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Abstract 

 

Exact solutions for free vibration of thick rectangular orthotropic plates when their all edges are 

clamped are sought through asymptotic analysis of infinite systems without resorting to the usual 

truncation of series solution. The use of modified trigonometric functions made it possible to obtain a 

general solution for the problem which has the same form for all four cases of symmetry of the quarter 

plate. Thus, an infinite system of linear algebraic equations is derived for the unknown coefficients of the 

series representing the solution for each case. This is in sharp contrast to previous publications based on 

series-solution which does not allow the satisfaction of the quasi-regularity condition of the 

corresponding infinite system, and therefore, the method used earlier, was not amenable to asymptotic 

solution of the infinite system. In this investigation, the quasi-regularity of the infinite system is proved, 

but importantly, an algorithm for determining the natural frequencies of the plate based on the theorem of 

the existence of the solution for the quasi-regular system is presented. The asymptotic behaviour of the 

non-trivial solution of the homogeneous quasi-regular infinite system is ascertained by generalising the 

asymptotic law of Koialovich which essentially led to the development of the algorithm. Numerical 

examples are given with significant conclusions drawn. 

 

Keywords: thick orthotropic plate, free vibration, clamped edges, exact solution, infinite system of 
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1. Introduction 

 

A large volume of publications on vibration of thick plates can be found in the literature because of 

their importance as building blocks in modelling engineering structures. However, it should be recognized 

that for a substantial majority of cases for rectangular plates, explicit analytical solutions in the form of 

trigonometric series have been presented in the literature only when the two opposite edges of the plates 

are simply supported. For other boundary conditions, variational and/or numerical methods have 

generally been used. In particular, the free vibration of thick isotropic plates with clamped edges within 

the framework of the seventy years old Mindlin plate theory [1] was analysed around four decades ago by 

Dawe and Roufaeil [2] who used the Rayleigh-Ritz method. Some years later, Liew et al. [3] developed 

the pb-2 Rayleigh-Ritz method to analyse the free vibration behaviour of thick plates with different 

boundary conditions. By contrast, Cheung and Zhou [4] used static beam functions as the basis functions 

when applying the Rayleigh-Ritz method for free vibration analysis of thick plates. Another related, but 

different variational approach, namely, the DSC Element Method, was proposed by Xiang et al. [5] to 

investigate such problems. With the growing interest in the dynamic stiffness method (DSM) for free 

vibration analysis of structures, in which the Wittrick-Williams algorithm is generally used as solution 

technique, the investigation of clamped ended natural frequencies of structural elements which is an 

essential part of the algorithm has become very important to ensure that no natural frequency of the 

structure is missed. Exact free vibration analysis using DSM allows an infinite number of natural 

frequencies to be accounted for when all the nodes of the structure or structural elements are fully 

clamped. This has provided the main motivation for the current research which focuses on the free 

vibration analysis of thick orthotropic plates with clamped edges. In the context of a bending-torsional 

coupled beam, a similar attempt was made by Banerjee and Williams [6] who published the theory and 

the computational procedure for the computation of clamped-clamped natural frequencies of such beams. 

They emphasised the need for the computation of clamped ended natural frequencies of structural 

elements when the DSM in conjunction with the Wittrick-Williams algorithm [7-13] is used in free 

vibration analysis of structures. 

 

The vibration of a rectangular plate is often related to parametric optimization problems when 

analysing vibration resistant technical systems, and also when solving frequency attenuation problems for 

which the finite element method (FEM) is generally used. The FEM with sufficiently fine mesh allows us 

to express the dynamic characteristics of structure through the application of the approximating functions 

which are essentially shape functions or interpolating functions. With the increasing order of the natural 

frequency of vibrations, the number of elements needed as building blocks when representing and 

analysing the structure may become excessive. Because of this reason, in some industries, such as 

mechanical engineering and aerospace, the application of the FEM is sometimes limited to the low 

frequency range. Additionally, the classical FEM gives rather an obscure error in the case when the plate 
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is significantly thick (the so-called shear-locking phenomenon [14]). In this respect, considerable efforts 

have been expended by many investigators to develop methods for thick rectangular plates within the 

framework of FEM to simulate the mechanical properties of the plate more accurately. Bathe and Dvorkin 

[15] developed a refined plate element (the so-called MITC element) based on the Ritz method which 

significantly enhanced the solution of the problem. Durán et al. [16] presented a detailed mathematical 

justification for the convergence of his method in solving the free vibration of thick plates including the 

case when all plate edges were clamped. On the other hand, Kolarevic et al [17] developed the dynamic 

stiffness method (DSM) to analyse the free vibration behaviour of an assembly of thick isotropic plates. 

