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Abstract
Our ability to briefly retain information is often limited. Proactive Interference (PI) might contribute to these limitations
(e.g., when items in recognition tests are difficult to reject after having appeared recently). In visual Working Memory
(WM), spatial information might protect WM against PI, especially if encoding items together with their spatial locations
makes item-location combinations less confusable than simple items without a spatial component. Here, I ask (1) if PI is
observed for spatially distributed items, (2) if it arises among simple items or among item-location combinations, and (3) if
spatial information affects PI at all. I show that, contrary to views that spatial information protects against PI, PI is reliably
observed for spatially distributed items except when it is weak. PI mostly reflects items that appear recently or frequently
as memory items, while occurrences as test items play a smaller role, presumably because their temporal context is easier
to encode. Through mathematical modeling, I then show that interference occurs among simple items rather than item-
location combinations. Finally, to understand the effects of spatial information, I separate the effects of (a) the presence and
(b) the predictiveness of spatial information on memory and its susceptibility to PI. Memory is impaired when items are
spatially distributed, but, depending on the analysis, unaffected by the predictiveness of spatial information. In contrast, the
susceptibility to PI is unaffected by either manipulation. Visual memory is thus impaired by PI for spatially distributed items
due to interference from recent memory items (rather than test items or item-location combinations).

Keywords Temporary memory · Long-term memory · Working memory · Short-term memory · Proactive interference ·
Distinctiveness

Introduction

Our ability to retain information over brief periods of time
is often severely limited, with important consequences in
domains ranging from language acquisition (e.g., Baddeley,
Gathercole, & Papagno, 1998; Kam & Newport, 2009;
Newport, 1990) to educational attainment (e.g., Gathercole,
Pickering, Knight, & Stegmann, 2004) to fluid intelligence
(e.g., Ackerman, Beier, & Boyle, 2005; Alloway &
Alloway, 2010; Engel de Abreu, Conway, & Gathercole,
2010; Fukuda, Vogel, Mayr, & Awh, 2010; Süß, Oberauer,
Wittmann, Wilhelm, & Schulze, 2002). However, the
reasons for such limitations are debated.

To the extent that what is retained in memory is
what is not forgotten, a prominent view is that memory
loss is largely determined by interference from other
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memory items, both in the long-term and in the short-
term (e.g., Berman, Jonides, & Lewis, 2009; Keppel &
Underwood, 1962; Lewandowsky, Geiger, & Oberauer,
2008; Lewandowsky, Oberauer, & Brown, 2009; Postman &
Underwood, 1973; Wickens, Born, & Allen, 1963). In fact,
susceptibility to Proactive Interference (that is, impaired
memory performance for new information due to pre-
existing memory representations) is so closely related to
Working Memory (WM) capacity (e.g., Jonides & Nee,
2006; Kane & Engle, 2000; Lustig, May, & Hasher, 2001;
May, Hasher, & Kane, 1999; Rosen & Engle, 1998; Rowe,
Hasher, & Turcotte, 2010; Shipstead & Engle, 2013) that
some authors propose that one of its central functions is to
counteract the effects of PI (e.g., Engle, 2002; Nee, Jonides,
& Berman, 2007), and others proposed interference-based
WMmodels (e.g., Oberauer, Lewandowsky, Farrell, Jarrold,
& Greaves, 2012; Oberauer & Lin, 2017).

However, different forms of WM seem to differ in their
susceptibility to PI. In particular, it has been suggested that
WM for visual, spatially distributed items might be less
susceptible to PI than WM as measured by other paradigms
(e.g., Makovski, 2016). Here, I ask four questions related to
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this apparent discrepancy. First, does PI affect memory for
spatially distributed items? Second, are observers sensitive
to the strength of PI in spatially distributed items? Third,
is the strength of PI determined by PI between simple
item representations or between representations comprising
both item and spatial information? Fourth, does spatial
information per se affect memory performance and the
susceptibility to PI?

Before presenting the experiments in more detail, it is
useful to discuss what is meant by WM. Traditionally, the
distinction between WM and Short-Term Memory (STM)
is that, while both types of memory operate over relatively
brief retention intervals, WM involves some form of active
manipulation of the memory items. Active manipulation
might include focal attention (e.g., Cowan, 1995, 2001;
Engle, 2002; McElree, 2001; Shipstead & Engle, 2013)
or removal of distractors (e.g., Ecker, Lewandowsky, &
Oberauer, 2014; Oberauer & Lewandowsky, 2016; see also
Rosen & Engle, 1998), and might lead to binding among
relevant stimulus attributes (e.g., Bateman & Birney, 2019;
Oberauer, Süß, Wilhelm, & Wittmann, 2008). However,
these short-lived forms of memory might or might not be
separable from Long-Term Memory (e.g., Brown, Neath,
& Chater, 2007; Ranganath & Blumenfeld, 2005). Further,
one of the hallmarks of active manipulation — interactions
with attention — is not specific to WM can be observed
both with LTM and in infancy (e.g., Fan & Turk-Browne,
2016; Mitsven, Cantrell, Luck, & Oakes, 2018), and the
distinction between WM and STM is not always made in
the visual WM literature to begin with. Here, I thus use the
more neutral label “Temporary Memory” (Endress & Potter,
2014a) because some of the paradigms discussed below
are described as visual “WM” paradigms. However, I am
not aware of direct evidence that items in such paradigms
are actively manipulated, and the specific paradigm studied
here most likely relies on the initial and short-lived phases
of LTM (Endress & Potter, 2014b). I thus refer to Temporary
Memory as a form of memory with a limited life span, but
that might or might not involve active manipulation of items
and might or might not be separable from LTM.

Memory limitations and proactive interference

Broadly speaking, PI describes the impairment of memory by
prior experience. It has been observed in a variety of paradigms,
and can thus have a variety of sources. For example, Oberauer,
Awh, and Sutterer (2017) distinguish five main paradigms
revealing PI, and in which PI emerges either from confu-
sion among items within WM, or from reduced ability to
use Long-Term Memory (LTM) to solve WM tasks.

The oldest paradigm is probably the build-up and release
from PI paradigm (e.g., Gardiner, Craik, & Birtwistle,
1972; Kincaid & Wickens, 1970; Wickens et al., 1963;
Wickens, 1970; Hopkins, Edwards, & Cook, 1972). In this
paradigm, participants receive lists of memory items from
the same category (e.g., consonants or animals) and have
to recall them. The classic finding is that performance
decreases as more blocks from the same category are added,
but improves when the category is changed. According to
Oberauer et al. (2017), in such experiments, WM partially
draws on LTM, but that prior experience with the items from
the same category diminishes the usefulness of LTM.

Another paradigm is the two-list paradigm (e.g., Tehan &
Humphreys, 1996). On each trial, participants learned two
lists and then completed a free recall test or probed recall
test for the second list. On critical trials, both lists contained
an item from a common category (e.g., a dog in List 1 and
a cat in List 2), while the lists contained unrelated items on
control trials. While inclusion of a common category did not
produce PI in the free recall task, it did create interference in
the cued recall test. For example, when instructed to recall
an animal, participants might recall the animal from the
incorrect list. Such results suggest that PI can occur during
retrieval, either due to confusion in LTM (or within WM if
WM is not cleared after the first list has been presented).

