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Abstract

We introduce an approach to sensitivity analysis of quantitative risk models, for the purpose

of identifying the most influential inputs. The proposed approach relies on a change of measure

derived by minimising the χ2-divergence, subject to a constraint (‘stress’) on the expectation

of a chosen random variable. We obtain an explicit solution of this optimisation problem in a

finite space, consistent with the use of simulation models in risk management. Subsequently, we

introduce metrics that allow for a coherent assessment of reverse (i.e. stressing the output and

monitoring inputs) and forward (i.e. stressing the inputs and monitoring the output) sensitiv-

ities. The proposed approach is easily applicable in practice, as it only requires a single set of

simulated input/output scenarios. This is demonstrated by application on a simple insurance

portfolio. Furthermore, via a simulation study, we compare the sampling performance of sensi-

tivity metrics based on the χ2- and the Kullback-Leibler divergence, indicating that the former

can be evaluated with lower sampling error.

Keywords: Sensitivity analysis, χ2-divergence, Kullback-Leibler divergence, simulation, sensitiv-

ity measures, reverse stress testing.

JEL codes: C15, G22, D81.

1 Introduction

1.1 Problem Statement

Insurance and financial firms often employ complex quantitative models to analyse and evaluate the

risks pertaining to their organisations; see McNeil et al. (2015) for an overview of relevant methods

and techniques. In insurance risk management applications, such models are typically implemented

via Monte Carlo simulation. Scenarios are generated from modelled sources of uncertainty (risk

factors) and are mapped via an aggregation function to model outputs of interest (e.g. the portfolio

loss). Thus, aggregating risk factors allows the calculation of the probability distribution of model

∗Corresponding author. Email: vaishno.makam@cass.city.ac.uk.
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outputs. As the intricacy of such models increases, it becomes harder to develop insights from

them and understand clearly the relationship between inputs and outputs (see, e.g. Tsanakas and

Millossovich, 2016). The complexity of quantitative risk models arises from the potential high-

dimension and stochastic dependence of risk factors (e.g. Denuit et al., 2005; Arbenz et al., 2012),

as well as the non-linearity of the aggregation function (e.g. Hong, 2009; Tsanakas and Millossovich,

2016), which may itself be numerically demanding in its evaluation at particular simulated scenarios

(Risk and Ludkovski, 2016; Floryszczak et al., 2016).

Our main focus in this paper is to develop an approach to sensitivity analysis, which enables

users to rank model inputs by their importance, while being applicable to the simulation models

used by insurers and financial firms. Sensitivity analysis generates insights into models and supports

robust decision making; for comprehensive reviews see Christopher Frey and Patil (2002); Saltelli

(2002); Saltelli et al. (2008); Borgonovo and Plischke (2016); Rabitti and Borgonovo (2020).

We propose a sensitivity analysis framework relying on a change of measure, which requires

only a single set of Monte-Carlo simulations, thus avoiding multiple model runs. The given set of

simulations defines an (empirical) baseline probability measure. The model is stressed by a change

of measure that should reflect specified distortions on the distributions of risk factors, with the

stressed model remaining close to the baseline model. Specifically, working in a discrete probability

space, we derive a change of measure by minimising the χ2-divergence (Csiszár, 1967) with respect

to the baseline model, subject to a constraint on the expectation of a model component (e.g. risk

factor, model output, or a function thereof). The constraint reflects the desired stress on the

variable of interest. We derive an explicit analytical solution to the relevant optimisation problem,

which allows easy and efficient implementation.

Focusing on risk management applications, we use the terms reverse and forward sensitivity

analysis, when the change of measure is, respectively, derived by stressing a model output or input.

While forward sensitivity analysis refers to the well-understood problem of monitoring the impact

of input changes on outputs, reverse sensitivity analysis (Pesenti et al., 2019) offers a generalisation

of the reverse stress testing approach often used in risk regulation (EIOPA, 2019). We develop

a framework that combines the two analyses by, first, stressing the model output and evaluating

the optimal χ2-divergence and, second, maximising the expectations of input factors one at a time,

while constraining the χ2-divergence to the level obtained from the first step. This approach ensures

the consistency of reverse and forward sensitivity analyses.

The changes in the distributions of inputs and output, under the reverse and forward stresses,

are quantified via two novel sensitivity measures that we introduce in this paper. These sensitivity

measures are associated with the above reverse/forward framework and enable the ranking of input

factors, based on their importance in the model. We note that similar sensitivity measures can

be defined if, in the relevant optimisation problems, we replace the χ2-divergence with a different

divergence measure – e.g. Kullback-Leibler divergence (Csiszár, 1975; Breuer and Csiszár, 2013).

By a numerical study we show that sensitivity measures based on the χ2-divergence are obtained

with lower sampling error, compared to the case when the Kullback-Leibler divergence is used.
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1.2 Review of literature

In recent years, the literature on sensitivity analysis has largely focused on global methods, which

reflect the model behaviour over the entire range of the input distribution; for comprehensive

reviews see Christopher Frey and Patil (2002); Saltelli (2002); Saltelli et al. (2008); Borgonovo and

Plischke (2016). Major advances in sensitivity analysis can be accredited to Sobol (1993); Homma

and Saltelli (1996); Saltelli et al. (2008). The range of sensitivity analysis methods available in the

literature is substantial, with variance-based (Saltelli et al., 2008, 2010) and moment-independent

methods (Borgonovo, 2007) being the most common. Recently, local and global sensitivity methods

have been applied to evaluate the comparative importance of demographic and financial factors in

an annuity portfolio (Rabitti and Borgonovo, 2020). Variance-based measures implicitly assume

that knowledge of the second moment is sufficient to determine the uncertainty of an input factor,

which is problematic in the case of heavy tails (Liu et al., 2006). Efforts towards overcoming this

shortcoming include the use of conditional Kullback-Leibler divergences, in order to quantify the

importance of a model input (Auder and Iooss, 2008; Liu et al., 2006).

