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Abstract: The incorporation of renewable energy into power systems poses serious challenges to1

the transmission and distribution power system operators (TSOs and DSOs). To fully leverage2

these resources there is a need for a new market design with improved coordination between TSOs3

and DSOs. In this paper we propose two coordination schemes between TSOs and DSOs: one4

centralised and another decentralised that facilitate the integration of distributed based generation;5

minimise operational cost; relieve congestion; and promote a sustainable system. In order to6

achieve this, we approximate the power equations with linearised equations so that the resulting7

optimal power flows (OPFs) in both the TSO and DSO become convex optimisation problems. In8

the resulting decentralised scheme, the TSO and DSO collaborate to optimally allocate all resources9

in the system. In particular, we propose an iterative bi-level optimisation technique where the10

upper level is the TSO that solves its own OPF and determines the locational marginal prices at11

substations. We demonstrate numerically that the algorithm converges to a near optimal solution.12

We study the interaction of TSOs and DSOs and the existence of any conflicting objectives with13

the centralised scheme. More specifically, we approximate the Pareto front of the multi-objective14

optimal power flow problem where the entire system, i.e., transmission and distribution systems,15

is modelled. The proposed ideas are illustrated through a five bus transmission system connected16

with distribution systems, represented by the IEEE 33 and 69 bus feeders.17

Keywords: TSO-DSO coordination, Pareto front, Bi-level optimisation, Optimal power flow18

1. Introduction19

In recent years, power systems have undergone critical changes as a result of20

the penetration of renewable energy. In turn, the incorporation of renewable energy21

into power systems poses serious challenges to transmission and distribution system22

operators (TSOs and DSOs). The transition to carbon-free power system is welcome,23

however concerns about the quality, voltage and frequency of such systems have been24

raised [1]. The main objective is to be able to use renewable energy sources (RESs)25

whereas guaranteeing efficient congestion management, reduction in operational costs,26

and increased flexibility while using local energy resources [2], [3], [4]. Working in27

this direction, governments have introduced incentives through policies that support28

the integration of RESs and encourage the collaboration and coordination of operators29

to maintain reliable and cost efficient power systems [5], [6]. For instance, in [7] a30

hierarchical economic dispatch model was proposed to control the congestion in a power31

network and provide a unified bid function to network operators. In [8], the authors32

addressed issues about the intermittent nature of non-dispatchable resources which33

requires the network operators cooperate on new regulations, network designs, and34

congestion management solutions.35

Ancillary services are an example of the need of coordination between TSOs and36

DSOs [9]. More specifically, RESs can provide distribution systems with ancillary37
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services such as spinning reserves, voltage support and real-time frequency control.38

Currently, such services are commonly priced, and cleared in the wholesale markets.39

However, to fully leverage such services from these resources it is paramount to create40

a new market design where new technologies such as microgrids become smoothly41

integrated into power systems [10], [11]. Existing centralised power market models42

lack appropriate mechanisms to insert more environmentally friendly resources into43

distributed grids. For instance, the TSO solves its own optimal power flow (OPF) and44

determines the locational marginal prices (LMPs) at the substations. Next, the DSOs45

dispatch distributed generation (DG) by optimising cost and considering the LMP at the46

substation as a fixed parameter. To facilitate the integration of RESs into power systems47

the interaction between TSOs and DSOs, that are responsible for balancing the demand48

and supply, could be further improved (see, e.g., [12],[13]).49

1.1. Literature Review50

Research has been focused in proposing methods that increase the level of coordi-51

nation between TSOs and DSOs. These vary from centralised to totally decentralised52

methodologies. In centralised schemes the TSO is responsible for satisfying the system53

demand in both the transmission and distribution systems with the use of generators54

at both levels. In a more common market model on the other hand, each operator is55

responsible for its own operation cost minimisation taking into account the RESs con-56

nected to each system respectively [14]. Such models are referred to as decentralised57

schemes where the TSO and DSO collaborate [15]. More specifically, in decentralised58

schemes DSOs and TSOs need to agree on the point of common coupling (PCC) power59

flow interchange. The DSO operates its local system considering the bid that the TSO60

provides to supply energy to the distribution system at the PCC; this is usually the LMP61

at the PCC. Before solving the DSO OPF, the TSO solves its own OPF representing the62

entire distribution system by its net load. Therefore, the DSO can operate its system63

with the knowledge of the supply function for the real power, i.e., the bid function, from64

the TSO. After the DSO solves the OPF considering the local constraints, the DSO can65

again participate in the TSO market and receive the payment for its energy supply sent66

back to the transmission system [16]. Decentralised TSO-DSO coordination approaches67

are categorised as hierarchical or distributed [17]. In hierarchical TSO-DSO coordina-68

tion schemes, the interaction between distributed resources in the distribution (lower69

level) system and the transmission (upper level) power system is like a leader-follower70

type, where the leader has fixed decision variables and leads the followers in making71

decisions [18]. In distributed TSO-DSO, all local RESs connected to the market commu-72

nication graph can potentially be selected to meet the load. A detailed representation73

of the physical distribution system at a nodal basis as well as its market structure is74

necessary [19].75

Several coordination schemes that can precisely model the system taking into ac-76

count nonlinear bi-directional AC power flow constraints present in transmission and77

distribution systems have been recently proposed. In [20], the authors propose five co-78

ordination schemes to evaluate the recent proposals of the SmartNet project consortium.79

In order to do so, they model the optimisation problem considering the AC load flow80

and the topology of the grid in each scheme. The main objective of this work was to81

quantify the proximity of the optimal solution to a physically compatible solution in82

different coordination schemes. In [21], the study aims at minimising the deviation from83

the real-time dispatch, and maximising the share contribution of renewable energy while84

addressing uncertainty using Dynamic AC Optimal Power Flow. In [22], distribution lo-85

cational marginal pricing is designed through quadratic programming. The case studies86

include a high number of electric vehicles and heat pumps to address issues associated87

with these resources in the distribution system. In [23], the authors summarise the main88

challenges proposed in the SmartNet project in three different countries (Denmark, Italy,89
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and Spain) by providing techno-economic analysis on various coordination schemes in90

2030 scenarios.91

Alternative approaches are based on approximations of the AC power flow and92

represent the distribution and transmission systems with linearised power equations to93

overcome the challenges associated with nonlinearities (see, e.g., [24]). Approximations94

of AC power flow have been used in various problems in power systems that can also95

be applied in this particular setting. For instance, to control the reactive power at every96

bus, a method that approximates the distribution network into a linear distribution load97

flow was proposed in [25]. The results show that by linearising the load flow, the error98

on the voltage mismatch error is minimised. The authors in [26] address the power99

loss optimisation in smart power distribution by linearising the distribution power100

flow. This work demonstrates that the results of quadratic programming are better than101

conventional power flow in both robustness and computational complexity. In [27], a102

linear optimal load flow has been introduced using quadratic programming to cope with103

the increase in the number of DC microgrids.104

How the network is represented is one of the main aspects to consider in TSO-105

DSO coordination. For instance, as the integration of RESs affects the voltage levels106

and the line thermal limits, network constraints need to be considered to ensure that107

these resources do not adversely disturb the power system operations [28]. In [29] the108

authors propose a coordination scheme which does not explicitly represent the grid109

topology but incorporates some information concerning, e.g., bus voltages. In [30], three110

market designs are proposed to mitigate coordination between the TSO and the DSO111

that provide a flexible, competitive market design for retailers. In the model, the main112

focus is on the market rather than on the operation and topology of the grid. A control113

framework that provides the DSO with information on the contribution of each smart114

home, the unbalanced power flow and network voltage constraints is given in [31]. In115

this way DG participates in the electricity market while ensuring that the upstream116

constraints are satisfied. In [13], three TSO-DSO coordination models are discussed.117

First, a TSO-managed model is presented, where the TSO is responsible for the optimal118

operation of the system by considering DG and transmission system constraints. Next,119

a TSO-DSO hybrid-managed model is introduced, where the TSO operates the system120

considering the transmission network constraints and the DG that submits bids to121

demonstrate its willingness to participate in the market. Last, a DSO-managed model122

is mentioned where the DSO is responsible for operating its own system taking into123

account the distributed energy sources and sending back the outcomes to the TSO [20].124

Centralised TSO-managed schemes make the coordination model simpler to implement125

(see, e.g., [1]). By using a centralised scheme, we utilise the traditional SCADA system126

to monitor, measure and collect the data from different assets of the grid [32]. However,127

they might fail to fully utilise DG resources at the distribution system since the DSO128

has less visibility of their usage. TSO-DSO hybrid systems are an improvement of the129

latter since DG resources indicate by their bids to the TSO and DSO their willingness to130

participate; and both operators based on their priorities can decide whether they accept131

the offer or not [33], [34]. A DSO-managed scheme has the potential to reach to the132

highest level of efficient use of distributed resources. However, it incorporates the risk133

that there might be a conflict between the TSO and DSO requirements and needs; thus134

making a real-time exchange of information between both operators necessary to ensure135

a reliable operation.136

1.2. Gap Analysis137

Notwithstanding the merits of the above-mentioned solutions, there are still gaps to138

assist operators with practical solutions to smoothly adapt to the large-scale integration139

of renewable energy resources and to reliably transition into the carbon-free power140

systems. The aforementioned centralised schemes face a variety of regulatory challenges141

that make their actual implementation difficult. However, centralised schemes can still142
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be used to provide insights into the desired coordination between TSOs and DSOs. As143

such, in practice, decentralised schemes need to be further investigated. These schemes144

need to respect the privacy concerns of the entities involved, be computationally effi-145

cient, depend on realistic communication infrastructure, achieve an optimal with some146

objective outcome, relieve congestion, and facilitate the integration of renewable-based147

generation. As discussed in the previous section, the methods present in the literature148

fail to meet at least one of the above-mentioned points.149

150

1.3. Contributions151

In this paper, we add to existing methodologies by (i) constructing a centralised152