The third class of paradigms involves manipulations of
temporal distinctiveness (e.g., Brown et al., 2007; Shipstead
and Engle, 2013). If the temporal context of memory items
is less distinct, memory performance is impaired. This
impairment might reflect the contribution of episodic LTM
toWM tasks: If temporal binding is poorer in episodic LTM,
it is less useful for WM tasks as well, even though temporal
bindings might also be confusable within WM if the items
are presented sufficiently quickly. Relatedly, other models
(e.g., Dennis & Humphreys, 2001) use timing as well as
other information as “context”, and interference might arise
if the contexts of items overlap.1

A fourth way in which prior experience may interfere
with subsequent learning is if people learn errors they made
on previous trials (e.g., Lafond, Tremblay, & Parmentier,
2010). Relatedly, if memory items are represented as sets
of features and share some features, shared features might
become misbound to the wrong items (e.g., Oberauer,
2009).

Finally, in the recent probe paradigm, participants view
a sample array of items and have to make a decision

1The susceptibility to interference might also be determined by the
number of bindings in which an item is embedded (Humphreys, Bain,
& Pike, 1989; Humphreys, Wiles, & Dennis, 1994).
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as to whether items in a test array were part of the
sample array. Performance is usually impaired when
nearby trials share items, irrespective of whether the items
are letters (e.g., D’Esposito, Postle, Jonides, & Smith,
1999; Jonides & Nee, 2006), words (e.g., Craig, Berman,
Jonides, & Lustig, 2013) or line drawings of animals
(e.g., Loosli, Rahm, Unterrainer, Weiller, & Kaller, 2014).
In such cases, PI might arise at different stages. First,
it might arise at encoding if people are less likely to
encode the source of an item if it has a previous source (similar
to how prior associations can block subsequent learning;
see e.g., Kamin, 1969; Wagner, Logan, Haberlandt, &
Price, 1968). Second, it might arise at retrieval if LTM
traces compete with WM traces. Third if LTM and WM
are dissociable, PI might arise at a decision stage, when
participants need to decide between a familiarity signal
coming from LTM and a signal coming from WM.

In sum, while PI might occur within WM (e.g., due
to confusion among WM items), most of Oberauer et al.’s
(2017) accounts attribute PI to the interaction between LTM
andWM, either because PI reduces the usefulness of LTM to
WM tasks, because prior learning makes useful associations
less likely to be encoded, or due to a competition between
LTM representations and WM representations, either at the
encoding or the retrieval state.

The view that PI might arise from the interaction between
WM and LTM is particularly plausible because it has
long been recognized that, in addition to intra-experimental
information, information learned previously in our life
might create PI as well (e.g., Underwood & Postman, 1960).
For example, we might need to type in a phone number, but
have a lifetime of experience with number sequences (e.g.,
other phone numbers, credit card numbers, lottery numbers,
. . . ) that might plausibly interfere with our ability to remember
yet another number sequence. However, to the extent that
WM is truly separable from LTM (see e.g. Brown et al.,
2007; Ranganath & Blumenfeld, 2005), similar effects can
be clearly be observed in WM as well, including release from
PI effects (Carroll et al., 2010; Hanley & Scheirer, 1975) and
temporal distinctiveness effects (Shipstead & Engle, 2013).

Here, I am agnostic as to how exactly PI arises. Given
that the mere presence of interference from other items
in memory mathematically guarantees limited memory
capacities under fairly general conditions (Endress & Szabó,
2017), I will only conclude that some associations enable
searches for memory items, irrespective of whether they are
stored in LTM or WM. That is, upon seeing a test item,
participants need to perform some kind of memory retrieval
to determine whether the item occurred in the current or
previous trials, but I am agnostic as to whether they use
temporal recency signals, a context signal in terms of other
items or any other strategy. In principle, PI might also
arise during maintenance, though it is unclear if participants

can engage active maintenance mechanisms in fast-paced
experiments such as the ones reported below.2

In a recent demonstration of the importance of the effects
of Proactive Interference (PI) on our ability to briefly
retain information, Endress and Potter (2014a) presented
participants with rapid sequences of pictures of everyday
objects; following each sequence, they viewed another pic-
ture and had to decide if it had been part of the sequence.When
the pictures were trial-unique and never repeated across tri-
als (in the Unique Condition), Endress and Potter (2014a)
observed no memory capacity limitations: the probability
of encoding any single one of the sequence items was rel-
atively independent of the number of items in a sequence,
at least for larger set-sizes. In a marked contrast, when
items were drawn from a limited pool of items and
reused across trials (in the Repeated Condition), performance
was much lower and memory capacity estimates remained

2Prior experience might not only lead to proactive interference, but
also to proactive facilitation. For example, Oberauer et al. (2017) first
trained participants on associating silhouettes of objects with colors
(drawn from a continuous color space). Following this, they completed
a WM task using these silhouettes. In each trial, they viewed three
silhouettes. After a retention interval, they were cued with one of these
silhouettes shown in white and had to report its color on a color wheel.
Compared to novel items, WM performance was better when the color
of the silhouette matched its earlier color, but there was no difference
between novel items and silhouettes whose color mismatched the
earlier colors. In other words, there was proactive facilitation, but no
proactive interference.
However, these results might be due to the specific WM paradigm

used. Participants needed to recall continuously varying colors and
thus stimuli that cannot be encoded categorically and thus are poorly
remembered in the short-term (e.g., Olsson & Poom, 2005) and
in the long-term (e.g., Brown and Lenneberg, 1954; Hasantash &
Afraz, 2020). Accordingly, LTM recollection for the initial shape-
color associations was rather poor, and certainly much weaker than
memory for meaningful items after much less exposure (e.g., Brady,
Konkle, Alvarez, & Oliva, 2008; Standing, Conezio, & Haber, 1970).
It is thus possible that stronger interference effects might have been
found if stimuli had been used that are more reliably encoded in
LTM. In contrast, given that the strength of even weak memory
representations increases with further exposure (e.g., Endress & Potter,
2014b; Melcher, 2001, 2006; Pertzov, Avidan, & Zohary, 2009;
Thunell & Thorpe, 2019), these LTM traces might be sufficient to
generate proactive facilitation, while being too weak to trigger a
response on their own as would be required for proactive interference.
A second possible explanation of these results relies on the interplay

between memory strength in WM (rather than in LTM) and a possible
“gating” mechanism. This mechanism would allow participants to
rely on LTM when WM representations are not sufficiently strong,
but protect WM against LTM otherwise (Oberauer et al., 2017).
If the initial shape-color association mismatches the association
in the current trial (and WM is weak), LTM-based responses are
indistinguishable from random guesses in terms of performance, and
no proactive interference should ensue. In contrast, if the initial shape-
color association matches the association in the current trial (and
WM is weak), LTM-based responses enhance performance, leading to
proactive facilitation.
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in the range previously reported.3 Repeating items across tri-
als creates PI; for example, it is relatively hard to reject a test
item we have seen on recent trials, compared to rejecting a
test item that has never occurred at all. These results thus
suggest that PI can massively impair memory performance.

However, some visual WM paradigms seem remark-
ably insensitive to PI. For example, in the change detection
paradigm (Luck & Vogel, 1997; see also see also Bays, Cata-
lao, & Husain, 2009; Bays & Husain, 2008; Fukuda et al.,
2010; Hartshorne, 2008; Jiang, Olson, & Chun, 2000; Lin
& Luck, 2012; Makovski, 2016; Makovski & Jiang, 2008;
Pertzov & Husain, 2014; Rouder et al., 2008; Schneegans &
Bays, 2016; Treisman & Zhang, 2006; Zhang & Luck, 2008,
among many others), observers view an array of objects
(e.g., colored squares); after a delay, they view another
array of objects (or a single object in some versions of the
paradigm) and have to report whether or not the test array
changed with respect to the sample array.

