. Lastly, constraints (15) and (16) define the variables X and Y . Note that

10

the dummy machine operations m◦k,m
∗
k, ∀k ∈ m are not considered in the model.

The main difference between the MIP formulation (8) - (16) and the formulation proposed

by Birgin et al. (2013) can be found in the representation of the machine precedence constraints.

Note that the formulation of Birgin et al. (2013) introduces a smaller number of constraints. A

comparison between the two MIP formulations for the FJSSP with arbitrary precedence graphs

is provided in Sections 4.4 and 4.6.

2.3 Constraint Programming Formulation

Constraint Programming has been successfully applied for solving various highly constrained

and large-scale scheduling problems (Goel et al. 2015, Rasmussen et al. 2017, Unsal and Oguz

2013). The input of a CP model is a set of decision variables, a finite set of alternative values

as a domain per decision variable, as well as a set of constraints that have to be satisfied. A

CP solver works by enumerating feasible solutions of the problem using branching algorithms.

During this process, it also tries to decrease the domain cardinality of each decision variable by

propagating through the constraints. Constraint propagation identifies values or combinations of

values across multiple decision variables that cannot be part of a feasible solution, and therefore,

can be excluded from the domain sets of the corresponding decision variables, which can lead

to branch pruning (Laborie et al. 2018).

Specifically, for scheduling applications CP models use interval variables. This type of

variable is a natural way of describing a task. Interval variables have four attributes: IsPresent,

Start, End and Size. IsPresent indicates if the interval variable is included in the solution or

not, Start and End denote the start and the end time of the interval variable, i.e., the start and

the end time of the task, while Size refers to the size of the interval, i.e., the length of the task.

In our implementation, for each operation i a decision interval variable τi is defined. The

alternative execution options (modes) of an operation i on a machine k ∈ Mi are also defined

as decision interval variables φi,k. For these variables a constraint is defined such that the Size

attribute of each φi,k is equal to the processing time pi,k of i on machine k. We also define a

set µi = {φi,k, ∀k ∈Mi} to represent all the available execution modes per operation i, which is

also used to denote the domain set of variable τi. Lastly, a sequence interval decision variable

σk is defined per machine k over the set of interval variables σk = {φi,k, ∀i ∈ Ω}.

minimizeCmax (17)

11

subject to:

Alternative(τi, µi) ∀i ∈ Ω (18)

EndBeforeStart(j, i) ∀i ∈ Ω,∀j ∈ PJi (19)

NoOverlap(σk) ∀k ∈M (20)

Cmax ≥ EndOf(τi) ∀i ∈ Ω (21)

The objective (17) refers to the minimization of the makespan. Constraints (18) are used to

enforce a unique selection of the available modes for the interval variable τi out of the set µi.

Constraints (19) are used to cover the precedence relations of the problem, i.e., each operation

i can start as soon as all of its job predecessors j ∈ PJi have finished. Constraints (20) ensure

that the interval variables included in σk do not overlap, since a machine can execute only one

operation at a time. They also ensure that each operation starts after its machine predecessor

has finished. Lastly, constraint (21) is responsible for the calculation of the makespan. Note

that the EndOf function is used to retrieve the End attribute of an interval variable τi, i.e.

its completion time Ci. Compared to the MIP model described earlier, the number of decision

variables of the CP model is smaller. To that end, one may expect smaller memory requirements

from the solver side; however, there is no guarantee for the amount of memory that would be

actually required during run-time, especially when solving large-scale problem instances. Note

that the MIP and CP models are formulated to solve the FJSSP with arbitrary precedence

graphs, nevertheless the same formulation can be used to solve the classic FJSSP under the

following assumptions:|PJi| ≤ 1, |SJi| ≤ 1, ∀i ∈ Ou, ∀u ∈ J .

3 Evolutionary Algorithm

This section presents an evolutionary algorithm for generating high quality heuristic upper

bounds. The proposed algorithm is inspired from PR and SS frameworks (Mart́ı et al. 2006,

Glover et al. 2000). These frameworks have been proven to be very efficient in solving vari-

ous hard combinatorial optimization problems, including a wide variety of scheduling problems

(González et al. 2015, Jia and Hu 2014). Our EA amalgamates the basic principles of these

frameworks. It is also equipped with several innovative elements, tailored for addressing the

FJSSP with arbitrary precedence graphs, which are unpacked in this section. Among them, the

12

main highlights are the new frequency map and solution distance metrics used for updating the

reference set, the improved feasibility check and makespan estimation methods used during local

search that are taken from the FJSSP literature, and the new multi-solution PR mechanism used

during subset generation.

Algorithm 1 depicts the proposed solution method. During the initialization phase, a refer-

ence set R is populated with solutions produced via a greedy randomized construction heuristic

method that is described in Section 3.1. The selection of reference solutions is based on the

makespan and a score based to an arc frequency map. The arc frequency map can be seen as

an adaptive memory structure that records the history of the search process (visited solutions).

Therefore, high scores indicate that a solution is comprised of more rarely encountered elements

(see Sections 3.2 and 3.3 for details). Next, the evolutionary phase is triggered and R is evolved

for a number of generations. The size of the reference set R is controlled by parameter ζ. At

each generation, a set C of recombined candidate solutions is produced with cardinality equal

to |R|. A PR mechanism is employed for this purpose that randomly selects and combines β so-

lutions from R. To that end, a TS algorithm is applied to each solution for further improvement

(education phase). The local search process is repeated for maxIterations iterations until no

further improvement is observed, while the number of iterations that a local move is considered

“tabu” is controlled by parameter ξ (tabu tenure). The improved solutions are used to update

the arc frequency map and compete to update R. The algorithm terminates after a number of

maxGenerations iterations without observing any improvement on the best solution found.

The arc frequency map, the PR and the TS algorithmic components are described in Sections

3.2, 3.4 and 3.5, respectively. Note that λ, ζ, β, ξ, maxIterations and maxGenerations are

hyperparameters and termination conditions that are described in the following sections.

3.1 Reference Set Generation Method

In the initialization phase, the goal is to generate an initial reference set of adequately diverse

initial solutions. We adopt a greedy randomized solution construction scheme, similar to that

of GRASP (Feo and Resende 1995). The solution construction process works as follows: assume

an empty solution s; at each iteration an operation i is added into the partially constructed

solution s. Note that all machines k ∈ Mi and all qualified positions j on the permutation of

each machine k are examined. Each feasible combination, i.e., that does not introduce cycles

to the solution graph, can be seen as a tuple (i, k, j) that is evaluated and the corresponding

13

Algorithm 1 Evolutionary Algorithm

Require: λ, ζ, β, ξ, maxIterations and maxGenerations
1: g ← 0, R← ∅
2: InitializeArcFrequencyMap()
3: repeat . 1. Initialization phase
4: s← GreedyRandomisedConstruction(λ)
5: UpdateArcFrequencyMap(s)
6: R← UpdateReferenceSet(s,R)
7: until |R| = ζ
8: s∗ ← argmins∈RC

s
max

9: repeat . 2. Evolutionary phase
10: C ← ∅
11: repeat
12: s← PathRelinking(β,R)
13: C ← C ∪ {s}
14: until |C| = |R|
15: for all sc ∈ C do
16: s′ ← TabuSearch(sc, ξ,maxIterations) . 3. Education phase
17: UpdateArcFrequencyMap(s′)
18: R← UpdateReferenceSet(s′, R)
19: end for
20: ś∗ ← argmins∈RC

s
max

21: if C ś∗max < Cs∗max then
22: g ← 0, s∗ ← ś∗
23: else
24: g ← g + 1
25: end if
26: until g > maxGenerations
27: return s∗

makespan, i.e., Csmax is calculated. The solutions derived from these combinations (i, k, j) are

stored in a Candidate List (CL) and are sorted in an ascending order of their makespan. At

each iteration, we extract a Restricted Candidate List (RCL) with the top ranked partially

constructed solutions from CL, we randomly select an element from RCL, and we continue to

the insertion of the next operation. The cardinality of RCL is equal to
⌈ |CL|

λ

⌉
. The procedure

continues until all operations i ∈ Ω are scheduled and a complete solution s is produced.

3.2 Frequency Map and Distance Metric

The proposed algorithm introduces an adaptive memory structure in the form of a frequency

map that collects information about the elements of improved solutions visited during the search.

This is represented by a three dimensional matrix W and the value of an element W [i, j, k] holds

the number of times an arc (i, j) has been observed on machine k. This arc frequency map is

used to derive a diversity metric for a solution, referred hereafter as seldomness. The intuition

14

is the following: high seldomness scores show that a solution contains few frequent arcs, and

thus it can be seen as a more diversified solution, while low scores of seldomness show that a

solution contains many frequent arcs, and thus denoting a less diversified solution. The goal is

to identify frequent elements of high quality solutions, and also guide the search towards less

frequent elements to encourage diversification.

For a solution s(α, π) with a solution graph G, the seldomness dr(s) is calculated by the

inverse sum of the normalized frequencies of each arc (excluding conjunctive arcs) that exists in

G. This can be expressed by using the set of permutation vectors π of s:

dr(s) = 1−
m∑
k=0

|πk|−1∑
j=1

Ŵ
[
πk(j), πk(j + 1), k

]
(22)

To ensure that the seldomness is comparable across different solutions, we maintain the

matrix Ŵ that contains normalized frequency values. These values are derived by dividing the

frequencies of each element with the number of solutions visited during the search as well as the

number of arcs of solution s, i.e.,
∑

k∈M (|πk| − 1). The sum of the normalized frequency values

across all the arcs of G is less than one at all times, and therefore, the seldomness metric takes

only values from zero to one.