In this paper, we use the χ2-divergence as a criterion for deriving stressed probability measures,

under which the model’s behaviour is examined. Hence our approach is more closely related to the

literature involving divergence minimisation (under moment constraints) or moment maximisation

(under divergence constraints). Specifically, we build on the reverse sensitivity testing approach

proposed by Pesenti et al. (2019), where the stressed probability measures are derived by minimising

the Kullback-Leibler divergence, subject to a constraint on risk measures such as Value-at-Risk and

Expected Shortfall. Working with the χ2-divergence, we explore problems analogous to the ones

stated in Breuer and Csiszár (2013), who use Kullback-Leibler divergence in the context of model

uncertainty. Model uncertainty is also addressed in Glasserman and Xu (2014), by bounding the

worst-case model error under a divergence constraint. However, in contrast to those papers, our

focus is on understanding the sensitivities to risk factors within a given model rather than the study

of model uncertainty.

Our use of the χ2-divergence is motivated by the fact that the Radon-Nikodym derivative

obtained when using the Kullback-Leibler divergence is typically exponential in form and, hence,

when heavy-tailed distributions are used in a model, it might lead to issues with existence or (in

a Monte Carlo setting) convergence. Related concerns are found in Glasserman and Xu (2014),

who use the α-divergence (of which the χ2-divergence is a special case), when distributions are

heavy-tailed. Similarly, Dey and Juneja (2010) minimise a related divergence measure under linear

constraints in a portfolio selection problem.

1.3 Structure of the paper

The rest of the paper is organised as follows. In Section 2, we discuss the Kullback-Leibler and

χ2-divergences. In Section 3, we provide the main result of the paper, relating to minimising χ2-

divergence, under a moment constraint. Furthermore, extensions and variations of the optimisation

problem are considered. Finally, the reverse and forward sensitivity analysis framework is presented
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and the related sensitivity measures are defined. In Section 4, we apply our results to a simple non-

linear insurance portfolio model. Furthermore, a simulation study is presented, where we assess

the extent of simulation error in the evaluation of our sensitivity measures, when either χ2- or

Kullback-Leibler divergence is used. Brief conclusions are stated in Section 5.

2 Preliminaries

Let P and Q be two probability measures defined on a common measurable space (Ω,A). Q� P

indicates the absolute continuity of Q with respect to P and, in this case, we write the Radon-

Nikodym derivative of Q with respect to P as
dQ

dP
. We denote the expectation operator under P

and Q by E and EQ, respectively.

In the paper, we use special cases of the f -divergence (Ali and Silvey, 1966; Liese and Vajda,

2006; Cambou and Filipović, 2017), as measures of discrepancy between two probability measures.

Definition 2.1. Let f : (0,∞) → R be a convex function and suppose that Q � P . The f -

divergence of Q with respect to P , denoted by Df (Q||P ), is defined as

Df (Q||P ) =

∫
Ω
f

(
dQ

dP

)
dP = E

[
f

(
dQ

dP

)]
.

The f -divergence is non-negative, monotone and jointly convex. The Kullback-Leibler (KL-

)divergence, first introduced by Kullback and Leibler (1951), and the χ2-divergence (Csiszár, 1967;

Liese and Vajda, 2006) are two special cases corresponding to f(u) = u log u and f(u) = u2 − 1,

respectively.

Definition 2.2. The KL-divergence of Q with respect to P with Q� P , is defined as

DKL(Q||P ) =

∫
Ω

dQ

dP
log

(
dQ

dP

)
dP = EQ

[
log

(
dQ

dP

)]
.

The KL-divergence is positive, i.e. DKL(Q||P ) > 0, except if Q = P when it becomes 0. It is

also in general asymmetric i.e., DKL(Q||P ) 6= DKL(P ||Q).

Definition 2.3. The χ2-divergence of Q with respect to P with Q� P is defined as

Dχ2(Q||P ) =

∫
Ω

((
dQ

dP

)2

− 1

)
dP = E

[(
dQ

dP

)2
]
− 1 = var

(
dQ

dP

)
.

In Saraswat (2014) it is shown that Dχ2(Q||P ) ≥ DKL(Q||P ) for all P,Q.

Consider a finite probability space Ω = {ω1, ω2, . . . , ωn} with A = 2Ω. Assume that Q � P .

Let pi and qi denote the probability of obtaining the state of the world ωi ∈ Ω, under those two

measures, that is, pi = P (ωi) and qi = Q(ωi). We assume that pi > 0 for all i, while there may be

states for which qi = 0. Then, the definitions of KL-divergence and χ2-divergence become:

DKL(Q||P ) =
∑
i

qi log

(
qi
pi

)
=
∑
i

piwi logwi

Dχ2(Q||P ) =
∑
i

(
qi
pi

2
)
− 1 =

∑
i

piw
2
i − 1,
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where wi =
qi
pi

=
dQ

dP
(ωi) for all i.

Finite spaces are typical in a Monte Carlo setting, where we have pi =
1

n
, with each state of

world corresponding to a simulated scenario, with equal probability of occurrence.

A risk measure is a functional ρ mapping a random variable X (a loss), to a real number ρ(X)

and it may represent e.g. the capital to be allocated in order to make the risk X acceptable. There

are several ways of classifying of risk measures (see Artzner et al. (1999), Föllmer and Schied (2011)).

We focus on the percentile-based risk measures Value-at-Risk (VaR) and Expected Shortfall (ES)

(McNeil et al., 2015).

Definition 2.4. The Value-at-Risk for risk X, at confidence level α ∈ (0, 1), is defined as the left

quantile of the distribution of X,

VaRα(X) = F−1
X (α),

where F−1
X (α) = inf{x ∈ R|FX(x) ≥ α}.

Definition 2.5. The Expected Shortfall for a riskX with E[|X|] <∞, at confidence level α ∈ (0, 1),

is given by

ESα[X] =
1

1− α

∫ 1

α
VaRq(X)dq

=
1

1− α
E [((X −VaRα(X))+] + VaRα(X).

From the above formula, the Expected Shortfall can also be interpreted as an average of Value-at-

Risk for confidence levels greater than α, thus taking into account the entire tail of the distribution

(Rockafellar et al., 2000). Expected Shortfall is a coherent risk measure, whereas the Value-at-Risk

in general is not (Artzner et al., 1999).