Critically, at least in principle, memory performance in
this paradigm might suffer greatly from PI, as an extremely
limited set of items is reused over many trials; for example,
in Luck and Vogel’s (1997) original experiment, just 7 colors
were used over hundreds of trials. Surprisingly, however,
the effects of PI seem to be fairly weak in change detection
experiments (e.g., Hartshorne, 2008; Lin & Luck, 2012;
Makovski & Jiang, 2008). For example, a measure of PI
consists in comparing performance in trials with strong PI
from immediately preceding trials and in trials with weaker
background PI, where PI is still substantial because the
same pool of items was reused in all trials, but less strong
than when items had occurred in immediately preceding
trials (e.g., Hartshorne, 2008; Lin & Luck, 2012; Makovski
& Jiang, 2008). Results showed little additional PI
when items had occurred in immediately preceding trials.4

3In terms of memory capacity estimates, Endress and Potter (2014a)
observed “capacities” of up to 30 items for sequences of 100 items,
derived from Cowan’s (2001) two-high-threshold formula. However,
given that the accuracy in the memory test was relatively constant
across set-sizes, the capacity estimates depended on the set-size. For
example, an accuracy of 75% yields a capacity estimate of 5 for set-
size 10 and a capacity estimate of 10 for set-size 20. However, one
would expect participants to perform at ceiling as long as the set-
size remains below the capacity estimate (e.g., 30 for a set-size of
100 items), which was clearly not the case. As a result, capacity
estimates are not necessarily meaningful in these experiments. This
does not seem to be a specific problem of Endress and Potter’s (2014a)
experiments, as performance decreases even within the putative
memory capacity range in visual WM experiments as well (e.g.,
Schneegans & Bays, 2016).
4Even more dramatically, in a large scale Web-based study, Hartshorne
(2008) observed a memory capacity of only 2.75 on the first trial of
experiment, where PI could not yet have occurred. However, given
that his displays consisted of only 4 items, memory capacity estimates
(e.g., Cowan, 2001; Rouder et al., 2008) are mathematically limited to
4, and a capacity of 2.75 corresponds to an accuracy of 84%. It is thus
possible that Hartshorne (2008) would have observed larger capacity
estimates if he had used larger set-sizes.

Even in a large-scale study with thousands of participants,
Balaban, Fukuda, and Luria (2019) observed little change
in performance across trials in a color change detection
task, suggesting either that this paradigm seems relatively
insensitive to PI across trials or that, with sufficiently strong
PI and highly familiar materials, PI effects arise so quickly
that no change in performance is detectable over trials (see
e.g., Carroll et al., 2010; Gardiner et al., 1972; Hopkins
et al., 1972; Jitsumori, Wright, & Shyan, 1989; Kincaid and
Wickens, 1970; Wickens et al., 1963; Wickens, 1970, for
evidence that PI effects arise very quickly).

Why are change detectionWM experiments
so insensitive to PI?

What might explain such differences? I will now discuss
five possibilities: Visual WM might be less sensitive to
PI than verbal or conceptual WM, some visual WM
paradigms might simply be less sensitive to PI than others,
PI effects might be limited by background PI, some visual
WM paradigms might elicit specific response strategies,
or “memory performance” in some visual WM paradigms
might not really reflect a memory mechanism but rather the
limitations of attentional encoding.

Is visual WM less sensitive to PI than other forms of WM?

One possibility is that visual WM is independent from
other forms of memory and has different properties. In fact,
it is widely accepted that visual WM is at least partially
dissociable from verbal WM (e.g., Baddeley, 1996; Cortis
Mack, Dent, &Ward, 2018; Cowan, Saults, & Blume, 2014;
Oberauer, Süß, Schulze, Wilhelm, & Wittmann, 2000). If
change detection tasks fall on the visual side of this spectrum
while Endress and Potter’s (2014a) task as well as the recent
probes task (D’Esposito et al., 1999; Jonides & Nee, 2006)
fall on the verbal side, it is at least possible that verbal WM
might be more susceptible to PI than visual WM.

This possibility is particularly plausible because of
the stimuli used in these experiments. For example,
most of Endress and Potter’s (2014a) experiments used
visual material in the form of meaningful pictures. Such
pictures are likely encoded in terms of their conceptual
meaning rather than its visual properties (e.g., Potter, 1976;
Potter, Staub, & O’Connor, 2004; Potter, 2010), which is
independent of verbal processes in turn (Endress & Potter,
2012), and meaningful stimuli are easier to remember than
other stimuli both in verbal and visual WM (e.g., Brady,
Störmer, & Alvarez, 2016; Hulme, Maughan, & Brown,
1991; but see Quirk, Adam, & Vogel, 2020). They also have
more stable representations (e.g., Shulman, 1970; Potter
et al., 2004), to the extent that we have only an extremely
limited memory for items that cannot be categorized (e.g.,
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Feigenson & Halberda, 2008; Olsson & Poom, 2005; see
also Lewandowsky, 2011; Lewandowsky, Yang, Newell, &
Kalish, 2012, for evidence that categorization ability is related
toWM). However, memory items can only interferewith other
memory items insofar as they are present in memory; as a
result, memory items with stronger memory representations
might be more likely to interfere with other memory items
(though one might also predict reduced interference, for
example if stronger memory representations also have more
precise encodings of their temporal context).

Be that as itmight, if this possibility is correct, change detec-
tion experiments likely target fairly low-level visual repre-
sentations that might not participate in the general cognitive
processes that are presumed to be subserved by WM (e.g.,
Engle, 2002; Conway, Kane, & Engle, 2003; Cowan, 2005;
Fukuda et al., 2010; Süß et al., 2002). In this case, however,
it would be difficult to explain why visual WM does predict
general cognitive performance (e.g., Fukuda et al., 2010).

Are change detection experiments less sensitive to PI than
other WM paradigms?

A second and related possibility is that different WM
experiments make different demands on different aspects
of WM, and that different aspects of WM differ in how
susceptible they are to PI. For example, Oberauer et al.
(2000) evaluated no less than 23 WM tasks that differed in
the extent to which they relied on storage of information,
transformation of information, supervision, coordination as
well as in the modality in which the memory items were
presented. It is thus possible that different aspects of WM
might be differently susceptible to PI. However, while this
possibility is plausible, it is unlikely to account for the
relative insensitivity of change detection experiments to PI,
given that the superficially similar recent probes task (e.g.,
D’Esposito et al., 1999; Jonides & Nee, 2006) tends to show
reliable PI effects.

Does background PI mask experiment-internal PI?

A third possibility is that the presence of high background PI
limits the observable effects of additional PI. For example,
Shoval, Luria, and Makovski (2019) showed that PI effects
are reduced when items come from a single category (such
as faces or houses) compared to when they come from
multiple categories. Given that the use of items from the
same general category is well known to create PI within
just a few trials (see, among many others, Carroll et al.,
2010; Gardiner et al., 1972; Hopkins et al., 1972; Jitsumori
et al., 1989; Kincaid and Wickens, 1970; Wickens et al.,
1963; Wickens, 1970), Shoval et al.’s (2019) single category

conditions compared a high PI condition to a condition
with even higher PI. Given that items in change detection
experiments typically come from an extremely limited set
of items, the presence of strong background PI might thus
reduce the observable effects of additional PI.

