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Abstract 24 

Explaining the emergence and maintenance of intratumor heterogeneity is an 25 
important question in cancer biology. Tumor cells can generate considerable subclonal 26 
diversity, which influences tumor growth rate, treatment resistance, and metastasis, 27 
yet we know remarkably little about how cells from different subclones interact. Here, 28 
we confronted two murine mammary cancer cell lines to determine both the nature and 29 
mechanisms of subclonal cellular interactions in vitro. Surprisingly, we found that, 30 
compared to monoculture, growth of the ‘winner’ was enhanced by the presence of the 31 
‘loser’ cell line, whereas growth of the latter was reduced. Mathematical modeling and 32 
laboratory assays indicated that these interactions are mediated by the production of 33 
paracrine metabolites resulting in the winner subclone effectively ‘farming’ the loser. 34 
Our findings add a new level of complexity to the mechanisms underlying subclonal 35 
growth dynamics.  36 

 37 
Introduction 38 

Considering tumors as complex ecosystems has led to the notion that diverse cancer 39 
cell subclones engage in heterotypic interactions reminiscent of those that operate in 40 
organismal communities (Heppner, 1984; Merlo et al., 2006; Axelrod et al., 2006; 41 
Tabassum and Polyak, 2015). Mutually negative interactions are thought to be 42 
ubiquitous in cancer (Nowell, 1976; Greaves & Maley, 2012). As in classic ecosystems, 43 
cancer cells compete for nutrients and space, and competition between emergent 44 
subclones gives rise to complex temporal and spatial dynamics of tumor composition 45 
and growth (Tabassum and Polyak, 2015). Positive ecological interactions (mutualism 46 
and commensalism) have been observed in cancer models in mice (Calbo et al., 2011; 47 
Cleary et al., 2014) and in drosophila (Ohsawa et al., 2012). In these cases, one 48 
subclone acquires new abilities, such as the capacity to grow or metastasize, only in 49 
the presence of another subclone, resulting in the tumor as a whole progressing 50 
towards a more aggressive phenotype. In contrast, the prevalence within tumors of 51 
asymmetric interactions such as amensalism, parasitism and facilitation remains an 52 
open question. Defining the mechanisms of tumor ecology is essential for a better 53 
understanding of cancer progression and may lead to novel therapeutic strategies 54 
(Gatenby and Brown, 2017; Maley et al., 2017). 55 

To gain insight into molecular and cellular events related to ecological interactions 56 
between cancer subclones, we took advantage of a model described over three 57 
decades ago, based on two closely related murine cancer cell lines derived from a 58 
single spontaneous mouse mammary tumor (Dexter et al. 1978; Miller et al., 1988). 59 
When cultured separately, the two cell lines have similar growth rates, yet in co-culture 60 
one cell line (the ‘winner’) expands at the expense of the other (the ‘loser’). Our careful 61 
re-examination of this model, combining experiments with mathematical modelling and 62 
parameter inference, indicated that the cellular behaviors of the two subclones are 63 
surprisingly sophisticated. Both cell lines produce paracrine metabolites that boost 64 
proliferation of the winner and also decrease the growth rate of the loser. Our results 65 
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thus unveil a type of facultative parasitic behavior of the winner subclone. We further 66 
identified beta-hydroxybutyrate and lactate as metabolites that contribute to these 67 
phenotypes and characterized their modes of action. We discuss our results in the 68 
context of how previously underappreciated ecological interactions may contribute to 69 
the complexity of tumor growth dynamics.  70 

 71 
Results 72 

4T07 cells have a "winner" phenotype 73 

Two cell lines derived from a single mouse mammary carcinoma - 168 and 4T07 cells 74 
- have similar growth rates when cultured individually, yet the 4T07 clone displays a 75 
dominant phenotype when grown together, either in cell culture or in orthotopic 76 
allografts in vivo (Miller et al., 1988). Several hypotheses to account for this interesting 77 
behavior had been tested in the original work, but the precise mechanism behind these 78 
competitive interactions has so far not been identified.  79 

We began by verifying that in our hands the lines maintain their competitive 80 
characteristics. To facilitate lineage tracing we first generated lines stably expressing 81 
GFP, the expression of which did not alter cell growth (Figure 1A). Next, we followed 82 
growth characteristics of 4T07 and 168FARN cells, the latter being a drug-resistant 83 
derivative of the original 168 clone (Aslakson et al., 1991), in a continuous culture for 84 
3 weeks. The cells were seeded as 1:1 mix at a density that allowed them to reach 85 
confluence within 3-4 days, at which point they were harvested and re-seeded in a new 86 
well at the original density. Remaining cells were analyzed by flow cytometry to 87 
determine the proportion of GFP expressing clones in the expanding population. 88 

The homotypic co-culture (same line with and without GFP) confirmed that GFP has 89 
no impact on cellular proliferation (Figure 1B and Figure 3B). In contrast, heterotypic 90 
co-culture conditions (two different lines, one expressing GFP) revealed the 91 
dominance of the 4T07 clone (Figure 1B and Figure 3B).  92 

These results confirm the originally described ecological interaction between the 93 
clones: 4T07 gradually dominates the culture while the 168FARN cells become scarce 94 
within 15-17 days. Importantly, the dominant phenotype is independent of the starting 95 
ratio between the two cell lines (Supplementary Figure 1A and B). 96 

 97 

Co-culture alters the proliferation rates of both "winner" and "loser" cells 98 

As originally discussed for the two clones under study (Miller et al., 1988), the 99 
expansion of a single clone in co-culture could be due to alterations in cell death or 100 
changes in the proliferation rates of either or both clones. We measured apoptosis in 101 
the loser 168FARN clone and found identical, very low levels of cell death under 102 
homotypic and heterotypic conditions (Supplementary Figure 2A). Next, we used time-103 
lapse microscopy to assess the growth dynamics of both clones in continuous culture. 104 
The cells were seeded at a density that allowed reaching confluence in 4 days and 105 
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were photographed every 45 minutes for the last 3 days. We measured the overall 106 
pixel intensity for each frame (Figure 2A) as a proxy for the growth rate of the 107 
fluorescently tagged cell line. This analysis revealed that under co-culture conditions, 108 
the growth rate of 168FARN decreased, whereas that of 4T07 increased relative to 109 
mono-cultures. To test whether increased net growth of the winner population is due 110 
to the alteration of proliferation, we estimated the proportion of cells in the S phase of 111 
the cell cycle by performing pulse-chase EdU staining. The results presented in 112 
Supplementary Figure 2B confirmed that heterotypic co-culture gave rise to significant 113 
decrease in cells actively replicating DNA for the loser clone and a significant increase 114 
in the winner clone. Overall, these results suggest that the dominant phenotype 115 
displayed by the winner cells in co-culture can be explained by changes in proliferation 116 
that operate in opposing directions on the winner and the loser cells. 117 