Let us also define the distance between two solutions. A common metric is the so-called

hamming distance that considers the number of different arcs between the two solutions (Mat-

tfeld 2013). For the FJSSP, this definition is extended to capture the assignment information

of operations to different machines. In particular, González et al. (2015) proposed two different

distance metrics for the assignment of operations to machines and the sequencing of the opera-

tions on the machines. In a similar fashion, we combine both decision elements and we introduce

a metric for measuring the distance dh(s, s′) between two solutions s and s′ as follows:

dh(s, s′) =

M∑
k

Ω∑
i

(Y s
i,k ⊕ Y s′

i,k) +
M∑
k

Ω∑
i

(1− Y s
i,k ⊕ Y s′

i,k)
Ω∑
j

(Xs
i,j,k ⊕Xs′

i,j,k) (23)

The symbol ⊕ is used to describe a XOR operator between two binary variables, i.e., when

comparing Y s
i,k ⊕ Y s′

i,k the result is 0 if and only if operation i is assigned on the same machine

k on both solutions s, s′ or if it not assigned on machine k on both solutions s, s′. Otherwise, if

the assignments are different the operator returns 1. Note that superscripts are used in binary

variables X,Y to indicate the solution they refer to.

15

3.3 Reference Set Update Method

The update of R is important since it partially controls the evolution process. The aim is to

maintain reference solutions that are high quality in terms of makespan, but also diverse to each

other. For this purpose, we resort to the seldomness metric defined earlier. Assume that sb

and sw denote the best and the worst solutions in the reference set, respectively. Let sc be a

candidate reference solution. If Cscmax < Cswmax, then sc replaces a solution sr ∈ R that satisfies

the condition Cscmax ≤ Csrmax ∧ dr(sc) ≥ dr(sr). When multiple solutions satisfy the condition,

then the one with the worst makespan is selected to be removed. Additionally, if these solutions

are tied in terms of makespan, then the solution with the lowest seldomness is selected to be

removed. If a tie occurs in terms of both the makespan and the seldomness, then the reference

set is not updated. Note that, such ties are rare, since the reference set is continuously evolving

and the seldomness metric for the reference solutions are updated based on the history of the

search. In the special case that Cscmax < Csbmax and the seldomness criterion is not met, then sc

replaces sw.

3.4 Subset Generation Method

A critical component for the evolution process is the solution recombination mechanism. The aim

is to combine components of parent solutions so as to produce high quality, but also diversified

subsets of candidate solutions (offspring). Path relinking offers a powerful and flexible framework

(Glover et al. 2000, Tarantilis et al. 2012) and it is used to explore trajectories in the solution

space between pairs of reference solutions. Starting from an initial solution, local moves are

performed in an effort to reach the guiding solution by reducing at each local search iteration

the distance between them. In our framework, the PR is used to systematically generate paths

and intermediate solutions from a subset of solutions β.

The proposed subset generation method works as follows: Firstly, β solutions are selected

randomly with equal probability. Based on the selection sequence, an ordered set Z = (s1, s2,

. . . , sβ) ⊂ R is derived. The order is also random, but we ensure that no replicates of Z re-

appear after the end of the process. Based on this order, the PR is applied initially between

s1 and s2. The objective is to minimize dh(s1, s2), while the path LS1(s1, s2) is generated that

consists of all the solutions visited. Among them, we select the best in terms of makespan

sb1 = argmins∈LS1C
s
max. Next, starting from sb1 the local search path LS2(sb1, s3) is generated

and the best encountered solution sb2 = argmins∈LS2C
s
max is returned. This procedure continues

16

until all β − 1 paths are explored and the final best sbβ−1 = argmins∈LSβ−1
Csmax is returned.

Note that during the selection of the best solution of a path, the initial and the guiding solutions

are disregarded. Figure 3 provides a visualization of the above PR for three solutions (β = 3).

Figure 3: Visualization of PR for a combination of β = 3 solutions following the ordered set
(s1, s2, s3)

Algorithm 2 Path Relinking

Require: : R, β
1: Z ← SelectAtRandom(R, β)
2: i← 1
3: sb0 ← Z(1)
4: repeat
5: sbi ← TabuSearch(sbi−1, ξ, maxIterations) . TS to minimize dh(sbi−1, Z(i+ 1))
6: i← i+ 1
7: until i = β
8: return sbβ−1

An overview of the proposed PR mechanism for generating a recombined solution from an

ordered solution set Z is presented in Algorithm 2. The TS algorithm that is described later in

Section 3.5 is used to generate the search trajectories from an initial solution sbi−1, which is equal

to Z(1) for the first iteration, to a guiding solution Z(i + 1). For this purpose, a hierarchical

objective is adopted; minimize the distance dh(sbi−1, Z(i + 1)) as primary objective and break

ties based on the makespan.

3.5 Local Improvement Method

A TS algorithm is used for improving the recombined solutions derived by the PR. The aim is to

explore the solution space by moving at every iteration from a solution s, to the best admissible

17

solution given a neighborhood structure. In the proposed framework we employ the so-called

simple relocation N1, the critical relocation N2 and the critical block relocation N3 (see Section

3.5.1 for details). At each iteration, a neighborhood structure is selected according to an equal

probability and the corresponding solution neighborhood is evaluated. To that end, a short term

memory records the most recently visited solutions and prevents revisiting them for a number of

iterations ξ (tabu tenure). The tabu status can be overridden only if the examined neighboring

solution improves the best encountered solution sbest (aspiration condition). The overall local

search scheme iterates until the termination conditions are met.

Algorithm 3 provides an overview of the proposed local improvement method. Regarding the

termination condition, a maximum number of iterations maxIterations without observing any

further improvement is imposed. Also note that in Line 5 of Algorithm 3, the best admissible

neighboring solution is selected according to a fitness function F that can be either the makespan,

or any weighted or hierarchical combination of solution fitness metrics. The proposed local search

is also used for generating paths between an initial and a guiding solution. In that case, the

primary objective is to minimize the humming distance of the current neighboring solutions

w.r.t. the guiding solution, while the secondary objective is to minimize the makespan.

Algorithm 3 Tabu Search

Require: s,maxIterations, ξ
1: sbest ← s, i← 0
2: while i ≤ maxIterations do
3: y ← RandomSelection() . y ∈ {1, 2, 3}
4: Ny ← NeighborhoodEvaluation(y, s) . Solution neighborhood
5: s← arg minsc∈Nc F(sc) . F(s) represents the fitness function
6: if Csmax < Csbestmax then
7: sbest ← s
8: i← 0
9: else

10: i← i+ 1
11: end if
12: UpdateTabuList(s, ξ)
13: end while
14: return sbest

3.5.1 Neighborhood structures

Given a solution s(α, π) and its associated graph G = (V, E∗), the neighborhood operator y

modifies a machine permutation πk of a mechine k and produces a set of neighboring solutions

Ny. The solutions that are derived by these amendments are considered as neighbors of the

18

solution s and form a neighborhood Ny(s).

All neighborhood structures involve the relocation of a single operation i from its permutation

πα(i) to the same or a different permutation of operations πk. Let v, w be two consecutive

operations with v, w ∈ πk, (v, w) ∈ E∗ and i 6= v, w. The relocation of an operation i between

operations v and w results in a new solution ś and its corresponding solution graph Ǵ = (V, É∗),

where É∗ = E∗ ∪{(pmi, smi), (v, i), (i, w)} \ {(pmi, i), (i, smi), (v, w)}. The feasibility conditions

of a relocation move are discussed in Section 3.5.2.

The neighborhood structure N1 involves the relocation of every operation i ∈ Ω to every

feasible position of a machine permutation πk. The size of N1 is O(n2). To the contrary, N2

and N3 focus only on critical operations and seek to reduce the length of the critical paths

(see Definition 8). Similar neighborhood structures also appear in the works of Mastrolilli and

Gambardella (2000), Bozejko et al. (2010), González et al. (2015). In particular, N2 considers

the relocation of every critical operation on every feasible position of a machine permutation πk.

Since the number of critical operations is at most n, the size of N2 is also O(n2). Nevertheless,

in practice only a small subset of operations are critical, and therefore, we expect that N2 is

only a small subset of N1. Lastly, the neighborhood structure N3 focuses on the critical blocks

of the solution and it is inspired from the earlier work of Zhang et al. (2008) for the JSSP. Let

B = {o1, o2, . . . , oe−1, oe} be a critical block. At first, we examine all insertion positions inside

the block to relocate o1 and oe. For all other “internal” operations starting from o2 to oe−1 we

examine their relocation to the first and the last position of the block. The worst case size for

N3 is also O(n2); however, one may expect that N3 is significantly smaller than N2. Similar

neighborhood structures that appear in the literature include the reversal of all arcs within

critical blocks (van Laarhoven et al. 1992), the relocation of all internal operations of a block to

the first and the last positions of the block (Dell’Amico and Trubian 1993), and the reversal of

the first and the last arcs of a block (Nowicki and Smutnicki 1996). Note that N3 works only

on the permutations of operations and not on the assignment of operations to machines.

3.5.2 Feasibility checks and objective function evaluation

During the evaluation of a solution neighborhood, a number of relocation moves are a priori

infeasible since they introduce cycles in the solution graph. For this reason it is important to

detect infeasible relocation moves early so as to avoid the expensive process of recalculating all

the start and completion times of all operations. However, the cycle detection for the FJSSP

19

with arbitrary precedence graphs can be quite challenging. Figure 4 shows six typical examples

of infeasible relocation moves of an operation i between two consecutive operations v and w.

Cycles are introduced in the graph (denoted with dashed lines), whenever the solution graph

contains paths from any of the immediate job successors of i to any predecessor of v, or from

the immediate successors of w to any job predecessor of i.

We extend the theorem proposed by Dauzère-Pérès and Paulli (1997), regarding the feasibil-

ity of relocation moves for the FJSSP, to capture also the case of arbitrary precedence graphs.