Does change detection performance reflect attentional
encoding?

A fourth possibility is that the processes underlying
change detection performance really reflect attentional
encoding rather than memory per se (e.g., Tsubomi, Fukuda,
Watanabe, & Vogel, 2013; see also Fukuda & Vogel, 2009;
Fukuda & Vogel, 2011). For example, “WM” limitations
can be observed even when objects are in full view.
Tsubomi et al. (2013) found similar change detection
performance irrespective of whether the sample array was
followed by a blank retention interval or whether the
sample array remained visible until the test item. Likewise,
change detection performance correlates with the maximum
number of items people can apprehend without counting
(i.e., their subitizing range; Piazza, Fumarola, Chinello, &
Melcher, 2011), which, in turn, are thought to be related to
attentional processes (e.g., Trick & Pylyshyn, 1994).

Such results are consistent with the classic view that WM
items are really those memory items we can pay attention
to (e.g., Cowan, 2005). A theory based on attentional
encoding limitations also predicts that such limitations
predominantly arise for simultaneously presented items (as
in change detection tasks) rather than sequentially presented
items (as in Endress and Potter 2014a) task). However,
unless this form of attentional encoding is disconnected
from actual memory processes, such a theory does not
necessarily explain why simultaneously presented items are
less susceptible to PI than sequentially presented items.

Do spatially distributed items elicit specific processing
strategies?

A final possibility is that change detection experiments
elicit specific processing strategies because memory items
are spatially distributed. Such strategies might take three
forms: First, participants might use the spatial locations
of the items to make them more distinctive across trials
(Makovski, 2016); in other words, the relevant memory
representations might encode item-location combinations
rather than simple items. Second, participants might encode
entire spatially organized arrays of items as objects to be
stored in memory, or encode their global organization (e.g.,
Brady & Alvarez, 2015). Third, when facing a difficult
memory retrieval problem, participants might attempt to
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retrieve full encoding episodes from (episodic) long-term
memory which contain spatial information in turn. This idea
is similar to the presumed role of semantic information in
verbal short-term memory. Once (phonological) memory
traces fade away, participants might rely on more stable
representations from (semantic) long-term memory to solve
the retrieval problem (e.g., Hulme et al., 1991; Saint-
Aubin & Poirier, 1999). In the case of change detection
experiments, these more stable representations might be
full encoding episodes that comprise spatial information in
addition to item representations.

I will now discuss how spatial information might assist
in short-term memory retrieval, and return to the other
possibilities in the discussion.

PI and spatial organization

One possible reason for the relative insensitivity of change
detection experiments to PI is that such experiments
typically use spatially organized stimuli, while other WM
experiments tend to use sequentially organized stimuli.
For example, Makovski (2016) attributed the relative
insensitivity to PI of change detection experiments to
automatic bindings between objects and their spatial
locations (e.g., Jiang et al., 2000; Makovski & Jang, 2008;
Pertzov & Husain, 2014; Treisman & Zhang, 2006; Udale,
Farrell, & Kent, 2017). For instance, if a dog at Location 1
is encoded separately from the same dog at Location 2, the
item-location combinations are (more) trial-unique and thus
reduce PI across trials.

Such a strategy is rather plausible. In fact, at least in
the case of long-term memory, (mentally) placing memory
items in spatial locations such as rooms in a house is a
common memory strategy in classical rhetoric (Yates, 1966;
though temporal contexts are effective as well; Bouffard,
Stokes, Kramer, & Ekstrom, 2018).

Further, in some experiments, spatial information seems
to be tightly linked to featural information. Participants
confuse features of items that share spatial locations.
For example, if they have to remember the orientation
of a colored bar, the orientations of bars sharing their
spatial positions tend to get confused; in contrast, no such
confusion arises when items share non-spatial features such
as color (Pertzov & Husain, 2014).

That being said, observers predominantly encode the
relative spatial positions of objects (e.g., Jiang et al., 2000;
Treisman & Zhang, 2006; Udale et al., 2017). In fact,
in change detection experiments using colored shapes as
stimuli, an effect of spatial congruency between the sample
and the test array emerges only when all objects are
presented during test, but not when a single test object
is shown (e.g., Treisman & Zhang, 2006; Udale et al.,
2017). Further, spatial information seems to be linked to

entire objects rather than object features.5 While spatial
information is clearly encoded in memory, its usefulness
thus seems to depend on the specific paradigm.

To test whether the relative insensitivity of change
detection tasks to PI might be due to their spatial
organization, Makovski (2016) first replicated Endress and
Potter’s (2014a) experiments where all memory items were
presented at the center of the screen and observed sizable PI
effects. In contrast, spatial cues reduced the strength of the
PI effect. Specifically, when, in his Experiment 3, all sample
items were presented simultaneously on an imaginary circle
(instead of being presented sequentially at the center of the
screen), he found the PI effect only for Set-Size 8, but not for
Set-Size 4. Likewise, when, in his Experiment 4, items were
presented sequentially but with unique spatial positions on
an imaginary circle, the PI effect was completely abolished.

In contrast, and in line with the interpretation that binding
memory items to spatial positions makes the position-item
combinations more distinct and thus reduces PI, a PI effect
reemerged if items were presented sequentially on a circle,
but if the test item was presented at the center of the screen
(Footnote 2 in Makovski, 2016), presumably because this
manipulation abolished the usefulness of the spatial cues.

Makovski’s (2016) results thus suggest that spatial cues
can reduce PI among memory items even when participants
do not need to encode spatial information to solve the
memory task (though he generally observed PI effects even
when items were spatially distributed, at least for larger
set-sizes in Experiments 3 and 5). Possibly, spatial cues
create more distinct memory representations if participants
automatically encode item-location combinations rather
than representations of simple items. However, these results
are unlikely to explain the marked difference in sensitivity
to PI between change detection experiments and the vast
majority of other WM paradigms. In fact, Makovski
(2016) found considerable PI in what is arguably the most
prototypical form of change detection experiments, namely
when items were presented simultaneously at different
spatial locations. In contrast, with the same set-size and a
smaller total number of items, Balaban et al. (2019) found

5For example, in Treisman and Zhang (2006) and Udale et al. (2017)
experiments, participants had to report feature changes irrespective of
which other feature they were bound to. If the sample array contained
a red square and a blue triangle, a test array containing a red triangle
and a blue square would require a “no change” response because all
features were already present in the sample array. (In contrast, an
orange square would elicit a “change” response, as no sample object
was orange.) When new feature combinations (e.g., the red triangle)
are shown in the test array, participants perform better if they appear
in a new location, presumably because feature combinations are bound
into objects (e.g., Luck & Vogel, 1997), which are bound to spatial
locations in turn, and the memory for the entire objects is less likely to
be accessed when the objects are shown at a new location.
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Fig. 1 (a) Probability of a lag of
N trials between two successive
occurrence of an item as a
sample. The different curves
show different ratios between
the set-size and the size of the
total pool of items. The
combinations of set-sizes and
pool-sizes in Makovski’s (2016)
experiments correspond to
p = 4/21 ≈ .19 and
p = 8/21 ≈ .38, respectively.
(b) Probability of waiting for at
least N trials between two
occurrences of an item as a
sample item. Again, the different
curves represent different ratios
between the set-size and the
total pool-size. (c) Mean waiting
time (in trials) between two
consecutive occurrences of an
item as a sample item as a
function of the ratio between the
set-size and the total pool-size
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virtually no evidence for PI in a color change detection
experiment (but see the alternative interpretation above).

