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Abstract 
 
In textures composed of black and white dots, we modulated dot density and/or dot 

contrast in one direction of visual space. Just as Mulligan and MacLeod (1988) found 

a strong reciprocity between density and luminance for dots viewed against a darker 

background, we found a strong reciprocity between density and contrast: detection 

thresholds for in-phase modulations of density and contrast were 30% - 55% lower 

than detection thresholds for density and contrast modulations that were 180° out of 

phase. These findings support the existence of at least one psychophysical channel 

that is excited by both density modulations and contrast modulations. A good, 

quantitative fit to our data can be obtained with a two-channel model.   
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Introduction 
 
Mulligan and MacLeod (1988) demonstrated what they described as a reciprocity 

between luminance and dot density in the perception of brightness. An otherwise-

regular grid of identical white dots appeared brighter in regions where the spacing 

between dots was reduced. This illusory brightness difference could be cancelled by a 

luminance modulation (Fig. 1).  Once this was done the thresholds for detecting any 

kind of modulation in the pattern were raised compared to thresholds for detecting 

uncompensated density modulations.  Mulligan and MacLeod concluded that dot 

brightness is determined on the basis of the space-averaged luminance within a 

circular area a substantial fraction of 1 deg in diameter.   

 

 
 
Fig. 1. In the top figure, the spacing between dots is modulated by a 45 deg sinusoidal 
grating in phase with their brightness (i.e., more closely spaced dots have greater 
intensity). In the bottom figure the two kinds of modulation are in antiphase. 
 
 
On the other hand, visual estimates of average luminance may not be independent of 

local contrast. Indeed, in some circumstances (e.g., Solomon & Tyler, 2018) estimates 
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of average brightness, average darkness, and average contrast all vary with the square 

of local image contrast, i.e., contrast energy. Contrast-energy mechanisms have been 

implicated in a wide variety of visual tasks. For example, Watson and Ahumada 

(2011) argued that both contrast discrimination and blur discrimination were 

consistent with the same visual signal, a single metric of contrast energy.  Morgan, 

Raphael, Tibber, and Dakin (2014) suggested that detection of differences in dot 

numerosity and dot density could also be mediated by a common contrast-energy 

mechanism.  

 

A necessary step towards this synthesis is to show that Mulligan and MacLeod’s 

reciprocity result applies to differences in contrast as well as luminance.   This can be 

tested by composing the pattern of equal numbers of black and white dots, against a 

mean-luminance background, so that there is no Fourier fundamental corresponding 

to any modulation in dot density or contrast (Fig. 2).  Using these patterns, we sought 

evidence for reciprocity between contrast and dot density, by measuring the threshold 

modulation amplitude for detecting contrast in the presence of density modulation, 

and vice versa.  The two kinds of modulation, contrast and density, could either be in-

phase, in the sense that peaks of contrast coincided spatially with peaks in density, or 

180° out of phase (peaks in one domain coincided with troughs in the other).  The 

method is similar to that by which Saarela and Landy (2012) investigated reciprocity 

between colour and texture in detection of an oriented edge.  Like Saarela and Landy, 

we combined cues in roughly equivalent units of their detectability having first 

determined these values from trials in which only one kind of modulation was 

present.  The method of opposition was also used by Raphael & Morgan (2016) to 

show that differences in dot density between two patterns are harder to detect when 

they are opposed by changes in pattern area that kept dot number, and hence total 

energy, constant.  



	 5	

 
Fig. 2.  Examples of stimuli combining low contrast (near threshold) density and 
contrast modulations in phase (left) and in antiphase (right) The basic texture in both 
cases consists of dots plotted at the nodes of a (notional) rectangular grid. White and 
black dots were plotted with equal probability, with replacement. The probability that 
a node is occupied is modulated sinusoidally in one spatial dimension to produce a 
modulation in dot density. Alternatively, or in addition, contrast is modulated at the 
same orientation and spatial frequency. The two kinds of modulation may be 
combined, either in phase or 180° out of phase, to examine possible reciprocities 
between them. 
 
