

City, University of London Institutional Repository

Citation: Jansen, S., Brinkkemper, S. and Finkelstein, A. ORCID: 0000-0003-2167-9844
(2008). Component Assembly Mechanisms and Relationship Intimacy in a Software Supply
Network. Paper presented at the EurOMA 2008, tradition and innovation in operations
management: connecting past and future, 15-18 Jun 2008, Groningen, Netherlands.

This is the accepted version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26441/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

 1

C O MPO N E N T ASSE M B L Y M E C H A NISMS A ND R E L A T I O NSH IP IN T I M A C Y
IN A SO F T W A R E SUPPL Y N E T W O R K

Slinger Jansen and Sjaak Brinkkemper

Department of Information and Computing Sciences
U trecht University

Padualaan 14, De Uithof
3584CH U trecht

{s.jansen, s.brinkkemper}@cs.uu.nl

Anthony F inkelstein
University College London

Department of Computer Science
Gower Street

London WC1E 6BT, United Kingdom
a.finkelstein@cs.ucl.ac.uk

A BST R A C T
Vendors of product software include software components, products, and services of others. These
participants establish a range of different business relationships, from intimate relationships to
practically disconnected relationships to arms-length purchasing. These product software vendors have
also made architectural decisions about the integration of their software products. In this paper we
explore the relationship between architectural integration methods and the different types of
relationships between participants in a SSN. These relationships are uncovered by inventorying the
relationships and architectural decisions for two specific integrated software products. Knowledge
about these relationships and reuse methods enables development managers and software architects to
make informed decisions on both the managerial and the architectural level, narrowing the gap between
business requirements and design.

K eywords: software supply networks, software architecture, design rationale, product software

R E USE IN SO F T W A R E SUPPL Y N E T W O R KS
Increasingly, product software firms are integrating both software components and enterprise software
services to achieve shorter time-to-market and higher quality for their software products. Whereas in
the past product software firms were monoliths developing software systems from scratch, currently
software firms are enthusiastic about component reuse, application service reuse, and purchasing
software development services from others. Economic necessity has lead to reuse, to the extent that
99% of all computer instructions come from COTS products (Basili & Boehm, 2001). As new business
models are being developed and firms are further specializing, relationships with participants in
Software Supply Networks (SSNs) require more attention from scholars.

Interrelationships among participants in SSNs influence the daily activities of development managers,
software architects, and business managers. There is a lack of awareness of the effects of decisions
made by these three groups with regards to software architecture and the SSNs. This is the root cause

mailto:a.finkelstein@cs.ucl.ac.uk

 2

of three recurring problems of software vendors: the software architecture is not flexible enough to
replace quickly one commercial component with another, decisions are made to cooperate at a business
level without having a clear view of the implications for software development effort, and new features
of subcomponents of a system cannot be made available quick enough, due to compatibility problems.
New modelling methods are required to provide development managers, software architects, and
business developers with clear descriptions of a product’s software architecture and its SSN.

A software supply network is a series of linked software, hardware, and service organizations
cooperating to satisfy market demands (Jansen, Finkelstein, & Brinkkemper, 2007). The software
ecosystem (Messerschmitt & Szyperski, 2003) of a software organization are all the software supply
networks in which the organization actively cooperates. We define product software as software that is
built for a market in repeated releases, as opposed to software that is built for one system (Xu &
Brinkkemper, 2005).

A recent survey shows that 69% of software vendors ship their products with COTS (Components-Off-
The-Shelf) from third parties (Jansen, Brinkkemper, & Helms, 2008). The benchmark survey also
revealed that product software vendors are still relatively immature, when it comes to management of
COTS. Only 25% of those respondents that do use COTS version track those COTS included in their
product. To do so these software vendors store COTS in the source tree or a versioned release
repository. Similarly, in eight case studies of product software vendors and their CCU processes,
conducted between 2003 and 2006, results were found that only rarely software vendors store version
information and compatibilities of COTS explicitly (Jansen, 2007). When it is done, all too often they
can be found using a spreadsheet, which is not readable by deployment scripts, inhibiting automated
deployment problem resolution.

This paper has four contributions. In the next section a list of SSN roles is provided that can assist in
defining the business value of a participant in a SSN. In the following section different methods for
functionality re-use are defined, an exercise that has not been done since (Krueger, 1992). Thirdly,
third-party functionality re-use is described in two software products, together with the relationships
with the suppliers of the functionality. Finally, we hypothesize about the relationships between SSN
relations and tight or loose coupling of third-party functionality.