Gorman’s superposition method [18] to solve such problems is notably a significant contribution to the 

literature. Following the work of Kolarevic et al [17], the DSM has recently been proposed by Papkov 

and Banerjee [19] to deal with the free vibration behaviour of an assembly of thick orthotropic plates. In 

most of these approaches, approximations of some kind or other are evident, despite the analytical forms 

of the solution given by the investigators. It should be noted that the DSM solution, in contrast with the 

solution from variational approaches, is generally constructed from an infinite series of the solution of the 

governing differential equations. Of course, for practical purposes, only a finite number of terms are used 

for numerical implementation. Thus, the approximation in DSM solution arises from neglecting the 

remainders of the terms in the infinite series which represents solution. 

 

In this current study, an exact solution for the problem of natural vibration of thick orthotropic plates 

with clamped edges is presented for the first time, using a novel approach. The boundary value problem is 

essentially reduced to an infinite system of linear algebraic equations. This is achieved by taking 

advantage of some aspects of the superposition method. A detailed investigation of the infinite system 

rooted in the solution is carried out which enabled the determination of the asymptotic behaviour of the 

unknown coefficients of the general solution which has not been attempted before. This novel procedure 

allowed the use of the untruncated infinite series solution of the problem and subsequent development of 

an algorithm to compute the natural frequencies of thick orthotropic plates with clamped edges and 

recover the corresponding mode shapes. The investigation carried out is particularly relevant when the 

dynamic stiffness method is used in free vibration analysis of structures by applying the Wittrick-

Williams algorithm [7] as solution technique for which the number of clamped ended natural frequencies 

of structural elements that exists below an arbitrarily chosen trial frequency is an essential prerequisite. 

The algorithm has featured in literally hundreds of papers, see for example [7-13]. 

 

2. General solution of the governing differential equations and generation of the infinite 

systems 

Let us consider a rectangular orthotropic plate ]};[];[),{( bbaayx −×−∈  with thickness h in a right-

handed rectangular Cartesian coordinate system. The theory for free vibration analysis of thick plates was 

originally given by Mindlin [1] and subsequently the term Mindlin-plate was coined as it is well-known. 

The displacement field for a Mindlin-plate relative to its mid-surface in the usual notation is given by 
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Equation (1) leads to the derivation of the governing differential equations of motion for thick plates in 

free vibration which can be found in numerous papers and in some specialised texts. Essentially the 

derivation constitutes a system of three partial differential equations with respect to three functional 

variables, namely, the mid-plane plate deflection W0 and the angles of rotation of the mid-plane 0
xφ , 0
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about the X and Y axes, respectively. For harmonic oscillation, one can assume ti
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 in which case the time dependent terms can be 

eliminated and the equations of motion in free vibration become 
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elastic constants usually obtained from the classical lamination theory that are related to the material 

properties 211221 ν,ν,,, GEE  as follows: 
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It should be noted that according to Betty’s principle and Maxwell’s reciprocal theorem 

2112 νν EE = , i.e. the plate material properties can be described by only four elastic constants. 

For clamped edges, the boundary conditions can be prescribed as 

 0: =φ=φ=±= yxWax  (6) 

 0: =φ=φ=±= yxWby  (7) 
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The approach used here to obtain the general solution is similar, but not the same as the one 

proposed in [19] because the selected displacement functions are different. The procedure is briefly 

summarised below. Essentially, the general solution of Eqs. (2) - (4) can be represented as a sum of even 

and odd components of W, φx, φy, denoted Wkj, φx,kj, φy,kj with k and j being 0 and 1 as follows 

 ∑
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Thus, in Eq. (8), 00W  is an even function of both X and Y coordinates, 01W  is an even function of the 

coordinate Х, but an odd function of the coordinate Y, etc. Furthermore, the indices k and j denote the 

symmetry with respect to the X and Y axes, respectively, so that an index ‘0’ denotes an even function and 

‘1’ denotes an odd function. 

