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Abstract

In the current study, an Immersed Boundary Method for simulating cavitating flows with complex or moving
boundaries is presented, which follows the discrete direct forcing approach. Although the Immersed Boundary Meth-
ods are widely used in various applications of single phase, multiphase and particulate flows, either incompressible or
compressible, and numerous alternative formulations exist, to the best of the authors’ knowledge, a handful of com-
putational works employ such methodologies on cavitating flows. The herein proposed method, following the works
of the author’s group [1–3], tries to fill this gap and to solidify the development of a computational tool of a simple
formulation capable to tackle complex numerical problems of cavitation modelling. The method aims to be used in a
wide range of applications of industrial interest and treat flows of engineering scales. Therefore, a validation of the
method is performed by numerous benchmark test-cases, of progressively increasing complexity, from incompressible
low Reynolds number to compressible and highly turbulent cavitating flows.

1 Introduction
Within the framework of Computational Fluid Dynamics, applications of industrial interest often refer to flows in complex
geometries or around moving bodies; their simulation may be numerically challenging and computationally expensive.
Many cases of cavitating flows fall into that category. For example, cavitation formation in Diesel injector nozzles
with moving needle, gear pumps or propellers mounted under ship hauls, refer to problems with moving geometrical
parts and include different geometrical features with wide range of length scales and topological features that impose
severe constraints in mesh generation. The conventional strategy of generation of boundary-conforming grids for such
problems, may become demanding and time consuming. When the numerical simulation involves moving parts with
large displacements, common conformal grid strategies result in re-meshing of the entire domain in every time-step [4],
or deforming the grid and adding or removing cell-layers when a desired cell size is reached [5]. In the case of marine
propellers, to accommodate their rotational motion, either the entire computational domain would be rotated accordingly
[6], or a multi-region mesh would be used, which lets the part of the grid that conforms with the propeller blades to slide
with regards to the global domain [7]. Another approach of over-set grids [8] (also known as Chimera grids), employs
multiple overlapping grids, each one handling a separate geometrical feature, and relies on interpolating the solution
between them. These techniques increase significantly the difficulty of the simulations and their computational cost.

Immersed Boundary Methods [9] offer a remedy to these computational obstacles, allowing modelling arbitrary com-
plex and moving or deforming bodies on a simple non-conformal grid. The presence of immersed boundaries is modelled
through alternations of the governing equations which are solved on a simple canonical Cartesian grid. Thus, Immersed
Boundary Methods simplify the grid generation and ease the complex geometry manipulation, resulting in smoother and
higher-quality grids that decrease the computational load. Especially in problems where moving boundaries are present,
the computational cost would drop significantly and the results’ quality would increase, because the overall computational
domain would not be modified, but instead the influence of the moving body would be relocated to new cells.

The Immersed Boundary Method was first introduced by Peskin [10], who studied the incompressible blood flow inside
the heart, by solving the flow equations on a Cartesian non-conformal mesh and adding a force term in the momentum
equations representing the elastic boundaries of the heart, immersed in the global computational domain. According to
studies of Mittal and Iaccarino [9] and Iaccarino and Verzicco [11], the Immersed Boundaries Methods can be classified
into indirect boundary condition imposition methods, which include continuous or discrete forcing and penalization
approach, and direct boundary condition imposition methods, which refer to ghost-cell or cut-cell formulations. A
similar classification is followed by Sotiropoulos and Yang [12], where the methods are divided into diffused interface,
corresponding to indirect methods, and sharp interface, corresponding to direct methods.

In the indirect methods, the no-slip boundary condition at the immersed body surfaces is imposed not by setting
the boundary value but rather by introducing a forcing term in the momentum equation that drives the solution to the
desired value. The forcing term can be added in to the continuous form of the equations (continuous forcing) or can
be introduced after the discretisation (discrete forcing). The method developed by Peskin [10] falls in the continuous
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approach category and addressed problems of elastic boundaries. In the case of rigid boundaries however, the continuous
forcing approach may result in stiff algebraic systems or lead to stability problems for highly unsteady flows [9], as it
would require very large values of modulus of elasticity [13] or an iterative feedback forcing technique with high values of
damping coefficients [14]. On the other hand, the discrete forcing approach, overcomes these issues for rigid bodies, by
usually employing an initial prediction step where the momentum equations are solved, neglecting the forcing term; the
estimated velocity is used to evaluate the forcing term [15–19]. In addition, although the majority of the aforementioned
IB methodologies are developed for incompressible flows and incorporated in pressure-correction algorithms, recently a
discrete forcing IB method was proposed for compressible flows, enforcing a pressure boundary condition on the IB body
through a source term [20].

In the direct methods, the desired wall boundary conditions (b.c.) for the immersed body are imposed by alternations
in the numerical stencil on the computational cells in the vicinity of the interface between the fluid and solid domains,
defined by the immersed body. According to the ghost-cell approach [21–25], boundary conditions are imposed on cell faces
and nodes in the immediate vicinity of the immersed interface. The b.c. values are calculated by means of interpolation
between the ghost b.c. points and their projection on the immersed interface, with the use of artificial mirror points,
in order for the wall b.c. to be satisfied on the interface. On the contrary, the cut-cell methods [26, 27] reconstruct the
immersed boundary by altering the geometry and the topology of the computational cells cut by the immersed interface.
The computational cells are divided into fluid and solid sub-cells by the intersecting immersed surface, which creates
new faces in the cells upon which the boundary conditions are applied. The computational cells’ topology therefore is
altered; for instance regular hexahedral cells may become generic polyhedral and thus, the equations’ discretisation is
modified. These methods are considered to provide the most mathematically and geometrically accurate representation
of the immersed body.

Immersed Boundary Methods have been used to cover a wide range of applications and flow regimes. Examples
include (but are not limited to) the work of Borazjani et al. [21–23], who used a ghost-cell approach to simulate the
moderate Reynolds (Re ≃ 6000) flow through mechanical heart valves; Luo et al. [24] utilized a ghost-cell method in
cases of incompressible flows with heat-exchange; Uhlmann [17] employed a direct forcing approach on incompressible
flows with particles; Municchi and Radl [28, 29] studied momentum, heat and mass transfer of gas-particle suspensions
with a hybrid of direct forcing and Fictitious Domain (FD) methods; discrete forcing methods were applied by Blais
et al. [18] on incompressible viscous mixing and by Mochel et al. [19] on compressible high Re flow around a space
launcher, using Zonal Detached-Eddy simulations (ZDES); Fadlun et al. [16] and Cristallo and Verzicco [30] made use of
direct forcing IB methods to perform Large Eddy Simulation (LES) of the high Reynolds flow in an Internal Combustion
(IC) engine’s cylinder with a moving piston; Arienti et al. [31] studied the incompressible flow through a Diesel injector
nozzle, with the aid of a level-set cut-cell Cartesian grid solver; Pasquariello et al. [27] combined a compressible cut-cell
fluid solver with a finite-element structural solver to study Fluid Structure Interaction (FSI) problems of shock wave
interactions with deformable thin structures. However, to the best of the authors’ knowledge, a handful of computational
works employ IB approaches on cavitating flows.

Battistoni et al. [32], Zhao et al. [33] as well as Örley et al. [34–36] employed cut-cell IB methodologies on the numerical
study of cavitation inception in Diesel injectors with moving needle. The recent works of Huang et al. [37] and Lee et
al. [38] on cavitation induced by the motion of underwater projectiles, and Xu et al. [39, 40] on cloud cavitation around
blunt bodies followed a cut-cell approach as well. On the other hand, a direct forcing method has been chosen by the
authors’ group to study cavitation induction in Diesel injectors (Mithun et al. [41]), in gear pumps (Mithun et al. [3])
and during the closure of the claw of the pistol shrimp (Koukouvinis et al. [1]). The authors also presented in a previous
article [2] a study of shock-wave generation and the induced cavitation by the high-velocity impact (Mach=0.7) of a solid
projectile on a water jet; in this work, the projectile was modelled via a similar formulation of the direct forcing Immersed
Boundary approach proposed herein.

The approach presented herein falls in the category of direct forcing methods [9,11], as the presence of the boundary is
taken into account by introducing a volumetric source term in the momentum equations. The forcing is localised on cells
completely or partially covered by the immersed body, using a continuous color function expressing the cells’ coverage.
The forcing term’s formulation is similar to the one found in the works [1–3]; however the integration of the source term
to the computational algorithm differs.

The forcing methods usually involve Lagrangian-Eulerian transformations, because the forcing term is first evaluated
on the Lagrangian points that represent the immersed boundary and then spread on the neighbouring Eulerian compu-
tational cells using a Dirac delta function. The Lagrangian-Eulerian and the inverse transformations could become the
bottle-neck of the numerical solution of the governing equations. Discrete forcing Immersed Boundary methods [18, 19]
that evaluate the forcing term in the Eulerian frame and apply it to all the cells of the immersed body region, by-pass
this issue. In addition, ghost-cell approaches require a large number of interpolations that can be a drawback of the
computations [29]. Considering that high order of accuracy requires more layers of ghost-cells [24] or finer resolution of
the solid surface [29], the computational burden of the interpolation procedure becomes not negligible when employing
four point interpolation stencils for each point discretising the immersed solid surface [24]. Moreover, in ghost-cell or
some forcing methodologies, the projection of the immersed boundary on the background mesh may result in a stair-case
representation of the body as the partially covered cells are not considered as solid cells; in the case of moving immersed
bodies, where the immersed surface gradually covers the computational cells but the cells are abruptly removed or re-
introduced in the fluid sub-domain, this can lead to spurious oscillations in the solutions. This issue is overcome by the
cut-cell methods, or by forcing methods considering even the partially covered cells. However, cut-cell methods involve
complex and computationally expensive geometrical and topological manipulations. The computational cost of identify-
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ing intersections of the IB geometry, represented by M triangles, with the computational cells, on a N ×N ×N mesh,
and creating the cut-cells is estimated at the order of O(N2 ·M · logM) (for tree-based data structure) [42]. Also, cut-cell
methods usually result in very small computational cells of arbitrary shape and thus, suffer from small cell stability
problem; cell-merging and cell-linking [26, 43] or flux redistribution [44, 45] or a combination of both approaches coupled
with detailed reconstruction of the intersection using triangulation of the cut-faces [35] can be performed to remove
the problematic small cells. This may also constrain computations and prohibit the full closure of small clearances and
solid-to-solid contact; for instance when modelling the closure of a needle valve, a minimum gap between the immersed
boundary and the solid wall of at least one computational cell may be a strict requirement [32–34]. Therefore, it becomes
apparent that the use of a direct forcing Immersed Boundary approach for cavitating flows can offer advantages.