Further, there were other differences between
Makovski’s (2016) and Endress and Potter’s (2014a) exper-
iments that might have decreased the sensitivity to PI in
the former experiments. While Makovski (2016) used rel-
atively small set-sizes of up to 8 items drawn from a total
pool of 21 items, Endress and Potter (2014a) used set-sizes
of up to 20 items in those experiments where they used a
total pool of 21 items. Items were thus repeated much more
frequently in Endress and Potter’s (2014a) experiments.
In the next section, I show that these differences lead to
a situation that is equivalent to low-PI conditions in other
WM experiments such as the recent-probes task (e.g., Craig
et al., 2013; D’Esposito et al., 1999; Jonides & Nee, 2006;
Loosli et al., 2014).

PI and waiting time

While Makovski’s (2016) results might suggest that spatial
cues can reduce PI in WM for real-world objects, these
results were confounded by the relative low set-sizes. In

fact, reducing the set-size while keeping the total pool-
size constant increases the mean waiting time between
two occurrences of the same item. As an increasing delay
between repeated occurrences of an item reduces PI (e.g.,
Loess & Waugh, 1967; Kincaid & Wickens, 1970; Peterson
& Gentile, 1965; Shipstead & Engle, 2013), this effect
might have contributed to the relative insensitivity to PI of
Makovski’s (2016) experiments when items were spatially
distributed.6

Specifically, for a set-size of S pictures presented on each
trial and a total pool-size of T pictures presented in the
entire (block of an) experiment, the probability that a given
picture appears as a sample (in a sample sequence or in
a sample array) is p = S/T . As shown in Appendix A,
the probability of a lag of N trials between successive
occurrences of a sample picture is p(1−p)N , the probability

6While I use terms such as time and delay to describe these effects,
they do not necessarily reflect absolute times measured in seconds,
but might rather be relative times measured with respect to some
experimental variables such as the presentation duration.
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of waiting at least N trials is (1 − p)N , and the mean lag is
1
p

− 1 trials.
As shown in Appendix A, only waiting times between

occurrences of an item as a sample depend on the set-
size, while the probability of occurrence as a test item
does not. Critically, as observers can accumulate long-
term memory traces from repeated exposure to even briefly
presented items (e.g., Endress & Potter, 2014b; Melcher,
2001; Melcher, 2006; Pertzov et al., 2009; Thunell &
Thorpe, 2019), it seems plausible that a reduced waiting
time between consecutive occurrences of an item might
increase PI.

As shown in Fig. 1a, the probability of lags greater than,
say, 5 trials is small irrespective of the set-size. However,
Fig. 1b shows that small set-sizes allow for substantial
probabilities of lags of at least 5. For example, and as
mentioned above, in his Experiments 3 and 4, Makovski
(2016) used the set-sizes 4 and 8, with a total Pool-Size for
21 items. This corresponds to probabilities of lags of at least
5 trials of 35% and 9%, respectively (and 19% assuming
an average set-size of 6). Figure 1c shows the mean lag
between two occurrences of the same item as a sample item.
The average lag with set-sizes 4, 6 and 8 is 4.3, 2.5 and
1.6 trials, respectively. At least for the smaller set-sizes,
such waiting times are considered low-PI conditions in the
recent probes task (e.g., Craig et al., 2013; D’Esposito et al.,
1999; Jonides & Nee, 2006; Loosli et al., 2014). As a result,
spatially distributed items might well show PI effects when
PI is strengthened by reducing the waiting time between
subsequent occurrences of an item.

Spatial information vs. waiting time

Spatial information clearly affects memory performance.
This is particularly clear from a comparison of Makovski’s
(2016) Experiments 1 and 4. In both experiments, par-
ticipants viewed sequences of objects and completed a
recognition test after each sequence; the only difference
between these experiments was that, in Experiment 1, all
items were presented at the center of the screen while in
Experiment 4, items were presented on an imaginary circle.
Still, PI effects were observed only in Experiment 1 but not
in Experiment 4.7

However, it is unclear why spatial information affects
PI. In fact, if spatial information were the main source
of information that eliminates PI among items, PI should
not only be reduced with sequentially presented items, but
also with simultaneously presented items, as long as they

7More specifically, performance in the Unique Condition was reduced
between Experiments 1 and 4, while performance in the Repeated
Condition was identical.

are spatially distributed. However, in his Experiment 3,
Makovski (2016) found reliable PI effects for spatially
distributed items when they were presented simultaneously
rather than sequentially (though the waiting time between
two occurrences of the same item was much reduced
compared to Experiment 4 due to the fast presentation
speed).

One possibility suggested by Makovski (2016) is that
observers encode item-location combinations (e.g., a dog
at 9h). However, it is not clear if encoding item-location
combinations would be a viable memory strategy, for two
reasons. First, observers predominantly encode relative
spatial positions of objects (e.g., Jiang et al., 2000; Treisman
& Zhang, 2006; Udale et al., 2017) rather than the absolute
ones required for item-location combinations. Second, in
everyday cognition, such a strategy would be most useful
for long-term retention of inanimate objects rather than for a
general WM system used in moment-to-moment reasoning,
given that objects tend to change location, especially if they
are animate. In line with this view, item-information is more
stable over time than location-information in probabilistic
foraging tasks (e.g., Téglás et al., 2011) and the two types
of information have dissociable neural substrates (e.g.,
Goodale & Milner, 1992; Mishkin and Ungerleider, 1982).

An alternative view is that the presence of spatial
information changes the response strategies rather than the
underlying representations. For example, participants might
use the spatial information provided during test to initiate
a memory search. To use an analogy with face recognition,
similarly to the Unique Condition in the absence of spatial
cues, it is relatively easy to discriminate faces of friends
from faces of strangers, while, similarly to the Repeated
Condition in the absence of spatial cues, it is harder to
discriminate faces of good friends we have seen very
recently from faces of good friends we have seen somewhat
less recently.

In contrast, introducing additional retrieval cues changes
the task demands. For example, we might try to discriminate
faces of individuals who were at some party from
individuals who were not. In this case, it is possible to
initiate a memory search through our friends to decide
who was at the party and who was not, though this
search would become much more difficult when most of
our friends are party animals who attend most parties.
In contrast, discriminating previously unknown partygoers
from complete strangers should still be possible, even
though it might be harder to link a stranger to a party
than a friend due to the lack of familiarity. In other words,
changing the task demands by introducing retrieval cues
might reduce the gap between the Unique and the Repeated
Condition, unless interference in the Repeated Condition
becomes too strong to make memory search feasible.
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As mentioned above, the latter idea is similar to the
possible role of semantic information in verbal short-
term memory. When unstable memory traces fade away,
participants might rely on more stable representations, and
these come from (semantic) long-termmemory (e.g., Hulme
et al., 1991; Saint-Aubin & Poirier, 1999). In Makovski’s
(2016) experiments, the long-term memory traces might be
full encoding episodes that comprise spatial information.

These views make different predictions, because they
make different assumptions about the total pool of possible
items. If participants encode item-location combinations,
the effective total pool-size is the number of locations (i.e.,
the set-size) multiplied with the total number of items,
S × T . As a result, the mean waiting time between two
occurrences of the same item-location combination is T − 1
and does not depend on the set-size.8,9

In contrast, if the participants use spatial information
just as a retrieval cue, the critical total pool is still that
of the available items, and the mean waiting time between
subsequent occurrences of an item is T

S
− 1.10

If participants encode item-location combinations, they
should thus be relatively insensitive to the ratio between
the set-size and the total pool-size; in contrast, if the
predominant memory representations are item-based, the
critical determinant of the strength of PI is the ratio between
the set-size and the total pool-size.