3 Stress testing models

3.1 Problem Definition

We introduce a basic model within a sensitivity analysis framework, where the model inputs are

mapped to a model output by means of an aggregation function. Let the random vector Z =

(Z1, Z2, · · · , Zd) on a measurable space (Ω,A) denote the random variables representing the input

factors of the model under consideration. The aggregation function g : Rn → R, when applied on

the inputs, gives a one-dimensional output Y = g(Z). The main focus of this paper concerns the

understanding of model behaviour subject to changes in an input factor or the output. Specifically,

we look at the changes in the distributional characteristics of input factors when there is a change

in the output and vice versa.

Let P denote the set of all probability measures on the measurable space (Ω,A) and, for a

given P ∈ P, define the baseline model as (Z, g, P ). A change of measure is introduced via the

Radon-Nikodym derivative W =
dQ

dP
. We then refer to (Z, g,Q) as an alternative or stressed model.
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The measure Q is chosen such that the expectation of random variable X becomes

EQ[X] = E[WX] = t,

for a specified t ∈ R. The variable X may be chosen to be one of the model inputs (X = Zi),

the model output (X = Y ) or indeed a function of the input vector Z. Depending on the problem

context, the expectation of X may be stressed upwards (t > E[X]) or downwards (t < E[X]). The

choice of Q ∈ P is such that the distortion to the baseline model is minimised. Specifically, we

aim to minimise Dχ2(Q|P ), subject to the constraint EQ[X] = t being fulfilled. In terms of the

Radon-Nikodym derivative W , we arrive at the optimisation problem

minW
1
2E[W 2] st

E[W ] = 1,

E[WX] = t,

W ≥ 0.

(I)

Such a stress on X can be interpreted in two ways. First, we are concerned about model change.

We can consider what would happen to the probability measure – and hence the distribution of

all random variables of interest – if the expected value of X would move to the stressed value t.

The second interpretation is concerned with model mis-specification. If the current model is not

correctly specified, and the actual expectation of X is t, the Radon-Nikodym derivative arising as

a solution to Problem (I) allows the calculation of a plausible distribution for all variables, under a

corrected model. Note that in this paper we are not concerned with statistical arguments pertaining

to how the baseline model was selected from data.

Portfolio models used in risk management typically require numerical evaluation of probability

distributions of interest, with Monte Carlo simulation often used. For that reason, in the rest of

this paper, we restrict our analysis to a finite probability space Ω = {ω1, . . . , ωn}, with baseline

probability P (ωi) = pi for i = 1, . . . , n. We denote by w = (w1, . . . , wn), with wi = W (ωi),

the vector of Radon-Nikodym derivative values, such that Q(ωi) = qi = piwi. Furthermore, let

X(ωi) = xi and denote x = (x1, . . . , xn). We assume that x1 < . . . < xn; this is relaxed in Remark

3.5. In that context, Problem (I) becomes:

minw
1
2

∑n
i=1 piw

2
i st∑n

i=1 piwi = 1,∑n
i=1 piwixi = t,

wi ≥ 0 for all i = 1, . . . , n.

(II)

A ‘dual’ version of Problem (II) arises from maximising the expectation of a random variable

with respect to the measure Q, subject to a constraint on the χ2-divergence. A similar optimisation

problem, with a constraint on the KL-divergence, is discussed in Breuer and Csiszár (2013). Here,

6



we define the problem: 

max
∑n

i=1 pivixi s.t∑n
i=1 pivi = 1,

1

2

∑n
i=1 piv

2
i ≤ θ,

vi ≥ 0 for all i = 1, . . . , n.

(III)

Remark 3.1. The KL-divergence as a measure of plausibility of an alternate model is by far the

most popular choice in the family of f -divergences. Applications in financial risk management

include Breuer and Csiszár (2013) and Glasserman and Xu (2014). Nonetheless, there are potential

problems in the characterization of solutions obtained when the KL-divergence is used, if X follows

a heavy-tailed distribution, as is often the case in insurance and finance applications. Specifically,

if in Problem (I) we change the χ2- to the KL-divergence, it is known that the optimal Radon-

Nikodym derivative takes the form (Csiszár, 1975; Breuer and Csiszár, 2013)

W =
exp(βX)

E[exp(βX)]
,

for some β ∈ R. The above expression is not well defined if X is heavy tailed, such that exponential

moments are not defined (e.g. Log-normal or Student t). To avoid this pitfall Dey and Juneja (2010)

have replaced the KL-divergence with polynomial divergence in a portfolio selection problem. This

also motivates our choice of the χ2-divergence. In the case of a finite space (Problem II), issues of

heavy-tailedness do not arise. However, if the discrete space is generated through the realisations

of a Monte Carlo simulation, with the underlying model containing heavy tailed components, then

convergence issues may appear – we return to this issue in Section 4.4.

3.2 Main Results

In this section, we present the mathematical results of the paper, specifically the solution to the

optimisation problem (II) and its various corollaries.

Proposition 3.1. Let x̄ < t ≤ xn. Then, the optimisation problem (II) has a unique solution w,

given below.

a) If t < x̄+
s2

x̄− x1
, then wi = λ1 + λ2xi > 0, for i = 1, . . . , n,

where λ2 =
t− x̄
s2

and λ1 = 1− λ2x̄.

b) If x̄+
s2

x̄− x1
≤ t < xn, then

wi =

0, i = 1, . . . , k

l1(k) + l2(k)xi, i = k + 1, . . . , n,

7



where 1 ≤ k ≤ n−2 is the unique integer satisfying l1(k)+l2(k)xk ≤ 0 and l1(k)+l2(k)xk+1 > 0

and where the functions l1 and l2 are defined by

l1(j) =
1− l2(j)(x̄− x̄jπj)

π>j

l2(j) =

t− x̄− πj
π>j

(x̄− x̄j)

π>js2
>j

for j = 1, . . . , n− 2.

c) If t = xn, then wi =

0, i = 1, . . . , n− 1

n, i = n.