 118 
Mathematical modelling and inference of evolutionary parameter values 119 
To gain further insight into the ecological interactions between the winner and loser 120 
cell types we turned to mathematical modelling. Examination of the growth curves 121 
revealed two distinct phases of evolutionary dynamics (Figure 2A and 2B). In phase 122 
1, from 0 to 45 hours, the two cell types grew exponentially in both homotypic and 123 
heterotypic cultures, and the growth rate of 168 was higher than that of 4T07. This 124 
first phase can be regarded as a transition period before the cells start altering and 125 
responding to their new environment. By contrast in phase 2, from 45 to 72 hours, 126 
the growth curves were strongly affected by interactions within and between the two 127 
cell types, and 4T07 grew faster than 168. To enable us to determine the mode of the 128 
ecological dynamics in each phase, we opted for a parsimonious, piecewise 129 
mathematical model. Specifically, we assumed a model with exponential growth in 130 
phase 1 and a transition to density-dependent competitive Lotka-Volterra-type 131 
dynamics in phase 2. 132 
 133 
By fitting our model to the homotypic growth curves, we inferred the values of the phase 134 
1 and phase 2 growth rates and the within-type interaction parameters (Methods). To 135 
infer the between-type interactions, we used additional data from 72-hour competition 136 
assays, covering a wide range of initial ratios of the two cell types. Although this latter 137 
data set comprises only the initial and final proportions (at the beginning of phase 1 138 
and the end of phase 2), we were able to infer the proportions at the beginning of phase 139 
2 by adjusting for the exponential growth of both types during phase 1. We then used 140 
these inferred proportions and our previously inferred parameter values to estimate the 141 
remaining interaction parameters (Methods). The resulting model gives a good fit to 142 
the competition assay data (Figure 3A, first column) and is consistent with heterotypic 143 
time-lapse data not used for parameter inference (Figure 2; Supplementary figure 6). 144 
 145 
The inferred parameter values (Table 1) imply that during phase 2, 4T07 has a large 146 
negative effect on both itself and on 168, consistent with 4T07 producing a harmful 147 
diffusible factor. The negative effect of 168 on itself is only about half as large, and 168 148 
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has approximately zero net effect on the growth of 4T07. This suggests that ubiquitous 149 
negative effects of 168 on 4T07 (e.g., likely due to waste products and competition for 150 
resources) are offset by positive effects, such as due to a beneficial diffusible factor. 151 
Also, during phase 2, the intrinsic growth rate of 168 (that is, the inferred growth rate 152 
before accounting for cell-cell interactions) is approximately 30% lower than that of 153 
4T07, consistent with the conventional hypothesis that producing beneficial factors is 154 
costly. This disadvantage is offset by 168 having an approximately 30% higher carrying 155 
capacity (defined as the upper limit of the homotypic population size). Over phase 2, 156 
or any longer period that includes phase 2, the inferred net growth rate of 4T07 (that 157 
is, the growth rate after accounting for cell-cell interactions) is invariably higher than 158 
that of 168, which means 4T07 will come to dominate numerically, no matter their initial 159 
frequency. 160 
 161 
Since we also conducted 96-hour competition assays, we were able to infer the 162 
population dynamics during a third phase (72-96 hours). For every initial ratio of the 163 
two cell types, the growth rate difference (also known as the gain function) was on 164 
average lower in the 96-hour than in 72-hour competition assays (Supplementary 165 
figure 5). Moreover, this difference did not depend on the initial ratio, which implies it 166 
was not caused by a change in interaction parameters. A parsimonious way to account 167 
for this effect is to assume a reduction in 4T07’s intrinsic growth rate during phase 3, 168 
as would be expected to result from starvation and/or the build-up of toxic waste 169 
products. Making this adjustment to our model indeed produces a better fit to the 170 
competition assay data (Figure 3A, middle column; Figure 3B and 3C). The predicted 171 
dynamics are shown in Figure 2C and 2D. 172 
 173 

Finally, having inferred all the evolutionary parameter values, we calculated net growth 174 
rates of the two cell types, averaged over different time periods. Over any period that 175 
includes phase 2, our model predicts that the net growth rate of both cell types will 176 
decrease non-linearly with increasing initial 4T07 frequency (pink and blue curves in 177 
Figure 3A). However, the net growth rate of 4T07 decreases faster than that of 168, 178 
which is why the gain function (grey curve in Figure 3A) also decreases. In phase 3, if 179 
the initial proportion of 4T07 is high (above 70%), then 168 has a higher net growth 180 
rate than 4T07, but in this case both of the inferred net growth rates are negative. 181 
Overall, the interactions are effectively equivalent to those of a parasite and its host, 182 
such that the ‘loser’ 168 suffers from the presence of the ‘winner’ 4T07, while also 183 
enhancing the winner’s fitness. 184 

 185 

β-hydroxybutyrate secreted by the loser clone stimulates winner clone proliferation 186 

To identify the molecular mechanisms at the basis of the altered growth of winners and 187 
losers when in co-culture, we first focused on the increase in proliferation rate of 4T07 188 
cells. Heterotypic culture experiments performed at low cell density suggested that the 189 
dominant effect did not require extensive cell-cell contacts (Supplementary Figure 3). 190 
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We reasoned that a soluble factor secreted by 168FARN could induce a proliferation 191 
boost in 4T07. To test this hypothesis, we collected conditioned media from each line 192 
cultured for three days and used each medium separately to grow 4T07 for an 193 
additional 24 hrs. As controls, we either left the 4T07 medium after the three days of 194 
conditioning or replaced it with fresh medium. The results shown in Figure 3A confirm 195 
our hypothesis: the medium conditioned by 168FARN induced a significant increase in 196 
4T07 proliferation. Importantly, this effect was not due to differences of medium 197 
exhaustion by the two cell lines, since the addition of fresh medium did not boost 4T07 198 
proliferation.  199 

Since our data strongly suggested that a soluble factor originating from 168FARN 200 
accounted for the increase in 4T07 proliferation, we next sought to define its molecular 201 
nature. First, we separated the 168FARN-conditioned medium into high and low MW 202 
fractions with a 3 KDa molecular cutoff column. The low MW fraction contains mainly 203 
metabolites while the high one is enriched in proteins. After complementing each 204 
fraction, respectively, with 10% serum or with DMEM to obtain full media conditioned 205 
with either low or high MW secretomes, we used them in a proliferation assay as in 206 
Figure 4A. The results (Figure 4B) of this series of experiments unambiguously 207 
identified the low MW fraction of the 168FARN-conditioned medium as the source of 208 
the pro-proliferative factor. To further explore its identity, we employed nuclear 209 
magnetic resonance spectroscopy to compare the composition of low MW fractions 210 
prepared from fresh medium and from the 168FARN- and 4T07-conditioned ones 211 
(Henke et al., 1996). Two major peaks specific for the conditioned media corresponded 212 
to a very strong signal for lactate secreted by 4T07 cells, and a significant increase in 213 
a peak identified as b-hydroxybutyrate in the 168FARN-conditioned medium (Figure 214 
5A). b-hydroxybutyrate (BHB) is a ketone body mainly produced by the liver after long 215 
fasting periods and which is used by different tissues as a source of carbon to 216 
supplement the lack of glucose (Newman and Verdin, 2017). In addition, b-217 
hydroxybutyrate is also produced by other cell types, such as adipocytes or cancer 218 
cells (Grabacka et al., 2016; Huang et al., 2017; Wang et al., 2017). To confirm the 219 
NMR-based identification of the b-hydroxybutyrate peak, we employed an enzymatic 220 
assay to measure b-hydroxybutyrate concentration in conditioned media from 4T07 221 
and 168FARN (Figure 5B). The results were in perfect agreement with the NMR 222 
analysis: b-hydroxybutyrate production is significantly higher in the loser than in the 223 
winner cell clone. To test whether this metabolite was indeed responsible for the 224 
increased proliferation of 4T07, we next complemented the medium of exponentially 225 
growing 4T07 cells with purified b-hydroxybutyrate. As shown in Figure 5C, b-226 
hydroxybutyrate increased the 4T07 proliferation rate to a level comparable to that 227 
obtained with the 168-conditioned medium. We thus conclude that loser cells increase 228 
the winner’s growth rate through the secretion of b-hydroxybutyrate.  229 

 230 

Presence of the winner clone stimulates b-hydroxybutyrate production by loser cells 231 
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After assessing b-hydroxybutyrate production in homotypic cell culture, we evaluated 232 
its secretion under heterotypic conditions. We grew 168FARN alone or together with 233 
4T07 at a 1:1 ratio, maintaining the overall cell density constant. Surprisingly, despite 234 
the fact that under heterotypic conditions there are at least 50% fewer loser cells (which 235 
are the main producers of b-hydroxybutyrate, cf. Fig. 5B), the overall level of secreted 236 
b-hydroxybutyrate was higher than in the homotypic culture (Figure 5D). This suggests 237 
that either the presence of 4T07 increased the production of the metabolite by 238 
168FARN or, alternatively, that it was 4T07 that produced more metabolite when grown 239 
in the presence of 168FARN. To distinguish between these hypotheses, we cultured 240 
both lines individually for three days, measured BHB concentration, and then 241 
exchanged the culture medium and quantified metabolite synthesis 24 hours later. The 242 
quantification of b-hydroxybutyrate produced over the last day (Day 4 BHB 243 
concentration minus Day 3 BHB concentration) shows that the 168FARN-conditioned 244 
medium had no effect on BHB secretion by 4T07 cells. In striking contrast, the 245 
production of the metabolite by 168FARN more than doubled under the influence of 246 
the 4T07-conditioned medium (Figure 5E). Thus, the winner cells stimulate the losers 247 
to produce a metabolite that boosts the former's proliferation 248 