D E F ININ G R O L ES IN T H E SO F T W A R E SUPPL Y N E T W O R K
Many terms are used in the software industry to describe roles in software supply networks. Microsoft
is described as an ecosystem leader, SAP is a first tier supplier, Amazon.com is listed as a value added
reseller (Sturgeon, 2000), and COTS suppliers are known as lower tier suppliers or sub-contractors.
Simultaneously, each of these terms has at least half a dozen synonyms. Different approaches can be
taken when trying to define roles in a SSN, by looking at end-product delivery, activity scope
(Sturgeon, 2000) or contract type.

When looking at end-product delivery, we require the concept of the product software production
pipeline (see F igure 1). Seven major decoupling points (Jansen, Finkelstein, & Brinkkemper, 2007) are
identified, where new customers can arise to purchase a semi-finished product. First, a development
organization can outsource the requirements engineering process and/or design process (a, b). The
developer can choose to release their source code (c), binaries (d), or assemblies of components (e) to
another developing organization who uses these artifacts as a component to their product, or to a
publisher who releases the product (common for games, where the vendor is rarely the developer). A

 3

software vendor can also choose to release the product itself, either as a package, or as a deployed
system (f). Finally, a vendor can decide to offer their product to its customer in an application service
provider model, where the vendor sells usage of its product instead of the product itself (g). It is not
uncommon for software products going through iterations of the decoupling points before the product
is delivered to a customer. It is easy to envisage that a system designer creates a design, sells the
design, and the software developer starts at the requirements phase again to see what can be added to
the design.

F igure 1: Product Software Decoupling Points in Product Software Production Pipeline

In Table 1 a partial list of roles in a SSN is provided. The roles are presented as if the participant is
active in a SSN. They are grouped by software resellers, software service organizations, application
service providers, and software vendors. Software resellers are those participants in the SSN that
contract products and components and resell them to others. Service organizations are those
organizations that provide services to software developers, ranging from requirements engineering to
implementation services. Application service providers are those organizations that have deployed an
application on their own servers, and provide the service to customers and other participants in the
SSN. Finally, software vendors are those that develop software that can be sold as a product. Please
note that these also include open source software developers because these also potentially add value to
SSNs.

Table 1 shows that relationship intensity differs for each SSN role. A Value Added Reseller (VAR), for
instance, can be an organization that buys a product, installs it on a pc, and resells the bundle, as a
practically anonymous participant in the SSN. A VAR can also build extensions to a product (such as
Microsoft CRM) and therefore requires a much more intimate relationship with the software supplier.
Frequently, only the product makes the difference between two different terms. A COTS vendor, for
instance, differs from an ISV (if at all) in that it delivers COTS instead of a final product.

Others (Messerschmitt & Szyperski, 2003) (Sturgeon, 2000) have defined different groups and
classifications for organizations in supply networks. Software vendors (ISVs) are often seen as first-tier
suppliers or Original Equipment Manufacturers (OEMs). COTS vendors are seen as second- or lower-
tier suppliers and service organizations are seen as turn-key solution providers. Beside these synonyms,
(Sturgeon, 2000) defines companies as being ‘lead firms’ and ‘integration firms’, e.g., IBM, Microsoft,
etc. Note that these terms can coexist and are in fact fundamental to this work. Most software vendors
agree that they are ‘integration firms’, integrating some or performing all product software
development activities (from Figure 1) up to the final provision of the service itself (example:
Salesforce.com). We have left out terms that define the size or scale at which a participant operates,
such as ‘eco-system leader’ (Microsoft) and leave this to future work.

 4

When firms decide to cooperate in a SSN they can do so at different levels of interaction intimacy.
These relationships can range from completely cold, for example when a software component is reused
from an open source community that is unaware of that reuse, to very warm, for instance where two
software vendors lay out their release schedules and plan their releases cooperatively. Many software
firms themselves have developed loyalty programs with resellers and co-developers and are
consciously encouraging software vendors to become (more active parts) of their eco-systems.