Proposition 3.2. For a given t with x̄ < t < xn, denote the solution of Problem (II) by w∗ and

the optimal value of the objective function by θ∗ =
1

2

∑n
i=1 piw

∗
i

2. Then, w∗ solves Problem (III)

with θ = θ∗.

Finally, from the proof of Proposition 3.2 it can be seen that the χ2-divergence constraint in

Problem (III) is always binding at the optimum.

Remark 3.2. The Optimal χ2-divergence in problem (II) ranges from 0, corresponding to t = x̄, to

its maximum value, corresponding to t = max(X) = xn. Furthermore, the optimal χ2-divergence

is a strictly increasing function of t, thanks to the Sensitivity Theorem (Luenberger et al., 1984).

Remark 3.3. The increasingness of the optimal Radon-Nikodym derivative in Proposition 3.1

implies that the distribution of X under the stressed measure Q first order stochastically dominates

the distribution of X under P , see for e.g. (Pesenti et al., 2019, Prop. A.1). As a result the

expectation of any increasing function of X is stressed upwards.

Remark 3.4. In Proposition 3.1, we state the solution to Problem (II) for an upward stress only,

x̄ < t ≤ xn. Consider Problem (II) with a downward stress, that is x1 ≤ t < x̄. Its solution is the

same as that of the following problem:

minw
∑n

i=1 piw
2
i s.t∑n

i=1 piwi = 1,∑n
i=1 piwiri = −t,

wi ≥ 0 for all i = 1, . . . , n,

and where r1 = −xn, r2 = −xn−1, . . . , rn = −x1. This problem can be solved once again using

Proposition 3.1, since r̄ = −x̄ < −t ≤ rn = −x1.

8



Remark 3.5. In a Monte Carlo model where the states of the world are assumed to be equiprobable,

the optimization Problem (II) simplifies to

minw
1

2n

∑n
i=1w

2
i s.t

1

n

∑n
i=1wi = 1,

1

n

∑n
i=1wixi = t

wi ≥ 0 for all i = 1, . . . , n,

(IV)

The solution of Problem (II), as reported in Proposition 3.1, holds for Problem (IV), after

substituting pi =
1

n
, πj =

j

n
and π>j =

n− j
n

.

Furthermore, assume that in addition to scenarios being equiprobable, we are in a situation

where there are ties in x. For example, if Y is a portfolio loss, we may be interested in stressing

the random variable X = (Y − β)+; in that case we may have X(ωi) = 0 for more than one state

ωi. In particular, assume that there is a unique tie consisting of m + 1 values, x1 < x2 < · · · <
xj−1 < xj = xj+1 = · · · = xj+m < xj+m+1 < · · · < xn. Then, we can replace Problem (IV) with

minw
1

2n

∑ñ
i=1 w̃

2
i s.t

1

ñ

∑ñ
i=1 w̃ip̃i = 1,

1

ñ

∑ñ
i=1 w̃ip̃ix̃i = t,

w̃i ≥ 0,

and ñ = n−m,

x̃i =


xi if i < j,

xi if i = j,

xi+m if i = j + 1, · · · , ñ.

p̃i =


pi if i < j,

pj + pj+1 + · · ·+ pj+m if i = j,

xi+m if i = j + 1, · · · , ñ.

Remark 3.6. We have solved Problem (II) with a non-negativity constraint on the weights. Thus,

information pertaining to some states of nature is lost when they are assigned a zero weight, i.e.

if for the ith scenario, we have wi = 0. To avoid such a drastic intervention to the probability

measure P , we slightly generalise Problem (II) by introducing a strictly positive lower bound δ for

the weights. Specifically, for a given t ∈ R and 0 < δ < 1, consider the optimization problem

minw
∑n

i=1 piw
2
i s.t∑n

i=1 piwi = 1,∑n
i=1 piwixi = t,

wi ≥ δ > 0 for all i = 1, . . . , n.

(V)

9



The solution to Problem (V) follows from Problem (II), by the following argument. Let v∗ =

(v1, . . . , vn) be the solution of the auxiliary problem

min
∑n

i=1 piv
2
i s.t∑n

i=1 pivi = 1,∑n
i=1 pivixi =

1

1− δ
(t− δx̄), vi ≥ 0

for all i = 1, . . . , n.

Then, w∗ = δ + (1− δ)v∗ is the solution to the Problem (V). This can be verified by substituting

w∗ in the constraints of Problem (V). The objective function of Problem (V) becomes:

n∑
i=1

piw
2
i =

n∑
i=1

pi(δ + (1− δ)vi)2

= δ2 + 2δ(1− δ) + (1− δ)2
n∑
i=1

piv
2
i .

Hence, minimising the left hand side is equivalent to minimising
∑n

i=1 piv
2
i .

3.3 Reverse and forward sensitivity analyses

Here we return to the problem definition of Section 3.1, considering a model with output Y and

risk factors Z, linked through an aggregation function, Y = g(Z). Depending on the purpose

of the sensitivity analysis, we may set X in Problem (I) as either X = Y , leading to a reverse

sensitivity analysis (see also Pesenti et al. (2019)), or X = Zi, a forward sensitivity analysis.

Reverse sensitivity analysis aims at evaluating the behaviour of risk factors under a stress on the

model output (portfolio loss), while forward sensitivity is concerned with the impact on the output

distribution of stressing individual risk factors.

Specifically, for reverse sensitivity analysis, we solve Problem (II) with the constraint EQ(Y ) = t,

where t represents a stress on the expected value of the output Y , and let dQY
dP the optimal Radon-

Nikodym derivative. Subsequently, the input factors’ importance is assessed according to the impact

on their distribution, caused by the change of measure dQY
dP . A substantial change observed in the

distribution of an input factor can be interpreted as a high sensitivity of that factor.

Conversely, for forward sensitivity testing, a change of measure is obtained by specifying a stress

on one input factor at a time. In order that the stresses on different input factors are consistent with

each other, we obtain the relevant changes of measure by solving Problem (III) with X = Zi and

under the same constraint on the χ2-divergence. Denote the resulting Radon-Nikodym derivatives

by
dQZi
dP , i = 1, . . . , d. Then, these changes of measure are used to evaluate stressed distributions

of the output Y ; we attribute a higher sensitivity to input factors that lead to a more substantial

change in the distribution of Y.