TSO-DSO framework which is used to quantify the operators’ conflicting objectives and153

provide appropriate incentives for their coordination; and based on this analysis by (ii)154

proposing a decentralised TSO-DSO scheme that reaches a near-least cost solution by155

respecting the privacy concerns of TSOs, DSOs; is computationally efficient; relieves156

congestion; and increases the level of DG resources’ integration.157

More specifically, we propose a linear transmission-distribution system coordi-158

nation framework considering large-scale integration of distributed resources, e.g.,159

photovoltaic (PV) and storage. More specifically, we approximate the power equations160

with linearised equations so that the resulting optimal power flows performed by both161

the TSO and DSO are convex optimisation programmes (see, e.g., [24], [25]). Next, we162

propose two different coordination schemes, decentralised and centralised. In the decen-163

tralised scheme, the TSO and the DSO collaborate to allocate all resources in the system164

optimally. In particular, we develop an iterative bi-level optimisation technique where165

the upper level is the TSO. The TSO solves its own OPF and determines the LMPs at sub-166

stations. The LMPs are passed on to the lower level, a collection of DSOs, each of which167

solves its own OPF. The new demand of the distribution system is aggregated at the168

substation levels and sent back to the TSO. We iterate between the two levels until some169

stopping criterion, e.g., that the infinity norm of the vector containing the differences of170

LMPs at current and previous iterations does not change by some tolerance is met. We171

demonstrate numerically that this process converges to a point near the optimal solution.172

Moreover, in the numerical results’ section, it is shown that the proposed decentralised173

scheme provides a balance between the TSO and DSO objective in terms of cost. It is174

worthy to note that the only information used in the iterative decentralised scheme is the175

customers’ net load at the PCC; thus, there is no issue associated with privacy concerns176

of individual entities. In the proposed centralised scheme, the transmission system acts177

as the entire system operator and has all the necessary information about the distribution178

system. In such a case, the objective function consists of the distribution system voltage179

deviation from reference, the distributed resources cost, and the transmission system180

operating cost, aggregated as one objective with some weighting coefficients. We modify181

the weighting coefficients to approximate the Pareto front of the TSO and DSO objectives182

and study their interaction. In particular, we quantify the conflicting objectives of TSOs183

and DSOs, which DSOs may use to submit bids to the TSO or by the TSO to incentivise184

DSOs to provide their services appropriately. The proposed framework is validated by185

constructing a transmission distribution system using the 33 and 69 IEEE distribution186

feeders and a five node transmission system.187

The remainder of the paper is organised as follows. In Section 2 we model the188

augmented DC OPF for the transmission system and a linear OPF for the distribution189

system. In Section 3, we formulate the proposed decentralised and centralised schemes.190

In Section 4, we illustrate the proposed framework through the constructed transmission-191

distribution system. In Section 5, we summarise the results and make some concluding192

remarks.193

194
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2. Optimal Power Flow Formulation195

In this section, we formulate the linearized OPF models for transmission and196

distribution systems. More specifically, we formulate the augmented DC OPF for the197

transmission system by defining its objective and constraints. Next, we present the198

linearized model for the network representation of the distribution system along with199

other constraints and determine the objective of the DSO; these are used as input to the200

DSO OPF.201

2.1. Transmission level202

The AC OPF at the transmission level is a nonlinear non-convex problem since it203

has nonlinear equality constraints, e.g., the power balance. By using a DC formulation204

of the power flow we obtain a convex problem which is known as the DC OPF. The205

objective function at the transmission DC OPF usually comprises of the generators’ cost.206

In this paper, we augment the objective function with a soft penalty function on the207

sum of the squared voltage angle differences, as suggested in [24]. This augmentation208

has both physical and mathematic benefits. From a physical perspective, it provides209

a way to conduct sensitivity experiments on the size of the voltage angle differences210

that could be informative for estimating the size and pattern of AC-DC approximation211

errors. From a mathematical perspective, the augmentation could help to improve the212

numerical stability and convergence properties of any applied solution method. The213

resulting augmented DCOPF is a strictly convex quadratic problem which can be solved214

through quadratic programming. The constraints of the OPF refer to the nodal power215

balance whose dual variables are the LMPs, the line flow limits, and the generation216

limits.217

We consider a time period of interest T = {1, . . . , T} with time increments denoted218

by ∆t and a power system consisting of the set of K nodes K = {1, . . . , K}, with the219

slack bus at node 1. We denote the set of I generators by I = {1, . . . , I}, the set of J loads220

by J = {1, . . . , J}, the set of generators connected to bus k by Ik, i.e., I = ∪k∈K Ik;221

the set of loads connected to bus k by Jk, i.e., J = ∪k∈K Jk; and the set of L lines by222

L = {` 1, . . . , ` L}. Each line is denoted by the ordered pair ` = (n, m) where n is the from223

node, and m is the to node with n, m ∈ K , with the real power flow f ` ≥ 0 whenever224

the flow is from n to m and f ` < 0 otherwise. We assume that each bus is connected to at225

least one other bus. We consider a lossless network with the diagonal branch susceptance226

matrix Bd ∈ RL×L. Let A ∈ RL×K be the reduced branch-to-node incidence matrix for the227

subset of nodes K /{1} and B ∈ RK×K be the corresponding nodal susceptance matrix.228

We assume that the network contains no phase shifting devices and so B> = B. We229

denote the slack bus nodal susceptance vector by b1 = [b11, . . . , b1K]
>, with b1 + B1K = 0,230

where 1K is the unit K-dimensional vector. We denote by PGi the power injection of231

generator i ∈ I ; by PLj the power withdrawal at load j ∈ J ; and by θk the angle at232

node k. Since node 1 is the slack bus θ1 = 0.233

The mathematical formulation of the augmented DC OPF at the transmission level
at hour t ∈ T is presented as follows:

min
PGi

(t),i∈I ,θk(t),k∈K
∑

i∈I

ci(t) + π ∑
`=(m,n)∈L

(θn(t)− θm(t))2

subject to ∑
i∈Ik

PGi (t)− ∑
`∈L

Bd` Aθ(t) = ∑
j∈Jk

PLj(t), k ∈ K ,←→ λk(t),

f m ≤ f (t) = Bd Aθ(t) ≤ f M,

Pm
G ≤ PG(t) ≤ PM

G , (1)

where Bd` is the `th row of the Bd matrix; f M and f m are the values of the maximum real234

power flow allowed through the lines in L in the same direction and in the opposite235

direction of line ` respectively and Pm
G (PM

G ) is the vector of lower (upper) generation236

limits. Usually, the cost of generator i ∈ I is a quadratic function in the form of237
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ci(t) = αiPGi (t) + βiP2
Gi
(t) + γi. The LMPs are the dual variables of the nodal power238

balance denoted by λ(t) = [λ1(t), . . . , λK(t)]>.239

2.2. Distribution Level240

We assume a radial distribution feeder with a set of N buses denoted by N and a241

set of N − 1 lines denoted by L ′. Bus 1 denotes the PCC with the TSO and is considered242

to be the slack bus. For each bus i, Vi stands for the bus voltage magnitude while pi and243

qi represent the injected active and reactive power, respectively. For each line segment244

in L ′ that connects bus i to bus j, rij and xij stand for its resistance and reactance, and245

Pij and Qij for the real and reactive power from bus i to j respectively. In addition, the246

set Nj ⊂ N denotes bus j’s neighbouring buses, which are further downstream. The247

linear equations that model the distribution feeder for each line (i, j) are as follows (see,248

e.g., [25]):249

Pij −∑k∈Nj
Pjk = −pi + rij

P2
ij+Q2

ij

V2
i

, (2)

Qij −∑k∈Nj
Qjk = −qi + rij

P2
ij+Q2

ij

V2
i

, (3)

V2
i −V2

j = 2(rijPij + xijQij)− (r2
ij + x2

ij)
P2

ij+Q2
ij

V2
i

. (4)

The nonlinear part in the equations above, i.e.,
P2

ij+Q2
ij

V2
i

, corresponds to the power losses

in the system, which are assumed to be zero in our work. Thus, we have:

M>0
[
V1 V>

]>
= m0 + M>V = DrP + DxQ, (5)

where M0 ∈ RN×(N−1). More specifically, its lth column corresponds to one line segment250

(i, j) ∈ L ′, the entries of which are all zero except for the ith and jth ones, where M0
il = 1251

and M0
jl = −1 when j ∈ Ni, i.e., bus i is closer to the feeder head. mT

0 corresponds to252

the first row of M0 and denotes the slack bus while the rest of the matrix is shown by253

M with the size of (N − 1)× (N − 1) [35]. We assume V1 = 1 and define the vectors254

[Vi : ∀i ∈ {N / 1}], P = [Pij : ∀(i, j) ∈ L ′], Q = [Qij : ∀(i, j) ∈ L ′]. We define Dr255

and Dx as (N − 1)× (N − 1) diagonal matrices with the lth column and row entry that256

corresponds to one line segment (i, j) ∈ L ′ equal to rij and xij respectively. Thus, (2)-(4)257

can be written in the form of matrices as:258

−MP = −p, (6)

−MQ = −q, (7)