Similar predictions follow if PI does not depend on the
time since an item has been observed, but on rather the
total number of times it has been observed. If the relevant
pool is the number of (simple) items, then the expected
number of occurrences per trial of any item is given by
S/T . In contrast, if the relevant pool is the number of item-
location combinations, the expected number of occurrences
per trial is S/(S×T ) = 1/T . As before, participants should
be sensitive to the set-size only if they maintain memory

8According to the formula in the previous section, the mean waiting
time is giving by 1

p
− 1 = 1

S
S×T

− 1 = T − 1

9While this result might appear counterintuitive at first, it can be made
plausible through the following observation. If the set-size, and thus
the number of positions, equals the total number of items T , once an
item (e.g., a dog) has appeared in some position, we need to wait of
the order of T trials for it to appear again in that position. In contrast,
if we have twice as many items in total as we have positions, and
if the dog happens to be selected on every trial, we need to wait of
the order of T/2 trials for it to reappear in a position again (since
we have T/2 positions). However, since the dog will be selected only
on half of the trials, the waiting time for it to reappear in an earlier
position is again T . Hence, if participants represent item-location
combinations, the waiting time between two occurrences of an item-
location combination, and thus the strength of their PI, only depends
on the total number of items, but not on the set-size.
10This follows again from the expression for the mean waiting time
derived in the previous section: 1

p
− 1 = 1

S
T

− 1 = T
S

− 1.

representations of simple items, but not if they keep memory
representations of item-location combinations.

The current experiments

In the experiments below, I ask three questions. First, does
PI affect memory for spatially distributed items? Second,
is the strength of PI determined by PI between simple item
representations or between representations of item-location
combinations, and does spatial information per se affect
memory performance and the susceptibility to PI? Third,
does either waiting time or spatial information explain the
differences in susceptibility to PI between change detection
experiments and other WM paradigms?

In Experiment 1, I ask whether the strength of PI affects
memory performance when memory items are spatially
distributed. In each trial, participants viewed a sequence
of 8 items, presented sequentially on an imaginary circle;
below, I will call the number of memory items the Set-Size.
Following this, they viewed another (test) item and had to
indicate whether or not this latter item had been part of the
sequence. Critically, in different blocks, I varied the size of
the total pool from which items could be drawn: Items came
from (1) a pool of 9 items in total, (2) a pool of 22 items in
total or (3) were trial-unique (Pool-Size = ∞), respectively.
Given that items are repeated more often when there are
fewer items, I expected greater PI for smaller pool-sizes.

To preview the results, I found substantial PI for Pool-
Size 9, but not for the larger Pool-Size 22, where perfor-
mance was similar to the Unique Condition. Participants
are thus sensitive to the strength of PI among spatially dis-
tributed items. However, these results are ambiguous as
to whether PI occurs among the representations of simple
items or of item-location combinations.

This ambiguity is addressed in Experiment 2 (and in a
pilot experiment reported in Appendix B). In Experiment 2,
I used a constant pool-size similar to the pool-sizes for
which neither Makovski (2016) nor Experiment 1 above
detected PI effects among spatially distributed items.
Critically, however, I increased the set-size. As mentioned
above, if people maintain representations of item-location
combinations, the strength of PI should be unaffected by
the set-size; if they maintain representations of simple
items, the strength of PI should be determined by the ratio
between the set-size and the total number of (simple) items.
Hence, if participants encoded item-location combinations,
they should be insensitive to PI as in Experiment 1 and
Makovski’s (2016) experiment. In contrast, if location
information is extraneous (possibly an extra retrieval cue
from episodic long-term memory), participants should be
sensitive to PI.
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Specifically, participants in Experiment 2 completed a
block where pictures were trial-unique and one where they
were sampled from a total pool of 21 pictures. Within each
block, participants viewed sequences of 12 or 20 images
that were presented on an imaginary circle, proceeding
in a clockwise direction. The set-size was thus increased
compared to Experiment 1. (In the Pilot Experiment, the
Set-Size was either 8 or 16, while the Pool-Size was 17.)

To preview the results, I found significant PI under these
conditions, suggesting that participants were sensitive to the
ratio between the set-size and the total number of items and
thus that the strength of PI is determined by the waiting time
between subsequent occurrences of simple items rather than
item-location combinations.

In Experiment 3, I ask whether spatial information per
se has an effect on memory performance and susceptibility
to PI. Participants viewed sequences of 15 items, followed
by a single item test image. In different blocks, the items
appeared either (1) at the center of the screen, (2) on
an imaginary circle with items proceeding in a clockwise
direction or (3) on an imaginary circle where locations were
chosen in a random order. Within each block, there was a
sub-block where items were trial-unique and a sub-block
where items were repeatedly drawn from a total pool of 16
items. I asked if performance differed depending on whether
items were spatially distributed and depending on whether
participants can attentionally anticipate where an item will
appear.

To preview the results, I found that spatially distributing
items impaired memory but did not affect the strength of
PI; in contrast, the predictability of item location affected
neither memory nor the strength of PI.

General methods

Participants

While I had no specific predictions regarding the required
sample size for the current experiments, I targeted 30
participants per experiment (or the closest multiple of the
number of counterbalancing conditions; see below); this
sample size was choosen as it was slightly larger than the
samples in Endress and Potter’s (2014a) experiments, which
yielded reliable PI effects. However, in Experiment 3, I
decided to double the sample size as the effect sizes were
too small to draw clear conclusions from the smaller sample.

Before analyzing the data, I excluded those participants
who were unlikely to have paid attention to the task. I
note that these criteria are not related to the participants’
performance, but were applied before any analyses were
performed. Based on prior experience with the current
participant population, I expected to have to exclude

roughly a third of the sample due to insufficient attention to
the task (e.g., chance performance in trivial control tasks).
As the objective of the current experiment is to provide
evidence for PI, I did not exclude participants with low
performance in the Unique Condition. As participants who
perform well in the Unique Condition have more room to
show PI, excluding participants based on their performance
in the Unique Condition might inflate the estimate of the
strength of PI. Given that some participants might show
genuinely low performance, it is more conservative not to
exclude participants based on their performance.

I first excluded participants who took excessively long to
complete the experiment. This criterion was based on the
observation that some participants were observed (through a
window in the closed door of the testing room) playing with
their cellphones or other implements during the experiment
and/or took excessive breaks, which, in turn, is likely to
reduce the strength of PI (Loess & Waugh, 1967; Kincaid
& Wickens, 1970; Peterson & Gentile, 1965; Shipstead &
Engle, 2013). As I was unlikely to have witnessed all such
instances, I thus excluded participants based on the time
it took them to complete the experiments. I thus excluded
participants who were slower than 3 standard deviations
from the mean duration for an experiment, leading to the
exclusion of 4 out of 169 participants.

I excluded another 15 participants for the following
reasons: Computer problems (N = 4), having been tested
previously (N = 1), not understanding or misunderstanding
instructions (N = 2), almost falling asleep (N = 1), not
looking at the screen throughout the experiment (N = 1) and
playing with a phone or other implements (N = 6).

The final demographic information in the sample is given
in Table 1.