Furthermore, we can link reverse and forward sensitivity, to ensure consistency between the

stresses applied under each of the two approaches and detect any dissonance that may arise be-

tween the importance rankings they produce. Here, we propose the following process. We start

10



with reverse sensitivity analysis, as a stress on the output may be calibrated with reference to an

unacceptable level of adverse movement in portfolio risk (Problem (II)). Subsequently, the optimal

χ2-divergence is calculated from that analysis. Then, this divergence value is used as a constraint

in Problem (III) to find the maximal stress possible on an input factor for the forward sensitivity

analysis.

Two sensitivity measures specific to our framework are defined below.

Definition 3.1. Let E[Y ] < t < maxY , QY be the probability measure arising from the solution

of Problem (II) with X = Y , and denote by θ∗ the corresponding optimal value of the objective

function. Let QZi be the probability measure arising from the solution of Problem (III) with X = Zi

and θ = θ∗. Then, the reverse sensitivity of an input Zi is defined by

Ri :=
EQY [Zi]− E[Zi]

EQZi [Zi]− E[Zi]
,

while the forward sensitivity of Zi is defined as

Fi :=
EQZi [Y ]− E[Y ]

EQY [Y ]− E[Y ]
.

The sensitivity measure Ri (resp. Fi) represents the change in the expectation of an input

(resp. output), when the output (resp. input) is stressed. The denominators act a normalising

constants, as is seen from Proposition 3.3 below. We remark that the sensitivity analysis framework

we present, including Definition 3.1, can be altered as necessary to include functions of input factors

to enable the assessment of different distributional characteristics.

Proposition 3.3. The sensitivity measures of Definition 3.1 satisfy the following properties:

1. Ri, Fi are well defined.

2. Ri, Fi ≤ 1.

3. Ri = Fi = 0 if Zi, Y are independent.

4. Ri, Fi ≥ 0 if (Zi, Y ) are positive quadrant dependent.

4 Case study of an insurance portfolio

Here we apply the framework of Section 3 to the example of a simplified insurance portfolio. In

Section 4.1, we introduce the model, while in Sections 4.2 and 4.3 we, respectively, perform reverse

and forward sensitivity analyses. Finally, in Section 4.4, we evaluate the sensitivity measures of

Definition 3.1; furthermore, we examine their sampling performance, comparing them to similar

measures that are constructed by replacing the χ2- with Kullback-Leibler divergence.
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4.1 Baseline Model

Consider a model of an insurance portfolio, with inputs factors Z = (Z1, Z2, Z3, Z4) and output Y ,

representing the portfolio loss. Z1 and Z2 represent claims from two lines of business. Claims are

subject to a common multiplicative (e.g. inflation) factor, Z3, such that the portfolio loss, before

reinsurance, is given by

L = (Z1 + Z2)Z3.

The insurance company buys reinsurance on L with limit l and deductible d. Z4 represents the per-

centage of reinsurance recovery lost in circumstances when the re-insurer fails to make a payment.

The total portfolio loss thus is:

Y = L− (1− Z4) min{(L− d)+, l}.

Z1 follows a truncated Log-normal distribution with mean 150 and standard deviation 35, where

the truncation point is at the 99.9% quantile; Z2 follows a Gamma distribution with mean 200 and

standard deviation 20; Z3 follows a Log-normal distribution with mean 1.05 and standard deviation

0.05; Z4 follows a Beta distribution with mean 0.1 and standard deviation 0.2. We assume that

Z1, Z2, Z3 are independent. Furthermore, Z4 is dependent on L through a Gaussian Copula with

a correlation of 0.6 and, conditional on L, Z4 is independent of (Z1, Z2, Z3). For the reinsurance

parameters, we set l = 30 and d = 380. We simulate (Z, Y ) using a Monte Carlo sample of n = 105

scenarios.

4.2 Reverse sensitivity analysis of the insurance model

Using the above model, we follow the sensitivity analysis process outlined in Section 3.3. We denote

by QY the measure for which dQY
dP is the solution of Problem (II) after setting X = Y . We stress

the expectation of Y upwards by 10%, such that EQY (Y ) = 1.1, E(Y ) = t.

Figure 1 (left) displays the Radon-Nikodym derivative of the stressed probability measureQY , as

a piecewise linearly increasing function of Y . On the right of Figure 1, the empirical distributions of

Y under the baseline (black) and stressed (red) measure are shown. The stressed output distribution

first-order stochastically dominates the output distribution under the baseline model, as remarked

after Proposition 3.1.

Figure 2 displays the distribution of the input factors under the stressed model QY . The stressed

probability distributions appear to stochastically dominate the baseline distributions. We can see

that Z1 and Z4 undergo a larger change, compared to Z2 and Z3. We attribute this behaviour to

the heavier tail of Z1 and the role of Z4 in the aggregation function, since the loss of reinsurance

recoveries is important in those scenarios where losses L before reinsurance are high.

These observations are confirmed in Table 1, which reports the percentage increases in the

mean, standard deviation, and VaR/ES risk measures, at the 95% level, of the four input factors.

If for example we focus on ES0.95, we observe an approximate increase of 15% and 18% for Z1 and

Z4 respectively, with the corresponding values for Z2 and Z3 being much lower.
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Figure 1: Left: Radon-Nikodym derivative of QY against Y . Right: Stressed probability distributions

of Y under models P, QY .

Figure 2: Empirical distributions of the input factors under the baseline and stressed models P, QY .
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Table 1: Percentage increase in statistics of input factors Zi under the stressed model QY , with respect

to the baseline model P .