Theorem 1. The relocation of an operation i ∈ πα(i), between two consecutive operations

v, w ∈ πk, where v /∈ SJi and w /∈ PJi does not create a cycle in the solution graph when all

following conditions are true:

i. rv < re + pe,α(e) ∀e ∈ SJi, v 6= e

ii. rw + pw,k > re ∀e ∈ PJi, w 6= e

u

v

w

PJv1

PJv2

PJu1

SJu1

SJu2

SJw1

SJw2

SJw3

smu

pmu

pmv

smw

i

v

w

PJv1

PJv2

PJi1

SJi1

SJi2

SJw1

SJw2

SJw3

smi

pmi

pmv

smw

i

v

w

PJv1

PJv2

PJi1

SJi1

SJi2

SJw1

SJw2

SJw3

smi

pmi

pmv

smw

i

v

w

PJv1

PJv2

PJi1

SJi1

SJi2

SJw1

SJw2

SJw3

smi

pmi

pmv

smw

i

v

w

PJv1

PJv2

PJi1

SJi1

SJi2

SJw1

SJw2

SJw3

smi

pmi

pmv

smw

i

v

w

PJv1

PJv2

PJi1

SJi1

SJi2

SJw1

SJw2

SJw3

smi

pmi

pmv

smw

i

v

w

PJv1

PJv2

PJi1

SJi1

SJi2

SJw1

SJw2

SJw3

smi

pmi

pmv

smw

Figure 4: Examples of infeasible moves and occurrence of cycles in the solution graph when
relocating operation i between operations v and w
.

Theorem 1 allows a speedier neighborhood evaluation process, since the feasibility of a relo-

cation move is predicted before its application. It is important to highlight that feasible moves

can be classified as infeasible due to Theorem 1; however, it is guaranteed that no infeasible

move will be classified as feasible. The proof of Theorem 1 is provided in Appendix A, while

20

computational experiments that assess the classification accuracy of Theorem 1 are presented

in Section 4.2.

Apart from the assessment of the feasibility of a solution, another computationally expensive

procedure is the calculation of the cost of the move, i.e., the makespan. For this purpose, various

methods have been proposed in the JSSP and FJSSP literature for estimating the cost of a

relocation move, without the need of recalculating the start, and the completion times of all

operations. Dell’Amico and Trubian (1993) introduced the lpath method for the JSSP, which

estimates the cost of the relocation of an operation i within the permutation πα(i). Regarding

the relocation of i to a different permutation πk, k 6= α(i), González et al. (2015) proposed a

makespan estimate method for the FJSSP inspired by the lpath method. We extended the lpath

method for the FJSSP with arbitrary precedence graphs by considering equations (4) and (5)

provided earlier for the calculation of head and tail times.

Dauzère-Pérès and Paulli (1997) also proposed a method to calculate lower bounds for the

makespan of relocation moves regarding the FJSSP. In this paper, we introduce an extension of

these lower bounds for the case of arbitrary precedence graphs below:

Theorem 2. Assume a relocation of an operation i ∈ πα(i) to the permutation πk of machine

k ∈ Mi, between operations v, w ∈ πk, so that Theorem 1 holds. Then, the makespan of the

new solution ś, C śmax, is always larger or equal than:

LB(i, v, w) = max

(
r̂v + pv,k, max

∀e∈PJi

(
re + pe,α(e)

))
+pi,k+max

(
q̂w + pw,k, max

∀e∈SJi

(
qe + pe,α(e)

))
(24)

where

r̂v =

rv − rsmi + max

(
max

∀e∈PJsmi

(
re + pe,α(e)

)
, rpmi + ppmi,α(pmi)

)
if i ∈ Pv

rv if i 6∈ Pv

(25)

q̂w =

qw − qpmi + max

(
max

∀e∈SJpmi

(
qe + pe,α(e)

)
, qsmi + psmi,α(smi)

)
if i ∈ Sw

qw if i ∈ Sw

(26)

The proof of Theorem 2 is provided in Appendix A. For assessing the accuracy of the adapta-

tion of the lpath method for the FJSSP with arbitrary precedence graphs and the lower bounds

21

calculated by Theorem 2, various computational experiments have been conducted that are

presented in Section 4.2.

4 Computational Experiments

This section presents various computational experiments for exploring the properties of arbitrary

precedence graphs, as well as for evaluating the efficiency and effectiveness of the proposed exact

and heuristic solution methods. At first, Section 4.1 discusses the parameter settings and the

tuning process. Section 4.2 assesses the accuracy of the theorems discussed in Section 3.5.2.

Section 4.3 provides computational experiments as well as a discussion on the performance of

the proposed heuristic and exact approaches on existing FJSSP benchmark data sets. Detailed

results for the FJSSP, a comprehensive comparative analysis w.r.t. the current state-of-the art

approaches of the FJSSP literature, and a performance assessment discussion for the proposed

EA can be found in Appendices B, C and D, respectively. Section 4.4 provides a comparative

performance analysis on the existing benchmark sets for the FJSSP with arbitrary precedence

graphs. Lastly, Sections 4.5 and 4.6 present exact and heuristic solutions obtained for a new

benchmark data set with various graph densities. To that end, detailed results for the FJSSP

with arbitrary precedence graphs as well as the instance generation process can be found in

Appendices E and F, respectively.

4.1 Parameter Settings and Termination Conditions

The proposed evolutionary algorithm uses six user-defined parameters: ζ the size of the reference

set, β the number of recombined solutions, maxIterations the number of local search iterations

without observing any improvement, ξ the tabu tenure, λ the size of RCL, and maxGenerations

the maximum number of generations without improving the overall best found solution.

Based on our computational experience, the proposed framework is quite reliable and one

can determine well-performing parameter settings within reasonable value ranges. All computa-

tional experiments reported in subsequent sections consider fixed parameters with the following

settings: ζ = 16, β = 4, maxIterations = 1000, ξ = 20, λ = 4 and maxGenerations = 250.

Ten runs of the EA are performed (unless otherwise stated) for each problem instance, using an

Intel Xeon E52650 v2 CPU clocked at 2.6GHz, and the overall best solution found is reported.

The proposed EA is implemented in C++ using the gcc compiler with the following flags: “-O3

-ffast-math”. Note that a limit on the CPU time to 10800 seconds is imposed (unless other-

22

wise stated) for every run, if the maximum generation limit is not reached. In case the same

best solution is produced in different runs, the reported time refers to the quickest run (unless

otherwise stated). Below, we provide suitable value ranges for each parameter.

Parameters ζ and β can be used to control the evolution process. Large values of ζ may

enhance the diversity of the reference set; however, it may also reduce the convergence velocity.

To the contrary, small values may not be adequate to capture the information included in

the encountered reference solutions. The reference set size of scatter search schemes of the

literature rarely exceeds 30. In our case, a value range between 8 to 20 was found to provide a

good compromise for most problem instances. On the other hand, large values for β may allow a

more thorough exploration of the search space, nevertheless the computational time invested for

the solution recombination will also increase. Values of β up to 4 are appropriate for reference

sets with up to 20 solutions.

The termination condition of the local improvement method is critical to the overall per-

formance of the EA. Large values of maxIterations may increase the effectiveness; however, a

balance is needed between exploration and exploitation since large values may result in excessive

computational times invested for local search, without providing sufficient time to the evolution

process. Regarding ξ, a value range from 10 to 30 seems to work well, while for λ values between

3 to 6 provided a good sampling of the initial reference set for most of the problem instances.

Overall, we did not observe any significant differences or patterns during our experimentation

when we tried different parameter settings for the FJSSP, with or without arbitrary precedence

graphs. To that end, for selecting the final set of parameters the following process was followed.

We chose a subset of hard-to-solve large-scale FJSSP problem instances given that tighter lower

bounds are available to compare the heuristic upper bounds of the proposed EA. We used

the CP % optimality gap as the measure of difficulty to solve. In total, 10 problems were

selected, namely the mk6 and the mk13 from the BRDATA set, the 10a and the 16a from the

DPDATA set, the abz7 and the abz8 from the HUEData set, the abz7 and the car1 from the

HURData set and the abz7 and the abz8 from the HUVData set. Each of these problems was

solved considering 36 combinations of parameter settings: ζ ∈ {8, 12, 16, 20}, β ∈ {2, 3, 4} and

maxIterations ∈ {200, 500, 1000}. Note that ten runs were performed for each combination

considering time limits of 600 and 10800 seconds, while the remaining parameters were fixed

(i.e., ξ = 20, λ = 4 and maxGenerations = 250). Overall, the combination (ζ = 16, β = 4, and

maxIterations = 1000) seemed to provide a good trade-off for both time limits.

23

In terms of implementation, the MIP and CP models were coded with IBM’s Optimization

Programming Language (OPL) and solved using the MIP and CP solvers of IBM ILOG CPLEX

version 12.8.0. The default parameter settings were considered for both solvers, the number of

threads was set equal to one, and no starting solution was used. Lastly, a time limit of 10800

seconds was imposed (unless otherwise stated) and the optimality tolerance was set to 0.01%.

4.2 Accuracy of feasibility prediction and makespan estimation methods

This section discusses the accuracy and impact of the feasibility detection and the makespan

estimation methods presented in Section 3.5.2 for the FJSSP with arbitrary precedence graphs.

Initially, we examine the classification accuracy and the predictability of infeasible relocation

moves based on Theorem 1. For different problem instances and starting from randomly gener-

ated solutions (five per instance) as described in Section 3.1, we evaluated the generic relocation

structure (N1) and we examined the feasibility of all corresponding neighboring solutions. Over-

all, during this experiment we examined ten million neighboring solutions and the classification

results are summarized in the form of a confusion matrix. Table 1 provides the test outcome as

well as the True Positive Rate (TPR), the True Negative Rate (TNR), the Positive Predictive

Value (PPV), the Negative Predictive Value (NPV), and the Accuracy (ACC). Theorem 1 can

predict if a move is feasible (positive) or not (negative). However, it is worth highlighting that

the negative outcome of Theorem 1 does not provide any guarantee that the move is actually

infeasible. There is a guarantee only for the positive outcome.

Table 1: Confusion matrix for the classification assessment of Theorem 1

Actual Feasible Actual Infeasible
Predicted Feasible 2557936 0 100% (PPV)

Not Predicted Feasible 884462 6510841 88.04%(NPV)
74.31% (TPR) 100.00% (TNR) 91.11%(ACC)

The results show that the overall accuracy, i.e., the sum of true positives and true negatives,

is 91.11% w.r.t. the total population. More importantly, there are no false positives, i.e., cases

where Theorem 1 predicted incorrectly an actual infeasible neighboring solution as feasible. On

the other hand, there is a 8.89% of the total population that are false negatives w.r.t. the total

population. To that end, one needs to examine whether this prediction inaccuracy is counterbal-

anced from the benefit of early feasibility detection during the neighborhood evaluation process

(see Table 3).