The aim of the current work is to propose a direct forcing IB methodology, assess its performance and demonstrate its
applicability on a wide range of applications of industrial interest. Moreover, with regards to the ghost-cell and other direct
forcing methods, it avoids the cumbersome Lagrangian-Eulerian interpolation, and overcomes the stair-case problem by
using a continuous mask that localises the forcing term on all the fully and partially covered by the immersed body cells.
The assessment of the method is performed in various flow regimes, from incompressible laminar and low-Reynolds flows
(Re = 100) to high-Reynolds turbulent multiphase flows (Re � 106), to compressible flows with or without cavitation, and
considering either stationary or moving boundaries; the computational results are compared against experimental data
whenever available or against prior numerical simulations.

The method is developed within the open-source software platform of OpenFOAM [46]. It is designed to take advantage
of the wide variety of the available computational features or tools, as well as to be independent of the discretisation
of the equations and able to be integrated in different solvers and solution algorithms. The portability of the method
is demonstrated by the fact that the forcing method can be coupled, in one hand with an explicit density based solver,
developed in-house, as presented by the authors in a previous work [2] and further discussed hereafter, and on the other
hand with a standard implicit pressure based solver, distributed with OpenFOAM, as presented herein.

In the following sections of the paper the numerical methodology is initially presented, followed by its thorough
validation against well documented benchmark cases. First, the method is tested on the simple laminar incompressible
cases of a moving cylinder in stationary liquid and a moving cylinder in free stream. Next, the turbulent incompressible
flow over a back-facing step and the low-Reynolds but high Mach compressible flow past a stationary cylinder are
simulated. Then, the method is applied on the simulation of cavitating cases, initially to the cavitation induction by the
rotation of a cross in stagnant water, then to the turbulent cavitating flow past a stationary hydrofoil in a cavitation
tunnel and subsequently on the case of turbulent cavitating flow over a pitching hydrofoil. Finally the application of the
method on a demanding problem of engineering scales, that of cavitation inception in Diesel injector, is presented. The
most important conclusions are summarised at the end.

2 Methodology
The proposed Immersed Boundary method, follows a direct forcing approach [9, 11] that introduces a volumetric source
term in the discretised Navier-Stokes equations, which are solved using an operator-spiting algorithm.

2.1 Governing equations
The Reynolds Averaged Navier-Stokes (RANS) approach is adopted and the governing equations for the Newtonian fluids,
in their general compressible form, are given by 2.1; the vectors are denoted with bold font.

∂ρ

∂t
+∇ · ρū = 0 (2.1a)

∂ρū
∂t

+∇ · (ρūū) = −∇p−∇ · (τ̄ + τR) + fIb (2.1b)

The immersed boundary is modelled through the addition of the volumetric source term fIb in the momentum equation
2.1b; its formulation is discussed in the following section. For the solution of the governing equations, two different
numerical approaches are utilised: the pressure-based and the density-based, within the framework of OpenFOAM [46].
Both methodologies follow the Homogeneous Equilibrium Model (HEM) [47] to consider the presence of cavitation. This
considers both mechanical and thermal equilibrium when two or more different fluids are present; their mixture is seen
as a ”pseudo-fluid” with average properties governed by a single set of conservation equations.

In addition, in both implementations, the phase-change is modelled through the barotropic law. The current study
treats primevally cases of hydrodynamic cavitation, where flow is often treated as isothermal [4, 48, 49]; however, the
assumption that thermal effects play a role is followed even in cases of cavitating flows inside Diesel injector nozzles
[5, 36,50,51].

2.1.1 Pressure-based solver

The cavitatingFoam solver of OpenFOAM is used, which is a compressible pressure-based solver, employing HEM and
following an iterative pressure correction algorithm. The mixture composition, and therefore its density and viscosity, is
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function of the vapour volume fraction αv, which is calculated by equation 2.2.

αv =
ρ− ρv,sat

ρl,sat − ρv,sat
, ρ < ρl,sat (2.2)

Thermal effects are neglected, therefore the energy equation is not solved and the closure of the differential system
of equations 2.1 is provided by an Equation of State (EOS) linking the density directly to pressure 2.3 using the com-
pressibility of the mixture ψ. From the different models available for the calculation of the ψ, the Wallis model is chosen,
which is expressed by the formula 2.3b. The compressibility of each phase is calculated as the inverse of the speed of
sound squared 1/c2.

ρ = ψp+ (1− αv)ρL,0 − ((αvψv + (1− αv)ψl)− ψ) psat (2.3a)

ψ = (αvρv,sat + (1− αv)ρl,sat) ·
(
αvψv

ρv,sat
+

(1− αv)ψl

ρl,sat

)
(2.3b)

Within the framework of OpenFOAM [46], pressure-based solvers, both incompressible and compressible, widely use an
iterative pressure-correction algorithm called PIMPLE [52]. The PIMPLE algorithm is a combination of the Pressure Implicit
with Splitting of Operators (PISO) [53] and the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) [54]
algorithms. It can be seen as an iterative PISO algorithm, which searches for a steady-state solution in each time step
using under-relaxation, and therefore allows the use of larger time-steps than PISO.

Introducing the barotropic EOS into the continuity equation 2.1a, the pressure-correction equation 2.4 is extracted.
The algorithm, in every (outer) iteration, solves the momentum equation 2.1b, then performs pressure-correction via 2.4
in the PISO loop and then updates ρ, αv and ψ by 2.3a, 2.2 and 2.3b respectively, until convergence is reached.

∂ψp

∂t
− (ρl,0 + (ψl − ψv)psat)

∂αv

∂t
− ∂ψ

∂t
psat +∇ · ρu = 0 (2.4)

2.1.2 Density-based solver

A density-based solver, noted as 2phaseFoam, has been developed by the authors’ research team [55] within OpenFOAM;
its inviscid formulation has been coupled with the immersed boundary methodology presented herein to simulate the
solid projectile’s impact on water jet [2].

This solver is also based on the HEM approach, but considers the presence of liquid, vapour and immiscible gas and
two different mixtures: one mixture of liquid and its vapour, and one mixture of the liquid-vapour system and the gas.
The liquid-vapour system obeys the linear barotropic EOS, while the gas follows the isothermal ideal gas EOS. The
energy equation is not considered, since the isothermal assumption is adopted.

The differential system of equations 2.1 is solved using the mixture’s properties and an advection equation is used
for the immiscible gas’ mass fraction Yg 2.5a; surface tension effects are neglected. The mixture’s density is calculated
as function of the volume fractions of the liquid-vapour mixture βlm, vapour αv and gas βg, by equation 2.5b, while
the viscosity will be discussed in a following section. For the volume and the mass fractions, βi, Yi respectively, of
the components, relations 2.5c hold true and therefore the local vapour volume fraction is given by the slightly altered
expression 2.5d. The density of the liquid-vapour mixture is calculated by equation 2.6a and that of the gas by equation
2.6b, as functions of the speed of sound ci. For the immiscible isothermal gas, the speed of sound is estimated by the
ideal gas EOS, cg =

√
RgTref , based on the specific gas constant and a reference temperature. For the liquid-vapour

mixture, the speed of sound clm is determined by the Wallis relation for the three-phase mixture 2.6c. Equations 2.6a
and 2.6b, combined with 2.5b and 2.5c, are used to derive an equation for the calculation of the mixture’s pressure and
close the system; the resulting equation is of quadratic form and is solved iteratively so as its roots fulfil the original
assumptions. For more details the reader is referred to the original work of Kyriazis et al. [55].

∂ρYg
∂t

+∇(ρuYg) = 0 (2.5a)

ρ = βlm
(
(1− αv)ρl + αvρv

)
+ βgρg (2.5b)

βi =
vi
V
,
∑
i

βi = 1 and Yi =
mi

m
,
∑
i

Yi = 1 and ρi =
Yi
βi

(2.5c)

αv = βlm · ρ− ρv,sat
ρl,sat − ρv,sat

, ρ < ρl,sat (2.5d)

ρlm = ρl,sat +
1

c2
(p− psat), c =

{
cl, p ≥ psat

clm, p < psat
(2.6a)

ρg =
p

c2g
=

p

RgTref
(2.6b)

1

ρc2
=

1− βg
ρlmc2lm

+
βg
ρgc2g

(2.6c)
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(a) IB surface (STL) (b) IB mask

Figure 1: Representation of immersed boundary by a triangulated surface, with the equivalent surface normals, (left) and its
projection onto the computational grid through the IB mask αIb (right).

2.1.3 Numerical Schemes

The discretisation of the equations in time and space, for the proposed methodology can be generic. With regards to
the implicit pressure-based approach, for the laminar incompressible cases, the 1rst order accurate Euler time scheme has
proven adequate, but for the turbulent or cavitating cases, the 2nd order Crank-Nicolson scheme is more appropriate. In
a similar way, for the laminar incompressible cases Gauss upwind 1st order accurate scheme is used, while for the more
complicated cases 2nd order spatial schemes are employed.

On the other hand, the density-based solver, employs an explicit four stage Runge-Kutta (RK4) time-advancement,
4th order accurate in time. It also makes use of special hybrid flux, to tackle issues arising from the great variations of
speed of sound in compressible three-phase mixtures. The hybrid flux is based on Primitive Variable Riemann Solver
and Mach consistent flux [55,56].

The time step in the simulations is controlled by the Courant-Friedrichs-Lewy (CFL) condition:

Co = max (∆t · Σfaces|ϕi|/2V ) ≤ 0.5 or 1

For the cavitating flows, an additional constraint is added, due to the variation of the Mach number in the liquid and
vapor phases, which is expressed by the acoustic Courant number, defined as:

Coac = max
(
∆t/

(
2V

√
ψ
))

≤ 1 or 2

2.2 The IB forcing formulation
The immersed solid boundary is represented by a surface mesh; a color function is used to indicate the solid or the IB
cells and the computational grid cells enclosed by this surface. Figure 1 presents the triangulate surface of a cylinder and
the equivalent projection through the color function on the computational domain.

The default octree-search algorithm of OpenFOAM is used to initially find the grid cells with the cell centre lying
inside the IB shell; then the solid stencil is extended to include the grid cells cut by the IB surface. The color function
(IB mask) representing the solid area, corresponds to the solid volume fraction of the cells. This function receives values
continuously between 0 for fluid cells and 1 for solid cells; cells with intermediate values correspond to the interface
between the solid and the fluid area. For each computational cell, the mask is calculated as the average of the normal
distance of all the vertices of the cell from the IB surface [1]. For each computational cell, the singed distance of each
of its vertices from the nearest IB surface point is estimated, as seen in figure 2a, with negative distance indicating a
vertex in the solid region. Then the sum of the distance of the vertices inside the solid region is divided by the sum of
the distance of all the vertices; this is expressed by the relation 2.7 for each of the Nc cells with Nv vertices.