Apparatus

Stimuli were presented on a Dell P2213 22” (55.88 cm)
LCD (resolution: 1680 × 1050 pixels at 60 Hz), using
the Matlab psychophysics toolbox (Brainard, 1997; Pelli,
1997) on aMacMini computer (Apple Inc., Cupertino, CA).
Responses were collected from pre-marked “Yes” and “No”
keys on the keyboard.

Table 1 Demographics of the final sample after exclusion criteria have
been applied

Experiment N Females Males Mean age Age range

Exp. 1 30 16 14 27.7 18–43

Exp. 2 30 20 10 23.9 18–57

Exp. 3 60 38 22 23.5 17–45

Pilot Exp. 32 21 11 24.4 18–44
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Materials

Stimuli were color pictures of everyday objects taken from
Brady et al. (2008). These were randomly selected for each
participant from a set of 2,400. Stimuli were presented on an
imaginary circle with a radius of 190 pixels (except in one
condition in Experiment 3, as noted below), corresponding
to a viewing angle of 5.1 dva at a typical viewing distance
of 60 cm.

Images were scaled to the maximal size so that they
would not overlap on the circle.11 In Experiment 1, items
were thus scaled to a size of 130 × 130 pixels (3.5 dva),
while items were scaled to a size of 70 × 70 pixels (1.9 dva)
in Experiments 2 and 3.

Procedure

As shown in Fig. 2, trials started with a screen indicating
that the stimuli were being loaded for as long as they were
being loaded (i.e., in general the screen was invisible).
Following this, participants had to press the space bar to
continue (except in Experiment 2, where I added an extra
700 ms to the fixation instead), followed by a fixation cross
presented for 300 ms, a blank screen presented for 200
ms and then the sample sequence. Sample images were
presented for 250 ms each in immediate succession (with no
interstimulus interval), either on an imaginary circle or at
the center of the screen (Center Condition in Experiment 3).
When presented on an imaginary circle, the location of the
first sample image was randomly chosen.

Following the sample sequence, a blank screen was
shown for 900 ms, followed by the test item. Test items were
presented for 800 ms but participants had unlimited time to
respond.

Test items had appeared in the sequence on half of
the trials; on these trials, they appeared in the spatial
position in which they had appeared in the sample sequence.
“Old” test items were chosen equally often from two
sequence-initial, two sequence-medial and two sequence-
final positions, respectively. Foil test items that had not
appeared in the sample sequence were presented at the
location corresponding to the sequential positions from
which “old” test items had been sampled; given that the
first sample started at a random location, foil images thus
essentially appeared at random locations as well.

11Items will not overlap if the circles inscribing them are more distant
than their diameter. The distance between two points on a circle with
radius r is given by d = 2r sin (α/2) (where α is the angle between
the two points on the circle); the diameter of the circle inscribing the
objects is

√
2x (where x is the edge length of the square). To make sure

that the pictures do not overlap, the condition d >
√
2x thus needs to

be satisfied, or, equivalently with N pictures, x < 2√
2
sin (180/N)r .

Fig. 2 Trial schedule in the different experiments. Trials started with a
(usually invisible) screen indicating that the stimuli were being loaded,
followed by a button-press to start a trial, a fixation cross, a blank
screen and finally the sample sequence. Samples were either presented
on an imaginary circle (left) or at the center of the screen (right). After
the sample sequence, participants saw a question mark, followed by a
blank screen and finally the test item. If the test item had been part of
the sample sequence, it appeared in its original position

A new trial started immediately after a participant
response.

Verbal suppression was not administered because earlier
research has shown that neither memory nor PI is affected
by verbal suppression at the current presentation rates
(Endress & Siddique, 2016).

The research has been approved by the City, University of
London, Psychology Ethics Committee (ETH1819-0400).

Analysis strategy

The analyses below will be based on two types of measures.
First, I will seek to analyze performance in terms of (1)
memory per se and (2) susceptibility to PI. Second, I will
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analyze the data in terms of raw accuracy. Analyses in terms
of hit and false alarm rates are reported in Appendix D.

Memory and susceptibility to PI

Memory per se will be operationalized as the performance
in the Unique Condition. This condition should be
a relatively pure measure of memory performance, as
participants just need to encode, store and retrieve items
from memory in the absence of interference (other than the
fact to have completed other trials with other stimuli).

Susceptibility to PI will be operationalized as the relative
Cost of PI (see Endress & Siddique, 2016), defined as

Cost of PI = Unique − Repeated

Unique

This measure gives the relative performance decrement
in the Repeated Condition compared to the Unique
Condition, normalized by the performance in the Unique
Condition. For example, if a participant has an accuracy
of 80% in the Unique Condition and 60% in the Repeated
Condition, the relative performance decrement due to PI is
(80% – 60%) / 80% = 25%.

As shown in Table 2, some cells in some experiments do
not meet the assumption of normality. As my predictions for
the first set of analyses involve pairwise comparisons, I seek
to apply the same statistical tests across experiments and
thus use pairwise Wilcoxon tests in all experiments instead
of using Gaussian-based statistics in those experiments
where the assumptions are met. However, Gaussian-based
statistics would give similar results.

Raw accuracy

The second set of analyses involves performance in terms
of accuracy in the different conditions, using generalized
linear mixed models (GLMMs) treating the accuracy in
individual trials as a binary random variable. The advantage
with respect to the first set of analyses is that I can jointly
analyze memory and susceptibility to PI; the disadvantage

Table 2 Cells across experiments where a violation of normality was
detected by a Shapiro-Wilk test when performance was measured in
terms of accuracy and the Cost of PI, respectively

Experiment Set-Size Location Condition PI Condition W p

Accuracy

Exp. 1 8 NA Unique 0.88 0.002

Pilot Exp. 16 NA Unique 0.93 0.036

Cost of PI

Exp. 3 15 Circle - Random NA 0.953 0.028

Pilot Exp. 16 NA NA 0.919 0.017

is that the measure of susceptibility to PI (i.e., performance
in the Repeated Condition) is contaminated by contributions
from memory per se. The order of the blocks as well as its
interactions with the other predictors were initially included
as well. However, except in Experiment 3, these predictors
did not contribute to the model likelihood and were thus
removed from the models (Baayen, Davidson, & Bates,
2008).

Experiment 1: The role of PI strength

In Experiment 1, I asked if PI effects are more likely to be
observed with stronger PI. I manipulated the strength of PI
by manipulating the size of the total pool fromwhich stimuli
could be drawn.With smaller pools, items are repeated more
frequently, which should lead to stronger PI in turn.

Materials andmethods

In all trials, 8 items were presented on an imaginary circle
as described above. Critically, across blocks, the size of the
pool from which items could be drawn was set to infinite
(i.e., in the Unique Condition), 22 or 9.

The order of blocks was counterbalanced across partici-
pants. A third of the participants completed the experiment
in each of the Pool-Size orders ∞–22–9, 9–22–∞ and 22–
∞–9. Each block comprised 84 trials. Participants could
take a break after each block. Before starting the exper-
iment, participants were given two training trials. (There
were no training trials in the other experiments.)

Results

I first analyze the results in terms of the performance in the
Unique Condition and in terms of the Cost of PI and then in
terms of the raw accuracy in the Unique Condition and the
Repeated Condition, respectively.