Subsequently, we assess the accuracy of the lower bound method based on Theorem 2 and

24

the extended lpath method for estimating the makespan prior to the actual application of a

relocation move. For this purpose, we repeated the previous experiment, but this time we

examined the accuracy of the proposed makespan estimation methods.

Table 2 summarizes the obtained results. The first column refers to the makespan estimation

methods. Each of the next three columns represents a possible outcome of the comparison

between the value of the estimate and the actual move cost, that is Cest < Cmax, Cest = Cmax

and Cest > Cmax, respectively. The reported values are expressed in terms of percentages

w.r.t. the total number of makespan evaluations. Lastly, the rightmost column contains the

computational time in microseconds µs that each method requires to evaluate a move.

Results suggest that the extended lpath method is more accurate compared to the lower

bound estimation method. Specifically, the extended lpath method accurately calculates the

cost of relocation moves at a percentage of 88.25%, compared to 60.40% that is observed for the

lower bound method. A large portion of moves for both methods consists of predictions that

are lower than the actual cost of the move. Paying particular attention to the extended lpath

method, there is also a small percent of moves, that is 2.75%, where the estimated makespan is

larger than the actual cost. On the other hand, the lower bound estimation method based on

Theorem 2 is five times faster.

Table 2: Accuracy results of makespan estimation methods

Estimation Methods < Cmax(%) = Cmax(%) > Cmax(%) Time(µs)
Lower bound (Theorem 2) 39.60 60.40 0.00 0.01
Extended lpath 9.00 88.25 2.75 0.05

Table 3: Impact of feasibility prediction and makespan estimation methods on neighborhood
evaluation

Early feasibility detection Makespan estimation method Speed-up
None None 1.0

Theorem 1 None 2.72
Theorem 1 Extended lpath 26.76
Theorem 1 Lower Bound (Theorem 2) 136.48

The above described feasibility prediction and the makespan estimation methods can signif-

icantly accelerate the neighborhood evaluation process. Overall, one may identify four cases as

depicted in Table 3. For each case, an experiment is conducted using the above specifications.

In particular, we measure the average elapsed time for the evaluation of a single neighboring

solution. On this basis, we measure the relative speed up observed, compared to the baseline

case of not involving any method. Overall, one can observe that the effect of makespan estima-

25

tion methods is significant. Note that when the lower bound estimation method is employed the

neighborhood evaluation is approximately 136 times faster compared to the regular procedure

of calculating the start and the completion times of all operations (baseline).

It is worth noting that both combinations of Theorem 1 with the extended lpath, as well

as with the Lower Bound, prove to be effective and may significantly help the performance of

local search based improvement methods. In our computational experiments, we found that it is

better to trade efficiency (computational time) for accuracy (solution quality). More specifically,

we found that overall using the slower but more accurate extended lpath method for estimating

the makespan of local moves, is a better choice compared to the much quicker, but less accurate

Lower Bound makespan estimation method. However, if efficiency and speed are more impor-

tant, then the Lower Bound method is superior. All computational experiments reported in

subsequent sections adopt the Theorem 1 coupled with the extended lpath method.

4.3 Computational results for the FJSSP

This section provides exact and heuristic results for the FJSSP produces by the MIP and CP

models as well as the proposed evolutionary algorithm, that is abbreviated hereafter as EA.

For this purpose, we use the well-known benchmark data sets of Brandimarte (1993) (BRData),

Dauzère-Pérès and Paulli (1997) (DPData), Barnes and Chambers (1996) (BCData) and Hurink

et al. (1994) (HUData). Note that the HUData set contains three groups of problems, namely

edata, vdata and rdata.

Summarized results, grouped by benchmark set, are provided in Table 4. The first set of

columns includes the benchmark set information and more specifically, the name, the number

of instances, the average instance flexibility (fx) and the average known lower bound (LB)

respectively. The next sets of columns include results for the CP, MIP and EA approaches,

respectively. Cmax refers to the average makespan of the best solution found for every problem

instance of each data set. The Gap(%) refers to the average optimality gap recorded from the

tightest available lower bounds. A single run is performed for the CP and MIP approaches, and

we record the best solution found either before the time limit is reached, or when optimality

conditions are met. On the other hand, regarding the EA, 10 runs are performed for each

problem instance and we record the best found solution. The three bottom rows of the table

provide the average optimality gap(%), the number of proven optimal solutions, and the number

of new best solutions obtained by each solution method respectively.

26

Table 4: Summary of computational experiments on FJSSP benchmark data sets

Benchmark Data Sets CP MILP EA
Name Instances Size fx LB Cmax Gap (%) Cmax Gap (%) Cmax Gap (%)

BRData 15 60-300 2.45 277.3 284.6 5.87 335.9 24.87 283.4 5.30
HURData 66 15-75 1.97 1420.2 1428.3 0.96 1499.5 5.43 1425.8 0.63
HUVData 66 15-75 4.13 1365.3 1366.0 0.07 1487.8 12.88 1366.0 0.10
HUEData 66 15-75 1.15 1694.1 1697.4 0.47 1735.5 3.39 1696.5 0.33
CBData 21 100-225 1.18 995.2 995.2 0.00 997.5 0.20 995.5 0.03
DPData 18 200-387 2.49 2172.3 2212.1 1.87 - - 2196.3 1.13

Average Gap (%) 1.54 - 1.25
Optimal Solutions 180 104 179

NB 14 0 32

Clearly, the CP seems to be more effective compared to the MIP considering both upper and

lower bounds generated across all data sets. This is evident from the difference in the Gap(%)

recorded between the two methods. Furthermore, in many cases the MIP failed even to produce

feasible upper bounds within the time limit. The flexibility fx appears to be an important

indicator of the difficulty of the problem, especially when solving the MIP model. For example,

the CP manages to close the gap in all problem instances of the BCData set, while problem

instances with high flexibility are much harder to solve. On the other hand, the EA was able

to find high quality solutions within reasonable computational times. For the vast majority

of problem instances, the EA successfully matched the optimal solutions, or provided heuristic

solutions with small gaps compared to the CP and MIP lower bounds. In total, the EA was

able to find 32 new best solutions, while the CP managed to update 49 lower bounds for a total

of 178 FJSSP instances. In terms of the number of optimal solutions, CP performed equally

well. Furthermore, the EA seemed to scale well as it was able to produce high quality solutions

relatively early in the search process, and well before the time limit is reached, even for large

scale problem instances. It is also important to highlight that the flexibility of the problem seems

to have little or no effect in the performance of the EA. In particular, an average gap of 1.25%

was observed for the EA considering the best run per instance. Also, when all ten runs per

instance are considered, the average gap was 1.36%, while when only the worst run per instance

is considered the average gap is 1.46%. This is a strong indication of a low variability of the

solutions obtained by the EA. Lastly, the worst performance of the EA among all data sets and

considering all ten runs per instance was recorded for the BRData set, with an average gap of

5.49%. Detailed results for all FJSSP benchmark data sets as well as comparative performance

analysis with state of the art approaches are provided in Appendix B.

27

4.4 Comparisons to the state of the art for the FJSSP with arbitrary prece-

dence graphs

This section presents the results obtained by the proposed exact and heuristic methods on the

benchmark data set of Birgin et al. (2013). This set includes two groups of problem instances,

namely the DAFJS and the YFJS. More specifically, the authors have generated these problems

using six types of directed acyclic graphs (DAG) to generate the precedence graphs for DAFJS

and YFJS instances. For the YFJS instances, only one type is adopted, while combinations

of these DAG types are used for the DAFJS problems. The YFJS problems are mostly linear,

but there is one operation on every job that actually splits execution into two parallel linear

streams. The DAFJS are more generalised, but again due to the predefined nature of the DAG

types used, they are also limited in terms of the density of the precedence graphs.

Tables 5 and 6 present the results of the CP, MIP and EA for the DAFJS and YFJS data

sets. The first four columns contain the name, the size (l × m), the flexibility (fx) and the

best available lower bounds, respectively. The lower bounds are calculated using the maximum

values between the lower bounds from the proposed MIP and CP models as well as the reported

lower bounds in the work of Birgin et al. (2013). The remaining three columns provide details

regarding the solutions produced by the CP, the MIP and the EA, respectively. In particular,

Cmax is the upper bound and the Gap(%) is the optimality gap that is calculated as Cmax−LB
LB %

for every problem instance. The column Time refers to the CPU time elapsed in seconds either

to fully close the gap, regarding the CP and MIP, or to obtain the best feasible heuristic solution.

The last two rows report the Average Gap (%) w.r.t the lower bound and the number of new

best solutions obtained by the each method. As previously stated, the CP and MIP approaches

use a single run, and the best solution found either before the time limit is reached, or when

optimality conditions are met is reported. Also, regarding the EA, 10 runs are performed for

each problem instance and the best solution found is reported.

One can observe in Table 5 that the CP is more effective than the MIP. The EA is capable

of producing high quality solutions in reasonable computational times, especially on the largest

instances of the DAFJS set. In most cases, the EA is capable of finding better solutions compared

to the CP. An average gap of 29.14% was recorded, considering the best run per instance.

Additionally, when all ten runs are considered the average gap was 29.51%, while when only the

worst run is considered the average gap was 29.97%. The results are different for the YFJS set

(see Table 6) that includes problems with quite high numbers of machines. It is worth mentioning

28

that the CP performs very well, as it managed to close the gap for all instances in very short

computational times. Similar results are observed for the EA and it is worth mentioning that

all ten runs per instance converged to the optimal solution.