Table 1: A Partial L ist of SSN Roles

G
roup

Term

R
elationship intensity

A
ctivity

Contractual
Relationship

D
eliverable

R
eseller

V
endor

Enterprise
Service Supplier

Service Supplier

R
es

el
le

rs

(i) Value added reseller Any Add functionality and
resell

X (Rebranded)
Product or
service

(ii) Reseller Any Buy and resell X Original Product
(iii) Software assembler Intense Assemble and resell X X COTS or

product
assembly

(iv) Software publisher Intense Rebrand and resell X X (Rebranded)
Product or
service

Se
rv

ic
e

or
ga

ni
za

tio
ns

 (v) Software Designer Intense Supply service X Software design
(vi) Requirements engineer Intense Supply service X Requirements

documents
(vii) Software developer,
Outsourcing partner

Intense Develop and supply
service

 X X Source code

(viii) Product deployer Intense Resell, deploy,
implement

 X X Deployed
product

Se
rv

ic
e

pr
ov

id
er

s (ix) Application Service
Provider (ACADVendor)

Intense Provide computer
service

 X Service

So
ft

w
ar

e
ve

nd
or

 (x) Independent Software
Vendor (ISV)

Any Build and Sell X Product

(xi) COTS vendor Any Build and sell X COTS
(xii) Original Design
Manufacturer (ODM)

Intense Design, develop, and
sell

 X X Rebranded
Product

SO F T W A R E F UN C T I O N A L I T Y E X T E NSI O N M E C H A NISMS
Several mechanisms exist that extend software functionality with third party functionality: component
calls, service calls, source code inclusion, and shared data objects. Component calls can be direct to a
component, or indirect through a component bus or another (glue) component. Components are typical

 5

in that they are dormant until invoked, compared to services that need to be live to be (re)used.
Components can run independently (think of a shell script) or can require a component framework or
virtual machine to be instantiated. Data object sharing, though popular, has the drawback that the
database is required to be ‘smart’ (locking and transactions are at least required) and that software
objects cannot independently evolve the data model.

Services tend to be live when called upon. This requires that they are running locally (think of MySql
running on the same server as a PHP program) or remotely (think of a currency conversion service).
The same holds for services as for components, that they can be called upon directly, for instance
through a SOAP call or indirectly through a service bus. We cannot avoid the difference in trend here
between services and components, in that services are said to be less tied to a location than components
are. Furthermore, it is much easier to facilitate dynamic composition and updating of service
configurations than it is for component configurations (Ajmani, Liskov, & Shrira, 2006).

Contrary to others (Tomer, Goldin, Kuflik, Kimchi, & Schach, 2004), we explicitly exclude source
code inclusion because it has serious drawbacks. One can simply copy a method, class, or full package
into a component configuration. By doing this, tight coupling is established, with all its downsides,
such as the fact that an update of the third-party source requires another copy-paste action. We have
developed a classification showing the different reuse patterns used for software products (see Table 2
and Figure 2). The presented mechanisms have been taken from other comprehensive overviews of
software functionality extension such as Krueger’s work on software reuse (Krueger, 1992),
Szyperski’s work on components (Szyperski, 1997), and the work of Shaw et al. on architectural
connections (Shaw, DeLine, & Zelesnik, 1996).

Table 2 - Software Functionality Extension Mechanisms

Unit of
Inclusion

Mechanism Interaction Method Example

Component (a) Direct comp. call Pipe and filter Call runnable component and feed it data
 (b) Direct comp. call Shared data object(s)

Call runnable component on data source,
report when finished

 (c) Direct comp. call Plug-in architecture Java Plug-in architecture
 (d) Direct comp. call Component frameworks CORBA call
 (d) Direct comp. call Component library reuse

(method calls & class use)
DLL, libraries, jars, etc

 (e) Indirect comp. call Component Bus Component invocation bus, that is active
like a service

 (f) Indirect comp. call Glue code Glue code is written between the application
and the extending component, aka adaptor

Service (g) Direct serv. call SOAP call, specific integration,
forward form submits, web page
inclusion, etc

MySql database service, online currency
converter

 (h) Indirect serv. call Enterprise service bus SOAP request that is evaluated and directed
to three different services, of which one is
found most suitable to handle the request

There are three reasons for classifying the different mechanisms for third-party functionality inclusion.
First, the classification can be used to see whether organizations drive business differently when they
use different types of inclusion. Secondly, when studying opportunistic COTS reuse, we can establish

 6

whether the organizations trying to assemble these COTS require a specific type of software
architecture. Thirdly, the reuse mechanisms enable us to define coupling tightness. The more different
mechanisms that are used and the more code that is required in the original product, the tighter
coupling becomes (a crude adaptation from (Pressman, 1982)).

