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Abstract

The selection of systems of inputs and outputs (input and output structure) forms part

of early system design, which is important since it preconditions the potential for control

design. Existing methodologies for input, output structure selection rely on criteria expressing

distance from uncontrollability (unobservability). The thesis introduces novel measures for

evaluating and estimating the distance to uncontrollability and relatively unobservability. At

first, the modal measuring approach is studied in detail, providing a framework for the ”best”

structure selection. Although controllability (observability) is invariant under state feedback

(output injection), the corresponding degrees expressing distance from uncontrollability

(unobservability) are not.

Hence, the thesis introduces new criteria for the distance problem from uncontrollability

(unobservability) which is invariant under feedback transformations. The approach uses the

restricted input-state (state-output) matrix pencil and then deploys exterior algebra that

reduces the overall problem to the standard problem of distance of a set of polynomials from

non-coprimeness. Results on the distance of the Sylvester Resultants from singularity provide

the new measures.

Since distance to singularity of the corresponding Sylvester matrix is the key in evaluating

the distance to uncontrolability it is of the particular interest in the present work. In order

to find the solution two novel methods are introduced in the thesis, namely the alternating

projection algorithm and a structured singular value approach. A least-squares alternating

projection algorithm, motivated by a factorisation result involving the Sylvester resultant

matrix, is proposed for calculating the ”best” approximate GCD of a coprime polynomial set.

The properties of the proposed algorithm are investigated and the method is compared with

alternative optimisation techniques which can be employed to solve the problem.



v

It is also shown that the problem of an approximate GCD calculation is equivalent to

the solution of a structured singular value (µ) problem arising in robust control for which

numerous techniques are available. Motivated by the powerful concept of the structured

singular values, the proposed method is extended to the special case of an implicit system

that has a wide application in the behavioural analysis of complex systems. Moreover, µ-value

approach has a potential application for the general distance problem to uncontrollability

that is numerically hard to obtain.

Overall, the proposed framework significantly simplifies and generalises the input-output

structure selection procedure and evaluates alternative solutions for a variety of distance

problems that appear in Control Theory.
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Nomenclature

Symbols

vec(A) ∈ Rr denotes the vector vec(A), where r = n(n+1)
2 , A ∈ Rn×n, A = A′ with all the

elements of A below the main diagonal eliminated (and vec−1(·) denotes the
inverse operation)

vec(A) denotes the vectorisation operation of stacking the columns of A ∈ Rm×n into a
vector (and vec−1(·) denotes the inverse operator)

SP denotes Sylvester resultant matrix of a set of polynomials P
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σ(A) the singular values ofA ∈ Rn×m, such that σ(A) = {σi(A), i = 1, . . . ,min(n,m)},
listed in the non-increasing order σ1 ≥ σ2 ≥ · · · ≥ σmin(n,m) ≥ 0

h∧r denotes the r-th exterior product of h

A′ corresponds to the transpose of matrix A ∈ Rn×m
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Chapter 1

Introduction

1.1 Overview

In the last decades there has been significant progress in the area of Control Theory, with
Control Systems being analysed from various perspectives. Various methods and techniques
are used to determine the optimal location of actuators and sensors to meet predefined
systems performance requirements. A fundamental issue of this type is the assessment of
systems’ properties, namely stability, controllability, observability, reachability, etc., applied
for open-loop as well as for closed-loop systems.

Fundamental methods and procedures, developed by Kalman, Moore, Tarokh, etc. have
recently been modified and extended, according to input/output dimensionality, model
type and design specifications. Another important consideration is the way the systems’
performance can be analysed in terms of actuation and sensoring structure. The concept
of Global Instrumentation proposed in [1], [2], [3] falls in this category of research, where
the overall system is observed from the global perspective of selecting appropriate input
and output variables. In contrast, the main focus in local instrumentation is placed on
optimisation of given physical variables. The concept of Global Instrumentation aims to
develop a unified systematic approach for selecting systems’ structures in order to achieve the
best possible performance criteria. For input and output selection methodologies, significant
progress has been made to the problem of deciding what is the best number of actuators and
sensors, taking also into consideration the specifics of their placement and the corresponding
problem type. In [4] the list of proposed Input-Output (IO) selection methods is reviewed
and the desired properties of IO placement and configuration are summarised. Ideally, the
procedures of optimal actuator and sensor placement should rely on quantitative measures
that provide precise information of how strong the influence of the selected variables on the
system is. The importance of quantitative measures has been addressed in [2] where an
evaluation of structural framework of nonlinear plants at the early stage of the control design
is discussed. The importance of quantitative measures for the structure selection problem
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has been studied from various perspectives, e.g. using modal analysis [5], [6], [7], interval
approach based on the state space sequence [8], novel eigenvector scaling approach [9], etc.

Input-Output Selection may be used prior to controller design to define appropriate
controller constraints and specifications. Thus, the selection of appropriate structures of
actuators and sensors should rely on the system’s controllability and observability properties.
However, as highlighted in [4], controllability and observability measures may not always
provide strong conditions for the selection of these structures due to the binary nature of
these concepts. Instead, methodologies based on Gramians, Lyapunov equations, matrix
pencils, and others can provide a wider perspective for the optimal placement of sensors
and actuators. Note that powerful approaches for identifying the relative strength of these
two system properties involve the minimum and maximum singular value, condition number
and eigenvalues and eigenvectors of the system’s characteristic matrix. A similar set of
criteria proposed in [4] for IO selection is based on the concept of “balancing” the modes
of the system in terms of input and output energy, which is achieved when the system is in
“balanced realisation” specified by Moore [10] and later studied in [11], [12] and others.

The alternative point of view in [2] has given rise to a novel research area linked to a new
framework of input-output design. In this area the main emphasis is placed on the notions of
energy and gain requirements, as well as the robustness property and simultaneous design.
The review in [2] identifies gaps in this area of work, and outlines the main challenges for
further studies.

In many modern Control Design methods significant attention is placed on optimal
placement of sensors and actuators, where new methods of measuring system properties
are introduced. For example, in [12], [13], [14], [15] the measure of modal controllability is
analysed with respect to the angles between the range space of the actuator (input) matrix
and the dual (left) eigenvectors of the state matrix (the angles between the row space of
the sensor (output) matrix and the right eigenvectors of the state matrix for observability,
respectively for observability). Gross measures and the relation with the residue matrix are
also defined. In addition, a novel control method has been presented in [16] that deals with
orthogonal eigenstructure control leading to an algorithm for determining the best location
for actuators. In [12] new measures of modal controllability and observability have been
proposed with respect to balanced coordinate systems. This approach is based on the notions
introduced in [13], where controllability and observability properties are studied with respect
to the distance between two subspaces defined by the dual eigenvectors and the range of the
input matrix.

The majority of classical methods and existing numerical stable algorithms for measuring
systems properties provide only a yes/no answer to the question of a system’s controllability.
An early approach of measuring the distance to the nearest uncontrollable (A,B) pair was
proposed in [17] as a more useful tool. Paige proposed the concept of quantifying the strength
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of controllability by estimating the minimum norm perturbation in the pair (A,B) which
makes the system uncontrollable, an approach clearly linked to robustness. The work was
met with considerable research interest and initiated further studies which focused on the
numerical treatments of the matrix pencil [sI −A, B] [18], [19], [20], [21], [22], etc. It was
also shown in [19], [23] that the distance to uncontrollability is closely related to the notion of
the smallest singular value of a matrix pencil, however its maximisation may be numerically
inefficient due to the lack of convexity and hence search methods may not always converge to
the global optimum. Although the controllability and observability properties of a system are
defined in specific state-space coordinates, they remain invariant (as binary quantities) under
feedback transformations, while their strength is not. In [24], [25], [26] the problem of defining
and evaluating a distance measure that is invariant under feedback has been addressed. In
[24] a new framework for calculating a relative measure of controllability (observability) is
introduced as an invariant distance from state feedback (output injection) orbits.

The problem of evaluating the best structural framework for control design will be
addressed throughout the research presented in this thesis. Moreover, techniques for estimating
the distance to uncontrollability (unobservability), linking this notion to modal system
characteristics and developing further the novel approach introduced in [24] of feedback-
invariant distance measures to the nearest set of uncontrollable pairs is studied in this
work.

1.2 Aims and Objectives

The current research aims to develop a general framework and a systematic methodology for
optimal Control Structure Selection. The overall philosophy that is deployed here involves
the following main objectives:

1. Evaluating methodology, based on the integration of structural diagnostic methodologies,
in order to predict properties, namely controllability and observability, of the resulting
system;

2. Estimating modal measures of the distance to the nearest uncontrollable (unobservable)
sets of a system;

3. Evaluating optimisation methodologies and tools that provide effective selection of the
input and output structures satisfying a multitude of design criteria;

4. Defining and estimating measures of system properties (controllability and observability)
that remain invariant under feedback transformations, leading to the effective selection
of sensors and actuators;
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5. Developing a computational framework for the distance problems that arise in a variety
of Control Design problems.

1.3 Research contribution

The thesis is focused on the analysis of system properties and evaluating alternative ap-
proaches for structure selection. The basic properties of systems, namely controllability
and observability, are studied throughout the work. The importance of establishing the
generalised framework for evaluating invariant measures of these properties is demonstrated.
The proposed approach uses the restricted input-state (state-output) matrix pencil and then
deploys exterior algebra that reduces the overall problem to the standard distance problem
of a set of polynomials from non-coprimeness.

A huge variety of Control Problems lead to the analysis of the polynomial matrices and
coprimeness of a set of polynomials. Such a description requires robust procedures for the
computation of the distance to singularity, Greatest Common Divisors (GCD) or, more
commonly, “approximate” Greatest Common Divisors, since this is clearly a non-generic
problem.

One of the main contributions of the work is to evaluate computational procedures of the
“approximate” common root calculations of a set of polynomials that have applications in a
variety of Control Theory, Linear Algebra and Robust Control problems. The main challenge
of the “approximate” common divisor calculations is that the matrices representing uncertainty
due to perturbations in the polynomial coefficients are highly structured. Motivated by this
challenge two alternative algorithms for the computation of the structured distance to the
nearest common divisor of a set of polynomials are proposed in the current work. One applies
a nonlinear least-squares optimisation procedure, while the other is based on the notion of
the structured singular value (or µ-value). Moreover, the later approach has a wide range of
applications in the Robust Control area and might be beneficial for Robust Control analysis.

The proposed structured singular value methodology has been extended to the analysis
of implicit systems. Significance and simplicity of the µ-value approach for the case of
overconstrained systems has been demonstrated. Such a description can be defined as a
special case of the distance problems and also can be applied to the general problem of
uncontrollability, unobservability. In the later part of the work the future research perspectives
based on the proposed computation framework are presented which also contributes to the
broader area of Robust Control and Systems Design.

1.4 Publications

The following papers have been presented and published during the PhD study:
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1. Limantseva, O., Halikias, G. and Karcanias, N., (2020). Nearest common root of a set of
polynomials: A structured singular value approach. Linear Algebra and its Applications,
584, pp.233− 256.

2. Limantseva, O., Halikias, G. and Karcanias, N., (2020). An alternating projec-
tion algorithm for the “approximate” GCD calculation. IFAC-PapersOnLine, 53(2),
pp.5837− 5842.

3. Limantseva, O., Halikias, G., and Karcanias, N. (2020). Structured singular value of
implicit systems. Mathematical Methods in the Applied Sciences.

4. Karcanias, N., Limantseva, O. and Halikias, G., (2020). The Feedback Invariant
Measures of distance to Uncontrollability and Unobservability. International Journal
of Control, 1− 10.

5. Karcanias, N., Limantseva, O. and Halikias, G., Distance to Uncontrollability: Feed-
back Invariant Measures. Paper submitted for the 24th International Symposium on
Mathematical Theory of Networks and Systems (MTNS 2020), (Accepted).

6. Limantseva, O., Halikias, G. and Karcanias, N., (2019). Nearest common root of many
polynomials. Structured Singular Value approach. The work presented at the 22nd

Conference of the International Linear Algebra Society (ILAS).

1.5 Thesis structure

Aside from the introductory and summary sections covered in Chapter 1 and Chapter 7
respectively, the main body of the thesis consists of five chapters. The main concept of
system properties and specifics of distance problems are developed throughout the thesis.
Similar notations are used for all presented materials. Some additional findings as well as the
extension of the methodologies for the different cases of analysed data sets is combined in
Appendices A and B. The structure of the work is illustrated in the figure 1.1 below.

Background results and open research areas are presented in Chapter 2. The material is
divided into three parts corresponding to the problem of measuring system properties, i.e.
controllability and observability, as well as criteria and strategy of evaluating controllability
and observability conditions that remain invariant under feedback transformations. The later
chapters rely again on the background material as seen in figure 1.1.

Chapter 3 deals with the problem of developing modal measures of controllability and
observability. The proximity of the invariant subspaces of the state matrix A to the range
space of the input matrix B is important for the geometric characterisation of approximate
controllability (and similarly for the dual problem of approximate observability) [13]. As
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Fig. 1.1 Structure of the thesis

stated in [13] for a Single-Input Single-Output (SISO) system, for example, to be controllable
the input vector b has to avoid all invariant subspaces in A, which is a requirement that will
be related to the modal controllability of the system. The procedure for the optimal selection
of input vectors is developed in this chapter.

Chapter 4 evaluates preliminary results for the framework of measuring the invariant
distance to uncontrollability, unobservability. The novel approach of [24] motivated the
development of a general methodology of feedback-invariant system properties and of effective
algorithms for their calculations, presented in Chapter 5. The invariant distance problem
uses the notions of Exterior Algebra and separates the problem into two cases: a special
case, where the relationships of the multivectors are satisfied, and the general case, where an
additional optimisation procedure has to be imposed in order to satisfy Quadratic Plücker
Relations (later denoted as QPRs). It is demonstrated that both cases analyse the invariant
distance as the distance to the GCD variety. The smallest singular value of the corresponding
Sylvester Resultant matrix defines the lower bound of the distance.
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The problem addressed in Chapter 4 is equivalent to finding the nearest common root
of the polynomials that characterises the distance of the Sylvester Resultant matrix to
singularity. Two different solutions of the problem are presented in Chapter 5. First, the
approximate factorisation of the Sylvester matrix motivated the definition of an alternating
least-squares projection algorithm that minimises the Frobenious norm of the error matrix
of the factorisation. It is shown that a general nonlinear problem can be divided into two
linear sub-problems and solved iteratively. Such an approach avoids significant complexity
in numerical calculations of the “best” approximate GCD of a coprime set of polynomials.
The second approach is mainly focused on the minimum-magnitude perturbations in the
coefficients of the polynomials in order for them to have a common root. It is demonstrated
that the problem is equivalent to the calculations of the standard structured singular value of
a matrix. However, the problem is more complicated for an arbitrary number of polynomials
and the fact that the uncertainty structure has to be redefined during the solution process.

As a byproduct of the structured singular value method a new algorithm for solving a
non-standard structured approximation problem arising in the theory of implicit uncertain
systems and the general problem of the distance to uncontrollability, unobservability is
derived in Chapter 6. The proposed methodology based on the powerful notion of µ-value,
and provides solutions for the variety of problems that appear in Robust Control. Moreover,
it is demonstrated that the general problem of uncontrollability (unobservability) can be also
formulated as a non-standard structured singular value problem.

Appendix A expands the the structured singular value method for the complex and mixed
data sets, while Appendix B collects solutions for the generalised constrained µ-problems.
All the results in the current work are illustrated with simple numerical examples.



Chapter 2

Background Results and
Motivation

The problem of measuring system properties, namely controllability and observability, has
been of interest for many years. Several tools and quantitative methodologies have been
developed providing criteria for control design and input-output structure selection. In order
to emphasise the research directions and highlight the open research problems, background
results will be presented first.

For ease of exposition, the literature survey presented here is divided into three sections:
Section 2.1 reviews various traditional and modal measures of controllability and observability;
analysis of relative controllability (observability) via the solution of minimum distance
problems to the nearest uncontrollable (unobservable) pair is discussed in Section 2.2; while
Section 2.3 focuses on the feedback-invariant relative controllability (observability) measures.

2.1 Measures of controllability and observability

One of the main concepts in Control Theory involves the properties of a system. These are
important for control design since they impose limits on what can be achieved. Control
design starts with the system description, including input and output structures that identify
preliminary characteristics of the system, whether it is possible to transfer the system from a
given state to the given final state (controllability) or whether it is possible to determine the
states from the outputs for any given input vectors (observability). Thus, the selection of
input and output structures is one of the key topics in Control Theory that has appeared
in many research areas of systems design, such as process systems [27], acoustics [28], noise
suppression [28], chemical industry [27], aerospace [29] and many others.

The problem of sensor and actuator placement has been extensively studied for a long
time [16], [30], [31], [12], [4], [32], [33] and many others. Traditional methods of measuring
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system properties tend to be based on the analysis of (A,B), (A,C) pairs for controllability
and observability respectively.

The nature of the measures varies. Some straightforward controllability (observability)
tests are based on the rank properties of a given matrix [34]. However, such approaches are
only capable of evaluating whether or not a system is controllable and/or observable, while
determining the sensitivity of the system properties is a more complex task that requires
stable numerical algorithms and procedures. The alternative approach introduced by Paige
C. [17] opened a new research area on quantifying the strength of the relative property by
introducing the distance to the property loss. This is discussed in more detail later in this
Chapter.

Another important area of control focuses on computing the zeros of a given system
[35], [31], [36], [24], [33], [37], [38]. The study of dynamic and constant pole-zero assignment
problems of linear systems, denoted as Determinantal Assignment Problems (DAP), estab-
lished an alternative technique for control design and optimal structure selection [39]. Such a
framework studies centralised or decentralised control structures and frequency assignment
problems from two perspectives: in affine space as the intersection of linear spaces [40], [41];
in projective space that deals with notions of algebraic-geometry in order to obtain solutions
on the intersection of linear spaces in projective space [42], [43], [44], [45], [39].

The notion of modal controllability and observability has been extensively studied for
many years [13], [12], [9], [46], [14], [47], [12], and references therein. Estimating the modal
distance to uncontrollability is an important problem for input-output framework selection.
This can be formulated as a distance problem between two subspaces defined by the left
eigenvectors and the range of the input matrix. To begin with, two definitions are given:

Definition 2.1.1 ([13]). The i-th mode of the Linear Time-Invariant (LTI) system is said
to be controllable from the j-th input, bj , if

v′
i{siI −A, bj} = X ′ ̸= 0 (2.1)

where A is the state matrix, si is a simple eigenvalue of A and vi is the corresponding left
eigenvector.

Definition 2.1.2 ([13]). The i-th mode of the LTI system is said to be observable in the
k-th output if and only if

X =
{

c′
k

siI −A

}
ui ̸= 0 (2.2)

where c′
k defines the k-th row of the output matrix C and ui is the right eigenvector of si.

It is assumed again for simplicity that si is a non-repeated eigenvalue of A.

Lemma 2.1.1 ([13]). In SISO systems the pair (A, b) is controllable if and only if the input
vector b is not orthogonal to the left eigenvectors of A.
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The above Lemma says that in the SISO case the input vector b should not be contained
in any invariant subspace of A for the system to be controllable. Intuitively, we expect that
the closer b is to an A-invariant subspace the closer to being uncontrollable the system is.

Consider now the case of Multi-Input Multi-Output (MIMO) systems and assume that
B ∈ Rn×m(C ∈ Rp×n), where B = [b1, b2, . . . , bm] and C ′ = [c′

1, c
′
2, . . . , c

′
p]′. Taking the above

analysis into consideration it is reasonable to use ∥v′
iB∥ as the controllability measure of

the i-th mode (and ∥Cui∥ for the observability measure of the i-th mode). So far, different
approaches have been suggested in the literature, proposing normalisation of the eigenvalues
and scaling of the modal matrix in order to define the optimal quantitative measure of
systems properties [46], [13], [8], [9]. Let

V ′B =


v′

1b1 v′
1b2 . . . v′

1bm

v′
2b1 v′

2b2 . . . v′
2bm

...
...

...
v′

nb1 v′
nb2 . . . v′

nbm

 (2.3)

The magnitude of the (i, j)-th elemnent of V ′B can be written as [12]:

|v′
ibj | = ∥v′

i∥∥bj∥ cos θi,j , i = 1, 2, . . . n, j = 1, 2, . . . ,m (2.4)

where θi,j corresponds to the angle between the j-th input vector and the i-th left eigenvector.
The value of |v′

ibj | can be taken as a controllability measure of the i-th mode through the
j-th input, as stated in [12], [15], [13], [14]. Note that for a single-input system if βi = v′

ib = 0
and v′

i(siI − A) = 0, then si is an uncontrollable mode. Thus, for controllability in this
case it is necessary that βi ≠ 0 for all i. Generally modal controllability can be quantified
by taking into account all input vector directions, i.e. the degree of controllability of the
i-th mode can be obtained with respect to the i-th left eigenvector and the j-th input
vector. In the relevant literature the problem of measuring the distance to uncontrollability
(unobservability) is formulated with respect to the angles between the range of the input
matrix and the corresponding dual eigenvectors of the state matrix [12], [13], [14]. In the
literature, controllability (observability) properties are typically studied from the properties
of the corresponding controllability (observability) matrices and their corresponding (A,B)
((A,C) respectively) pairs [48], [8], [49], modal controllability [46], [9], [50], properties of
Gramians [51], [32], [52], [53], eigenstructure assignment [16], pole-zero placement [54], [36],
[35], eigenvalue mobility and eigenvalue structure [6], [7], [55], minimum energy perspectives
[30] etc. However, not all these measures are invariant under feedback transformations, a
topic that is reviewed later in the Chapter. Before this point, however, the background
results related to the distance problems to the nearest uncontrollable (unobservable) pair are
reviewed.
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2.2 Distance problems to uncontrollability, unobservability

Analysing relative controllability from the perspective of the distance to the nearest uncontrol-
lable set is more informative compared to standard tests of the controllability property. The
distance, denoted as d(A,B), also referred to as the distance to the set of uncontrollable sys-
tems, was defined in [17] as the minimum norm perturbation [∆A, ∆B] in the entries of the
matrix [A, B] that makes the pair (A+∆, B+∆) uncontrollable. It was later proved that the
distance is equal to the minimal singular value of a matrix, i.e. d(A,B) = min σn([sI −A,B])
as s varies over the set of complex numbers [18], [19], [23].

A comprehensive review of the early estimation algorithms for solving the distance problem
is given in [56]. The concept of the distance to uncontrollability has been widely adopted
and developed further in [57], [58], [59], [60], [61], [20], [21], [62], [22], [63], [64]. Note that
some algorithms deal with complex perturbations [64], [56], [65], [66], [67], while others [68],
[69], [70], [71] focus on the estimation of the real controllability radius.

Numerical techniques developed in this area have identified a number of difficulties
for evaluating the exact distance of d(A,B) in the general case and have proposed the
estimation of upper and lower bounds as an alternative. Gao and Neumann [22] argue that
the distance between the lower and upper bounds of d(A,B) resulting from earlier work,
e.g. [17] and [61], can be significant and propose a new algorithm which reduces the gap.
Exact optimisation algorithms are not always successful [57], [58], [20], [62]. Algorithms with
guaranteed convergence to the global optimum are reported in references [72], [22], [64] and
[56].

Numerical methodologies proposed for the solution of the distance to uncontrollability
problem have been applied from a number of different perspectives. Early studies proposed
the use of hybrid algorithms [62], methodologies based on the Kronecker structure [59], the
Staircase algorithms [17], [61] and Newton’s method [20] among others. Some methodologies
consider using techniques based on the solution of an Algebraic Riccati equation [68], [21],
[73]. For example, Gahinet and Laub established a link between a lower bound of d(A,B)
and the “nearest-to-singularity“ solution of the corresponding Algebraic Riccati equation. A
bisection method is presented in [72], while [67] also suggested the use of Kronecker structures
for tackling the distance problem. A trisection method was studied in [74] and [67].

An analysis of structured distance to uncontrollability problems and a discussion on the
difference between structured and unstructured distance measures have been reported in [75],
[66] and later in [76] and [65]. In [77] Demmel established a relation between the condition
number and the problem of nearest-singularity perturbation. This may be used to provide
useful insights when estimating the distance to uncontrollability of a controllable pair (A,B).
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2.3 The need for feedback invariant measures

The selection of system inputs and outputs (input and output structure) forms part of early
system design. This is important since it preconditions the potential for control design.
Existing methodologies for input, output structure selection rely on criteria expressing
distance to uncontrollability (unobservability). The notion of the distance to uncontrollability
(unobservability) of a pair (A,B) ((A,C)) has been studied extensively over recent years, see
[76], [78], [65], [26] , [66], [79], [73], [70], [67] and references therein. Although controllability
(observability) is invariant under state feedback (output injection), their corresponding
degrees expressing distance from uncontrollability (unobservability) are not. To illustrate
this consider a closed-loop description of a system with applied state feedback and output
injection respectively, i.e.

ẋ(t) = (A+BL)x(t) +Bu(t)

ẋ(t) = (A+KC)x(t), y(t) = Cx(t)
(2.5)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n, L ∈ Rp×n,K ∈ Rn×m. The controllability pencils
with and without the transformations are related as:

(i) (sI −A−BL, B) = (sI −A, B)
(

I 0
−L I

)
, (ii) (sI −A, B)

and therefore the singular values of the two pencils are not invariant under the state-
feedback transformations. A similar argument applies for the two observability pencils with
and without output injection.

Consider a strictly-proper LTI system S(A,B,C) that is represented by the state space
model:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(2.6)

where the state matrix is A ∈ Rn×n, the input (actuator) matrix is B ∈ Rn×p, and C ∈ Rm×n

represents the output (sensor) matrix. Time invariant system representations are widely
used for control synthesis problems [80], [3], especially in the areas of large scale systems
design and input-output pairing problems. From the point of view of analysis, this class
of systems offers the advantage that certain important properties remain invariant under
certain transformations [48]. An important aim of the research is to develop strategies for
the effective control design of complex large-scale systems. Integration Methodologies [3]
propose the use of models that best describe system properties. Due to the presence of
model uncertainties an important problem arises, i.e. the need to ensure the applicability
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of approximate solutions without distorting the characteristics of the real system. In order
to assess the feasibility of control design specifications specific system properties should
be ensured. In order to identify how far the system is from achieving certain performance
criteria, analysis often involves the notion of matrix pencils. Matrix pencils’ properties have
been the focus of studies in the recent decades [26], [3], [81], [82], [83], [36], [84], [85], [86],
[24] etc.

In the literature on linear systems theory the notions of matrix pencils and rational
vector spaces are extensively used [3], [86], [42], [87]. This approach is also crucial for the
study of input-output structures, which is one of the main aims of the proposed research.
This is because rational vector spaces can be linked to the useful mathematical properties
of Grassmann representatives, Plücker matrices, compound matrices, etc. The Smith and
Kronecker forms of the system matrix also provide important information on the zero
structure, which influences significantly the performance of the system.

In general, the theory of invariants and its relation to system properties is central in
Control Systems Design. One methodology relies on Multilinear and Exterior Algebra in
order to study the complex nature of linear systems. The Determinantal Assignment Problem
(DAP), introduced in [86], [42], [24], generalises the problem of pole and zero placements
via feedback. The study of DAP combines zero assignment problems and general problems
of multilinear algebra, where the solution is derived using the notion of Quadratic Plücker
Relations and Grassmann varieties [42]. As was highlighted in [24], one of the DAP sub-
problems is related to the identification of the structural invariants of multivariable systems
under feedback which is also the focus of the present research (also see [88], [42]).

A useful representation of system S(A,B,C) is the following matrix pencil form [89]

P (s) =
(
sI −A −B
−C 0

)
(2.7)

Various sub-pencils of P (s) may be used to define important input-state and state-output
properties of the system:

Definition 2.3.1 ([89]). Let S(A,B,C) be a minimal realisation and consider the matrix
pencils

C(s) = (sI −A, −B), K(s) =
(
sI −A
−C

)
(2.8)

Then, the system controllability and observability properties are characterised by the absence
of zeros in the Smith form of pencils (2.8), respectively, i.e. by the absence of input decoupling
zeros and output decoupling zeros, respectively.

Remark 2.3.1. Note that matrix pencils C(s),K(s) are modified under state feedback
L ∈ Rp×n and output injection K ∈ Rn×m, respectively. Although the rank of the two
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pencils is invariant under these two transformations, the numerical rank may be considerably
different.

In order to demonstrate the sensitivity analysis of the controllability property (duality
holds for observability) consider the following example.

Example 2.3.1. Consider the state space description of a linearised two-mass model of a
wind turbine from [90]

S(A,B,C,D) : ẋ = Ax+Bu, A ∈ Rn×n, B ∈ Rn×p

y = Cx+Du, C ∈ Rm×n, D ∈ Rm×p

having system matrices defined as:

A =


1

2Jr
ρπR4v

∂CQ

∂λ |(ωr,v) − Kr
Jr

0 − 1
Jr

0 −Kg

Jg

1
ngJg

Kls
2Jr

ρπR4v
∂CQ

∂λ |(ωr,v) +Bls − KrKls
Jr

KlsKg−JgBls

ngJg
−JrKls+n2

gJgKls

n2
gJgJr

 ,
B =

(
0 − 1

Jg

Kls
ngJg

)′
, C =

(
1 0 0

)
, D = 0,

where Kg, Jg, ωg, ng correspond to the generator external damping, inertia, torque, speed
and gearbox ratio respectively; Bls,Kls identify the low-speed shaft speed and damping; v is
the wind speed, λ is tip-speed ratio and ρ is the air density; Kr, ωr, Jr correspond to rotor
external damping, speed and inertia respectively.

Let input parameters be defined as in [90] for the wind turbine model and consider
numerical values of the state and input matrices as follows

A =


−0.0467 0 −9.104× 10−7

0 0 3.3673× 10−4

8.0215× 106 −1.8583× 105 0

 , B =


0

−0.014535
0


Let the distance of the open-loop system from uncontrollability be denoted by

do(A,B) = min
s∈C

σmin([sI −A, B])

Then for the closed-loop system (with the LQR controller denoted by K = −kR−1B′V ,
where R is a positive-definite matrix, V is the unique positive definite solution of the
corresponding Riccati equation and k is a gain parameter) the distance becomes dc(Â, B) =
mins∈C σmin([sI − (A+BK), B]). The optimal solution of the Riccati equation V verified
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in [90] is

V =


0.7439 0.0017 −2.2412× 10−8

0.0017 1.0230× 10−5 −5.9486× 10−11

−2.2412× 10−8 −5.9486× 10−11 1.0973× 10−14


With k = 1 the closed loop state matrix is computed as

Â =


−0.0467 0 −9.1040−7

−3.5915× 10−7 −2.1613× 10−9 3.3673× 10−4

8.0215× 106 −1.8583× 105 0


Using Gu’s algorithm along the straight line [72] for estimation of the distance to uncon-
trollability we start increasing the value of the gain k in order to observe differences in the
distance. With k = 108 the closed-loop distance to uncontrollability of the system (which is
already close to uncontrollability in open-loop) demonstrates a rapid decrease. The results
can be evaluated with given tolerance tol = 10−8 as follows

do(A,B) = 2.8997× 10−7, dc(Â, B) = 1.9118× 10−8

It should be noted that the higher the value of the gain, the smaller the value of dc(Â, B)
(for this particular example).