αj =

Nv∑
i=1

| min(dn,ij , 0) |

Nv∑
i=1

| dn,ij |

, j ∈ [1, Nc] (2.7)
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r⃗
(j,i,k

)

Bk−1

n⃗k−1

d⃗
n

d⃗t

n⃗k

Bk

Vj,i

Cj

Cj−1

(a)

r⃗
j

u⃗G

u⃗G r⃗j × ω⃗G

u⃗Ib,j

GIb

Cj

Cj+1

Fluid

Solid

(b)

Figure 2: Calculation of the distance of each grid node from the IB surfance (left) and of the target velocity for each cell in the
IB region (right).

The forcing source term, seen in 2.8, is calculated as the difference of the fluid velocity from the IB solid velocity
divided by the time step. By multiplying with the IB mask, the source term is localised on all the cells in the IB region
and not only on the interface. The tern is designed to drive the solution of the equation to the desired velocity value in the
IB region, imposing a no-slip condition on the IB cells. The targeted velocity value to be imposed in each computational
cell in the IB region is calculated with respect to the centre of gravity of the IB surface taking into account the rotation
of the body, as uIb,j = uG + rj × ωG; this procedure is visualised in figure 2b.

fIb = αIb ·
uIb − ufluid

∆t
, αIb ∈ [0, 1] (2.8)

When the IB methodology is combined with a pressure-correction algorithm, the forcing term is updated in every
pressure-correction iteration. In this way, although the forcing term expression has an explicit formulation using the
previously estimated velocity field, it is treated implicitly as it is updated throughout the iterations of the time step,
following the evolution of the velocity field. With respect to the implementation used by the authors’ group in previous
works [1,3], within the framework of commercial CFD software, the use of case-dependant arbitrary forcing amplification
coefficient is avoided.

If this forcing term is formulated explicitly, using the velocity value of the previous time-step or iteration, can receive
large values, which can lead to very stiff matrices. This holds true especially for the cavitating flows, when the time-step
tends to reach values of 10−7 ∼ 10−8s, limited by high velocities or large deviation of the Mach number between the
liquid, vapour and mixture. In order to tackle this difficulty, the IB source term can be treated implicitly by being
linearised [57,58], following Taylor expansion, as:

fIb,k(uk)
t = fIb,k(uk)

t−1 +
∂fIb,k
∂uk

· (utk − ut−1
k ), k = x, y, z

with regards to the time step t. When the IB methodology is combined with a pressure-correction algorithm, the forcing
term should be updated in every pressure-correction iteration. Therefore for every intermediate step n within each time
step t, the forcing term is calculated by 2.9:

fIb,k(uk)
n = fIb,k(uk)

t−1 +
∂fIb,k
∂uk

·
(
unk − ut−1

k

)
, k = x, y, z (2.9)

When the IB methodology is combined with the explicit density-based algorithm, the forcing term is updated once at
the beginning of the time-step and then it is integrated as part of the momentum equation according to the RK4 scheme.

2.3 Turbulence modelling
Within the framework of RANS simulations, the treatment of turbulent flows reduces to the computation of the Reynolds
stresses tensor τR in 2.1b. Regular turbulence models can be used in conjunction with the proposed Immersed Boundary
Method, with slight modifications. As discussed by Balaras [59] and Cristallo et Verzicco [30], within the framework of
LES, and by Mochel et al. [19], within the framework of RANS, the boundary condition of the turbulent variable should
be applied in the region or the interface of the immersed boundary and thus, the models should be adjusted.

Firstly, a source term is added to the transport equations of the turbulent variables, in a similar form of 2.8, in order
to drive the solving variable to a constant value inside the solid area, as described hereafter, respecting the boundary
conditions of the model in use. Secondly, the wall distance y is altered to take into account the presence of the immersed
solid. The distance yIB of every cell centre from the IB surface is calculated and then the wall distance is estimated as
the minimum between the yIB and the conventional y, in a similar way presented by Mochel et al. [19]. The influence of
the wall distance adaptation is visualised by figure 3.
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(a) Original wall distance (b) IB wall distance (c) Adjusted wall distance

Figure 3: The calculated wall distance for an indicative computational domain with immersed boundaries: the original wall
distance considering only conformal walls, seen on the left, is superimposed with the wall distance for the immersed boundary (here
a cylinder), seen in the middle, to result in the adjusted wall distance, seen on the right, which takes into account both conformal
and immersed walls. In this example, only the lower boundary of the domain is considered as wall boundary. The wall distance is
given in units of length.

The Reynolds stresses are modelled using the Boussinesq assumption 2.10. The turbulent viscosity µturb is estimated
by the turbulent model.

τR = −ρ · u′u′ = µturb ·
(
∇u +∇uT

)
− 2

3
ρkI (2.10)

In the present study, for wall bounded flows, the modified low-Re k − ω SST [48, 60, 61], expressed by the equations
2.11, has been used, incorporating the Reboud correction for multiphase flows [60, 62]. The expressions and the values
of the parameters and the empirical constants included in the equations, follow the recommendations by Menter [63],
as well as the on-line turbulence modelling resource of NASA [64]. In practice, the constants F1, F2 are functions of,
amongst other variables, the inverse of the distance from the wall and thus, the wall distance adaptation was considered
essential.

∂ρk

∂t
+∇ · (ρuk) = ∇ · ((µ+ σkµturb)∇k) +

Sk︷ ︸︸ ︷
Pk − β∗ρkω (2.11a)

∂ρω

∂t
+∇ · (ρuω) = ∇ · ((µ+ σkµturb)∇ω) +

γω

k
Pk − β∗ρω2 + 2(1− F1)σω,2

ρ

ω
∇k∇ω︸ ︷︷ ︸

Sω

(2.11b)

νturb =
α1k

max
(
α1ω,

√
2StF2

) (2.11c)

The turbulent model provides an estimate for the turbulent dynamic viscosity νturb; then the turbulent viscosity is
computed as µturb = f(ρ) · νturb, where the density function f(ρ) is given by 2.12. The effective viscosity, present in the
momentum equations 2.1b, is then calculated as µeff = µ+ µturb.

f(ρ) = ρv +

(
ρv − ρ

ρv − ρl

)n

· (ρl − ρv), n = 10 (2.12)

To apply the boundary conditions in the area of the immersed boundary, source terms are added in the transport
equations of the turbulent variables. In the case of k−ω SST , the boundary conditions for the turbulent kinetic energy and
the specific dissipation are set according to Wilcox [65] to kwall = 0m2s−2 and ωwall → ∞, practically ωwall = 1015s−1.
Therefore, the aforementioned source terms are calculated by 2.13. The turbulent transport equations are solved at the
end of the time-step, after the time-advancement of the NS equations.

S′
k =

kwall − k

∆t
, S′

ω =
ωwall − ω

∆t
(2.13)

Nevertheless, for certain applications adopting another strategy towards turbulence modelling might be necessary.
For simple academic laminar simulations the Reynolds stress term is simply disregarded. To adopt a inviscid approach
is suffices to set viscosity to zero. On the other hand, Large Eddy Simulations (LES) might be preferred for biological
or industrial flows with complex and transient dynamics. Coupling the method with LES models seems on first analysis
a straightforward task, as the absence of transport equations minimises the required modifications; however, when near
wall modelling becomes of high importance the relevant discussions and the solutions of boundary layer reconstruction
should be considered [30]. This has not yet been addressed in the current study.
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3 Numerical Results
The performance of the presented direct forcing Immersed Boundary method is assessed in well-documented cases and
validated against results from the literature or from prior numerical simulations. In the following sections, the method is
initially applied on cases of moving cylinders in stationary or flowing incompressible fluid, the incompressible turbulent
flow over a backward-facing step and the supersonic compressible flow over a stationary cylinder; then it is evaluated
for cavitation inception from a rotating cross in a stationary liquid, as well as the for turbulent cavitating case over
stationary and rotating hydrofoils; finally it is applied in the case of cavitation inception at the needle valve closure of a
Diesel injector.

3.1 Incompressible Flow over Cylinders
3.1.1 Oscillating Cylinder in fluid at rest

The oscillation of a cylinder in a fluid at rest is simulated, in order to assess the method’s capability to handle moving
boundaries. Apart from the Reynolds number, this case is characterised also by the Keulegan-Carpenter number KC =
Umax/(f · D), where Umax refers to the maximum velocity and f the frequency of the oscillation of the cylinder. The
motion of the cylinder is described by a harmonic function x(t) = −Asin(2πft), with A = KC/2π the amplitude of the
oscillation.

The computations are carried out using air as the surrounding fluid and choosing Re = 100, and KC = 5, resulting
in a Strouhal number St = 0.2, to match the experimental data available from Dütsch [66]. The computation run for
8 oscillating periods. Three different meshes are used to determine the mesh influence on the results. In addition, the
IB method results are compared to simulations applying an over-set mesh technique, where the cylinder over-set mesh
conforms to the solid cylinder boundary.

A 55Dcyl × 35Dcyl domain is discretised using canonical orthogonal grid; telescopic refinement is used in order to
achieve the desired resolution in a square region [−3Dcyl, 3Dcyl], centered on the equilibrium point of the cylinder’s
oscillation. The three meshes yield a cell edge of 5%Dcyl (coarse), 2.5%Dcyl (medium) and 1.25%Dcyl (fine), in the
refined region near the cylinder.

In figure 4, the velocity components are plotted for three different phases of the oscillation and on four different
cross sections along the oscillation path of the cylinder,for the three meshes, in order to assess the influence of spatial
discretisation on the numerical results. The small deviation of the velocity profiles indicate that the immersed boundary
method is mesh independent.

Oscillating cylinder in fluid at rest KC = 5; Re = 100
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Ux, 180o Ux, 210o Ux, 330o
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1

−1 0 1
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Uy, 330o

y
/D

y
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x=-0.6D
x= 0.0D
x= 0.6D
x= 1.2D

Figure 4: Mesh dependence of in-line (top) and cross (bottom) velocity for Immersed Boundary simulations of cylinder oscillation
in air at rest, at Re = 100 and KC = 5, at four different cross-sections: coarse (− · −), medium (−−−), fine (continuous line).