 249 

Mechanism of b-hydroxybutyrate action 250 

We next asked about the mode of action of BHB on the 4T07 cells. b-hydroxybutyrate 251 
can be imported by four monocarboxylate transporters of the SLC16A gene family, the 252 
expression of which varies in different cell types. We assessed the expression of each 253 
transporter by RT-QPCR and found that MCT2, MCT3 and MCT4 were barely 254 
expressed while MCT1 was highly expressed (Figure 6A) in 4T07 cells. This result 255 
suggests that MCT1 is likely responsible for the import of BHB in this cell line. 256 
Interestingly, we found that MCT1 is three times more expressed in 4T07 than in 168 257 
cells (which, like 4T07, do not express the other MCTs - Supplementary figure 4A), 258 
suggesting that the winner cells are more efficient at taking up this metabolite than the 259 
losers (Supplementary Figure 4B). Finally, incubation of 4T07 with BHB upregulates 260 
MCT1, consistent with a positive feedback loop that could increase the transport of this 261 
ketone body into the dominant cell line (Supplementary figure 4C).  262 

b-hydroxybutyrate can be metabolized and used as a nutrient to replace glucose 263 
(Newman and Verdin, 2017). Experiments presented in Figure 3A show that fresh 264 
medium added at day 3 did not boost cell proliferation, suggesting that in this 265 
experimental setup the decrease in the carbon source is not a limiting factor for growth. 266 
It is thus unlikely that b-hydroxybutyrate is used as an energy resource to increase 267 
proliferation rate. b-hydroxybutyrate has previously been identified as an inhibitor of 268 
class I histone deacetylases (HDAC) that modulates the expression of genes involved 269 
in reactive oxygen species detoxification (Shimazu et al., 2013). Subsequently, another 270 
group found that adipocytes use b-hydroxybutyrate to modulate the expression of a 271 
subset of genes involved in the growth of breast cancer cells (Huang et al., 2017). We 272 
thus hypothesized that b-hydroxybutyrate might increase the growth rate of winners 273 
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through the inhibition of HDACs, thereby modulating the expression of genes involved 274 
either in ROS detoxification or in the induction of pro-proliferative factors. In support of 275 
this idea, incubation of 4T07 cells either with 168FARN-conditioned medium or with 276 
purified BHB increased H3K9 acetylation, albeit to a lesser extent than butyrate, a bona 277 
fide HDAC inhibitor (Figure 6B).  278 

While we could not detect in 4T07 cells any modification of expression of ROS 279 
detoxification genes reported to be regulated by b-hydroxybutyrate in other cellular 280 
models (Shimazu et al., 2013), both b-hydroxybutyrate and 168-conditioned medium 281 
led to significant transcriptional activation of interleukine 11 (IL-11) and lipocalin 2 282 
(LCN2) (Figure 6C). Both genes have been previously described to promote cancer 283 
cell growth and to be regulated by b-hydroxybutyrate through its action on HDAC 284 
activity (Grivennikov, 2013; Huang et al., 2017; Yang and Moses, 2009). Thus, our 285 
data point to the molecular mechanisms involving direct proliferation signaling.  286 

 287 

Lactate secretion slows down loser cell proliferation 288 

In addition to the positive effect of the 168FARN cells on the proliferation rate of the 289 
4T07 clone, the data shown in Figure 2 indicate that the latter negatively influences the 290 
168FARN growth dynamics. The NMR analysis highlighted strong lactate production 291 
(see Figure 5A). This is consistent with our observation of the media color change 292 
during culture of the two lines, indicating that the winner clone has a glycolytic type of 293 
glucose metabolism leading to a rapid medium acidification in culture. Because 294 
extracellular acidification can be detrimental for cell growth, we next asked if 168FARN 295 
were particularly sensitive to such growth conditions. We quantified medium 296 
acidification by seeding cells at different densities and measuring the extracellular pH 297 
after 3 days of culture (Figure 7A). As expected, we found that 4T07 cells acidify the 298 
medium faster and attain a lower pH during culture compared to 168FARN cells. 299 
Indeed, pH ranged from 6.94+/-0.005 (lowest density) to 6.79+/-0.003 (highest density) 300 
for the winner line and from 7.38+/-0.008 to 6.92+/-0.006 for 168FARN. To test whether 301 
4T07-mediated extracellular acidification influenced 168FARN growth, we set up a 302 
proliferation assay for 168FARN cells grown in medium conditioned by the low and the 303 
high density grown 4T07 cells. To control for the effect of pH in the conditioned media, 304 
we included a treatment in which the medium from 4T07 was buffered at pH 7.0 by 305 
sodium bicarbonate. These experiments revealed that the medium from the low density 306 
4T07 cells (pH 6.94) had no effect on 168FARN proliferation. In contrast, the medium 307 
from the high density 4T07 (pH 6.79) drastically decreased the 168FARN growth rate. 308 
Moreover, buffering the same medium at pH 7.0 restored the proliferative capacity of 309 
168FARN culture (Figure 7B). We conclude that the loser clone is indeed highly 310 
sensitive to medium acidification. Taken together our data suggest that the decrease 311 
in the growth rate of 168FARN observed in heterotypic conditions is triggered by 4T07 312 
mediated extracellular acidification. 313 

 314 
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Discussion  315 
Heterogeneity is a ubiquitous feature of tumors that influences growth and metastasis, 316 
and thus the potential for therapeutic success. Ecological interactions between 317 
subclones are key to the emergence of this heterogeneity, yet only few empirical 318 
studies have characterized the nature of these interactions or their underlying 319 
mechanisms. These include commensal (Kaznatcheev et al. 2019; Farrokhian et al. 320 
2020) and cooperative (Cleary et al. 2014) interactions in vitro, and how such 321 
interactions can drive tumor invasion (Chapman et al. 2014) and metastasis in vivo 322 
(Janiszewska et al. 2019; Naffar-Abu Amara et al. 2020).  323 

Our study extends previous work (Robinson and Jordan 1989; Marusyk et al. 2014; 324 
Archetti et al. 2015) by demonstrating that two cell lines derived from the same tumor 325 
exhibit a sophisticated relationship, whereby one (the ‘winner’) effectively farms the 326 
population of the other (the ‘loser’). We further identified key metabolites (b-327 
hydroxybutyrate and lactate) that regulate these interactions between the winning and 328 
losing clones. Similar to Archetti et al (2015), we found that exploitative clonal 329 
interactions evolve through time, but whereas these authors observed a frequency-330 
dependent change that could explain clonal coexistence, we were unable to detect this 331 
effect. Simple mathematical analysis within the framework of evolutionary game theory 332 
nevertheless shows that, when accounting for microenvironmental heterogeneity, our 333 
inferred parameter values are plausibly consistent with long-term clonal coexistence 334 
(Methods).   335 