The above simple example demonstrates that for the analysis of system properties an
alternative measure of the distance to uncontrollability (respectively unobservability) that
remains invariant under feedback transformations is required.

The implicit autonomous systems, described by (sN −NA), (sM −AM) are referred to
as the Restricted Input, Restricted Output differential systems, respectively, whereas the
corresponding pencils R(s) = sN − NA and Q(s) = sM −MA are defined as Restricted
Input and Restricted Output pencils, respectively. The above restricted pencils are a powerful
mathematical representation of the system and will be used extensively in this work to define
optimal structural properties.

Theorem 2.3.1 ([54]). Consider a system S(A,B,C) and let N,M be the left annihilators
of B and C, respectively. Then the following properties hold true:

1. The differential system (sN −NA)x(s) = 0 is state feedback invariant;

2. The differential system x′(s)(sM −AM) = 0 is output injection invariant.

Proof. Since under state feedback the input pair (A,B) becomes (A + BL,B), then the
corresponding system can be defined as (sN −N(A+BL))x(s) = 0. Note, that N is the left
annihilator of B, satisfying NB = 0 by definition and hence:

(sN −NA−NBL)x(s) = (sN −NA)x(s) = 0
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Similarly, it holds under output injection. If M is a right annihilator of C, i.e. CM = 0, then

x′(s)(sM − (A+KC)M) = x′(s)(sM −AM −KCM) = x′(s)(sM −AM) = 0

which completes the proof.

The proof of the theorem above is presented in order to improve readability of the work.
The numerical rank of the pencil [sI −A, −B] has been used to study the relative degree

of controllability of the system. Similarly, the numerical rank of
(
sI −A
−C

)
can be used to

define the relative observability properties of the system. Note that these two measures are
affected by state feedback and output injection respectively, and hence are not appropriate if
we wish to define transformation-invariant properties. In this case it is more appropriate to
use pencils sN −NA and sM − AM which are not affected by state feedback and output
injection transformations. It will be seen that this approach to the problem is linked to
the notions of characteristic zeros, Greatest Common Divisor and, in general, properties of
Exterior Algebra.

The computation of GCD has been central in engineering problems that deal with complex
algebraic synthesis methods [91], [85], [92], [24], [42] and is closely related to the notion of
Grassmann Matrices and Matrix Representatives. The notion of GCD and “approximate”
GCD, defined in [24], [93], [91], [94], [92], [95], [85], [96] can be extended to the problem of
measuring the relative strength of system properties that are invariant under feedback.

Calculation of the GCD is a nontrivial computational problem and falls within the class
of non-generic computations, requiring an approach based on generalised resultants and
Toeplitz matrix representations [84], [85]. Some interesting facts of the Sylvester resultant
are addressed in [94], [85], [24], [97], in order to establish procedures for calculating the GCD.

2.4 Summary

Based on the open issues in Control Theory and Control Design, the research is focused
on two distinct parts. The first area, motivated by the notion of modal measurement of
controllability, observability, is studied as an optimisation problem, providing a solution for
the “best” vector selection. Such an approach can be extended and applied to vector spaces
forming the basis of future work.

It has been illustrated that sensitivity of the distance to uncontrollability does not remain
invariant under feedback transformations. Hence, there arises the important question of
how to establish an invariant measurement of the system properties. The next Chapter is
devoted to the analysis of the modal measures of controllability and observability based
on the selections of the best sets of input and output vectors respectively. In addition,
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has been illustrated that sensitivity of the distance to uncontrollability does not remain
invariant under feedback transformations. Hence, there arises the important question of how
to establish an invariant measurement of the system properties. This corresponds to another
open research problem for the current work that is discussed and in chapter 4 in details. The
problem of invariant controllability and observability measures is motivated by the notions of
the restricted matrix pencils, namely Input-State Restriction and State-Output Restriction
pencils, later denoted as R(s) and Q(s) respectively. Such an approach requires the use of
geometric system theory and properties of Exterior algebra that is discussed later in the
work.



Chapter 3

Modal Measurement of
Controllability, Observability

In this chapter an alternative computational framework for optimal structure selection based
on the modal measurement of controllability and observability respectively is presented.

In [15], [13] a novel quantitative measure of modal controllability and observability
was introduced, based on the angles between the vector spaces defined by the left (right)
eigenvectors of the state matrix and the column vectors of the input matrix B (row vectors of
the output matrix C). This approach evaluates the strength of controllability and observability
of each mode. As mentioned in [12] the proposed strategy of Hamdan and Nayfeh deals
with generalised angles between the corresponding vectors. Thus, they suggest solving an
optimisation problem using the balancing coordinate transformation as the way to achieving
equally balanced controllability and observability system properties for each mode. This
approach can lead to the effective selection of both sensors and actuators. Returning to the
literature, the benefit of analysing controllability and observability properties of a system in
balanced coordinates was described by Moore [10]. The main advantage is that in balanced
coordinates, the two Gramians of the system are diagonal and equal. This effectively equalises
the controllability and observability properties of each mode and hence makes their ordering
in terms of input-output energy transfer meaningful [51].

Definition 3.0.1 ([10], [51]). A system is called balanced, if there exists a transformation
matrix P , with respect to which controllability and observability Gramians are equal and
have the following form

Ŵc = Ŵo = Σ =


σ1

. . .
σn

 (3.1)
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where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are the singular values and the transformed Gramians are
derived as

Ŵc = PWcP
′ (3.2)

Ŵo = (P−1)′WoP
−1 (3.3)

where Wc,Wo are corresponding Gramians in the original coordinates and the state space
transformation is denoted by P .

Such an interpretation of a system rests on the fact that under a balancing coordinate
transformation each mode becomes “equally” controllable and observable, in the sense that
the control energy required to reach the given state and the output energy released by the
free trajectory starting at the given state are equalised. Note that in general these properties
are not transformation-invariant [51]. Since in this framework the states of the system can
be meaningfully ordered, the optimal selection of sensors and actuators is easier to tackle.
(Another task, which is simplified, is the model-reduction of the system, e.g. by eliminating
the less important states, a process that is referred to as model-truncation [98]). It should
be pointed out that achieving the best location of actuators with the maximal degree of
controllability is the dual problem to the problem of optimal placement of sensors (for more
details see [12]). It was also shown that such modal measures can be applied to verify
properties after the implementation of state transformations or scaling, which is attractive
for control design. The general objective of the work is to evaluate criteria for the design of
optimal sensing and actuating structures of a system in order to maximise the strength of the
relevant system’s properties, namely controllability and observability, in order to optimise
the performance of the overall system.

In this Chapter a problem of modal measurement of controllability and observability is
considered. Motivated by the work of [13] the problem of modal characterisation can be
presented as a simple optimisation problem that aims to estimate the direction of the input
(output) vectors. Hence, the study of modal criteria falls into two cases: a simple case of a
Single-Input Single-Output system presented in Section 3.1 and the general case of a system
with Multi-Input and Multi-Output structures investigated in Section 3.2.

3.1 Modal measurements for the SISO systems

Let us assume for simplicity that A has a simple structure with distinct eigenvalues and a set
of linearly independent eigenvectors. Let b be the input vector normalised to unit length.
According to [13], [99], [47] the modal controllability of the i-th mode of the system can be
measured by cos(vi, b), the cosine of the angle between the input vector and the i-th left
eigenvector of the state matrix. If this measure is near zero, the two vectors are almost
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orthogonal. Hence, if the inner product of any pair |⟨vi, b⟩| is close to zero, then the system
contains an almost uncontrollable mode. We can use these modal measures to determine
the optimal vector b, e.g. by requiring that the largest angle it makes with each of the n
left eigenvectors in n-dimensional space is minimised. A similar procedure can be applied to
characterise approximately unobservable modes.

One important property, studied in [14], [15], [13], is the measure of modal controllability
(observability) when the system is in balanced coordinates. Note that under similarity
transformations the eigenvalues of the state matrix remain invariant, but the eigenvectors
change. References [13], [14], [15] show that for balanced realisations there is partial symmetry
of the input and output matrices. Thus, in the SISO case, the angle between the left eigenvector
and the input vector b is equal to the angle between the corresponding right eigenvector and
the output vector c, i.e.

cos (v′
i, bj) = cos (uj , ci) (3.4)

The angle between the left eigenvector v′
i and the input vector b should lie in the

range [0, π/2) in order to keep the two vectors from being orthogonal, which would imply
uncontrollability of the corresponding mode. Since a small deviation of orthogonality results in
“an almost uncontrollability” condition, it makes sense to attempt to maximise the minimum
deviation from orthogonality between b and all the left eigenvectors vi. Assuming that the
direction of b is unconstrained, the optimal solution in the two dimensional case is clearly
obtained when the two angles defined by vector b and each of the two left eigenvectors vi are
equal, as shown in the figure 3.1.

Fig. 3.1 Bisection of two vectors

Note that it can be assumed, without loss of generality, that the angle between any two
left eigenvectors does not exceed π/2 (otherwise one of the two eigenvectors can be inverted).
Hence, in this case the input vector should be placed along the direction which bisects the
angle θi,j defined by the two eigenvectors. This computational procedure is simple, if we deal
with a system of two modes. However, when the number of modes increases it becomes more
difficult to generalise the approach.
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Fig. 3.2 Bisection of three vectors

Consider next a SISO system with a state matrix A ∈ R3×3. The three left eigenvectors
in this case lie in a three dimensional space and the optimal input vector b still needs to be
selected so that the minimum angle between b and each of the three eigenvectors is maximised.
Clearly, this can be achieved by the following geometric construction indicated in figure 3.2.

Assume that OA,OC and OB are the left eigenvectors of the state matrix A. OU

corresponds to the optimal placement of b, where point U is the projection of O onto the
plane ABC. If we analyse a cone (or tetrahedron) the shortest distance from the vertex O
onto the base plane is a perpendicular OU , i.e. the angle from any cone generator will be
less than π/2 (and in the case of a regular cone angles from a perpendicular to any cone
generator are equal). Alternatively U is the centre of the circumscribed circle around triangle
ABC, figure 3.3.

Thus, under the assumption that eigenvectors are of unit length we can write:

AO = BO = CO = 1 (3.5)

AB = 2AO sin (α/2) (3.6)

AC = 2AO sin (ϕ/2) (3.7)

BC = 2AO sin (β/2) (3.8)
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Fig. 3.3 Projection of the bisection of three vectors

where α, ϕ, β are the corresponding angles between the three eigenvector pairs. Then the
angle between the perpendicular and each of the eigenvectors may be computed as

θ = arcsin R

AO
= arcsinR, (3.9)

where R is the radius of the circumscribed circle. With respect to the basic properties of the
circumscribed circle, the radius is defined as

R = AB AC BC

4
√
P (P −AB)(P −AC)(P −BC)

, P = AB +AC +BC

2 (3.10)

A similar approach can be applied for higher order systems, however some approximations
should be made when evaluating the hyper-sphere. Note that a circumscribed circle can be
defined around an N -sided polygon only if it is regular.

If the order of the system is n > 3, the projection of the eigenvectors should be defined in
the n-dimensional space. Assume without loss of generality that all eigenvectors are of unit
length, then it is possible to construct a circumscribed sphere of unity radius, the centre of
which is associated with the origin and the sphere’s surface is structured by the directions of
the eigenvectors, as shown in figure 3.4.

Hence, every direction normal to the surface of the sphere may be considered as a good
choice of the input vector if it coincides with or is close to the direction of an eigenvector.
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Fig. 3.4 Bisection of the n-dimensional space

Example 3.1.1. Consider a SISO system with a given randomly generated state matrix
A ∈ R3×3 and a simple non-zero initial structure for the actuator vector.

Then, regarding the geometric approach (illustrated in figure 3.5) the estimated optimal
placement of the input vector is calculated as follows

b = (−0.4337, 0.0471, 0.1570)′

giving the optimal placement of the vector with the equal modal controllability measure of
cos(θ) = 0.4637 for all modes.

The geometric solution to the problem is hard to apply when the size of the system is
large, however it provides the exact optimal solution for the special case, where the size of the
system is n = 2, 3. In order to identify a generalised approach for the problem of finding the
best placement of actuators it is possible to define an optimisation problem, i.e. maximising
the smallest measure of modal controllability.

Let us consider the system ẋ = Ax + bu, where A ∈ Rn×n, b ∈ Rn×1 and assume for
simplicity that the eigenvalues of A are distinct and real, i.e. λ(A) = {λ1, λ2, . . . , λn}, λi ̸=
λj , i ̸= j. Assume further that v′

i, i = 1, 2, . . . , n is the left eigenvector of A corresponding
to λi. Assume without loss of generality that ∥vi∥ = 1, i = 1, 2, . . . , n (eigenvectors are
normalised). Then n controllability measures associated with the system modes can be
defined as:
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Fig. 3.5 Geometric solution (Example 3.1.1)

γi = cos (vi, b) = |⟨vi, b⟩|
∥b∥

, i = 1, 2, . . . , n (3.11)

Let b̂ = b
∥b∥ , so that ∥b̂∥ = 1. We seek to maximise the controllability index in the most

critical direction (i.e. for the most critical mode). Hence the problem can be formulated as
follows:

γ∗ = max
b̂∈Rn,∥b̂∥=1

min
i∈{1,2,...,n}

|⟨vi, b̂⟩| (3.12)

In order to obtain the solution for the problem we introduce the following proposition. Also,
for convenience of calculations we take that ∥b̂∥ = ∥b̂∥∞ = max {|b1|, . . . , |bn|}.

Proposition 3.1.1. The optimisation problem defined in (3.11) is equivalent to:

max γ

s.t. γ ≤ |vi1b1 + · · ·+ vinbn|, ∀i = 1, 2, . . . , n
(3.13)

This is further equivalent to the linear problem:

min (−γ)

s.t. γ − (vi1b1 + · · ·+ vinbn) ≤ 0, i = 1, 2, . . . , n

bi ≤ 1, −bi ≤ 1, i = 1, 2, . . . n

(3.14)
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or in a standard form

min
(

0 . . . 0 −1
)


b1

. . .

bn

γ



s.t.


−v11 . . . −v1n 1

...
...

...
−vn1 . . . −vnn 1




b1

. . .

bn

γ

 ≤


0
. . .

0


bi ≤ 1,−bi ≤ 1, i = 1, 2, . . . , n

(3.15)

It can be observed that the solution to the problem in (3.11) is given by the solution
of the linear problem. It can be easily solved using standard optimisation algorithms (e.g.
Simplex method or interior-point).

Consider a numerical example, where the corresponding eigenvectors are structured as an
n× n matrix of randomly allocated values. The eigenvectors have been normalised and the
problem has been solved using the MATLAB function linprog.m.

Example 3.1.2. Consider a normalised eigenvector structure, V ∈ R4×4

V ′ =


−0.8558 0.1634 0.2828 0.4013
−0.1712 −0.7860 −0.1586 −0.5725
−0.5954 0.1528 −0.7887 −0.0068
−0.8353 0.1575 −0.2895 −0.4400


Solving the optimisation problem using the interior-point algorithm, the solution for the
optimal cosine measures is given by the vector:

γ∗ = (0.5466, 0.5466, 0.5466, 0.5466)′

while the optimal input vector is b = (−1.0000, −0.7734, −0.3078, 0.1905). In this example
the selected eigenstructure results in equal controllability measures.

An interesting observation is made in the following Proposition which relates the control-
lability measures to the dimension of the problem.

Proposition 3.1.2. Consider a SISO system, where V ∈ Rn×n, b ∈ Rn×1 and ∥b∥ = 1, ∥vi∥ =
1, i = 1, 2, . . . , n. Assume also that the eigenvalues of A are real and distinct. Assume without
loss of generality that the eigenvectors are normalised. Then the optimal average value of
the modal controllability measure for every pair (vi, b), i = 1, 2, . . . , n can be evaluated as
γ∗

i = 1√
n

.
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Previously it was assumed that all the eigenvalues of the state matrix are distinct and real
meaning that the matrix structure is simple (i.e. matrix diagonalisable). Next non-simple
matrix structures involving Jordan blocks are considered.

Consider a similarity transformation of a SISO system, i.e.

T−1AT = J, T−1b = b̃, (3.16)

where T is a non-singular n × n matrix and the eigenvalues of A are real, but the Jordan
canonical form contains Jordan block structures. In such a case the number of independent
eigenvectors corresponding to λi will be denoted as the geometric multiplicity, i.e. ri =
dim{null(λiI −A)} that is equal to the number of Jordan blocks. It is known that a system
is controllable if and only if there exists a Jordan block for every eigenvalue λi and every
element of the input vector b that corresponds to the last row of the Jordan block is a nonzero
element.

Since there is only one eigenvector per chain, the remaining vectors are generalised
eigenvalues which just complete the basis of the space and differ only by a scalar, then it is
possible to verify using the row-echelon transformations the non-vanishing elements that will
be taken into account when computing the modal controllability measures.

It is clear that in order to measure system properties, calculated with respect to the angles
between the corresponding eigenvectors and the input vector (for a single-input system), only
those eigenvectors that are associated with the last eigenvalue in a Jordan block should be
taken into consideration. Precisely, the optimisation of (3.15) can be stated in a similar way
but now only the optimisation involves a reduced number of eigenvectors (equal in number
to the sum of geometric multiplicities of all distinct eigenvalues).

min
(

0 . . . 0 −1
)


b1

. . .

bn

γ



s.t.


−v11 . . . −v1n 1

...
...

...
−vr1 . . . −vrn 1




b1

. . .

bn

γ

 ≤


0
. . .

0


bi ≤ 1,−bi ≤ 1, i = 1, 2, . . . , n

(3.17)

where r ≤ n and r is the geometric multiplicities of eigenvalues, identifying the number
of linearly independent eigenvectors, associated with λi, ∀i = 1, . . . , n. It means that the
solution to has n− r less constraints leading to the faster convergence of the solution of the
optimisation problem.
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3.2 Modal measurements for MIMO systems

For the MIMO case the input matrix B is defined in terms of its columns, say bj , j = 1, . . . ,m.
Then, due to the Cauchy-Schwartz inequality [100], 0 ≤ |v′

ibj | ≤ ∥vi∥∥bj∥ and hence 0 ≤
θi,j ≤ π

2 . If cos(θi,j) is close to zero, then v′
i and bj are nearly orthogonal and |v′

ibj | is close to
zero, which implies that the i-th mode is a nearly-uncontrollable mode from the j-th input.
The i-th mode will be almost uncontrollable through B if ∥v′

iB∥ is sufficiently small, i.e. if
all |v′

iB|, j = 1, . . . ,m are sufficiently small.
Following similar arguments, it follows that the balanced system for the MIMO case

satisfies the following equality
∥v′

ibj∥ = ∥ciuj∥ (3.18)

in which bj is the j-th column of the input matrix B and ci is the i-th row of the output matrix
C. The proof of the above is based on the properties of controllability and observability
Gramians (see [10]). When applying coordinate transformations, the principal components
are changed as

eÃtB̃ = −P−1eAtB, C̃eÃt = CeAtP (3.19)

Let P be a balanced transformation. Consider the controllability and observability Gramians
in balanced coordinates, i.e

Ŵ 2
c (P ) = P−1

(∫ T

0
eAtBB′eA′tdt

)
(P−1)′ =

∫ T

0
eÃtB̃B̃′eÃ′tdt (3.20)

Ŵ 2
o (P ) = P ′

(∫ T

0
eA′tC ′CeAtdt

)
P =

∫ T

0
eÃ′tC̃ ′C̃eÃtdt

respectively. If A is stable, the two Gramians in the limit T → ∞, satisfy the algebraic
Lyapunov equations:

ÃŴ 2
c (P ) + Ŵ 2

c (P )Ã′ = −B̃B̃′ (3.21)

Ã′Ŵ 2
o (P ) + Ŵ 2

o (P )Ã = −C̃ ′C̃

respectively. Since the two Gramians are diagonal and equal, (3.18) follows. In order to
estimate the modal controllability measure for a MIMO system the smallest angle between
all input vectors and eigenvectors should be maximised. The problem can be expanded for
the multiple input case as

v′
i[siI −A, B] = [0, v′

iB︸︷︷︸
ζi∈R1×m

] (3.22)
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Here the V ′B matrix identifies measures for each ij-th modal controllability corresponding
to the i-th mode with respect to the j-th input and can be structured as follows

V ′B =


v′

1b1 v′
1b2 . . . v′

1bm

v′
2b1 v′

2b2 . . . v′
2bm

...
...

...
v′

nb1 v′
nb2 . . . v′

nbm


Consider that ∥ · ∥1 is the norm of the j-th row, i.e. characterises the strength of the j-th
mode controllability property for all the m inputs. Then, aiming to increase the measure of
controllability introduced by the matrix V ′B, a constrained optimisation problem can be
formulated as:

max
∥B∥∞≤1

min
i∈{1,2,...,n}

∥ v′
iB︸︷︷︸
ζi

∥1 (3.23)

or equivalently
max

∥B∥∞≤1, i∈{1,2,...,n}
min {|v′

ib1|+ · · ·+ |v′
ibm|} (3.24)

Set γ = |ζi|1, then the constraints are defined as

γ ≤ |v′
1b1|+ · · ·+ |v′

1bm|

γ ≤ |v′
nb1|+ · · ·+ |v′

nbm|

 (3.25)

Under the assumptions that all the eigenvectors are scaled to be placed in the same hyper-
plane, the absolute values can be omitted and the optimisation problem will be simplified
to

max γ

s.t. γ ≤ v′
1b1 + · · ·+ v′

1bm

...

γ ≤ v′
nb1 + · · ·+ v′

nbm

bij ≤ 1,−bij ≤ 1, ∀i = 1, . . . , n, j = 1, . . . ,m

(3.26)
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Similarly

max γ

s.t. γ ≤
(
v′

1 v′
1 . . . v′

1

)


b1

b2
...
bm


...

γ ≤
(
v′

n v′
n . . . v′

n

)


b1

b2
...
bm


bij ≤ 1,−bij ≤ 1, ∀i = 1, . . . , n, j = 1, . . . ,m

(3.27)

If the optimisation problem is defined in the standard form where the constraints are
structured as block-diagonal matrices, then

max
(

0 . . . 0 1
)


b1
...
bm

γ



s.t.



−v′
1 . . . 0

... . . . ...
0 . . . −v′

1

1
...
1

−v′
i . . . 0

... . . . ...
0 . . . −v′

i

1
...
1

−v′
n . . . 0

... . . . ...
0 . . . −v′

n

1
...
1




b1
...
bm

γ

 ≤ 0

bij ≤ 1,−bij ≤ 1, ∀i = 1, . . . , n, j = 1, . . . ,m

(3.28)

The above approach finds the optimal solution which indicates the optimal placement of
actuators. Again any optimal LP algorithms may be used.
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If the infinity norm is chosen, then the optimisation problem can be formulated as follows:

min
∥B∥∞≤1, i∈{1,2,...,n}

∥ v′
iB︸︷︷︸
ζi

∥ ⇐⇒ (3.29)

min
∥B∥∞≤1

max
i∈{1,2,...,n}

{v′
ib1, . . . , v

′
ibm} (3.30)

Let ti be an upper bound for every i = 1, . . . , n. Then if γ is the minimum value, it is obvious
that

min t1 : v′
1b1 ≤ t1 . . . v′

1bm ≤ t1
...

min tn : v′
nb1 ≤ tn . . . v′

nbm ≤ tn

(3.31)

and at the same time

t1 ≥ γ
...

tn ≥ γ

(3.32)
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The optimisation problem is defined as

max
(

0 . . . 0 0 . . . 0 1
)



b1
...
bm

t1
...
tn

γ



s.t.



v′
1 . . . 0
... . . . ...
0 . . . v′

1

−1 . . . 0
... . . . ...
0 . . . −1

0
...
0

v′
i . . . 0
... . . . ...
0 . . . v′

i

−1 . . . 0
... . . . ...
0 . . . −1

0
...
0

v′
n . . . 0
... . . . ...
0 . . . v′

n

−1 . . . 0
... . . . ...
0 . . . −1

0
...
0

0 . . . 0
... . . . ...
0 . . . 0

−1 . . . 0
... . . . ...
0 . . . −1

1
...
1





b1
...
bm

t1
...
tn

γ


≤



0
...
0
0
...
0
0



bij ≤ 1,−bij ≤ 1, ∀i = 1, . . . , n, j = 1, . . . ,m

(3.33)

Thus, in order to estimate the modal controllability measure, the problem can be solved in
the following steps:

Step 1: Let ζ
i

be the controllability measure of the corresponding i-th mode, where i = 1, . . . , n.
In order to estimate nearly-uncontrollable modes, the minimum ζ

i
has to be maximised

Step 2: For i = 1, . . . , n identify the boundaries of v′
ibj for every eigenvector. Derive the upper

bound for every i = 1, . . . , n

max
i=1,...,n

{v′
ib1, . . . , v

′
ibm} = ti, (3.34)

leading to γ ≤ ti,∀i = 1, . . . , n
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Step 3: Solve a constrained optimisation problem, i.e. max γ, subject to constraints

γ ≤ ti, ∀i = 1, . . . , n

v′
ibj ≤ ti, ∀i = 1, . . . , n, j = 1, . . . ,m

(3.35)

It is assumed for simplicity that ∥B∥∞ ≤ 1

Step 4: Solve and repeat the procedure for all nearly uncontrollable pairs with the given
tolerance ϵ, i.e. v′

ibj ≥ ϵ, ∀i = 1, . . . , n, j = 1, . . . ,m.

3.3 Summary

The modal measure criteria for the effective structure problem of sensor and actuator
placement has been presented. The framework is defined as an optimisation problem
that evaluates the optimal input (output) matrices with respect to the modal distance to
uncontrollability (unobservability). It has been demonstrated that the optimal choice of the
input/output structures of a given system can be derived based on the angle measure between
the range of input (output) matrices and the system of eigenvectors (based on previous work
of [15], [14], [13]). The procedure, proposed in the Chapter, aims to optimise modal measure
of controllability (observability respectively) using two approaches: geometric intuition (for
the SISO case) or by solving a Linear Programming optimisation problem (for both SISO
and MIMO systems).

However, it has been noted that the degree of controllability (observability) does not
remain invariant when feedback transformations are applied. In this case an alternative
criteria for measuring invariant systems properties is required. The next Chapter introduces
background results as well as an computational framework of distances from uncontrollability
(unobservability) that are invariant under feedback transformations.



Chapter 4

Invariant Distance to
Uncontrollability, Unobservability

The selection of sets of inputs and outputs in a system is a fundamental problem in Systems
Design. This problem is independent from control system design, but the selection affects the
resulting model and has a significant effect on the resulting structure and system properties,
which determine the potential for control design [2]. The selection of inputs and outputs has
been based so far on controllability, observability criteria for a given system (fixed input and
output structure) [10], [47], [32]. The existing methods for selection do not take into account
the fact that although controllability is invariant under state feedback and observability is
invariant under output injection [80], [101], their corresponding degrees (measures of distance
to uncontrollability, unobservability) are not invariant under compensation. Given that
selecting input and output structures fixes the system and that different feedback schemes
are used, it is essential to define selection procedures which are based on criteria that are
invariant under feedback.

This Chapter establishes generalised framework for measuring the invariant system prop-
erties. The approach used in the definition of the distance measures to uncontrollability,
unobservability is based on the use of system operators to characterise controllability (ob-
servability) which is invariant under state feedback (output injection). These operators
are the Input-State Restriction pencil R(s) (used to characterise controllability) and the
State-Output Restriction pencils Q(s) (used to characterise observability). The properties of
matrix pencils are described in Section 4.1. It is demonstrated that by deploying notions
of exterior algebra, reviewed in Section 4.2, the overall problem is reduced to the standard
problem of the distance of a set of polynomials from non-coprimeness. In other words based
on the interrelations of multivectors and the notion of GCD, presented in Section 4.3, the
invariant criteria of controllability, observability can be defined as a distance problem that is
evaluated in Section 4.4.
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4.1 Invariant matrix pencils and their properties

The problem of selecting the best structure of sensors and actuators is a significant issue in
Control Theory and Control Design as it affects structural invariance of a system S(A,B,C,D)
and its properties.

Consider a Linear Time Invariant system S(A,B,C,D) described by

ẋ = Ax+Bu, y = Cx+Du (4.1)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n and D ∈ Rm×p. The transfer function of the model
defined by G(s) = C(sI−A)−1B+D ∈ Rm×p(s) can be represented by the right, left coprime
matrix fraction descriptions (RCMFD, LCMFD) as

G(s) = Nr(s)Dr(s)−1 = Dl(s)−1Nl(s) (4.2)

with the coprime representations respectively

Tl(s) = [Dl(s) Nl(s)] ∈ Rm×(m+p)[s], Tr(s) = [Dr(s) Nr(s)]′ ∈ R(m+p)×p[s], (4.3)

where Nl(s), Nr(s) ∈ Rm×p[s] and Dl(s) ∈ Rm×m[s], Dr(s) ∈ Rp×p[s]. It has been shown
in [102] that a rational matrix representation and the properties of rational vector spaces
can be simply studied as matrix polynomials and corresponding polynomial vectors. The
rank property of polynomial matrices is defined by the structure and degree of the resulting
polynomials and can be expressed in terms of the GCD [86], [24], [33].

Matrix fraction description provides an alternative perspective of studying the crucial
properties of LTI systems. Since the Rosenbrock’s matrix pencil of a system S(A,B,C,D) is
a polynomial matrix denoted by

P (s) =
(
sI −A −B
−C −D

)
, (4.4)

then the properties of the system can be studied with respect to the transmission zeros of
P (s) defined precisely as those s, where the pencil is rank-deficient [102], [54], [58], [103].
The family of zero assignment problems has a common formulation providing an alternative
approach for studying various system properties [104], [24], [37], [54]. The input and output
decoupling zeros of the system are defined as zeros of the corresponding controllability and
observability pencils, which is going to be discussed later in this chapter.
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If a pair (A,B) is controllable, (A,C) is observable and rank(B) = p, rank(C) = m, then
the controllability, observability pencils are defined as

C(s) = (sI −A, −B), K(s) =
(
sI −A
−C

)
(4.5)

It is well known that restricted matrix pencils hold important properties for measuring
system properties that are summarised in the following theorem:

Theorem 4.1.1 ([89]). The system S(A,B,C) is controllable if and only if the pencil C(s)
has no finite elementary divisors and it is observable if and only if the pencil K(s) has no
finite elementary divisors.

Proof. The proof can be found in [89].

Consider now a closed-loop system S̃(A + BL,B,C,D) with applied state feedback
L ∈ Rp×n. Then the system’s controllability pencil becomes

C̃(s) = [sI − (A+BL), B]. (4.6)

It is obvious that the feedback gain affects the eigenspace of the state matrix and the
sensitivities of the eigenvalues in C̃(s).