 

Methods 

Participants.  The participants were a 72-year-old male author (MM), a female PhD 

student experienced in visual psychophysics (NN), and two naïve students in their 20s 

from the University of Cologne subject pool (LR and SR).  The use of human subjects 

for a non-invasive study was approved by the relevant Ethics Committee of the 

University of Cologne 

 

Stimuli: Stimulus presentation was controlled by MATLAB, the PTB3 version of the 

Psychtoolbox (Kleiner, et al., 2007), and the Cambridge Research Systems BITS++ 

box to give an accurately calibrated contrast signal from a pre-computed linear look-
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up table. Stimuli were presented on a Viewsonic PF817 CRT display, with pixel 

resolution 1024 x 768, a refresh rate 140 Hz and mean luminance 33.5 cd/m2, viewed 

at 114 cm so 1pix=1.10 arcmin. Stimuli were viewed binocularly through natural 

pupils with appropriate corrective lenses for each subject (if normally worn).  

Observations were carried out in a darkened room where the only source of light apart 

from the display screen consisted of reflections from the matte walls and furniture. 

 

Example stimuli are shown in Fig. 2.  Each stimulus consisted of a texture of spaced 

dots. Each dot had a 2-D Gaussian profile with standard deviation of 2.20 arcmin (2 

pix). The dots comprising the texture were presented on a notional rectangular grid of 

70 x 70 dot positions with 10-pixel separation; this grid was then masked down by a 

circular aperture of diameter 13.6 deg, thus allowing a maximum of 70 dots along the 

diameter of the aperture.   

 

To simplify calculations and notation, density and contrast modulations were initially 

carried out in the horizontal dimension x, producing vertically oriented textures. 

Density was modulated by manipulating the probability of plotting a dot as a function 

of grid position. We denote the probability of a dot as  and its peak Weber 

contrast as . The spatial frequency of modulation f was chosen to produce two 

compete cycles across the stimulus, and the unsigned modulation amplitudes for 

density and contrast are denoted  and , respectively. In the absence of 

modulation (i.e., when ), both the probability of a dot in any position and 

the absolute value of its Weber contrast were fixed at 0.5. Thus, dot probability is 

given by 

   (1) 
and dot contrast is given by 

 . (2) 
Each dot's polarity (i.e., the sign of its contrast c) was selected independently, with 

even odds for black and white. Modulation phases were also selected randomly, such 

that either the peak or the trough could appear in the centre of the stimulus. (In 

Experiment 2, additional constraints were imposed on modulation phases.) Finally, 

the entire texture was rotated around its centre by ±45 deg.  

  
p x( )

  
c x( )

  md   mc

   md = mc = 0

    
p x( )= 0.5± md cos(2π fx)

    
c x( )= ± 0.5± mc cos(2π fx)⎡

⎣
⎤
⎦
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Procedure: In both experiments observers were forced to choose between positively 

and negatively rotated textures.  Modulation amplitude was varied by an adaptive 

procedure to find threshold, defined as the standard deviation of the Gaussian 

psychometric function mapping the product of modulation amplitude (0-1) and sign (-

1, +1) of rotation to the probability of reporting a positive rotation. 

 

Experiment 1 

In this experiment we wanted to establish the detection thresholds for density and 

contrast modulations, when observers are uncertain which dimension is being 

modulated. The observer initiated each trial by pressing one of the response buttons. 

This was followed, after a brief delay, by the stimulus presentation.  The stimulus was 

presented for 0.5 sec, and the observer had to decide whether the texture was tilted 

‘left’ or ‘right’ (i.e., positively or negatively rotated by 45 deg).  The sign and 

absolute magnitude of the modulation amplitude on each trial was chosen on the basis 

of previous responses by the observer by an Adaptive Probit Estimation (APE; Watt 

& Andrews, 1981) designed to place stimulus values near the stationary points in the 

second derivative of the psychometric function (the 16% and 84% points).  Trials 

were presented in 128-trial blocks. Density modulations (i.e., where  ) 

were randomly interleaved with contrast modulations (i.e., where  ), 

with no cue to the subject other than the stimulus itself to indicate which was in 

effect. Note that the two APE procedures were entirely separate and independent. 

This has the advantage that after a few trials, the two tasks (density and contrast) are 

equally difficult. There was no feedback. 