Because our in vitro experiments simplify the diverse, complex interrelationships that 336 
predominate in spatially complex microenvironments, the parameter values we have 337 
inferred may not precisely translate to in vivo contexts. For example, the scenario of 338 
our experimental model, which depends on microenvironmental acidification by the 339 
winner clone, may be less relevant to micrometastases that are small enough to 340 
maintain physiological pH (De Palma et al., 2017; Beckman et al., 2020). On the other 341 
hand, there is an overwhelming consensus that in larger tumors (both primary and 342 
metastatic), neoangiogenesis produces abnormal, leaky vessels that give rise to poor 343 
oxygenation and acidic conditions (De Bock et al., 2011), consistent with our 344 
experimental system.  That paracrine signaling is responsible for the effects we 345 
observed between winner and loser cell lines suggests that the spatial arrangement of 346 
these cells could be crucial to their growth and relative frequencies in situ (Archetti et 347 
al 2015). The effect of spatial structure would depend on the typical distance that 348 
secreted molecules travel through the complex tumor microenvironment. Our results 349 
indicate that areas of contact or close proximity between the two subclones will grow 350 
faster and therefore come to dominate spatially isolated populations, producing what 351 
is effectively a mixed 4T07-168FARN ‘phenotype’. The actual spatial arrangement of 352 
these two subclones in the original tumor is unknown, but the authors of the study 353 
originally isolating these cell lines note that they may represent only a small sample of 354 
the tumor’s diversity (Dexter et al., 1978). A growing body of evidence suggests that 355 
single, site-specific biopsies may be of little use in quantifying spatial heterogeneity, 356 
due to the multiscale (local, regional, metastatic) nature of tumor evolution 357 
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(Amirouchene-Angelozzi et al., 2017). Computational modeling indicates that the 358 
range of cell-cell interaction and the mode of cell dispersal are crucial factors 359 
determining the pattern of intratumor heterogeneity and associated characteristics of 360 
tumor growth and evolutionary potential (Noble et al., 2020; Waclaw et al., 2015). While 361 
a comprehensive description of intra-tumoral ecological interactions is a daunting task, 362 
beyond the power of existing technology, a fuller understanding of their general 363 
features is essential for devising therapies aimed at rendering cancer a chronic, 364 
controllable disease (Gatenby & Brown, 2020; Viossat & Noble, 2021). 365 

We find that the complex interactions between the 4T07 and 168FARN cells are 366 
governed by paracrine signaling emanating from both clones. This mechanistic 367 
conclusion differs from the original observations reported by Miller et al (Miller et al., 368 
1988). Indeed, in the original publication the results concerning the inhibitory effect of 369 
4T07 conditioned media on 168 cells were inconclusive. This apparent discrepancy 370 
could be due to slightly different culture conditions used in the two sets of experiments. 371 
Indeed, the medium acidification due to the lactate release by the 4T07 that is 372 
responsible for slowing down the growth of 168 cells reaches the required threshold 373 
value only after prolonged culture (3-4 days under our experimental conditions). It is 374 
thus possible that in the original report the culture time and/or the cell density were 375 
insufficient for the clear visualization of the paracrine effect of the winners on the losers. 376 
Moreover, Miller et al. did not investigate the paracrine effect exerted by the 168 on 377 
the 4T07 cells. Our results are the first to show the reciprocal effects of both cell lines 378 
on each other, thus highlighting the complexity of their mutual interactions. 379 

We have identified a ketone body, b-hydroxybutyrate, which is produced by loser cells 380 
and acts to increase the growth rate of winner cells. Mechanistically, the competitive 381 
advantage afforded by b-hydroxybutyrate to the winner clone appears to be mediated 382 
through the HDAC-controlled activation of a genetic program that boosts its 383 
proliferation. Ketone bodies are small lipid-derived molecules, physiologically 384 
produced by the liver and distributed via the circulation to metabolically active tissues, 385 
such as muscle or brain (Newman and Verdin, 2017), where they serve as a glucose-386 
sparing energy source in times of fasting or prolonged exercise. Recently, several 387 
studies reported that cell types such as adipocytes, intestinal stem cells or cancer cells 388 
originating from colorectal carcinoma or melanoma can also produce β-389 
hydroxybutyrate (Cheng et al., 2019; Grabacka et al., 2016; Huang et al., 2017; 390 
Shakery et al., 2018). Our results identifying b-hydroxybutyrate as a signaling molecule 391 
involved in intra-tumoral clonal interactions fall into the general category of these novel 392 
roles for ketone bodies in cell communication. 393 

However, the link between ketone bodies and tumor development remains 394 
controversial. On the one hand, it was shown that ketonic diet slows down tumor 395 
development in brain cancer mice models (Poff et al., 2013, 2014). On the other hand, 396 
our results together with other recent data (Huang et al., 2017) suggest that b-397 
hydroxybutyrate may favor breast cancer progression. One unexplored possibility to 398 
explain these contradictory observations is that this ketone body can be used 399 
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differently by different cancer cell types, for example as a carbohydrate supply or as a 400 
HDAC inhibitor, ultimately leading to cancer-type and context specific response. 401 

In our experimental model, b-hydroxybutyrate increases winner cells proliferation by 402 
activating a genetic program through HDAC inhibition. Among the genes we 403 
discovered to be activated by the ketone body, IL-11 is an interleukin that displays a 404 
pro-proliferative activity (Grivennikov, 2013). Interestingly, in a distinct breast cancer 405 
cell cooperation model, sub-clonal expression of IL-11 favours the expansion not only 406 
of cells that express it, but also of other cellular sub-clones (Marusyk et al., 2014). This 407 
suggests that IL-11 acting in either paracrine or autocrine fashion could lead, 408 
respectively, to cooperation or to competition between subclones, thus participating 409 
actively in the selection and evolution of tumor heterogeneity.  410 

Overall, our experimental data therefore suggest a model in which the winner line 411 
stimulates the production of and benefits from a compound delivered by the loser line 412 
and, conversely, the loser is negatively influenced by the presence of winners through 413 
secretion of another compound.  414 

We note that while in artificially maintained conditions of non-constrained growth (in 415 
culture) the losers are eventually eliminated, many additional selective pressures that 416 
may affect clonal fitness operate in vivo. These involve cellular response to physical 417 
cues due to crowding (Vishwakarma and Piddini, 2020) and interactions with the 418 
extracellular matrix (Lu et al., 2012) as well as response to signaling from the stroma, 419 
including its inflammatory and immune components (Quail and Joyce, 2013). These 420 
elements are expected to influence the outcome of the direct interactions between the 421 
tumoral clones and may change the nature of their ecological interaction from net 422 
exploitation (in vitro) to mutual benefit (in vivo). Future study should evaluate whether 423 
parasitic effects are observed in vivo, and determine the extent to which these cell-cell 424 
interactions mediate important tumor characteristics, including growth, drug 425 
resistance, and metastatic behavior.  426 
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Tables 570 
 571 
Parameter	 Phase(s)	 Inferred	

value	
Interpretation	

𝑟!,#	 1	 0.044	 168	growth	rate	in	phase	1	(per	hour)	
𝑟$,#	 1	 0.031	 4T07	growth	rate	in	phase	1	(per	hour)	
𝑟!,%	 2	and	3	 0.073	 168	intrinsic	growth	rate	in	phase	2	(per	hour)	
𝑟$,%	 2	 0.102	 4T07	intrinsic	growth	rate	in	phase	2	(per	

hour)	
𝑟$,& 3	 0.04	 4T07	intrinsic	growth	rate	in	phase	3	(per	

hour)	
𝑎	 2	and	3	 −0.004	 Density-dependent	effect	of	168	on	168	
𝑏	 2	and	3	 −0.010	 Density-dependent	effect	of	4T07	on	168	
𝑐	 2	and	3	 0.000	 Density-dependent	effect	of	168	on	4T07	
𝑑 2	and	3	 −0.008	 Density-dependent	effect	of	4T07	on	4T07	

𝐾! = −𝑟!,%/𝑎	 2	and	3	 17	 168	carrying	capacity,	relative	to	initial	
population	size	

𝐾$ = −𝑟$,%/𝑑	 2	 13	 4T07	carrying	capacity,	relative	to	initial	
population	size	

𝛽 = 𝑏/𝑎	 2	and	3	 2.4	 Effect	of	4T07	on	168,	relative	to	effect	of	168	
on	168	

𝛾 = 𝑐/𝑑	 2	and	3	 0.0	 Effect	of	168	on	4T07,	relative	to	effect	of	4T07	
on	4T07	

Table 1. Mathematical model parameter values inferred from data. The 572 
interaction terms 𝑎, 𝑏, 𝑐 and 𝑑 are relative to population size, which is, in turn, relative 573 
to initial population size. 574 