Let N be a left annihilator of B, where NB = 0, N ∈ R(n−p)×n, rank(N) = n − p,
and the (p× n) left inverse of B is denoted by B† (B†B = In). Further let M be a right
annihilator of C such that is CM = 0, M ∈ Rn×(n−m), rank(M) = n−m and let C† be a
(n×m) right inverse of C (CC† = Im). Then we define matrices Z,W

Z =
(

N

B†

)
∈ Rn×n, |Z| ≠ 0, (4.7)

W = (M C†) ∈ Rn×n, |W | ≠ 0 (4.8)

Transforming, for example, the controllability pencil by multiplying by Z, the following
equivalent description is obtained

(
N

B†

)
(sI −A, −B)

(
x(s)
u(s)

)
= 0⇐⇒

 (sN −NA)x(s) = 0

u(s) = B†(sI −A)x(s)
(4.9)

A similar approach is carried out for the observability pencil leading to the new matrix pencils

R(s) = sN −NA, (4.10)

Q(s) = sM −AM (4.11)
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known as the Restricted State-Input Pencil (RSIP) and Restricted State-Output Pencil
(RSOP) respectively [26], [105], [54].

In order to define invariant measures of uncontrollability and unobservability it is essen-
tial to introduce some background results. The main results are based on the properties
of compound matrices, decomposability property of multivectors as well as Grassmann
representatives.

Definition 4.1.1 ([106]). Let Qk,n denote the set of lexicographically ordered, strictly
increasing sequences of k integers from ñ = {1, 2, . . . , n}. If {xi1 , . . . , xik

} is a set of vectors
of V, ω = (i1, . . . , ik) ∈ Qk,n, then xi1 ∧ · · · ∧ xik

= xω∧ denotes the exterior product, ∧rV
denotes the r-th exterior power of V. If H ∈ Fm×n and r ≤ min(m,n), then Cr(H) denotes
the r-th compound matrix of H.

Clearly, the compound matrix Cr(H), where r ≤ min(m,n) is a polynomial matrix
representation obtained by calculating all minors of the entries of the given matrix H. A
multilinear map that is characterised by the exterior product ∧rV holds important properties
for the analysis of the mapping between affine and projective spaces. Such a property will be
denoted later as decomposability of multivectors.

If ci(s)t, denote the rows of C(s) ∈ Rn×(p+n)[s], ki(s), i ∈ ñ denote the columns of K(s) ∈
R(n+m)×n[s] and Cr(X) denotes the r-th compound matrix of X ∈ Rt×w[s], r ≤ min(t, w)
[106] then the polynomial vectors may be defined as:

Cn(C(s)) = c1(s)t ∧ · · · ∧ cn(s)t = c(s)t∧n ∈ R1×ρ[s]

= c̃(s)t, ρ =
(
n+ p

n

)
(4.12)

Cn(K(s)) = k1(s) ∧ · · · ∧ kn(s) = k(s)∧n ∈ Rρ′ [s]

= k̃(s), ρ′ =
(
n+m

n

)
(4.13)

as the input decoupling zero and output decoupling zero polynomials of the system respectively.

Remark 4.1.1. The system is controllable, if the polynomials of c̃(s) are coprime and it is
observable if the polynomials in k̃(s) are coprime. If the polynomials in c̃(s) and k̃(s) are
coprime, then their distance from the corresponding GCD variety [107] defines the distances
from uncontrollability, d(A,B) , unobservability, d(A,C) of the S(A,B), S(A,C) systems
respectively.

Note that the distances d(A,B), d(A,C) may vary when state feedback, respectively
output injection, is applied. In fact, if L ∈ Rp×n is a state feedback matrix, then the
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controllability pencil of the closed loop system becomes

C ′(s) = (sI −A−BL, −B) = (sI −A, −B)
(
In 0
L Ip

)
(4.14)

and based on the equivalence property of the compound matrices the corresponding input
decoupling polynomial is then defined by

c̃′(s)t = Cn(C ′(s)) = Cn([sI −A−BL, −B])

= Cn([sI −A, −B])Cn

([
In 0
L Ip

])
= c̃(s)tT (L) (4.15)

where T (L) ∈ Rσ×σ.

Remark 4.1.2. Condition (4.15) clearly demonstrates that although c̃′(s)t and c̃(s)t have
the same GCD, their distance from the GCD, such that can be characterised by the smallest
singular value, is affected by the choice of L.

Similar results may be stated for unobservability and the effect of output injection on
the distance from unobservability when Cn(K(s)) = k̃(s), is considered. The above raises
the question of defining distance measures from uncontrollability, unobservability which
are feedback invariant. To introduce the problem of invariant distance to uncontrollability
some preliminary results of Exterior Algebra and properties of multilinear vectors should be
addressed.

4.2 Exterior algebra and Multivectors: Background results

The problem of invariant distance to uncontrollability (observability) is studied via restriction
matrix pencils and their projective spaces.

Projective geometry is often used to simplify the formulation of the vector spaces. The
fundamental properties of the projective spaces [108], [109], [110] define the basis for studying
the invariant controllability measures. Projective equivalence of an arbitrary controllability
pencil described in terms of linear invariant subspaces is an elegant approach of measuring
the distance to uncontrollability.

Definition 4.2.1 ([108]). Let V1,V2, . . . ,Vk and U be vector spaces over a field F , where
0 ≤ k ≤ ∞. Let the Cartesian product of the vector spaces be defined as Vk = V1×V2×· · ·×Vk,
where the corresponding k-tuples are of the form (x1, . . . , xk). A function f : Vk −→ U is
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called a multilinear map if it is linear in every vector variable, i.e.

f(x1, . . . , xi, cy + dz, xi+1, . . . , xk) =

= cf(x1, . . . , xi, y, xi+1, . . . , xk) + df(x1, . . . , xi, z, xi+1, . . . , xk) (4.16)

where c, d ∈ F for all vectors y, z ∈ V. The total set of multilinear maps is defined then as
HomF(V1,V2, . . . ,Vk;U), whereas the dual vector space is denoted by V∗ and is defined as
V∗ = Hom(V,F).

Consider a vector space V with an integer k ≥ 2, then the k-th exterior power of the
vector space is defined by

∧k : ∧kV : (x1, x2, . . . , xk) ∧k

−→ x1 ∧ x2 ∧ · · · ∧ xk (4.17)

The k-th exterior product ∧k of the vector space has the following properties [108]:

Proposition 4.2.1 ([108]). (i) If the exterior product ∧kV defines a k-linear map ∧k :
Vk −→ ∧k(V) that is skew symmetric, then ∧k(V) is structured by ∧k(x1, x2, . . . , xm),
for every xi ∈ V;

(ii) There exists a linear map f : ∧kV −→ U if f is a skew symmetric k-linear map into the
vector space U .

If ei, i = 1, . . . , n is a basis of V , than the exterior product of the basis vectors spans the
vector space ∧kV as

ei,1 ∧ ei,2 ∧ · · · ∧ ei,k, 1 ≤ i1 ≤ i2 ≤ . . . ip ≤ n (4.18)

Definition 4.2.2 ([108]). Let τ =
(v

r

)
, r ≤ v and let k ∈ Rτ . The vector k is called

decomposable, if there exists a set of vectors {hi, i = 1, . . . , r, hi ∈ Rv} such that

h1 ∧ · · · ∧ hr = h∧r = k (4.19)

The matrix H = [h1, . . . , hr] ∈ Rv×r defines a basis for the subspace H = span{h1, . . . , hr}
which has length r and may be referred to as the parent space of the decomposable vector k.

Let z an exterior product of k vectors in the vector space V be a decomposable element
in ∧kV [108]:

z = x1 ∧ x2 ∧ · · · ∧ xk (4.20)

Although ∧kV is generated by a set of decomposable vectors, not every vector in ∧kV is
decomposable [39].
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Theorem 4.2.1 ([108]). 0 ̸= z ∈ ∧kV is decomposable if and only if there exists a linear
independent set of vectors u1, u2, . . . , uk in the vector space V, i.e. ui ∧ z = 0, i = 1, . . . , k.

Proof. For proof see [108].

If U is an n-dimensional vector space over the field F , then we denote G(k,U) as
Grassmannian that describes the set of k-dimensional subspaces V of U [36]. Let BU = {ui, i ∈
n} denote a basis of U and let Bk

U = {uω∧ : uω = ui,1 ∧ · · · ∧ ui,k, ω = (i1, . . . , ik) ∈ Qk,n} be
the basis of ∧kU , then the exterior product z can be defined as z =

∑
ω∈Qk,n

aωe
∧
ω, where aω

are the coordinates of z [36], [108].

Theorem 4.2.2 ([108]). The exterior product z, defined by

z =
∑

ω∈Qk,n

aωe
∧
ω (4.21)

is decomposable if and only if there exists A ∈Mk,n(R), i.e. aω = detA[1, . . . ,m|ω], ω ∈ Qk,n.

Proof. Can be found in [108].

It has been shown in [108] that two decomposable vectors z, z′ ∈ ∧mU are linearly
dependent if and only if ⟨z⟩ = ⟨z′⟩ = V, where V ∈ G(k,U) and

z′ = v′
1 ∧ · · · ∧ v′

k = c · z = c · v1 ∧ · · · ∧ vk, c ∈ F − {0}. (4.22)

For the nonzero k-dimensional subspace V of U any decomposable vector of the family
{c · z, z ∈ ∧kU , c ∈ F − {0}} characterises the vector space V and is called the Grassmann
Representative of V [108], [39], [36]. Grassmann representatives differ only by a scalar
c ∈ F , c ̸= 0 and are denoted by g(V) [108]. Coordinates {aω, ω ∈ Qk,n} of g(V) are
called Plücker coordinates of V. The set of lexicographically ordered Plücker coordinates
is ultimately induced by V to within c ∈ F [108], [36]. Since not every vector z ∈ ∧kU is
decomposable, it was shown in [108] and references therein that decomposable vectors should
satisfy Quadratic Plücker Relations (QPR). The set of quadratics

k+1∑
k=1

(−1)mai1,...im−1,jmaj1,...,jm−1,jm+1,...,jk+1 = 0, (4.23)

where 1 ≤ i1 < · · · < ik−1 ≤ n, 1 ≤ j1 < j2 < · · · < jk+1 ≤ n, is called the Quadratic Plücker
Relations [108] and defines the algebraic variety Ω(k, n). Such an (n−k)k-dimensional variety
of the projective space Pσ−1, σ =

(m
n

)
is known as the Grassmann variety and corresponding

map, ρ : G(k,U) −→ Pσ−1 is called Plücker Embedding [111].
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Grassmann variety G(k,U) denotes the image of the map ρ in the projective space.
Basic properties of Ω(k, n) specify the links between affine and projective spaces that are
summarised below.

Theorem 4.2.3 ([36]). Let Ω(k, n) be the Grassmann variety of Pσ−1, σ =
(k

n

)
. Then the

following properties hold:

1. Ω(k, n) is the irreducible algebraic variety of the dimension k(n− k) and it contains
decomposable vectors of Pσ−1;

2. It is possible to evaluate coordinates of a generic point of the variety Ω(k, n) with
respect to k(n− k) independent indeterminates;

3. The projective equivalent of Ω(k, n) is Ω(n− k, n) and dimΩ(n− k, n) = dimΩ(k, n) =
k(n− k);

4. When k = 1, Ω(1, n) = Pn−1(F) with dimΩ(1−n) = n−1. Similarly, if k = n−1, then
Ω(n− 1, n) = Pn−1(F). For such boundary cases the corresponding Plücker Embedding
is bijective implying that every vector of ∧1U ,∧n−1U is decomposable.

Proof. See [36] for more details.

In [42] the authors introduced an alternative characterisation of the decomposability
property based on Grassmann matrices. Let a structured matrix Φk

n(z) ∈ F be specified
by (k, n) and the elements of the corresponding coordinates {aω, ω ∈ Qk,n} of the vector
z ∈ ∧kU . Φk

n(z) is called the Grassmann matrix of z.

Definition 4.2.3 ([42]). Consider a set of strictly increasing sequences Qk,n, where {aω, ω ∈
Qk,n} are the coordinates of z ∈ ∧kU with respect to the basis Bk

U , k + 1 ≤ n. Let γ =
(i1, . . . , ik+1) ∈ Qk+1,n, then the subset of Qk,n sequences with elements from γ is defined by
Qγ

k,k+1 as
Qγ

k,k+1 = {aγ(m̃) = (i1, . . . , im−1, im+1, . . . , ik+1)}, m ∈ k + 1 (4.24)

Define the function ϕ by

ϕ(i, γ) =

0, if i /∈ γ

(−1)m−1aγ(m̃), if i = im, m = 1, . . . , k + 1

Proposition 4.2.2 ([42]). Consider an n-dimensional vector space U with the corresponding
basis BU = {ui, i ∈ n}. Let Bk

U = {uω∧, ω ∈ Qk,n} be the basis of ∧k(U), then if there exists
a vector v =

∑n
i=1 ciui ∈ U , i.e. v ̸= 0 and the generator vector z is defined as

z =
∑

ω∈Qk,n

aωuω∧ ∈ ∧kU , z ̸= 0, (4.25)
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then the necessary and sufficient condition for v ∧ z = 0 is

n∑
i=1

ϕi, γci = 0, ∀γ ∈ Qk+1,n. (4.26)

If the lexicographically ordered elements of Qk,n are defined by γt, where t =
( n

k+1
)
, then

(4.26) can be rearranged as follows


ϕ1

γ1 ϕ2
γ1 . . . ϕn

γ1

ϕ1
γ2 ϕ2

γ2 . . . ϕn
γ2

...
... . . .

...
ϕ1

γt
ϕ2

γt
. . . ϕn

γt


︸ ︷︷ ︸

Φk
n(z)


c1

c2
...
cn

 =


0
0
0
0

 (4.27)

A structured matrix Φk
n(z) with zeroes allocated at the fixed positions is called the Grassmann

matrix of the multivector z.

Example 4.2.1. Consider a simple example of the Grassmann matrix Φk
n(z), where n =

4, k = 2. Let the coordinates of the vector z ∈ ∧2U , dimU = 4 be as {a12, a13, a14, a23, a24, a34}.
Then matrix Φ2

4(z) is structured as follows:

Φ2
4(z) =


a23 −a13 a12 0
a24 −a14 0 a12

a34 0 −a14 a13

0 a34 −a24 a23


The Grassmann matrix Φk

n(z) holds important properties for the analysis of decompos-
ability of z. In [45] the results have been summarised in a form of a theorem.

Theorem 4.2.4 ([45]). Consider an n-dimensional vector space U over a field F . Let BU be
the basis of U and Φk

n(z) be the Grassmann matrix of z, such that 0 ̸= z ∈ ∧kU . Let the null
space of the Grassmann matrix be denoted by N k

n (z) = Nr(Φk
n(z)). Then the following holds:

1. dimN k
n (z) ≤ k and the corresponding equality holds, if and only if z is decomposable

and Φk
n(z) is canonical;

2. If dimN k
n = k, then the solution of the vector space V, v1 ∧ · · · ∧ vk = z is defined by

the N k
n (z).

Proof. The proof is presented in [45].

Theorem 4.2.4 provides alternative criteria for the analysis of multivectors and their
decomposability properties. By combining Theorem 4.2.3 with the properties of Grassmann
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matrices it is possible to define different decomposability conditions of z and corresponding
forms of Φk

n(z).

Corollary 4.2.1 ([45]). If Φk
n(z) is the Grassmann Representative of z ∈ ∧kU and z ̸= 0,

then:

(i) For the case of k = 1 the corresponding vector z is always decomposable and Φ1
n(z) is

referred to as canonical. For n ≥ 3 the rank of Φk
n(z) is equal to rank{Φ1

n(z)} = n− 1;

(ii) If k = n− 1, then again z is free corresponding to the canonical form of Φn−1
n (z), i.e.

rank{Φn−1
n (z)} = 1;

(iii) If k is not a boundary case, i.e. k = n− p, k > 1 and p ≥ 2, then rank{Φk
n(z)} ≥ n− k

for all z and rank{Φk
n(z)} = n − k if and only if z is decomposable, hence Φk

n(z) is
canonical.

Since QPRs are always satisfied for the special case of multivectors (parts (i) and (ii) in
Corollary 4.2.1), it is possible to define some interesting links between the set of QPRs and
rank test of the corresponding Φk

n(z) matrix.

Corollary 4.2.2 ([45]). If z ∈ ∧kU , i.e. z ̸= 0 for n− k ≥ 2, k > 1, then Φk
n(z) is canonical

iff Cn−k+1(Φk
n(z)) = 0.

It is evident that decomposability of z can be evaluated from the corresponding Grassmann
matrix. Moreover, the linearity of the maps, say from V to U , can be characterised with
respect to the compound matrices. Following this, some notations of the structured sequences
and the properties related to decomposability of m-vectors should be introduced.

Definition 4.2.4. Let Qk,n be a set of
(n

k

)
strictly increasing sequences of k. The k-th

compound matrix of M ∈ Fm×n, 1 ≤ k ≤ min{m,n} is denoted as a
(m

k

)
×
(n

k

)
matrix whose

entries are defined in lexicographical order in α and β, such that det(M(α, β)), α ∈ Qk,n, β ∈
Qk,n. The matrix is designated as Ck(M).

It is clear that for a special case of the structure, that when k =
(n

m

)
, a corresponding

(n
k

)
-

dimensional vector Ck(M) is decomposable. Then for M = {k1, . . . , kk} ∈ Fn×k, 1 ≤ k ≤ n
the compound representation is equivalent to

Ck(M) = k1 ∧ k2 ∧ · · · ∧ kk, (4.28)

where the entries of Ck(M) are the Plücker coordinates.

Definition 4.2.5 ([42]). Let VM be a rational vector space of a given matrix M(s) = {M(s) :
M(s) ∈ Rp×q(s), q ≤ p}, i.e. VM = colspan(M(s)). Then the Grassmann representative of
VM , g(VM ), is a decomposable multivector of Rσ, σ =

(p
q

)
. If deg(g(VM )) = δ, corresponding
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to Forney’s dynamical order (see [112] for more details), then the Grassmann representative
can be expressed as

g(VM ) = Pδeδ(s), eδ(s) = (1, s, . . . , sδ)t, (4.29)

where Pδ is the Plücker matrix of VM , such that Pδ ∈ R

(
p

q

)
×(δ+1)

.

The Plücker matrix holds important properties of the decomposability characteristics. It
has been shown in [42] that if the given multivector z(s) = Pδeδ(s) is decomposable, then the
polynomials of Pδ = (p0, p1, . . . , pδ

) are also decomposable. Such a criteria leads to a result,
defined in a form of a theorem.

Theorem 4.2.5 ([42]). The Plücker matrix Pδ of g(VM ) is a complete invariant of VM .

Proof. See [42].

To summarise, some fundamental properties and notations of Exterior Algebra have been
presented. So far it has been highlighted that there exists a specific case of multivectors when
decomposability property holds, namely k = 1, k = n− 1. Such a scenario will be designated
as a linear problem later in the Chapter and is characterised by a one-to-one linear map. As
mentioned in [108] the set of k-dimensional subspaces of a vector space V, i.e. ∧kV, can be
characterised by the elements of the components that satisfy quadratic polynomial properties
of the tensors. Then, for a general-case mapping (k ̸= 1, k ̸= n− 1) additional constraints
have to be satisfied, referred to as Quadratic Plücker Relations to ensure decomposability of
the generating multivector.

Since the decomposability property of the elements in the vector space ∧kV plays an
important role in a variety of distance problems of polynomial matrices, the invariant distance
problem to uncontrollability, unobservability can be separated into two subproblems: a linear
(or special) case and a multilinear (also denoted as general) case; that is going to be described
next.

4.3 Multivectors and their link to GCD

The study of the invariant distance from uncontrollability and unobservability uses early
results for characterising controllability and observability based on the restriction pencils
introduced above [101], [54], [26]. Note that

ZC(s) =
(

N

B†

)
(sI −A, −B) =

(
sN −NA 0
sB† −B†A Ip

)
= C∗(s) (4.30)
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and

K(s)W =
(
sI −A
C

)
(M C†) =

(
sM −AM sC† −AC†

0 Im

)
= K∗(s) (4.31)

Clearly, C(s) and C∗(s), as well as K(s) and K∗(s) are strict equivalent [103] and both C(s)
and K(s) do not have zeros at infinity. Thus their finite zeros, if any, are given by their
corresponding Smith forms defined by

C∗(s) =
(

sN −NA 0
sB† −B†A Ip

)
◁

(
sN −NA 0

0 Ip

)
= C(s) (4.32)

K∗(s) =
(
sM −AM sC† −AC†

0 Im

)
◁

(
sM −AM 0

0 Im

)
= K(s) (4.33)

where ◁ denotes R[s]-equivalence. The above lead to the following result [101], [54]:

Theorem 4.3.1. The system S(A,B,C) is:

(i) Controllable if and only if the pencil R(s) defined in (4.10) has no finite elementary
divisors

(ii) Observable if and only if the pencil Q(s) defined in (4.11) has no finite elementary
divisors.

Proof. For the proof see [101], [54].

Corollary 4.3.1. The input restriction pencil R(s) = sN − NA is invariant under state
feedback and the output restriction pencil Q(s) = sM − AM is invariant under output
injection.

The above is rather obvious from the fact that if L ∈ Rp×n is a state feedback matrix,
then R′(s) = sN − N(A + BL) = sN − NA = R(s). Similarly, if F ∈ Rn×m is an output
injection matrix, then Q′(s) = sM − (A+ FC)M = sM −AM = Q(s) . The invariance of
R(s) and Q(s) leads to the following definition.

Definition 4.3.1. (i) For the restriction pencil R(s) = sN − NA the rows of R(s) are
defined by ri(s)t, i = 1, . . . , n− p. The polynomial defined as

Cn−p(R(s)) = r1(s)t ∧ · · · ∧ rn−p(s)t = r(s)t∧n−p ∈ R1×σ′ [s] = r̃(s)t, σ′ =
(

n

n− p

)
(4.34)

will be called the Invariant Controllability Polynomial (ICP) of the system.
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(ii) For the restriction pencil Q(s) = sM −AM the rows of Q(s) correspond to q
i
(s), i =

1, . . . , n−m. The polynomial defined as

Cn−m(Q(s)) = q1(s) ∧ · · · ∧ q
n−m

(s) = q(s)∧n−m ∈ Rσ′ [s] = q̃(s), σ′ =
(

n

n−m

)
(4.35)

will be called the Invariant Observability Polynomial (IOP) of the system.

The invariance under feedback of R(s) and Q(s) implies the invariance of r̃(s)t, q̃(s) and
these are used for the study of feedback invariant distances from uncontrollabity, respectively
unobservability of the system. Note that deg{r̃(s)t} = n − p and that deg{q̃(s)} = n −m.
Given that the GCD of r̃(s)t provides a state feedback invariant characterisation of input
decoupling zeros and q̃(s) provides an output injection invariant characterisation of output
decoupling zeros, one is led to the following result:

Corollary 4.3.2. The distances of the set of polynomials of r̃(s)t, q̃(s) from noncoprimeness
define respectively the invariant distance from uncontrollability, unobservability.

Thus, such distance problems may be studied using the results on the “approximate”
GCD of a set of polynomials [113], [114], [84], [92], [97] and express the distance of the
corresponding sets of polynomials from their respective GCD variety [97]. The existing
results on the approximate GCD assume that the set of polynomials is arbitrarily defined.
However, this is not the case for the polynomials of r̃(s)t, q̃(s) since these are defined as
exterior products of rows, columns of matrix pencils and the above distance problems have
to take into account these properties. Some basics on the exterior algebra which impact the
subsequent analysis are summarised next.

The set of r-dimensional subspaces H of Rv is referred to as the r-Grassmaniann. It is
denoted by G(r,Rv) and the column space of H defines a basis for these subspaces. The
mapping of each r-dimensional subspaceH is h1∧· · ·∧hr = h∧r = k (where hi are the columns
of H). A vector k ∈ Rτ defines a point in the projective space Pτ−1(R); the points of Pr−1

which satisfy (4.19) for some H ∈ Rv×r are belong to the Grassmann variety Ω(r, v) of the
projective space Pτ−1(R) [115]. Let k ∈ Rσ with coordinates kω, ω = (i1, . . . , ir) ∈ Qr,v.These
are referred to as the Plücker coordinates of k and the mapping of H through ∧r is known as
the Plücker Embedding of the r-Grassmaniann G(r,Rv) into the projective space Pτ−1(R).

The variety Ω(r, v) is characterised by the following result [108]:

Theorem 4.3.2. 1. Let k ∈ Rτ , τ =
(v

r

)
. A necessary and sufficient condition for matrix

H to exist, where H ∈ Rv×r, H = [h1, . . . , hr] ∈ Rv×r, such that

h∧r = h1 ∧ · · · ∧ hr = k = [. . . , kω, . . . ]t (4.36)
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is that the coordinates kω satisfy the following quadratic relations

r+1∑
k=1

(−1)r−1ki1,...,iv−1,jk
r j1,...,jr−1,jr+1,jv+1 = 0 (4.37)

where 1 ≤ i1 < i2 < · · · < iv−1 ≤ r and 1 ≤ j1 < j2 < · · · < jv+1 ≤ r. The quadratic
relations in (4.37) denote the QPRs for the Grassmman variety.

2. If condition (4.37) is satisfied, there exists a uniquely defined space H that corresponds
to k ∈ Rτ that satisfies equation (4.36).

Proof. The proof is given in [108] and hence it is omitted.

The vectors k which satisfy (4.36) are called decomposable. The set of quadratics defined
by (4.37) [108], [115], are refered to as Quadratic Plücker Relations and they define the
Grassmann variety of Pτ−1(R). Alternative conditions for decomposability are given in [44],
in terms of the Grassmann matrix [44]; the latter criteria also provide the means for the
reconstruction of the space H via its basis matrix H. The nature of the quadratics in QPR
is explained in terms of an example.

Example 4.3.1. Let v = 5, r = 3 and let (k0, k1, k2, . . . , k8) be the coordinates of a vector
defining a point in the projective space Pτ−1(R), τ = 9. The set of QPRs describing the
Grassmann variety Ω(3, 5) are given by

k0k5 − k1k4 + k2k3 = 0, k0k8 − k1k7 + k2k6 = 0, k0k9 − k3k7 + k4k6 = 0 (4.38)

k1k9 − k3k8 + k5k6 = 0, k2k9 − k4k8 + k5k7 = 0 (4.39)

It may be readily shown that the above set of equations is not minimal; in fact, the set in
(4.39) may be obtained from the set in (4.38) and thus (4.38) is a minimal set of quadratics
describing the Grassmann variety Ω(3, 5).

4.4 Feedback invariant distance to uncontrollability

It has been observed that the multilinear nature of the problem leads to analysis of the
exterior equation obtained from the corresponding matrix pencils. If the problem is linear
and multivectors are decomposable, then the solution is found as a standard problem of
Linear Algebra. However, if the problem is multilinear and QPRs have to be satisfied, then
the problem is solvable only approximately, as the “approximate decomposable” polynomial
combinant that satisfies QPRs and provides alternative criteria for the general case of the
problem.
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4.4.1 Special case of the invariant distance

As the main focus of the analysis is the decomposability of multivectors, consider first the
following Lemma:

Lemma 4.4.1 ([108]). Let U be a vector space over a field F with dimU = v. Then any
vector in ∧v−1U as well as ∧1U is decomposable.

Clearly in this case the Grassmann variety of Pτ−1(F), (τ =
(
v

r

)
, r = v − 1 or r = 1)

coincides with the projective space Pτ−1(F), or in other words there are no Quadratic Plücker
Relations defining the variety. The above suggests that the study of the invariant distance to
uncontrollability, unobservability is reduced to:

Problem 4.4.1. Linear Invariant Distance Problem (LIDP) is characterised by:

1. The invariant distance to uncontrollability is defined by the distance from the GCD
variety of the polynomial Cn−p(R(s)) = r̃(s)t, where the vector k ∈ Rp is the resulting
polynomial vector or the generator of the polynomials, and it is free if p = 1 or p = n−1.

2. The invariant distance to unobservability is defined by the distance from the GCD
variety of the polynomial Cn−m(Q(s)) = q̃(s), where the generator of the polynomials,
the vector k ∈ Rm, q̃(s) is free if m = 1 or m = n− 1.

The free vectors r̃(s)t, q̃(s) uniquely identify the projective space and, hence, the mapping
is exact.

4.4.2 General case of the invariant distance

For the general case, where p ̸= 1, p ̸= n−1 and m ̸= 1,m ̸= n−1 implies that the polynomials
r̃(s)t and q̃(s) generated by vectors k ∈ Rp, k ∈ Rm respectively are not any longer free, but
they have to satisfy the corresponding QPRs. In this case the general problem of invariant
distance to uncontrollability, unobservability becomes more complicated and is equivalent to
the distance between the GCD variety and the corresponding Grassmann variety.

Problem 4.4.2. General Invariant Distance Problem (GIDP) can be defined as
follows:

1. The case where p ̸= 1, p ̸= n− 1 the general invariant distance to uncontrollability is
defined as the distance from the GCD variety of the polynomial Cn−p(R(s)) = r̃(s)t,
where the generator of the polynomials, the vector k ∈ Rp, r̃(s)t also satisfies the
corresponding QPRs.
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2. The case where m ̸= 1,m ̸= n− 1 the general invariant distance to unobservability is
defined as the distance from the GCD variety of the polynomial Cn−m(Q(s)) = q̃(s),
where the generator of the polynomials, the vector k ∈ Rm, q̃(s) also satisfies the
corresponding QPRs.

The results in Theorem 4.2.4 provide alternative characterisations for the decomposability
condition of multivectors. It has been shown that the rank of a Grassmann matrix can be
used as a decomposability criterion. Hence, in order for the vectors r̃(s)t, q̃(s) to satisfy
QPRs, an optimisation problem has to be solved.

Problem 4.4.3. Let z ∈ Rk be a non-decomposable multivector. Find ẑ ∈ Rk ∈ Ω(r, v),
such that the distance between the two multivectors, say d(z, ẑ), is minimised.

The solvability of the general case of the invariant distance leads to the notion of
an “approximate” solution that is defined as the distance from the GCD variety of the
corresponding controllability, observability polynomials, where the generator is the “best
almost decomposable” multivector if the initial r̃(s)t, q̃(s) are not decomposable.

Reference [24] highlighted that the controllability property of the pair (A,B) ((A,C) for
observability) can be measured with respect to the relative degree of corresponding Plücker
matrices P (A,B) (P (A,C)) or P (N,NA) (P (M,AM)). This can be summarised in a form
of the following theorem:

Theorem 4.4.1 ([24]). Let P (A,B) be a Plücker controllability matrix (similarly for the
observability P (A,C)). Then the smallest singular value of P (A,B) (P (A,C)) provides
a lower bound for the distance to the family of uncontrollable systems (unobservable, re-
spectively). Equivalently, if P (N,NA) (P (M,AM)) is the restricted Plücker controllability
(observability) matrix, then the corresponding smallest singular value specifies a lower bound
of the “feedback-invariant” distance from the family of uncontrollable (unobservable) systems.