 

Between 6 and 8 blocks were run on each observer.  MATLAB's ‘fminsearch’ was 

used to determine the mean (the “clockwise” bias) and standard deviation of the 

Normal distribution that maximum-likelihood fit each set of psychometric data (i.e., 

one set for density modulations and one set for contrast modulations; see Fig. 3). Note 

that these standard deviations are reciprocally related to the observer's sensitivity. 

   md > 0, mc = 0

   md = 0, mc > 0
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Thus, they may be considered the detection thresholds for density and contrast 

modulations.1 

 

 
Fig. 3.  Results of Experiment 1: psychometric functions for detecting contrast 
modulations and density modulations. Each point represents the frequency with which 
the observer reported a positive rotation (as in Fig. 2). Error bars contain 95% 
binomial confidence intervals for the response probabilities. Smooth curves are the 
maximum-likelihood fitting Gaussian distributions. In all cases, these distributions 
had inflection points near zero. Their standard deviations were considered to be 
detection thresholds.  
 

 

Experiment 2 

In these summation experiments, each stimulus contained both a density modulation 

and a contrast modulation, each of which was presented at the same multiple 

(between 0 and 3) of threshold modulation amplitude. We investigated whether in-

phase modulations (i.e., where density and contrast increase and decrease together) 

would be easier to detect than out-of-phase modulations. As in the first experiment 

the observer had to decide whether the texture was tilted ‘left’ or ‘right’ (i.e., 

positively or negatively rotated by 45 deg).  Two kinds of trial were randomly 

interleaved. An effect of phase angle would implicate a visual channel sensitive to 

modulations of both density and contrast, for instance a channel responsive to contrast 

energy.   

  

RESULTS 

 
1	When	replotted	as	percentage	correct	vs.	log	modulation	amplitude,	these	
Normal	fits	are	too	shallow.	Weibull	fits	(Eqn.	3)	are	more	versatile.	See	
Supplementary	Figure	S1	for	a	graphical	comparison.	
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Fits to the results, along with the results themselves, from each individual observer 

can be found in the Supplementary Material. For illustration in Fig. 4, we have 

summarised the fits and the results using ratios of the detection threshold. Although 

similar to the thresholds described in Fig. 3, these thresholds were estimated 

independently as the Weibull scale parameter (l) giving a maximum likelihood it to 

each individual observer's responses: 
 

  , (3) 

 
where m represents the modulation amplitude of one component (i.e., ). 

Functions of this form have proven to be adequate summaries of psychometric data 

collected using the method of constant stimuli (e.g., Watson, 1979). Consequently, we 

consider their fit a more reasonable baseline with which to compare more-

theoretically based models than the observed  itself, which often is non-

monotonic when adaptive methods like APE are used. As should be clear from Eqn. 

3, threshold performance is attained when m = l, and thus P(Correct) = 0.816. An 

unbiased observer [for whom P(Correct) increases with all modulation amplitudes] 

will attain this same level of performance when m = σ/1.11. Parameter values and log 

likelihoods appear in Table 1.  

 

 

    
P(Correct) =1− 1

2
exp − m λ( )k⎡
⎣
⎢

⎤
⎦
⎥

   
m∈ mc ,md{ }

   
P Correct( )

MM LR NN SR
0.0

0.5

1.0

1.5
Threshold Ratio

MM LR NN SR
0.0

0.5

1.0

1.5
Threshold Ratio

MM LR NN SR
0.0

0.5

1.0

1.5
Threshold Ratio

MM LR NN SR
0.0

0.5

1.0

1.5
Threshold RatioWeibull fits Best 2-channel model

1-channel model, ⍺ > β 1-channel model, β > ⍺
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Fig. 4.  Results. Threshold Ratio is the ratio between threshold (from Exp’t. 2) for a 
compound stimulus and threshold (from Exp’t. 1) for either component stimulus. 
Black bars represent the in-phase configuration; orange bars represent the 180° out-
of-phase configuration. The 2-channel model can produce threshold ratios very 
similar (though not 100% identical) to those derived from Weibull fits. There is very 
little difference between the threshold ratios produced by the two 1-channel models. 
These latter ratios are very different from those derived from Weibull fits.  
 