 575 

Figure Legends 576 

 577 

Figure 1 Mutual impacts on subclonal growth  578 

 A: 168FARN and 4T07 parental cells were transduced either with an empty retroviral 579 
vector (168P and 4T07P) or with labelled with a GFP-encoding retrovirus (168G and 580 
4T07G). Cells were seeded in triplicate in 6-well plates at a density of 50 000 cells/well 581 
and cultured for the indicated times before harvesting and counting. B: 105 cells were 582 
seeded at a 1:1ratio in homotypic (parental and GFP expressing derivative of the same 583 
cell line) or heterotypic (different cell lines, one expressing GFP) co-cultures and 584 
harvested and replated at the initial densities (105 cells/plate) at indicated times. The 585 
ratios of GFP-labelled to unlabelled cells were estimated by flow cytometry. The results 586 
represent data from 3 independent experiments and are shown as mean +/- SEM. 587 

 588 
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Figure 2. Normalized growth curves of homotypic and heterotypic mixes of 589 
subclones.  590 

A: The GFP fluorescence of the labeled subclone was measured by time-lapse 591 
microscopy. Cultures were seeded with 105 cells per well. Log-transformed data were 592 
normalized by fitting regression lines and dividing by the inferred value at 24 hours. 593 
Vertical dashed lines mark the start of phase 2 (45 hours) and phase 3 (72 hours). B: 594 
Frequency dynamics. Curves obtained by combining the results of two competition 595 
experiments: one with labelled 4T07 and the other with labelled 168. The initial 4T07 596 
proportion was 25% in both cases. The vertical axis is logit-transformed so that the 597 
slope of each curve is equal to the difference in net growth rates at the corresponding 598 
time (see Methods). Dotted regression lines are shown to draw attention to the change 599 
of slope. C: Normalized growth curves according to mathematical model with 600 
parameter values inferred from data. The model is described in Methods and 601 
parameter values are given in Table 1. D: Frequency dynamics according to 602 
mathematical model with parameter values inferred from data. 603 

 604 
Figure 3. Mean net growth rate differences according to mathematical model and 605 
experimental data. 606 
A: Inferred mean net growth rates and mean net growth rate differences (gain 607 
functions) over different time periods, corresponding to different phases within 608 
competition assays. Columns correspond to different start times and rows to different 609 
end times of the phase(s) under consideration. For example, the centre panel labelled 610 
‘Phase 2’ corresponds to the period between 45 and 72 hours. The initial 4T07 611 
proportion (horizontal axis) is measured at the start of the respective period and the 612 
growth rate (vertical axis) is averaged over the period. Phase 1 data are from time-613 
lapse microscopy. Other data points in the first column are from serial competition 614 
assays, such that each point corresponds to the slope of a thin grey line in B. Data 615 
points in the middle column are obtained from the competition assay data by adjusting 616 
for exponential growth during phase 1 (see Methods). Curves are the results of our 617 
mathematical model (Methods) with parameter values inferred from data (Table 1). B: 618 
4T07 frequency dynamics across serial competition assays. Thick solid lines are 619 
averaged data (means of replicates with similar initial 4T07 proportions) and thick 620 
dashed lines are results of our mathematical model with parameter values inferred 621 
from data. Thin grey lines are data for individual experiments. A total of 105 cells were 622 
seeded in co-cultures and harvested and replated as indicated. 4T07 parental cells 623 
were transduced either with an empty retroviral vector (4T07P) or labelled with a GFP-624 
encoding retrovirus (4T07G). The ratios of GFP to unlabelled cells were estimated by 625 
flow cytometry.  C:  Logit-transformed 4T07 frequency dynamics. This panel shows 626 
the same data as B but with a logit-transformed vertical axis so that the slope of each 627 
curve is equal to the mean net growth rate difference (the gain function, as described 628 
in Methods and Supplementary figure 7). 629 

 630 
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Figure 4. Soluble factor secreted by 168FARN cells accelerates proliferation of 631 
the 4T07 cells 632 

A: 4T07 cells were grown for 3 days at which point their medium was either left 633 
unchanged, or replaced by either 168FARN-conditioned medium or fresh medium, as 634 
indicated. Cells were collected 24 hrs later and counted. Cell numbers at day 3 were 635 
arbitrarily set at 1 in order to include the data from 3 independent experiments. B: The 636 
experiment was performed as in A. but the medium conditioned by 168FARN cells was 637 
fractionated by membrane ultrafiltration with a 3 KDa molecular cutoff. After 638 
complementing the low and the high MW fractions, respectively, with 10% serum and 639 
DMEM, the media were used to grow the 4T07 cells, as in A. The two fractions were 640 
also combined as a control. ns: not significant, * p<0.05, **p<0.01, ***p<0.001, all 641 
compared to Day 4 point. 642 

 643 

Figure 5. Identification of soluble metabolites altering the heterotypic growth 644 
dynamics . 645 

A: Superimposition of the high-field region of representative 1D proton NMR spectra 646 
recorded at 700 MHz, 293 K and pH7 on samples of culture media collected after 647 
growing 40T7 cells (1)  or 168FARN cells (2) for 3 days or of fresh cell culture medium 648 
(3). The arrows indicate the characteristic resonance of Lactate and b-hydroxybutyrate. 649 
The insert displays a zoom in this spectral region, revealing the H-alpha resonance of 650 
the b-hydroxybutyrate. For all spectra, peak intensities have been normalized on the 651 
intensity of the DSS resonance added as internal reference. B: Concentration of b-652 
hydroxybutyrate from fresh medium and from conditioned medium from 168FARN or 653 
4T07 was quantified. C: Commercially available b-hydroxybutyrate at indicated 654 
concentrations was added to 4T07 cell culture at day 3 an the growth allowed to 655 
proceed for an additional 24 hrs. All points are compared to Day 4 point. D: 168FARN 656 
alone (homotypic) or in 1:1 co-culture with 4T01 cells were grown for 4 days and 657 
extracellular b-hydroxybutyrate was measured enzymatically as in 4B. E: 168FARN 658 
and 4T07 cells were cultured individually for 3 days. The medium was then replaced 659 
by the homotypic or heterotypic conditioned one, as indicated, and the culture allowed 660 
to continue for an additional 24 hrs. The b- hydroxybutyrate concentration was 661 
quantified at day 4. ns: not significant, * p<0.05, **p<0.01, ***p<0.001 662 

 663 

Figure 6. Extracellular b-hydroxybutyrate leads to increased H3K9 histone 664 
acetylation and altered gene expression in 4T07 cells 665 

A: Expression levels of the slc16A family transporter genes in 4T07 were analyzed by 666 
RT-QPCR. Expression of HPRT served as normalization of the data. B: H3K9 histone 667 
acetylation was analyzed by immunblotting of extracts of 4T07 cells grown for 24 hrs 668 
in control, 168-conditioned medium or medium complemented with b-hydroxybutyrate 669 
or with butyrate, as indicated. Total histone 3 (H3) abundance served as normalization 670 
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control.C: 4T07 cells cultured for 3 days were incubated for 8 hours with 4T07- (Ctrl) 671 
or 168- conditioned medium or purified b-hydroxybutyrate (10mM) added to fresh 672 
medium. Total RNAs were purified and subjected to RT-QPCR with specific primers 673 
for LCN2 and IL-11. **p<0.01, ***p<0.001.  674 

 675 

Figure 7 Impact of extracellular pH on the loser clone growth. 676 

A: 168FARN and 4T07 cells were seeded at the indicated initial densities in 6-well 677 
plates and cultured for 3 days. Culture media were removed, immediately covered with 678 
a layer of mineral oil to prevent oxidation and the pH was measured. B: 105 168FARN 679 
cells were grown for 3 days. Medium was then replaced by conditioned media from 680 
cultures grown at low or high density, as indicated. Where indicated, 5mM NaCO3 was 681 
used to buffer the 4T07 conditioned medium to pH7. 24 hours later cells were 682 
harvested and counted. Data are from three independent experiments conducted in 683 
triplicates. ns: not significant, ***p<0.001. 684 