Input factors Mean St. Dev. VaR0.95 ES0.95

Z1 17.44 8.67 15.38 14.79

Z2 3.99 −0.80 3.27 3.14

Z3 1.60 −1.48 1.39 1.35

Z4 108.52 39.63 39.18 18.10

4.3 Forward sensitivity analysis of the insurance model

Now we carry out forward sensitivity analysis, as discussed in Section 3.3. We denote by QZi

the measure for which dQZi
dP is the solution of Problem (III) after setting X = Zi and θ equal

to the optimal χ2-divergence of the reverse sensitivity problem in Section 4.2. Figure 3 displays

the Radon-Nikodym derivative of the stressed probability measures QZi , i = 1, . . . , 4. It is seen

that each Radon-Nikodym derivative is an increasing function of the factor being stressed. Note

that while the different Radon-Nikodym derivatives have the same standard deviation (due to the

χ2-divergence constraint) their distributions are generally not the same.
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Figure 3: Radon-Nikodym derivatives of stressed models QZi
for i = 1, . . . , 4

.
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Figure 4: Stressed probability distributions of Y under the baseline model P and the stressed models

QY and QZi
for i = 1, . . . , 4.

In Figure 4, the empirical distributions of Y under the baseline (P , black) and all stressed

(QZi , red; QY , dashed grey) models are displayed. As each input factor is subject to a stress with

the same optimal χ2-divergence, arising from the reverse analysis, the stressed measures under

the forward analysis cannot produce greater distortions to the distribution of Y compared to that

obtained in Section 4.2. This is evident from Figure 4, where we can see that the red lines are

always between the black and dashed grey ones. This is precisely the effect that the Definition 3.1

of sensitivity measures aims to reflect.

We observe that greater distortions to the distribution of Y arise under stressed modelsQZ1 , QZ4 ,

compared to QZ2 and QZ3 , implying a higher sensitivity to Z1 and Z4. This is broadly consistent

with the observations of Section 4.2. In Table 2 we report percentage changes in distributional

characteristics of Y , under the stresses on all input factors. We note that, for example, the largest

changes in the 95%-ES measure are observed for Z1 and Z4, 9.2% and 8.4% respectively.
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Table 2: Percentage increase in statistics of Y under the stressed models QZi
for i = 1, . . . , 4, with

respect to the baseline model P .

Variables stressed Mean St. Dev. VaR0.95 ES0.95

Z1 8.00 2.46 9.41 9.21

Z2 4.52 −4.44 4.65 4.34

Z3 3.72 −0.32 4.35 4.15

Z4 5.51 17.94 8.80 8.41

4.4 Evaluation of sensitivity measures

The aim of this section is to evaluate the sensitivity measures defined in Section 3.3 for our insurance

portfolio model and assess the extent of simulation error in their calculation.

The reverse and forward sensitivities of different input factors are reported, respectively, in the

second and fourth column of Table 3, such that e.g. R1 = 0.794 and F1 = 0.800. It can be seen

that, according to both the reverse and forward sensitivity measures, the ranking of risk factors,

from the most to the least sensitive, is Z1, Z4, Z2, Z3. This is broadly consistent with the discussion

of Sections 4.2 and 4.3.

Furthermore, for comparison purposes, in the third and fifth column of Table 3, we report

sensitivity measures calculated with respect to the KL- rather than the χ2-divergence. These

sensitivity measures are still calculated according to Definition 3.1, with the difference that the

measures QY , QZi are the solutions of modified versions of Problems (II) and (III), with the χ2-

divergence replaced with the KL-divergence. The solution to these problems is given by e.g. Breuer

and Csiszár (2013) and the numerical implementation is carried out via the R package SWIM by

Pesenti et al. (2020). We observe that a change in the divergence measure does not impact the

relative importance of input factors.

Table 3: Reverse and forward sensitivities of input factors Z1, Z2, Z3, Z4 under χ2-divergence and

KL-divergence (calculated as the average over 1000 sets of n = 105 simulated scenarios).

Reverse SM Forward SM

Input χ2-divergence KL-divergence χ2-divergence KL-divergence

Z1 0.794 0.809 0.800 0.806

Z2 0.433 0.389 0.451 0.417

Z3 0.370 0.356 0.374 0.346

Z4 0.568 0.570 0.551 0.580

To quantify simulation error, we simulate m sets of n simulated scenarios from our model.

The sensitivity measures are evaluated on each of the m sets of simulations, resulting in empirical

distributions representing sampling error. Specifically, for k = 1, . . . ,m, we follow the algorithm:
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1. Multivariate scenarios z(k) are sampled from Z under P , where z(k) =
(
z

(k)
j,i

)
j=1,...,n
i=1,...,d

. Subse-

quently, evaluate y(k) =
(
y

(k)
j

)
j=1,2,...,n

, where y
(k)
j = g

(
z

(k)
j•

)
and z

(k)
j• = (z

(k)
ji )i=1,...,d.

2. Set t(k) = 1.1
1

n

∑n
j=1 y

(k)
j for the reverse sensitivity test.

3. Working first with the χ2-divergence, we obtain the corresponding Radon-Nikodym densities

(w
(k)
j )j=1,...n by solving Problem (II) with x = y(k) and t = t(k).

4. Evaluate the optimal divergence, θ(k) =
1

n

∑n
j=1(w

(k)
j )2.

5. For the forward sensitivity test, set θ = θ(k) and solve Problem (III) with x = z
(k)
•i , where

z
(k)
•i = (z

(k)
ji )j=1,...,n, to obtain the Radon-Nikodym densities w

(k)
i = (w

(k)
ji )j=1,...,n.

6. Using w(k) and w
(k)
i , we measure the reverse and forward sensitivity measures Ri, Fi as given

in Definition 3.1.

In addition, we carry out the same algorithm, but using the KL-divergence for the calculation

of sensitivity measures, as discussed above. We aim to compare the simulation error of sensitivity

measures under each of the two divergence measures. This is motivated by Remark 3.1, where

we argued that, due to the form of the solution of the KL-divergence minimisation problem, high

numerical errors may arise.