In Experiment 2 phase angle had a large effect on detection. This is evident from the 

threshold ratios. Out-of-phase thresholds were greater than In-phase thresholds, 

indicating that performance was better in the In-phase condition. This result 

implicates the existence of a channel that responds both to contrast modulations and 

density modulations.  

 

To summarize the data:  

(i) Performance was always better when density and contrast were in phase than when 

they were out of phase. 

(ii) While performance in the out-of-phase condition is always worse than for the in-

phase, observers could still clearly do the task.   

 

Signal-Detection Model 

In this section we describe 1-channel and 2-channel psychophysical models for 

detecting modulations along any arbitrary stimulus dimensions A and B. In this paper 

A is contrast and B is density. Similar models appeared in a recent paper by Solomon 

and Morgan (2020), where A and B were blur and contrast. We are indebted to a 

referee for alerting us to a pre-existing signal-detection model for detecting and 

discriminating between modulations in arbitrary stimulus dimensions (Klein, 1985). 

Although a full comparison between Klein’s model and our own is beyond the scope 

of the current manuscript, one potentially critical difference is noted below. 

 

The 1-channel model 

First, consider a sinusoidal modulation along dimension A. Its amplitude and phase 

are a and , respectively. A general formula for the expected output of a linear 

mechanism is , where  is the mechanism's sensitivity (or "gain") and 

 is its preferred phase.  

θA

aα cos θ
A
−θ

0( ) α

θ0
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Phase-independence (and square-law transduction) can be achieved using a non-linear 

transformation of the output from a quadrature pair of linear mechanisms: 

  . (4) 

Arbitrary power-law transduction can be achieved without sacrificing phase-

independence by raising this expression to an arbitrary power . 

 

Now consider two sinusoidal modulations, one along dimension A and one along 

dimension B. Amplitudes and phases are a and b and  and , respectively. A 

general formula for the expected output of a linear mechanism is 

 where  and  are the mechanism's sensitivities and 

 is its preferred phase. Again, phase independence (and square-law transduction) 

with respect to  can be achieved using a quadrature pair: 

  , (5) 

where . This too can be raised to the arbitrary power , if necessary.  

 

When discriminating between modulations having orthogonal orientations in space, 

we assume that the mechanisms are orientation selective: quadrature pairs come in 

opponent pairs. One opponent pair responds to positively rotated textures, the other 

responds to negatively rotated textures. The difference between their outputs (here 

symbolized by the random variable X) can be used as the basis for the observer’s 

response.2 Putting it all together, we can write 

 !! = ±(%"&" + (")" + 2%&() cos Δ/)
!
" (6) 

 
2	Klein	(1985)	makes	no	analogous	assumption.	In	this	sense,	his	model	may	be	
more	general	than	ours.	

aα cos θ
A
−θ

0( )⎡⎣ ⎤⎦
2
+ aα cos θ

A
−θ

0
−
π
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢

⎤
⎦
⎥

2

= a2α 2 cos2 θ0 −θA( )+ sin2 θ0 −θA( )⎡⎣ ⎤⎦
= a2α 2

p 2

θA θB

aα cos θ
A
−θ

0( )+ bβ cos θB −θ0( ) α β

θ0

θ0

aα cos θ
A
−θ

0( )+ bβ cos θB −θ0( )⎡⎣ ⎤⎦
2

+ aα sin θ
A
−θ

0( )+ bβ sin θ
B
−θ

0( )⎡⎣ ⎤⎦
2

= a2α 2 + b2β 2 + 2aαbβ cosΔθ

Δθ = θA −θB p 2
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for the expected output from a quadrature pair, given two sinusoidal inputs with 

amplitudes a and b and phase angle . Without loss of generality, we may assume 

that the variance is 1" = 1. The observer should decide the stimulus has negative 

(anti-clockwise) tilt if and only if output exceeds some arbitrary criterion (#.  The 

observer would be unbiased only if (# = 0.  

 

The 2-channel model 

As foreshadowed by the green and orange bars in Fig. 4, the 1-channel model cannot 

produce a quantitatively satisfying fit to our data. Consequently, in this subsection, we 

extend the model to two channels. The 2-channel model can produce a quantitatively 

satisfying fit.  