A formal solution for the differential equations, i.e. Eqs. (2) – (4), can be obtained by the method 

of separation of variables for each of the four cases of symmetry defined by (k, j), i.e. symmetric-

symmetric (0, 0), symmetric-antisymmetric (0, 1), antisymmetric-symmetric (1, 0) and antisymmetric-

antisymmetric (1, 1) and then summing up the solutions for all of the four individual cases. To achieve 

this objective, two trigonometric series Hk , Tj and Hj , Tk which are defined and explained later, with 

undefined coefficients lnX  and lnY   are proposed as follows 
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 It should be noted that although there are similarities in the approach used here with that used in 

Ref. [19] leading to the general solution (see Eqs. (9) – (11)) there are significant differences between the 

two approaches in the representation of displacement functions. In particular Eqs. (9) – (11) here 
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represent expansions of plate displacements with respect to the trigonometric functions 
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construction of quasi-regular infinite systems for unknown coefficients leading to an exact solution for 

the boundary value problem. The latter representation used in [19] does not permit such construction. 
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Clearly the coefficients of Eqs. (12) and (13) are dependent on the separation constants nkα  and njβ , the 

elastic constants, thickness of plate and the frequency parameters. The sixth order polynomial equations 

of Eqs. (12) and (13) can be transformed into cubic equations whose roots can be found using standard 

procedure. The procedure is facilitated by the application of Viet’s theorem [20] , see Appendix A. 

In Eqs. (9)-(11), the following notations for trigonometric and hyperbolic functions are used 

depending on the type of symmetry 
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The choice of the notation given by Eq. (19) and its usefulness can be explained by the fact that 
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In this way, the notation given in Eqs. (20) allows one to have consistent uniformity of relationship for all 

four types of symmetry of the quarter plate. 

For the chosen trigonometric system of functions, the following identity will be always true 

 0)β()α( == bTaT njjnkk  (21) 

Furthermore, the boundary conditions 0),(),(),(),( =±φ=±φ=±=± bxyabxWyaW xy  corresponding 

to all clamped edges of the plate can be satisfied exactly by asserting that the unknown coefficients of the 

series given by Eqs. (9) - (11) are related as follow 
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Substituting the expressions of Eqs. (10)- (11) into the remaining two boundary conditions 

( , ) ( , ) 0y xx b a yφ φ± = ± = , other than 0),(),(),(),( =±φ=±φ=±=± bxyabxWyaW xy ,and using the 

expansion of hyperbolic functions in terms of the system of trigonometric functions given by Eqs. (20), 

and after rearranging the order of summation on the left-hand side of the equalities, we obtain an infinite 

system of linear algebraic equations from the equality to zero of the coefficients at )}α({ xT nkk  and 

)}β({ yT njj  as shown below 
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with 
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It should be noted that when deriving the infinite system of equations, see Eqs. (23), the following 

identity arising from Vieta's theorem [20] for the roots of characteristic equations of Eqs. (12)-(13) was 

used  
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The infinite system of Eqs. (23) can now be used for an approximate, but sufficiently accurate 

computation of the eigenfrequencies and mode shapes of thick orthotropic Mindlin-plates by using well-

established and standard reduction methods as follows. (It should be noted that the results can be 

computed to any desired accuracy.) The first N equations of the system are solved relatively in terms of 

the first N unknowns, while setting the other unknowns to zero. Then the determinant of the reduced finite 

system is assumed to be an approximate dispersion equation. However, for a more detailed and accurate 

analysis of the infinite system, its regularity, and its asymptotic behavior for the solution, the system 

needs to be transformed into a more convenient form as explained below. 
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After regrouping the roots nklp ,  of the characteristic equation in the expression given by equation 

(27) for y
nξ , it is possible to express them by means of the coefficients cln of Eq. (12), so that they depend 

only on αnk, thickness h and the elastic parameters of the plate. Next, the expression for y
nξ  is rewritten in 

the following form. 
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where coefficients y
lγ  are given in Appendix B. 