The proof of Theorem 4.4.1 in [24] is based on the properties of polynomials and multi-
vectors. Since the decomposability property is not always satisfied, then the smallest singular
value defines the lower bound of the distance. Moreover, considering Lemma 4.4.1 for the
boundary cases of the problem, when the multivectors are always decomposable, the minimal
singular value becomes an exact distance that is referred to as LIDP.

Example 4.4.1. Consider a linear case of a controllability pencil C(s) defined as

[sI −A, −B] =


s −1 0 0
0 s −1 0
0 0 s −1

 =


c1(s)t

c2(s)t

c3(s)t


Then the exterior product of the rows of C(s) corresponds to the polynomial vector

c(s)t∧ = c1(s)t ∧ c2(s)t ∧ c3(s)t = [s3 − s2 s − 1]
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is equal to the result of the compound matrix.
According to Theorem 4.4.1 the distance to uncontrollability of the pair (A,B) is given

by the smallest singular value of the corresponding Plücker matrix that is computed as

P (A,B)e3(s) =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


︸ ︷︷ ︸

P (A,B)


s3

s2

s

1



Since P (A,B) has full rank and the smallest singular value of P (A,B) is equal to 1, then
the pair (A,B) is controllable.

Example 4.4.2. Consider now a Restricted Pencil derived from the previous example. The
left annihilator of B is

N =
(

0 1 0
−1 0 0

)

Then

R(s) = sN −NA =
(

0 s 1
−s −1 0

)
=
(
r1(s)t

r2(s)t

)

Deriving the exterior product of R(s) by calculating the compound matrix, which results in

r(s)t∧ = [s2 s 1]

Then

P (N,NA)e2(s) =


1 0 0
0 1 0
0 0 1


︸ ︷︷ ︸

P (N,NA)


s2

s

1



corresponding to the controllable pair (N,NA), which is consistent with the fact that
P (N,NA) is nonsingular.

Projecting Theorem 4.4.1 on the special case (p = 1, p = n − 1,m = 1,m = n − 1) of
uncontrollability and unobservability it can be concluded that the Plüker Embedding is
bijective implying that polynomials r̃(s)t, q̃(s) are always decomposable. Then, in such a
case the invariant distance to uncontrollability, unobservability is exactly characterised by
the distance of the corresponding polynomials from the GCD variety.
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4.4.3 “Approximate” decomposability of multivectors

The problem of “approximate” decomposability has found particular interest in various
algebrogeometric problems in Control Theory and Mathematics [39], [36], [116], [117], [45].
In the study of DAP, for example, the multilinear nature under certain conditions can lead
to a better solution of complex control problems.

For the problem of the invariant distance to uncontrollability, unobservability, the method-
ology is based on the polynomial vectors of the corresponding restricted pencils. Since the
resulting polynomials are not necessarily decomposable the need of finding “approximate”
solution appears. The framework for finding the “approximate decomposable” polynomial
vectors has been studied in [45], [116], [117]. The problem of decomposability is equivalent to

u1 ∧ u2 ∧ · · · ∧ vk = z, ui ∈ V (4.40)

where the solvability of (4.40) is equal to the decomposability of z ∈ ∧kV. Clearly, the
approximation of the solution is a difficult task that combines notions of multilinear algebra,
projecting spaces as well as complex optimisation procedures. In [116], the authors demon-
strated the approximation of multivectors from different perspectives: estimation of the skew
symmetric tensors and estimation of the distance from the Grassmann variety.

The rank test of the Grassmann matrix in Theorem 4.2.1 can be used to examine the
nontrivial cases of multivectors. Relaxation of the vector can be defined as an optimisation
problem that has been studied in [117], [45], [116] and references therein. The “approximate”
decomposability problem can be defined as follows:

Problem 4.4.4. Let z be a non-decomposable vector, it is required to find such k that
minimises

Φ(z, k) = ∥z − k∥, s.t. p(k) = 0 (4.41)

If k∗ is the minimising solution of (4.41), then k∗ is characterised by the embedded Grass-
mannian as

∥z∥ · sin(θ) = ∥z − k∗∥ (4.42)

where θ corresponds to the minimal angle between z and k∗ [45].

The solution to the “approximate” decomposability problem can be obtained using
standard optimisation techniques. Some crucial results of the optimisation procedure have
been established in [117], [116], [118], [45]. In order to demonstrate the estimation framework,
consider a simple numerical example from [45].

Example 4.4.3. Consider a vector z = (a12, a13, a14, a23, a24, a34) with the corresponding
Grassmann matrix Φ2

4(z) defined as in Example 4.2.1. The projective variety is characterised
by the QPR as

a12a34 − a13a24 + a14a23 = 0
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where aij are the Plücker coordinates of z. If the coordinates are defined as (10, 2, 15, 3, 1,−20),
the Grassmann matrix becomes

Φ2
4(z) =


3 −2 10 0
1 −15 0 10
−20 0 −15 2

0 −20 −1 3


Based on the Corollary 4.2.1 Φ2

4(z) is canonical if its rank is equal to 2. The singular values
of Φ2

4(z) are equal to σ = {27.1635, 27.1635, 5.6694, 5.6694} corresponding to the numerical
rank of 4 that does not satisfy the condition of QPRs, i.e. p(z) = −157 ̸= 0, which means
that z is not decomposable.

In order to find the “approximate” decomposable k the optimisation problem in (4.41)
has to be solved, and the optimal approximation is computed as

k∗ = (5.83, 1.869, 16.489, 6.667, 0.582,−18.699)′

Remark 4.4.1. The rank test of the Grassmann matrix provides a simple numerical test
for the decomposability criteria of multivectors. However, the problem of approximate
decomposability of multivectors is clearly a non-standard problem for the general Φk

n(z), as
the uniqueness of the solution is not guaranteed. Moreover, the general case of the restricted
input (restricted output) pencils of the system appears to be a more complicated task due to
the polynomial nature of the problem. This is going to be investigated in the future work.

Example 4.4.4. Consider a simple form of a system, where the left annihilator of B and
the state matrix A are given as follows:

N =
(

1 0 1 1
0 1 1 1

)
, A =


1 2 3 4
2 1 0 1
3 1 0 2
0 3 4 0

 .

Then the Restricted Input Pencil is given by

R(s) = sN −NA =
(
s− 4 −6 s− 7 s− 6
−5 s− 5 s− 4 s− 3

)

The resulting R(s) corresponds to the general case as n = 4, p = 2. In order to evaluate the
distance to uncontrollability of the given pair (N,NA) the decomposability condition has
to be checked. The resulting set of polynomials derived from taking all possible minors of
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degree 2 is found as

C2(R(s)) =



s2 − 9s− 10
s2 − 3s− 19
s2 − 2s− 18
−s2 + 6s− 11
−s2 + 5s− 12

−3


= r̃(s)t

It can be observed that rank{Φ2
4(z)} = 2 that corresponds to the canonical form of Φ2

4(z)
and decomposability of z respectively. Hence, the distance of the set of polynomials r̃(s)t

from the GCD variety evaluated in the projective space uniquely characterises the invariant
distance to uncontrollability.

Example 4.4.5. Let now r̃(s)t be not free with the set of polynomials given by

C2(R(s)) =



s2 − 9s− 10
5s

4s2 + s− 19
−s2 + 5s

−3s2 + 9s− 12
2s2 − 3s


Assume that the numerical value of the multivector is obtained at s = 1, then z =
(−18, 1,−14, 4,−6,−1)′, for which rank{Φ2

4(z)} = 4 > 2 is not canonical. The problem
leads to finding the best decomposable polynomial k, by solving

min
k
∥z − k∥,

s.t. k1k6 − k2k5 + k3k4 = 0
(4.43)

If λ corresponds to the Lagrange multiplier, then the Lagrangian of the function is defined as:

L(k, λ) = 1
2
[
(z1 − k1)2 + (z2 − k2)2 + · · ·+ (z6 − k6)2

]
− λ(k1k6 − k2k5 + k3k4)

that leads to the following optimality conditions:

∂L

∂k1
= (k1 − z1)− λk6 = 0, ∂L

∂k2
= (k2 − z2) + λk5 = 0, . . . , ∂L

∂k6
= (k6 − z6)− λx1 = 0,

∂L

∂λ
= −k1k6 + k2k5 − k3k4 = 0.

Solving the above set of equations the optimal value of k∗ is computed as

k∗ = (−18.2832, 1.6167,−13.7373, 2.6252,−6.1618,−2.8297)′
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It can be observed that the elements of k∗ are very close to the initial vector z and hence
corresponds to the “almost” decomposable z.

If s takes an arbitrary value, then the optimisation of (4.43) becomes a more challenging
problem. However, for such a simple example the approximate decomposable multivector
can be computed using constraint optimisation techniques and it is achieved at

k(s) = (7.6394s2 − 2.3606s− 3.3606, 5.6693s, 4.0883s2 + 1.0883s− 18.9117,

−1.1689s2 + 4.3011s, −3.1923s2 + 8.8077s− 12.1923, 2.0976s2 − 2.9024s)

that is relatively close to the initial z. However, in general the optimisation of the
polynomial coefficients of the multivector is a non-generic problem and it should be investigated
in more detail.

So far, the criteria of the invariant distance to uncontrollability, unobservability, leads
to the analysis of a set of polynomials, generated as r̃(s)t, q̃(s), respectively, that uniquely
characterise the given system. This corresponds to a distance problem of the resulting
polynomials from the GCD variety. It should be noted that the calculation of the non-trivial
GCD is a difficult problem. Before stating the main results of the work the powerful notion
of the Sylvester Resultant matrix is introduced next.

4.5 Sylvester Resultant and characterisation of the distance

Invariant distance problems that are reviewed as the distance of a set of polynomials from
the GCD variety can be studied from the perspective of the Sylvester Resultant matrix.
This is a powerful tool for the analysis of the “coprimeness” and “almost coprimeness” of
polynomials. This will be described for the simple, unconstrained case where there are no
QPRs involved in the analysis and then the results will be extended to the general case where
the set of QPRs is non-trivial. In the following it will be referred to as the invariant distance
to uncontrollability that is equivalent to the distance of the polynomials Cn−p(R(s)) = r̃(s)t

from the GCD variety, while the results for the invariant distance to unobservability based
on q̃(s) follow by duality.

It is known [119] that necessary and sufficient conditions for the polynomials to have a
common root are defined by the singularity of the corresponding Sylvester matrix. Consider
a set of polynomials Ph+1,n:

Ph+1,n = {a(s), bi(s) ∈ R[s], i = 1, . . . , h;

n = deg{a(s)}, t = deg{bi(s)}, i = 1, 2, . . . , h, n ≥ t}
(4.44)
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The notation is occasionally simplified to P if the integers n and h can be inferred from the
context. Let ϕ(s) be the GCD of the polynomial set Ph+1,n. If the polynomials are coprime,
i.e. ϕ(s) = 1, the polynomial set is denoted as P0

h+1,n. The Sylvester matrix background is
considered next [119], [120], [94], [92],[85], [121]:

Definition 4.5.1. Consider the set of monic polynomials Ph+1,n = {a(s), bi(s) ∈ R[s], i =
1, . . . , h}, where a(s) and bi(s), ∀i = 1, . . . , h, are given as:

a(s) = sn + αn−1s
n−1 + · · ·+ α0,

bi(s) = st + βt−1,is
t−1 + · · ·+ β0,i, i = 1, . . . , h (4.45)

Assuming that with no loss of generality, the polynomials are monic, i.e. αn = βt,i = 1,
i = 1, 2, . . . , h.

(i) Let S0 ∈ Rt×(n+t) be the Sylvester Resultant associated with a(s):

S0 =


1 αn−1 αn−2 . . . . . . α0 0 . . . 0
0 1 αn−1 . . . . . . α1 α0 . . . 0
... . . . . . . ... . . . ...
0 . . . 0 1 . . . αt−1 . . . . . . α0

 (4.46)

(ii) Corresponding to bi(s) for each i = 1, . . . , h the resultant matrices Si ∈ Rn×(n+t) are
structured as:

Si =


1 βi,t−1 βi,t−2 . . . . . . βi,0 0 . . . 0
0 1 βi,t−1 . . . . . . βi,1 βi,0 . . . 0
... . . . . . . ... . . . ...
0 . . . 0 1 . . . βi,n−1 . . . . . . βi,0

 (4.47)

(iii) The Generalized Resultant for the set Ph+1,n is defined as:

SP =


S0

S1
...
Sh

 ∈ R(t+hn)×(n+t) (4.48)

The Sylvester resultant matrix holds important properties for GCD computations. More-
over, the concept of “approximate” GCD and the distance of the polynomials to the GCD
variety can be analysed with respect to the singular values of the corresponding Sylvester
resultant. In previous research papers [94], [93], [91] “approximate coprimeness” is studied
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alongside the Sylvester matrix representation leading to some important notions that are
considered next.

Theorem 4.5.1. [92]: Let SP be a Sylvester resultant matrix of the set of polynomials
Ph+1,n

SP =



1 αn−1 αn−2 . . . . . . α0 0 . . . 0
0 1 αn−1 . . . . . . α1 α0 . . . 0
... . . . . . . ... . . . ...
0 . . . 0 1 . . . αt−1 . . . . . . α0

1 β1,t−1 β1,t−2 . . . . . . β1,0 0 . . . 0
0 1 β1,t−1 . . . . . . β1,1 β1,0 . . . 0
... . . . . . . ... . . . ...
0 . . . 0 1 . . . β1,n−1 . . . . . . β1,0
...

...
...

...
...

1 βh,t−1 βh,t−2 . . . . . . βh,0 0 . . . 0
0 1 βh,t−1 . . . . . . βh,1 βh,0 . . . 0
... . . . . . . ... . . . ...
0 . . . 0 1 . . . βh,n−1 . . . . . . βh,0



. (4.49)

If ϕ(s) denotes the GCD of the corresponding polynomial set Ph+1,n = {a(s), bi(s),
∀i = 1, . . . , h}, then the following properties hold true:

1. For the polynomial set to be coprime it is necessary and sufficient that the Sylvester
Resultant has full rank, i.e. rank(SP) = n+ t;

2. If Ph+1,n has non-trivial GCD (deg(ϕ(s)) ≥ 1), then

rank(SP) = n+ t− deg{ϕ(s)}; (4.50)

3. Since the GCD of SP stays invariant under elementary row operations, then by reducing
it to the row-echelon form the last non-vanishing row will provide the coefficients of
ϕ(s).

The proof of these properties can be found in [92].

Remark 4.5.1. The degree of the “approximate” GCD can be determined from the values of
the smaller singular values of the Sylvester resultant matrix. For example, the matrix pencil
technique [84], [85] defines the degree of the approximate GCD with respect to a specified
tolerance level tol, i.e. as the number of singular values that are less than or equal to tol.
This approach is refined in this thesis by replacing “singular values” by “structured singular
values” which take explicitly into account the structure of the resultant matrix.
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The Sylvester Resultant result stated above is central in establishing a number of important
computational procedures for the GCD of many polynomials [114]. Clearly, the set of
polynomials is not coprime if SP is rank-deficient, which occurs when the polynomial vector
r̃(s)t is on the GCD variety defined as:

Definition 4.5.2. For a polynomial vector r̃(s)t the GCD variety is defined by the set of
maximal order minors of SP which are equal to zero. This variety is defined by a polynomial
in αj , βj parameters defined by the coefficients of the polynomials of r̃(s)t specified in (4.45).

An immediate Corollary of the above result is:

Corollary 4.5.1. The distance of the polynomial vector r̃(s)t (q̃(s)) from the GCD variety is
defined by the distance of the corresponding SP Sylvester matrix from the set of rank-deficient
matrices.

Clearly, the Sylvester Resultant and the properties of the GCD are central in the analysis
of the polynomial matrices that characterise system properties. If the Restricted Input pencil
is defined by the corresponding polynomial vector r̃(s)t as in (4.34), then the distance of the
corresponding Sylvester matrix from rank-deficiency identifies the distance of r̃(s)t from the
GCD variety, and equivalently the distance to uncontrollability. Similarly, the distance to
uncontrollability can be measured whether the polynomial vector q̃(s) is on the GCD variety.
Then, an obvious Corollary of the above result is:

Combining characteristics of the restriction matrix pencils R(s) = sN −NA and Q(s) =
sM −MA respectively and the notion of the distance to the GCD variety of a polynomial
set, it is possible to specify invariant measures to uncontrollability and unobservability.

Corollary 4.5.2. Let P be a set of polynomials, obtained from Cn−p(R(s)) = r̃(s)t. If
p = 1, p = n− 1, then the smallest singular value of a corresponding Sylvester Resultant SP

denotes the invariant distance to uncontrollability. If p ̸= 1, p ̸= n− 1 and there exists such a
generator of the polynomials k ∈ Rp that satisfies the QPRs, then the smallest singular value
of a respective SP defines a lower bound on the distance.

Similar results can be defined for the distance to unobservability that follows by duality.

Corollary 4.5.3. Let P be a set of polynomials, obtained from Cn−m(Q(s)) = q̃(s). For
m = 1,m = n − 1 the smallest singular value of SP defines the invariant distance to
unobservability. In the case of m ̸= 1,m ̸= n− 1 the Sylvester matrix SP is structured from a
corresponding generator of the polynomials k ∈ Rm that satisfy the QPRs; then the smallest
singular value of SP is a lower bound of the distance to unobservability.

It is clear that constrained polynomials lead to a bound on the feedback invariant distance
to uncontrollability or unobservability. It can be observed that for an arbitrary system, the
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problem of finding invariant measures of system properties can be narrowed to the analysis
of the lower bound, where it is necessary to satisfy the constraints of the Grassmann variety.
Such observations form a basis of future work along with ways of finding a tighter bound of
the distance to uncontrollability and unobservability for the design problem.

4.6 Summary

Overall, an alternative approach for measuring fundamental properties of a system, namely
controllability and observability that are invariant under state feedback and output injection
respectively has been presented. The framework uses concepts of restricted input and output
pencils, denoted respectively as R(s) and Q(s), in order to derive criteria for evaluating the
distance to uncontrollability, unobservability.

By studying properties of the invariant polynomials of a system, r̃(s)t, q̃(s), it is shown
that the problem is equivalent to the distance of a set of polynomials, say P, to the GCD
variety that is reduced to two special cases: LIDP, where polynomials are decomposable and
the QPRs are satisfied, and GIDP that requires additional optimisation of the polynomials in
order to satisfy the QPRs. Then the invariant distance to uncontrollability (unobservability
by duality) is characterised by the smallest singular value of the corresponding Sylvester
matrix SP .



Chapter 5

Methods for Solving the Distance
Problems

The importance of defining the notion of an “almost common factor” for a set of polynomials
has been highlighted in [39], [97], [24]. This is based on the relaxation of the conditions
involved in exact GCD computations. Along with the classical computational methods
alternative approaches for calculating the distance of a set of monic coprime polynomials to
the set of polynomials sharing a common root and, more generally to the set of polynomials
with a GCD of fixed degree k, k ≥ 1 are proposed.

One of the methods is inspired from a factorisation result of a set of polynomials with
exact GCD. Specifically, it can be shown that a set of polynomials has GCD of degree k
if and only if the generalised resultant of the set, SP , can be written as a product of an
augmented resultant matrix [0k | SP∗ ] corresponding to a set of polynomials of reduced
degrees and a lower triangular Toeplitz matrix Φ̂λ defined from the coefficients of the GCD
polynomial, i.e. SP = [0k | SP∗ ]Φ̂λ. If the polynomial set has GCD of degree less than k the
factorisation is not exact and gives rise to an error matrix E = SP − [0k | SP∗ ]Φ̂λ. Here, the
aim is to minimise the Frobenious norm of E with respect to the free parameters contained
in SP∗ and Φ̂λ. The minimisation gives rise to a nonlinear least squares-problem which is
computationally demanding. Hence an alternating least-squares projection algorithm for
minimising ∥E∥F involving a series of linear projections is proposed.

Another technique is based on singular values to define and solve approximate GCD
problems. Consider, for simplicity, the case of two polynomials. These are coprime if and
only if the corresponding Sylvester Resultant matrix, SP say, is nonsingular. Thus, it is
reasonable to associate proximity to singularity with the smallest singular value of SP . This
follows from the fact that the smallest singular value of a matrix A is equal to the minimum
norm perturbation ∆ such that A+ ∆ is singular (here the norm of ∆, ∥∆∥, indicates the
spectral norm, i.e. the largest singular value). Unfortunately, as a measure of proximity
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to singularity, the smallest singular value of SP can be conservative. The reason is that
perturbations in SP arise from the perturbations in the polynomials’ coefficients which enter
SP in a highly structured way.

Some limitations of the use of the singular values of SP as indicators of the existence of an
approximate GCD of a specific degree (for the case of two polynomials) have been highlighted
in [95], [96]. In these references the notion of the generalised structured singular value
(µ-value) was introduced to quantify the distance of the corresponding Sylvester resultant
matrix from the set of matrices with nullity of at least k. This corresponds to the distance
from the set of polynomials with a GCD of degree of at least k. In the case where k = 1 this
notion reduces to the well-known structured singular value which is a well-researched tool in
the area of robust control.

The recent paper [96] generalised the results of [95] to the general case of an arbitrary
number of polynomials h ≥ 2. In this case the procedure is based on the calculations of the
distance of the Sylvester resultant matrix to a matrix of reduced rank under appropriate
structured perturbations; this corresponds to the computation of the closest (minimum
distance) nontrivial GCD, i.e. a GCD with degree of at least one.

It can be demonstrated that in the general case involving an arbitrary number of polyno-
mials the problem is still equivalent to the calculation of a structured singular value, however
in this case the solution is significantly more intricate compared to the case when h = 2
(the results have been presented in [96]). Part of the technical difficulties arise due to the
fact that the derived equivalent structured approximation problem no longer involves square
matrices and also that the structured approximation sets need to be redefined during the
solution procedure. Moreover, the notion of generalised structured singular value can be
extended to general structured rank-approximation problems of non-square matrices, for
which approximate GCD problems of arbitrary degree can be formulated in a natural way
(although their solution is more complicated). This topic is discussed next.

The structure of the Chapter is as follows: Section 5.1 summarises some fundamental
results and methodologies for the GCD and “approximate” GCD calculations. Section 5.2
presents a factorisation result of Sylvester resultants when the polynomial set has an exact
GCD and presents an alternating least-squares projection algorithm for calculating the “best”
approximate GCD (in a least-squares sense) when the polynomial set is coprime. Section 5.3
shows that the problem of calculating the closest common root of a set of polynomials subject
to minimal magnitude perturbations in the polynomials’ coefficients is equivalent to the
calculation of a structured singular value of a matrix. It is also shown that the calculation of
the optimal approximate GCD of degree k > 1 is associated with the solution of a generalised
structured singular value problem. Computational techniques for solving structured singular
value problems of the type arising in this work are described in Section 5.4. Finally, the main
conclusions of the results and suggestions for further research are included in Section 5.5.
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5.1 Computation of GCD and “approximate” GCD: Back-
ground results

The study of the Greatest Common Divisors of a set of polynomials has received considerable
interest in recent years. The notion of GCD of polynomial sets has several applications
in Control Theory (e.g. determinantal assignment problems, distance to controllability or
observability), Robust Control (stability of systems subject to structured perturbations),
Linear Systems, Numerical Analysis and other engineering fields. Many systems properties
depend on the notion of zeros. Computation of the GCD is a non-generic problem: generically
any set of polynomials is coprime and hence “coprimeness” needs to be reinterpreted from
a binary notion (with a yes or no answer) to one involving a continuously-valued function,
a notion which is more suitable for finite-precision calculations. Thus, we can define a set
of polynomials to be “approximately coprime” if its distance from the nearest non-trivial
common divisor (different from one) is “sufficiently large” in an appropriate sense. The
concept of “almost zero” was first introduced in [113]. Subsequently, this has led to the
introduction of the notion of “approximate GCD” [114], [84], [93], [95], [91], [122]. The overall
philosophy in developing this new notion is based on the relaxation of the conditions defining
the exact GCD. The “approximate GCD” is a polynomial which in some sense is closest to
the non-coprime set of polynomials.

The problem of finding the GCD of many polynomials has been a subject of interest for
a long time in mathematics, numerical analysis and control theory. The origins go back to
Euclid’s algorithms for two polynomials and more recently to the work based on generalised
resultants [123], [119], [120], [121]. Euclid’s algorithm has provided an algebraic approach
for two polynomials and its iterative use provides an extension for many polynomials. For
many polynomials a matrix method based on the invariance property of GCD under row
equivalence and shifting was introduced in [124]. An alternative method of reducing GCD
computation to matrix pencils was introduced in [84]. Several numerical methods for GCD
computation based on the relaxation of exact methods have also been developed. Numerical
techniques developed for GCD computations were presented in [94], [92], [125], [84], [85], [91],
[126], [114], [122], [127], [128].

The importance of defining the notion of an “almost common factor” for a set of polyno-
mials has been highlighted in [39], [97], [24]. This is based on the relaxation of the conditions
involved in exact GCD computations. Alongside the classical computational framework of
GCD various strategies have been considered: The invariance property of GCD leads to the
numerical method of ERES methodologies [94], [114]; [122] considers a variety of approaches
using the Euclidian algorithm; [36], [39] rely on a matrix pencil technique, while [125] applies
an augmented optimisation methodology based on factorisation techniques. The majority of
the proposed methods in the literature analyse characteristics of the set of polynomials based



5.1 Computation of GCD and “approximate” GCD: Background results 61

on the Sylvester matrix representation and Generalised Resultants [120], [92], [95], [39], [97],
as these formulate the GCD problem in linear-algebraic terms which can be implemented
via reliable algorithms. The ERES methodology [114] differs from the Resultant Approaches
since it is based on the invariance property of GCD under Gaussian transformations and
shifting [124]. The current work proposes two general methods for calculating the distance of
a set of co-prime polynomials to the set of polynomials sharing a common root and, more
generally to the set of polynomials with a GCD of fixed degree k, k ≥ 1. From this viewpoint
the work provides an alternative characterisation of the notion of “almost zero” [113] that
establishes computational frameworks for the distance problems.

The Generalised Resultant matrix characterises fully the properties of the GCD of the
polynomial set. Further, the k-th smallest singular value of this matrix can be used to define a
proximity measure to the nearest GCD of degree k for the perturbed polynomial set. Such an
approach is used in the matrix pencil methodologies [84], [85], where the number of singular
values falling below a specified tolerance indicates the approximate GCD degree.

A considerable amount of research work has also been devoted to the problem of “ap-
proximate co-primness” and “almost zeros” of a set of polynomials [94], [93], [39], [113],
[85], [91], [97], [24], [126], [122]. In the context of the problem presented here, a nearly
singular Sylvester resultant matrix identifies the existence of an almost common root in the
polynomial set, while the smallest singular value may be regarded as a measure of distance
to non-coprimeness [94], [93], [91]. Note, however, that this measure may be crude. This can
be explained as follows:

Consider a coprime set of polynomials with Generalised Sylvester matrix SP ∈ R(t+hn)×(n+t),
so that SP has full (column) rank. Consider the distance-to-rank-reduction problem:

γ = min{∥∆∥, ∆ ∈ R(t+hn)×(n+t), rank(SP + ∆) ≤ n+ t− 1}

where ∥ · ∥ is the spectral norm. From the Eckart–Young–Mirsky theorem γ = σn+t−1(SP).
Note, however, that any perturbations in the polynomial coefficients enter SP in a highly
structured way and hence γ underestimates the distance from non-coprimeness, which can
be obtained by solving a structured singular value problem. The same argument applies
if σn+t−k(SP) is used as an estimate of the distance of the polynomial set from the set of
polynomials with GCD of degree greater than or equal to k. Again this proximity measure
can be obtained from the solution of a generalised structured singular value problem. Note
however, that (generalised) structured singular values are difficult to calculate for problems
of high dimensionality (and even more difficult to optimise) and thus this approach may not
be practical.

In [97] techniques for calculating the “best approximate GCD” for a polynomial set were
introduced based on the factorisation of the generalised Sylvester matrix which forms the
basis of the algorithms proposed in the next section.
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Definition 5.1.1. [97]: Consider λ(s) = λks
k + · · ·+λ1s+λ0 to be the GCD of a polynomial

set Ph+1,n and define the Toeplitz matrix Φ̂λ ∈ Tn corresponding to λ(s):

Φ̂λ =



λ0 0 0 . . . . . . . . . 0

λ1 λ0 0
...

... . . . . . . . . . ...

λk
. . . . . . . . . ...

0 λk λ1 λ0
. . . ...

... . . . . . . . . . . . . 0
0 . . . 0 λk . . . λ1 λ0


. (5.1)

Note that Φ̂λ is invertible if and only if λ0 ̸= 0 in which case its inverse, denoted as Φλ, is
also a Toeplitz matrix, with structure:

Φλ =



y0 0 0 . . . . . . 0

y1 y0 0
...

y2 y1 y0
. . . ...

...
...

... . . . . . . ...
yn−2 yn−3 . . . . . . y0 0
yn−1 yn−2 . . . . . . y1 y0


, (5.2)

where the elements yi satisfy

y0 = 1
λ0
, y1 = λ1

λ0
y0, . . . , yi = − 1

λ0

min{j,k}∑
i=1

λiyj−i, j = 2, . . . , n− 1. (5.3)

Theorem 5.1.1. [97]: Consider the Sylvester resultant matrix SP of the polynomial set
Ph+1,n. Let λ(s) = λks

k + · · ·+ λ1s+ λ0 be the greatest common divisor of degree k of the
set. Then SP can be factored as

SP = S
(k)
P∗ Φ̂λ, S

(k)
P∗ =


0t,k S

(k)
0

0n,k S
(k)
1

...
...

0n,k S
(k)
h

 = [0(t+hn),k | Sp∗ ]
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where S∗
p is the reduced set of polynomials P∗

h+1,n−k obtained by dividing the polynomials of
the set Ph+1,n by λ(s),

S
(k)
0 =


α

(k)
n−k α

(k)
n−k−1 . . . α

(k)
1 α

(k)
0 0 . . . 0

0 α
(k)
n−k . . . . . . α

(k)
1 α

(k)
0 . . . 0

... . . . . . . . . . ...
0 . . . 0 α

(k)
n−k . . . . . . α

(k)
1 a

(k)
0

 ∈ Rt×(n+t−k) (5.4)

and

S
(k)
i =


β

(k)
i,t−k β

(k)
i,t−k−1 . . . β

(k)
i,1 β

(k)
i,0 0 . . . 0

0 β
(k)
i,t−k . . . . . . β

(k)
i,1 β

(k)
i,0 . . . 0

... . . . . . . . . . ...
0 . . . 0 β

(k)
i,t−k . . . . . . β

(k)
i,1 β

(k)
i,0

 ∈ Rn×(n+t−k) (5.5)

for each i = 1, . . . , h. Further Φ̂λ is the lower-triangular Toeplitz matrix defined in equation
(5.1).

Equivalently, if λ(s) does not have a zero root we can write

S
(k)
P∗ = SPΦλ = [0(t+hn),k | SP∗ ]

where Φλ ∈ R(n+t)×(n+t) is the lower-triangular Toeplitz matrix defined as in equations (5.2)
and (5.3).