 685 

Supplementary Figure 1 686 

A and B: Growth dynamics of subclones under homotypic and heterotypic 687 
conditions. 105 cells were seeded at a 3:1 (A) or 1:4 (B) ratios in homotypic (parental 688 
and GFP expressing derivative of the same cell line) or heterotypic (different cell lines, 689 
one expressing GFP) co-cultures and harvested and replated at the initial densities 690 
(105 cells/plate) at indicated times. The ratios of GFP-labelled to unlabelled cells were 691 
estimated by flow cytometry. The results represent data from 3 independent 692 
experiments and are shown as mean +/- SEM. 693 

 694 

Supplementary Figure 2 695 

A: Apoptosis quantification of subclones under homotypic and heterotypic 696 
conditions. A total of 105 cells were seeded. 168G cells were co-cultured with either 697 
the 168P (homotypic) or 4T07P (heterotypic) cells at a 1:1 ratio for 4 days and 698 
harvested. Apoptosis was quantified by flow cytometry following Annexin-V staining. 699 
ns: not significant. B: S phase quantification of subclones under homotypic and 700 
heterotypic conditions. A total of 105 cells were seeded. 168G cells were co-cultured 701 
with either the 168P (homotypic) or 4T07P (heterotypic) cells at a 1:1 ratio for 4 days. 702 
Before harvesting at day 4 cells were labelled by a 2hr pulse of EdU and the fraction 703 
of cells in the S phase was determined by flow cytometry. *p<0.05, **p<0.01 704 

 705 

Supplementary Figure 3 706 

A: Growth dynamics of subclones at low and high density. Experiments were 707 
performed as in Figure 2B. Cells were grown in heterotypic conditions at a starting ratio 708 
of 1:1. Cells were seeded either at low density (50K) or high density (150k), diluted 709 
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and quantified every 3 days. At low density, cells do not reach confluence before 710 
replating. The results represent data from 3 independent experiments and are shown 711 
as mean +/- SEM. 712 

 713 

Supplementary Figure 4 714 

A: Expression levels of the slc16A family transporter genes in 168FARN . RT-715 
QPCR analysis was performed on 168FARN RNA for Mct2, Mct1, Mct3 and Mct4 716 
genes and normalized to HPRT. Relative expression levels were compared to Mct2. 717 
B: Slc16A1 expression in both subclones. Slc16A1 RNA levels were monitored by 718 
RT-QPCR, normalized with HPRT and adjusted relative to levels in 168FARN cells 719 
cells. C: Influence of Slc16A1 expression by b-hydroxybutyrate. Experiment was 720 
performed as in Figure 5B. Slc16A1 RNA levels were quantified as in A and adjusted 721 
relative to levels in control condition. ***p<0.001 722 

 723 

Supplementary figure 5.  724 

A: Mean net growth rate difference (gain function) versus initial 4T07 proportion 725 
in phases 1 and 2 (purple) and phases 1, 2 and 3 (green). Each point corresponds 726 
to the outcome of a competition assay. Regression lines are shown with 95% 727 
confidence intervals. B: Mean net growth rate difference versus initial 4T07 728 
proportion in phase 2 (purple) and phases 2 and 3 (green). This data set was 729 
obtained from the data shown in A by adjusting for exponential growth in phase 1 (see 730 
Methods). C: The same as A but including results for the first round of 731 
competition assays (days 0-3). First-round measurements were excluded from 732 
analyses as they were unusually variable and unreliable due to an experimental 733 
artefact (see Methods). D: The same as B but including results for the first round 734 
of competition assays (days 0-3). 735 

 736 

Supplementary figure 6. Relationship between population dynamics and net 737 
growth rates. 738 

The net growth rate of each cell type (right column) is the derivative of its log-739 
transformed growth curve (left column). A: Mathematical model dynamics. From the 740 
dynamical model, net growth rates can be found precisely by evaluating differential 741 
equation terms. The model was parameterized with values inferred from data (Table 742 
1) and initiated with a 3:1 ratio of 168 to 4T07. B: Empirical dynamics. From time-743 
lapse data, net growth rates can be approximated as local gradients (difference 744 
quotients). In this example, we estimated net growth rates from smoothed growth 745 
curves by calculating difference quotients across a 5-hour span. Smoothed growth 746 
curves (not shown) were obtained by computing running medians with a 5-hour span. 747 
Since we did not use heterotypic time-lapse data for parameter inference, the 748 
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resemblance between the two rows of this figure contributes to validating our model. 749 
The data in B is the same as in Figure 2A and 2B. 750 

 751 

Supplementary figure 7. Mathematical relationships relevant to our methods. 752 

The diagram illustrates several equivalent ways of calculating the mean growth rate 753 
difference (gain function, blue) from the parameterized dynamical model (red). Also 754 
shown is our method of calculating the gain function from competition assay data 755 
(orange). 756 

 757 

Methods 758 

Cell culture  759 

4T07 and 168FARN were a kind gift of Dr Robert Hipskind. All cell lines were cultured 760 
in Dulbecco’s modified Eagle medium containing 10% fetal bovine serum, 100 ng/mL 761 
streptomycin, and 100 U/mL penicillin at 37 ºC with 5% CO2. 762 

For co-culture experiments a mixture of GFP-labelled and parental cells (empty-vector 763 
transduced) cells were seeded at the final density of 105 cells/well in 6-well plates, 764 
except where mentioned otherwise. Upon reaching confluence (3-4 days) they were 765 
harvested, diluted to the original density and replated. The remaining fraction was 766 
analyzed by flow cytometry.  767 

 768 

Immunoblot Analysis 769 

Cells were lysed in boiling Laemmli buffer supplemented with protease inhibitors, then 770 
sonicated and complemented with DTT. Protein concentration was determined by BCA 771 
(Thermo Scientific) assay. Fifteen to twenty micrograms of total protein were loaded 772 
onto SDS-PAGE gels and transferred onto nitrocellulose membranes. The membrane 773 
was blocked with TBST (1× TBS with 0.1% Tween 20) + 5% milk at room temperature 774 
for 1 h and incubated with primary antibody and then with horseradish peroxidase 775 
(HRP)-coupled secondary antibody (Amersham, Piscataway, NJ). Activity was 776 
visualized by electrochemiluminescence. Antibodies used in this study are anti Histone 777 
H3 (Cell signaling Technology #9717) and anti- Acetyl-Histone H3 (Lys9) (Cell 778 
signaling Technology #9649). 779 

 780 

Reverse Transcription and Real-Time PCR  781 

Total mRNA was isolated using a RNeasy mini kit (Qiagen, Germantown, MD, USA). 782 
Reverse transcription was performed with random hexamers and M-MLV Reverse 783 
Transcriptase (Invitrogen). Real-time PCR was performed in triplicates with LC 784 
FastStart DNA Master SYBR Green I on a LightCycler rapid thermal cycler system 785 
(Roche Diagnostics, Mannheim, Germany), according to the manufacturer's 786 
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instructions. Housekeeping gene HPRT was used for normalization. Primers 787 
sequences are available upon request. 788 

 789 

Time-lapse microscopy  790 

Time-lapse microscopy was performed at 37 ºC with 5% CO2, with images taken at 791 
45-minute intervals using an inverted Zeiss Axio-Observer microscope. The images 792 
were processed and analyzed using ImageJ software. 793 

 794 

EdU staining 795 

Cells were incubated with 10µM EdU for 2 hours, harvested and processed using the 796 
Click-iT™ EdU Alexa Fluor™ 647 Flow Cytometry Assay Kit (ThermoFisher Scientific 797 
#C10424) following manufacturer instructions. Labeled cells were then analyzed on a 798 
FACSCalibur flow cytometer using CellQuestPro software (BD Biosciences). 799 

 800 

Apoptosis quantification 801 

To determine the percentage of apoptotic cells with externalized phosphatidylserine 802 
(PS), adherent and floating cells were collected and labeled with the Annexin V-Cy3 803 
Apoptosis Detection Kit (Abcam, Cambridge, UK, #ab14143) according to the 804 
manufacturer's instructions. Labeled cells were then analyzed on a FACSCalibur flow 805 
cytometer using CellQuestPro software (BD Biosciences). 806 