In figure 5 the IB method is compared to the experimental data of Dütsch [66], and to an over-set mesh methodology,
available in OpenFoam+ [67]. According to the over-set mesh approach, two grids are created, one background that does
not take into account the moving cylinder and one smaller around the cylinder, which conforms to the geometry; an
interpolation procedure is used to communicate field values between the two meshes. The medium mesh is used for both
numerical simulations. The predicted velocity profiles exhibit a good agreement for the two computational methods, as
well as with the experimental data, although some peak values are not captured.

Finally, the drag coefficient over the length of the cylinder, computed as CD = 2fx/(ρDcylU
2), is plotted for the

IB method, the over-set mesh and the experiments, in figure 6, where IB simulations for the three different meshes are
compared in plot 6a for dt = 0.5ms and for three different time steps using the medium mesh in plot 6b. Both methods
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Oscillating cylinder in fluid at rest KC = 5; Re = 100
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Figure 5: Comparison of in-line (top) and cross (bottom) velocity profiles for Immersed Boundary simulations (continuous line)
of cylinder oscillation in air at rest, Re = 100 and KC = 5, to over-set mesh computations (dashed line) and Dütsch et al. [66]
experimental data (symbols), at four different cross-sections.

produce results that coincide with experimental data. However, it can be observed that the over-set curve has a lot of
spikes, whereas the IB curves are smoother. If the over-set method was to be used in the framework of a flow-induced
motion for the cylinder, these spikes might result in non-convergent simulation and highly unsteady motion. In contrast,
the IB method seems more suitable for such complicated fluid-structure interaction problems.

For the IB curve, the smoothness is influenced by the spacial and temporal resolution. A coarser grid yields weak
force spikes in some parts of the oscillation, probably because the immersed body representation is not accurate enough.
On the other hand, a larger time-step provides a smoother curve. The time step and minimum cell size control the
percentage of a masked (solid) cell to be revealed and of an unmasked (fluid) cell to be covered by the immersed body as
it moves and therefore affects the unsteadiness of the forcing source term.
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Figure 6: Comparison of drag coefficient for Immersed Boundary simulations with the three different meshes (left) and three
different time steps (right), to the computation of the over-set mesh technique (using the fine mesh) and the experimental data of
Dütsch et al. [66].

3.1.2 Flow past oscillating Cylinder

The next benchmark case considered to assess the performance of the proposed Immersed Boundary method is the case of
an incompressible flow development over an in-line oscillating cylinder. The current Finite Volume IB method simulation
results are compared with the numerical data of Hurlbut et al. [68], obtained using the Finite Difference approach.

The computations of Hurlbut et al. [68] were performed on a fixed grid, conforming to the cylinder surface. The
oscillating motion of the cylinder was taken into account using a non-inertial coordinate transformation, where the
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velocity of the fluid is divided in to two components: one relative to the moving cylinder (Uf ) and one relative to the
inertial frame of reference (Ur). The latter is calculated as a function of time, representing the oscillation of the cylinder.

The cylinder is initially stationary, exposed in a flow of Re = 100, until a periodic vortex shedding is achieved.
Then, it starts to oscillate at a frequency twice as the Strouhal number of the vortex shedding, which is calculated as
Stq = fqUinf/Dcyl = 0.166, where fq the vortex shedding frequency; this is in agreement with the literature [69–71].
According to Hurlbut et al. [68], at such an oscillation frequency, phase locking is observed which increases the drag and
maximizes the lift coefficient.

As in the previous case, air is chosen as the medium and the velocity of the cylinder is described by the equation
uc(t) = 2πfcAcos(2πft), with the amplitude of the oscillation subject to the constrain of KC = 5 and fc = 2fq, where
fc the oscillation frequency of the cylinder.

The computational domain is chosen to be L = 55Dcyl in length and H = 35Dcyl in height, and discretised by an
orthogonal Cartesian grid, which makes use of telescopic refinement near the cylinder and along the vortex street, to
yield square cells with edge length of δx = δy = 1%Dcyl.

Comparison of the drag (CD) and lift (CL) coefficient, extracted from the IB simulations, against the conformal grid
computational data of Hurlbut et al. [68], show excellent agreement, as illustrated in figure 7. The current IB method
provides accurate results and greatly simplifies the computational procedure compared to the numerical setup of Hurlbut
et al. [68]
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Figure 7: Flow over oscillating cylinder at Re = 100. Comparison of Lift (top) and Drag (bottom) coefficient for Immersed
Boundary simulations (lines) to conformal grid computational data of Hurlbut et al. [68] (symbols). The cylinder oscillates at a
frequency two times greater than the vortex shedding frequency, fc = 2 · fq = Stq · Uinf/Dc.

3.2 Turbulent flow over backfacing step
In order to test and validate the treatment of turbulent modelling by the presented Immersed Boundary method, a widely
accepted benchmark case of the flow over a back-facing step [72–75], at a Reynolds number of Re = 69610, is studied.
The present numerical simulation results are compared to the experimental data provided by Kim [72].

The case consists of the incompressible flow of air (ρ = 1.88553 kg/m3, µ = 1.83698 · 10−5 kg/ms) in a channel,
over a back-facing step. The total height of the channel is HTotal = 3h, where h the height of the step. The step extends
L1 = 4h downstream the inlet. The outlet is placed L2 = 61.4h downstream the step. The domain, which can be seen in
figure 8a, matches the configuration reported by [73], who simulated the same flow using curvilinear grids. The step is
represented as an Immersed Boundary, as seen in figure 8b.

Unsteady Reynolds-Averaged (URANS) computations are carried out and the k− ωSST turbulent model is used. In
addition to IB simulations, conformal grid simulations are also performed. Thus the performance of the IB method is
evaluated, with respect to the accuracy of solver.

The conformal grid yielded y+ = 40 near the wall. For the IB simulations, two different grids where used; a coarse
achieving y+ = 40, similar to the conformal grid, and a fine reaching y+ = 10. When using an Immersed Boundary, is
not trivial to determine the height of the first cell over the (immersed) wall, as the grid generally does not conform to
the solid wall and the normal to the boundary direction does not coincide with the cell height. Therefore the y+ servers
rather as an indication of the grid resolution than an absolute characteristic measure of the turbulent modelling. In this
particular case however, the computational cells are aligned with the immersed wall, therefore the y+ retains its physical
significance.

In figures 9 and 10, the profiles of turbulence kinetic energy (TKE) and in-line velocity (Ux) respectively, along
different vertical sections downstream of the step, are plotted. The numerical results of the IB method are compared
to the conformal grid results and the experimental data of Kim [72]. Good agreement is found between the two nu-
merical methods and the deviation of both from the experimental results is small. Moreover, the Immersed Boundary

10



in
le

t H = 3× h

h

L1 = 4× h L2 = 61.4× h

(a) Domain (b) Mesh

Figure 8: Computational domain (left) and mesh with IB surface (right) for back-facing step case. Geometric expansion of the
cell height is used to refine the canonical orthogonal mesh near the wall and the top side of the step and achieve the desired y+

value.

computations’ results prove independent of the grid resolution over the step. However, both numerical methods do not
capture accurately the velocity profile in the recirculation region (first four sections in figure 10), as well as they both
underestimate the maxima of the curves. In addition, small differences are observed in the distributions of turbulent
kinetic energy between the IB method and the conformal grid simulation, as the IB method overestimates turbulence
near to the step (first two sections in figure 9).

Flow over Backfacing Step Re = 69610; k − ωSST
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Figure 9: Flow over back-facing step. Turbulent Kinetic Energy vertical distribution on six different positions along the channel.
Immersed Boundary results for coarse (red line) and fine mesh (dashed orange line) compared to conformal grid computations
(black line) and experimental data of Kim et al. [72] (symbols).

3.3 Supersonic Flow past Cylinder
In order to assess the performance of the IB methodology coupled with the density-based solver, a well-known benchmark
case of supersonic flow past a cylinder is examined. Such a flow is well known for the bow-shock formation upstream of
the rigid body and empirical relations exist for its stand-off distance.

According to the work of Billing [76], the exact hyperbolic shape of the detached shock can be derived, based on the
radius R of the cylinder, the bodystand-off distance ∆s and the vertex radius of curvature Rc of the shock. The latter
two parameters depend on the dimensionality of the problem and the Mach number of the flow; for a cylinder in 2D they
are given by relations 3.1. These relations are correspond to low temperature experiments and perfect gas assumption,
while for real gases these values are reduced.

∆s/R = 0.386e
4.67/Ma2 and Rc/R = 1.386e

1.8/(Ma − 1)0.75 (3.1)

Herein, the Ma = 2 and Re = 300 flow over a cylinder is considered. Gas is chosen as the working fluid, with the
properties of air at 300K: µ = 1.846 · 10−5kg/ms, cs = 347.336m/s and ρinit = 1.177kg/s. Temperature effects are
neglected for this assessment study.

The computational domain is chosen to be 55Dcyl × 35Dcyl, discretised using a Cartesian homogeneous grid and
telescopic refinement is employed to increase the spatial resolution in the vicinity of the cylinder. Three different grids
are considered yielding a minimum cell edge of dx = 7.4%Dcyl (coarse), dx = 3.7%Dcyl (medium) and dx = 1.9%Dcyl
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Flow over Backfacing Step Re = 69610; k − ωSST
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Figure 10: Flow over back-facing step. In-line velocity profile on six different positions along the channel. Immersed Bound-
ary results for coarse (red line) and fine mesh (dashed orange line) compared to conformal grid computations (black line) and
experimental data of Kim et al. [72] (symbols).

(fine) in the area of the cylinder. In addition, two conformal mesh computations are carried out; one on a C-type grid,
with a resolution of approximately dx = 6.3%Dcyl on the cylinder’s wall, and one a Cartesian-cut grid derived from the
coarse IB grid with one level of refinement on the cylinder’s wall.The different mesh approaches are illustrated in figure
11.

The model 3.1 predicts ∆s = 1.24R = 0.62Dcyl. From the three IB simulations we get 0.66Dcyl for the coarse,
0.47Dcyl for the medium and 0.45Dcyl for the fine mesh, while for the conformal grid simulations we get 0.65Dcyl for the
Cartesian-cut and 0.52Dcyl for the C-grid. In addition the drag coefficient CD for the IB simulations are estimated as
1.36 for the coarse, 1.45 for the medium and 1.5 for the fine mesh. For the conformal grid simulation the Cartesian-cut
mesh predicts 1.37 and the C-grid 1.5. For the same problem using different Immersed Boundary techniques, Riahi et
al. [20] predict ∆s = 0.69Dcyl and CD = 1.51 and Takahashi et al. [25] report CD = 1.4 − 1.6. The predicted stand-off
distance can be further compared with values found the literature [77] in figure 14a.