Similar transformation for y
nη  allows us to obtain the following expression. 
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It should be noted that transformed expressions given by equations (28) - (29) for y
nξ  and y

nη  
have common multiplier, which makes it possible to represent the coefficients of the infinite system as 

follows. 
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Similarly, for the second part of the equations of the system can be rewritten as 
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The form of Eqs. (30) - (31) of the coefficients of infinite system originally represented by 

Eqs.(23) suggests the following changes in the unknown variables can be made 
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Then the infinite system of Eqs. (23) may be rewritten in the following canonical form 

 ∑
∞

=

=
1n

nmnm ZMZ  (m =1, 2, …) (34) 

where 

02,212,12 ==−− nmnm MM       (35) 
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and 
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It should be also noted that even though the roots of the characteristic equations Eqs. (12) - (13) 

may be complex, the coefficients Mmn of the infinite system of Eqs. (34) will be always real. Moreover, it 

is interesting to note that Mmn will be of the same sign for sufficiently large values of the indices m. 

 

3. Analysis of the infinite system of linear algebraic equations 

 

It is known [22, 23] that a homogeneous infinite system of linear algebraic equations of the 

canonical form such as the one in Eqs. (34) constitutes a regular system if the series of the moduli of the 

coefficients in each of the equations is less than one, i.e.  

11||
1

<ρ−=∑
∞

=
m

n
mnM ,   (m = 1,2,…)    (37) 

If this series does not exceed a value, which is less than one 

 111||
1

<θ−≤ρ−=∑
∞

=
m

n
mnM ,    (m= 1,2,…)  (38) 

in this case, the infinite system is called fully regular. 

 

The regular (or fully regular) infinite systems can be considered [23] as functional equations in the 

space of bounded sequences ∞ /. It can be proved [22, 23] that the fully regular system with bounded 

free members always has a unique bounded solution. Obviously, then the homogeneous infinite system 

will have only trivial solution, i.e., 0=mZ , which leads to trivial zero-solution W = ϕx = ϕy = 0 for the 

boundary value problem which corresponds to the case of fully clamped plate. Thus, for infinite systems 

arising in dynamical problems, the regularity conditions are not satisfied over the full frequency range. 

For such type of systems, a generalization of the regularity conditions is needed, and the following 

definition is proposed [23]. 
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An infinite system is called quasi-regular if there exists a number NR such that 

 
1||

1
<∑

∞

=n
mnM  (m = NR + 1, NR + 2, …); ∞<∑

∞

=1
||

n
mnM  (m = 1, 2, …, NR) (39) 

Therefore, for quasi-regular systems the condition of regularity is necessarily fulfilled for some 

number RNm >  and the analysis of quasi-regular infinite system can be reduced to a finite system of 

order RN  with help of the following change of variables 

∑
=

=
RN

l
l

l
mm ZZ

1
ξ  (m>NR)          (40) 

Because of the change in variable shown in Eq. (40), the homogeneous quasi-regular infinite 

system of Eqs. (34) reduces to a set of regular infinite systems with the same infinite matrix and different 

free members, but with the new unknowns { }∞
+= 1ξ

RNm
l
m  (l = 1, 2,…, NR) given by 

,...)2,1(,ξξ
1

++=+= ∑
∞

+=
RR

RNn
ml

l
nmn

l
m NNmMM    (41) 

For the first NR equations of the infinite system in Eqs. (34), the substitution of Eqs. (40) gives the 

following finite system of equations in terms of the first NR unknowns 
RNZZZ ,...,, 21  as 

 ∑ ∑
=

∞

+=








+=

R

R

N

n
n

Nl

n
lmlmnm ZMMZ

1 1
ξ ,  (m = 1, 2,…, NR) (42) 

The infinite series within the condition of regularity can be calculated analytically using established 

techniques, see for example, Prudnikov et al.[21]. In this respect, the notation for hyperbolic functions 

used in Eqs. (19) is helpful so that the following infinite series can be written as 
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Then for *Nm >  we have the following analytical representation for series within the condition of 

regularity 
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where N* is such a number which starts from the coefficients of system Mmn that have constant sign. 