 

Whereas output from the first channel was modelled using the Normal random 

variable X, output from the second channel is modelled using the Normal random 

variable Y, with expectation !$ = ±(%"&′" + (")′" + 2%&′()′ cos Δ/)
!#
"  and 

variance . The second channel is identical to the first, except for different gains ( ʹ 

and ʹ) and a possibly different power-function transducer (!′ 2⁄ ). At this stage, we 

diverge from the model discussed by Solomon and Morgan (2020) and assume 

cov(6, 8) = 0 for computational convenience.  

 

Imagine the plane of all possible outputs from two mechanisms (see Fig. 5 for an 

illustration). Given this (2-D) space of channel outputs, a (1-D) linear discriminant is 

the simplest decision rule we could imagine: 9 = :θ; + (D. The model observer 

decides that the stimulus has positive (clockwise) tilt if and only if the point 

representing the two channels’ outputs lies above the line. The probability of a 

positive response is given by 

<% = ∫ ∫ >(9 −:#; − (#)	A(;, 9)	B;B9
&
'&

&
'& , (7) 

where H is the Heaviside step function and f is the bi-variate normal density with 

mean and variance 

     ! = C
!!
!$D , Σ = C1 0

0 1D;   (8) 

the probability of a negative response is given by .  For ease in computation, 

model fits are obtained with a simplified, equivalent form of Equations 7 and 8: 

Δθ

    σY
2 =1 α

β

   1− p1
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 <% =
%
" erfcI

($)*$+%'+&
√"-%)*$

"
J , (9) 

where erfc is the complementary error function. 

 

Fig. 5 contains a graphical interpretation of the model’s fit to a representative 

observer’s data from Experiment 2. The relevant parameter values have been 

highlighted with yellow in Table 2. Thus, X channel has gains & = 4.26 and ) =

2.61 on the two inputs A and B and the Y channel has gains &′ = 4.83 and )′ = 0.  

We can now interpret Fig. 5 as follows. The X channel has inputs from both signals 

(density and contrast) and thus, in the case where the signals are in-phase, has a 

greater output than the Y channel, which receives input from only the contrast signal. 

When the inputs are 180° out of phase, they partially cancel in the X channel but not 

in the Y channel. Consequently, the Y channel has a larger output than the X channel. 

 

 
Fig. 5. Graphical interpretation of the 2-channel model’s fit to a representative 
observer’s data from Experiment 2. Each pie chart represents one combination of 
stimulus orientation (±45°, with respect to vertical), phase angle (in phase, or out-of-
phase), and modulation amplitude. Larger pie charts indicate more trials. Red and 
blue sectors illustrate the frequencies with which observer MM reported that the tilt 
was positive and negative, respectively. The horizontal position of each pie chart 
shows the first channel’s expected output (signed so that positive values are 
associated with positive tilt), and the vertical position shows the second channel’s 
expected output. Inputs are not represented in the diagram. Also not shown are 
Gaussian blobs centred on each one of these pie charts. Each blob describes the 
density of the joint likelihood for the two channels’ responses. That likelihood has 
unitary standard deviation in each dimension. The circle describes one standard 
deviation in every direction around the origin. The black line serves as the 

-2 -1 0 1 2
-2

-1

0

1

2

X

Y
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discriminant: stimuli that produce responses to its left and right are classified as 
having negative and positive tilts, respectively. 
 

Model fits 

As described below, we placed various constraints on the signal-detection model, 

when (simultaneously) fitting it to the data from Experiments 1 and 2. In all cases, we 

allowed for the possibility of a non-zero lapse rate, i.e., a proportion of trials on which 

the observer selects a response at random (regardless of the stimulus). In all cases, 

maximum-likelihood fits were obtained when the lapse rate was zero. 

 

As mentioned above, the results of Experiment 2 strongly implicate the existence of a 

channel that responds both to contrast modulations and density modulations. To see 

whether a single-channel model would prove sufficient to explain these results, we 

obtained maximum-likelihood fits of the 1-channel (4-parameter) model. Specifically, 

we used Mathematica's implementation of Brent's (2002) principal-axis method to 

find maxima (with 3 digits of accuracy) in the function mapping parameter values to 

log likelihood. When fitting the 1-channel model, this function had two distinct peaks: 

one with relatively greater gain for contrast modulations, the other with greater gain 

for density modulations.  Had we separately manipulated the modulation amplitudes 

of contrast and density, we might have been able to determine which of these two 

components of our stimulus had a greater effect on performance. However, we didn’t. 