It can be seen that the proposed methodology tends to under-predict the stand-off distance of the shock, while it gives
an accurate estimate of the drag coefficient. The influence of the spatial resolution on the results, which is also apparent
for the conformal grids, seems inevitable for the explicit density-based algorithm employed, which might be sensible in
the spatial interpolation schemes; further investigation of this matter exceeds the scope of the current paper.

In addition, the consistence between the results on the Cartesian-cut and the coarse IB grids, which are of the same
spatial resolution in the entire domain, provides proof of the accuracy of the proposed IB method. This is also supported
by good agreement of the velocity profiles shown in figure 12 and the density contours that visualise the bow-shock in
figure 13. Finally, in figure 14b the pressure recuperation downstream of the cylinder is shown, where the influence of
the density of the grid is evident; the results on the Cartesian-cut conformal grid is closer to the IB results.

3.4 Cavitation Induction by Rotating Cross
Following the benchmark incompressible cases, with moving or stationary immersed bodies, laminar or turbulent regimes,
the present Immersed Boundary method is applied onto cavitating flows. The case of cavitation induced by a rotating
cross immersed into stationary water, which could be seen as a case of an idealised propeller, is presenter hereafter.

The instantaneously started rotation of the cross from idle, accelerates the surrounding stationary liquid and induces
cavitation. This test case was studied by Örley et al. [35] to validate their cut cell immersed boundary method against
a simulation using a Arbitrary Lagrangian-Eulerian formulation (ALE)(with conformal to the geometry grid). In the
present study, an additional simulation with a conformal to the cross geometry grid, employing a sliding mesh approach
using Arbitrary Mesh Interface (AMI) [78] method, is carried out in order to compare with the developed Immersed
Boundary method.

The cross consists of a circular hub with diameter dhub = 0.2 m and two bars of the same thickness wbar = 0.1 m but
different length, l1 = 1.0m and l2 = 0.5 m. As computational domain is chosen a square with edge length Lsq = 600l1
and is discretised by a canonical Cartesian grid. Three different mesh resolutions are used, as in the referenced work [35],
one with 10 cells (coarse mesh) along the thickness of the bars wbar, one with 20 cells (medium mesh) and one with 40
cells (fine mesh). Several levels of telescopic refinement are used to achieve the desired resolution in an area 2l1 × 2l1
around the center of the hub of the cross.

The initial ambient pressure is set to pinit = 1 bar, the liquid is initially at rest and the angular velocity of the cross
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Figure 11: Computational domain and meshes used in Immersed Boundary and conformal grid simulations of super-sonic flow
past cylinder at Ma = 2 and Re = 300. These grids refer to the coarse (IB 7.4%Dcyl) IB mesh, Cartesian-cut (CC 7.4%Dcyl) and
C-grid (CG 6.3%Dcyl) conformal meshes.
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Figure 12: Mesh dependence of in-line velocity profiles for Immersed Boundary simulations of super-sonic flow past cylinder
at Ma = 2 and Re = 300, at different cross sections along axis of symmetry. Three different grids are considered: coarse (IB
7.5%Dcyl), medium (IB 3.7%Dcyl) and fine (IB 1.9%Dcyl). Results are compared with conformal grid simulation (CG 6.3%Dcyl

and CC 7.4%Dcyl).

is ω = 20 rad/s around the axis perpendicular to the plane. The density of the liquid water is ρL = 998.16 kg/m3 and
for the saturated vapour ρV = 0.017312 kg/m3, while the saturation pressure is set pSAT = 2339 Pa. The Wallis formula
is used for the mixture’s compressibility calculation.

As the cross starts to move, the ambient liquid is abruptly accelerated, pressure drops along the cross surface, small
vapour structures are formed and strong pressure waves are emitted radially away from the solid boundary, visible in
figure 15. These waves get superimposed while traveling away resulting in a complex pressure field. These initial vapour
structures will then collapse and as the velocity field is developed, cavitation will be induced on the path of the cross, on
the top of the long bars and near the convex surface of the hub. As these vapour structures collapse, new strong pressure
waves are emitted towards the far field, as it can be seen in the sequence plots of figure 16.

Comparison of the vorticity contours for the different meshes and the AMI simulation, presented in figure 17, show
that mesh resolution affects greatly the sharpness of the contours, with different structures visible on the finer mesh,
which leads also to different vapour structures. In addition, the conformal mesh simulation (AMI approach) exhibit
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Figure 13: Density contours and bow-shock visualisation for Immersed Boundary and conformal grid simulations of super-sonic
flow past cylinder at Ma = 2 and Re = 300.
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Figure 14: Shock stand-off distance (a) and pressure along symmetry axis (b), for simulations using Immersed Boundary (2phase
IB) and conformal grid (2phase), wither with cartesian-cut (CC) or C-type grid (CG), of super-sonic flow past cylinder at Ma = 2
and Re = 300. Data for the stand-off extracted from literature [76,77].

different vorticity and vapour structures than the IB computations, and capture weak vapour formation near the convex
surface of the hub.

The total amount of vapour created during one full rotation of the cross is plotted in figure 18, for the different grids,
the AMI approach as well as the cut cell (both 10 cells and 20 cells meshes) and the ALE simulations reported by Örley
et al. [35]. It can be seen that the current IB method, for the medium grid, although it results in a curve that follows
closely the respective medium grid computation with cut cells [35] but reaches a larger maximum, predicts greater vapour
creation, than all the other computations. Finer grid resolution enhances the vapour creation, as expected. In addition,
it can be observed that the conformal grid simulations give different predictions, which might be linked to the different
solvers or barotropic models used.

The velocity magnitude contours, plotted in figure 19 for three phases of the oscillation, for the computation with
the medium grid, differ slightly from the AMI simulation, whereas the vapour structures show greater deviation. The
difference becomes more apparent for the 360o degrees, where the velocity contous, the vapour distribution, and therefore
the velocity streamlines, show significant differences.

Although differences can be noted between the IB and the AMI simulations, the current immersed boundary method
proves adequate and suitable for treating cavitating flows with moving boundaries. The physics is captured, including
pressure waves and vapour creation, growth and collapse.

Moreover, the assessment of the performance of the IB in comparison with the AMI approach, has to take into account
the computational cost of the simulations. While the IB computation requires a uniform grid on a rather wide area to
cover the path of the rotating cross, and results in a grid with approximately 3 times more cells than the one used in
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(b) 0.5ms (c) 1.0ms (d) 1.5ms

Figure 15: Pressure contours in logarithmic scale (common logarithm log10(·)), at the initial stages of the rotation of the cross
inside initially stationary water. The time instances are extracted for the fine (40 cells) mesh. One complete rotation lasts 314 ms.
Vapour volume fraction of 1% iso-line is plotted with red.

(b) 261ms (c) 263ms (d) 263ms (e) 264ms

Figure 16: Pressure contours in logarithmic scale (common logarithm log10(·)), at the later stages of the rotation of the cross
inside initially stationary water. The time instances are extracted for the medium (20 cells) mesh. One complete rotation lasts
314 ms. Vapour volume fraction of 1% iso-line is plotted with red.

the AMI computation, it requires 5 times fewer computational resources. More precisely, the medium grid employed,
composed of 185k cells, required 83 cpuh to complete, while the conforming sliding grids of 76k cells, used with AMI
technique, required 400 cpuh. The advantages of the IB methodology are apparent.

Finally, in figure 20 a comparison between the solvers coupled with the IB is performed. The explicit density-based
algorithm captures a sharper pressure field than the implicit pressure-correction algorithm, as it is observed by comparing
figures 20e and 20f with 20b and 20c respectively. The density-based algorithm also predicts larger vapour cavities, as
show in the latter figures, which is also reflected in the integral vapour volume fraction of plot 21a. These differences are
partially due to the native differences between density and pressure based solvers, the iterative algorithm of the pressure-
based solver that might smooth out small variations captured by the density solver, as well as to the coupling with the
IB forcing source term. The effect of the treatment of the forcing source term becomes apparent also in the plot of 21a,
where the differences of linearised, via equation 2.9, and non-linearised forcing term, coupled with the pressure-based
solver, are visualised. On the other hand, figure 21b shows effect of different cavitation models, namely the Wallis and
the linear, on the prediction of vapour volume production, with the latter giving slightly higher peak value.

3.5 Cavitating Flow over a Stationary Hydrofoil in channel
Another well-known benchmark case of cavitating flow is the flow over the circular leading edge (CLE) symmetric
hydrofoil, studied experimentally and numerically by Dular et al. [79]. The complexity of the unsteady cavitating flow
poses an important challenge to the presented modelling approach and the available experimental data offer an excellent
opportunity to validate the performance of the method.

In the experiment [79], a symmetric hydrofoil, 107.9 mm long and 16 mm thick, is placed in a 50 0mm long and 100 mm
high cavitation tunnel, at a 5o incidence angle. Both the hydrofoil and the tunnel are 50 mm wide, but the simulations
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(b) IB coarse (c) IB medium (d) IB fine (e) AMI medium

Figure 17: Vorticity contours for rotating cross in water at rest, at 240o. Current direct forcing Immersed Boundary method
simulations for coarse (a), medium (b) and fine mesh (c) are compared to sliding mesh computations (d) using AMI technique.
Vapour volume fraction of 1% iso-line is plotted with red.
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Figure 18: Integral vapor volume fraction’s time evolution for rotating cross in water at rest. Mesh convergence comparison
between current direct forcing IB method (IB) and cut-cell method (CutC) from Örley et al. [35], on the left. In addition, a
comparison of different computational approaches is presented on the right, between the current IB method, using the pressure-
based (pres. IB) and the density-based (dens. IB) solvers, and the cut-cell calculations, conformal sliding mesh simulations
performed using AMI approach and ALE results reported in the work of Örley et al. [35].

presented hereafter are two-dimensional for simplicity, as the numerical study accompanying the experiments [79]. The
computational domain and grid used in the current study can be seen in figure 22. A constant velocity Uin is imposed as
boundary condition at the inlet on the left side of the domain and a constant pressure pout is set as an outlet boundary
condition on the right side. The value of pressure on the outlet is derived from the desired cavitation number of the flow
σ = (p∞ − pvap)/(ρU

2
∞/2). On the upper and lower side are considered no-slip walls.

The computational domain is discretised by a hexahedral orthogonal grid with additional refinement on the interface
of the hydrofoil. On the side walls, the cell height reaches values of y+ = 30, whereas near the hydrofoil the cell size is
equivalent of y+ = 20. The final grid is composed by 100k hexahedral cells.

The density and kinematic viscosity for water are set to ρl = 998.16 kg/m3 and νl = 10−6 m2/s, and for the saturated
vapour ρv = 0.017312 kg/m3 and νv = 5.12 · 10−4 m2/s. The saturation pressure is pSAT = 2339 Pa.