Product A Component B
Data

Objects

Product A Component B

DB

(a)

(b)

Product A Component B(d)

Product A: Plugin Architecture

Component B Component C

(c)

Network

Network

Service Bus

Product A Service B

Product A Service B

(e)

(f) Product A Component BGlue
Code

(h)

Component Bus

Product A Component B

(g)

Figure 2: Graphical Representation of Software Extension Mechanisms

T H E C ASE ST UDI ES: A N E RP V E ND O R A ND A 3-D C A D V E ND O R
To produce the results in this paper two descriptive case studies (Yin, 2003) were performed at
software vendors in the Netherlands. These case studies resulted into two case study reports. Facts have
been collected from interviews, document study, software study, and direct observations at the vendor.
The validity threats to our case studies are construct, internal, external, and reliability threats. With
respect to construct validity, the same protocol was applied to each case study, which was guarded by
closely peer reviewing the case study process and database. With regard to internal validity we have
defined the terms in this research in earlier work (Jansen, Finkelstein, & Brinkkemper, 2007) and
provided these definitions to the case study participants. With regards to external validity we took two
average sized product software vendors from the Netherlands that build extensions to larger products,
each with a small number of partners. Finally, in regards to reliability, we would gather similar results
if we redid the research, because we use a case study protocol, a structured interview outline, and a
case study database. Both the companies in the case studies were anonymised.

The reused functionality under study was selected carefully. In one of the case studies an on-line
market is used for semi-finished components from which source code is copied vis-à-vis. These
components and suppliers, though interesting, were not studied because of their merging with the main
software product itself. Ten reused components and services were distinguished in the case studies.

Case Study 1: ERP Product ERPVendor
The company ERPVendor is an ERP vendor that sells a large product that extends the popular
Microsoft CRM product. ERPVendor currently has around 600 customers worldwide and 38
employees. The product is sold through resellers and through an internal sales department.
ERPVendor’s product includes external functionality from an online timesheet application (OTS), an
office integration application, and a PDF creation application. OTS, MS CRM and ERPVendor’s
product all depend on Microsoft SQL Server (MS SQL).

 7

Case Study 2: Technical CAD Application Plug-in CADVendor
CADVendor develops and distributes CAD software products for the building services industry.
CADVendor’s product is now used by more than 7000 end-users daily in the Netherlands and Belgium.
CADVendor employs approximately 100 employees. The software development activities are
performed in the Netherlands and Romania.

Hypotheses and Results
A subset of the results of the two case studies is listed in Tables 3 and 4. Table 3 lists the methods used
by ERPVendor and CADVendor to reuse functionality from others into their products. Table 4 displays
some of the characteristics of relationship intimacy by looking at typical methods of contacting third-
party software providers. The two cases are used to confirm or discredit a number of hypotheses we
have about software supply networks. Table 3 shows some unexpected results. We were under the
impression that functionality is generally reused with one reuse method, instead of many. In the most
extreme example (ERPVendor’s product reusing MS CRM functionality) four methods of inclusion are
used. MS CRM is a well known CRM product. It is installed as a web server and requires MS SQL
Server. ERPVendor’s product works beside MS CRM, which means that the products can function
independently from each other, even though customers will generally not be aware of that. Interaction
with MS CRM is initiated in different ways. Regularly, data objects that are shared are synchronized,
such that parts of the data in the MS CRM database are the same as the data in ERPVendor’s product’s
database. Furthermore, ERPVendor’s product includes pages from MS CRM. Also, MS CRM enables
plug-ins, which are used when MS CRM requires data from ERPVendor’s product. Finally, both
products make available a number of services from the MS CRM service bus. Both products call upon
each other’s services. The two products are tightly coupled.

Table 3: A rchitectural Relationships Components and Coupling

Case E RPVendor C A D Vendor
Component Name MS

C R M
O TS W C PD F C C R SS X M L I C A C D W G

F eature C riticality
 A lternative solutions Some Many Many Many Some Many Many None None Some
 C riticality High Med. Med. Low Med. High Low High High Med.
Coupling Very

Tight
Tight Loose Med. Med. Loose Loose Tight Tight Tight

Estimated Development
Switching E ffort (hrs)

5000 500 100 100 480 100 100 5000+ 5000+ 100

Component Reuse Method
 Pipe and filter
 Shared data object(s) Y Y Y
 Component frameworks Y Y
 Component library reuse Y Y Y Y Y
 Plug-in architecture Y Y Y
 Component Bus
 G lue code Y Y Y
Service Reuse Method
 SO AP call Y
 W eb page inclusion Y Y
 Service bus Y Y Y

 8

H1: Relationship intimacy between a component supplier and a product software vendor is
directly related to the tightness with which components are coupled. In both tables can be seen that
tight coupling is at least related to the contact intimacy. The relationship does not seem to work
inversely, in that a warmer relationship between the two software organizations implies that coupling
between their components is tight. When looking at the effort that is required to change from one
component to an alternative, this relationship does not change.