Proof. The proof follows from a slight modification of a parallel result in [97].

The factorisation of the generalised resultant presented above is exact if and only if
the polynomial set Ph+1,n has an (exact) GCD. In case the GCD is only approximate, the
necessary and sufficient conditions for Toeplitz matrix representation stated in Theorem 5.1.1
imply that there is a non-zero residual error matrix:

E = SP − S(k)
P∗ Φ̂λ = SP − [0k | SP∗ ]Φ̂λ (5.6)

for every selection of parameters defined as:

{α(k)
j }j=0,1,...,n−k−1, {β

(k)
i,j }

j=0,1,...,t−k−1
i=1,2,...,h and {λj}j=0,1,...k−1 (5.7)

The number of parameters has been reduced by setting λk = 1, α(k)
n−k = 1 and β

(k)
i,t−k = 1

for all i = 1, 2, . . . , h. This assumes that all polynomials are monic, effectively restoring
uniqueness to the factorisation.
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The next section introduces an algorithm that aims to identify the “best” approximate
GCD by minimising the Frobenious norm of the residual matrix E with respect to the set of
free parameters in (5.7). In particular, the aim is to minimise the function:

f(α(k)
0 , . . . α

(k)
n−k−1, β

(k)
1,0 , . . . β

(k)
h,t−k−1, λ0, . . . λk−1) := ∥SP − [0k | SP∗ ]Φ̂λ∥2F (5.8)

with respect to the parameters defined in equation (5.7). The optimal parameters define the
“best” approximate GCD and the corresponding coefficients of the reduced-degree polynomials,
while the minimum value of f quantifies the strength of the approximation (i.e. the lower
the minimum value of f achieved, the better the approximation). This is a nonlinear least
squares-problem which is computationally demanding for high-dimensional problems. Note,
however, that since both S

(k)
P∗ and Φ̂ are Toeplitz representations of polynomials, f has

continuous derivatives of any order. Here, a least-squares alternating projection algorithm is
proposed for minimising the residual error involving a sequence of linear projections which
are easy to calculate.

Nonlinear least-squares problems have been of interest for many years [129], [130], [131],
[132], [133], [134], [135], [136], [137]. Most methods in the literature are based on the Taylor
series expansion or gradient-based techniques. Alternatively the nonlinear least-squares
problem can be decomposed into two nested sub-problems for which variable projection
algorithms can be applied, [132], [133], [138].

5.2 An “alternating” least-squares algorithm for calculating
the “approximate” GCD

Expanding on the ideas of [97] a least-squares “alternating projection” algorithm is proposed
for solving the optimisation problem. This solves iteratively two linear least squares approxi-
mation sub-problems, thus avoiding non-linear programming, including the calculation of
steplengths, Jacobian or Hessian matrices. Certain advantages of the proposed method are
illustrated via numerical examples included in the last part of the section.

5.2.1 Convergence analysis: Separable problems

Various algorithms proposed for solving nonlinear least-squares problems rely on Gauss-
Newton or Levenberg-Marquardt strategies with various modifications. Convergence is
typically analysed using information based on the derivatives of the nonlinear function.

In [133], [132], [138], [139] authors study nonlinear least-squares problems in which the
unknown parameters can be separated into two sets. It was argued that the specialised
methods developed in this case guarantee convergence in a fewer number of iterations
compared to traditional gradient-based techniques. Moreover, a separable approach tends to
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be more reliable in practice, when standard nonlinear least-squares optimisation fails [138],
[139].

The separable approach addressed in [132] reduces the problem to two nested optimisations,
each over a different set of parameters. The outer minimisation problem is linear over one
parameter set and therefore reduces to a projection.

Thus, the overall problem reduced to a nonlinear minimisation involving a projection
operation parametrised over the the second parameter set which can be tackled via nonlinear
programming techniques. It is shown that this method is applicable to the problem posed
here and guarantees convergence under certain conditions. Next this approach is considered
in more detail, both in general terms and also specifically in the context of the problem.

First, consider the function

f(θ, λ) = ∥y −Ψ(θ)λ∥2 (5.9)

where θ ∈ Rp, λ ∈ Rq are two parameter vectors and y ∈ Rn. Assume also that Ψ(θ) has
constant rank for all vectors θ inside an open set Ω. Assume now that θ ∈ Ω is fixed and
consider the minimisation:

min
λ∈Rp

∥y −Ψ(θ)λ∥

The optimal solution is given by projecting onto the Range of Ψ(θ), i.e. λ̂(θ) = Ψ+(θ)y
corresponding to a minimum value

r2(θ) = ∥y −Ψ(θ)Ψ+(θ)y∥2 = ∥P⊥
Ψ(θ)y∥

where P⊥
Ψ(θ) is the projection operator onto the orthogonal complement of the range of Ψ(θ).

Thus, to minimise f(θ, λ) simultaneously over θ and λ we need to solve:

min
θ∈Ω

r2(θ) = min
θ∈Ω
∥P⊥

Ψ(θ)y∥

which is a nonlinear least-squares problem. The following Theorem is the main result of [132]:

Theorem 5.2.1. Let Ω be an open set in Rp and assume that Ψ(θ) has constant rank
rank[Ψ(θ)] = r ≤ min(n, q) for all θ ∈ Ω. Then

(i) If θ̂ is a critical point (or global minimiser in Ω) of r2(θ) and λ̂ = Ψ+(θ̂)y, then (θ̂, λ̂)
is a critical point of f(θ, λ) (or global minimiser for θ in Ω) and f(θ̂, λ̂) = r2(̂θ).

(ii) If (θ̂, λ̂) is a global minimiser of f(θ, λ) for θ ∈ Ω, then θ̂ is a global minimiser for r2(θ)
in Ω and r2(θ̂) = f(θ̂, λ̂). Furthermore if there is a unique λ̂ among the minimising
pairs of f(θ, λ), then λ̂ must satisfy λ̂ = Ψ+(θ̂)y.

Proof. See [132] for more details.
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Consider now the specific function

f(θ, λ) = ∥SP − [0k | SP∗ ]Φ̂λ∥2F (5.10)

with parameter vectors:

θ = (α(k)
0 , . . . α

(k)
n−k−1, β

(k)
1,0 , . . . β

(k)
h,t−k−1)′ and λ = (λ0, . . . λk−1)′

defined in the previous section. Note that the problem is separable since the θi’s enter
(linearly) matrix SP∗ , while the λi’s enter (linearly) matrix Φ̂λ. To bring f(θ, λ) in the form
of (5.9), the vec(·) operation is applied to (5.10). Then:

f(θ, λ) = ∥SP − [0k | SP∗ ]Φ̂λ∥2F = ∥vec(SP)− (I ⊗ [0k | SP∗ ])vec(Φ̂λ)∥2.

Define a matrix Q such that λ = Qvec(Φ̂λ). Then

f(θ, λ) = ∥vec(SP)− (I ⊗ [0k | SP∗ ])Qvec(Φ̂λ)∥2.

Identifying y := vec(SP) and Ψ(θ) = (I ⊗ [0k | SP∗ ])Q shows that f(θ, λ) has the same
form as (5.9). Note that due to the bilinearity of the problem this can also be achieved by
interchanging the two parameter vectors. Writing:

f(θ, λ) = ∥SP − [0k | SP∗ ]Φ̂λ∥2F = ∥vec(SP)− (Φ̂λ ⊗ I)vec([0k | SP∗ ])∥2

and introducing a matrix Q so that

vec([0k | SP∗ ]) = Q̂θ

then f(θ, λ) can again be written in the form of (5.9), i.e. as f(θ, λ) = ∥y−Υ(λ)θ∥2 in which
y = vec(SP) and Υ(λ) = (Φ̂λ⊗ I)Q̂. The next section will make use of this property to define
a least-squares alternating projection algorithm for solving the problem.

5.2.2 Algorithm for the estimation of “best approximate GCD”

Let Ph+1,n be a set of monic polynomials with dominant degrees (n, t), t ≤ n and let SP be
the generalised Sylvester resultant of the set. Assume that there exists an “approximate GCD”
of degree k defined by the monic polynomial λ(s) = sk +λk−1s

k−1 + · · ·+λ1s+λ0, k ≤ t. The
Toeplitz representation of the GCD is given in equation (5.1) with λk = 1. To estimate the
optimal coefficients of the GCD polynomial and the corresponding strength of approximation
the following steps are followed:
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Step 1: Define E = SP − [0k | SP∗ ]Φ̂λ. The objective is to determine the approximate GCD of
degree k such that the function f = ∥E∥2F is minimised. Write E in the form:

E = SP −

Ñ0 +
n−k−1∑

j=0
α

(k)
j Nj +

h∑
i=1

t−k−1∑
j=0

β
(k)
ij Nij

(M̃0 +
k−1∑
i=0

λiMi

)

where Ñ0, Nj , Nij ∈ R(t+hn)×(n+t) and M̃0,Mi ∈ R(n+t)×(n+t). The algorithm proceeds
by solving sequentially two subproblems iteratively; these are described in the following
two steps (in Step 2 and 3):

Step 2: Assume that parameters (λ0, λ1, . . . , λk−1) are fixed and set

M = M̃0 +
k−1∑
i=0

λiMi = Φ̂λ

Then:

E = SP −

Ñ0 +
n−k−1∑

j=0
α

(k)
j Nj +

h∑
i=1

t−k−1∑
j=0

β
(k)
ij Nij

M
= Ỹ0 −

n−k−1∑
j=0

α
(k)
j Yj −

h∑
i=1

t−k−1∑
j=0

β
(k)
ij Yij

where set Ỹ0 = SP − Ñ0M , Yj = NjM and Yij = NijM for i = 1, 2, . . . , h and
j = 0, 1, . . . , t− k− 1. The first least-squares subproblem is defined as the minimisation
of the function:

f1(α(k)
0 , . . . , β

(k)
h,t−k−1) = f(α(k)

0 , . . . , α
(k)
n−k−1, β

(k)
1,0 , . . . , β

(k)
h,t−k−1, λ0, . . . , λk−1) (5.11)

This is equivalent to the minimisation of:∥∥∥∥∥∥Ỹ0 −
n−k−1∑

j=0
α

(k)
j Yj −

h∑
i=1

t−k−1∑
j=0

β
(k)
ij Yij

∥∥∥∥∥∥
2

F

= c1 − 2y′θ + θ′Γθ (5.12)

Here c1 = ∥Ỹ0∥2F ,

θ′ =
(
α

(k)
0 . . . α

(k)
n−k−1 β

(k)
1,0 . . . β

(k)
h,t−k−1

)
∈ Rn−k+h(t−k)

and
y′ =

(
y′

0 y′
1 . . . y′

h

)
∈ Rn−k+h(t−k)
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where
y′

0 =
(

trace(Ỹ0Y
′

0) . . . trace(Ỹ0Y
′

n−k−1)
)
∈ Rn−k

and
y′

i =
(

trace(Ỹ0Y
′

i,0) . . . trace(Ỹ0Y
′

i,t−k−1)
)
∈ Rt−k

for i = 1, 2, . . . , h. Also

Γ = Γ′ =


Γ0,0 Γ0,1 · · · Γ0,h

Γ1,0 Γ1,1 · · · Γ1,h

...
... . . . ...

Γh,0 Γh,1 · · · Γh,h

 ∈ R(n−k−h(t−k))×(n−k−h(t−k))

where

Γ0,0
i,j = trace(Yi−1Y

′
j−1), i = 1, 2, . . . , n− k, j = 1, 2, . . . , n− k

Γ0,m
i,j = trace(Yi−1Y

′
m,j−1), m = 1, 2, . . . , h, i = 1, 2, . . . , n− k, j = 1, 2, . . . , t− k

Γρ,m
i,j = trace(Yρ,i−1Y

′
m,j−1), m, ρ = 1, 2, . . . , h, i, j = 1, 2, . . . , t− k

Since Γ is positive definite (see Lemma 5.2.1 below), the (unique) minimiser of f1 is
given by θ̂ = Γ−1y.

Step 3: Here assume that parameters:

{α(k)
j }j=0,1,...,n−k−1, {β

(k)
i,j }

j=0,1,...,t−k−1
i=1,2,...,h

are fixed and define

N = [0k | S∗
P ] = Ñ0 +

n−k−1∑
j=0

α
(k)
j Nj +

h∑
i=1

t−k−1∑
j=0

β
(k)
ij Nij

Then:

E = SP − (NM̃0 +
k−1∑
i=0

λiNMi) = X̃0 −
k−1∑
i=0

λiXi

where we have set:

X̃0 = SP −NM̃0 and Xi = NMi, i = 0, 1, . . . , k − 1

The second least-squares subproblem involves the minimisation of the function:

f2(λ0, . . . , λk−1) = f(α(k)
0 , . . . , α

(k)
n−k−1, β

(k)
1,0 , . . . , β

(k)
h,t−k−1, λ0, . . . , λk−1) (5.13)
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This is equivalent to the minimisation of:

∥∥∥∥∥X̃0 −
k−1∑
i=0

λiXi

∥∥∥∥∥
2

F

= c− 2
k−1∑
i=0

ηiλi +
k−1∑
i=0

k−1∑
j=0

σijλiλj = c2 − 2η′λ+ λ′Σλ (5.14)

where we have defined:

c2 = ∥X̃0∥2F , λ′ =
(
λ0 λ1 · · · λk−1

)
∈ Rk

and also
η′ =

(
η0 η1 · · · ηk−1

)
∈ Rk, ηi = trace(X̃0X

′
i)

for i = 0, 1, . . . , k − 1 and

Σ = Σ′ ∈ Rk×k where Σij = trace(XiX
′
j)

for i = 0, 1, . . . , k − 1 and j = 0, 1, . . . , k − 1. It is shown (Lemma 5.2.2 below) that
Σ = Σ′ > 0 and hence the (unique) minimiser of f2 is given by

λ̂ =
(
λ̂0 λ̂1 · · · λ̂k−1

)′
= Σ−1η

Step 4: Starting from an initial vector:

λ̂′ =
(
λ̂0 λ̂1 · · · λ̂k−1

)
whose entries are the initial estimates of the approximate GCD iterate between steps
2 and 3 of the algorithm until numerical convergence is attained, i.e. the difference
between two consecutive values of f falls below a pre-specified tolerance.

Lemma 5.2.1. Γ = Γ′ > 0.

Proof. For A,B ∈ R(t+hn)×(n+t) define the inner product (A,B) = trace(AB′) and note that
(A,A) = ∥A∥2F . Then

Γ = Γ′ =


Γ0,0 · · · Γ0,h

... . . . ...
Γh,0 · · · Γh,h

 ∈ R(n−k−h(t−k))×(n−k−h(t−k))
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where

Γ0,0 =


(Y0, Y0) . . . (Y0, Yn−k−1)

...
...

(Yn−k−1, Y0) . . . (Yn−k−1, Yn−k−1)



Γ0,h =


(Y0, Yh,0) . . . (Y0, Yh,t−k−1)

...
...

(Yn−k−1, Yh,0) . . . (Yn−k−1, Yh,t−k−1)

 = (Γh,0)′

Γh,h =


(Yh,0, Yh,0) . . . (Yh,0, Yh,t−k−1)

...
...

(Yh,t−k−1, Yh,0) . . . (Yh,t−k−1, Yh,t−k−1)


and similarly for the remaining blocks. Thus Γ is the Gramian matrix of the matrix set

ΠY = {Y0, . . . , Yn−k−1, Y1,0, . . . Y1,t−k−1, . . . , Yh,0, . . . Yh,t−k−1}

and hence Γ > 0 if and only if the matrices of this set are linearly independent. If λ0 ≠ 0
then M is nonsingular and hence ΠY is linearly independent if and only if the set

ΠN = {N0, . . . , Nn−k−1, N1,0, . . . N1,t−k−1, . . . , Nh,0, . . . Nh,t−k−1}

is linearly independent. Form a linear combination of the matrices in set ΠN and set it equal
to zero, i.e.

n−k−1∑
j=0

α
(k)
j Nj +

h∑
i=1

t−k−1∑
j=0

β
(k)
ij Nij = 0 (5.15)

Set also ŜP∗ equal to SP∗ but with all leading 1’s (i.e. the leading coefficients α(k)
n−k and

β
(k)
i,t−k which have been absorbed into Ñ0) replaced by 0’s. Note that the term in the LHS of

equation (5.15) is equal to [0k | ŜP∗ ]. Thus,

α
(k)
0 = . . . = α

(k)
n−k−1 = β

(k)
1,0 = . . . β

(k)
h,t−k−1 = 0 (5.16)

and hence ΠN is linearly independent. Next suppose that λ0 = λ1 = . . . = λµ = 0 and
λµ+1 ̸= 0, µ ≤ k − 1. Form a linear combination of matrices

n−k−1∑
j=0

α
(k)
j Yj +

h∑
i=1

t−k−1∑
j=0

β
(k)
ij Yij = 0 (5.17)
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This implies that ŜP∗M = 0 where

ŜP∗ =



0k+1 α
(k)
n−k−1 . . . α

(k)
1 α

(k)
0 0 0 . . . 0

0k+1 0 α
(k)
n−k−1 . . . α

(k)
1 α

(k)
0 0 . . . 0

...
... . . . . . . . . . ...

0k+1 0 . . . 0 α
(k)
n−k−1 . . . α

(k)
1 α

(k)
0 0

0k+1 β
(k)
1,t−k−1 . . . β

(k)
1,1 β

(k)
1,0 0 0 . . . 0

0k+1 0 β
(k)
1,t−k−1 . . . β

(k)
1,1 β

(k)
1,0 0 . . . 0

...
... . . . . . . . . . ...

0k+1 0 . . . 0 β
(k)
1,t−k−1 . . . β

(k)
1,1 β

(k)
1,0 0

...
...

...
...

...
0k+1 β

(k)
h,t−k−1 . . . β

(k)
h,1 β

(k)
h,0 0 0 . . . 0

0k+1 0 β
(k)
h,t−k−1 . . . β

(k)
h,1 β

(k)
h,0 0 . . . 0

...
... . . . . . . . . . ...

0k+1 0 . . . 0 β
(k)
h,t−k−1 . . . β

(k)
h,1 β

(k)
h,0 0


and

M =



0 0 0 . . . . . . . . . . . . 0
... . . . ...

λµ+1 0
...

... . . . . . . . . . ...

1 λµ+1
. . . . . . ...

0 1 λµ+1 0 . . . ...
... . . . . . . . . . . . . . . . 0
0 . . . 0 1 . . . λµ+1 0 0



.

Considering the first row of the product ŜP∗M = 0, α(k)
j = 0, j = 0, 1, . . . , n − k − 1 is

obtained. Similarly, by considering the t+ (i− 1)n+ 1-th row, i = 1, 2, . . . , h this results in
β

(k)
i,j = 0, i = 1, 2, . . . , h, j = 0, 1, . . . , t− k − 1. Hence, equation (5.17) again implies (5.16)

and hence the matrix set ΠY is linearly independent.

Example 5.2.1. Consider the case of two polynomials

α(s) = s3 + α2s
2 + α1s+ α0 and β(s) = s2 + β1s+ β0
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of degree n = 3 and t = 2 respectively. An approximate GCD ϕ(s) = s+ λ0 of degree k = 1
is required. In this case:

SP =



1 α2 α1 α0 0
0 1 α2 α1 α0

1 β1 β0 0 0
0 1 β1 β0 0
0 0 1 β1 β0


, [0 | SP ∗ ] =



0 1 α
(1)
1 α

(1)
0 0

0 0 1 α
(1)
1 α

(1)
0

0 1 β
(1)
0 0 0

0 0 1 β
(1)
0 0

0 0 0 1 β
(1)
0


and

M =



λ0 0 0 0 0
1 λ0 0 0 0
0 1 λ0 0 0
0 0 1 λ0 0
0 0 0 1 λ0


Hence:

N0 =



0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, N1 =



0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, N10 =



0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


are linearly independent. Further

Y0 =



0 0 1 λ0 0
0 0 0 1 λ0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, Y1 =



0 1 λ0 0 0
0 0 1 λ0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, Y10 =



0 0 0 0 0
0 0 0 0 0
0 1 λ0 0 0
0 0 1 λ0 0
0 0 0 1 λ0


are also linearly independent regardless on whether λ0 = 0 or λ0 ̸= 0.

Lemma 5.2.2. Σ = Σ′ > 0.

Proof. Again note that Σi,j = (Xi, Xj), i = 0, 1, . . . , k − 1, j = 0, 1, . . . , k − 1, and so Σ is
the Gram matrix of the matrix set:

ΠX = {X0, X1, . . . , Xk−1} = {NM0, NM1, . . . , NMk−1}
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Thus Y = Y ′ ≥ 0. Further, Y > 0 if and only if the matrix set ΠX is linearly independent.
Form a linear combination of the matrices in ΠX and set it to zero, i.e.

k−1∑
i=0

λiNMi = N
k−1∑
i=0

λiMi = 0

and note that
∑k−1

i=0 λiMi is the matrix Φ̂λ in equation (5.1) with all entries λk replaced by
zero, Φ̃λ say. Hence

[0k | S
(k)
i ]Φ̃λ = 0, i = 0, 1, 2, . . . , h

For i = 0 the above equation implies that:

1 0 . . . . . . 0

α
(k)
n−k−1 1 . . . ...

α
(k)
n−k−2 α

(k)
n−k−1 1 . . . ...

... . . . . . . . . . 0
α

(k)
n−2k+1 . . . α

(k)
n−k−2 α

(k)
n−k−1 1





λk−1

λk−2
...
λ1

λ0


= 0

where it is assumed that n ≥ 2k − 1. The situation is similar to the case where n < 2k − 1,
except that some entries below the main diagonal in the coefficient matrix of the above matrix
equation are zero. In either case the equation implies that λk−1 = λk−2 = . . . = λ0 = 0 and
hence ΠX is linearly independent.

Remark 5.2.1. Define the polynomial coefficient vectors:

α =
(

1 αn−1 . . . α0
)
, α(k) =

(
1 α

(k)
n−k−1 . . . α

(k)
0

)
βi =

(
1 βi,t−1 . . . βi,0

)
, β

(k)
i =

(
1 β

(k)
i,n−t−1 . . . β

(k)
i,0

)
where i = 1, 2, . . . , h. Let also

λ(k) =
(

1 λk−1 . . . λ0
)

Then

∥SP − [0k | SP∗ ]Φ̂λ∥2F = t∥α− α(k) ∗ λ(k)∥2 + n
h∑

i=1
∥βi − β(k)

i ∗ λ(k)∥2 (5.18)

where ∗ denotes the discrete convolution of two vectors (i.e. the vector of coefficients
resulting from the multiplication of the corresponding two polynomials). Note that the two
terms in the above expression are weighted by the polynomial degrees t and n, respectively.
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These factors can be removed, if required, by eliminating the appropriate rows of the matrices
SP and [0r | SP∗ ]. This does not reduce significantly the complexity of the algorithm
presented above.

5.2.3 Rate of convergence of alternating projection algorithm

In this section the asymptotic rate of convergence of the alternating projection algorithm is
estimated. To simplify notation define:

Nn+(i−1)t−ik+j = Ni,j , 1 ≤ i ≤ h, 0 ≤ j ≤ t− k − 1

and θi = α
(k)
i−1 for i = 1, 2, . . . , n− k − 1, θn+(i−1)t−ik+j = β

(k)
i,j , 1 ≤ i ≤ h, 0 ≤ j ≤ t− k − 1.

Then
E = SP −

(
Ñ0 +

p∑
i=0

θiNi

)(
M̃0 +

q∑
i=0

λiMi

)

where p = n−k−1 and q = k−1. Suppose that the alternating projection algorithm converges
to the optimal solution with parameters {θo

i }
p
i=0, {λo

j}
q
j=0 and consider small perturbations

{δθi}pi=0, {δλj}qj=0 around the optimal set of parameters. Then,

E = SP −
(
Ñ0 +

r∑
i=0

(θo
i + δθi)Ni

)(
M̃0 +

q∑
i=0

(λo
i + δo

i )Mi

)

This can be written as:

E = Y −
p∑

i=0
δθiNi(M̃0 +

q∑
j=0

λ0
jMj)−

q∑
i=0

δλi(Ñ0 +
p∑

j=0
θ0

jNj)Mi −
p∑

i−0

q∑
j=0

δθiδλjNiMj

where
Y = SP − Ñ0M̃0 −

p∑
i=0

θo
iNiM̃0 −

q∑
i=0

λo
i Ñ0Mi −

p∑
i−0

q∑
j=0

δθo
i δλ

o
jNiMj

Vectorising:

vec(E) = vec(Y )−
p∑

i=0
δθivec[Ni(M̃0 +

q∑
j=0

λ0
jMj)]−

q∑
i=0

δλivec[(Ñ0 +
p∑

j=0
θ0

jNj)Mi]

−
p∑

i=0

q∑
j=0

δθiδλjvec[NiMj ]

Thus asymptotically as δθi → 0 and δλi → 0, ∥E∥2F = ∥vec(E)∥2 gets arbitrarily close to

γ = ∥y − S1δθ − S2δλ∥2 (5.19)
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where

y = vec(Y ), (δθ)′ =
(
δθ1 δθ2 . . . δθp

)
, (δλ)′ =

(
δλ1 δλ2 . . . δλq

)
and

S1 =
(
ξ1 ξ2 . . . ξp

)
, ξi = vec[Ni(M̃0 +

q∑
j=0

λ0
jMj)], i = 1, 2, . . . , p

S2 =
(
ψ1 ψ2 . . . ψq

)
, ψi = vec[(Ñ0 +

p∑
j=0

θ0
jNj)Mi], i = 1, 2, . . . , q

Note that geometrically the norm in equation (5.19) corresponds to the distance of y from the
subspace R(S1)+R(S2), where R(S) is the range (image) of subspace S. The following result
can now be used which guarantees convergence and establishes the asymptotic convergence
rate of the algorithm:

Theorem 5.2.2. (von Neumann) Let X be a Hilbert space and U, V, two closed subspaces of
X. Let also W = U + V where (·) denotes set closure. For a given x ∈ X define the sequence:

xn = [(I − Pv)(I − Pu)]nx, n ∈ N

where Pv and Pu denote the orthogonal projection operators onto V and U, respectively.
Then the sequence {xn}, n ∈ N converges to x− w where w is the best approximation to x
from W. Further, convergence is geometric with a convergence rate:

β = incl(U⊥,V⊥)

where incl(·, ·) denotes the inclination between two subspaces, i.e.

incl(U⊥,V⊥) = sup{|(z, w)| : z ∈ U⊥, w ∈ V⊥, ∥z∥ = ∥w∥ = 1}

and where U⊥ and V⊥ denote the orthogonal complements of U and V, respectively.

Proof. The proof can be found in [140].

Using the previous analysis in this section and Theorem 5.2.2 the asymptotic convergence
rate of the algorithm can now be established. This can be easily obtained from the singular
value decomposition of matrices S1 and S2. Also note that since R(S1) and R(S2) are
finite-dimensional they are closed and so is their sum R(S1) +R(S2).

Theorem 5.2.3. Let U2 and Ũ2 be matrices whose columns are orthonormal and span the
range of S⊥

1 and S⊥
2 , respectively. Then the asymptotic convergence rate of the alternating
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projection algorithm is
β = incl(R(S⊥

1 ),R(S⊥
2 )) = σ1(U ′

2Ũ2)

Proof. Let {ui}r1
i=1 and {ũi}r2

i=1 be orthonormal bases of R(S⊥
1 ) and R(S⊥

2 ), respectively,
and set U2 = [u1, u2, . . . , ur1 ] and Ũ2 = [ũ1, ũ2, . . . , ũr1 ]. Then arbitrary unit-norm vectors in
R(S⊥

1 ) and R(S⊥
2 ) can be expressed as z =

∑r1
i=1 xiui and w =

∑r2
i=1 yiũi, respectively. Thus,

setting x = [x1, x2, . . . , xr1 ] and y = [y1, y2, . . . , yr2 ],

incl(R(S⊥
1 ),R(S⊥

2 )) = max{|(z, w)| : z ∈ R(S⊥
1 ), w ∈ R(S⊥

2 ), ∥z∥ = ∥w∥ = 1}

= max{|x′U ′
2Ũ2y| : ∥x∥ = ∥y∥ = 1} = σ1(U ′

2Ũ2)

as required.

5.2.4 Numerical examples

The advantage of the algorithm is illustrated with several numerical examples.

Example 5.2.2. Consider the polynomialsα(s) = s3 + 6s2 + 11s+ 6 = (s+ 1)(s+ 2)(s+ 3)

β(s) = s2 + 5.1s+ 4.4 = (s+ 1.1)(s+ 4)

It is necessary to find an approximate GCD of degree 1. Thus:

SP =



1 α2 α1 α0 0
0 1 α2 α1 α0

1 β1 β0 0 0
0 1 β1 β0 0
0 0 1 β1 β0


=



1 6 11 6 0
0 1 6 11 8
1 5.1 4.4 0 0
0 1 5.1 4.4 0
0 0 1 5.1 4.4


and

[0k | SP∗ ] =



0 1 γ1 γ0 0
0 0 1 γ1 γ0

0 1 δ0 0 0
0 0 1 δ0 0
0 0 0 1 δ0


, Φ̂λ =



λ0 0 0 0 0
1 λ0 0 0 0
0 1 λ0 0 0
0 0 1 λ0 0
0 0 0 1 λ0


Here it is necessary to minimise:

f(γ0, γ1, δ0, λ0) = ∥SP − [0k | SP∗ ]Φ̂λ∥2F
= 2(γ0 + γ1λ0 − 11)2 + 3(δ0 + λ0 − 5.1)2 + 2(γ1 + λ0 − 6)2

+ 3(δ0λ0 − 4.4)2 + 2(γ0λ0 − 6)2
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Fig. 5.1 Parameter Convergence Algorithm 1 (dotted) and 2 (solid)

over parameters (γ0, γ1, δ0, λ0). An alternating projection algorithm (denoted as Algorithm
1 in the example) has been applied to this problem, initialised at λ0 = 2. The results are
compared with those obtained via a steepest descent algorithm (later denoted as Algorithm
2, see next) and can be seen in Figure 5.1.

For comparison, a nonlinear steepest-descent algorithm has been applied to the optimisa-
tion of f . The gradient and Hessian matrix of f are given as

∇f =


4γ0 + 4λ1λ0 + 4λ0(γ0λ0 − 6)− 44

4γ1 + 4λ0 + 4λ0(γ0 + γ1λ0 − 11)− 24
6δ0 + 6λ0 + 6λ0(δ0λ0 − 4.4)− 30.6

fλ0


where

fλ0 = 6δ0 + 4γ1 + 10λ0 + 6δ0(δ0λ0 − 4.4) + 4γ0(γ0λ0 − 6) + 4γ1(γ0 + γ1λ0 − 11)− 54.6

and

H = H ′ =


4λ0 + 4 4λ0 0 4γ1 + 8γ0λ0 − 24
∗ 4λ2

0 + 4 0 4γ0 + 8γ1λ0 − 40
∗ ∗ 6λ2

0 + 6 12δ0λ0 − 20.4
∗ ∗ ∗ 6δ2

0 + 4γ2
0 + 4γ2

1 + 10


respectively. The algorithm was initialised at the point

x0 = (γ0
0 , γ

0
1 , δ

0
0 , λ

0
0)′ = (6 5 4 2)′
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and generated a sequence of points according to the iteration:

xk+1 = xk − µk∇f(xk), µk = ∥∇f(xk)∥2

(∇f(xk))′H(xk)∇f(xk) , k = 0, 1, 2, . . .