From the test-cases presented by Dular et al. [79], the current study focuses on Test 1, with Uin = 13 m/s and σ = 2,
for which experimental time-averaged velocity measurements are reported on different sections over the suction side of
the hydrofoil, seen in figure 23. The resulting Reynolds number of the flow is Re = 1.4 · 106.

In the current study, a modified k − ω SST turbulent model, employing the Reboud correction for the turbulent
viscosity, is used. The simulations is run for few shedding cycles, with the time-step being limited by the acoustic
Courant Number to be under 2. This yields time-steps of the order of 10−6 s. The velocity is sampled on the same
sections as the experiments every 0.5 · 10−4 s, and then time-averaged to produce velocity profiles to be compared with
the referenced experimental data [79]. The comparison of the velocity profiles is presented in figure 24, for the in-line
(24a) and cross direction (24b) components.

The comparison yields almost perfect match between the numerical and experimental profiles for the Ux velocity
component, while for the Uy component a slight deviation is observed that weakens towards the upper wall. The measured
Uy velocity at section y = 0 mm receives strictly negative values after x = 50 mm while the current computation predicts
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(b) IB 120o (c) IB 240o (d) IB 360o

(e) AMI 120o (f) AMI 240o (g) AMI 360o

Figure 19: Velocity magnitude contours along with streamlines for IB (top) and AMI (bottom) simulations for rotating cross in
water at rest, at three different rotation angles, for the medium mesh (20 cells along wbar). Vapour volume fraction of 1% iso-line
is plotted with red.
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(b) Pres. IB 120o (c) Pres. IB 240o (d) Pres. IB 360o

(e) Dens. IB 120o (f) Dens. IB 240o (g) Dens. IB 360o

Figure 20: Pressure contours for pressure-based (top) and density-based (bottom) IB simulations for rotating cross in water at
rest, at three different rotation angles, for the medium mesh (20 cells along wbar). Vapour volume fraction of 1% iso-line is plotted
with red.
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Figure 21: Integral vapor volume fraction’s time evolution for rotating cross in water at rest. Sensitivity of IB simulations on
computational algorithm on the left and on the cavitation model on the right. Curves on the left refer to the medium mesh (20
cells along wbar) and correspond to the pressure-based solver, with linearised (Lin. cav IB) and non-linearised (Non-Lin. cav IB)
force term, and to the density-based (2phase IB) solver. Curves on the right refer to the coarse mesh (20 cells along wbar) and
correspond to the pressure-based with non-linearised force term, for linear and Wallis model.

(a) Domain

(b) Mesh

Figure 22: Computational domain (top) and mesh with telescopic refinement (bottom) for the cavitating flow over the CLE
hydrofoil in channel. A closer look on the leading-edge of the hydrofoil is shown at the left of frame (b).

almost Uy = 0m/s from 20 mm to 60 mm and start to decrease slowly. This small deviation on the cross-stream direction
indicates that the proposed IB method produces a thicker boundary layer or longer cavity on average, as recirculation is
pushed further towards the trailing edge.

Overall the numerical results of the current numerical approach show good agreement with the experimental mea-
surements.

3.6 Cavitating Flow over Pitching Hydrofoil in channel
Another indicative turbulent cavitating flow test-case, of increased complexity, is the flow over a pitching NACA0066
hydrofoil at Re = 750000 studied numerically and experimentally by Huang et al. [4].

In the aforementioned study, a NACA0066, with chord length c = 0.15 m, is put in a hydraulic channel, where water
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(a) (b)

Figure 23: Sections where velocity is sampled for the flow over CLE hydrofoil according to [79].
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Figure 24: Time-averaged velocity profiles on different positions along stream (top) and cross-stream (bottom) directions for
cavitating flow over CLE hydrofoil. Numerical results with the current IB method, plotted with continuous lines, are compared
against experimental data from Dular et al. [79], presented with symbols.

flows at U∞ = 5 m/s and set to rotate changing the angle-of-attack of the flow from αmin = 0o to αmax = 15o and
back, for two different cavitating regimes (cavitating σ = 3, subcavitating σ = 8), at two different angular velocities
α̇∗ = 0.18 and α̇∗ = 1.89, where the nondimensional rate is calculated as α̇∗ = α̇ · c/U∞. The current study focuses only
on the cavitating case with the fast pitching rate; the rotation angle is prescribed and follows the curve reported in the
referenced article [4], which is shown in figure 25b and passed to the code in the form of tabulated data.
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Figure 25: Left: The NACA0066mod cambered hydrofoil’s profile used in the study, extracted from the paper of Leroux et al. [80].
Maximum thickness 12% of the chord. Right: The prescribed rotation angle evolution through time as extracted from the paper
of Huang et al. [4].

The computational domain is chosen 16c long and 1.28c high, in accordance with the computations of Huang et al. [4].
As boundary conditions, the far-field velocity U∞ is imposed at the inlet at the left of the domain, the value of pressure
p∞ is kept constant at the outlet in order to satisfy the condition of the cavitation number σ = (p∞−pvap)/(ρU2

∞/2) = 3.
Moreover, following the reference study, at the top and bottom sides a symmetry boundary condition is set. The domain
is discretised by an orthogonal hexahedral grid and telescopic refinement is used in order to increase the mesh density
around the hydrofoil and its wake. Both the domain and mesh can be seen in figure 26.

(a) Domain

(b) Mesh

Figure 26: Computational domain (top) and mesh with telescopic refinement (bottom) for the cavitating flow over the pitching
NACA0066. A closer look on the leading-edge of the hydrofoil is shown at the left of frame (b). The cells at the finest region, in
the vicinity of the hydrofoil, have a height equivalent of y+ = 20.

Using telescopic box refinement, the finest cell size reached, in an area around the NACA, is 0.47mm × 0.12mm,
which, if the mesh was conforming to the hydrofoil’s wall, would correspond to y+ = 20. In order to always have a fine
grid at the interface of the immersed body, while the hydrofoil is moving, the cell size has to be kept constant in a broad
area covering the path of the immersed body motion. An alternative practice would be to use a technique of automatic
mesh refinement at the interface or the area of the immersed boundary, but it is out of the scope of the current study.

When using an Immersed Boundary approach, it is not trivial to determine the height of the first cell over the
(immersed) wall, as the grid does not conform to the solid wall and the normal to the boundary direction does not
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coincide with the cell edges. Therefore the y+ servers rather as an indication of the grid resolution than an absolute
characteristic measure of the turbulent modelling.

In their numerical computations, Huang et al [4], use a tetrahedral grid with additional hexahedral layers over the
hydrofoil’s wall to capture the boundary layer. The layers ensure a mesh resolution of y+ = 1 on the wall to accommodate
the turbulent modelling. The computational domain is re-meshed in every time-step, to adapt to the new position of
the hydrofoil. This approach of re-generation of the computational grid to deal with moving boundaries, may increase
the computational cost, especially for complex geometries, and serves as a motivation for alternative techniques as the
proposed Immersed Boundary.

Because of the severe transient nature of the flow, with the hydrofoil pitching past its stall-point, at an angle of
αstall = 13o, laminar to turbulent separation is expected to occur. For that reason, Huang et al. [4] make use of the
k − ω SSTLM turbulence model, which is a combination of the transition model γ − Reθ and the well-known low-
Reynold k − ω SST model. They employ the Reboud correction for multiphase flows, which reduces the turbulent
viscosity according to the local vapour volume fraction; they follow the modifications of Ducoin et al. [48] and set the
value of the exponent n equal to 3 instead of 10 that was recommended by Coutier-Delgosha et al. [60] and is also used
herein for equation 2.12. When using the γ−Reθ model in order to accurately capture the laminar to turbulent transition,
the grid cell size should yield y+ ≃ 1, while for y+ > 5 the transition location would be erroneously determined and
moved upstream, according to Menter et al. [81]. For this reason, in the computations of Huang et al. [4], the mesh
resolution ensures y+ = 1 over the hydrofoil wall.

In the present study however, achieving y+ = 1 near the Immersed Boundary is computationally prohibiting because
a wide area would require such a fine resolution, as explained in the previous paragraphs. Therefore, different turbulence
models have been employed in an attempt to alleviate the uncertainties related to fully resolving the boundary layer over
the immersed wall and capturing the laminar to turbulent transition. Apart from the k − ω SSTLM model, the one-
equation Spalart Allmaras and the low-Reynolds k−ω SST models have been used. The first model solves two additional,
compared to the k−ω SST , equations for the intermittency γ and the transition momentum thickness Reynolds number
Reθ to estimate the position of the turbulent transition; it is used because it is chosen for the numerical study of Huang
et al. [4]. The second model, Spalart Allmaras, is widely used in external aerodynamic flows over airfoils and solves for
a single turbulent variable, the turbulent viscosity νt; it is chosen for its simplicity. Finally, the k − ω SST is also used,
because it is one of the most widely applied models on problems of engineering interest. All the models incorporate the
Reboud correction, to account for mixture effects on the turbulent viscosity.

Figure 27 presents the off-plane vorticity field for the three different turbulence models, at various indicative angles
along the pitching cycle. Differences between the predicted vorticity are visible mainly during descending phase. The
50% vapour volume fraction iso-line is also plotted to indicate the cavitation regions. Although initially small counter
rotating vortices are shed in high-frequency from the trailing edge and a separation region forms and grows over the
leading edge, during descending motion strong separation occurs and large vortices are shed from the leading and the
trailing edges. The close relation between vorticity and cavitation is evident. Cavities are initiated, grown and carried
away by vortical structures generated on the leading and trailing edges of the hydrofoil. The interaction between leading
edge cavities and trailing edge vortices, highlighted in [4], is captured by all the models. The trailing edge vortices, grow
until they interact with vapour structures shed over the hydrofoil from the leading edge and then get separated and
carried away in the wake. This interaction also brakes down the leading edge cavities. The large vortex shedding cycles
seem to be similar for the three models, but the results of the k − ω SSTLM show more frequent separation of smaller
vortices, along with small vapour cavities, from the leading edge. On the other hand, the other models predict more
steady cavities that stay attached for longer.
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(a) 9o(+) (b) 9o(+) (c) 9o(+)

(d) 12o(+) (e) 12o(+) (f) 12o(+)

(g) 15o (h) 15o (i) 15o

(j) 14o(−) (k) 14o(−) (l) 14o(−)

(m) 13o(−) (n) 13o(−) (o) 13o(−)

(p) 12o(−) (q) 12o(−) (r) 12o(−)

(s) 8o(−) (t) 8o(−) (u) 8o(−)

Figure 27: Vorticity field for pitching NACA0066, on different angles of attack, for the different turbulence models. Spalart-
Allmaras on the left, k−ωSST on the middle, k−ωSSTLM on the right. The 50% vapour volume fraction iso-contour is coloured
with red and the contour levels follow a reverse gray scale, from −500 (white) to +500 (black).
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The influence of the turbulence model on the vapour creation cycle is also illustrated quantitatively by figure 28, which
presents the integral vapour volume fraction evolution along the pitching motion, for the three models. Vapour generation
initiates during ascending motion around 9o − 10o for all the simulations and the total vapour volume progressively
increases up to pick angle, while during descending motion vapour volume formation cycles are visible, which correspond
to the shedding cycles identified by the frames of figure 27. A striking difference constitutes the fact that vapour generation
during descending phase is almost completely suppressed when k − ω SSTLM is used, while k − ω SST and Spalart
Allmaras models capture four generation cycles. This is consistent with the observation of elongated attached cavities
for the latter two models, in contrast with the shedding of small cavities from the leading edge for the k − ω SSTLM .
Although turbulent transition dynamics is hard and non-trivial to capture with this configuration, the γ − Reθ system
of equation seem to enhance the separation. From the three different models, k − ω SST exhibits the higher maximum
vapour volume value shortly after pick angle is reached, while it also exhibits the faster decay during descending phase;
better agreement is found among the results of the two other models between 10o ascending and 10o descending.
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Figure 28: Integral vapour volume fraction for pitching NACA0066; comparison of simulation results with different turbulence
models.