To evaluate the upper bound of the series shown in Eqs. (44) - (45), one can use the following 

asymptotic equalities for the roots of the characteristic equations when m → ∞ 

mjlmjl Qq β, = ;  mklmkl Pp α, =  (l =1, 2, 3)      (46) 

where 2
lQ  and 2

lP  correspond to the three different branches of following cubic (limiting) equations  

 

( ) ( ) 0~~
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2
5

22
6564252

4
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26
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2
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4
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2
6425

26
652 =−−+++−−−+ kkPkkkkkkkkPkkkkkkkkkkPkkk    (48) 

 

Furthermore, using the asymptotic behavior of the relationships (Note that the coefficients Δ1m and 

Δ2m  appear in Eqs. (23) and defined in Eqs. (24)), one can write 

 
8

1,3,2,11 αΔΔ mkmkmkmkm CCC =  and 8
2,3,2,12 βΔΔ mjmjmjmjm GGG = , when ∞→m                                  (49) 

The asymptotic behaviour of the series in Eqs. (44) –(45) can now be evaluated as follows. 
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 (51) 

The validity of Eqs. (50) can be confirmed by further calculations using Eqs. (51) for any 

combinations of the problem parameters. To serve as an illustration, Fig. 1 shows the dependence of 

μ(ν)μ =  on Poisson's ratio ν for an isotropic material. It is clear from the existence of limit shown in Eqs. 

(50) suggest that the condition of regularity is necessarily fulfilled for some number RNm > .Thus, it can 

be concluded that the homogeneous infinite system given by Eqs. (34) is a quasi-regular infinite system. 
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Fig. 1. The variation of the function µ against ν and b/a for h = 0.1a 

 

It should be noted that number NR of the first set of non-regular equations of the infinite system of 

Eqs. (34) is essentially dependent upon the frequency parameter Ω, wherein for some frequency range, 

the infinite system is fully regular (NR = 0). For instance, on the basis of the data presented in Fig. 2 it can 

be argued that, for Ω ≤ 1.6, there are no natural frequencies of the plate. Actually, for this frequency 

range, the infinite system Eqs. (34), being fully regular, has a unique zero solution. As a consequence, 

there is no non-trivial solution for the boundary value problem of Eqs. (2) - (4), (6) - (7).This idea was 

first developed by Papkov and Banerjee [24]. They showed that the quasi-regular infinite system can be 

reduced to a regular infinite system if there exists a number N such that the coefficients Mmn of the system 

satisfy the following criterion  

 0ρinfρ1σmax1
1

1

11..Nj
>

ϑ−
+








−−−= ∑

∑
∑

=

=

>
==

N

i
N

n
kn

k

Nk

N

n
inijiN

M
MT  (52) 

where { }N
nknk 1,, =

σ  is the inverse of the matrix { }N
nkknkn M 1,δ =− , knδ  is Kronecker delta, kρ  and θ  are 

sequence and constant from the regularity conditions Eqs. (38) and θ0 <ϑ< . 
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Fig. 2. The effect of the number NR of non-regular equations in the infinite system of 

Eqs.(34) for 1/,1.0/ == abah , k =j =0, .86010=κ , GPaE 7.601 = , GPaG 1212 = , 

23.012 =ν , 094.021 =ν  

 

The fulfilment of the criterion given by Eqs. (52) has essentially meant that after eliminating the 

first N unknowns NZZZ ,...,, 21  from the system, the infinite system with respect to the remaining 

unknowns has become fully regular. Thus, for the homogeneous infinite system Eqs. (34), the fulfilment 

of Eqs. (52) at a certain frequency Ω guarantees that this frequency is not a natural frequency. From a 

practical standpoint, localization of the natural frequency according to criterion of Eqs. (52) requires only 

the inversion of the matrix N
nmmnmn M 1,}{ =−δ  and the summation of the series with help of Eqs. (44) -(45). 

Representative behavior for the localization of the first three natural frequencies according to the 

proposed approach for a thick square orthotropic plate (epoxy glass) is shown in Table 1. For comparison 

purposes, the last column of the table shows the values of the natural frequencies found according to the 

method of simple reduction from the approximate equation given by 

( ) 0)Ω(δdet 1, =− =
redN
nmmnmn M              (53) 

using redN  = 32. It may be seen that the results obtained with help of both methods are very close, when 

the value of N = 8. For this illustration, the lower and upper bounds of the natural frequency parameter 

agree up to three significant figure for N=4, and for N = 8, the two bounds are extremely close and the 

results using the average values of the two, are in almost complete agreement with the ones obtained by 

using the method of simple reduction. 

 

 

 



15 
 

Table 1.The first three non-dimensional natural frequency parameters Ωn for 1/,1.0/ == abah , 

.86010=κ , GPaE 7.601 = , GPaG 1212 = , 23.012 =ν , 094.021 =ν .  