Figure 5 displays box plots of input factors’ sensitivity measures. The top left and right box plots

are associated with reverse sensitivity with χ2- and KL-divergences respectively, while the bottom

two plots represent forward sensitivities for the two divergences. We observe greater volatility

in the estimates of both reverse and forward sensitivities, when the KL-divergence is used. This

is particularly visible in the case of the reverse sensitivity, where the KL-divergence produces a

high number of outliers. This confirms our concerns raised in Remark 3.1 about the use of the

KL-divergence and demonstrates the better numerical properties of sensitivity measure estimates,

when the χ2-divergence is used.
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Figure 5: Box plots of reverse and forward sensitivities of input factors under χ2- and Kullback-Leibler

divergences, for m = 1000 sets of n = 105 simulated scenarios.

In Table 4, we show the standard errors of reverse and forward sensitivities of input factors

Z1, Z2, Z3, Z4 under the χ2- and KL-divergences, for m = 1000 sets of n ∈ {103, 104, 105} sim-

ulated scenarios. Once more, we observe the higher error of sensitivity measures based on the

KL-divergence, particularly for lower sample sizes n.
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Table 4: Standard errors of reverse and forward sensitivities of input factors Z1, Z2, Z3, Z4 under

χ2-divergence and KL-divergence for m = 1000 sets of n = 103, 104, 105 simulations.

Reverse Sensitivity Forward Sensitivity

n = 103 χ2-divergence KL-divergence χ2-divergence KL-divergence

Z1 0.013 0.023 0.012 0.034

Z2 0.028 0.057 0.027 0.034

Z3 0.029 0.088 0.029 0.036

Z4 0.029 0.046 0.026 0.040

n = 104 χ2-divergence KL-divergence χ2-divergence KL-divergence

Z1 0.004 0.010 0.004 0.016

Z2 0.009 0.026 0.008 0.012

Z3 0.009 0.045 0.009 0.012

Z4 0.009 0.015 0.008 0.014

n = 105 χ2-divergence KL-divergence χ2-divergence KL-divergence

Z1 0.001 0.004 0.001 0.006

Z2 0.003 0.010 0.003 0.005

Z3 0.003 0.019 0.003 0.004

Z4 0.003 0.005 0.003 0.006

5 Conclusions

We have proposed a sensitivity analysis framework based on the χ2-divergence, to investigate in

a coherent fashion the relationship between a model’s inputs and output. Two approaches to

sensitivity analysis are considered; for the reverse approach, the expectation of the output was

stressed to ascertain the output to input relationship whereas, for the forward approach, the input

factors were stressed subject to the same optimal divergence. The analytical solution obtained

for the divergence minimisation problem allows an easy implementation of the sensitivity analyses

using Monte-Carlo simulation. We introduced sensitivity measures specific to our framework, to

investigate the changes in the distributions of inputs and output. Finally, a numerical study

is presented, comparing the simulation error of sensitivity measures based on the KL- and χ2-

divergences. The lower errors observed in the case of the χ2-divergence and its applicability in the

context of heavy-tailed distributions, make it a competitive alternative to the more commonly used

KL- divergence.

A Proofs

Proposition (3.1). To solve Problem (II), we first define some notation. Let the sum of the first

j probabilities associated with each of the corresponding states of the world be denoted by πj =
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∑j
i=1 pi and similarly, indicate the sum of the probabilities corresponding to that of the latter n− j

states of the world by π>j =
∑n

i=j+1 pi. The mean, second moment and variance of x respectively

are defined as:

x̄ =
n∑
i=1

pixi, x̄(2) =
n∑
i=1

pix
2
i , s2 = x(2) − x̄2.

For any integer j ∈ {1, . . . , n− 2}, the mean of the first j values of x is given by:

x̄j =

∑j
i=1 pixi
πj

.

The mean, second moment and variance of the latter n− j values of x is given by:

x̄>j =

∑n
i=j+1 pixi

π>j
, x̄

(2)
>j =

∑n
i=j+1 pix

2
i

π>j
, s2

>j = x̄
(2)
>j − x̄

2
>j .

If t ≤ xn, (II) is a quadratic programming problem which admits a unique solution. The

Karush-Kuhn-Tucker (KKT) conditions will then be both necessary and sufficient for optimality of

a candidate solution w (Luenberger et al., 1984).

The KKT conditions are for i = 1, . . . , n:

piwi = piλ1 + piλ2xi + µi,

n∑
i=1

piwi = 1,

wiµi = 0,

n∑
i=1

piwixi = t,

µi ≥ 0, wi ≥ 0.

To find the general form of λ1 and λ2, we substitute the equation piwi in the equality constraints

of Problem II. We get

λ1 = 1− λ2x̄−
n∑
i=1

µi, (i)

λ2 =
t− x̄+

∑n
i=1 µi(x̄− xi)
s2

. (ii)

We note that wi > 0 implies that µi = 0 and wi = λ1 + λ2xi.

We now show that λ2 > 0. Let’s suppose by contradiction that λ2 ≤ 0 and consider the case where

xh < xj for some indices 1 ≤ h < j ≤ n such that wj > 0. It follows that wj = λ1 + λ2xj and

phwh = phλ1 + phλ2xh + µh

≥ phλ1 + phλ2xh (since µh ≥ 0)

≥ ph(λ1 + λ2xj) (since xh < xj)

= phwj .
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We conclude that wi is non-increasing in i and that there is a counter-monotonic relationship

between X and W . In the case where wj = 0, the conclusion still holds. Therefore, by Chebyshev’s

Sum Inequality,

t =
n∑
i=1

pixiwi ≤
n∑
i=1

piwi

n∑
i=1

pixi = x̄

which contradicts t > x̄. Therefore, λ2 > 0.

Let now xh < xj for 1 ≤ h < j ≤ n such that wh > 0. Then µh = 0 and we have

pjwj = pjλ1 + pjλ2xj + µj

≥ pjλ1 + pjλ2xj

> pj(λ1 + λ2xh)

= pjwh.

Hence wi is non-decreasing in i and the solution will be of the form

wi =

0 i < k∗

λ1 + λ2xi i ≥ k∗
(iii)

for some k∗ ∈ {1, . . . , n}, where k∗ is the smallest index such that wk∗ > 0.