A qualitative assessment of the current computations is performed in figure 29, which presents experimental pho-
tographs and numerical vapour and vorticity fields provided by [4], along with the vorticity field and vapour iso-lines of
the current numerical simulation with k − ω SSTLM model. The referenced photographs indicate the vapour cavities
over the hydrofoil; good agreement among the computational and experimental results is found for the ascending phase.
At 14.6o ascending, a large cavity, already detached, expands downstream the mid-cord of the hydrofoil, which is also
captured by the current simulation; however the predicted cavity shape, as well as the vorticity contours, are irregular
and differ from the referenced numerical results. At 14.8o descending, the referenced computational vapour field features
two intense large well organised cavities over the hydrofoil towards and adjacent to the trailing edge, visible in frame
29g; these cavities are in the same position as two large counter-rotating vortices, one originated from the leading edge
and one generated on the trailing edge (Trailing Edge Vortex - TEV). The current simulation also captures the TEV at
the same angle of attack, while the vortical and vapour structures over the hydrofoil are again more irregular. These
discrepancies could be attributed to the coarser grid used in the current IB calculations, in addition to a slight phase
lag in the vortical and vapour dynamics. Finally, on later stages of the descending phase, the referenced flow field is
smoother than the result of the current simulations, which features many small cavities in the core of small vortices on
the suction side and small vortices near the trailing edge on the pressure side.
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(a) 5.5o(+) Huang (b) 5.5o(+) IB

(c) 9o(+) Huang (d) 9o(+) IB

(e) 14.6o(+) Huang (f) 14.6o(+) IB

(g) 14.8o(−) Huang (h) 14.8o(−) IB

(i) 5o(−) Huang (j) 5o(−) IB

Figure 29: Vorticity field and vapour volume fraction for pitching NACA0066 calculated by the current IB methodology (right),
compared against computational plots and experimental photographs of Huang et al. [4] (left). For the referenced figures of [4],
experimental photographs, vapour volume fraction and vorticity field are presented from left to right respectively. On the numerical
results of IB simulations (right column), the vapour volume fraction is represented by means of 50% iso-contour by the red line.
On the referenced figure, the vapour volume fraction is presented on gray scale, with values ranging from 0 (black) to 0.8 (white),
while vorticity is presented on reverse gray scale, from −500 (white) to +500 (black).

A straightforward quantitative measure of the performance of the herein proposed computational approach, would
be the force coefficients’ evolution throughout the rotation cycle. In figure 30, the lift, CL, and drag, CD, coefficients
are presented for all three turbulent models used. In addition, the plots compare the current simulations’ results to
numerical results using conformal grid reported by Huang et al. [4], employing k − ω SSTLM ; experimental values
of the lift, measured for the subcavitating flow over a static hydrofoil, are also shown.It has to be noted that these
available experimental lift measurements, regard a completely different flow regime from the one developed over a moving
hydrofoil, cover a range of angles far below the stall point of the hydrofoil, and therefore the comparison to the numerical
results can be only indicative. Because the force coefficients of the current simulations exhibit severe oscillations with
frequent high amplitude spikes, they are presented by means of moving average, to ease the comparison with referenced
data. These oscillations, although they could be partly comprised by numerical noise, as discussed later on this section,
they also represent compressibility effects; the reported computation of Huang et al. is incompressible therefore pressure
waves are not captured and the resulting body forces have a rather smooth profile. It can be seen that, while ascending,
the curves for all IB computations agree well with the referenced computations; some noise is present in both drag and
lift coefficients for all the simulations. During the descending motion, the three IB computations diverge; k − ω SST
constantly over-predicts the drag, as well as the lift in most part of the descending phase; the results of Spalart Allmaras
seem to be closer to the referenced data, however they exhibit strong persistent increases and decreases and therefore
diverge. The results of the k − ω SSTLM model, in spite of the clear deviation and almost constant over-prediction of
the forces, they seem to capture similar dynamics found in the referenced computations; the evolution of the coefficients’
curves have similar increases and decreases, however the current simulations follow with a small delay.
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Figure 30: Centered Moving Average (CMA) trend-lines of force coefficients for pitching NACA0066; comparison of simulation
results with different turbulence models. Numerical and experimental results of Huang et al. [4] are also presented; continuous
black line refers to transient computations of cavitating pitching hydrofoil, while the black symbols are static lift measurements
for fixed subcavitating hydrofoil.

By sampling the pressure field on the surface of the hydrofoil, modelled as an immersed boundary, the pressure
coefficient distribution along the sides of the foil can be determined, calculated at Cp = 2(p−pinf)/(ρinfU

2
inf). In figure 31

it is plotted for different angles during the ascending phase. On the one hand, the noise of the sampled data is evident.
It can be explained as a side effect of the direct forcing in conjunction with the severely transient nature of the flow,
as well as the lack of special treatment for the pressure field, as it will be explained hereafter. On the other hand, a
distinctive oscillatory behaviour can be observed, which partially can be related to the modelling approach but also to
the very characteristics of the flow and the vortex shedding, which is initiated early in the cycle on the pressure side.
Equivalent curves reported by Huang et al. [4], although they predict a very smooth profile along the pressure side of the
hydrofoil, they capture a similarly distorted pressure distribution on the suction side, with peaks towards the leading edge
and plateaux towards the last half; these are visible in figure 31 for angels 8o(+) and 15o. There the pressure coefficient
reaches the limit value of −3 which corresponds to the cavitaion number and indicates the location of vapour cavity. An
interesting artefact captured by the herein presented simulations, is the inversion of the curves that takes place near the
trailing edge at peak angle 15o. This is related to the sudden and abrupt change in the direction of the rotation; it is
linked with the stall and the TEV generation. This observation agrees with the data of the aforementioned literature,
where in addition a less rapid rotation and a less violent flow are studied, for which these distortions are absent. The work
of Hejranfar et al. [47], on the cavitaing flow past a stationary NACA0066(MOD) hydrofoil at a low angle, in an inviscid
framework, employing both barotropic and mass transfer models (transport equation-based models TEM), alleviate the
computational uncertainties of the turbulence modelling and reduce them to the choice of empirical constants on the
cavitation models. In addition, they also report severe pressure drops at the end of the cavity, which in their case remains
attached. This is clearly visible near the leading edge for the curve corresponding to 8o(+) in figure 31.
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Figure 31: Pressure coefficient for pitching NACA0066, at different angles on the ascending phase. Results correspond to the use
of k − ωSSTLM .

It can be stated that, overall, the results of the IB and the conformal grid computations are close, despite the
severe oscillations of the forces and the time-shift of the developed phenomena present in the former. Both qualitative
and quantitative comparison of all the computations and the experiments, yield good if not perfect agreement for the
ascending phase of the motion, while for the descending phase, the results of the IB simulations deviate from that of
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the conformal grid, although it is found that, depending on the turbulence model used, the dynamics of the flow can
be closely replicated. The close relation between cavitation and vortical structures is evident. The IB simulations are
limited by grid resolution that prevents them from accurately capturing stall and transition to turbulence in the boundary
layer over the hydrofoil wall. The use of an automatic mesh refinement method, could ensure the fine grid resolution
in the viscinity of the immersed body interface, and therefore enhance the performance of the turbulence models, while
keeping the mesh size reasonable and the computational cost low. In addition, the difference in cavitation modelling may
play a role for these discrepancies, although probably small; the simulations of Huang et al. [4] employ a homogeneous
mixture model coupled with Merkle mass-transfer model for phase change, while the current IB simulations follow a
HEM approach coupled with a barotropic EOS. According to the rationale of Huang et al., the barotropic approach
was avoided because it would not be able to capture the baroclinic torque, i.e. the miss-alignment of the pressure and
density gradients, which is thought to play a significant role in cavitation initiation. However there is no proof that
mass transfer models can predict the correct baroclinic torque either. Moreover, the parametric computational study of
the cavitating flow over a NACA0066(MOD) reported by Hejranfar et al. [47], showed that very good agreement can be
achieved between barotropic and mass transfer approaches, with the latter to be sensitive in the choice of their empirical
coefficients. In conclusion, the herein proposed method proved adequate in treating this complex case and capturing the
reported physics, although room for improvement exists.

Moreover, regarding the treatment of the IB source term, the influence of the linearisation of the forcing term is studied
in figure 32. It can be seen that although the oscillatory nature of the curves has not vanished, the high-amplitude spikes
have been drastically reduced. This confirms that these oscillations are partly caused by the numerical method or the
discretisation employed, however since compressibility is taken into account, pressure waves and therefore noise on the
body forces are expected. The pressure field is let to naturally evolve inside the immersed body, influenced only by
the momentum forcing term imposing the no-slip condition, therefore an additional source term enforcing a pressure
boundary condition, as the one proposed by Riahi et al. [20] for compressible flows, as well as finer spatial resolution near
the body interface, as discussed previously, could further improve the results; however all these numerical enhancements
would not completely remove the noise from the body forces, which is linked to the highly transient nature of compressible
effects of cavitating flows. In addition, it is evident that the simulations with the k − ω SSTLM model produce the
results closest to the reference computations of Huang et al. [4], which employ the same turbulence model.
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Figure 32: Force coefficients for pitching NACA0066; comparison of simulation results with explicit and implicit treatment of the
forcing source term, for different turbulence models. Numerical results of Huang et al. [4] are also presented.