Parameter µk is an estimate of the optimal step-length along the negative gradient direction
using Taylor’s series expansion around the point xk (up to and including quadratic terms)
assuming that H(xk) ≥ 0. This assumption was tested a-posteriori and found to be true,
except for the first two iterations (for which the Hessian had one negative eigenvalue), but
this did not cause any problems in this case. An alternative choice (according to Armijo’s
method) would be to determine the optimal step-length by calculating numerically the
first local minimum of f along the descent direction, but this proved to be very expensive
computationally.

Both algorithms converge to the value f0 = 0.014756367409376 and hence the strength of
approximation is 0.121475789395978. The parameter estimates of the GCD and the remainder
polynomials are summarised in the following table:

Parameter Algorithm 1 Algorithm 2
λ0 1.090161226364660 1.090161226364671
γ0 5.543683184332871 5.543683184332813
γ1 4.961546466747018 4.961546466747016
δ0 4.024100224189135 4.024100224189107

Table 5.1 Parameters at convergence (Example 5.2.2)

Note that on termination of Algorithm 2 (steepest descent) the norm of the gradient vector
is equal to 5.100467000228771 · 10−14 and the Hessian matrix is positive-definite (eigenvalues
(0.7358, 5.6438, 13.1258, 339.6905)) which indicates that the algorithm has converged to a local
minimum of f . Reproduction of the results from many different initial conditions indicates
that the solution is in fact a global optimum. The convergence rate of the alternating
least-squares as the cosine of the angle between the complement projections is equal to 0.8944
that characterises the slower convergence of the algorithm.

The steepest-descent algorithm converges to the optimal solution in fewer iterations
compared to the alternating least-squares projection algorithm. In this example the steepest-
descent algorithm needed 52 iterations to converge to within ±1% of the optimal solution
whereas the alternating least-squares projection algorithm converged in 126 iterations. How-
ever, each iteration of the steepest-descent algorithm is computationally more expensive
(14.87 ms CPU time per iteration on average for the steepest descent algorithm versus 2.62



5.2 An “alternating” least-squares algorithm for calculating the “approximate” GCD 79

ms CPU time per iteration on average for the alternating least-squares projection algorithm).
If a numerical optimisation method was used to calculate the optimal step-length along
each descent direction, the difference in computational expense would be considerably larger.
Further, the performance of the alternating projection algorithm seems to be less sensitive to
inaccurate initial conditions (and requires initial conditions only on the λk parameters). How-
ever, the main advantage of the alternating projection algorithm is its numerical robustness.
Note that each iteration step consists of the solution of two standard linear least-squares
problems for which very efficient numerical algorithms exist. By contrast, experimentation
with the steepest-descent algorithm showed that some erratic behaviour can arise for some
problems, which seems to be associated with Hessian matrices of mixed inertia (as shown in
Lemma 5.2.1 and Lemma 5.2.2 the Hessian matrices arising in the two linear least squares
problems are always positive-definite).

Example 5.2.3. Consider now three polynomials:

a(s) =s5 − 0.9s4 − 15.2s3 + 23.7s2 + 17.8s− 26.4

b(s) =s4 + 1.5s3 − 49s2 + 46.5s+ 180

c(s) =s4 − 1.2s3 − 39.4s2 + 58.8s+ 216

In order to illustrate the advantage and robustness of the algorithm with general nonlinear
least-squares methodologies, the proposed alternating-least squares algorithm (Algorithm 1),
standard steepest descent (Algorithm 2) and nonlinear least-squares Levenberg-Marquardt
algorithm (Algorithm 3) are applied in order to compare the performance of each. Starting
from the same initial conditions (λ0 = 1) the estimated parameters are evaluated and
presented in Table 5.2.

Parameter (1.0e+02 *) Algorithm 1 Algorithm 2 Algorithm 3
a3 -0.075479785502581 -0.075479774084458 -0.019944048953005
a2 0.002866727696739 0.002866689509170 -0.129391731512693
a1 0.213927327799795 0.213927385868718 0.378729306122778
a0 -0.164012757747432 -0.164012788876443 -0.239976828676686
b2 -0.043920475311190 -0.043920403980712 -0.030853848990869
b1 -0.391806867259189 -0.391807029951176 -0.342579521931123
b0 1.096178193936529 1.096178369685109 1.197436017782389
c2 0.006479438100252 0.006479519009375 0.000800956132876
c1 -0.425890527145751 -0.425890705212694 -0.487571675212330
c0 1.303845714182917 1.303845917713361 1.203483647324654
λ0 0.016506716625806 0.016506714035634 0.016086238800988

Table 5.2 Parameters at convergence (Example 5.2.3)
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Algorithm 1 and 2 converge to the solution with the given tolerance of 10−8, however
for the “alternating projection” approach the solution is obtained after 323 iterations, while
it takes almost ten times longer for the steeps descent to converge to within ±1% of the
optimum. However, the interesting observation is that Algorithm 3 terminates after 173
iterations and fails to converge to the optimal value. This methodology is based on the
built-in MATLAB procedure for the calculation of nonlinear least-squares problems. It
demonstrates that the alternating linearisation for the larger number of nonlinear parameters
converges to the solution in fewer iterations (in comparison to steepest descent) and acts
more reliably under practical implementation (as opposed to Levenberg-Marquardt).

5.3 Structured singular value approach for the distance prob-
lems

Structured singular values [141], [142] are a powerful tool for the analysis and synthesis of
robust control systems. They can be used to model uncertainty in system dynamics arising
from multiple sources, e.g. parametric uncertainty in the coefficients of the differential or
difference equations, unstructured norm-bounded uncertainty arising due to unmodelled
high-frequency dynamics, or combinations of these two types. Structured singular values
can be employed to establish non-conservative conditions for robust-stability and robust-
performance analysis and in combination with H∞ optimal control they can provide a
systematic framework for robust control system design [141], [143], [144].

The computation of the structured singular value (µ) of a matrix is an NP-hard problem.
Convex relaxation methods are normally employed to calculate upper bounds of µ; techniques
for reducing the duality gap have also been developed. In the present work, structured
uncertainty arises from the perturbations in the coefficients of the polynomials entering the
generalised resultant matrix and will be represented as a diagonal matrix of repeated scalar
perturbations. The definition of the appropriate uncertainty structure requires a sequence of
preliminary transformations which are introduced later in the section.

The definition of the structured singular value of a matrix is given next. Note that the
underlying perturbation structure is not the most general possible but is adequate for the
purposes of this work:

Definition 5.3.1. [141] Let M ∈ Rn×n and consider the structured set of uncertainties as

∆ = {diag(δ1Ir1 , δ2Ir2 , . . . , δsIrs) : δi ∈ R, i = 1, . . . , s} ⊆ Rn×n, (5.20)
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where ri are positive integers corresponding to the block-structure of ∆, i.e.
∑s

i=1 ri = n. If
there exists ∆ ∈∆, such that det(In −M∆) = 0, then the structured singular value of M is:

µ∆(M) = 1
min{∥∆∥ : ∆ ∈∆, det(In −M∆) = 0} (5.21)

If for all ∆ ∈∆, det(In −M∆) ̸= 0 then µ∆(M) = 0.

The first problem considered is as follows:

Problem 5.3.1. (Distance to non-coprimeness). Consider the set P0
h+1,n of coprime polyno-

mials

a0(s) = sn + αn−1s
n−1 + · · ·+ α0,

b0,i(s) = st + βt−1,is
t−1 + · · ·+ β0,i, i = 1, . . . , h (5.22)

with corresponding Sylvester resultant SP0 and define the set of perturbed polynomials
Ph+1,n:

a(s) = sn + (αn−1 + δn−1)sn−1 + · · ·+ (α0 + δ0),

bi(s) = st + (βt−1,i + ϵt−1,i)st−1 + · · ·+ (β0,i + ϵ0,i), i = 1, . . . , h (5.23)

and the corresponding Sylvester resultant SP . Then, what is the minimal absolute value
perturbation in the coefficients of the nominal polynomials P0

h+1,n so that the perturbed
polynomials Ph+1,n have a common root? Formally define:

γ = max{|δ0|, . . . , |δn−1|, |ϵ0,1|, . . . , |ϵt−1,1|, . . . , |ϵ0,h|, . . . , |ϵt−1,h|}
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It is required to minimise γ so that the perturbed polynomials (5.23) have a common root.
The Sylvester resultant of the perturbed polynomials is introduced as SP = SP0 +E, where:

E =



0 δn−1 δn−2 . . . . . . δ0 0 . . . 0
0 0 δn−1 . . . . . . δ1 δ0 . . . 0
... . . . . . . ... . . . ...
0 . . . 0 0 . . . δt−1 . . . . . . δ0

0 ϵ1,t−1 ϵ1,t−2 . . . . . . ϵ1,0 0 . . . 0
0 0 ϵ1,t−1 . . . . . . ϵ1,1 ϵ1,0 . . . 0
... . . . . . . ... . . . ...
0 . . . 0 0 . . . ϵ1,n−1 . . . . . . ϵ1,0
...

...
...

...
...

0 ϵh,t−1 ϵh,t−2 . . . . . . ϵh,0 0 . . . 0
0 0 ϵh,t−1 . . . . . . ϵh,1 ϵh,0 . . . 0
... . . . . . . ... . . . ...
0 . . . 0 0 . . . ϵh,n−1 . . . . . . ϵh,0



. (5.24)

Then, in view of Theorem 4.5.1 the problem can be formulated as:

inf{γ : null(SP) ≥ 1}.

Remark 5.3.1. For compatibility with the previous notation and the framework of [84], [97]
the h polynomials bi(s), i = 1, . . . , h, are considered to be of the same degree t. Note, however,
that all results can be easily amended to the general case (i.e. any set of h+ 1 polynomials
{a(s), bi(s)}, i = 1, 2, . . . , h, of arbitrary degrees deg{a(s), bi(s)} ≥ 1, i = 1, 2, . . . , h) with
only minor modifications.

Problem 5.3.1 can be generalised as follows:

Problem 5.3.2. (Approximate GCD of degree k) Let all variables be defined as in Problem
5.3.1 above. Here it is required to minimise γ so that the perturbed polynomials in (5.23)
have a GCD ϕ(s) with deg(ϕ(s)) ≥ k. Equivalently the problem can be formulated as:
inf{γ : null(SP) ≥ k}.

In the remaining part of this section it is shown that Problem 5.3.1 is equivalent to
the computation of a structured singular value with respect to a diagonal set of repeated
perturbations, while Problem 5.3.2 involves the computation of a “generalised structured
singular value”, defined over a similar diagonal set. These generalise the results in [95] to the
case of multiple polynomials and rely on the following Lemma:
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Lemma 5.3.1. Let A ∈ Rn×m, n ≥ m and define:

M =
(
In A

A′ 0m

)
∈ R(n+m)×(n+m) (5.25)

Then null(A) = null(M). In particular A has full column rank if and only if matrix M is
nonsingular.

Proof. Let rank(A) = r and A = UΣV ′ be the singular value decomposition of A with
UU ′ = U ′U = In, V V ′ = V ′V = Im and

Σ =
(

Σr 0
0 0

)
, Σr = diag(Σr) ∈ Rr×r, det(Σr) ̸= 0

Then:

(
U ′ 0
0 V ′

)
M

(
U 0
0 V

)
=


Ir 0 Σr 0
0 In−r 0 0

Σr 0 0 0
0 0 0 0


and hence:

rank(M) = n− r + Rank
(

Ir Σr

Σr 0

)
= n+ r

Hence from the rank-nullity theorem null(M) = n + m − (n + r) = m − r = null(A) as
required. The equivalence between the conditions: (i) A is full column rank, and (ii) M is
nonsingular follows in the special case r = m.

Considering Lemma 5.3.1 and the properties of the Sylvester matrix listed in Theorem
4.5.1, Problem 5.3.1 can be reformulated as follows:

Theorem 5.3.1. Let SP0 be the Sylvester Resultant matrix of the set of the h+ 1 coprime
polynomials P0

h+1,n = {a0(s), b0,i(s), ∀i = 1, . . . , h}. Introduce perturbations {δi}i=0,1,...,n−1

and {ϵi,j}j=0,1,...,t−1
i=1,2,...,h in the polynomials’ coefficients and define γ as in Problem 5.3.1. Then

the minimum-magnitude perturbation γ∗ in the coefficients of P0
h+1,n such that the perturbed

polynomials in Ph+1,n have a common root is given by:

γ∗ = min{γ : null(SP0 + Θ∆Z) ≥ 1,∆ ∈∆}

where ∆ is the structured set:

∆ = {diag(∆1,∆2)} ⊆ Rnt(h+1)×nt(h+1) (5.26)
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where:
∆1 = diag(δn−1It, δn−2It, . . . , δ0It) ∈ Rnt×nt (5.27)

and
∆2 = diag(ϵ1,t−1In, . . . , ϵ1,0In, . . . , ϵh,t−1In, . . . , ϵh,0In) ∈ Rnth×nth (5.28)

in which δi ∈ R, ϵi,j ∈ R. Matrix Θ ∈ R(t+nh)×nt(h+1) is defined as:

Θ = diag(1′
n ⊗ It, 1′

t ⊗ In, . . . , 1′
t ⊗ In)

which can be also written in expanded form as:

Θ =


It . . . It Ot,n . . . Ot,n . . . Ot,n . . . Ot,n

On,t . . . On,t In . . . In . . . On,n . . . On,n

...
...

...
... . . . ...

...
On,t . . . On,t On,n . . . On,n . . . In . . . In

 (5.29)

Matrix Z is defined as:

Z =


Z1

Z2
...
Z2

 =
(

Z1

1h ⊗ Z2

)
∈ Rnt(h+1)×(n+t)

where

Z1 =


Z0

t,n

Z1
t,n
...

Zn−1
t,n

 ∈ Rnt×(n+t) and Z2 =


Z0

n,t

Z1
n,t
...

Zt−1
n,t

 ∈ Rnt×(n+t)

in which
Zk

t,n =
(
Ot,k+1 It Ot,n−k−1

)
∈ Rt×(n+t), k = 0, 1, . . . , n− 1

and
Zk

n,t =
(
On,k+1 In On,t−k−1

)
∈ Rn×(n+t), k = 0, 1, . . . , t− 1

Proof. According to Theorem 4.5.1 polynomials Ph+1,n have a common root if and only if
SP = SP0 +E loses rank. By “pulling out the uncertainty” it is straightforward to verify that
SP0 + E = SP0 + Θ∆Z where ∆ ∈ ∆. This follows by writing the Sylvester perturbation
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matrix in (5.24) as:

E =


∑n−1

λ=0 δλZ
n−λ−1
t,n∑t−1

λ=0 ϵ1,λZ
t−λ−1
n,t

...∑t−1
λ=0 ϵh,λZ

t−λ−1
n,t

 =


δn−1Z

0
t,n + δn−2Z

1
t,n + . . .+ δ0Z

n−1
t,n

ϵ1,t−1Z
0
n,t + ϵ1,t−2Z

1
n,t + . . .+ ϵ1,0Z

t−1
n,t

...
ϵh,t−1Z

0
n,t + ϵh,t−2Z

1
n,t + . . .+ ϵh,0Z

t−1
n,t


which reveals the displacement structure of the Sylvester resultant matrix. Further note that
γ = ∥∆∥ and hence:

γ∗ = inf{∥∆∥ : null(SP0 + Θ∆Z) ≥ 1,∆ ∈∆} (5.30)

Consider the perturbations: δ0 = −α0, ϵi,0 = −βi,0, i = 1, 2, . . . , h. Then all perturbed polyno-
mials Ph+1,n have a common root at the origin and hence γ∗ ≤ γ̂ := max{|α0|, |β1,0|, . . . , |βh,0|}.
Hence the constraint set in (5.30) can be restricted to the compact set:

{∆ : null(SP0 + Θ∆Z) ≥ 1,∆ ∈∆, ∥∆∥ ≤ γ̂}

Since the function ∆→ ∥∆∥ is continuous the infimum in (5.30) is attained.

The following result shows that the solution of Problem 5.3.1 is equivalent to the calculation
of a structured singular value.

Theorem 5.3.2. Let all variables be defined as in Theorem 5.3.1. Then the minimum-
magnitude perturbation γ∗ in the coefficients of P0

h+1,n such that the perturbed polynomials
Ph+1,n have a common root is γ∗ = µ−1

∆̃ (M̃) where

M̃ = −P ′
(

Θ′SP0(S′
P0
SP0)−1Z ′ Θ′(I − SP0(S′

P0
SP0)−1S′

P0
)Θ

−Z(S′
P0
SP0)−1Z ′ Z(S′

P0
SP0)−1S′

P0
Θ

)
P

and P is a permutation matrix such that diag(∆,∆) = P∆̃P ′ in which

∆ = {diag(δn−1It, . . . , δ0It, ϵ1,t−1In, . . . , ϵ1,0In, . . . , ϵh,t−1In, . . . , ϵh,0In)} (5.31)

and

∆̃ = {diag(δn−1I2t, . . . , δ0I2t, ϵ1,t−1I2n, . . . , ϵ1,0I2n, . . . , ϵh,t−1I2n, . . . , ϵh,0I2n)} (5.32)

Proof. According to Theorem 5.3.1

γ∗ = min{∥∆∥ : null(SP0 + Θ∆Z) ≥ 1,∆ ∈∆} (5.33)
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From Lemma 5.3.1:

null(SP0 + Θ∆Z) ≥ 1 ⇔ det
(

I SP0 + Θ∆Z
S′

P0
+ Z ′∆Θ 0

)
= 0

which is also equivalent to condition:

det
{(

I SP0

S′
P0

0

)
+
(

Θ 0
0 Z ′

)(
∆ 0
0 ∆

)(
0 Z

Θ′ 0

)}
= 0 (5.34)

Since the set of polynomials Ph+1,n are assumed coprime the Sylvester resultant SP0 has full
column rank and hence the first matrix in equation (5.34) is nonsingular (see Lemma 5.3.1).
Next let ∆ ∈∆ and introduce permutation P so that diag(∆,∆) = P ∆̃P ′, ∆̃ ∈ ∆̃ and note
that:

∆ ∈∆ ⇔ ∆̃ ∈ ∆̃

Thus condition (5.34) is equivalent to: det(I + M̃∆̃) = 0 where

M̃ = P ′
(

Θ′ 0
0 Z

)(
I SP0

S′
P0

0

)−1(
0 Θ
Z ′ 0

)
P

Thus from equation (5.33) it follows that:

γ∗ = min{∥∆̃∥ : det(I + M̃∆̃) = 0, ∆̃ ∈ ∆̃} = µ−1
∆̃ (M̃) (5.35)

as required. The form of M̃ given in the statement of the Theorem follows on noting that:

(
I SP0

S′
P0

0

)−1

=
(
I − SP0(S′

P0
SP0)−1S′

P0
SP0(S′

P0
SP0)−1

(S′
P0
SP0)−1S′

P0
−(S′

P0
SP0)−1

)

after some algebra.

Remark 5.3.2. The proposed method can be easily generalised to the case, where the
nominal coefficients of the polynomials are complex and the perturbations are real. First,
Lemma 5.3.1 can be generalised to the complex case by replacing M ′ by M∗ in equation
(5.25). This leads to the computation of the real structured singular value of a complex
matrix (relative to a real diagonal structure with repeated elements). This can be calculated
by separating real and imaginary parts. Generalised results are presented in Appendix A.

In order to illustrate the structured singular value method for many polynomials a simple
numerical example is presented below.
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Example 5.3.1. Consider the set of coprime polynomials P3,2:
p1(s) = s2 + s− 2

p2(s) = s2 + 6.0020s− 6.9860

p3(s) = s2 + 4s− 5

The corresponding resultant matrix is:

SP0 =



1 1 −2 0
0 1 1 −2
1 6.0020−6.9860 0
0 1 6.0020−6.9860
1 4 −5 0
0 1 4 −5


with singular values σ(SP0) = {13.6359, 8.9945, 0.9044, 0.0067}. Since the smallest singular
value is almost zero the numerical rank of SP0 is 3, indicating an “approximate GCD” of
degree one.

As SP0 ∈ R6×4 the generalised approach of Theorem 5.3.1 can be applied, leading to an
augmented matrix:

M =



1 0 0 0 0 0 1 1 −2 0
0 1 0 0 0 0 0 1 1 −2
0 0 1 0 0 0 1 6.0020−6.9860 0
0 0 0 1 0 0 0 1 6.0020−6.9860
0 0 0 0 1 0 1 4 −5 0
0 0 0 0 0 1 0 1 4 −5
1 0 1 0 1 0 0 0 0 0
1 1 6.0020 1 4 1 0 0 0 0
−2 1−6.9860 6.0020−5 4 0 0 0 0

0−2 0 −6.9860 0−5 0 0 0 0


Structured singular value calculations were performed with MATLAB’s µ-analysis and

synthesis toolbox [145]. The minimum distance to singularity (i.e. the minimum norm
perturbation in the coefficients of the three polynomials such that the perturbed polynomials
have a common root) is obtained (with an accuracy of four decimal places) as γ∗ = 0.0035.
This is the exact µ-value as the lower and upper bounds, obtained via MATLAB, coincide
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(within the specified tolerance):
p1 = s2 + 1.0017s− 1.9983

p2 = s2 + 5.9986s− 6.9894

p3 = s2 + 4.0034s− 4.9965

which have GCD ϕ(s) = s− 0.9989.

The last part of this section is focused on the solution to Problem 5.3.2 which involves the
calculation of the numerical GCD (of arbitrary degree) of a set of polynomials P0

h+1,n (assumed
coprime without loss of generality). One possible approach is to develop an approximate
solution to this problem in the form of an iterative algorithm. This extracts sequentially
approximate common factors ϕi(s), by calculating the corresponding structured singular value
µ∆̃(M̃) and a corresponding minimum-norm singularising matrix perturbation by repeated
application of Theorem 5.3.1. After the extraction of each factor, the quotient ai+1(s) =
ai(s)/ϕi(s) and bi+1,j(s) = bi,j(s)/ϕi(s) are calculated, ignoring possible (small) remainder
terms of the divisions. The procedure is initialised by setting a0(s) = a(s), b0,j(s) = bj(s),
j = 1, 2, . . . , h, and iterates by constructing at each step of the algorithm the reduced-
dimension Sylvester matrix corresponding to the polynomials (ai+1(s), {bi+1,j(s)}j=1,2,...,h);
this is followed by calculating the new structured singular value µ∆̃(M̃) and a corresponding
∆̃0 ∈ ∆̃, which in turn leads to the extraction of the new approximate factor ϕi+1(s). The
whole process is repeated until a tolerance condition is met, at which stage the approximate
GCD ϕ(s) can be constructed by accumulating the extracted common factors ϕi(s). Special
care is needed to ensure that any complex roots in ϕ(s) appear in conjugate pairs.

Compared to this procedure a more elegant (and exact) approach is to extract the
approximate GCD of the polynomial set P0

h+1,n by solving a single optimisation problem.
This involves the following generalisation of the notion of the structured singular value of a
matrix:

Definition 5.3.2. Let M ∈ Rn×n and define the “structured” set:

∆ = {diag(δ1Ir1 , δ2Ir2 , . . . , δsIrs) : δi ∈ R, i = 1, 2, . . . , s} (5.36)

where the ri are positive integers such that
∑s

i=1 ri = n. (Note that ∆ is a subspace of
Rn×n). The generalised structured singular value of M relative to “structure” ∆ and for a
non-negative integer k is defined as:

µ̂∆,k(M) = 1
min{∥∆∥ : ∆ ∈∆, null(In −M∆) > k}

(5.37)
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unless there does not exist a ∆ ∈∆ such that null(In−M∆) > k, in which case µ̂∆,k(M) = 0.

It follows immediately from the definition that µ̂∆,0(M) = µ∆(M) and that µ̂∆,k(M) ≥
µ̂∆,k+1(M) for each integer k ≥ 0. Further if for some integer k, µ̂∆,k(M) > 0 and
µ̂∆,k+1(M) = 0, then any ∆0 that minimises the denominator in (5.37) has null(In−M∆) =
k + 1. The following Theorem can now be stated and proved:

Theorem 5.3.3. Consider Problem 5.3.2 and let all variables be defined as in Theorem
5.3.1. Then the minimum-magnitude perturbation γ∗ in the coefficients of the polynomial
set P0

h+1,n such that the perturbed polynomials Ph+1,n have a GCD of degree at least k
(1 ≤ k ≤ t) is γ∗ = µ̂−1

∆̃,k−1(M̃) where M̃ and ∆̃ are as defined in Theorem 5.3.2.

Proof. This is a simple generalisation of the proof of Theorem 5.3.2 based on the general
conditions given in (5.25). Note that the inverse of µ̂∆̃,k−1(M̃), k = 1, 2, . . . , t always
exists since t is the minimum degree of all polynomials in set P0

h+1,n and there are always
perturbations in the coefficients of P0

h+1,n such that the perturbed polynomials Ph+1,n have
at least k common roots. For example the perturbations:

δj = −αj , ϵi,j = −βi,j , i = 1, 2, . . . , h, j = 0, 1, . . . , k − 1

δj = 0, ϵi,j = 0, i = 1, 2, . . . , h, j ≥ k

result in a perturbed set of polynomials Ph+1,n which have at least k common roots at the
origin and hence

µ̂(M̃) ≥ 1
max{|αj |, |βi,j |}j=0,1,...,k−1

i=1,2,...,h

> 0

since the polynomials P0
h+1,n have been assumed to be coprime.

Theorem 5.3.3 suggests that the GCD of the polynomial set P0
h+1,n can be obtained by

calculating successively µ̂∆̃,k(M̃) for k = 0, 1, . . . , t − 1. The procedure terminates when
either k = t− 1 is reached, or when the inverse of the generalised structured singular value
falls below a pre-specified tolerance level.

The calculation of µ̂∆̃,k(M̃) is a nonconvex optimisation problem. An upper bound can
be obtained as:

µ̂∆̃,k(M̃) ≤ inf
D∈D

σk+1(DM̃D−1) (5.38)

where D is the set of all positive definite matrices which commute with ∆̃ [95], [142]. The
efficient calculation of µ̂∆̃,k(M̃) is a challenging problem for which (it is belived) no solution
is currently available. In the following section the literature for calculating the (standard)
structured singular value is reviewed and an algorithm for estimating the upper bound of the
generalised structured singular value given in equation (5.38) is proposed.
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5.4 Computational algorithms for µ and generalised µ prob-
lems

The computation of the structured singular value of a matrix M is an NP-hard problem
[146]. Thus, given any algorithm to compute µ(M), there will be “worst-case problems” for
which the algorithm will fail to find the answer in polynomial-time. Although the structured
singular value can be obtained by maximising the spectral radius of a matrix over a set of
scaling matrices, the objective function is non-concave and the corresponding algorithms
rarely converge to the optimal solution. In practice, upper bounds are often sought by
applying the so-called D-iteration procedure, which solves a convex minimisation problem
and is equivalent to a Linear Matrix Inequality (LMI). It can be shown that for certain simple
perturbation structures the gap between µ and its convex upper bound is zero. The same is
also true for certain other problems of special structure (rank-1 matrices [147], reciprocal
matrices [148], etc). These problem classes, however, are typically too small for most practical
applications. In general, the gap between µ and its convex upper bound can be arbitrarily
large (but grows no faster than linearly in the number of uncertainty blocks) [146].

A systematic investigation of the gap between µ and its convex upper bound was presented
in [149]. It was shown that the gap can be breached by solving an eigenvalue problem, provided
a sufficiently tight bound can be obtained for an auxiliary reduced-rank µ-problem, defined
from the optimal scaling matrices of the D-iteration procedure. In many cases the complexity
of the auxiliary problem is significantly reduced and breaching the convex upper bound is
feasible. Several other optimisation methods for the general µ problem, or varieties of its
specialised versions have been reported in the literature [145], [150], [151], [141], [142] as well
as a more recent one [152].

In the remaining of the section a method for minimising the bound in (5.38) using gradient
descent algorithms is outlined. Note that the problem is in general nonconvex, so convergence
to the global optimum cannot be guaranteed. However, the approach can prove useful in
practice if a good starting point for the descent algorithm is available.

Consider the minimisation problem: infD∈D σk+1(DMD−1) in which M ∈ Rn×n and

D = {diag(D1, D2, . . . , Ds) : Di ∈ Rri×ri , Di = D′
i > 0},

s∑
i=1

ri = n

Note that matrices in D commute with matrices in the underlying perturbation set ∆ defined
in (5.20). Let

d ∈ Rq, q = 1
2

s∑
i=1

ri(ri + 1)

be the vector of the (non-repeated) variables of D ∈ D. Further assume that Ω is an open
subset of Rq and let A(d) = DMD−1 : Ω → Rn×n be a real matrix function of d ∈ Ω. Let
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Σ(d) = diag(σ1(d), σ2(d), . . . , σn(d)), σ1(d) ≥ σ2(d) ≥ · · · ≥ σn(d) ≥ 0 be the singular values
of A(d). Assume that σk+1(d) is non-repeated for every d ∈ Ω. This assumption is made
for simplicity and ensures the differentiability of σk+1(d) in Ω; if it fails at some d ∈ Ω the
gradient of σk+1(d) is not defined at that point and the descent-direction algorithm may need
to be modified using subgradient techniques [153], [154].

Define the matrix:

H(d) =
(

0 A(d)
A′(d) 0

)
∈ R2n×2n (5.39)

The eigenvalues of H(d) (arranged in non-increasing order) are related to the singular values
of A(d) as follows:

σ1(d) ≥ · · · ≥ σn(d) ≥ 0 ≥ −σn(d) ≥ · · · ≥ −σ1(d), ∀d ∈ Ω (5.40)

Thus the sensitivity of the singular values of A(d) can be inferred from the sensitivity of the
eigenvalues of H(d) [154].