Note that the implications in the statement of the proposition can be inverted as the three cases

are mutually exclusive and exhaustive. If w is the unique solution of Problem II, we will proceed

by proving the following:

a) If wi > 0 for i = 1, . . . , n, then t < x̄+
s2

x̄− x1
.

b) If wi = 0 for some i and wj > 0 for at least two indices j, then x̄+
s2

x̄− x1
≤ t < xn.

c) If wi = 0 for all i but one, then t = xn.

We proceed with the proof by considering three different cases for k∗ and establish the condition

on t for each case.

Case k∗ = 1:

Let k∗ = 1, which implies that wi > 0 for all i = 1, 2, . . . , n. Therefore, from (iii), the solution is

wi = λ1 + λ2xi > 0 for any i = 1, 2, . . . , n.

The general formulas derived for λ1 and λ2 in equations (i) and (ii) simplify as follows:

λ1 = 1− x̄λ2, λ2 =
t− x̄
s2

.

In order to obtain a condition on t we substitute λ1 and λ2 in wi, to get

wi = 1− t− x̄
s2

(x̄− xi).
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As all wi are positive, t < x̄+
s2

x̄− xi
for each i. Since the xi’s are increasing, this is equivalent to

t < x̄+
s2

x̄− x1
.

Case 1 < k∗ < n:

We let k∗ = k + 1 for some 1 ≤ k ≤ n− 2.

Thus

wi = λ1 + λ2xi +
µi
pi

= 0 for i ≤ k, (iv)

wi = λ1 + λ2xi > 0 for i > k. (v)

Rearranging the terms in (iv), we get µi = −(λ1 + λ2xi)pi for i ≤ k and subsequently, substituting

for µi in equations (i) and (ii), we solve for λ1 and λ2.

Solving for λ1:

λ1 = 1− λ2x̄−
k∑
i=1

µi =
1− λ2(x̄− x̄kπk)

π>k
. (vi)

Solving for λ2 gives:

λ2 =
t− x̄+

∑k
i=1 µi(x̄− xi)
s2

,

which leads to

λ2s
2 = t− x̄−

k∑
i=1

(λ1pi + λ2pixi)(x̄− xi).

Hence

λ2 =
t− x̄− πk(x̄>k − x̄k)(

s2 − πk
(
x̄>k(x̄− x̄k)− x̄x̄k + x̄

(2)
k

)) .
After some algebra, the denominator becomes

s2 − πk
(
x̄>k(x̄− x̄k)− x̄x̄k + x̄

(2)
k

)
= π>ks

2
>k

Therefore,

λ2 =

(t− x̄)− πk
π>k

(x̄− x̄k)

π>ks
2
>k

. (vii)

We know that from the KKT conditions, 0 = wk = λ1 + λ2xk +
µk
pk

. Since,
µk
pk
≥ 0, we have

λ1 + λ2xk ≤ 0. Substituting the values of λ1 and λ2 in the above, we get:

1−
(t− x̄)− πk

π>k
(x̄− x̄k)

π>ks
2
>k

(x̄− x̄kπk − xkπ>k) ≤ 0
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Therefore, the last inequality can be written as

t− x̄ ≥ A(k)

B(k)
(viii)

where, A(i) = π>is
2
>i + πi(x̄− x̄i)(x̄>i − xi) and B(i) = π>i(x̄>i − xi).

To see that
A(i)

B(i)
is increasing in i note that, after some algebra, we have

A(i)B(i+ 1)−A(i+ 1)B(i) ≤ 0 =⇒ π>is
2
>i(xi − xi+1) ≤ 0.

Setting i = 1, we get
A(1)

B(1)
=
s2
>1 + π1(x̄>1 − x̄1)(x̄>1 − x1)

x̄>1 − x1
=

s2

x̄− x1
.

Since t =
∑n

i=1 piwixi =
∑n

i=k∗ piwixi and k∗ < n, it follows that t < xn.

To find the value of k, we use 0 = wk = λ1 + λ2xk +
µk
pk
≥ λ1 + λ2xk and wk+1 = λ1 + λ2xk+1 > 0.

Hence, k will be the unique value such that λ1 +λ2xk ≤ 0 < λ1 +λ2xk+1. By noting the dependence

of λ1 and λ2 on k, through equations (vi) and (vii), the expression for calculating k, that is given

in the proposition’s statement, follows.

k∗ = n:

If k∗ = n, we get wn = n and wi = 0 for i = 1, . . . , n− 1. In such a case, it is clear from the second

constraint of Problem II that t = xn.

Proposition 3.2. It can be confirmed that w∗ is a solution to Problem (III) by verifying that it

satisfies the KKT conditions, by choosing η∗2 =
−1

λ2
, η∗1 =

λ1

λ2
and ε∗i =

µi
λ2

, where λ1, λ2 and µi are

the Lagrangian multipliers in Problem (II).

The KKT conditions for for Problem (III), i = 1, . . . , n, are:

η2pivi = −pixi − η1pi − εi, viεi = 0,

η2

(
1

2

n∑
i=1

piv
2
i − θ

)
= 0 εi ≥ 0

n∑
i=1

pivi = 1, η2 ≤ 0,

1

2

n∑
i=1

piv
2
i = θ, vi ≥ 0.

As (III) is a convex problem, satisfying the KKT conditions is necessary and sufficient for w∗ to

be a solution.

Proposition (3.3). 1. The denominator of Fi is strictly positive, by assumption. The denomina-

tor of Ri is strictly positive by Proposition 3.2.
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2. For Ri ≤ 1, EQY (Zi) ≤ EQZi (Zi) must hold. This follows from Dχ2(QY ||P ) = Dχ2(QZi ||P )

and QZi being the maximiser in Problem (III).

The claim Fi ≤ 1 follows similarly, by considering Problem (III) and Proposition 3.2, for

X = Y .

3. If (Zi, Y ) are independent, EQY (Zi) = E(Zi) and EQZi (Y ) = E(Y ), implying directly that

Ri = Fi = 0.

4. Let η(Y ) = dQY
dP . From Proposition 3.1, we know that η is a non-decreasing function. By the

PQD assumption it follows that EQY (Zi) = E(η(Y )Zi) ≥ E(Zi), which shows that Ri ≥ 0.

The case Fi ≥ 0 is similar.
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