 807 

b-hydroxybutyrate quantification 808 

b-hydroxybutyrate concentration was measured by an enzymatic kit (Sigma-Aldrich 809 
MAK041) following the manufacturer instructions. Briefly, β-hydroxybutyrate present in 810 
the culture medium was determined by a coupled enzyme reaction, resulting in a 811 
colorimetric (450 nm) product, proportional to the β-hydroxybutyrate concentration. 812 
The absorbance was measured on a spectrophotometer. 813 

 814 

Medium fractionation 815 

In order to separate low molecular weight molecules from the conditioned culture 816 
medium, 5 to 10 ml were loaded on a Vivaspin Turbo 15 PES, 3,000 MWCO column 817 
(Sartorius VS15T91) and centrifuged at 4000G for 30 minutes following the 818 
manufacturer instructions. Both fractions were then used for subsequent experiments 819 
and RMN analysis. 820 

 821 

RMN analysis 822 
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NMR experiments were recorded at 293K and pH 7 on an AVANCE III BRUKER 823 
spectometer operating at 700 MHz (proton frequency), using a Z-gradient shielded TCI 824 
1H-13C-15N cryoprobe. Fully relaxed 1D 1H spectra were aquired with the regular 1D 825 
NOESY, using 5s as relaxation delay. The samples consisted on 1.5 mL of cell media 826 
(fresh or conditioned by cell culture), lyophilized and dissolved in 500 µL of deuterated 827 
phosphate buffer (50 mM, pH 7). DSS (EURISOTOP©, final concentration: 0.5 mM) 828 
was added as internal reference for chemical shift referencing and as a concentration 829 
standard for spectra normalization. The assignment of the 1H resonances of the 830 
compound of interest in this study (Lactate, b-hydroxybutyrate) was based on chemical 831 
shifts reported on the litterature (1) and further confirmed using 2D [1H,1H] (TOCSY) 832 
and [1H-13C] (HSQC, HSQC-TOCSY) NMR spectroscopy. 833 

 834 
Statistical analysis 835 
Experiments were repeated at least three times. Data are presented as mean ± SEM. 836 
An Independent Student’s t test was performed to analyze the assay results; a two-837 
tailed Student’s t test was used to compare the intergroup differences. Significance 838 
was accepted for values where P≤0.05 (*), P≤0.01 (**), P≤0.001 (***). 839 

Overview of mathematical methods 840 
Our aim is to determine the general nature of the evolutionary dynamics in a form 841 
that can be readily compared to other systems (as opposed to generating 842 
quantitative predictions for our particular system). Accordingly, we chose to fit a 843 
simple, standard model to each distinct phase of the dynamics, such that the inferred 844 
parameter values have straightforward ecological interpretations. A key advantage of 845 
our method is that it is generic; in principle, the same method can be applied to any 846 
experimental evolution set-up with two competing populations of cancer cells, 847 
bacteria, or other entities. 848 
 849 
This mathematical approach is in the same vein as that of Kaznatcheev (2017) and 850 
Kaznatcheev et al. (2019) but with three important differences. First, our method can 851 
accommodate a smaller data set and is thus more economical because we mostly 852 
rely on measurements of initial and final proportions in competition assays, such as 853 
can be determined via flow cytometry, rather than extensive time-lapse image 854 
analysis. Second, whereas Kaznatcheev (2017) and Kaznatcheev et al. (2019) 855 
confine their analysis to exponential or logistic growth phases, we also examine 856 
phases in which cell populations exhibit non-logistic dynamics. Third, because we 857 
consider non-logistic growth phases, we use a density-dependent rather than a 858 
frequency-dependent model. 859 
 860 
We note that to make quantitative predictions of outcomes in different scenarios, we 861 
would require a different type of model with equations describing the dynamics of 862 
paracrine factors mediating clonal interactions. This more complicated model would 863 
include several more parameters and design choices (for example, how each 864 
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paracrine factor’s production rate and its effects vary with its concentration) and 865 
would thus be non-identifiable in the absence of detailed paracrine concentration 866 
measurements. Obtaining such measurements remains as a challenge for future 867 
studies. 868 
 869 
Definitions and mathematical relationships 870 
We define the intrinsic growth rate as the exponential growth rate in the absence of 871 
interactions. In the Lotka-Volterra differential equations, this parameter is multiplied 872 
by the population size of the respective type. The intrinsic growth rate is the limit of 873 
the net growth rate as the population sizes approach zero (when interaction terms 874 
are negligible). 875 
 876 
We define the net growth rate as the actual rate of change of the population size (i.e. 877 
the time derivative), which is the sum of the basic growth rate and interaction terms.  878 
 879 
Supplementary figures 6 and 7 illustrate some of the mathematical relationships 880 
relevant to our methods. 881 

Dynamical models and inference from homotypic growth curves 882 
We describe the exponential phase 1 dynamics as 883 
 884 

𝑑𝐿
𝑑𝑡 = 𝐿𝑟!,#, 		

𝑑𝑊
𝑑𝑡 = 𝑊𝑟$,#, 885 

 886 
where 𝐿	(loser) and 𝑊	(winner) are the population sizes of 168 and 4T07, 887 
respectively, and 𝑟!,# and 𝑟$,# are the respective growth rates. 888 
 889 
In phase 2, we assume a density-dependent competitive Lotka-Volterra model, 890 
parameterized in terms of intrinsic growth rates 𝑟!,% and 𝑟$,% and interaction terms 𝑎, 891 
𝑏, 𝑐 and 𝑑: 892 
 893 

𝑑𝐿
𝑑𝑡 = 𝐿(𝑟!,% + 𝑎𝐿 + 𝑏𝑊), 		

𝑑𝑊
𝑑𝑡 = 𝑊(𝑟$,% + 𝑐𝐿 + 𝑑𝑊). 894 

 895 
In the homotypic case, terms 𝑏𝑊 and 𝑐𝐿 vanish and the phase 2 model is equivalent 896 
to logistic growth. We combine the two models and fit to the normalized time-lapse 897 
data for the homotypic growth curves using least-squares with R package deSolve 898 
(Soetaert et al., 2010) to infer the values of 𝑟!,#, 𝑟$,#, 𝑟!,%, 𝑟$,%, 𝑎 and 𝑑. 899 
 900 
In phase 3, we assume the same model as in phase 2 except we replace 𝑟$,% by 𝑟$,& 901 
to account for the change in the 4T07 net growth rate (equivalent to adding a density-902 
dependent death rate). 903 
 904 
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Inferring between-type interaction terms 905 
To infer the interaction parameters 𝑏 and 𝑐 we need data that covers a wide range of 906 
proportions of the two cell types. Since our time-lapse data is limited to only a few 907 
initial conditions, we fit the model to the outcomes of serial competition assays, and 908 
we employ the heterotypic time-lapse data for validation only. First we define 909 
 910 

𝑙 =
𝐿

𝑊 + 𝐿 , 		𝑤 =
𝑊

𝑊 + 𝐿 , 		𝑠 = log
𝑤
𝑙 = log

𝑤
1 − 𝑤 = logit(𝑤). 911 

 912 
The time derivative of the 𝑠 is then equal to the net growth rate difference, which in 913 
phase 2 is 914 
 915 

𝑑𝑠
𝑑𝑡 = 𝑟$,% − 𝑟!,% + (𝑑 − 𝑏)𝑊 + (𝑐 − 𝑎)𝐿. 916 

 917 
In the limit 𝑤 → 1, the final term (𝑐 − 𝑎)𝐿 is negligible and we can obtain 𝑏 in terms of 918 
'(
')

, 𝑊, and parameters whose values we have already inferred, as follows: 919 
 920 

𝑑𝑠
𝑑𝑡 = 𝑟$,% − 𝑟!,% + (𝑑 − 𝑏)𝑊	 921 

⇒ 	𝑏 =
𝑑𝑠
𝑑𝑡 − 𝑟$,% + 𝑟!,%

𝑊 + 𝑑. 922 

 923 
To obtain 𝑊, we note that in the limit 𝑤 → 1, 924 
 925 

𝑑𝑊
𝑑𝑡 = 𝑊(𝑟$,% + 𝑑𝑊), 926 

 927 
which is the logistic differential equation with solution 928 
 929 

𝑊(𝑡) =
𝑊(𝑡#)𝑟𝑒*)