V = Rp + Xq−M−1>m0, (8)

with p = [pi : ∀i ∈ {N / 1}], q = [qi : ∀i ∈ {N / 1}], R = M−1>Dr M−1 and259

X = M−1>Dx M−1. As can be seen in (8), the relationship between the voltage and real260

power is now linear.261

Let us assume a set of D distribution systems denoted by D = {1, . . . , D} connected
to the transmission system. For each d ∈ D we know the PCC, which is denoted by
kd. The OPF at each distribution system d ∈ D has a goal to minimise the cost of
electricity purchased from the transmission system, the cost of distributed resources and
the voltage deviation from the reference value. The cost of electricity at the substation
for the time period T is a function of the LMP at the PCC at time t denoted by λkd

(t),
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and the amount of power purchased from the transmission system at time t, i.e., Pd
grid(t),

and is defined as follows:

∑
t∈T

(
λkd

(t)Pd
grid(t)∆t

)
. (9)

We denote by N d
PV the set of PVs connected to distribution system d. The cost of PV

generation resource is formulated as:

∑
t∈T

∑
i∈N d

PV

BPVi PPVi (t)∆t, (10)

where BPVi is the cost of PV generation at node i. We denote by N d
B the set of battery

systems connected to the distribution system d. The cost of battery systems is equal to:

∑
t∈T

∑
i∈N d

B

BBi (Pch
Bi
(t) + Pdis

Bi
(t))∆t, (11)

where BBi is the cost of the battery system at node i. We denote by Pch
Bi
(t) the charging

power of the battery system at node i at time t and by Pdis
Bi

the discharging power of the
battery system at node i at time t. The voltage deviation from some reference value is
defined as follows:

∑
i∈N

∑
t∈T

α(Vi(t)−Vref)
2, (12)

where α is the voltage regulation cost and Vref is the voltage reference value. The262

constraints of the distribution system OPF include the maximum and minimum limits263

for the decision variables:264

Pmin
PV,i ≤ PPVi (t) ≤ Pmax

PV,i , i ∈ NPV , t ∈ T , (13)

Pch,min
B,i ≤ Pch

Bi
(t) ≤ Pch,max

B,i , i ∈ NB, t ∈ T , (14)

Pdis,min
B,i ≤ Pdis

Bi
(t) ≤ Pdis,max

B,i , i ∈ NB, t ∈ T , (15)

Vmin
i ≤ Vi(t) ≤ Vmax

i , i ∈ N , t ∈ T , (16)

Pd,min
grid ≤ Pd

grid(t) ≤ ∑i∈Ik
PGi (t), t ∈ T , (17)

where Pd,min
grid is defined by the interchange flow limit between the distribution system d

and the transmission system. We model the battery system i as follows (see, e.g., [36])

Emin,i ≤ ∑
t∈T

(
ηch,iPch

Bi
(t)− 1

ηdis,i
Pdis

Bi
(t)
)

∆t + E0,i ≤ Emax,i, ∀i ∈ NB, (18)

where, E0,i is the initial value of the energy stored, Emax,i and Emin,i are the maximum265

and minimum energy that can be stored in the battery. The network constraints from266

(6)-(8) for every time step t ∈ T are defined as follows:267

V(t) = Rp(t) + Xq(t)−M−1>m0, (19)

pi(t) = PPVi (t) + Pdis
Bi

(t)− Pch
Bi
(t)− Ploadi (t), ∀i ∈ NPV ∩NB, (20)

pi(t) = PPVi (t)− Ploadi (t), ∀i ∈ NPV \NB, (21)

pi(t) = Pdis
Bi

(t)− Pch
Bi
(t)− Ploadi (t), ∀i ∈ NB \NPV , (22)

pi(t) = −Ploadi (t), ∀i ∈ N \NPV ∩NB, (23)

qi(t) = −Qloadi (t), ∀i ∈ N , (24)
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where Ploadi (t) is the real load at bus i at time t and Qloadi (t) is the reactive load at bus i268

at time t.269

The OPF at the distribution system d ∈ D is formulated as follows:

min
PPVi

(t),Pch
Bi
(t),Pdis

Bi
(t),Vi(t),Pd

grid(t)
(9) + (10) + (11) + (12)

subject to (13)− (24). (25)

270

3. Proposed Coordination Schemes271

In this section, we formulate the proposed decentralised and centralised schemes272

and discuss the benefits of each approach.273

3.1. Decentralised Scheme274

We define for each distribution system d the set of decision variables yd and the
vector y = ∪d∈D yd representing all distribution systems connected to the transmis-
sion system. The proposed decentralised scheme is based on solving the following
optimisation problem:

min
x

f1(x, y)

subject to g1(x, y) ≤ 0,

h1(x, y) = 0,

yd ∈ arg min
yd
{( f2(x, yd) : g2(x, yd) ≤ 0, h2(x, yd) = 0}, ∀d ∈ D , (26)

where f1(x, y) in our problem is the objective function of the TSO OPF, i.e., ∑i∈I ci(t) +275

π ∑`∈L(θn(t)− θm(t))2 as described in Section 2.1. Similarly, g1(x, y) and h1(x, y) = 0276

are the equality and inequality constraints of (1) evaluated at y. In the lower-level277

parametric optimisation problem for each distribution system d, f2(x, yd) , g2(x, yd),278

and h2(x, yd) are the collection of distribution level objective functions, equality and279

inequality constraints respectively as defined in (25).280

This problem is a bi-level optimisation [37]. Such problems were introduced when281

Stackelberg (see, e.g., [38]) formulated a strategic game in 1934 where a leader and a282

follower make sequential moves, starting with the leader. Thus, the upper level and283

lower level can be considered as leader and follower. More specifically, bi-level optimi-284

sation problems are defined where one or some of the decision variables are constrained285

to the solutions of another optimisation problem. Then, the problem is formulated as286

in (26) in two levels of optimisation. Solving bi-level optimisation problems has been287

known to be NP-hard [39]. There are basically two main techniques for solving bilevel288

optimisation problems. The first one keeps the bi-level structure and treats the lower289

level (LL) problem as a parametric optimisation problem that is being solved when-290

ever the solution algorithm for the upper level (UL) problem requires it. The second291

technique is based on the formulation of first order necessary optimality conditions292

for the lower level problem. The lower level problem is then replaced by its necessary293

conditions, which are considered as constraints in the upper level problem. This reduces294

the bi-level problem to a single level nonlinear optimisation problem. The drawback295

of this method is that, in general, necessary conditions are not sufficient for optimality296

and hence information is lost in the single level formulation, which, in turn, may result297

in non-optimal solutions for the bi-level optimisation problem. In particular, the the298

Karush-Kuhn-Tucker (KKT) conditions that should be satisfied in this approach are only299

guaranteed if the optimisation problem is convex [40].300

In this paper, we propose an approach that resembles the first one discussed above,301

but we treat the two levels as coupled optimisation problems, while iteratively solving302
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one after the other. That is the LL optimisation problem is treated as interdependent303

parametric optimisation problems that are solved whenever the solution algorithm for304

the UL requires it. In particular, the TSO and DSO collaborate to operate the power305

network optimally. Initially, the TSO optimises the transmission system, considering a306

feasible solution of the distribution system initial load. The distribution system’s entire307

load is met by the transmission system’s resources, i.e., the distribution system does308

not use its distributed resources to meet the load. The TSO solves its own augmented309

DC OPF and announces the locational marginal price of the PCC to the DSO. Next, the310

DSO solves its own LL problem taking into account the capabilities of the distributed311

resources. In the next iteration, the DSO net load is different and the amount of energy312

that DSO buys from the TSO may be reduced, depending on cost. We iterate between313

these two levels until a convergence criterion is met, e.g., that the infinity norm of the314

vector containing the LMP differences between the current iteration and the previous315

iteration does not change by some tolerance. The proposed algorithm is described as316

follows:317

Algorithm Iterative algorithm for solving (26)

1: Initialization
2: Set ν = 0.
3: Consider yd[0] so that it is a feasible solution of the LL optimisation ∀d ∈ D .
4: Repeat until convergence
5: Solve the UL optimisation problem using yd[ν]; let the solution be x[ν] and λkd

[ν].
6: Solve the LL optimisation for x[ν] using λkd

[ν]. Let the solution be yd[ν+ 1], ∀d ∈ D .
7: Set ν← ν + 1 and go to step (4).

Considering this iterative procedure, the LL and UL optimisation problems are318

solved the same number of times and the levels are treated as uncoupled problems, just319

coupled at the interface by the procedure. There is no formal proof of convergence for320

such an iterative scheme, however convergence has been experimentally shown [41]. We321

further demonstrate that the proposed algorithm converges to a near optimal solution.322

The flowchart of the algorithm is given in Fig. 1.323
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Figure 1. Decentralised iterative scheme flowchart.

