

City, University of London Institutional Repository

Citation: Finkelstein, A. (1992). A software process immaturity model. SIGSOFT Software

Engineering Notes, 17(4), pp. 22-23. doi: 10.1145/141874.141878

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26452/

Link to published version: https://doi.org/10.1145/141874.141878

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Software Process Immaturity Model

Anthony Finkelstein
Imperial College, 180 Queens Gate, London SW7

The software process maturity model (Humphrey, Kitson & Kasse 1989) is now well established,
and together with the associated assessment approaches, has been the focus of considerable
attention from software producers and acquisition authorities. The model breaks down the software
engineering capabilities of organisations into 5 maturity levels from Level 1 - Initial to Level 5 -
Optimising. The model is summarised in Table 1 below.

optimising

managed

repeatable

defined

initial

improvement
fed back into process

(quantitive) measured
process

(qualitative) process
defined &
institutionalised

(intuitive) process
dependent on
individuals

(ad hoc/chaotic)

automation

changing technology
problem analysis
problem prevention

process measurement
process analysis
quantitive quality plans

training
technical practices
process focus

project management
project planning
configuration management
software quality assurance

P
R

O
D

U
C

T
IV

IT
Y

 &
 Q

U
A

L
IT

Y

R
ISK

LEVEL CHARACTERISTIC KEY PROBLEM AREAS

Table 1: a software process maturity model

Assessment gives the impression that a significant proportion (according to SEI data more than
70%) of these organisations are at Level 1. The framework is, of course, misleading. Many of these
organisations lie well below the merely chaotic. They belong to Levels 0 to -2 of the extended
software process immaturity model we propose. The model is summarised in Table 2 below.

stupid

foolish

lunatic

(negligent) failure to
allow successful
development process

(obstructive) counter-
productive process
imposed

(contemptuous)
disregard for good
software engineering
institutionalised

software reuse

development environments
repositories

automatic programming

S
E

N
S

E

ID
IO

C
Y

LEVEL CHARACTERISTIC KEY PROBLEM AREAS

Table 2: a software process immaturity model

The ad-hoc and chaotic processes followed by organisations at Level 1 can, by dint of exceptional
individual and team effort, produce software. Level 0 foolish organisations act in such a way as to
prevent this effort bearing any fruit. Where specifications and documentation are produced a Level
0 organisation will lose them. Where a successful software development team is working a Level 0
organisation will change the requirements to ensure it fails. Where a program is written they will
so mismanage their configuration control as to ensure that the wrong version is released.

All immature organisations (in contrast to Level 1 organisations) fail to recognise that their
management is severely awry. They believe firmly that a technical fix will solve all their
problems. For these organisations management issues almost never appear at the top of Òkey
priority issue listsÓ.

Level 0 organisations perceive their primary technical problem to be software reuse. With software
reuse in place they are guaranteed, they believe, never to make a mistake worse than they have
made in the previous systems they have developed.

Level 0 organisations block effective software development by negligence. Level -1 stupid
organisations act positively to subvert software development. These organisations insist on complex
processes, involving the use of arcane languages and inappropriate documentation standards. They
deploy significant effort and a substantial proportion of their resources in order to impose these.
They insist on approaches for which tool support is unavailable, where tool support is available
they impose procurement standards which prevent its purchase.

Level 0 organisations perceive their primary technical problem to be software development
environments and repositories. With a suitable environment they can, they believe, enforce their
policies and processes consistently. They can prescribe standards for and control all documentation.
In such an environment they will be able to be able to plug in tools which conform to a complex
public tool interface or better still develop their own.

Level -1 organisations while acting in such a way as to prevent software being developed sincerely
believe that they are assisting. Level -2 lunatic organisations are contemptuous of advances in
software development. They do not care if they produce poor software as they will probably make
more money maintaining systems than developing them in the first place. Level -2 organisations
have no individuals who know or understand anything about the software development process
having dismissed them or promoted them to administrative positions away from software
development. Level -2 organisations have a manual describing their software process written many
years ago by a software engineer who has long since left the firm. They are proud that nobody ever
reads it, should anybody want to read it they would not be able to find it. Level -2 organisations
collect vast amounts of quantitative information on software development. They use it to produce
voluminous project management reports which cannot be understood. The original data is destroyed.
Level -2 organisations reward failure.

Only by a miracle can a Level -2 organisation produce any useable software. As Level -2
organisations rarely get beyond specification they pin their hopes on automatically generating a
program from that specification.

No immature organisations sponsor or use the products of research though this does not prevent
them from wishing to have a say in the way software engineering research is directed. Immature
organisations will not use an approach unless it is tried and tested - they will never try and test an
approach themselves.

We are currently developing an extended assessment procedure which will aid in recognition of
immature organisations and which we hope to make available to all major software acquisition
organisations for a small fee.

References

Humphrey W.S.; Kitson D.H. & Kasse T.C. (1989); The State of Software Engineering Practice: a
preliminary report; Proc. IEEE 11th International Conference on Software Engineering; pp 277-288,
IEEE CS Press.