The twin peaks in our energy functions arise because the ratio of modulations depths  

( ) was held constant throughout the experiment. 

 

When fitting the 2-channel model, we found that good fits could be obtained when 

any one of the four gains ( , , , or ) was fixed at zero. Table 2 contains 

parameter values for maximum likelihood when fixing . It also contains 

parameter values for maximum likelihood when fixing . 

 

The 2-channel model produces a significantly better fit to the data, compared to the 1-

channel model, because the latter necessarily over-estimates the effect of phase angle 

in Experiment 2, while struggling to maintain the baseline thresholds from 

Experiment 1: either the model’s threshold for contrast modulation is too low and its 

  md mc

 α  β   ′α   ′β

   β= 0

   ′α = 0
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threshold for density modulation is too high or vice versa (see Supplementary Fig. 

S2). In summary, the best-fitting 2-channel model for all observers contains one 

channel that is sensitive to both density and contrast; and a second channel that is 

sensitive to only one of these dimensions. The model cannot distinguish whether this 

single dimension is contrast or density.    

 

DISCUSSION 

It is important to be clear at the outset that our model is not intended to represent 

specific anatomical structures in the human visual system. Instead, we have described 

computations that are sufficient for producing results like those of our human 

observers. Nonetheless, we can be fairly confident that there must be at least one 

physiological mechanism that is sensitive to both contrast and density modulations 

over space. The existence of this mechanism is implied by the effect of phase angle 

when contrast and density modulations are combined. In this respect, our experiments 

confirm and extend the findings Mulligan and MacLeod (1988) obtained with 

luminance-modulated dot textures. They invoke a mechanism that carries out areal 

summation of a signal from mechanisms sensitive to luminance. Similarly, we invoke 

areal summation of a signal related to contrast energy, for example, from retinal 

ganglion cells or cortical cells with rectifying contrast-sensitive subunits (e.g., 

Hochstein and Shapley (1976)). Such a mechanism would inevitably confound 

changes in contrast and changes in density/numerosity.  Our mechanism may be 

related to the contrast integrator described by Meese & Summers (2007) and Baker & 

Meese (2016), although they measured contrast thresholds for sparsely scattered 

texture elements themselves, while we measured orientation-discrimination thresholds 

for contrast/density modulations.   

 

Although	the	out-of-phase	condition	was	clearly	more	difficult	(i.e.,	thresholds	

were	higher)	than	the	in-phase	condition,	it	was	not	impossible.	This	fact	

suggests	that	observers	had	more	than	one	mechanism	(with	non-zero	gain	for	

contrast	and/or	density	modulations)	at	their	disposal.	Indeed,	within	the	

framework	of	signal-detection	theory,	a	simple	1-channel	model	proved	

incapable	of	producing	sufficiently	low	thresholds	in	Experiment	2's	out-of-
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phase	condition	without	simultaneously	over-elevating	one	of	the	detection	

thresholds	(i.e.,	for	either	contrast	or	density	modulations)	from	Experiment	1.	

	

Although	the	out-of-phase	condition	was	not	impossible,	the	mechanism	

responsible	for	that	task	may	have	been	very	different	from	the	opponent	

quadrature	pairs	of	our	signal-detection	model.	Contrast	energy	might	have	been	

uniform	across	our	out-of-phase	stimuli,	but	we	know	that	higher-order	

modulations	of	texture,	invisible	to	an	energy	mechanism,	are	detectable	by	

human	observers	given	sufficient	time	for	inspection	(e.g.,	Julesz,	1971,	

Nothdurft,	2007).		 

 

The perceptual impressions created by textures are not traceable to subjectively 

precise localization and characterization of the texture elements. Such impressions 

may depend on the statistics of neural activation patterns rather than on the individual 

peaks and troughs of activation profiles evoked by each example of a texture class.  In 

the present experiments, not only the mean activation but the histogram of activations 

may be diagnostic.  If the neurons of a contrast energy channel have receptive fields 

that span only a few texture dots, they will respond more uniformly in a low-contrast, 

high-density region than in a low-density, high-contrast region.  This could potentially 

allow the observer to perform the task of our Experiment 2, when the mean activation 

of the contrast energy channel is the same in these two cases, thereby salvaging the 

single channel model in a more complex form where the histogram of contrast energy 

may be diagnostic (Chubb, Econopouly, & Landy, 1994). 