3.2. Centralised Scheme324

This coordination scheme introduces the TSO as a leader who operates the transmis-
sion and distribution systems as one entire power network. In this case, the TSO solves
a multi-objective optimisation (MOO) problem which can be formulated as follows:

min
x,y

( f1(x, y), f2(x, y))

subject to g1(x, y) ≤ 0,

g2(x, y) ≤ 0,

h1(x, y) = 0,

h2(x, y) = 0, (27)

where x represents the decision variables for the transmission system and y the decision
variables for all distribution systems. The first objective, f1(x, y), incorporates the TSO
objective functions, and f2(x, y) the objective functions of all the distribution systems in
D , that is, (10) + (11) + (12) as described in (1) and (25) respectively. The inequality and
equality constraints are denoted as g1(x, y), g2(x, y) and h1(x, y), h2(x, y) respectively.
The notion of “optimality” in solving MOO problems is known as Pareto optimal. A
solution is said to be Pareto optimal if there is no way to improve one objective without
worsening the other, i.e., the feasible point (x?, y?) is Pareto optimal if there is no other



Version June 29, 2021 submitted to Journal Not Specified 11 of 27

feasible point (x, y) such that for all i, j with i 6= j, fi(x, y) = fi(x?, y?) with strict
inequality in at least one objective, f j(x, y) < f j(x?, y?). However, given their conflicting
nature, it is difficult to minimise the objective functions simultaneously, and hence the
Pareto solutions usually appear scattered. In solving the optimisation problem (27) we
obtain the Pareto front. In general, identifying the set of all Pareto optimality points is
not a tractable problem. A common approach for solving MOO is to find many evenly
distributed efficient points, and use points to approximate the Pareto front. In this paper,
we use the weighted sum method (see, e.g., [42], [43]) to convert the MOO into a single
objective optimisation problem by using a convex combination of objectives. More
formally, the weighted sum method solves the following scalar optimisation problem:

min
x,y

w1 f1(x, y) + w2 f2(x, y)

subject to g1(x, y) ≤ 0,

g2(x, y) ≤ 0,

h1(x, y) = 0,

h2(x, y) = 0

w1 + w2 = 1,

w1, w2 ≥ 0. (28)

By appropriately changing the weight vector w = [w1, w2]
> we can approximate the325

Pareto front. The weight w2 corresponds to all d ∈ D distribution systems. We assign326

equal weights to each distribution system, i.e., w2 = ∑d∈D w2d, where w2d = w2
|D | , ∀d ∈ D327

with |D | the cardinality of the set D . Our problem has a convex Pareto front, hence we328

can generate all points of the Pareto front. Using the proposed method we investigate329

how the objectives of TSO and DSOs interact with each other, and the TSO directly330

manages the entire system and purchases power from distributed energy sources in331

the distribution system; as for bidirectional power flows, if distributed energy sources332

generate excess energy needed at the distribution system level is fed into the transmission333

system.334

4. Numerical Results335

We present several numerical examples to demonstrate the capabilities of the pro-336

posed framework. We discuss the properties of the proposed decentralised coordination337

scheme in terms of convergence with some sensitivity studies. Insights are provided338

into both proposed coordination schemes. Furthermore, we demonstrate the interaction339

of TSOs and DSOs with the determination of the Pareto front of the centralised optimisa-340

tion problem. Thus, in Section 4.1, the case study information is provided, followed by341

the numerical results of decentralised and centralised schemes in Sections 4.2 and 4.3,342

respectively.343

4.1. System Description344

To validate the proposed framework we need to construct a power system with345

many voltage levels that will represent the transmission and distribution systems. As346

such, we select a five-node transmission system on which four distribution system347

feeders are connected to different nodes as depicted in Fig. 2.348
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Figure 2. Transmission and distribution system.

We denote by Fi the ith feeder connected to the transmission system. More specifi-349

cally, F1 and F3 correspond to the IEEE standard 33 bus feeder and F2 and F4 to the 69350

IEEE standard bus feeder [44–46]. The load serving entities at a transmission node i are351

denoted by LSEi. There are five generators connected at the transmission level in nodes352

1, 3, 4 and 5. The transmission system data may be found in [24]. To demonstrate how353

the TSO-DSO coordination schemes can facilitate the integration of DG we modify the354

standard IEEE 33 and 69 bus feeders by deploying PV and battery systems at different355

nodes. We assume that the distributed resources are mostly installed at end-nodes in the356

distribution level where the voltage drop levels are worst [47]. The modified feeders are357

depicted in Figs. 3, 4, respectively. In particular, PV and battery systems are installed in358

nodes 18, 22, 25 and 33 in the 33 bus feeder and in nodes 2, 3, 27, and 64 in the IEEE 69359

bus feeder. The distributed resources data are presented in Table 1. Also, we assume that360

each node’s voltage in the distribution system is bounded between 0.95 pu and 1.05 pu.361

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

26 27 28 29 30 31 32 33

23 24 25

19 20 21 22

Transmission node

Figure 3. Modified IEEE 33 bus distribution feeder.

Transmission node

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2727

68 6951 52

66 67

53 54 55 56 57 58 59 60 61 62 63 64 65

28 29 30 31 32 33 34 35

47 48 49 50

36 37 38 39 40 41 42 43 44 45 46

Figure 4. Modified IEEE 69 bus distribution feeder.



Version June 29, 2021 submitted to Journal Not Specified 13 of 27

Feeder Variable Value Unit
All Pmin

PV 0 MW
All Pmax

PV 30 MW
All BPV 2.584 e/MW

F1, F3 Pdis,min
B 0 MW

F1, F3 Pdis,max
B 30 MW

F1, F3 Pch,min
B 0 MW

F1, F3 Pch,max
B 30 MW

F1, F3 Bdis,min
B 0.380 e/MW

F2, F4 Pdis,min
B 0 MW

F2, F4 Pdis,max
B 15 MW

F2, F4 Pch,min
B 0 MW

F2, F4 Pch,max
B 15 MW

F2, F4 Bdis,min
B 0.380 e/MW

F1, F3 Pmin
grid -110 MW

F2, F4 Pmin
grid -60 MW

Table 1: Distributed resources’ physical limits and bid information.

Next, we implement both the proposed centralised and the decentralised schemes,362

we compare the results with current practise, which refers to when the TSO solves its363

OPF and determines the LMPs at the substations. Next, the DSOs dispatch distributed364

DG by optimising cost and considering the LMP at the substation as a fixed parameter.365

In current practise there is minimal coordination between TSOs and DSOs. The three366

methodologies are compared against a variety of metrics; these are: total cost; hourly367

LMPs; hourly DG output; hourly generator output at the transmission level; net load;368

and level of congestion.369

4.2. Decentralised Coordination Scheme370

We apply the scheme proposed in Section 3.1 to the system described above. In order371

to demonstrate how the decentralised scheme facilitates the integration of distributed372

energy resources we compare its optimal operation (method (ii)) against current practice373

(method (i)), where the current practise as discussed in the introduction section is when374

the TSO solves its own OPF and determines the LMPs at the substation, and the DSOs375

dispatch DG by optimising cost and considering the LMP at the substation as a fixed376

parameter. We run both cases for a one day period with hourly intervals. In Fig. 5, the377

TSO operation cost for both cases is depicted. We notice that the proposed decentralised378

coordination scheme results in a reduced transmission operation cost for all hours of379

the day. The reason is that distributed energy resources, which are less expensive than380

generators connected at the transmission level, are used to a greater extent as seen in381

Fig. 6.382
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Figure 5. Transmission operation cost for methods (i) current practise and (ii) proposed decen-
tralised TSO-DSO coordination scheme.

Figure 6. The total amount of distributed generation for methods (i) current practise and (ii)
proposed decentralised TSO-DSO coordination scheme at nodes 3 and 4.

Another effect of the increasing use of distributed resources is that they relieve
the congestion that is present in the transmission system, which in turn reduces TSO
operational costs. For method (i) the LMPs for each hour at each node may be found
in Table 2. We notice that for the same hour each node has a different LMP. This
demonstrates, based on the formulation of the augmented DCOPF in (1), that some line
flows have reached their limits. The LMPs of method (ii) are shown in Table 3. We notice
that the LMP difference between hours has been reduced, reflecting the fact that there
is less congestion in the transmission system. In fact the LMPs are practically the same
for all nodes at every hour when the proposed decentralised scheme is implemented.
Following the formulation of (1) and using the KKT conditions of optimality, the LMP
difference is expressed as a function of the congestion that can be present in the network,
i.e., (see, e.g., [48]):

λk − λk′ = ∑
`∈L̃

φ
{k,k′}
` µ`, (29)

where µ` is the dual variable of the power flow limits for line `; L̃ is the subset of lines383

that are at their limits, i.e., L̃ = {`i : i = 1, . . . , L, µ`i
6= 0}; and φ

{k,k′}
` is the power384

transfer distribution factor of transaction with node pair {k, k′} with respect to line `.385

We can interpret (29) physically by considering an injection at node k and its withdrawal386

at node k′. We interpret φ
{k,k′}
` as the fraction of the transaction with node pair {k, k′}387

of 1 MW that flows on line `. As such for every hour the LMP differences are purely a388

function of the transmission usage costs of the congested lines, thus showing the “level”389

of congestion.390
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Hour Node 1 Node 2 Node 3 Node 4 Node 5
1 12.67 28.15 25.22 17.15 13.46
2 12.62 28.01 25.10 17.08 13.41
3 12.62 28.01 25.10 17.08 13.41
4 12.64 28.08 25.16 17.11 13.44
5 12.76 28.42 25.45 17.30 13.56
6 12.93 28.89 25.87 17.55 13.74
7 13.09 29.36 26.28 17.80 13.92
8 13.21 29.70 26.58 17.99 14.05
9 13.23 29.77 26.64 18.02 14.08

10 13.32 30.04 26.88 18.17 14.18
11 13.51 30.58 27.35 18.46 14.39
12 13.53 30.65 27.41 18.49 14.41
13 13.68 31.05 27.76 18.71 14.57
14 13.44 30.38 27.17 18.35 14.31
15 13.39 30.24 27.05 18.28 14.26
16 13.32 30.04 26.88 18.17 14.18
17 13.44 30.38 27.17 18.35 14.31
18 13.51 30.58 27.35 18.46 14.39
19 13.32 30.04 26.88 18.17 14.18
20 13.21 29.70 26.58 17.99 14.05
21 13.09 29.36 26.28 17.80 13.92
22 12.88 28.75 25.75 17.48 13.69
23 12.81 28.55 25.57 17.37 13.62
24 12.71 28.28 25.34 17.22 13.51

Table 2: Locational marginal prices for method (i): current practise for TSO-DSO coordi-
nation in e/MW.