𝑟 −𝑊(𝑡#)(𝑒*) − 1)𝑑
, 930 

 931 
where 𝑟 = 𝑟$,% and 𝑡# is the time at which phase 2 begins. We can thus use our 932 
previously inferred parameter values to obtain 𝑊(𝑡) at every time 𝑡 in phase 2 (note 933 
that if there were not an analytical solution then we could have solved the equation 934 
numerically). 935 
 936 
Since	𝑊 and '(

')
 are linearly related, we can replace them by their mean values: 937 

 938 
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mean E𝑑𝑠𝑑𝑡F − 𝑟$,% + 𝑟!,%
mean(𝑊) + 𝑑 =

mean E𝑑𝑠𝑑𝑡F − 𝑟$,% + 𝑟!,%

meanG
𝑑𝑠
𝑑𝑡 − 𝑟$,% + 𝑟!,%

𝑏 − 𝑑 H

+ 𝑑 = 𝑏. 939 

 940 
Using the mean values to calculate 𝑏 is convenient as our competition assays reveal 941 
only the initial and final values of 𝑠. Specifically, we take the means in the interval 942 
[𝑡#, 	𝑡%], where 𝑡% is the time at which phase 2 ends and 943 
 944 

mean K
𝑑𝑠
𝑑𝑡L =

𝑠(𝑡%) − 𝑠(𝑡#)
𝑡% − 𝑡#

=
∆𝑠
∆𝑡. 945 

 946 
It remains only to obtain the value of the above expression – known as the gain 947 
function – in the limit 𝑤(𝑡#) → 1. From competition assay data, we can immediately 948 
obtain	𝑠(𝑡%) = log +()!)

#.+()!)
 for each value of 𝑠(0) = log +(/)

#.+(/)
. To infer 𝑤(𝑡#) and 𝑠(𝑡#), 949 

we need to adjust for the exponential growth of both cell types during phase 1: 950 
 951 

𝑠(𝑡#) = 𝑠(0) + 𝑡#(𝑟$,% − 𝑟!,%) 952 
⟹ logitP𝑤(𝑡#)Q = logitP𝑤(0)Q + 𝑡#(𝑟$,% − 𝑟!,%) 953 

⟹𝑤(𝑡#) = logit.#PlogitP𝑤(0)Q + 𝑡#P𝑟$,% − 𝑟!,%QQ. 954 
 955 
We thus obtain the values of 𝑠(𝑡#) and 𝑤(𝑡#) in each competition assay. Finally, we 956 
determine by linear regression the relationship between ∆𝑠/∆𝑡 and 𝑤(𝑡#) 957 
(Supplementary figure 5B) and, from the equation of the regression line, infer the 958 
value of ∆𝑠/∆𝑡 in the limit 𝑤(𝑡#) → 1. We then have everything required to infer the 959 
value of 𝑏. By an analogous method (switching 𝐿	and 𝑊, 𝑏	and 𝑐, and 𝑎	and 𝑑) we 960 
also infer the value of 𝑐. 961 
 962 
Excluding results of first-round competition assays 963 
 964 
In our regression to determine the relationship between ∆𝑠/∆𝑡 and 𝑤(𝑡#), we 965 
excluded data from the first round of competition assays (days 0 to 3 in Figures 3B 966 
and 3C) because these measurements were unusually variable, and this variance 967 
was most likely an experimental artefact. Specifically, setting up the initial experiment 968 
took substantially longer than carrying out subsequent replatings as additional steps 969 
were required before seeding the cells. Since cells were kept for longer in 970 
suspension before the first round, they will have experienced more stress and 971 
potentially mortality. This means that results of the first round of competition assays 972 
are likely to be less reliable than results of subsequent rounds. For completeness, 973 
Supplementary Figures 5C and 5D show linear regression applied to the entire data 974 
set, including the first round. 975 
 976 
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Carrying capacities 977 
To find carrying capacities, we note that the phase 2 model can alternatively be 978 
parameterized as 979 
 980 

𝑑𝐿
𝑑𝑡 = 𝐿𝑟!,% K1 −

𝐿 + 𝛽𝑊
𝐾!

L , 		
𝑑𝑊
𝑑𝑡 = 𝑊𝑟$,% K1 −

𝛾𝐿 +𝑊
𝐾$

L, 981 

 982 
where the parameters are calculated as in Table 1. The carrying capacities 𝐾$ and 983 
𝐾! are the upper limits approached by the population sizes of 𝑊 and 𝐿, respectively, 984 
during phase 2. 985 
 986 

Potential for coexistence in vivo 987 
In a growing tumor, we expect cell-cell competition to be less than in our in vitro 988 
experiments, because, in the former, resources are continually replenished and 989 
waste materials removed by the host circulatory system. The evolutionary dynamics 990 
will then mostly depend on the difference in intrinsic growth rates and interactions 991 
mediated by diffusible factors. Furthermore, during tumor growth, the dynamics may 992 
be better described by a frequency- rather than a density-dependent model. We can 993 
then describe the evolutionary dynamics within the framework of evolutionary game 994 
theory using the payoff matrix 995 
 996 

K𝛽! − 𝛾 𝛼! − 𝛾
𝛽$ 𝛼$

L, 997 

 998 
where 𝛼! , 𝛼$ < 0 denote the harm inflicted by 𝑊 on 𝐿 and 𝑊, respectively; 𝛽! , 𝛽$	 >999 
0 are the benefits bestowed by 𝐿 to 𝐿 and 𝑊, respectively; and 𝛾 > 0 is the difference 1000 
between the intrinsic exponential growth rates. The relative values of the entries in 1001 
the payoff matrix determine which game (for example, prisoner’s dilemma or hawk-1002 
dove) is equivalent to the evolutionary dynamics. 1003 
 1004 
The parameter values inferred for phase 2 of the competition assays imply 1005 
 1006 

𝛽$	 > 𝛽! − 𝛾 > 𝛼$ > 𝛼! − 𝛾, 1007 
 1008 
in which case the evolutionary dynamics are equivalent to a prisoner’s dilemma 1009 
game for which 𝑊 is the only evolutionarily stable strategy (ESS). This means that 𝑊 1010 
(4T07) can invade and stably replace a population of 𝐿 (168). 1011 
 1012 
If instead 𝛼! − 𝛾 > 𝛼$ then the payoff matrix defines a hawk-dove game that permits 1013 
coexistence. In this scenario, 𝑊 harms itself more than it harms 𝐿, and this difference 1014 
outweighs 𝑊’s higher intrinsic growth rate. This could happen, for example, if harmful 1015 
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factors produced by 𝑊 imperfectly diffuse, so that 𝑊 cells experience a higher 1016 
concentration than 𝐿 cells. At the mixed ESS, the 𝑊 proportion is 1017 
 1018 

𝛼$ − 𝛼! + 𝛾
𝛼$ − 𝛼! + 𝛽! − 𝛽$

. 1019 

 1020 
However, if additionally 𝛽! − 𝛽$ > 𝛾 (so that 𝐿 benefits itself more than it benefits 𝑊, 1021 
and this difference outweighs 𝑊’s higher intrinsic growth rate) then coexistence 1022 
again becomes impossible as the game again becomes a prisoner’s dilemma but 1023 
with 𝐿 as the ESS. 1024 
 1025 
In a resource-poor environment, we might describe the evolutionary dynamics using 1026 
the payoff matrix 1027 
 1028 

K 𝛽! − 𝛾 𝛼! − 𝛾
𝛽$ − 𝛿 𝛼$ − 𝛿L, 1029 

 1030 

where 𝛿 is the reduction in 𝑊’s intrinsic growth rate due to the degraded environment 1031 
(as inferred for phase 3 of our 96-hour competition assays). This scenario favours 𝐿 1032 
and suggests that 𝐿	may be the ESS in a resource-poor environment, such as hypoxic 1033 
regions within a tumor. 1034 