Ωn Lower and upper bounds of Ωn for TN(Ω)< 0 Method of simple 

reduction N = 2 N = 4 N = 8 

Ω1 2.6376 - 2.6631 2.6511 – 2.6548 2.6528 2.6527 

Ω2 3.4698 – 3.4976 3.4851 – 3.4892 3.4873 3.4875 

Ω3 3.9496 – 3.9675 3.9587 - 3.9614 3.9602 3.9602 

 

After the natural frequency parameter is computed, it is necessary to recover the mode shapes from 

the non-trivial solution of the quasi-regular infinite system of Eq. (34).This is can be accomplished in an 

approximate, but sufficiently accurate manner, i.e. when the first unknowns NZZZ ,...,, 21  are found as 

the non-trivial solution of reduced finite system according to the approach of simple reduction method 

 

1

redN

m mn n
n

Z M Z
=

= ∑  (m =1, 2,…,Nred)   (54) 

Alternatively, all infinite sequence of unknowns can be found with the help of the asymptotic behaviour 

of the non-trivial solution quasi-regular infinite system of Eq. (34). Appropriate result for such 

investigation with respect to quasi-regular systems was published earlier by the first author [26] (The 

theorem described in [26] extended the approach of Koialovich’s Asymptotic Law [25]). 

 

By using the above decomposition of Eqs. (40)–(42) of infinite system in relation to Eqs. (34) into 

one finite linear system and the set of NR regular infinite systems, it can be observed that each of the 

infinite systems from this set will satisfy the conditions of regular systems if the following changes in 

unknowns are made 

 l
mmk

l
m

l
mmj

l
m xy λ

2
λ

12 αξ,Γβξ −−
− ==  (55) 

where )1;0[∈λ . 

Then, the unique solutions l
mx  and l

my for the transformed infinite systems will have the common 

non-zero limit as given below 

0limlim >==
∞→∞→ l

l
mm

l
mm

Kxy       (56) 

The constants λ and Γ in Eq. (55) are to be chosen in such a manner that the transformed infinite systems 

in respect to l
mx  and l

my  remain regular, but they no longer satisfy the condition of fully regularity of 

Eqs. (38), that is, the series under regularity conditions will have to tend to unity from below, i.e. from the 

bottom end. 
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Using the following asymptotical relationships when ∞→m  
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from this condition we obtain the following transcendental equation for finding of parameter λ 
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It should also be noted that Eq. (58) has unique real solution in the range )1;0[∈λ . 

 

Therefore, it is possible to obtain the asymptotic behaviour of the non-trivial solution of system of 

Eqs. (34) as follows 
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m  (59) 

where 1a  and 2a are some limiting constants.  

 Using the Eqs. (59) we can write the solution for CCCC boundary conditions in the form of an 

un-truncated infinite series as 
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where coefficients of series xn and yn are defined with help of Eqs. (32), (33) and they can be described 

for large indexes as 
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It should be noted that the above series of Eqs. (61) and (62) representing the solution of the 

boundary value problem converge sufficiently rapidly everywhere inside the plate region. Indeed, for y ≥ 

0, taking into account that Pl > 0, we can obtain the following asymptotic estimates when n → ∞ 
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i.e. for the calculation of values given in the series represented by Eqs. (60) – (62) for 0 ≤ y < b, it is 

sufficient to know only the first few of the terms, and the reminders of the infinite series have no 

significant effect on the result. Similar estimates are valid also for the series that contain hyperbolic 

functions of x. 

 Nevertheless, one of the series represented by Eqs. (61) - (62) has a weak convergence on the 

plate boundary. In particular, Eq. (61) when x = a can be written as 
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 By considering the asymptotic formulas 1-λβ −
∞= njn yy  and )(/2 ∞→β∆=∆ ∞ nb njn , it maybe 

been seen that the second trigonometric series in the expression of Eq. (65) has a weak convergence.  

Obviously, the first few terms of the series do not provide the value of the function φx,kj (a, y) with 
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sufficient accuracy. An improvement of the convergence of the series is now sought analytically using 

well-established technique [22] to give the following series with improved convergence related to the 

asymptotic behavior shown in Eq. (63).  
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for which the value of the second series for j = 0 and j = 1 can be found analytically using special 

functions as follows. 
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where ∑
∞

=
λλ =

1
)(

n

k

n
zzL  is polylogarithm function [27]. 