Next fix d0 ∈ Ω and obtain the spectral decomposition of H(d0):

H(d0) = W

(
Σ(d0) 0

0 −Σ(d0)

)
W ′ (5.41)

in which the eigenvector matrix W ∈ R2n×2n is orthogonal. Denote by Wk+1 the (k + 1)-th
column of W ((k + 1)-th eigenvector of H(d0)). Then, for each vector x ∈ Rq, ∥x∥ = 1 the
directional derivative of σk+1(DMD−1) at d0 along direction x is given as:

⟨∇σk+1(d0), x⟩ = W ′
k+1


q∑

i=1
xi

 0 ∂(DMD−1)
∂di

(d0)
∂(DMD−1)

∂di
(d0) 0

Wk+1 (5.42)

where xi is the i-th component of x. Equivalently, if Wk+1 is partitioned as:

Wk+1 =
(
Uk+1

Vk+1

)
, Uk+1 ∈ Rn, Vk+1 ∈ Rn (5.43)

then:
⟨∇σk+1(d0), x⟩ = 2U ′

k+1

( q∑
i=1

xi
∂(DMD−1)

∂di
(d0)

)
Vk+1 (5.44)

Note that from the chain rule:

∂(DMD−1)
∂di

= ∂D

∂di
MD−1 −DMD−1∂D

∂di
D−1, i = 1, 2 . . . , q (5.45)
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The following steepest-descent algorithm can now be applied for solving the optimization
problem: infD∈D σk+1(DMD−1):

Algorithm:

Initialise: j = 0, Dj = In and dj = vec(Dj) ∈ Rr where r = n(n+1)
2 and vec(Dj) denotes

the vectorisation operation of stacking the columns of Dj into a vector. Set tolerance
parameters ϵ1 > 0 and ϵ2 > 0 .

Step 1: Define A(dj) = DjMD−1
j , H(dj) as in equation (5.39) and perform the spectral

decomposition (5.41) to obtain Σ(dj) and W (dj). Set Wk+1(dj) as the (k + 1)-th
column of W (dj) and decompose it as in equation (5.43) to obtain the two Schmidt
vectors Uk+1(dj) and Vk+1(dj).

Step 2: Using equation (5.44) calculate ∇σk+1(dj) by setting

(∇σk+1(dj))i = ⟨∇σk+1(dj), ei⟩, i = 1, 2, . . . , q

where ei is the i-th column of Iq.

Step 3: If ∥∇σk+1(dj)∥ ≤ ϵ1 stop and exit.

Step 4: Set
Ψj = vec−1(∇σk+1(dj)), Φj(t) = Dj − tΨj , t ≥ 0

and define the function:

fj : Ij → R+, fj(t) = σk+1
(
Φj(t)MΦ−1

j (t)
)

whose domain Ij ⊆ R0+ is defined as follows: Solve the generalised (symmetric)
eigenvalue problem det(Dj − tΨj) = 0 and let λ(Dj ,Ψj) be the set of eigenvalues.
If λ(Dj ,Ψj) ⊆ R0− set Ij = R0+, otherwise set Ij = [0, γj) where γj is the smallest
positive eigenvalue.

Step 5: Find the optimal step length t∗j , t > 0, and the optimal scaling matrix Dj+1 such that

t∗j ∈ argmin{fj(t) : t ∈ Ij}, Dj+1 = Dj − t∗jΨj

Step 6: If ∥Dj+1 −Dj∥ ≤ ϵ2 stop and exit.

Step 7: Set dj+1 = vec(Dj+1).

Step 8: Set Dj ← Dj+1, dj ← dj+1, j ← j + 1 and go to step 1.
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Remark 5.4.1. (1) It is stressed again that the steepest descent method implemented in
the algorithm above guarantees convergence to a local minimum only. Since the objective
function is not in general convex this may not correspond to the globally optimal solution.

(2) Restricting the optimisation in step 5 to the interval [0, γj) ensures that the optimal
solution of the scaling matrix remains always within the positive-definite cone so that fj

remains bounded.
(3) Ideally the optimal steplength at every iteration has to be selected as the global

minimum of fj in Ij , which is typically estimated numerically. If this is too computationally
expensive, approximate methods can be used. In this programme implementation the optimal
steplength is estimated by gridding the interval [0, ηγj) where η is a fixed parameter such
that 0 < η < 1 (typically, take η = 0.95).

The following examples illustrate the proposed algorithm:

Example 5.4.1. Consider two coprime polynomials

a0(s) = s2 + α1s+ α0, b0(s) = s2 + ϵ1s+ ϵ0

and the corresponding Sylvester resultant matrix:

S0 =


1 α1 α0 0
0 1 α1 α0

1 β1 β0 0
0 1 β1 β0

 ,

in which α1 = −1.3026, α0 = −0.4218, β1 = −1.0026 and β0 = −0.3218. The singular value
set of S0 is σ(S0) = {2.5323, 1.8778, 0.1667, 0.0140} indicating a numerical rank of 2 (or 3,
depending on the required tolerance), hence identifying the approximate GCD degree of the
corresponding polynomials as two (or one, again depending on the tolerance level). In this
example the exact analytical solution can be obtained for µ̂∆,1(M), where

∆ = {diag(δ1I2, δ0I2, ϵ1I2, ϵ0I2)} ⊆ R8×8

and M = −ZS−1
0 Θ, where Z, Θ are as specified in Theorem 5.3.1. Since the two perturbed

(monic) polynomials

a(s) = s2 + (α1 + δ1)s+ (α0 + δ0), b(s) = s2 + (β1 + ϵ1)s+ (β0 + ϵ0)

have two common roots if and only if they are identical, then:

µ̂−1
∆,1 = max

{ |α1 − β1|
2 ,

|α0 − β0|
2

}
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Fig. 5.2 Steepest-descent method for µ̂∆,1(M) upper bound (Example 5.4.1)

For the selected numerical values of the coefficients µ̂−1
∆,1 = 0.15. The upper bound of µ̂∆,1

given in (5.38) was calculated via the steepest descent algorithm implemented in MATLAB.
The local minimum was achieved at the 35-th iteration as illustrated in figure 5.2. The value
of σ2(DMD−1) obtained at convergence results in the bound:

µ̂∆,1(M) ≤ 6.9867

This says that no structured perturbation ∆ ∈∆ with norm ∥∆∥ ≤ 6.9867−1 = 0.1431 can
give rise to a pair of perturbed polynomials with two common roots, which is consistent with
the exact value of µ̂−1

∆,1 = 0.15 obtained above.
Next the proposed algorithm is applied to bound the distance of the Sylvester matrix

to singularity (which corresponds to at least one common root for the pair of perturbed
polynomials), given by

µ̂−1
∆,0(M) = µ−1

∆ (M)

In this case the steepest-descent algorithm produced the bound:

µ∆(M) = 1
γ∗ ≤ 119.1796

which is in fact the exact value of µ∆(M) (up to the 9-th decimal point) as calculated by
MATLAB’s µ-Control toolbox.

Example 5.4.2. Consider now a case of three polynomials,
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
a(s) = s3 − 6s2 + 11s− 6 = (s− 1)(s− 2)(s− 3)

b(s) = s2 − 3s+ 2.09 = (s− 1.1)(s− 1.9)

c(s) = s2 − 2.9s+ 1.68 = (s− 0.8)(s− 2.1)

that have an approximate common divisor of degree 2. As it is numerically hard to obtain
an exact solution µ̂∆,1(M) can be evaluated iteratively as specified in Theorem 5.3.3. Such
an approach does not guarantee the exact solution, but can be used as an approximation.

At first, with the Sylvester resultant

S0 =



1 α2 α1 α0 0
0 1 α2 α1 α0

1 β1 β0 0 0
0 1 β1 β0 0
0 0 1 β1 β0

1 θ1 θ0 0 0
0 1 θ1 θ0 0
0 0 1 θ1 θ0


=



1 −6 11 −6 0
0 1 −6 11 −6
1 −3 2.09 0 0
0 1 −3 2.09 0
0 0 1 −3 2.09
1−2.9 1.68 0 0
0 1 −2.9 1.68 0
0 0 1 −2.9 1.68


an augmented matrix M is structured based on Theorem 5.3.1 proceeding with calculating
the minimum norm perturbations, corresponding to a bound of µ(1)

∆ (M) = 29.3311. From
the perturbed polynomials evaluated at the first iteration one can form a reduced Sylvester
matrix, S1, by factoring out the nearest common root from the derived polynomials. Then,
the structure of M , based on the reduced Sylvester matrix is used for the computation
of the structured singular values at the second iteration corresponding to a bound on
µ

(2)
∆ (M) = 11.7145.

Merging the results achieved an estimate of µ̂∆,1(M) = 4.8538. This corresponds to the
maximal absolute value of the perturbations in the coefficients of the original polynomials. The
final generalised structured singular value estimate obtained as a result of this factorisation
scheme is suboptimal in general. However, for the purpose of the analysis it can be compared
with the upper bound obtained via the proposed steepest-descent algorithm which also gives
an approximation of µ̂∆,1(M). In this case this is obtained at the 8-th iteration as

µ̂∆,1(M) ≤ 8.7760.
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Example 5.4.3. Assume that polynomials from Example 5.4.2 are modified as follows
a(s) = (s− 1)(s− 2)(s− 3)

b(s) = (s− 1.1 + ϵ)(s− 1.9− δ)

c(s) = (s− 0.8− 2ϵ)(s− 2.1 + δ)

where δ and ϵ are given perturbations, i.e. (δ, ϵ) ∈ {0.02, 0.04, 0.06, 0.08}2. Applying the
steepest-descent algorithm for all the combinations of δ and ϵ, the results of µ̂∆,1(M) upper
bound are obtained as presented in Table 5.3. It can be observed that within the specified
tolerance the smaller the gap between the common roots in the given polynomials, the greater
is the value of the bound.

Parameters δ1 = 0.02 δ2 = 0.04 δ3 = 0.06 δ4 = 0.08
ϵ1 = 0.02 11.0057 9.8397 8.8328 7.9497
ϵ2 = 0.04 17.1778 14.7157 12.6656 10.9659
ϵ3 = 0.06 33.2325 27.9176 22.1343 17.6500
ϵ4 = 0.08 34.0382 53.1205 67.4566 44.388

Table 5.3 µ̂∆,1(M) upper bound for the different values of δ and ϵ

5.5 Summary

In this Chapter two novel methods for calculating the distance of a set of coprime polynomials
to the set of polynomials with a common root are presented. The problem is motivated by
the distance to uncontrollability (unobservability) in algebraic control theory, which also has
several important applications in Numerical Analysis, Robust Control, Linear Systems and
other Engineering fields.

The approximate factorisation of the Sylvester matrix motivated the definition of an
alternating least-squares projection algorithm that minimises the Frobenious norm of the
error matrix of the factorisation. It is shown that a general nonlinear problem can be divided
into two linear sub-problems and solved iteratively. Such an approach avoids significant
complexity in numerical calculations of the “best” approximate GCD of a coprime set of
polynomials. Moreover, the advantage of the method is demonstrated by simple numerical
examples and compared with a non-linear steepest-descent algorithm as well as the standard
nonlinear least squares Levenberg-Marquardt type of optimisation.

The structured singular value approach seeks to identify the minimum-magnitude per-
turbations in the coefficients of the polynomials so that the perturbed polynomials have
a common root. It is demonstrated that the problem is equivalent to the calculation of a
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structured singular value of a matrix which is also extensively studied in Robust Control.
The method is generalised and applied to the calculation of the approximate GCD of an
arbitrary set of polynomials. This leads naturally to the concept of the “generalised struc-
tured singular value” which involves the solution of a structured approximation problem
with rank constraints. Although in this case an upper bound can be obtained via an optimal
pair of positive-definite scaling matrices which commute with the uncertainty structure, the
resulting optimisation problem is non-convex and convergence to the global optimum cannot
be guaranteed. A steepest descent algorithm is proposed as a possible approach for tackling
the problem which is shown to perform well for problems of small complexity. However
further work is required to assess its numerical properties and its applicability to problems of
higher complexity.

Significance of the structured singular value approach can be demonstrated on a wide
variety of distance problems. Based on the obtained results the next Chapter introduces
special case of distance problems that appear in Robust Control Theory, namely implicit
systems.



Chapter 6

Implicit Case as a Special Case for
the Distance Problems

It has been demonstrated that distance problems of matrix pencils have wide applications in
Control Theory. Moreover, as mentioned in [19] and [66], general perturbation structures, i.e.
(A+E,B + F ), can be constrained to a special structure, for example, perturbations may
appear only in the A matrix as (A+ E,B). The structured singular approach, developed
in Chapter 5 might be beneficial for such a special case, where the B matrix acts as as
an additional constraint for the system description. Moreover, an overconstraint system
description is useful in the analysis of implicit systems, where an extension of the µ-value
methodology can provide further insights to the notion of Robust stability.

The input-output framework has dominated the study of the Systems and Control
Theory paradigm. Building on early work of Rosenberg [104], the behavioural framework
was introduced in [155] as an alternative. In this framework, the system is described by
the collection of its trajectories rather than input-output relations. Implicit systems play
an important role in this context. By incorporating constraints in the model description,
implicit systems provide additional versatility relative to standard input-output models.
Areas where implicit systems have proved useful include the analysis and synthesis of complex
Interconnected Systems, Systems Identification and Robust Control [156], [141].

In the area of Robust Control, implicit analysis is useful in the formulation of uncertainty
models of various types, e.g. LTI, time-varying, polytopic, delay, sector-nonlinearity, etc.
All these descriptions can be unified via Integral Quadratic Constraints (IQC) resulting
in constrained system descriptions [157]. The main idea of IQC’s is to replace uncertain
operators which are difficult to model by integral quadratic constraints on the input-output
pair which applies for all uncertain conditions. This results in robust stability and performance
conditions which can be checked via semi-definite programming.
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Considerable work has been done recently in formulating and solving distance problems
involving uncertain systems [158]. Some examples of constrained H∞ and H2 problems
are presented in [141], [156], [159] providing systematic methods for the control structure
selection. A standard frequency-domain description of implicit LTI uncertain systems can be
expressed in the form:(

I + ∆M
N

)
z = 0, M ∈ Cn×n, N ∈ Cp×n,∆ ∈∆ ⊂ Cn×n (6.1)

where ∆ is a structured uncertainty set. Stability is studied with respect to the nullity of
the matrix in (6.1) for all ∆ in the bounded set

B∆ = {∆ ∈∆ : ∥∆∥ ≤ 1} (6.2)

When ∆ has a diagonal structure this is a generalisation of the structured singular value (µ)
problem.

The structured singular value (µ) is a fundamental analysis and synthesis tool of Robust
Control theory with several applications in model validation and the characterisation of
robust stability and performance of dynamic systems, [142], [141], [144], [143], [160], [161],
[157]. The structured singular value of a matrix M ∈ Rn×n (or M ∈ Cn×n) is defined as:

µ∆(M) = 1
min{∥∆∥ : ∆ ∈∆, det(In +M∆) = 0} (6.3)

where ∆ is a set of structured perturbations. Although more general structures can be
defined (combining real/complex and scalar/matrix perturbations), here ∆ is restricted to
the set:

∆ = {diag(δ1Ir1 , . . . , δsIrs) : δi ∈ R, i = 1, 2, . . . , s}

If for any ∆ ∈∆ det(In +M∆) ̸= 0, then µ∆(M) = 0.
In the Linear Time Invariant case robust stability properties of an implicit system defined

by the pair (M,N) can be analysed using a Scaled Linear Fractional Transformation (SLFT).
This leads to a generalised µ-problem involving additional constraints in the form of equation
(6.1). Since exact calculations are numerically hard, it is more appropriate to develop
optimisation procedures for lower and upper bounds. Calculation of an upper bound can be
achieved via a convex relaxation technique using Linear Matrix Inequalities, similar to the
non-negative scaling approach used for the standard problem [162]. Unfortunately, however,
in contrast to the standard version of the problem, there is not sufficient numerical experience
to assess the effectiveness of this method, i.e. the proximity of the upper bound to the exact
generalised µ value.
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This Chapter focuses on a special class of generalised µ problems involving repeated real
scalar parameters. It is shown that in this case the problem is equivalent to a standard µ

problem which is well studied and for which several numerical algorithms are applicable.
The proposed results are based on a matrix dilation technique and the redefinition of the
uncertainty structure of the transformed problem.

6.1 Analysis of Implicit systems

In the behavioural paradigm, dynamic systems are specified by the family of time trajectories
they generate with no prior need to establish a mapping between inputs and outputs [163],
[164]. The notion of implicit systems allows for a broader analysis of robust control problems
within this framework. System uncertainties can be formulated in different forms, i.e. constant
or dynamic, where the latter may be linear time invariant, linear time variant or of the
nonlinear type. The basic model of an implicit system is Gω = 0, where G is a linear
operator and ω denotes a vector signal. Robust l2 stability theory is characterised by the
parametrisation of the linear operator G(∆), where ∆ is a structured set of uncertainties,
assumed for simplicity to be norm bounded as defined in equation (6.2).

Robust stability of an implicit system can be evaluated via a Linear Fractional Trans-
formation (LFT) of a nominal system and an uncertainty structure [157]. Its canonical
form is given by equation (6.1) in which M ∈ Cn×n, N ∈ Cm×n are given matrices that
characterise the system and ∆ is a set of perturbations which in general combines different
types of structured uncertainty. This canonical representation is derived from a state-space
description in discrete time [163], [157] that leads to stability analysis under performance
constraints. In the LTI case (6.1) typically represents the uncertain implicit system at a
single frequency. The implicit system (M,N) is said to be robustly stable if:

null
(
I + ∆M

N

)
= 0, ∀∆ ∈ B∆ (6.4)

where ∆ is a set of norm-bounded structured matrices. Equivalently, (M,N) is robustly
stable if the pencil in equation (6.4) is left invertible for all ∆ ∈ B∆.

The generalised structured singular value for implicit systems is defined as follows (see
[159], [158], [157] and [163] for more details). Note that the set ∆ in the definition is restricted
to the set of real repeated scalar parameters, which corresponds to the structure considered in
this work. Although more general diagonal structures can be defined (combining real/complex
and scalar/matrix perturbations) these will not be considered here.

Definition 6.1.1 ([157]). Let M and N be real (or complex) matrices of dimension n×n and
m× n, respectively, with m ≤ n Then, the generalised structured singular value µ̂∆(M,N)
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of the implicit system is defined as:

µ̂∆(M,N) =
(

min
{
∥∆∥ : ∆ ∈∆, null

(
I + ∆M

N

)
̸= 0

})−1

(6.5)

where
∆ = {diag(δ1Ir1 , δ2Ir2 , . . . , δsIrs) : δi ∈ R, i = 1, 2, . . . , , s} (6.6)

in which
∑s

i=1 ri = n. If for all ∆ ∈∆ the nullity of the pencil is zero, then µ̂∆(M,N) = 0.

The computational difficulties of the standard µ-problem are amplified in the general
case. Thus, it is more promising to rely on the lower and upper bound calculations in this
case as well. The lower bound can be obtained by maximising the modulus of a generalised
eigenvalue of a pair of matrices over a bounded structured set. This procedure inherits the
problems of algorithms corresponding to the standard µ-problem by exhibiting multiple local
maxima [142]. Fundamental work on upper-bound estimation of the generalised µ-value has
been reported in [163], [157], [158] and [159]. Reference [159] uses the right annihilator of N ,
N⊥, to transform the nullity constraint:

null
(
I + ∆M

N

)
̸= 0⇐⇒ null(N⊥ + ∆MN⊥) ̸= 0 (6.7)

and then applies convex relaxations to calculate the upper bound of µ̂(M,N) based on a
scaling technique. Consider a set X of positive scaling matrices X that commute with the
structure of ∆, i.e.

X = diag(X1, X2, . . . , Xs), Xi = X ′
i > 0, Xi ∈ Rri×ri (6.8)

Then an upper bound of µ∆(M,N) is obtained as:

µ̂∆(M,N) = inf{β > 0 : ∃X ∈ X : M ′XM − β2X −N ′N < 0} (6.9)

Unfortunately the class of µ-simple structures for which this convex bound coincides with
the actual value of µ̂∆(M,N) is rather restricted as shown in the following result:

Theorem 6.1.1 ([159]). In the implicit case the following are simple-µ structures:

(i) {∆ = δI : δ ∈ C}.

(ii) Full real blocks: ∆ = diag(∆1, . . . ,∆F ) : ∆i ∈ Rni×ni , F ≤ 2 for M , N real.

(iii) Full complex blocks: ∆ = diag(∆1, . . . ,∆F ) : ∆i ∈ Cni×ni , F ≤ 3
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The following section develops an alternative methodology for calculating µ̂∆(M,N).
This is based on a matrix dilation technique and the transformation of the uncertainty
structure ∆. It is shown that the transformed problem is equivalent to a standard µ-problem.
This is potentially significant since, in contrast to µ̂∆(M,N) the computational load with µ

calculations is extensive.

6.2 Generalised µ-value of implicit systems

Let M ∈ Rn×n and N ∈ Rm×n with m ≤ n. The µ̂∆(M,N) problem defined in equation
(6.5) is considered here. The uncertainty structure ∆ throughout the rest of the Chapter is
assumed to be as defined in equation (6.6).

The following Lemma is standard but is included here for ease of reference.

Lemma 6.2.1. Let A ∈ Rm×n, B ∈ Rn×m with n ≥ m. Then null(In+BA) = null(Im+AB).

Proof. First note that(
In B

0m,n Im

)(
0n,n 0n,m

A AB

)(
In −B

0m,n Im

)
=
(
BA 0n,m

A 0m,m

)

Thus the two matrices: (
0n,n 0n,m

A AB

)
and

(
BA 0n,m

A 0m,m

)

are similar and hence:

λndet(λIm −AB) = λmdet(In −BA)⇔ λn−mϕAB(λ) = ϕBA(λ)

and hence
ϕIm+AB(λ) = λq

∏
i∈Z

(λ− λi(AB)− 1), Z = {i : λi(AB) ̸= −1}

and
ϕIn+BA(λ) = λq(λ− 1)n−m

∏
i∈Z

(λ− λi(AB)− 1)

Hence null(Im +AB) = null(In +BA) = q, the algebraic multiplicity of the eigenvalue λ = −1
of AB (or BA).

Theorem 6.2.1. In previously defined notation,

µ̂∆(N,M) = µ∆̃(M̃), (6.10)
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where

M̃ = P ′
(

(I +N ′N)−1M ′ N ′N(I +N ′N)−1

−M(I +N ′N)−1M ′ M(I +N ′N)−1

)
P (6.11)

in which:

∆ = {diag(δ1Ir1 , . . . , δsIrs) : δi ∈ R, i = 1, 2, . . . , s} ⊆ Rn×n (6.12)

∆̃ = {diag(δ1I2r1 , . . . , δsI2rs) : δi ∈ R, i = 1, 2, . . . , s} ⊆ R2n×2n (6.13)

and P is a permutation matrix such that diag(∆,∆) = P∆̃P ′.

Proof. From Lemma 5.3.1 (section 5.3) it follows that

ν = null
(
I + ∆M

N

)
= null


In 0 In + ∆M
0 Im N

In +M ′∆ N ′ 0


which is equivalent to:

ν = null




In 0 In

0 Im N

In N ′ 0


︸ ︷︷ ︸

Φ

+


0 In

0 0
M ′ 0


(

∆ 0
0 ∆

)(
In 0 0
0 0 M

)


(6.14)

Let ∆ ∈ ∆ and introduce a permutation matrix P such that diag(∆,∆) = Pdiag(∆̃)P ′,
∆̃ ∈ ∆̃. (This is just a “reshufling” of diag(∆,∆)). Let Φ be as defined in equation (6.14).
From Lemma 5.3.1, Φ is non-singular. Then, using Lemma 6.2.1,

ν = null

I2n + P ′
(
In 0 0
0 0 M

)
Φ−1


0 In

0 0
M ′ 0

P ∆̃


On noting (after some algebra) that

Φ−1 =


N ′N(I +N ′N)−1 −(I +N ′N)−1N ′ (I +N ′N)−1

−N(I +N ′N)−1 I −N(I +N ′N)−1N ′ N(I +N ′N)−1

(I +N ′N)−1 (I +N ′N)−1N ′ −(I +N ′N)−1


it is concluded that:

ν = null
(
In + ∆M

N

)
= null(I2n + M̃∆̃)
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where

M̃ = P ′
(

(I +N ′N)−1M ′ N ′N(I +N ′N)−1

−M(I +N ′N)−1M ′ M(I +N ′N)−1

)
P

and ∆̃ ∈ ∆̃. Furthermore, ∆ ∈∆ ⇐⇒ ∆̃ ∈ ∆̃ and ∥∆∥ = ∥∆̃∥. Since

{
null

(
In + ∆M

N

)
̸= 0, ∀∆ ∈∆

}
⇐⇒

{
det(I2n + ∆̃M̃) ̸= 0, ∀∆̃ ∈ ∆̃

}

it is concluded that:
µ̂∆(N,M) = 0 ⇐⇒ µ∆̃(M̃) = 0.

Similarly, if µ̂∆(N,M) ̸= 0 then

µ̂−1
∆ (N,M) = min

{
∥∆∥ : ∆ ∈∆, null

(
In + ∆M

N

)
̸= 0

}

= min
{
∥∆̃∥ : ∆̃ ∈ ∆̃, det(I2n + ∆̃M̃) = 0

}
= µ−1

∆̃ (M̃)

and hence µ̂∆(N,M) = µ∆̃(M̃) as required.

Theorem 6.2.1 shows that the standard µ-problem and the generalised-µ problem are
essentially equivalent. In particular, all theoretical results and numerical algorithms developed
for the solution of the former can also be applied directly to the latter. This is significant
since µ is a well studied problem, with an extensive range of theoretical and numerical work
devoted to its calculation.

The simplicity of the method can be illustrated by means of numerical examples.

Example 6.2.1. Consider the matrix pair:

M =


3 6−8
0 0 6
0 0 2

 , N =
(

0 0 1
0 0.5 2

)

The singular values of [M ′ N ′] are σ(M,N) = {11.7798, 3.9297, 0.2075}. Let ∆ be a set of
diagonal scalar perturbations:

∆ = {diag(δ1, δ2, δ3) : δi ∈ R, i = 1, 2, 3}

Let M̃ be defined as in equation (6.11). Lower and upper bounds of the structured singular
value of M̃ were obtained using MATLAB’s µ-Toolbox [145] as:

3.000000006862770 ≤ µ∆̃(M̃) ≤ 3.000000009072207
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which indicates a value µ = 3 (within an accuracy of 10−8). This indicates a distance of
γ∗ = 1

3 from the set of reduced-rank matrices. Indeed it can be easily verified if ∆ = 1
3I3, say,

the rank of [I3 −M ′∆ | N ′] is equal to 2.

Example 6.2.2. Consider now another example, where M and N are defined as:

M =
(

1 1
0 1

)
, N = (1 − 1)

Let ∆ be a set of diagonal scalar perturbations:

∆ = {diag(δ1, δ2) : δi ∈ R, i = 1, 2}

Then for ∆ ∈∆: (
I2 + ∆M

N

)
=


1 + δ1 δ1

0 1 + δ2

1 −1


loses rank if and only if there exists (x, y)′ ∈ R2, (x, y) ̸= 0 such that

1 + δ1 δ1

0 1 + δ2

1 −1


(
x

y

)
= 0

which implies that x = y ̸= 0, δ1 = −1
2 and δ2 = −1. Thus µ̂∆(N,M) = 1. Next write


I2 02,1 I2 + ∆M

01,2 1 N

I2 +M ′∆ N ′ 0

 =



1 0 0 1 + δ1 δ1

0 1 0 0 1 + δ2

0 0 1 1 −1
1 + δ1 0 1 0 0
δ1 1 + δ2 −1 0 0


which can be decomposed as


I2 02,1 I2 + ∆M

01,2 1 N

I2 +M ′∆ N ′ 0

 =



1 0 0 1 0
0 1 0 0 1
0 0 1 1 −1
1 0 1 0 0
0 1 −1 0 0


+



0 0 0 δ1 δ1

0 0 0 0 δ2

0 0 0 0 0
δ1 0 0 0 0
δ1 δ2 0 0 0


Then Theorem 6.2.1 says that µ̂∆(N,M) = µ∆̃(M̃) where
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M̃ =


1 0 0 0 0
0 0 0 1 1
0 1 0 0 0
0 0 0 0 1





1 0 0 1 0
0 1 0 0 1
0 0 1 1 −1
1 0 1 0 0
0 1 −1 0 0



−1

0 1 0 0
0 0 0 1
0 0 0 0
1 0 0 0
1 0 1 0


and

∆̃ = {diag(δ1, δ1, δ2, δ2); δ1, δ2 ∈ R}

The singular values of M̃ are:

{3.29623546, 0.78314066, 0.69807278, 0.18497798}

Setting ∆ = diag(−1
2 ,−

1
2 ,−1,−1) verifies that det(I4 + M̃∆) = 0 so that µ∆̃(M̃) ≥ 1. Using

Matlab’s mussv function gives the convex upper bound of µ∆̃(M̃) ≤ 1.000599. Thus,

1 ≤ µ∆̃(M̃) ≤ 1.000599 (6.15)

Using the symbolic Matlab toolbox the solutions of equation det(I4 + M̃∆) = 0 are
obtained as

δ2 = −1± i 2δ1 + 1√
δ2

1 + 2δ1 + 2

and hence the only real solutions are δ1 = −1
2 and δ2 = −1 as expected. Thus, µ∆̃(M̃)

coincides with the lower bound given in equation (6.15) and is equal to µ∆(N,M).

Remark 6.2.1. The proposed analysis of overconstrained systems, motivated by the implicit
uncertainty structure, can be applied to general controllability (observability) pencils.

6.3 Summary

Motivated by the structured singular value approach, developed in Chapter 5, an extension of
the computational methodology that is defined as a special case of the distance problems that
also appeared in the analysis of implicit systems is presented. Since the general controllability
(observability) problem is specified as the distance of [sI −A, B] to rank deficiency, then it
can be also reviewed as an overconstrained problem, where perturbations in the pair (A,B)
are restricted as (A+ ∆, B). However, such a description requires optimisation over all s ∈ C,
which is a difficult task and will be studied in future work. However, the advantage of the
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proposed generalised approach has found application in the analysis of the implicit systems
presented in this Chapter.

Thus, an alternative framework for calculating the structured singular value of implicit
systems in the case of real scalar repeated perturbations is proposed. By dilating the
problem it is shown that it is equivalent to a standard structured singular value calculation
for which extensive numerical algorithms are available. The proposed approach applies
to implicit systems described by both real and complex data; analysis of the latter is
presented in Appendix B. Extensions to more general classes of uncertainty are currently
under investigation.

A wide variety of control problems can be studied using the proposed strategy. Structured
constrained µ analysis seems to show promising results and continues to be developed.
Computation of the implicit uncertainties with various block structures of ∆ is also of
particular interest. Moreover, robust performance criteria defined with respect to the
structured bounded perturbations along with the computational framework can be performed
as an optimisation procedure and might establish a link with the generalised methodology of
the µ-bounds with imposed constraints.



Chapter 7

Conclusion

7.1 Conclusions and future work

The current work develops and presents an alternative framework for evaluating the distance
to uncontrollability, unobservability and specifies methodologies for the solution of distance
problems that appear in the area of Control Design and Robust Stability analysis.

The contributions of the thesis can be summarised as follows:

(i) Chapter 3 was devoted to the problem of modal measurement of controllability, observ-
ability and studies the problem of actuator/sensor location based on angles between
the eigenvectors of the state matrix and the input/output vectors (columns of the input
matrix or rows of the output matrix, respectively). The problem of modal controllability
(observability) appears in a variety of Engineering disciplines, however the already
existing approaches found in the literature do not consider evaluation of the optimal
structure of sensors and actuators in order to improve systems behaviour and increase
controllability and observability properties. Thus, the framework developed in the
present work demonstrates that the solution for the best structure selection can be
defined as the problem optimising the direction of the input, output vectors of nearly
uncontrollable, unobservable modes respectively can lead to a better IO structure. It
has been demonstrated that for a simple SISO system the solution can be found with
respect to the geometric interpretation, while for the higher order dimensional systems,
as well as the MIMO systems it is appropriate to evaluate a linear programming problem
that can be used in order to obtain the desired systems measures.