Table 5: Computational results for the DAFJS data set

Problem instances CP MIP EA(10800)
Name l ×m fx LB Cmax Gap(%) Time Cmax Gap(%) Time Cmax Gap(%) Time

DAFJS01 4x5 3.15 257 257* 0.00 1 257* 0.00 6 257* 0.00 1
DAFJS02 4x5 3.16 289 289* 0.00 2 289* 0.00 121 289* 0.00 1
DAFJS03 4x10 5.07 576 576* 0.00 0 576* 0.00 3 576* 0.00 1
DAFJS04 4x10 5.12 606 606* 0.00 0 606* 0.00 2 606* 0.00 1
DAFJS05 6x5 2.67 384 384* 0.00 4 384* 0.00 3493 384* 0.00 1
DAFJS06 6x5 3.09 404 404* 0.00 454 410 1.49 10800 404* 0.00 3
DAFJS07 6x10 5.07 505 505* 0.00 12 530 4.95 10800 505* 0.00 56
DAFJS08 6x10 4.74 628 628* 0.00 0 628* 0.00 30 628* 0.00 1
DAFJS09 8x5 3.00 324 461 42.28 10800 468 44.44 10800 460 41.98 68
DAFJS10 8x5 2.90 337 519 54.01 10800 546 62.02 10800 516 53.12 213
DAFJS11 8x10 4.73 658 658* 0.00 21 666 1.22 10800 658* 0.00 2
DAFJS12 8x10 5.15 530 602 13.58 10800 658 24.15 10800 588 10.94 1109
DAFJS13 10x5 3.11 306 635 107.52 10800 699 128.43 10800 634 107.19 195
DAFJS14 10x5 2.99 367 715 94.82 10800 736 100.54 10800 708 92.92 263
DAFJS15 10x10 4.96 512 640 25.00 10800 691 34.96 10800 626 22.27 512
DAFJS16 10x10 5.02 641 646 0.78 10800 711 10.92 10800 642 0.16 254
DAFJS17 12x5 3.00 309 776 151.13 10800 820 165.37 10800 771 149.51 405
DAFJS18 12x5 3.12 328 771 135.06 10800 828 152.44 10800 766 133.54 309
DAFJS19 8x7 4.04 512 512* 0.00 95 538 5.08 10800 512* 0.00 5
DAFJS20 10x7 3.92 434 675 55.53 10800 726 67.28 10800 660 52.07 636
DAFJS21 12x7 3.97 504 761 50.99 10800 880 74.60 10800 755 49.80 829
DAFJS22 12x7 3.88 464 672 44.83 10800 840 81.03 10800 659 42.03 2638
DAFJS23 8x9 4.83 450 468 4.00 10800 495 10.00 10800 461 2.44 227
DAFJS24 8x9 5.03 476 540 13.45 10800 596 25.21 10800 533 11.97 656
DAFJS25 10x9 5.03 584 704 20.55 10800 832 42.47 10800 689 17.98 228
DAFJS26 10x9 5.09 565 705 24.78 10800 746 32.04 10800 681 20.53 1220
DAFJS27 12x9 4.92 503 774 53.88 10800 839 66.80 10800 768 52.68 1281
DAFJS28 8x10 5.02 535 535* 0.00 671 542 1.31 10800 535* 0.00 22
DAFJS29 8x10 4.93 609 618 1.48 10800 650 6.73 10800 620 1.81 197
DAFJS30 10x10 5.19 467 522 11.78 10800 588 25.91 10800 519 11.13 1795

Average Gap (%) 30.18 39.23 29.14
NB 25 4 25

Tables 7 and 8 compare the results obtained from the EA considering different time limits

(i.e., 50, 200 and 3600 seconds), the proposed MIP model considering a time limit of 3600

seconds, the exact MIP approach of Birgin et al. (2013) and the metaheuristic Firefly Algorithm

(FA) of Lunardi and Voos (2018) for the FJSSP with arbitrary precedence graphs. The proven

optimal solutions are marked with the (∗) symbol, while bold face is used to indicate the best

upper bounds. The last rows provide information for the Average Gap (%) w.r.t the lower

bound, the number of new best solutions obtained by the EA, as well as the sum of the average

CI-CPU (computer independent CPU) times per problem instance for every data set.

Regarding the calculation of CI-CPU times, it is common in the literature to use normaliza-

tion coefficients from Dongarra (1992). However, our CPU is not included in Dongarra (1992),

and for this reason we used the single thread CPU rating as reported at cpubenchmark.net

to derive the normalization coefficient for our machine. The computational times of FA and

MIP are used as the baseline, and in particular we have used a normalization coefficient of

29

Table 6: Computational results for the YFJS data set

Problem instances CP MIP EA(10800)
Name l ×m fx LB Cmax Gap(%) Time Cmax Gap(%) Time Cmax Gap(%) Time

YFJS01 4x7 2.60 773 773* 0.00 0 773* 0.00 6 773* 0.00 1
YFJS02 4x7 2.60 825 825* 0.00 0 825* 0.00 6 825* 0.00 1
YFJS03 6x7 2.63 347 347* 0.00 0 347* 0.00 3 347* 0.00 1
YFJS04 7x7 2.54 390 390* 0.00 0 390* 0.00 3 390* 0.00 1
YFJS05 8x7 2.53 445 445* 0.00 1 445* 0.00 102 445* 0.00 1
YFJS06 9x7 2.64 446 446* 0.00 3 446* 0.00 2895 446* 0.00 1
YFJS07 9x7 2.58 444 444* 0.00 1 444* 0.00 75 444* 0.00 1
YFJS08 9x12 2.78 353 353* 0.00 0 353* 0.00 2 353* 0.00 1
YFJS09 9x12 6.08 242 242* 0.00 0 242* 0.00 17 242* 0.00 1
YFJS10 10x12 2.83 399 399* 0.00 1 399* 0.00 4 399* 0.00 1
YFJS11 10x10 2.68 526 526* 0.00 1 526* 0.00 11 526* 0.00 3
YFJS12 10x10 2.66 512 512* 0.00 2 512* 0.00 65 512* 0.00 1
YFJS13 10x10 2.74 405 405* 0.00 1 405* 0.00 58 405* 0.00 1
YFJS14 13x26 2.90 1317 1317* 0.00 2 1317* 0.00 679 1317* 0.00 5
YFJS15 13x26 2.93 1239 1239* 0.00 1 1239* 0.00 9741 1239* 0.00 16
YFJS16 13x26 2.86 1222 1222* 0.00 6 1225 0.25 10800 1222* 0.00 5
YFJS17 17x26 4.60 1133 1133* 0.00 2 1133* 0.00 10800 1133* 0.00 8
YFJS18 17x26 4.71 1220 1220* 0.00 3 1261 3.36 10800 1220* 0.00 8
YFJS19 17x26 4.66 926 926* 0.00 37 1008 8.85 10800 926* 0.00 265
YFJS20 17x26 4.65 968 968* 0.00 82 993 2.58 10800 968* 0.00 92

Average Gap (%) 0.00 - 0.00
NB 2 0 2

1.008=(1248/1238) based on the single thread rating of the corresponding machines. As indi-

cated by both Yuan et al. (2013) and González et al. (2015), the comparison between CI-CPU

times is meant to be indicative, because we do not have access to other information that in-

fluences the computation time, such as the operating systems, the programming language, the

compiler selection, and the overall code quality. Note that the average CI-CPU time for the EA

refers to the average running time across 10 runs per problem instance.

The computational results demonstrate the efficiency and effectiveness of the proposed EA.

Our method successfully found the optimal solutions for 11 out of the 30 instances of the DAFJS

set, and was able to improve upon the existing upper bounds on the remaining problem instances

of the set. The results are similar for the YJFS set. The EA finds the optimal solution for the

two largest problem instances. Regarding the two exact approaches, one will notice that the

average optimality gap recorded for the proposed MIP approach is lower compared to the MIP

of Birgin et al. (2013) for the DAFJS and the YFJS data sets. In terms of computational times,

the results demonstrate that the EA has the best average optimality gap with very competitive

CI-CPU times.

4.5 Effect of flexibility and density for the FJSSP with arbitrary precedence

graphs

This section examines the effect of the flexibility of the machines and the density of the prece-

dence graphs on the solution cost, as well as the time needed to solve the problem to optimality.

30

Table 7: Comparative analysis for the DAFJS data set

Name LB EA(50) EA(200) EA(3600) MIP(3600) MIP(Birgin et al.) FA
DAFJS01 257 257* 257* 257* 257* 257* 257*
DAFJS02 289 289* 289* 289* 289* 289* 289*
DAFJS03 576 576* 576* 576* 576* 576* 576*
DAFJS04 606 606* 606* 606* 606* 606* 606*
DAFJS05 384 384* 384* 384* 384* 403 389
DAFJS06 404 404* 404* 404* 415 435 412
DAFJS07 505 506 505* 505* 536 562 512
DAFJS08 628 628* 628* 628* 628* 631 628*
DAFJS09 324 461 460 460 482 475 464
DAFJS10 337 518 517 516 562 575 533
DAFJS11 658 658* 658* 658* 713 708 659
DAFJS12 530 598 592 588 727 720 645
DAFJS13 306 635 634 634 723 708 653
DAFJS14 367 710 710 708 786 860 726
DAFJS15 512 637 628 626 781 818 671
DAFJS16 641 648 643 642 728 819 679
DAFJS17 309 775 774 771 864 909 787
DAFJS18 328 769 767 766 886 951 789
DAFJS19 512 512* 512* 512* 541 592 524
DAFJS20 434 665 662 660 759 815 696
DAFJS21 504 765 758 755 962 965 803
DAFJS22 464 669 661 659 817 902 697
DAFJS23 450 464 462 461 502 538 476
DAFJS24 476 540 535 533 650 666 564
DAFJS25 584 705 693 689 868 897 752
DAFJS26 565 688 683 681 844 903 745
DAFJS27 503 781 773 768 958 981 831
DAFJS28 535 535* 535* 535* 601 671 543
DAFJS29 609 632 620 620 754 726 654
DAFJS30 467 527 521 519 591 656 555
Average Gap (%) 30.03 29.40 29.14 46.10 52.16 34.05