 

 Thus Eqs. (67) – (68) allow us to improve the convergence of series for ),(, yakjxφ  and obtain 

more accurate solution for the boundary value problem, particularly near the plate edges in comparison 

with previous methods of simple reduction [19]. The convergence of series for ),(, bxkjyφ  is also 

improved in a similar manner. To illustrate this fact, Table 2 shows fulfilling of the boundary condition 

0),(, =φ yakjx  for the first natural mode of a thick square orthotropic plate (epoxy glass) when using the 

first eight terms of the series using the previous methods and the current method. Clearly, the 

convergence is significantly improved in the current method.  
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Table 2. The fulfillment of the boundary condition 0),(, =φ yakjx  for Ω1=2.6527; 

1/,1.0/ == abah , .86010=κ , GPaE 7.601 = , GPaG 1212 = , 23.012 =ν , 094.021 =ν .  

Comparison between 
current method and 

Ref [19]  

 
φx,kj (a,y) 

 
y/b 

 
0.0 0.2 0.4 0.6 0.8 

 
Without improving 

the convergence 
(Simple reduction) 

[19] 

-0.000158 0.000156 -0.000109 0.000037 -0.000007 

 
With improving the 

convergence (current 
method) 

0.000002 0.000002 0.000002 0.000001 0.000001 

 

4. Numerical results and discussion 

 

The theory and the methodology described above were implemented in a computer program in the 

Mathematica package. The natural frequencies were computed with the help of the criteria based on Eqs. 

(52). The corresponding non-trivial solutions of the infinite system were determined using the 

decomposition of Eqs. (40) – (42), and also by taking into account the asymptotic behaviour of non-trivial 

solution of Eqs. (59). The first set of results is obtained for validation purposes. Table 3 shows the first 

seven natural frequencies of a fully clamped isotropic plate alongside the results reported in [16] that are 

based on the Ritz method. For the convenience of comparison, the frequencies are given in circular or 

angular frequency ω (rad/sec). Table 3 shows that the agreement between the results computed using the 

present method and the ones using the Ritz method of [16] is excellent, the discrepancies in the natural 

frequencies, being less than 0.3%. The natural frequencies obtained by the Ritz method turn out to be a 

little bit overestimated. This is consistent with similar observations made by previous investigator [28]. 

Table 3. Validation of the first seven natural frequencies for isotropic thick rectangular clamped 

plate with 12 m;  1 m;  143a b E GPa= = = ; 1.0/ ,6/5,35.0 === ahκν  

Case study 
ωn(rad/s) 

1 2 3 4 5 6 7 

TN(Ω)< 0 3011.78 3847.28 5301.29 7236.97 7292.36 7954.69 9169.55 

Ref.[16] 3022.32 3860.63 5319.84 7262.14 7317.79 7982.47 9201.45 

 

Following the validation of results given in Table 3, further investigation was carried out. Tables 4-

6 show the first five non-dimensional natural frequencies (Ωn, n = 1, 2,….5) of thick rectangular plates 

with all-round clamped boundary condition, computed by applying the proposed method using three 
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different materials and with varying plate geometries. Table 4 presents results when the plate is made of 

isotropic material (quartz glass) whereas the results shown in Table 5 are for orthotropic plate material 

(epoxy glass). By contrast, Table 6 shows results for an auxetic material. The authors have noted with 

great interest that there is a growing interest in unconventional materials that have negative Poisson's 

ratios. Paradoxically such materials are not some imaginary abstractions, but they can be found among 

natural materials, and they can also be created artificially as auxetic materials. The first five natural 

frequencies for a thick all round clamped plate made of an auxetic material which in fact is one of the 

forms of α-cristobalite quartz are shown in Table 6. 