 

In conclusion, we can be confident that there is at least one channel in which density 

and contrast are combined into a single mechanism.  Furthermore, there must in 

addition be a texture mechanism for detecting out-of-phase modulations in density 

and contrast, which may or may not be another kind of energy mechanism.	
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Observer Experiment 1 Experiment 2 
Contrast Density ln L In-phase 180° Out-of-phase ln L 
λ k λ k λ k λ k 

MM 0.263 2.50 0.204 2.87 –454.440 0.529 4.67 0.877 2.62 –327.724 
LR 0.120 2.63 0.084 1.96 –328.425 0.527 1.72 1.165 1.66 –553.517 
NN 0.120 1.75 0.119 2.00 –345.121 0.608 2.26 1.087 2.66 –372.876 
SR 0.138 1.64 0.143 2.77 –402.690 0.627 2.33 1.117 3.03 –413.165 

Table 1. Summary of psychometric data by the maximum likelihood (L) Weibull Functions (Eqn. 3) of single component (contrast or density) 
modulation amplitude (Experiment 1) and a common multiple of the single-component detection thresholds (Experiment 2). 
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Observer        mθ !! ln L 
MM 6.49 3.92 1.16 0 0 1 –1 –0.01 –827.9 

3.13 7.90 1.30 0 0 1 –1 0.01 –824.9 
LR 15.0 11.4 1.10 0 0 1 –1 0.32 –887.5 

8.80 22.9 0.96 0 0 1 –1 0.31 –887.3 
NN 13.6 7.64 1.01 0 0 1 –1 0.13 –740.5 

7.17 13.9 1.03 0 0 1 –1 0.14 –740.1 
SR 12.1 6.35 1.02 0 0 1 –1 –0.32 –843.5 

6.05 12.6 1.06 0 0 1 –1 –0.35 –841.6 
MM 3.93 0 1.82 1.85 5.33 2.34 –0.97 –0.01 –782.6 

4.26 2.61 1.98 0 4.83 2.19 –0.97 –0.01 –782.6 
LR 6.54 0 1.63 6.22 14.4 1.38 –1.02 0.33 –861.2 

10.7 8.48 1.71 0 8.47 1.71 –0.71 0.28 –860.6 
NN 5.96 0 2.12 5.50 10.7 1.39 –1.31 0.16 –715.9 

11.8 6.48 1.36 0 5.94 2.09 –0.60 0.11 –715.8 
SR 7.24 0 1.65 2.22 7.83 2.09 –1.05 –0.35 –796.3 

7.63 2.79 1.43 0 7.27 2.45 –1.31 –0.40 –794.7 
Table 2. Parameter values maximizing the likelihood of 1-Channel (Rows 1-4) and 2-Channel (Rows 5-8) model fits to the psychometric 
functions. 
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Supplementary Fig. S1. A comparison between Weibull and Gaussian psychometric fits. Each point shows the frequency of correct responses, 
for a given multiple (excluding zero) of detection threshold. Experiment 1 is illustrated in rows 1 and 3; Experiment 2 in rows 2 and 4. Blue and 
red curves illustrate (atheoretical) Weibull and Gaussian summaries, respectively. Error bars contain 95% Binomial confidence intervals. 
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Supplementary Fig. S2. All results with model fits. Each point shows the frequency of correct responses, for a given multiple (excluding zero) of 
detection threshold. Data from each observer are illustrated. Predictions of two models are illustrated by the smooth curves. Solid blue curves 
illustrate atheoretical (Weibull) summaries with 8 free parameters (two per panel) per observer. Dashed blue curves illustrate the best fit of a 
two-channel, 7-parameter (per observer) signal-detection model. Orange and green curves illustrate the best fits of a one-channel, 4-parameter 
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version of the signal-detection model, in which contrast gain is constrained to be greater than density gain and vice versa, respectively. Error 
bars contain 95% binomial confidence intervals. 
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