NB 25 25 25 - - -
CI-CPU 1428 4786 11897 90240 94968 1372

Table 8: Comparative analysis for the YFJS group

Name LB EA(50) EA(200) EA(3600) MIP(3600) MIP(Birgin et al.) FA
YFJS01 773 773* 773* 773* 773* 773* 773*
YFJS02 825 825* 825* 825* 825* 825* 825*
YFJS03 347 347* 347* 347* 347* 347* 347*
YFJS04 390 390* 390* 390* 390* 390* 390*
YFJS05 445 445* 445* 445* 445* 445* 445*
YFJS06 446 446* 446* 446* 446* 449 446*
YFJS07 444 444* 444* 444* 444* 444* 444*
YFJS08 353 353* 353* 353* 353* 353* 353*
YFJS09 242 242* 242* 242* 242* 242* 242*
YFJS10 399 399* 399* 399* 399* 399* 399*
YFJS11 526 526* 526* 526* 526* 526* 526*
YFJS12 512 512* 512* 512* 512* 512* 512*
YFJS13 405 405* 405* 405* 405* 405* 405*
YFJS14 1317 1317* 1317* 1317* 1317* 1317* 1317*
YFJS15 1239 1239* 1239* 1239* 1239* 1244 1239*
YFJS16 1222 1222* 1222* 1222* 1237 1245 1222*
YFJS17 1133 1133* 1133* 1133* 1145 2379 1133*
YFJS18 1220 1220* 1220* 1220* 1265 2082 1220*
YFJS19 926 938 928 926* 1034 1581 941
YFJS20 968 970 968* 968* 1066 2312 973
Average Gap (%) 0.08 0.01 0.00 1.39 19.66 0.11

NB 2 2 2 - - -
CI-CPU 710 1065 6847 19953 35316 886

31

For this purpose, a new set of problem instances was generated with various precedence graph

structures and different flexibility values. The following procedure is used to generate the new

set of problem instances. Initially, the number of operations was chosen to be from 20 to 30,

while the number of jobs was set equal to two. These settings are selected so that each job is

well-populated with operations, and on return, this will allow the generation of rich precedence

graphs without significantly increasing the difficulty of solving the problem. On this basis, three

graph structures are defined using different values of the maximum number of successors and

predecessors of each operation, i.e., θ = 2, 3, 4, respectively. Given these θ values, three different

base problems are generated with the maximum possible density δmaxu . All jobs share the same

precedence graphs, and therefore, δmax = δmaxu ∀u ∈ J . Next, we iteratively remove arcs in

order to generate precedence graphs of lower densities. This procedure is repeated, until the

job precedence graph is reduced to linear streams of operations (see for example Figure 5). By

reducing the density of the precedence graphs, three groups of problems emerge, namely d1–d29,

t1–t36 and q1–q50. In addition, three versions of each problem instance are produced with dif-

ferent flexibility values allowed per operation, i.e., fx = 1, 2, 3. Note that each instance version

with fx > 1 includes the machine assignments of the corresponding instance with less flexibility,

and therefore, the results between the same instance with different flexibility are comparable.

A visualization of the results obtained from the above experiment is presented in Figure 6.

Note that the computational time in the subfigures d and f are scaled with a factor of 0.1 to

better fit in the plot, while all detailed results can be found in Tables E.1 – E.3 of Appendix E.

To that end, Table 9 provides the corresponding summary statistics. Particularly, the first set

of columns provide the range of problem instances as well as the flexibility fx and θ parameters,

the second set of columns provides the slope and the intercept of the linear regression line

from the density (x-values) and makespan (y-values), while the last sets of columns provide the

minimum, average and maximum values of the density, the makespan and the elapsed run time

(in seconds), respectively.

In the first instance, one can observe that as the density of the precedence graphs increases,

the Cmax also increases. This is plausible since the problem becomes more constrained and the

completion times of the operations, as well as the Cmax, are typically prolonged. Furthermore,

this effect becomes stronger as the fx decreases (see Figures 6a, 6c and 6e). The average rate

of change of the makespan w.r.t. the density is depicted by the Slope values in Table 9. In most

cases as the machine flexibility increases, the slope decreases. This shows that larger flexibility

32

Table 9: Summary statistics for the computational experiments on the machine flexibility and
the density of the precedence graphs

Group Linear Regression δ Cmax Time
Range fx θ Slope Intercept Min Mean Max Min Mean Max Min Mean Max
d1–d29 1 2 3515.49 523.09 0.03 0.05 0.06 615 686.10 721 1 2 6
d1–d29 2 2 1166.46 362.53 0.03 0.05 0.06 399 416.62 428 1 4 11
d1–d29 3 2 1193.33 327.28 0.03 0.05 0.06 367 382.62 397 1 7 35
t1–t36 1 3 816.51 377.98 0.05 0.08 0.12 416 446.58 475 0 1 2
t1–t36 2 3 555.65 227.76 0.05 0.08 0.12 253 274.44 287 3 12 63
t1–t36 3 3 413.41 212.32 0.05 0.08 0.12 235 247.06 260 20 493 5071
q1–q50 1 4 656.73 341.92 0.05 0.10 0.16 373 411.72 442 0 1 2
q1–q50 2 4 167.02 223.22 0.05 0.10 0.16 231 241.02 248 7 30 139
q1–q50 3 4 124.44 205.45 0.05 0.10 0.16 214 218.53 226 138 1279 18875

(a) δ = δmax = 0.27 (b) δ = 0.25

(c) δ = 0.23 (d) δ = 0.21

(e) δ = 0.20 (f) δ = 0.18

(g) δ = 0.16

Figure 5: Example of a gradual reduction of the density of an arbitrary precedence graph on an
FJSSP problem with θ = 3

33

320

370

420

470

520

570

620

670

720

770

0.05 0.052 0.054 0.056 0.058 0.06 0.062

C m
ax

δ

fx=3

fx=2

fx=1

(a) d1–d29 problem instances: Makespan vs Den-
sity for different flexibility values.

0

5

10

15

20

25

30

35

40

0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065

Ti
m

e
(s

)

δ

fx=3

fx=2

fx=1

(b) d1–d29 problem instances: Computational
time vs Density for different flexibility values.

200

250

300

350

400

450

500

0.045 0.055 0.065 0.075 0.085 0.095 0.105 0.115 0.125

C m
ax

δ

fx=3

fx=2

fx=1

(c) t1–t36 problem instances: Makespan vs Density
for different flexibility values.

0

100

200

300

400

500

600

0.045 0.055 0.065 0.075 0.085 0.095 0.105 0.115 0.125

Ti
m

e
(s

)

δ

fx=3 (scaled by 0.1)

fx=2

fx=1

(d) t1–t36 problem instances: Computational time
vs Density for different flexibility values.

200

250

300

350

400

450

0.05 0.07 0.09 0.11 0.13 0.15 0.17

C m
ax

δ

fx=3

fx=2

fx=1

(e) q1–q50 problem instances: Makespan vs Den-
sity for different flexibility values.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0.05 0.07 0.09 0.11 0.13 0.15 0.17

Ti
m

e
(s

)

δ

fx=3 (scaled by 0.1)

fx=2

fx=1

(f) q1–q50 problem instances: Computational time
vs Density for different flexibility values.

Figure 6: Effect of the flexibility fx and density of the precedence graphs δ on the makespan
and the time needed to solve the problems to optimality

values tend to weaken the effect of the density on the makespan. For example, when the fx is

set to one for the problem instances q1-q50, the makespan decreases with a rate of 656.73 as

density increases. To the contrary, when the fx is set to three, the rate drops to 124.44. This

behavior is consistent for all problem instances apart from the problem instances d1–d29. In

particular, there is a marginal 2% increase of the slope as the fx values increase from 2 to 3.

This is probably due to the small values and the narrow range of δ. On the other hand, as

the complexity of the precedence graphs increases, i.e. by increasing θ, the slope values also

decrease. Lastly, it seems that for the more complex precedence graphs the overall effect of the

34

density is weaker.

Another way to quantify the effect of the machine flexibility is to calculate the difference of

the average makespan between different flexibility values for the same set of problem instances,

i.e, pairs of the fx values (1,2) and (2,3). In particular, when the fx increases from 1 to 2,

the average makespan decreases by 39.28%, 38.55% and 41.46% for the benchmark sets d1–

d29, t1–t36 and q1–q50, respectively. Similarly, when the fx increases from 2 to 3, the average

makespan decreases by 8.16%, 9.98% and 9.33% for the problem sets d1–d29, t1–t36 and q1–q50,

respectively.

Regarding the time needed to close the optimality gap, it is clear that it becomes smaller

as the density of the precedence graph increases. This can be attributed to the fact that as the

problem becomes more constrained, the solution space is also reduced and thus, less computa-

tional time is potentially required to fully solve the problem. Finally, as the flexibility increases,

the effect of the density of the precedence graphs on the time needed to solve the problem seems

to be reduced (see Figures 6b, 6d, 6f and Table 9). This means that the manufacturing shop-

floors with more available parallel machines, are more capable of absorbing increments in the

Cmax caused by dense job precedence graphs.

On the basis of the above observations, the following managerial insights can be drawn;

it is important to reduce precedence constraints and linearize relationships. This will decrease

scheduling sensitivity, reduce critical paths and as a result reduce the makespan. However, if the

manufacturing recipe of the product requires complex precedence constraints to be respected,

then one way to alleviate the effect on the makespan is to invest in flexibility.

4.6 Computational results for new large scale data sets of the FJSSP with

arbitrary precedence graphs

In this section, we present computational results produced by the CP, MIP and EA on a new

large-scale benchmark data set generated for the FJSSP with arbitrary precedence graphs. Ad-

ditionally, we evaluate the performance of the MIP model proposed by Birgin et al. (2013) on

this new data set. Compared to the problem instances used in the previous section, precedence

graphs are now randomly generated and no specific structure is imposed. A full description of

the process that was followed to generate these new benchmark sets, is provided in Appendix

F. Overall, the new data set is divided into two groups of problems, namely SCPC and BCPC.

The former group features problems with up to 120 operations, at most eight machines and

35

1 ≤ fx ≤ 2, while the latter group features problems with up to 1200 operations, 15 machines

and 3 ≤ fx ≤ 4. The flexibility ranges per problem group were selected so that the CP or

the MIP could provide reasonably good lower and upper bounds within a time limit of 10800

seconds. A slope parameter γ is introduced to control the density of the generated precedence

graphs. We refer the reader to Appendix F for more details. The examined values for γ are

0.2, 0.5 and 0.8. Therefore, for every problem instance, three versions are generated, each cor-

responding to a different value of γ. Note also that no starting solution is provided for the CP

and MIP solution methods.