Hour Node 1 Node 2 Node 3 Node 4 Node 5
1 12.27 12.28 12.28 12.27 12.27
2 12.13 12.14 12.14 12.14 12.13
3 12.13 12.14 12.14 12.14 12.13
4 12.20 12.21 12.21 12.21 12.20
5 12.54 12.55 12.55 12.54 12.54
6 13.01 13.02 13.02 13.01 13.01
7 12.55 28.14 25.19 17.06 13.35
8 12.88 12.89 12.89 12.88 12.88
9 12.90 12.91 12.91 12.90 12.90

10 12.98 12.99 12.99 12.99 12.98
11 13.15 13.16 13.16 13.15 13.15
12 13.17 13.18 13.18 13.17 13.17
13 11.93 11.94 11.94 11.94 11.93
14 13.08 13.10 13.10 13.09 13.08
15 13.04 13.06 13.06 13.05 13.04
16 12.98 12.99 12.99 12.99 12.98
17 13.08 13.10 13.10 13.09 13.08
18 13.15 13.16 13.16 13.15 13.15
19 12.98 12.99 12.99 12.99 12.98
20 12.88 12.89 12.89 12.88 12.88
21 12.55 28.14 25.19 17.06 13.35
22 12.87 12.89 12.89 12.88 12.87
23 12.67 12.68 12.68 12.68 12.67
24 12.40 12.41 12.41 12.41 12.40

Table 3: Locational marginal prices for method (ii): proposed decentralised TSO-DSO
coordination in e/MW.

In Tables 4, 5 the hourly power output of each transmission generator is shown. We391

notice that with method (ii) the total power used by generators at the transmission level392

is reduced compared to method (i). The reason is that the less expensive distributed393

generators at distribution level are used to satisfy the load instead. More specifically,394

we notice that with method (ii) the transmission level generators 2, 3, and 4 have zero395

output for most hours of the day since they are the most expensive ones.396



Version June 29, 2021 submitted to Journal Not Specified 16 of 27

Hour PG1 PG2 PG3 PG4 PG5
1 110 18.53 19.52 0 110
2 110 15.09 13.36 0 110
3 110 15.09 13.36 0 110
4 110 16.81 16.44 0 110
5 110 25.41 31.84 0 110
6 110 37.45 53.39 0 110
7 110 49.5 74.95 0 110
8 110 58.1 90.35 0 88.4
9 110 59.82 93.43 0 90.88

10 110 60 110 2.45 100.81
11 110 43.78 110 57.07 110
12 94.58 60.36 110.71 60 110
13 62.8 0.03 116.72 42.99 110
14 110 55.25 110 31.2 110
15 110 60 110 16.85 108.26
16 110 60 110 2.45 100.81
17 110 55.25 110 31.2 110
18 110 43.78 110 57.07 110
19 110 60 110 2.45 100.81
20 110 58.1 90.35 0 88.4
21 110 49.5 74.95 0 110
22 110 34.01 47.23 0 110
23 110 28.85 38 0 110
24 110 21.97 25.68 0 110

Table 4: The power output in MW of generators at the transmission level for method (i):
current practise for TSO-DSO coordination.

Hour PG1 PG2 PG3 PG4 PG5
1 39.14 0 0 0 110
2 30.02 0 0 0 110
3 30.02 0 0 0 110
4 34.58 0 0 0 110
5 57.38 0 0 0 110
6 89.3 0 0 0 110
7 107.99 6.66 6.58 0 110
8 82.98 0 0 0 88.4
9 85.82 0 0 0 90.88

10 91.19 0 0 0 100.81
11 101.05 0.88 0 0 110
12 101.78 1.49 0 0 110
13 9.58 0 0 0 110
14 97.9 0 0 0 110
15 95.22 0 0 0 108.26
16 91.19 0 0 0 100.81
17 97.9 0 0 0 110
18 101.05 0.88 0 0 110
19 91.19 0 0 0 100.81
20 82.98 0 0 0 88.4
21 107.99 6.66 6.58 0 110
22 80.18 0 0 0 110
23 66.5 0 0 0 110
24 48.26 0 0 0 110

Table 5: The power output in MW of generators at the transmission level for method (ii):
proposed decentralised TSO-DSO coordination.

In Fig. 7 we depict the operational cost for each distribution feeder connected to397

different nodes of the transmission system for methods (i) and (ii). We notice that the398

proposed coordination scheme results in reduced costs for all DSOs since all resources399

were utilised in a more efficient way as discussed above.400
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Figure 7. The cost for each feeder for methods (i) and (ii).

We now study the net load at the transmission nodes using both methods. We can401

see in Fig. 8 that the net loads at the transmission system at nodes 2 and 3 decrease, a402

fact that is also reflected in the OPF in the transmission system and its LMPs. We also403

notice that there is a sharp fall and rise in the net load, between hours 7 and 8 and 20404

and 21 respectively. This is due to the fact that the power flow between nodes 1 and 2 at405

time 7 and 21 is 75 MW, which is equal to the line’s thermal limit. This causes the LMP406

divergence in these hours, as shown in Table 3.407

Figure 8. Net load at nodes 2,3 with using methods (i) and (ii).

Last, we depict the hourly operational cost for the TSO and the DSOs in Fig. 9 which408

will be used to compare the two proposed schemes.409

Figure 9. TSO and DSOs operational cost using the proposed decentralised coordination scheme.

We next check the convergence properties of the proposed algorithm. In Figs. 10, 11410

we illustrate the evolution of the hourly objective functions of F2 and the transmission411

system for a 24-hour period with respect to the iteration numbers of algorithm. We notice412

that the algorithm converges after three iterations. To test the sensitivity of the proposed413

algorithm with respect to the initial point, i.e., the choice of initial load value for the414



Version June 29, 2021 submitted to Journal Not Specified 18 of 27

distribution system, we changed the initial point to be full load, 85%, 75%, and 65% of415

the full load. In all cases the algorithm converges in three iterations. Next, to analyse the416

sensitivity of the proposed algorithm with respect to the level of distributed resources417

penetration we depict in Fig. 12 the evolution of F2 hourly cost for two different levels418

of penetration with the same initial point (step 3 of the algorithm) with respect to the419

number of iterations. The final cost is different for the two cases since there are hours420

where the DG price is smaller than the grid price and vice versa.421

Figure 10. Evolution of the hourly cost for F2 with respect to the iteration number.

Figure 11. Evolution of the hourly cost for the transmission system with respect to the iteration
number.

Figure 12. Evolution of hourly cost for F2 for different penetration levels of distributed generation.

4.3. Centralised Coordination Scheme422

We apply the proposed scheme developed in Section 3.2 to the system described in423

Fig. 2. In order to demonstrate how the proposed centralised scheme can facilitate the424

integration of distributed energy resources we compare method (i), which is the optimal425

operation with the current practise, with method (iii), which is the proposed centralised426
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scheme. We start the simulation by assigning the same weights to the transmission427

cost function and the distribution feeders’ cost functions as w1 = w2 = 0.5. The TSO428

cost as depicted in Fig. 13 is reduced significantly with method (iii), i.e., the centralised429

scheme, in comparison to the current practise due to the increase in the integration of430

the distributed resources at different nodes as shown in Fig. 14.431

Figure 13. Transmission operation cost for methods (i) current practise and (iii) proposed cen-
tralised TSO-DSO coordination scheme.

Figure 14. The total amount of distributed generation for methods (i) current practise and (iii)
proposed centralised TSO-DSO coordination scheme at nodes 3 and 4.

In Fig. 15 the net load at the transmission level using methods (i) and (iii) is depicted.432

We notice that it is more cost efficient for the TSO to purchase power from the DG that is433

present in the distribution systems. For instance, the negative load at node 2 means that434

the excess power of the distributed resources is redirected to the transmission system.435

DGs usually sell at a price equal to the LMP at their PCC. That results in distributed436

resources’ owners gaining revenue by selling power to the TSO, while the TSO also437

meets its load at a lower cost. In Fig. 16 the operational cost for each hour for the TSO438

and DSOs for the proposed centralised coordination scheme is depicted. Fig. 16 shows439

that the transmission cost for method (iii) with w1 = w2 = 0.5 is lower than that of440

method (ii) as depicted in Fig 9. The difference is that more power is being used from441

the DGs in method (iii) compared to that of method (ii). However, we notice that the442

cost of feeders in method (iii) is higher than that of method (ii). Again, this is due to the443

fact that more power is being used from the DGs in method (iii) compared to that of444

method (ii). These values can be used by DSOs and TSOs to formulate their bids and445

provide incentives for DG participation respectively.446
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Figure 15. Net load at nodes 2,3 with using methods (i) and (iii).

Figure 16. TSO and DSOs operational cost using the proposed centralised coordination scheme.