H2: More mature organizations will reuse functionality from more loosely coupled components
than younger organizations. ERPVendor is a younger company than CADVendor and has only had
one release of their main product. CADVendor has had five major releases of the product under study
and the product is mature. Many efforts have been made to make coupling between external products
looser. This cannot be found in the results, however. Another aspect seems to have greater influence:
ERPVendor builds its product on top of a more service oriented web-based product, whereas
CADVendor builds its product on top of a stand-alone CAD product. We speculate that less effort is
required from ERPVendor to achieve loose coupling between their own product and functionality of
others than in the case of CADVendor.

Table 4: O rganizational Relationship and Relationship Intimacy

Case E RPVendor C A D Vendor
Component Provider MS O TS W C PD F C C R SS MS I C A C D W G
Access to source code Y Y Y
Access to early releases Y Y Y Y Y
Access to release planning Y Y Y Y Y Y
Access to online dev portal Y Y Y Y Y Y
Manual feedback forwarding Y Y Y Y Y Y Y Y
Cooperative Development Y Y
Contact with sales department Y Y Y Y Y Y
Contact with developers Y Y Y Y Y
C E O level contact Y Y Y
Contact with Helpdesk Y Y Y Y Y Y Y Y Y
Company Size 79,000 20 20 101 6,200 1,100 79,000 401 5,169 401
Relationship Type (x) (xi) (xi) (xi) (xi) (xi) (xi) (x) (x) (xi)
Sees its customers as (i) (iii) (iii) (iii) (iii) (iii) (iii) (i) (i) (iii)

H3: Software vendors only reuse application services when the service does not contain any
cr itical functionality for the software product. The reuse of application services implies that a
vendor loses control over some of the functionality (and data) the vendor is trying to reuse. This makes
software vendors reluctant to reuse services from others. For both cases the only application services
that are being reused are application services over which the customer or the vendor has full control,
i.e., the application service is installed on the customer (MS CRM, WC, PDFC) or vendor site (SS).

H4: The larger the component supplier , the colder the relationship. Larger software vendors
appear never to do cooperative development with ERPVendor and CADVendor. Also, they are less
likely to provide direct access to their CEOs. Table 4 shows that size is not related to whether a
product software vendor will get into contact directly with a software vendor’s development
department or not. Whereas ERPVendor has no contact with Microsoft’s developers, CADVendor does

1 Estimates

 9

have contact with developers from AC. Another fact that tends to distort views on this relationship is
that larger software firms tend to have many different products (acquired through the years), run by
relatively independent product teams. In Table 4 this holds true, since both Microsoft and CR are large
organizations that sell a large range of products. The product development groups of MS CRM and
CR’s product are small organizations within larger ones.

D ISC USSI O N & C O N C L USI O NS
A relationship arises from Table 4, in that a software vendor’s and a component supplier’s perception
of each other is related. When a software vendor is defined by ERPVendor or CADVendor as an ISV,
the ISV defines the ERPVendor or CADVendor as VARs. Simultaneously, COTS vendors see
ERPVendor or CADVendor as component assemblers. When looking at the fact that ERPVendor’s and
CADVendor’s products plug into the products from ISVs this is not surprising. These relationships are
related to the product context (Brinkkemper, Soest, & Jansen, 2007) of a software product. The roles
presented in this paper can be modeled as participants with requires and provides interfaces (for
example requires source code, provides COTS assemblies). The activities a participant fulfills can be
modeled using value net modeling techniques (Vilminko & Kinnula, 2005) to complete the SSN model.
We plan to improve business modeling using value net modeling techniques, to enable product
software vendors and other participants in the SSN to further develop their business models and
discover novel opportunities.