Tables 10 and 11 summarize the results obtained for the problem instances SCPC and BCPC.

The first set of columns contain information about the average flexibility and the average slope

γ. The remaining sets of columns provide the computational results, i.e., the average upper

bounds, the average optimality gap %, and the number of proven optimal solutions for the CP,

the MIP, the MIP of Birgin et al. (2013) and the EA, respectively. The last row reports the

average gap out of all instances, when considering the best result per instance for each solution

method. Given that BCPC instances are large scale, instead of reporting optimality gaps from

lower bounds, we report % deviations from the best known solutions. The symbol “-” is used

to indicate cases where no integer solution was found within the time limit, and therefore, no

average result can be extracted for the particular sub-group. Similarly, the symbol “n/a” is used

to indicate that these instances do not include arbitrary precedence constraints and therefore γ

does not apply. Detailed results for both problem groups can be found in Tables E.4 – E.8 of

Appendix E.

Overall, CP seems to perform better compared to both MIP approaches, which is consis-

tent with the observations made earlier in Section 4.3. Regarding the low flexibility instances

(SCPC01–SCPC12), nine out of the 12 instances can be solved optimally within the time limit.

We also notice that the makespan as well as the lower bounds increase when the density of the

precedence graphs increases (see values for γ). On the other hand, regarding high flexibility

instances (SCPC13–SCPC24), the difficulty of the problem significantly increases. In this case,

the gap is closed for only four out of 12 problem instances. For the sake of completeness, re-

garding the EA, an average gap of 30.68% was calculated considering the best run per instance.

In this case, the average gap when considering all ten runs per instance as well as the worst run

per instance were also equal to 30.68%. The worst case performance in this benchmark set when

considering all ten runs per instance was 70.84% for the SCPC13–SCPC24 problem sub-group.

36

Table 10: Summary of computational experiments on the SCPC benchmark data sets

Group SCPC CP MIP MIP (Birgin et.al.) EA
Range fx γ Cmax Gap (%) # Cmax Gap (%) # Cmax Gap (%) # Cmax Gap (%) #

SCPCN01–SCPCN08 1.90 n/a 67.6 8.72 6 70.0 12.59 5 71.1 14.32 5 67.6 8.20 6
SCPC01–SCPC12 1.61 0.5 61.0 5.26 9 64.4 10.13 3 66.3 12.37 3 60.9 5.16 9
SCPC13–SCPC24 2.19 0.5 47.7 70.22 4 53.3 89.91 3 58.4 107.94 3 47.8 70.84 3

Average Gap (%) 30.48 40.66 48.70 30.68

Table 11: Summary of computational experiments on the BCPC benchmark data sets

Group BCPC CP MIP MIP (Birgin et.al.) EA
Range fx γ Cmax Dev (%) # Cmax Dev (%) # Cmax Dev (%) # Cmax Dev (%) #

BCPCN01–BCPCN27 3.51 n/a 235.7 1.82 3 - - 1 - - 1 231.7 0.17 2
BCPC01–BCPC27 3.51 0.2 219.5 1.45 0 - - 0 - - 0 218.3 0.38 0
BCPC28–BCPC54 3.51 0.5 219.9 1.26 0 - - 0 - - 0 218.7 0.2 0
BCPC55–BCPC81 3.51 0.8 220.4 1.08 0 - - 0 - - 0 219.3 0.24 0

Average Dev (%) 1.40 - - 0.28

Regarding the results for the instances BCPCN01–BCPCN27, one can observe that the CP

managed to solve optimally three out of the 27 instances, while the average deviation to the

best known solutions is 1.82%. The EA was able to find highly competitive upper bounds,

recording a deviation of 0.17% from the best solutions, which indicates that the EA performed

much better compared to the CP within the same time limit. For this set of problems, only

three integer solutions out of 27 problem instances were derived by the MIP approaches. It is

also worth noting that the % deviation from the best solutions are in favor of the proposed MIP

model.

The addition of precedence constraints among the operations seems to make the baseline

problems much harder to solve, especially for low densities. Regarding the problem instances

BCPC01–BCPC27 the CP did not manage to find any optimal solutions. The same observations

can be made for the more dense versions of the problem instances, i.e. BCPC28–BCPC81.

For these problems, the CP recorded an average deviation from the best known solutions that

ranges from 1.08% to 1.26%. This deviation seems to decrease as the problem’s density increases.

Similar trends are observed for the EA as well, but the range is much smaller i.e., 0.24%−0.48%,

which shows the superiority of the EA, regardless of the density of the precedence graphs.

Overall, for the EA an average deviation of 0.28% was calculated considering the best run per

instance. Also, when considering all ten runs per instance the average deviation was 0.46%,

while when considering the worst run per instance the average deviation was 0.64%. Lastly, the

worst performance of the EA among all BCPC problem sub-groups when considering all ten

runs per instance was recorded for the BCPC55–BCPC81 sub-group, with an average deviation

of 0.53%.

Regarding the two MIP approaches, the proposed MIP appears superior, with smaller devia-

tions and a higher number of integer solutions, compared to the MIP model of Birgin et al. (2013).

37

On the other hand, when we compare the CP and the EA, one can observe that the difference on

their performance is more significant on the baseline problems (BCPCN01–BCPCN27), rather

than the problems with arbitrary precedence graphs (BCPC01–BCPC81). Another interesting

remark is that the strengths of CP and EA seem to be complementary. However, it is difficult

to explain this behaviour, since it may be the combined effect of many different elements. For

example, the constraint propagation during the solution process of specific problem instances for

the CP, anomalies of the solution space and the existence of strong local optima for the EA. We

also observe that the CP becomes more efficient, when more constraints are added (e.g. more

dense precedence graphs).

Based on the above observations, the following managerial insights can be drawn; the arbi-

trary precedence graphs allow more operations to be executed in parallel that compete for the

same machines, whereas for the baseline FJSSP instances the operations of the same job have

to be processed one after the other in a linear fashion. In particular, when an operation finishes,

it may allow for more than one successor operations to be processed. These operations possibly

compete over the same machines that may, or may not, be available yet. Therefore, even though

waiting times on the operations might be introduced, the makespan typically reduces with the

presence of arbitrary precedence graphs, as more operations can be scheduled in parallel at

different machines. Nevertheless, as the precedence graphs become more dense, the makespan

increases since the succeeding operations have to wait for more predecessor operations to finish.

5 Conclusions

The JSSP and the FJSSP are widely-studied combinatorial optimization problems due to their

inherent complexity and the range of real-world applications. A common assumption for both

problems is that each operation of a job has up to one successor and one predecessor operation.

In practice, the operational execution hierarchies are often not linear and different work flows can

be processed in parallel. As a result, multiple dependencies may occur among the job operations.

In this paper, we examined the lesser studied FJSSP with arbitrary precedence graphs and we

explored the effect of the machine flexibility, and the density of the precedence graphs on the

makespan, as well as on the difficulty, to solve the problem.

MIP and CP models were proposed for exactly solving the FJSSP with arbitrary precedence

graphs. Furthermore, an EA was presented for producing heuristic solutions, and for solving

large-scale problem instances in reasonable amounts of time . The proposed EA is an amalgam of

38

SS and PR, and uses an efficient local search mechanism for educating the recombined reference

solutions, as well as adaptive long-term memory structures for exploiting information gathered

throughout the search process. Previous theoretical work for the FJSSP was extended and new

methods for estimating the makespan, and for detecting cycles in the solution graphs before the

application of relocation moves were provided. Both mechanisms resulted in significant savings

regarding the computational effort of evaluating critical path-based neighborhood structures.

Initially, the efficiency and effectiveness of the proposed exact and heuristic solution methods

were assessed on well-established FJSSP benchmark data sets. Notably, the CP managed to close

the gap and improve the existing lower bounds for many problem instances, especially for those

with low flexibility, while the performance of the MIP was inferior. On the other hand, the

EA outperformed the current state-of-the-art solution methods. It was able to match the best

known solutions and lower bounds for the vast majority of problems, and also produced 32 new

best solutions for large-scale hard-to-solve FJSSP problem instances.

The proposed solution methods were also evaluated on the benchmark data set of Birgin et al.

(2013). This set of experiments also demonstrated the competitiveness of the proposed solution

methods. Regarding the YFJS set, the CP and the EA successfully closed the gaps in short

computational times. Furthermore, six problems of the DAFJS set were solved to optimality,

while the upper bounds for the majority of the problems were updated. We also observed that

within the same time limit, the EA outperformed the CP and produced better upper bounds.

Regarding the FJSSP with arbitrary precedence graphs, we examined the effect of flexibility

and density on new benchmark data sets. Overall, the computational results suggested that

the presence of multiple dependencies among the operations made the problem harder to solve

compared to the baseline FJSSP with linear dependencies. In all cases, the optimality gaps

increased dramatically for both the CP and MIP solution methods, especially when the flexibility

of the problem instances was high. To the contrary, the proposed EA seemed to scale relatively

well within reasonable computational times. Problem instances with high average precedence

graph densities were apparently easier to solve compared to those with lower densities. One

could speculate that this is due to the increased scheduling flexibility in terms of processing

more operations in parallel.

Overall, our results confirmed that as density increases, the makespan tends also to increase,

since the succeeding operations have to wait for more predecessor operations to finish . Therefore,

one major takeaway is that during the product design phase, it is important to reduce precedence

39

constraints and also to try to linearize relationships, this will decrease scheduling sensitivity and

reduce critical paths. If precedence constraints cannot be avoided, our results indicated that

adding flexibility can be a good alternative option to reduce the makespan. For example, our

computational experiments indicated that if the flexibility is increased from 1 to 2 (i.e. allowing

up to two machines per operation), the average makespan across problems with precedence

graphs of various densities was decreased from 38.55% to 41.46%.