Hour PG1 PG2 PG3 PG4 PG5
1 52.05 0 0 0 110
2 42.45 0 0 0 110
3 42.45 0 0 0 110
4 47.25 0 0 0 110
5 71.25 0 0 0 110
6 102.64 2.2 0 0 110
7 110 10.87 17.58 0 110
8 0 0 0 0 88.4
9 0 0 0 0 90.88

10 0 0 0 0 100.81
11 10.67 0 0 0 110
12 13.15 0 0 0 110
13 28.05 0 0 0 110
14 3.22 0 0 0 110
15 0 0 0 0 108.26
16 0 0 0 0 100.81
17 3.22 0 0 0 110
18 10.67 0 0 0 110
19 0 0 0 0 100.81
20 0 0 0 0 88.4
21 110 10.87 17.58 0 110
22 95.25 0 0 0 110
23 80.85 0 0 0 110
24 61.65 0 0 0 110

Table 6: The power output in MW of generators at the transmission level for method
(iii): proposed centralised TSO-DSO coordination.

The hourly power output of transmission generators for method (iii) is presented in447

Table 6. We notice that between hours 8 and 20 the distributed resources located in the448
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distribution systems satisfy the load at the transmission level, whereas at night hours449

mostly the TSO is responsible for supplying the load to the customers. This reverse450

power flow also impacts the LMP as shown in Table 7, where we notice a marginal451

increase in the LMPs for the night hours is achieved. Similarly to method (ii) there is452

congestion at hours 7 and 21 due to the congested line between nodes 1 and 2.453

Hour Node 1 Node 2 Node 3 Node 4 Node 5
1 14.52 14.53 14.53 14.53 14.52
2 14.42 14.43 14.43 14.43 14.42
3 14.42 14.43 14.43 14.43 14.42
4 14.47 14.48 14.48 14.48 14.47
5 14.71 14.72 14.72 14.72 14.71
6 15.03 15.04 15.04 15.03 15.03
7 15.13 27.74 25.35 18.78 15.78
8 11.24 11.24 11.24 11.24 11.24
9 11.27 11.27 11.27 11.27 11.27

10 11.41 11.41 11.41 11.41 11.41
11 14.11 14.11 14.11 14.11 14.11
12 14.13 14.13 14.14 14.13 14.13
13 14.28 14.28 14.29 14.28 14.28
14 14.03 14.03 14.04 14.04 14.03
15 11.52 11.52 11.52 11.52 11.52
16 11.41 11.41 11.41 11.41 11.41
17 14.03 14.03 14.04 14.04 14.03
18 14.11 14.11 14.11 14.11 14.11
19 11.41 11.41 11.41 11.41 11.41
20 11.24 11.24 11.24 11.24 11.24
21 15.13 27.74 25.35 18.78 15.78
22 14.95 14.97 14.97 14.96 14.95
23 14.81 14.82 14.82 14.81 14.81
24 14.62 14.63 14.63 14.62 14.62

Table 7: Locational marginal prices for method (iii): proposed centralised TSO-DSO
coordination in e/MW.

Next, we analyse the interaction between the TSO and the DSOs. For this, we modify454

the weights of (28) to obtain an approximation of the Pareto front. More specifically, we455

start with w1 = 0 and w2 = 1, and with increments of 0.05 we reach w1 = 1 and w2 = 0.456

The Pareto front is depicted in Fig. 17. By moving along the curve, we can minimise457

DSOs’ objective at the expense of TSO’s objective, or minimise the TSO’s objective at the458

expense of DSOs’ objective. However we cannot improve both at once, i.e., there is no459

mathematical “best” point along the Pareto front.460

To provide insights into the potential conflicts between TSOs and DSOs we discuss461

in greater detail the two extreme cases, i.e., w1 = 0 and w2 = 1 and w1 = 1 and w2 = 0.462

The TSO and DSO costs for the first one are 0 e/MW and 500 e/MW , respectively; and463

for the latter they are 140 e/MW and 0 e/MW, respectively. In other words, when the464

objective is to only minimise the TSO cost; all costs are being incurred by the DSOs and465

vice versa. In both cases, all constraints, e.g., voltage and thermal limits, are met thus466

the power system quality is guaranteed.467
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Figure 17. Pareto Front of the sum of all feeders DG and voltage regulation daily cost with respect
to the TSO cost.

In Fig. 18, we depict the total DSO cost that includes the payments to the TSO given468

in (9), DG cost given in (10) and (11), and voltage regulation costs given in (12). We469

compare the results for different weights with methods (i) and (ii). We notice that the470

results of method (ii) are close to the Pareto front offering a near optimal solution. The471

appropriate choice of operation for the Pareto front is a balance of priorities between472

TSOs and DSOs and the determination of specific incentives, which are part of future473

work. Another implication of the Pareto front is that any point in the feasible region474

that is not on the Pareto front is not considered to be a “good” solution, e.g., method (i).475

Either objective, or both, can be improved at no penalty to the other. This demonstrates476

that there a lot of improvements to be made to current TSO-DSO coordination practise,477

i.e., method (i). To determine the priorities of the proposed decentralised scheme we478

have to analyse where its solution lies in the Pareto front. More specifically, we notice in479

Figs. 18 and 19 that the proposed decentralised scheme provides a balance between the480

TSO and DSO objective, since it lies between the two extreme cases.481

Figure 18. Pareto Front of the sum of all feeders daily cost with respect to the TSO cost.

Next, we depict in Fig. 19 the daily cost of individual feeders, which includes the482

payments to the TSO, the cost of DG and voltage regulation, to investigate how far483

from the optimal solution each feeder operates for the various schemes. We notice that484

for method (ii) F2 operates at the optimum, F3 at a point that is at the expense of other485

feeders and F1 and F4 at points further away from the optimal solutions. However, the486

summation of these costs corresponds to a near optimal solution as seen in Fig. 18.487
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Figure 19. Pareto Front of daily cost for Fi, i = 1, . . . , 4 with respect to the TSO cost.

In both schemes the transmission cost decreases while for method (iii) the trans-488

mission operation cost reduction is higher than that of method (ii). In comparison to489

the current practise, i.e., method (i), both schemes are more effective in terms of the490

share contribution of the distributed generators at each transmission node, while the491

utilisation rate of generation for method (iii) is higher than that of method (ii). Using492

method (iii), we can see that the output of each generator at the transmission level493

is lower than that of method (ii) and for method (ii) is lower than that of method (i).494

Although for method (ii) and method (iii), the congestion level is improved, the LMP495

for each node at each hour is higher at night hours in method (iii). This is due to the496

increased output of transmission generators at night hours. It should be noted that in all497

case studies all variables, e.g., voltage levels, transmission line flows, are kept within the498

limits of acceptable for power quality purposes as defined by the constraints of the OPFs.499

For example, voltage levels of each bus in the distribution system at every time interval500

are in the range of 0.95 – 1.05 pu. The algorithm running time for the centralised scheme501

is 12,387 msec and for the decentralised is 21,800 msec in a Windows machine which is502

equipped with AMD R© FX-9830P RADEON R7 CPU with four Cores at 3.00 GHz and503

16 GB of RAM. As expected the centralised scheme is approximately two times faster;504

however both schemes are fast enough for real-time operation purposes.505

5. Conclusion and discussion506

In this paper, we have presented a novel TSO-DSO coordination framework that507

increases the efficient use of distributed generation resources. More specifically, we508

have two coordination schemes: one centralised, another decentralised. The underlying509

network for both systems is approximated linearly and the OPF formulations result510

in convex optimisation problems. We have formulated a decentralised TSO-DSO co-511

ordination scheme based on an iterative approach where no sensitive information is512

exchanged that achieves a near optimal solution. Next, we have analysed the interaction513

of TSOs and DSOs and how conflicting their objectives are by approximating the Pareto514

front of a multi-objective OPF problem where the entire system, i.e., transmission and515

distribution systems, is modelled. Through numerical results we have demonstrated516

that both coordination schemes result in (i) reduced operational costs for both TSOs and517

DSOs; (ii) congestion relief; and (iii) increased use of distributed generation.518

In the two proposed schemes different entities are responsible for making a decision;519

and diverse information is shared between them. In particular, in the centralised scheme520

the TSO makes the decisions and has access to all information about the underlying521

physical distribution systems as well as DG bidding. In the decentralised scheme, both522

the DSO and TSO share the decision making process and the only information that the523

TSO sends the DSO is the LMP at the PCC and the DSO to the TSO its net load. The two524

proposed methods also differ in the total cost; level of DG integration; voltage levels and525

level of congestion, as demonstrated in the numerical results’ section. These affect the526

“power quality” of the system. However, all variables, e.g., voltage levels, transmission527
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line flows, are kept within the limits of acceptable for power quality purposes as defined528

by the constraints of the OPFs.529

There are natural extensions of the work presented here. For instance, a distributed530

solution of the proposed centralised scheme is necessary so that system operators do not531

share sensitive information about their topology and generators bids. Moreover, a more532

detailed representation on the topology of the distribution system would provide more533

accurate results as well as incorporation of uncertainty in renewable based generation.534

We will report on these developments in future papers.535

Appendix .1 Nomenclature536

Appendix .2 Decentralised Scheme Detailed Formulation537

In Section 3.1 in (26) we provide the compact formulation of the proposed de-538

centralised scheme which is a bi-level optimisation problem. We do so to ease the539

readability of the paper and demonstrate the proposed methodologies. To make the540

formulation more clear we present here its detailed representation. The functions541

f1, f2, g1, g2, h1, and h2 can be easily mapped to the functions below:542

min
PGi

(t),i∈I ,θk(t),k∈K
∑

t∈T

(
∑
i∈I

ci(t) + π ∑̀
∈L
(θn(t)− θm(t))2

)
∆t

subject to f m ≤ f (t) = Bd Aθ(t) ≤ f M, t ∈ T ,

Pm
G ≤ PG(t) ≤ PM

G , t ∈ T ,

∑
i∈Ik

PGi(t)− ∑̀
∈L

Bd` Aθ(t) = Pd
grid(t), k ∈ K , t ∈ T , d ∈ D

∀d ∈ D , Pd
grid(t) ∈ arg min

PPVi
(t),Pch

Bi
(t),

Pdis
Bi

(t),Vi(t),

Pd
grid(t)