Table 4. The natural frequencies Ω for CCCC isotropic plate with GPaE 6.731 = , 

1.0/ ,8601.0,17.0 ==κ=ν ah  

Ωn 1/ =ab  2/ =ab  3/ =ab  

Ω1 2.9638 2.4578 2.3888 
Ω2 4.1949 2.7917 2.5201 
Ω3 4.1949 3.3024 2.7447 
Ω4 5.0530 3.9137 3.0511 
Ω5 5.5479 3.9273 3.4176 

 

Table 5. The natural frequencies Ω for CCCC orthotropic plate with GPaE 7.601 = , 

GPaG 1212 = , 23.012 =ν , 094.021 =ν , 1.0/ ,8601.0 ==κ ah  

Ωn 1/ =ab  2/ =ab  3/ =ab  
Ω1 2.6528 2.3809 2.3481 
Ω2 3.4873 2.5566 2.4123 
Ω3 3.9602 2.8680 2.5311 
Ω4 4.4539 3.2865 2.7102 
Ω5 4.5223 3.7697 2.9444 

 

Table 6. The natural frequencies Ω for CCCC auxetic plate GPaE 6.731 = , 

1.0/ ,8601.0,16.0 ==κ−=ν ah  

Ωn 1/ =ab  2/ =ab  3/ =ab  

Ω1 2.9120 2.4350 2.3781 
Ω2 4.1320 2.7318 2.4840 
Ω3 4.1320 3.2262 2.6834 
Ω4 4.9199 3.8380 2.9745 
Ω5 5.4976 3.9087 3.3361 
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Fig. 3. The first three natural modes of rectangular plate with clamped edges 

for 2/,1.0/ == abah , .86010=κ ; (a), (c) , (e) – quartz glass plate; (b), (d) , (f)  – α-cristobalite 

plate. 

 

It can be observed that for all of the constitutive three materials of the plate, the natural frequencies 

decrease with increasing ratio of the sides of the plate, as expected, but at the same time, there are no 

noticeable differences in the behaviour of the spectrum of the auxetic plate from the frequency spectrum 

of the plate made of isotropic materials that have a positive Poisson's ratio. It is noted that the natural 
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frequencies of a α-cristobalite plate are a little lower than those of a quartz plate. Meanwhile the data of 

Table 5 show that for an epoxy glass plate, the natural frequencies are significantly lower. It should be 

noted that the first free vibration mode is always symmetric, as expected. Thus, from the presented 

numerical results it follows that the spectrum of the natural vibrations of a thick plate is more influenced 

by the pronounced orthotropy of the material rather than its auxeticity. 

 

For completeness, the first five mode shapes for the thick rectangular plate made of isotropic material 

(quartz glass) and auxetic material (α-cristobalite) and with CCCC boundary conditions are shown in 

Fig.3. The corresponding natural frequencies of vibration have already been given in Tables 4 and 6. It 

should be noted that the mode shapes differ very little. This has meant that the auxeticity of the material 

does not produce significant effects on the mode shapes for free vibration problems of clamped thick 

plates. 

 

5. Conclusions 

 

Through the analysis and solution of an infinite system of linear algebraic equations, an elegant 

theory together with an associated algorithm is developed in this paper to determine within any desired 

accuracy, the natural frequencies and mode shapes of rectangular thick orthotropic plates with clamped 

edges, comprising different geometric and/or elastic properties. The theory is validated by published 

results showing excellent agreement.  

The investigation has shown that the spectrum of natural frequencies of vibrations for thick clamped 

plates are more influenced by the orthotropic properties of the plate materials rather than the auxeticity of 

the material. The differences in natural frequencies and shapes for isotropic and orthotropic plates are 

most clearly manifested when the ratio of the two sides of the plate is increased. It is in the context of the 

use of the dynamic stiffness method in conjunction with the application Wittrtick-Williams algorithm 

which requires the knowledge of the clamped ended natural frequencies of structural elements, the 

proposed investigation is expected to be most effective and important.  
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Appendix A 

COEFFICIENTS OF BICUBIC CHARACTERISTIC EQUATIONS AND RELATIONSHIPS OF 

VIET'S THEOREM 

For characteristic equation of Eq. (12) can be written as 
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We can write the following relationships using Viet’s theorem [20] 
2 2 2
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2 2 2 2 2 2
1, 2, 1, 3, 2, 3, 2 0
2 2 2
1, 2, 3, 3 0

/
/

/

nk nk nk n

nk nk nk nk nk nk n

nk nk nk n

p p p c c
p p p p p p c c
p p p c c

+ + = −
+ + =

= −
             (A.3) 

Similarly, the characteristic equation of Eq. (13) can be written as 
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these relationships can be written as 
2 2 2
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Appendix B 

COEFFICIENTS OF 1Δ,γ,γ y
l

x
l AND 2Δ  
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