In terms of future research, there are major avenues that the literature could pursue. It

may prove valuable to examine the effect of arbitrary precedence graphs when considering other

objective functions and operational realities. The presence of multiple dependencies makes

scheduling problems harder to solve, and thus it is worth exploring hybrid frameworks that will

combine CP with metaheuristics to solve them.

Acknowledgments

The authors would like to gratefully acknowledge support from the European Commission and

the Athens University of Economics and Business Research Center [DISRUPT Project, award

number 723541, FACTLOG Project, award number 869951]. We also thank the two anonymous

reviewers and the associated editor for their constructive comments and for helping us improve

our work.

References

Adams, J., Balas, E., and Zawack, D. (1988). The shifting bottleneck procedure for job shop scheduling.

Management Science, 34(3):391–401.

Alvarez-Valdes, R., Fuertes, A., Tamarit, J., Giménez, G., and Ramos, R. (2005). A heuristic to schedule

flexible job-shop in a glass factory. European Journal of Operational Research, 165(2):525–534.

Barnes, J. W. and Chambers, J. B. (1996). Tabu Search for the Flexible-Routing Job Shop Problem.

The University of Texas, Austin, TX, Technical Report Series ORP96-10, Graduate Program in

Operations Research and Industrial Engineering, pages 1–11.

Ben Hmida, A., Haouari, M., Huguet, M.-J., and Lopez, P. (2010). Discrepancy search for the flexible

job shop scheduling problem. Computers and Operations Research, 37(12):2192–2201.

Birgin, E. G., Feofiloff, P., Fernandes, C. G., de Melo, E. L., Oshiro, M. T., and Ronconi, D. P. (2013).

A MILP model for an extended version of the Flexible Job Shop Problem. Optimization Letters,

8(4):1417–1431.

40

Bozejko, W., Uchroński, M., and Wodecki, M. (2010). Parallel hybrid metaheuristics for the flexible job

shop problem. Computers and Industrial Engineering, 59(2):323–333.

Brandimarte, P. (1993). Routing and scheduling in a flexible job shop by tabu search. Annals of Operations

Research, 41(3):157–183.

Caglar Gencosman, B., Begen, M. A., Ozmutlu, H. C., and Ozturk Yilmaz, I. (2016). Scheduling Meth-

ods for Efficient Stamping Operations at an Automotive Company. Production and Operations

Management, 25(11):1902–1918.

Dauzère-Pérès, S. and Paulli, J. (1997). An integrated approach for modeling and solving the general

multiprocessor job-shop scheduling problem using tabu search. Annals of Operations Research,

70(0):281–306.

Dell’Amico, M. and Trubian, M. (1993). Applying tabu search to the job-shop scheduling problem.

Annals of Operations Research, 41:231–252.

Demir, Y. and Kürşat Işleyen, S. (2013). Evaluation of mathematical models for flexible job-shop schedul-

ing problems. Applied Mathematical Modelling, 37(3):977–988.

Dongarra, J. J. (1992). Performance of various computers using standard linear equations software. ACM

SIGARCH Computer Architecture News.

Feo, T. A. and Resende, M. G. (1995). Greedy Randomized Adaptive Search Procedures. Journal of

Global Optimization, 6(2):109–133.

Gao, J., Sun, L., and Gen, M. (2008). A hybrid genetic and variable neighborhood descent algorithm for

flexible job shop scheduling problems. Computers and Operations Research, 35(9):2892–2907.

Gao, K. Z., Suganthan, P. N., Pan, Q. K., Chua, T. J., Chong, C. S., and Cai, T. X. (2016). An improved

artificial bee colony algorithm for flexible job-shop scheduling problem with fuzzy processing time.

Expert Systems and Applications, 65:52–67.

Glover, F., Laguna, M., and Mart́ı, R. (2000). Fundamentals of scatter search and path relinking. Control

and Cybernetics, 39:653–684.

Goel, V., Slusky, M., Van Hoeve, W. J., Furman, K. C., and Shao, Y. (2015). Constraint programming

for LNG ship scheduling and inventory management. European Journal of Operational Research,

241(3):662–673.

González, M. A., Vela, C. R., and Varela, R. (2015). Scatter search with path relinking for the flexible

job shop scheduling problem. European Journal of Operational Research, 245(1):35–45.

Hurink, J., Jurisch, B., and Thole, M. (1994). Tabu search for the job-shop scheduling problem with

multi-purpose machines. OR Spektrum, 225(1981):223–225.

Jia, S. and Hu, Z. H. (2014). Path-relinking Tabu search for the multi-objective flexible job shop schedul-

ing problem. Computers and Operations Research, 47:11–26.

41

Jin, Z., Ohno, K., Ito, T., and Elmaghraby, S. (2002). Scheduling hybrid flowshops in printed circuit

board assembly lines. Production and Operations Management, 11(2):216–230.

Komaki, G. M., Sheikh, S., and Malakooti, B. (2018). Flow shop scheduling problems with assembly

operations: a review and new trends. International Journal of Production Research, 0(0):1–30.

Ku, W.-y. and Beck, J. C. (2016). Mixed Integer Programming models for job shop scheduling : A

computational analysis. Computers and Operations Research, 73:165–173.

Laborie, P., Rogerie, J., Shaw, P., and Viĺım, P. (2018). IBM ILOG CP optimizer for scheduling: 20+

years of scheduling with constraints at IBM/ILOG. Constraints, 23(2):210–250.

Lunardi, W. T. and Voos, H. (2018). An extended flexible job shop scheduling problem with parallel

operations. SIGAPP Applied Computing Review, 18(2):46–56.

Mart́ı, R., Laguna, M., and Glover, F. (2006). Principles of scatter search. European Journal of Opera-

tional Research, 169(2):359–372.

Mastrolilli, M. and Gambardella, L. M. (2000). Effective neighbourhood functions for the flexible job

shop problem. Journal of Scheduling, 3(1):3–20.

Mattfeld, D. C. (2013). Evolutionary search and the job shop: investigations on genetic algorithms for

production scheduling. Springer Science & Business Media, Berlin/Heidelberg, Germany.

Nowicki, E. and Smutnicki, C. (1996). A fast taboo search algorithm for the job shop problem. Manage-

ment Science, 42(6):797–813.

Rasmussen, K. M., Ejlertsen, L. S., M. Pour, S., Burke, E. K., and Drake, J. H. (2017). A hybrid Con-

straint Programming/Mixed Integer Programming framework for the preventive signaling mainte-

nance crew scheduling problem. European Journal of Operational Research, 269(1):341–352.

Roshanaei, V., Azab, A., and Elmaraghy, H. (2013). Mathematical modelling and a meta-heuristic for

flexible job shop scheduling. International Journal of Production Research, 51(20):6247–6274.

Shen, L., Dauzère-Pérès, S., and Neufeld, J. S. (2018). Solving the flexible job shop scheduling problem

with sequence-dependent setup times. European Journal of Operational Research, 265(2):503–516.

Tarantilis, C. D., Anagnostopoulou, A. K., and Repoussis, P. P. (2012). Adaptive Path Relinking for

Vehicle Routing and Scheduling Problems with Product Returns. Transportation Science, 47(3):356–

379.

Unsal, O. and Oguz, C. (2013). Constraint programming approach to quay crane scheduling problem.

Transportation Research Part E: Logistics and Transportation Review, 59:108–122.

van Laarhoven, P. J. M., Aarts, E. H. L., and Lenstra, J. K. (1992). Job shop scheduling by simulated

annealing. Operations Research, 40(1):113–125.

Vilcot, G. and Billaut, J. C. (2008). A tabu search and a genetic algorithm for solving a bicriteria general

job shop scheduling problem. European Journal of Operational Research, 190(2):398–411.

42

Wu, X. and Wu, S. (2017). An elitist quantum-inspired evolutionary algorithm for the flexible job-shop

scheduling problem. Journal of Intelligent Manufacturing, 28(6):1441–1457.

Xiong, J., Xing, L. N., and Chen, Y.-w. (2013). Robust scheduling for multi-objective flexible job-

shop problems with random machine breakdowns. International Journal of Production Economics,

141(1):112–126.

Yi, W., Li, X., and Pan, B. (2016). Solving flexible job shop scheduling using an effective memetic

algorithm. International Journal of Computer Applications in Technology, 53(2):157.

Yu, L., Zhu, C., Shi, J., and Zhang, W. (2017). An extended flexible job shop scheduling model for flight

deck scheduling with priority, parallel operations, and sequence flexibility. Science Programming,

2017:1–15.

Yuan, Y., Xu, H., and Yang, J. (2013). A hybrid harmony search algorithm for the flexible job shop

scheduling problem. Applied Soft Computing, 13(7):3259–3272.

Zhang, C., Shao, X., Rao, Y., and Qiu, H. (2008). Some new results on tabu search algorithm applied to

the job-shop scheduling problem. In Tabu Search, chapter 8. IntechOpen, London, UK.

Zhang, J., Ding, G., Zou, Y., Qin, S., and Fu, J. (2019). Review of job shop scheduling research and its

new perspectives under Industry 4.0. Journal of Intelligent Manufacturing, 30(4):1809–1830.

43

	Introduction
	Preliminaries
	Notation
	Mixed Integer Programming Formulation
	Constraint Programming Formulation

	Evolutionary Algorithm
	Reference Set Generation Method
	Frequency Map and Distance Metric
	Reference Set Update Method
	Subset Generation Method
	Local Improvement Method
	Neighborhood structures
	Feasibility checks and objective function evaluation

	Computational Experiments
	Parameter Settings and Termination Conditions
	Accuracy of feasibility prediction and makespan estimation methods
	Computational results for the FJSSP
	Comparisons to the state of the art for the FJSSP with arbitrary precedence graphs
	Effect of flexibility and density for the FJSSP with arbitrary precedence graphs
	Computational results for new large scale data sets of the FJSSP with arbitrary precedence graphs

	Conclusions