Finally, with regards to the computational time, it has to be noted that although the simulations demanded significant
computational resources and were rather long, this was a result of the long simulated time interval (0 − 0.47s) and the
small time-step (dtmean = 1.29 ·10−7s) dictated by the cavitating regime. It has to be highlighted that the computational
cost stems from the requirements on the flow solver, as the motion of the hydrofoil is accommodated by the IB, without
alternation of the mesh; this does not add additional computational burden. More precisely, for the simulation of
the ascending motion of the pitching NACA0066 with Spalart-Allmaras turbulence model, for approximately 0.23s,
the computational cost was 2414cpuh on 8 cores of a workstation equipped with an Intel Xeon E5-2690 V3 @2.6GHz
processor. For the simulation of the turbulent cavitating flow over the same stationary hydrofoil, for 0.2s, using the same
turbulent model, 2238cpuh were required. Thus, it can be seen that the IB method has a significant advantage over any
adaptive conformal grid technique.
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3.7 Cavitation in a Diesel Injector with needle movement
Finally, in this section, a pilot injection, dwell time, and subsequent start of the injection cycle of a Diesel Injector are
simulated considering the needle valve movement. This is an indicative case of industrial application, demonstrating the
ability of the proposed IB Method to deal with complex cavitating turbulent flows.

The IB methodology is particularly relevant for these cases as it allows the modelling of the flow field at zero lift, where
the needle remains closed. Numerous numerical works are focused on these flows, which accommodate the movement with
either complete re-meshing the domain [4] or cell layer addition and inflation [5] or interpolating between girds of different
resolution but same cell count [82]; only few studies employ cut-cell IB methods [32–36], which however do not permit the
needle to fully close but rather demand a minimum lift of about 8% [32], 2%-4% [33] or 1.5% [34]. Cut-cell methods could
be an alternative option, though the cartesian background geometry would necessitate an excessive amount of cells for
describing small needle/needle seat gaps. An accurate simulation of the needle movement, including full-closed position,
is essential to capture the pressure-wave dynamics and the residual fuel remaining in the injector’s sac volume between
successive injection events, a phenomena that plays a major role in nozzle wall wetting and emissions, as demonstrated
by a recent work of the author’s group [41].

The geometry employed is a 6-hole valve covered orifice (VCO). The computational domain, as well as a general and
a detailed view of the mesh are visible in figure 34. The computational domain covers the injector and the combustion
chamber in the vicinity of the nozzle exit. The VCO is initialized with 100% Diesel at 1600bar, except for the orifices that
are initialized at 40bar. The combustion chamber is initialized with 100% air at 40bar and 700K. A constant pressure
of 1600 bars and 40 bars is applied at the inlet and outlet boundaries, respectively.

For this simulation, the density-based solver is employed, which uses 103 times smaller steps compared to the previously
simulated cases [41], where a pressure-based solver was used, and thus, better captures the dynamic effects linked with
the residual fuel inside the nozzle’s sac volume and injection hole during the dwelt time. Moreover, although recent
studies [83–85] consider temperature effects, for the cases examined here, that refers to pilot injection at a rail pressure
of 1600, temperature effects can be ignored [86–90]. The Diesel properties employed in the simulations are the ones
considered in the aforementioned study [41]. The air properties were computed using the NIST (REFPROP) library [91].
Regarding the turbulence, instead of RANS a LES approach is employed and the turbulent viscosity is modelled using
the Wall Adaptive Large Eddy (WALE) method [92]. In contrast to the RANS simulations, wall distance adaptation is
not taken into account by the LES model. Figure 33 shows the needle lift employed in the simulation and the mass flow
rate per orifice. The observations and obtained results agree with that of the previously published study [41].
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Figure 33: VCO Diesel Injector’s simulation imposed needle lift and calculated mass flow rate

The evolution of the cycle and the two distinct cavitation formation mechanism are illustrated in figures 35 for the
Start of Injection Transients (SOI) and 36 for the End of Injection (EOI). At the start of the first injection, a small
amount of air from the combustion chamber is suctioned into the orifices and at 32µm lift, geometric-induced cavitation
is initiated at the inlet edge due to the high flow speed generated between the needle and nozzle walls, as it is illustrated
in the time-instances of figure 35. On the other hand, during the closure, as the needle valve approaches its seat, the
pressure near the needle drops to values lower than the saturation pressure of Diesel, resulting in localized cavitation
near the inlet of the orifices (figure 36b). These cavitation pockets are elongated towards the exit of the orifices during
the last stages of the needle closure (figures 36d, 36e, 36f), and when the needle reaches 0µm lift (figure 36g), an effect
like inverse water hammer takes place. Once the fuel has lost its momentum, the increased pressure in the combustion
chamber pushes the Diesel and air from the chamber toward the inlet of the orifices, collapsing the vapor cavities (figures
36h, 36i) leading to air ingestion. The existence of gas voids within the orifices before the start of the injection was
observed experimentally [93] with the visualization of a sack-type injector and is of importance in quantifying realistic
initial conditions for spray simulations. The geometric cavitation inside the orifices in the second injection, is significantly
lower than in the first one due to expansion of the gas present inside the orifice when the pressure drops, as it can be
seen in the time-instances of Subsequent Start of Injection (SSOI) in figure 37.
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Figure 34: (a)VCO geometry, (b)cross-section of the hexahedral mesh employed, (c)mesh details near orifice entrance and exit.

(a) (b) (c)

(d) (e) (f)

Figure 35: Geometric cavitation formation during opening of Diesel injector needle valve (SOI). Iso-surfaces of IB mask αIB = 0.99
(red), 20% vapour volume fraction (yellow), and 5% gas mass fraction (blue).

4 Conclusions
In the current paper a direct forcing Immersed Boundary method has been proposed for complex turbulent cavitating
flows, involving moving boundaries.

The proposed methodology, follows a direct forcing approach and introduces a forcing source term in the momentum
equations to account for the presence of the immersed body in the fluid. The source term is localised on all cells covered
by the solid surface representing the immersed body by using a continuous mask. Thus, it overcomes the stair-case issue
on interface cells, avoids the cumbersome interpolation procedure, the definition of every intersection of the geometrical
representation of the body with the computational grid or the sophisticated sub-grid reconstruction of the boundary,
present in other Immersed Boundary methods and therefore, profits from simplicity in its formulation.

In addition, compared to other alternatives, the method poses as a simpler and more cost-effective computational
approach for complex flows in domains of changing geometry. The significantly lower computational in comparison
with sliding conforming grids approach and the simpler and less complex algorithm than the re-meshing techniques, are
important advantages. The has been applied to turbulent cavitating flows involving moving boundaries, characterised by
highly transient phenomena, for which the computational cost of conforming grid techniques would be prohibiting.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 36: Collapse cavitation formation during closing of Diesel injector needle valve (EOI). Iso-surfaces of IB mask αIB = 0.99
(red), 20% vapour volume fraction (yellow), and 5% gas mass fraction (blue).

The proposed method has been validated on benchmark cases with increasing complexity, from incompressible laminar
and low-Reynolds flows to compressible high-Reynolds turbulent multiphase flows with phase change. The performance
of the method has been assessed against experimental data and computational results available in the open literature,
as well as conformal grid simulations when possible. The results obtained with the proposed method are found in good
agreement with the reference data, demonstrating that it is capable of treating complicated cavitating flows around
moving bodies with satisfactory accuracy.
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A Accuracy of the Method
To assess the accuracy of the developed Immersed Boundary method, the Euclidean or L2 norm of the velocity field error
e = u − uref is used to quantify the dependency of the computational error from the spatial resolution. The error is
evaluated as the volume-weighted average of the square of its norm by the relation A.1, for the cases of an oscillating
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(a) (b)

(c) (d)

Figure 37: Geometric cavitation formation during second opening of Diesel injector needle valve (SSOI). Iso-surfaces of IB mask
αIB = 0.99 (red), 20% vapour volume fraction (yellow), and 5% gas mass fraction (blue).

cylinder in stagnant fluid, of section 3.1, and the supersonic flow over a stationary cylinder, of section 3.3.

||eu|| = ||e|| =

√
1

VT

∫
||e||2dV =

√√√√ 1

VT

n∑
j

Vj ||uj − uref,j ||2 (A.1)

where Vj and uj refer to the volume and velocity, respectively, of the cell j of the discretised computational domain, of
total volume VT and total cell number n. As the reference velocity field, uref , is chosen in both cases the velocity field
of the finest grid, thus the order of convergence rate of the velocity error with increasing spatial resolution is studied.

For the simulation of oscillating cylinder in incompressible fluid, using the pressure-based approach, in addition to
the three canonical grids presented in section 3.1, namely the 5%Dcyl (coarse), 2.5%Dcyl (medium) and 1.25%Dcyl (fine),
yielding a total number of 67k, 137k and 334k cells respectively, another coarser grid, of 51k cells, is employed with a
resolution of 10%Dcyl. Similarly, for the case of compressible supersonic flow over stationary cylinder, simulated with the
density-based solver, apart from the three grids mentioned mentioned in section 3.3, with resolutions of dx = 7.4%Dcyl

(coarse), dx = 3.7%Dcyl (medium) and dx = 1.9%Dcyl (fine) in the vicinity of the cylinder, a fourth coarser grid, with
dx = 14.8%Dcyl, is used to study the convergence. The estimated errors are shown in figure 38 and suggest that the
method achieves first order of accuracy; is in accordance with the findings of Fadlun et al. [16].

Another way to quantify the accuracy of the method is to examine the pressure and density field residuals, for the
iterative pressure-correction and the explicit density-based algorithms, respectively. For the case of cavitation induction
from the rotating cross of section 3.4, the initial and final iterations’ residuals of the pressure field of the pressure-based
solver coupled with the IB are compared to those of the sliding-mesh (AMI) approach in figure 39a. Although both
methods achieve good convergence, for the sliding mesh the residual reaches 10 orders of magnitude lower values. The
IB method clearly converge and systemically achieve residuals of the order of 10−9. This is confirmed also for the case of
high turbulent cavitating flow over the pitching hydrofoil presented in section 3.6, from the figure 39b. However in this
case the values of the residual oscillate severely but in acceptable range. Finally, for the rotating cross case, the residual
of the density-based solved is also plotted in 39a for comparison. It can be observed that although some noise exists,
the residual do not exhibit these strong oscillations as of the pressure-based solver. In all cases, the IB method produces
satisfactory convergence.
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