∑
t∈T

λkd(t)Pd
grid(t) + ∑

i∈N d
PV

BPVi PPVi(t) + ∑
i∈N d

B

BBi(Pch
Bi
(t) + Pdis

Bi
(t)) + ∑

i∈N

α(Vi(t)−Vref)
2

∆t

subject to Pmin
PV,i ≤ PPVi(t) ≤ Pmax

PV,i , i ∈ NPV, t ∈ T ,

Pch,min
B,i ≤ Pch

Bi
(t) ≤ Pch,max

B,i , i ∈ NB, t ∈ T ,

Pdis,min
B,i ≤ Pdis

Bi
(t) ≤ Pdis,max

B,i , i ∈ NB, t ∈ T ,

Vmin
i ≤ Vi(t) ≤ Vmax

i , i ∈ N , t ∈ T ,

Pd,min
grid ≤ Pd

grid(t) ≤ ∑
i∈Ik

PGi(t), t ∈ T ,

Emin,i ≤ ∑
t∈T

(
ηch,iPch

Bi
(t)− 1

ηdis,i
Pdis

Bi
(t)
)

∆t + E0,i ≤ Emax,i, ∀i ∈ NB, t ∈ T ,

V(t) = Rp(t) + Xq(t)−M−1>m0, t ∈ T ,

pi(t) = PPVi(t) + Pdis
Bi

(t)− Pch
Bi
(t)− Ploadi(t), ∀i ∈ NPV ∩NB, t ∈ T ,

pi(t) = PPVi(t)− Ploadi(t), ∀i ∈ NPV \NB, t ∈ T ,

pi(t) = Pdis
Bi

(t)− Pch
Bi
(t)− Ploadi(t), ∀i ∈ NB \NPV, t ∈ T ,

pi(t) = −Ploadi(t), ∀i ∈ N \NPV ∩NB, t ∈ T ,

qi(t) = −Qloadi(t), ∀i ∈ N , t ∈ T ,

(A1)

where the objective of the upper level problem is the TSO cost minimisation and angle543

deviation; its constraints refer to power flow and generator limits and power balance.544

The lower level optimisation problem has as an objective the DSO cost and voltage545

regulation cost minimisation; its constraints refer to voltage, power, energy storage546

limits; and power balance. More details about the objective and constraints may be547

found in Section 2.548

Appendix .3 Centralised Scheme Detailed Formulation549

In Section 3.2 in (28) we provide the compact formulation of the proposed cen-550

tralised scheme to determine the Pareto front of the TSOs, DSOs objectives. To make551

the formulation more clear we present here its detailed representation. The functions552

f1, f2, g1, g2, h1, and h2 can be easily mapped to the functions below.553
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min
PGi

(t),i∈I ,
θk(t),k∈K ,

PPVi
(t),Pch

Bi
(t),

Pdis
Bi

(t),Vi(t)

∑
t∈T
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∈L
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Pch,min
B,i ≤ Pch

Bi
(t) ≤ Pch,max
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Pdis,min
B,i ≤ Pdis
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Vmin
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(
ηch,iPch

Bi
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Pdis

Bi
(t)
)

∆t + E0,i ≤ Emax,i, ∀i ∈ NB, t ∈ T , d ∈ D ,

V(t) = Rpd(t) + Xqd(t)−M−1>m0, t ∈ T , d ∈ D

pd
i (t) = PPVi(t) + Pdis

Bi
(t)− Pch

Bi
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pd
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pd
i (t) = Pdis

Bi
(t)− Pch

Bi
(t)− Ploadi(t), ∀i ∈ NB \NPV, t ∈ T , d ∈ D ,

pd
i (t) = −Ploadi(t), ∀i ∈ N \NPV ∩NB, t ∈ T , d ∈ D ,

qd
i (t) = −Qloadi(t), ∀i ∈ N , t ∈ T , d ∈ D ,

(A2)

where the objective of the centralised optimisation is the TSO cost, angle deviation, the554

DG cost and voltage regulation cost minimisation; its constraints refer to power flow555

and generator limits and power balance. The power balance in this case is modified to556

directly incorporate the real power injection/withdrawal at the PCC of each DSO. More557

details about the objective and constraints may be found in Section 2.558

References
1. Gerard, H.; Rivero Puente, E.I.; Six, D. Coordination between transmission and distribution system operators in the electricity

sector: A conceptual framework. Utilities Policy 2018, 50, 40–48. doi:https://doi.org/10.1016/j.jup.2017.09.011.
2. Caramanis, M.C.; Goldis, E.; Ruiz, P.A.; Rudkevich, A. Power market reform in the presence of flexible schedulable distributed

loads. New bid rules, equilibrium and tractability issues. 2012 50th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), 2012, pp. 1089–1096. doi:10.1109/Allerton.2012.6483339.

3. Najibi, F.; Apostolopoulou, D.; Alonso, E. Enhanced performance Gaussian process regression for probabilistic short-term solar
output forecast. International Journal of Electrical Power & Energy Systems 2021, 130, 106916.

4. Najibi, F.; Alonso, E.; Apostolopoulou, D. Optimal Dispatch of Pumped Storage Hydro Cascade under Uncertainty. 2018 UKACC
12th International Conference on Control (CONTROL). IEEE, 2018, pp. 187–192.

5. Kärkkäinen, S.; others. Integration of demand-side management, distributed generation, renewable energy sources and energy
storages. Report Task XVII Integration of Demand-Side management, Distributed Generation, Renewable Energy Sources and Energy
Storages 2008, 1, 77.

6. de Jong, G.; Franz, O.; Hermans, P.; Lallemand, M. TSO-DSO data management report. TSO-DSO Project Team, Tech. Rep 2016.
7. Yuan, Z.; Hesamzadeh, M.R. Hierarchical coordination of TSO-DSO economic dispatch considering large-scale integration of

distributed energy resources. Applied Energy 2017, 195, 600–615. doi:https://doi.org/10.1016/j.apenergy.2017.03.042.
8. Hadush, S.Y.; Meeus, L. DSO-TSO cooperation issues and solutions for distribution grid congestion management. Energy Policy

2018, 120, 610–621.
9. Birk, M.; Chaves-Ávila, J.P.; Gómez, T.; Tabors, R. TSO/DSO coordination in a context of distributed energy resource penetration.

Proc. EEIC, 2016, pp. 2–3.
10. Najibi, F.; Niknam, T.; Kavousi-Fard, A. Optimal stochastic management of renewable MG (micro-grids) considering electro-

thermal model of PV (photovoltaic). Energy 2016, 97, 444–459. doi:https://doi.org/10.1016/j.energy.2015.12.122.
11. Najibi, F.; Niknam, T. Stochastic scheduling of renewable micro-grids considering photovoltaic source uncertainties. Energy

Conversion and Management 2015, 98, 484–499. doi:https://doi.org/10.1016/j.enconman.2015.03.037.
12. Ashouri, A.; Sels, P.; Leclercq, G.; Devolder, O.; Geth, F.; D’hulst, R. Smart TSO-DSO interaction schemes, market architectures,

and ICT solutions for the integration of ancillary services from demand-side management and distributed generation Network
and market models, EU Report, Apr. 2017 2017.

13. Givisiez, A.G.; Petrou, K.; Ochoa, L.F. A Review on TSO-DSO Coordination Models and Solution Techniques. Electric Power
Systems Research 2020, 189, 106659. doi:https://doi.org/10.1016/j.epsr.2020.106659.

14. Merino, J.; Gómez, I.; Turienzo, E.; Madina, C.; Cobelo, I.; Morch, A.; Saele, H.; Verpoorten, K.; Puente, E.; Häninnen, S.; others.
Ancillary service provision by RES and DSM connected at distribution level in the future power system. SmartNet project D 2016,
1, 1.

https://doi.org/https://doi.org/10.1016/j.jup.2017.09.011
https://doi.org/10.1109/Allerton.2012.6483339
https://doi.org/https://doi.org/10.1016/j.apenergy.2017.03.042
https://doi.org/https://doi.org/10.1016/j.energy.2015.12.122
https://doi.org/https://doi.org/10.1016/j.enconman.2015.03.037
https://doi.org/https://doi.org/10.1016/j.epsr.2020.106659


Version June 29, 2021 submitted to Journal Not Specified 26 of 27

15. Kristov, L.; De Martini, P.; Taft, J.D. A Tale of Two Visions: Designing a Decentralized Transactive Electric System. IEEE Power
and Energy Magazine 2016, 14, 63–69. doi:10.1109/MPE.2016.2524964.

16. Savvopoulos, N.; Konstantinou, T.; Hatziargyriou, N. TSO-DSO coordination in decentralized ancillary services markets. 2019
International Conference on Smart Energy Systems and Technologies (SEST). IEEE, 2019, pp. 1–6.

17. Dempe, S.; Kalashnikov, V.; Pérez-Valdés, G.A.; Kalashnykova, N. Bilevel programming problems. Energy Systems. Springer,
Berlin 2015.