(ii) The problem of invariant measures of uncontrollability and unobservability has been
highlighted in Chapter 4. As the sensitivity of systems properties, studied in the work,
changes with respect to the feedback transformations it is required to evaluate an
alternative measure that would remain invariant under the state feedback and output
injection. Hence, Chapter 4 suggests to study the invariant distance to uncontrollability,
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unobservability in the projective space using the notions of Exterior Algebra that leads
to a novel alternative approach of invariant systems properties. It is demonstrated that
the problem falls into two categories, the boundary case (LIDP), where the distance
is exact and Quadratic Plücker Relations are always satisfied, and the general case
(GIDP), when the quadratic conditions have to be imposed as constraints in order
to ensure decomposability of the resulting multivectors. If the resulting vector is not
free, it is necessary to implement an additional optimisation procedure in order to
find the “approximate” decomposable multivector. For this problem a wide range of
techniques and procedures have been developed in the literature [117], [116], [118],
[45]. However, existing methodologies are beneficial for the numerical polynomial
multivectors, while in the case of multivectors derived from the Restricted Matrix
Pencils the problem becomes more complicated. Minimisation of the distance between
two multilinear polynomials with imposed constraints is a NP-hard problem and require
additional research that will be fully addressed in future work. Moreover, there is
still an open research problem of evaluating the “best” approximate decomposable
polynomial, where the gap is minimised. This is definitely a complex problem and also
provides perspectives for future research.

Nevertheless, the main result of Chapter 4, stated in the corollaries, evaluates the
invariant distance measure as the distance of the Sylvester matrix SP , structured from
the corresponding generator of polynomials k ∈ Rp, k ∈ Rm, from rank deficiency.
Presented framework of the invariant distance measure is a novel approach in Con-
trol Theory. Such a statement gives rise to a new problem of calculating the best
“approximate” GCD of a set of polynomials has been addressed in details in Chapter 5.

(iii) Computational procedures of greatest common divisors and, in particular, “approximate”
common roots is a complicated mathematical problem due to the non-generic nature
and it founds applications in a variety of Engineering disciplines. The problem of
“approximate” GCD was extensively studied in Chapter 5 resulting into two independent
solutions, in particular the “alternating” projection algorithm and the structured singular
value approach. The former method avoids significant complexity in the “approximate”
GCD calculations by separating the nonlinear problem into two linear sub-problems
that are solved iteratively. It has been demonstrated that the method seems to be
robust with smooth convergence to the optimal solution in comparison to the standard
nonlinear least squares approaches. In addition, “alternating” projection algorithm in
principle can be extended to a robust least squares methodology. The future work leads
to applying proposed algorithm for the minimisation problem, where residual error
matrix is defined as E = SPΦλ− [0k | SP∗ ] and Φλ is a Toeplitz matrix representation,
corresponding to the inverse of Φ̂λ.
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The latter method, presented in Chapter 5 for the GCD problem based on the µ-value
is a powerful tool in the Robust Control area. The method is generalised and applied
to the calculation of the “approximate” GCD of an arbitrary set of polynomials that
leads to the notion of “generalised structured singular value”. It has been highlighted
that for the arbitrary number of polynomials some technical difficulties arise that
require additional matrix transformations in order to bring the problem to the standard
µ-value form that has already established computational frameworks. The simplicity
of the structured singular value approach provided motivation to explore potential
applications of the proposed solution. Thus, a constraint structured uncertainty problem
was introduced and analysed.

(iv) The approach in Chapter 6 extended the proposed structured singular value solution
to the special case of over-constrained systems. Such a description is used for robust
stability analysis of implicit systems. The present work suggests to carry out matrix
reshuffling prior the computation that develops solution of the generalised-µ problem
that is equivalent to the standard structured singular value one.

Moreover, the proposed generalised µ-value computational procedure has potential
application for the general problem of uncontrollability that can be stated in the general
form as

d(A,B) = min{∥∆A,∆B∥ : (A+ ∆A,B + ∆B) is uncontrollable} (7.1)

or equivalently
d(A,B) = min

s∈C
σn([A− sI, B])

It gives rise to an alternative approach of studying the invariant distance of un-
controllability from the perspectives of a structured uncertainty set ∆, such that
d(A,B) = min{∥∆∥ : (A + ∆A,B) is uncontrollable}, details of which will be pre-
sented in future work.

(v) Some problems that lead to µ-value calculations can be NP-hard. The possibility of
exploring structured distance to uncontrollability, proposed by [66] is of the particular
interest. Traditionally, the norm of uncertainties in the entries of A and B denotes the
measure of how much the system is perturbed before it becomes uncontrollable. In
the problem analysed by Karow the distance is evaluated with respect to a structured
perturbation of the form

dF,G
∆ (A,B) = inf{∥∆∥ : (A+ E,B + F ) is uncontrollable, [E,F ] = F∆G,∆ ∈∆}

(7.2)
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However, the notion of the structured distance with respect to s ∈ C is computationally
difficult. This analysis opens new research directions related to the solution of the
structured distance problem, or at least the estimation of tight upper bounds.

The theoretical results as well as computational procedures developed in the thesis provide
a structured framework for evaluating novel measures to uncontrollability, unobservability and
can be used as pre-requirements for better control structure selection. It can be observed that
for an arbitrary system the problem of finding invariant measures of system properties can be
narrowed down to the analysis of the lower bound, where the constraints of the Grassmann
variety have to be satisfied. Such observations form a basis for future work and possible ways
of finding a tighter bound of the distance to uncontrollability and unobservability for the
design problem.

Finally, the proposed structured singular value approach for distance problems is not a
“typical” solution and can be used as a creative mathematical approach for a variety of open
Robust Control, Systems Design and other mathematical problems.
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Appendix A

Mixed µ problem

A.1 Real µ case

In robust control and stability analysis norm-bounded uncertainties are more naturally real
than complex. Thus the importance of real structured singular value arises.

The mixed µ problem follows the similar approach considering complex matrix and purely
real perturbations. In order to introduce it let M ∈ Cn×m, n ≥ m be complex where
M = X + iY , where X,Y ∈ Rn×m are real and complex parts respectively. The real µ case,
say µR(M), is defined as

µR(M) = inf{∥∆∥R : ∆ ∈∆, det(I −∆M) = 0}−1 (A.1)

It is possible to separate complex and real parts of M , i.e. MR =
[
X −Y
Y X

]
, leading to

the alternative interpretation of the µ-value [142] as follows:

det(I −∆M) = 0⇔ det(I −∆M)R = det
(
I2n −

[
∆ 0
0 ∆

] [
X −Y
Y X

])
= 0. (A.2)

where ∆ is assumed to be a block diagonal repeated real scalar perturbations ∥diag(∆,∆)∥∆ =
∥∆∥.

Definition A.1.1. For A ∈ Rm×n consider ker(A) = {x ∈ Rn, Ax = 0}, then null(A) =
dim{ker(A)} having rank(A) + null(A) = n according to the rank-nullity theorem .

Lemma A.1.1. Let M = X + iY ∈ Cn×m, X ∈ Rn×m, Y ∈ Rn×m and n ≥ m. Then
rank(M) < m if and only if

rank
{(

X −Y
Y X

)}
< 2m (A.3)
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Proof. Let rank(M) < m, then ∃ α+ iβ ∈ Cm, α+ iβ ̸= 0, α ∈ Rm, β ∈ Rm, such that

(X + iY )(α+ iβ) = 0 ⇐⇒
Xα− Y β = 0
Y α+Xβ = 0

}
⇐⇒

⇐⇒
(
X −Y
Y X

)(
α

β

)
=
(

0
0

)

and result follows since α+ iβ ̸= 0 if and only if (α′, β′) ̸= 0.

Considering Lemma A.1.1 and the augmented structure of a given matrix M ∈ Cn×m

some useful properties are highlighted below.

Lemma A.1.2. Let A ∈ Rn×m, B ∈ Rm×n. Then

null(In +AB) = null(Im +BA). (A.4)

Proof. Since the non-zero eigenvalues of (AB) and BA are identical null(In +AB) = null(Im +
BA), the number of eigenvalues of AB (or equivalently BA) is equal to -1.

Let M ∈ Cn×m, n ≥ m, M = X + iY, X, Y ∈ Rn×m and say that there exists such a
set

∆ = {∆ = diag(δ1Ir1 , . . . , δsIrs} (A.5)

where
∑s

i=1 ri = n. Then Problem 5.3.1 (section 5.3) is reformulated as a real structured
singular value problem that seeks to find such a ∆ that

µR∆(M) = inf{∥∆∥ : ∆ ∈∆, det(I −∆M) = 0}−1 (A.6)

unless det(I −∆M) ̸= 0, ∀∆ ∈∆ in which case µR∆(M) = 0.

Lemma A.1.3. Let M = X+iY ∈ Cn×m, X, Y ∈ Rn×m and n ≥ m. Then det(I−∆M) = 0
if and only if

det
{
I2n −

(
∆ 0
0 ∆

)(
X −Y
Y X

)}
= 0. (A.7)
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Proof. Assume that det(I −∆M) = 0. Then ∀ξ = α+ iβ, α, β ∈ Rm, ξ ̸= 0 the following
holds

∆Mξ = θ ⇐⇒ ∆(X + iY )(α+ iβ) = α+ iβ,

(
α

β

)
̸= 0

⇐⇒
∆Xα−∆Y β = α

∆Y α+ ∆Xβ = β

}
,

(
α

β

)
̸= 0

⇐⇒
(I −∆X)α+ ∆Y β = 0
−∆Y α+ (I −∆X)β = 0

}
,

(
α

β

)
̸= 0

⇐⇒
(
I −∆X ∆Y
−∆Y I −∆X

)(
α

β

)
= 0,

(
α

β

)
̸= 0

⇐⇒
{(

I 0
0 I

)
−
(

∆ 0
0 ∆

)(
X −Y
Y X

)}(
α

β

)
= 0,

(
α

β

)
̸= 0

⇐⇒ det
{
I2n −

(
∆ 0
0 ∆

)(
X −Y
Y X

)}
= 0.

And this completes the proof.

Theorem A.1.1. Let M = X + iY ∈ Cn×m, where X,Y ∈ Rn×m and rank(M) = m. Let
also Θ ∈ Rn×k, Z ∈ Rk×m and ∆ ∈∆ ∩ Rk×k and define

γ = inf−1
{
∥∆∥ : ∆ ∈∆ ∩ Rk×k, rank(M + Θ∆Z) < m

}
(A.8)

unless rank(M + Θ∆Z) = m for all ∆ ∈∆ ∩ Rk×k, in which case γ = 0. Then

γ = µ∆̃∩R4k×4k(M̃), (A.9)

where ∆̃ = {diag(δ1I4r1 , . . . , δsI4rs) : δi ∈ R} and M̃ = PΘE−1ΓP ′, where

E =


I 0 X −Y
0 I Y X

X ′ Y ′ 0 0
−Y ′ X ′ 0 0

 , Γ =


0 0 Θ 0
0 0 0 Θ
Z ′ 0 0 0
0 Z ′ 0 0

 ,

Θ =


Θ′ 0 0 0
0 Θ′ 0 0
0 0 Z 0
0 0 0 Z


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and P is the permutation matrix, such that

P (I4 ⊗∆)P ′ = ∆̃ = diag(δ1I4r1 , . . . , δsI4rs). (A.10)

Proof. Write M + Θ∆Z = (X + Θ∆Z) + iY , where X + Θ∆Z, Y ∈ Rn×m. Then

rank(M + Θ∆Z) < m ⇐⇒ rank
(
X + Θ∆Z −Y

Y X + Θ∆Z

)
< 2m

Separating real and complex parts respectively we get

det


I 0 X + Θ∆Z −Y
0 I Y X + Θ∆Z

X ′ + Z ′∆Θ′ Y ′ 0 0
−Y ′ X ′ + Z ′∆Θ′ 0 0

 = 0

⇐⇒ det




I 0 X −Y
0 I Y X

X ′ Y ′ 0 0
−Y ′ X ′ 0 0

+


0 0 Θ∆Z 0
0 0 0 Θ∆Z

Z ′∆Θ′ 0 0 0
0 Z ′∆Θ′ 0 0




= 0

⇐⇒ det




I 0 X −Y
0 I Y X

X ′ Y ′ 0 0
−Y ′ X ′ 0 0


︸ ︷︷ ︸

E

+

+


0 0 Θ 0
0 0 0 Θ
Z ′ 0 0 0
0 Z ′ 0 0


︸ ︷︷ ︸

Γ


∆ 0 0 0
0 ∆ 0 0
0 0 ∆ 0
0 0 0 ∆




Θ′ 0 0 0
0 Θ′ 0 0
0 0 Z 0
0 0 0 Z


︸ ︷︷ ︸

Θ


= 0

Introduce the permutation matrix P such that

P (I4 ⊗∆)P ′ = ∆̃ = diag(δ1I4r1 , . . . , δsI4rs).



A.1 Real µ case 127

Then

det(E + Γ(I4 ⊗∆)Θ) = 0 ⇐⇒

det(E + ΓP ′∆̃PΘ) = 0 ⇐⇒

det(I + E−1ΓP ′∆̃PΘ) = 0 ⇐⇒

det(I + PΘE−1ΓP ′︸ ︷︷ ︸
M̃

∆̃) = 0 ⇐⇒

det(I + M̃∆̃) = 0.

Equivalently ∥∆∥ = ∥∆̃∥, where ∆ ∈∆ ∩ Rk×k and ∆̃ ∈ ∆̃ ∩ R4k×4k respectively. Then it is
possible to define two cases:

(i) If rank(M + Θ∆Z) = m, ∆ ∈∆ ∩ Rk×k, then det(I + M̃∆̃) ̸= 0, ∀∆̃ ∈ ∆̃ ∩ R4k×4k.
In which case

γ = µ∆̃∩R4k×4k(M̃) = 0.

(ii) If rank(M + Θ∆Z) < m, then

γ =inf−1
{
∥∆∥ : ∆ ∈∆ ∩ Rk×k, rank(M + Θ∆Z) < m

}
=inf

{
∥∆̃∥ : ∆̃ ∈ ∆̃ ∩ R4k×4k, det(I + M̃∆̃) = 0

}
=µ∆̃∩R4k×4k(M̃).

Note that

E =
(

I M̃

M̃ ′ 0

)
,where M̃ =

(
X −Y
Y X

)

has full column rank equal to 2m. Hence,(
I M̃

M̃ ′ 0

)
=
(
I − M̃(M̃ ′M̃)−1M̃ ′ M̃(M̃ ′M̃)−1

(M̃ ′M̃)−1M̃ ′ −(M̃ ′M̃)−1

)
,

where

M̃ ′M̃ =
(

X ′ Y ′

−Y ′ X ′

)(
X −Y
Y X

)
=
(

X ′X + Y ′Y −X ′Y + Y ′X

−Y ′X +X ′Y X ′X + Y ′Y

)

is invertible. Moreover, note that M̃ ′M̃ =

 A B

B′ A

, where A = A′ > 0 and B +B′ = 0

(skew-symmetric).
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A.2 General µ problem

Apparently the case of complex data and complex perturbations is considerably more
complicated when the augmented structure of M is taken into account. Let M ∈ Cn×m, n ≥ m,
then the matrix representation with respect to (5.25) is

A =
(

In M

M∗ 0m

)
∈ C(n+m)×(n+m), (A.11)

where M∗ is a complex conjugate transpose. Then, it is required to find ∆̃ ∈∆ ∩ Ck×k to
be a block diagonal matrix ∆̃ = diag(∆,∆∗) such that det(I − ∆̃M̃) = 0. For the real and
mixed cases of µ∆̃ it is obvious that ∆ = ∆′∩R, while for the complex case there are different
blocks of structured perturbations ∆ ̸= ∆∗. At the moment the case of µC∆(M),M ∈ Cn×m

of the generalised problem is not solved exactly. However, it can be shown that alternatively
µC∆ can be transferred to analysis of µ problem.

Lemma A.2.1. Let M = X + iY ∈ Cn×m, X, Y ∈ Rn×n with n ≥ m. If there exists
∆ = ∆R + i∆I , then det(I −∆M) = 0 if and only if the following holds

det
{
I2n −

(
∆R −∆I

∆I ∆R

)(
X −Y
Y X

)}
= 0. (A.12)

Proof. The proof of (A.2.1) follows the same path as argued in (A.1.3). Assume now that
det(I −∆M) = 0. Then ∀ξ = α+ iβ, α, β ∈ Rm, ξ ̸= 0 the following holds

∆Mξ = θ ⇐⇒ (∆R + i∆I)(X + iY )(α+ iβ) = α+ iβ,

(
α

β

)
̸= 0

⇐⇒
(∆RX −∆IY )α− (∆RY + ∆IX)β = α

(∆RY + ∆IX)α+ (∆RX −∆IY )β = β

}
,

(
α

β

)
̸= 0

⇐⇒
(I −∆RX + ∆IY )α+ (∆RY + ∆IX)β = 0
−(∆RY + ∆IX)α+ (I −∆RX + ∆IY )β = 0

}
,

(
α

β

)
̸= 0

⇐⇒
(
I −∆RX + ∆IY (∆RY + ∆IX)
−(∆RY + ∆IX) I −∆RX + ∆IY

)(
α

β

)
= 0,

(
α

β

)
̸= 0

⇐⇒ det
{
I2n −

(
∆R −∆I

∆I ∆R

)(
X −Y
Y X

)}
= 0.
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Theorem A.2.1. Let M = X + iY ∈ Cn×m, where X,Y ∈ Rn×m and rank(M) = m. Let
also Θ ∈ Rn×k, Z ∈ Rk×m and ∆ ∈∆ ∩ R2k×2k and define

γ = inf−1
{
∥∆∥F : ∆ ∈∆ ∩ R2k×2k, rank(M + Θ∆Z) < m

}
(A.13)

unless rank(M + Θ∆Z) = m for all ∆ ∈∆ ∩ R2k×2k, in which case γ = 0. Then

γ = µ∆̃∩R8k×8k(M̃), (A.14)

where ∆̃ = {diag(δ1I4r1 , . . . , δsI4rs , γ1I4r1 , . . . , γsI4rs) : δi, γi ∈ R} and M̃ = PΘE−1ΓP ′,
where

E =


I 0 X −Y
0 I Y X

X ′ Y ′ 0 0
−Y ′ X ′ 0 0

 , Γ =


Θ 0 0 0 Θ 0 0 0
0 Θ 0 0 0 Θ 0 0
0 0 Z ′ 0 0 0 Z ′ 0
0 0 0 Z ′ 0 0 0 Z ′

 ,

Θ =



0 0 Z 0
0 0 0 Z

Θ′ 0 0 0
0 Θ′ 0 0
0 0 0 −Z
0 0 Z 0
0 Θ′ 0 0
−Θ′ 0 0 0


and P is the permutation matrix, such that

P (I8 ⊗∆)P ′ = ∆̃ = diag(I4 ⊗∆R, I4 ⊗∆I)

= diag(δ1I4r1 , . . . , δsI4rs , γ1I4r1 , . . . , γsI4rs) : δi, γi ∈ R). (A.15)

Proof. Let perturbations be applied for the complex and real parts respectively M + Θ∆Z =
(X + Θ∆RZ) + i(Y + Θ∆IZ), where X + Θ∆RZ, Y + Θ∆IZ) ∈ Rn×m. Then

rank(M + Θ∆Z) < m ⇐⇒ rank
(
X + Θ∆RZ −Y −Θ∆IZ

Y + Θ∆IZ X + Θ∆RZ

)
< 2m
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Separating real and complex parts respectively we get

det




I 0 X + Θ∆RZ −Y −Θ∆IZ

0 I Y + Θ∆IZ X + Θ∆RZ

X ′ + Z ′∆RΘ′ Y ′ + Z ′∆IΘ′ 0 0
−Y ′ − Z ′∆IΘ′ X ′ + Z ′∆RΘ′ 0 0




= 0

⇐⇒ det




I 0 X −Y
0 I Y X

X ′ Y ′ 0 0
−Y ′ X ′ 0 0

+


0 0 Θ∆RZ −Θ∆IZ

0 0 Θ∆IZ Θ∆RZ

Z ′∆RΘ′ Z ′∆IΘ′ 0 0
−Z ′∆IΘ′ Z ′∆RΘ′ 0 0




= 0

⇐⇒ det




I 0 X −Y
0 I Y X

X ′ Y ′ 0 0
−Y ′ X ′ 0 0


︸ ︷︷ ︸

E

+

+


Θ 0 0 0 Θ 0 0 0
0 Θ 0 0 0 Θ 0 0
0 0 Z ′ 0 0 0 Z ′ 0
0 0 0 Z ′ 0 0 0 Z ′


︸ ︷︷ ︸

Γ

(
I4 ⊗∆R 0

0 I4 ⊗∆I

)



0 0 Z 0
0 0 0 Z

Θ′ 0 0 0
0 Θ′ 0 0
0 0 0 −Z
0 0 Z 0
0 Θ′ 0 0
−Θ′ 0 0 0


︸ ︷︷ ︸

Θ



= 0

Then the proof is identical to that of in Theorem A.1.1 (section A.1), where the above
equation is equivalent to det(I + M̃∆̃) = 0.

Remark A.2.1. The proposed alternative methods for complex matrices deal with the
higher dimensional R2k×2k or R4k×4k augmented structures that increase complexity of the
computations. The problem of finding the distance to the nearest common root of many
polynomials can be analysed with respect to the estimated bound of the structured singular
value under the assumption that the perturbation structure is negligible. For the case of
non-repeated largest singular values a fast upper bound can be easily evaluated by solving a
convex optimisation problem [165]. Geometric equivalence of the problem corresponds to
calculation of the extreme point of zonotope that will be presented in future work.
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A.3 Numerical Examples

In this section the obtained results are demonstrated by means of simple numerical examples.
Calculations are carried out in MATLAB using the existing mu.m function in order to
compute the structured singular values of the given matrices. To avoid tremendous structures
of the augmented matrix and compatible structured matrices Θ and Z, Sylvester matrices
will only be specified and the computational results, leaving the rest for the reader to observe
and compute from the Theorems provided in the main part of the thesis.

Example A.3.1. (Complex-Real) Let the given set of coprime polynomials be complex with
the Sylvester matrix given below

SR =



1.0000 + 0.0000i 0.0172− 0.7530i 0.2312 + 0.0300i 0.0000 + 0.0000i
0.0000 + 0.0000i 1.0000 + 0.0000i 0.0172− 0.7530i 0.2312 + 0.0300i
1.0000 + 0.0000i 0.2338 + 0.4280i 0.9850− 0.0673i 0.0000 + 0.0000i
0.0000 + 0.0000i 1.0000 + 0.0000i 0.2338 + 0.4280i 0.9850− 0.0673i
1.0000 + 0.0000i 0.7996 + 0.4574i 0.3689− 0.1840i 0.0000 + 0.0000i
0.0000 + 0.0000i 1.0000 + 0.0000i 0.7996 + 0.4574i 0.3689− 0.1840i


and restrict perturbations of ∆ to be real. Then the problem of finding the nearest common
root is equivalent to the real structured singular value problem as demonstrated in Theorem
A.1.1 (section A.1). Pulling out the structure for the µ-analysis the structured perturbations
are computed as:

γ∗ = (−0.0232,−0.3311, 0.0420,−0.3309,−0.3309, 0.3153)

It can be evaluated that the perturbed set of polynomials have a common root at s =
−0.0617 + 0.6147i that is obtained by applying structured perturbations, i.e. ∥∆∥ = 0.3311

Example A.3.2. (Complex-Complex) Consider a set of complex polynomials with the
corresponding non-singular Sylvester matrix

SC =



1.0000 + 0.0000i 0.1017− 0.5718i 0.9954− 0.2500i 0.0000 + 0.0000i
0.0000 + 0.0000i 1.0000 + 0.0000i 0.1017− 0.5718i 0.9954− 0.2500i
1.0000 + 0.0000i 0.0620− 1.3380i 0.2982 + 0.0303i 0.0000 + 0.0000i
0.0000 + 0.0000i 1.0000 + 0.0000i 0.0620− 1.3380i 0.2982 + 0.0303i
1.0000 + 0.0000i 0.7614− 0.7006i 0.6311− 1.6305i 0.0000 + 0.0000i
0.0000 + 0.0000i 1.0000 + 0.0000i 0.7614− 0.7006i 0.6311− 1.6305i


Allow now perturbations to be complex that is equivalent to the general structured singular
value problem. Separating real and imaginary parts of SC with respect to Theorem A.2.1
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(section A.2) the set of structured perturbations is obtained

γ∗
R = (−0.0547, 0.0977,−0.1207,−0.1207, 0.1207, 0.1207)

for real part of the perturbations and

γ∗
C = (−0.0831,−0.0775, 0.0348,−0.1207,−0.1207, 0.1207)

for complex part respectively. Then the minimal magnitude complex perturbations in the
coefficients of the polynomials are defined with respect to the Frobenius norm as ∥∆∥F =
1.1333.



Appendix B

Generalised implicit µ problem

Consider now M ∈ Cn×n and ∆ ∈ Rn×n. Then we have the following result:

Lemma B.0.1. Let M = X + iY ∈ Cn×n, X ∈ Rn×n, Y ∈ Rn×n and ∆ ∈ Rn×n. Then
det(I + ∆M) = 0 if and only if

det
{
I2n +

(
∆ 0
0 ∆

)(
X −Y
Y X

)}
= 0. (B.1)

Proof. Assume that det(I + ∆M) = 0. Then there exists ξ = α+ iβ ∈ Cn, α, β ∈ Rn, ξ ̸= 0
such that

∆Mξ = −ξ ⇐⇒ ∆(X + iY )(α+ iβ) = −α− iβ,
(
α

β

)
̸= 0

This is further equivalent to:

∆Mξ = −ξ ⇐⇒
∆Xα−∆Y β = −α
∆Y α+ ∆Xβ = −β

}
,

(
α

β

)
̸= 0

⇐⇒
(
I + ∆X −∆Y

∆Y I + ∆X

)(
α

β

)
= 0,

(
α

β

)
̸= 0

⇐⇒ det
{
I2n +

(
∆ 0
0 ∆

)(
X −Y
Y X

)}
= 0.

This completes the proof.

The following Lemma is a direct consequence of Lemma B.0.1:
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Lemma B.0.2. Let M = X + iY ∈ Cn×n, X ∈ Rn×n, Y ∈ Rn×n, N = A + iB ∈ Cm×n,
A ∈ Rm×n, Y ∈ Rm×n with m ≤ n and ∆ ∈ Rn×n. Then:

null
(
In + ∆M

N

)
̸= 0 ⇐⇒ null


In + ∆X −∆Y

∆Y In + ∆X
A −B
B A

 ̸= 0 (B.2)

Proof. Note that:

null
(
In + ∆M

N

)
̸= 0 ⇐⇒ ∃x ̸= 0, x ∈ N (I + ∆M) ∩N (N)

From Lemma B.0.1 this is equivalent to the existence of a vector ξ ̸= 0 such that:

(
I2n + (I2 ⊗∆)

(
X −Y
Y X

))
ξ = 0 and

(
A −B
B A

)
ξ = 0

which is also equivalent to the condition stated in the RHS of equation (B.2).

The next Theorem generalised Theorem 6.2.1 to the case of complex M and N matrices.
The solution involves only real data. This is achieved at the expense of dilating the uncertainty
structure.

Theorem B.0.1. Let M = X + iY ∈ Cn×n, N = A + iB ∈ Cm×n, where X ∈ Rn×n,
Y ∈ Rn×n, A ∈ Rm×n, B ∈ Rm×n and m ≤ n. Then,

µ̂∆(M,N) = µ∆̃(M̃) (B.3)

where

M̃ = P ′
(

(I2m + Ñ ′Ñ)−1Ω Ñ ′Ñ(I2m + Ñ ′Ñ)−1

−Ω(I2m + Ñ ′Ñ)−1Ω′ Ω(I2m + Ñ ′Ñ)−1

)
P, (B.4)

∆ is defined in equation (6.6), ∆̃ = {diag(δ1I4r1 , . . . , δsI4rs) : δi ∈ R}, P is a permutation
matrix such that P (I4 ⊗∆)P ′ = ∆̃,

Ñ =
(
A −B
B A

)
and Ω̃ =

(
X −Y
Y X

)
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Proof. Applying Lemma B.0.2 gives:

ν = null
(
In + ∆M

N

)
̸= 0 ⇐⇒ null


In + ∆X −∆Y

∆Y In + ∆X
A −B
B A

 ̸= 0

and hence from Lemma 5.3.1, ν ̸= 0 if and only if, assuming that ∆ ∈∆:

ν = null



In 0 0 0 In + ∆X −∆Y
0 In 0 0 ∆Y In + ∆X
0 0 Im 0 A −B
0 0 0 Im B A

In +X ′∆ Y ′∆ A′ B′ 0 0
−Y ′∆ In +X ′∆ −B′ A′ 0 0


̸= 0

This is equivalent to:

null


Φ +



0 0 0 0 ∆X −∆Y
0 0 0 0 ∆Y ∆X
0 0 0 0 0 0
0 0 0 0 0 0

X ′∆ Y ′∆ 0 0 0 0
−Y ′∆ X ′∆ 0 0 0 0




̸= 0 (B.5)

where we have defined:

Φ =



In 0 0 0 In 0
0 In 0 0 0 In

0 0 Im 0 A −B
0 0 0 Im B A

In 0 A′ B′ 0 0
0 In −B′ A′ 0 0


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Note that from Lemma 5.3.1 matrix Φ is nonsingular. The second matrix in equation (B.5)
can be factored as:

0 0 In 0
0 0 0 In

0 0 0 0
0 0 0 0
X ′ Y ′ 0 0
−Y ′ X ′ 0 0


(I4 ⊗∆)


In 0 0 0 0 0
0 In 0 0 0 0
0 0 0 0 X −Y
0 0 0 0 Y X



Next define permutation matrix P such that

P (I4 ⊗∆)P ′ = ∆̃ = diag(δ1I4r1 , . . . , δsI4rs)

(this is just a reshuffling of the diagonal entries of I4 ⊗∆). Using Lemma (6.2.1) then shows
that ν ̸= 0 if and only if null(I4n + M̃∆̃) ̸= 0 where

M̃ = P ′


In 0 0 0 0 0
0 In 0 0 0 0
0 0 0 0 X −Y
0 0 0 0 Y X

Φ−1



0 0 In 0
0 0 0 In

0 0 0 0
0 0 0 0
X ′ Y ′ 0 0
−Y ′ X ′ 0 0


P

Using the definitions of µ and µ̂ establishes (B.3). The expression of M̃ given in equation
(B.4) follows after several intricate but straightforward calculations.
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