Basili and Boehm (Basili & Boehm, 2001) show that although glue-code development usually accounts
for less than half the total CBS software development effort, the effort per line of glue code averages
about three times the effort per line of developed applications code. This was confirmed by both the
software vendors, who in some cases hired specialized consultants to integrate the COTS. Furthermore,
this supports H1 because once components become more tightly coupled, there is an increase in
demand for knowledge from the component supplier. Secondly, Basili and Boehm confirm that non-
development costs, such as licensing fees, are significant and projects must plan for and optimize them.
Both vendors experienced this, in that some functionality comes at the price of a relatively large sum
per developer seat, whereas others charge a relatively small fee per end-user. This further confirms that
more research is needed in this area, to create financial models that can show whether the re-use model
is truly healthy (Brinkkemper, Soest, & Jansen, 2007). Basili and Boehm’s final statement that CBS is
currently a high-risk but profitable activity because COTS integration projects generally have larger
effort and schedule overruns than conventional development projects, only further confirms the
contribution of this paper.

Three conclusions can be drawn from this research. We show that re-use in practice is generally not
done through clean APIs alone for product software. Furthermore, we show that software vendors are
reluctant to use application services from others as long as this implies giving up full control over its
functionality. Finally, we show that if functionality is tightly coupled with a software product, the
software vendor will have a warm relationship with the component supplier.

A C K N O W L E D G E M E N TS
We would like to thank both the companies for their participation in the case studies. Furthermore, we
would like to thank Wilco van Duinkerken and Henk van der Schuur for their inspiring ideas that
contributed to this paper.

 10

R E F E R E N C ES
Ajmani, S., Liskov, B., & Shrira, L. (2006). Modular Software Upgrades for Distributed Systems. European Conference on
Object-Oriented Programming (ECOOP).

Basili, V. R., & Boehm, B. (2001). COTS-Based Systems Top 10 List. IEEE Computer , 2-4.

Brinkkemper, S., Soest, I. v., & Jansen, S. (2007). Modeling of product software businesses: Investigation into industry
product and channel typologies. In The Inter-Networked World: ISD Theory, Practice, and Education, proceedings of the
Sixteenth InteInternational Conference on Information Systems Development (ISD 2007). Springer-verlag.

Jansen, S. (2007). Customer Configuration Updating in a Software Supply Network. PhD Thesis, Utrecht University, ISBN:
978-90-393-4666-2.

Jansen, S., Brinkkemper, S., & Helms, R. (2008). A Benchmark Survey into the Customer Configuration Updating
Processes and Practices of Product Software Vendors in the Netherlands. 7th International Conference on Composition-
Based Software Systems (ICCBSS). Madrid, Spain: IEEE.

Jansen, S., Finkelstein, A., & Brinkkemper, S. (2007). Providing transparency in the business of software: A modelling
technique for software supply networks. Proceedings of the 8th IF IP Working Conference on Virtual Enterprises. Gumares,
Portugal: IFIP.

Krueger, C. W. (1992). Software Reuse. ACM Computing Surveys (CSUR), Volume 24, Issue 2 , 131-181.
Messerschmitt, D., & Szyperski, C. (2003). Software Ecosystem. Cambridge, Massachusetts, 424 pages: MIT Press.

Pressman, R. S. (1982). Software Engineering - A Practitioner's Approach. ISBN 0-07-052182-4.

Shaw, M., DeLine, R., & Zelesnik, G. (1996). Abstractions and Implementations for Architectural Connections. Third
International Conference on Configurable Distributed Systems, (pp. 2-10). Annapolis, Maryland.

Sturgeon, T. J. (2000). How Do We Define Value Chains and Production Networks? Proceedings of the Bellagio Value
Chains Workshop (pp. 1-22). MIT IPC Globalization Working Paper 00-010.

Szyperski, C. (1997). Component Software: Beyond Object-Oriented Programming. 411 pages: Addison-Wesley
Professional .

Tomer, A., Goldin, L., Kuflik, T., Kimchi, E., & Schach, S. R. (2004). Evaluation Software Reuse Alternatives: A Model
and its Application to an Insdustrial Case Study. IEEE Transactions on Software Engineering , 601-612.

Vilminko, S., & Kinnula, M. (2005). Managing the Software Market Evolution - a Network Approach to Value Creation in
Software Business. Proceedings of the F rontiers of E-Business Research Conference (pp. 825-839). Tampere: Cityoffset.

Xu, L., & Brinkkemper, S. (2005). Concepts of Product Software: Paving the Road for Urgently Needed Research.

Proceedings of the The first International Workshop on Philosophical Foundations of Information Systems Engineering (pp.
523-528). LNCS.

Yin, R. K. (2003). Case Study Research - Design and Methods. SAGE Publications, 3rd ed.