18. Papavasiliou, A. Analysis of distribution locational marginal prices. IEEE Transactions on Smart Grid 2017, 9, 4872–4882.
19. Sorin, E.; Bobo, L.; Pinson, P. Consensus-based approach to peer-to-peer electricity markets with product differentiation. IEEE

Transactions on Power Systems 2018, 34, 994–1004.
20. Papavasiliou, A.; Mezghani, I. Coordination Schemes for the Integration of Transmission and Distribution System Operations.

2018 Power Systems Computation Conference (PSCC), 2018, pp. 1–7. doi:10.23919/PSCC.2018.8443022.
21. Saint-Pierre, A.; Mancarella, P. Active Distribution System Management: A Dual-Horizon Scheduling Framework for DSO/TSO

Interface Under Uncertainty. IEEE Transactions on Smart Grid 2017, 8, 2186–2197. doi:10.1109/TSG.2016.2518084.
22. Huang, S.; Wu, Q.; Oren, S.S.; Li, R.; Z.Liu. Distribution Locational Marginal Pricing Through Quadratic Program-

ming for Congestion Management in Distribution Networks. IEEE Transactions on Power Systems 2015, 30, 2170–2178.
doi:10.1109/TPWRS.2014.2359977.

23. Rossi, M.; Migliavacca, G.; Viganò, G.; Siface, D.; Madina, C.; Gomez, I.; Kockar, I.; Morch, A. TSO-DSO coordination to acquire
services from distribution grids: Simulations, cost-benefit analysis and regulatory conclusions from the SmartNet project. Electric
Power Systems Research 2020, 189, 106700. doi:https://doi.org/10.1016/j.epsr.2020.106700.

24. Sun, J.; Tesfatsion, L.; Goldfarb, D.; Hogan, W.; Kirschen, D.; Liu, C.C.; Mccalley, J.; Powell, M.J.D.; Price, J.; Salazar, H.; Wong, J.;
Wu, T. DC Optimal Power Flow Formulation and Solution Using QuadProgJ *. Technical report, 2010.

25. Zhu, H.; Liu, H.J. Fast local voltage control under the limited reactive power: optimality and stability analysis. IEEE trans on
power systems 2016, 31, 3794 – 3803.

26. Franco, J.F.; Ochoa, L.F.; Romero, R. AC OPF for smart distribution networks: An efficient and robust quadratic approach. IEEE
Transactions on Smart Grid 2017, 9, 4613–4623.

27. Montoya, O.D.; Gil-González, W.; Garces, A. Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation. IEEE
Transactions on Circuits and Systems II: Express Briefs 2019, 66, 1018–1022. doi:10.1109/TCSII.2018.2871432.

28. Ochoa, L.N.; Pilo, F.; Keane, A.; Cuffe, P.; Pisano, G. Embracing an Adaptable, Flexible Posture: Ensuring That Future
European Distribution Networks Are Ready for More Active Roles. IEEE Power and Energy Magazine 2016, 14, 16–28.
doi:10.1109/MPE.2016.2579478.

29. Arnold, D.B.; Sankur, M.D.; Negrete-Pincetic, M.; Callaway, D.S. Model-Free Optimal Coordination of Distributed En-
ergy Resources for Provisioning Transmission-Level Services. IEEE Transactions on Power Systems 2018, 33, 817–828.
doi:10.1109/TPWRS.2017.2707405.

30. Vicente-Pastor, A.; Nieto-Martin, J.; Bunn, D.W.; Laur, A. Evaluation of Flexibility Markets for Retailer–DSO–TSO Coordination.
IEEE Transactions on Power Systems 2019, 34, 2003–2012. doi:10.1109/TPWRS.2018.2880123.

31. Yang, R.; Hao, J.; Jiang, H.; Jin, X. Machine-Learning-Driven, Site-Specific Weather Forecasting for Grid-Interactive Efficient
Buildings. Technical report, National Renewable Energy Lab.(NREL), Golden, CO (United States), 2020.

32. Krechel, T.; Sanchez, F.; Gonzalez-Longatt, F.; Chamorro, H.; Rueda, J.L. Chapter 11 - Transmission system-friendly microgrids:
an option to provide ancillary services. In Distributed Energy Resources in Microgrids; Chauhan, R.K.; Chauhan, K., Eds.; Academic
Press, 2019; pp. 291–321. doi:https://doi.org/10.1016/B978-0-12-817774-7.00011-9.

33. Association, E.; others. Open networks project: opening markets for network flexibility. Energy Networks Association2017 2017.
34. Caramanis, M.; Ntakou, E.; Hogan, W.W.; Chakrabortty, A.; Schoene, J. Co-Optimization of Power and Reserves in Dynamic T D

Power Markets With Nondispatchable Renewable Generation and Distributed Energy Resources. Proceedings of the IEEE 2016,
104, 807–836. doi:10.1109/JPROC.2016.2520758.

35. D.B.West. Introduction to Graph Theory; Upper Saddle River: Orentice hall, 2001.
36. Morstyn, T.; Teytelboym, A.; Hepburn, C.; McCulloch, M.D. Integrating P2P Energy Trading with Probabilistic Distribution

Locational Marginal Pricing. IEEE Transactions on Smart Grid 2019, pp. 1–1. doi:10.1109/tsg.2019.2963238.
37. Bylling, H.C. Bilevel Optimization with Application in Energy. PhD thesis, University of Copenhagen, Faculty of Science,

Department of Mathematical . . . , 2018.
38. von Stackelberg, H. Market Structure and Equilibrium; Springer, 1934.
39. Audet, C.; Hansen, P.; Jaumard, B.; Savard, G. Links between linear bilevel and mixed 0–1 programming problems. Journal of

optimization theory and applications 1997, 93, 273–300.
40. Sinha, A.; Soun, T.; Deb, K. Using Karush-Kuhn-Tucker proximity measure for solving bilevel optimization problems. Swarm and

Evolutionary Computation 2019, 44, 496–510. doi:https://doi.org/10.1016/j.swevo.2018.06.004.
41. Britzelmeier, A.; De Marchi, A.; Gerdts, M., An Iterative Solution Approach for a Bi-level Optimization Problem for Congestion

Avoidance on Road Networks. In Numerical Methods for Optimal Control Problems; Springer International Publishing: Cham, 2018;
pp. 23–38. doi:10.1007/978-3-030-01959-4_2.

42. J.Cohon. In Multiobjective Programming and Planning; Academic Press: New York, 1978.

https://doi.org/10.1109/MPE.2016.2524964
https://doi.org/10.23919/PSCC.2018.8443022
https://doi.org/10.1109/TSG.2016.2518084
https://doi.org/10.1109/TPWRS.2014.2359977
https://doi.org/https://doi.org/10.1016/j.epsr.2020.106700
https://doi.org/10.1109/TCSII.2018.2871432
https://doi.org/10.1109/MPE.2016.2579478
https://doi.org/10.1109/TPWRS.2017.2707405
https://doi.org/10.1109/TPWRS.2018.2880123
https://doi.org/https://doi.org/10.1016/B978-0-12-817774-7.00011-9
https://doi.org/10.1109/JPROC.2016.2520758
https://doi.org/10.1109/tsg.2019.2963238
https://doi.org/https://doi.org/10.1016/j.swevo.2018.06.004
https://doi.org/10.1007/978-3-030-01959-4_2


Version June 29, 2021 submitted to Journal Not Specified 27 of 27

43. Shan, S.; Wang, G.G. An Efficient Pareto Set Identification Approach for Multiobjective Optimization on Black-Box Functions.
Journal of Mechanical Design 2004, 127, 866–874.

44. Vardani, B. Optimum Location of SVC in an IEEE 33 Bus Radial Distribution System Using Power Sensitivity In-
dex. 2019 International Conference on Electrical, Electronics and Computer Engineering (UPCON), 2019, pp. 1–5.
doi:10.1109/UPCON47278.2019.8980192.

45. Savier, J.S.; Das, D. Impact of Network Reconfiguration on Loss Allocation of Radial Distribution Systems. IEEE Transactions on
Power Delivery 2007, 22, 2473–2480. doi:10.1109/TPWRD.2007.905370.

46. Baran, M.; Wu, F. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Transactions on
Power Delivery 1989, 4, 1401–1407. doi:10.1109/61.25627.

47. Sadiq, A.; Adamu, S.; Buhari, M. Optimal distributed generation planning in distribution networks: A comparison of
transmission network models with FACTS. Engineering Science and Technology, an International Journal 2019, 22, 33–46.
doi:https://doi.org/10.1016/j.jestch.2018.09.013.

48. Apostolopoulou, D.; Gross, G.; Güler, T. Optimized FTR Portfolio Construction Based on the Identification of Congested Network
Elements. IEEE Transactions on Power Systems 2013, 28, 4968–4978. doi:10.1109/TPWRS.2013.2261097.

https://doi.org/10.1109/UPCON47278.2019.8980192
https://doi.org/10.1109/TPWRD.2007.905370
https://doi.org/10.1109/61.25627
https://doi.org/https://doi.org/10.1016/j.jestch.2018.09.013
https://doi.org/10.1109/TPWRS.2013.2261097

	Introduction
	Literature Review
	Gap Analysis
	Contributions

	Optimal Power Flow Formulation
	Transmission level
	Distribution Level

	Proposed Coordination Schemes
	Decentralised Scheme
	Centralised Scheme

	Numerical Results
	System Description
	Decentralised Coordination Scheme
	Centralised Coordination Scheme

	Conclusion and discussion
	Nomenclature
	Decentralised Scheme Detailed Formulation
	Centralised Scheme Detailed Formulation

	References