Table 3 Descriptive statistics in terms of raw accuracy and Cost of
PI in Experiment 1. pWilcoxon indicates the p values of a Wilcoxon
test against the chance levels of 50% (accuracy) and 0 (Cost of PI),
respectively

Pool-Size N M SD SE pWilcoxon Cohen’s d

Accuracy

∞ 30 0.706 0.102 0.019 <.001 2.03

22 30 0.699 0.099 0.018 <.001 2.02

9 30 0.641 0.087 0.016 <.001 1.62

Cost of PI

22 30 0.006 0.082 0.015 0.430 0.073

9 30 0.081 0.132 0.024 0.002 0.618
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Analyses of memory vs. susceptibility to PI

As shown in Table 3 and Fig. 3, performance in the Unique
Condition was well above chance.

As shown in Table 3 and Fig. 3, the Cost of PI differed
from zero only when items came from a total pool of 9 items
in total, but not when items came from a pool of 22 items.
A paired Wilcoxon Test showed that the Cost of PI differed
significantly between Pool-Sizes 9 and 22, V = 76, p =
0.001, CI.95 = −0.113, -0.029.

Taken together, these results suggest that PI needs to be
sufficiently strong to have a noticeable effect. When, as in
Makovski’s (2016) experiments, 8 items were picked from
a total pool of 22 items, no PI effects were observed. In
contrast, when the total Pool-Size was limited to 9 items, a
sizeable PI effect emerged (Cohen’s d = .618).

Analysis in terms of accuracy

As shown in Fig. 4, performance in terms of raw accuracy
was better in the Unique Condition than when items were
drawn from a total pool of 9 items, while performance was
similar in Unique Condition and for Pool-Size 22.
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Fig. 3 Results of Experiment 1 in terms of the performance in the
Unique Condition (a) and the relative Cost of PI (b)
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Fig. 4 Results of Experiment 1 in terms of raw accuracy. When
items were drawn from a total pool of 22 items, performance was
undistinguishable from performance in the Unique Condition, where
items were trial-unique. In contrast, when items were drawn from a
total pool of 9 items, a sizeable PI effect emerged

These results were confirmed in series of Generalized
Linear Mixed Models, treating the trial-by-trial accuracy as
a binary random variable. I first fit a model with the random
factor Participants and the fixed factor Pool-Size, treating
theUnique Condition as the reference level. The order of the
blocks and its interaction with Pool-Size did not contribute
to the model likelihood and were thus removed (Baayen
et al., 2008). As shown in Table 4, performance was better in
theUnique Condition than for Pool-Size 9, while theUnique
Condition did not differ statistically from the Pool-Size 22
condition.

Further, and as shown in Table 4 (bottom), a model fit
to the data after removing the Unique Condition showed
that performance was significantly worse in the Pool-Size 9
condition than in the Pool-Size 22 condition.

Appendix D.1 shows the results in terms of the hit and
false alarm rates. The hit rate was higher in the Unique
Condition than in the two other Pool-Size conditions, while
it did not differ between the latter two conditions. The false
alarm rate was higher for Pool-Size 9 than for Pool-Size

Table 4 Results of a generalized linear mixed model for Experiment 1,
with the fixed factor Pool-Size, treating the Unique Condition as
the reference level. Compared to the Unique Condition, performance
was impaired for Pool-Size 9, but not for Pool-Size 22. The results
show two models that include (top) or exclude (bottom) the Unique
Condition

Effect Estimate Std. Error CI t p

Model including the Unique Condition

Pool-Size 22 −0.035 0.062 −0.158, 0.0873 −0.563 0.574

Pool-Size 9 −0.307 0.061 −0.427, −0.187 −5.025 <0.001

Model excluding the Unique Condition

Pool-Size 9 −0.271 0.061 −0.39, −0.152 −4.46 <0.001

Mem Cogn (2022) 50:782–816794



22, which had a higher false alarm rate than the Unique
Condition.

Discussion

The results of Experiment 1 show that PI effects are readily
observed with spatially distributed items when PI is strong
enough: When, on each trial, 8 items are shown on an
imaginary circle, performance is impaired when items are
taken from a limited pool of 9 items compared to when they
are trial-unique. In contrast, when items come from a pool
of 22 items in total, performance is equivalent to the Unique
Condition.

Observers are thus sensitive to the strength of PI.
However, the results of Experiment 1 are ambiguous as
to whether PI occurs among the representations of simple
items or rather among representations of item-location
combinations. As discussed in the Introduction, these
possibilities make different predictions with respect to the
role of the set-size. If participants represent simple items,
the strength of PI should be determined by the ratio between
the set-size on each trial and the total number of possible
items. After all, this ratio determines for how many trials we
need to wait before seeing a given item again.

In contrast, if people represent item-location combina-
tions, the strength of PI should be determined only by the
total number of items but not by the set-size. These possi-
bilities are addressed in Experiment 2 by keeping the total
pool-size constant and by increasing the set-size. If partici-
pants represent item-location combinations, they should still
be insensitive to PI when the total pool-size is kept constant;
this is because the waiting time between two occurrences
of an item depends only on the total pool-size, but not the
set-size. In contrast, if they represent simple items with no
spatial component, increasing the set-size should increase
the strength of PI, because the waiting time between two
occurrences of an item depends on both the set-size and the
pool-size.

Experiment 2: The role of the set-size

In Experiment 2, I asked if PI effects depend on the set-size
when items were spatially distributed and when the pool-
size is kept constant. As mentioned above, if people use
spatial information to resist PI by representing item-location
combinations, they should not be sensitive to manipulations
of the set-size; as a result, as in Experiment 1 and Makovski
(2016), they should not be sensitive to PI with a pool size
of 21. In contrast, if people predominantly represent simple
items, they should show more PI as the ratio between the
set-size and the total pool-size increases.

Materials andmethods

In all trials, participants viewed a sequence of objects,
presented on an imaginary circle moving in a clock-wise
direction. Participants completed a Unique Condition and
a Repeated Condition (where items were drawn from a
total pool of 21 items); the order of these conditions
was counterbalanced across participants. On each trial,
participants were presented either with 12 or 20 items. The
same Set-Size could not occur more than three times in a
row. There were 120 trials per PI condition. Participants
could take a break every 60 trials.

Results

I first analyze the results in terms of the performance in the
Unique Condition and in terms of the Cost of PI and then in
terms of the raw accuracy in the Unique Condition and the
Repeated Condition, respectively.
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Fig. 5 Results of Experiment 2 in terms of the accuracy in the Unique
Condition (a) and of the relative Cost of PI (b). Neither measure
appears to be affected by the Set-Size
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Table 5 Descriptive statistics in terms of raw accuracy and Cost of
PI in Experiment 2. pWilcoxon indicates the p values of a Wilcoxon
test against the chance levels of 50% (accuracy) and 0 (Cost of PI),
respectively

PI Condition Set-Size N M SD SE pWilcoxon Cohen’s d

Accuracy

Unique 12 30 0.656 0.066 0.012 <.001 2.36

Unique 20 30 0.658 0.061 0.011 <.001 2.60

Repeated 12 30 0.616 0.057 0.010 <.001 2.05

Repeated 20 30 0.616 0.068 0.012 <.001 1.70

Cost of PI

– 12 30 0.053 0.116 0.021 0.024 0.461

– 20 30 0.056 0.131 0.024 0.026 0.430

Analyses of memory vs. susceptibility to PI

As shown in Fig. 5 and Table 5, both the performance in
the Unique Condition and the Cost of PI were well above
chance, but neither measure was affected by the set-size.
Accordingly, a paired Wilcoxon test revealed no difference
between the set-sizes, neither for accuracy in the Unique
Condition, V = 169, p = 0.871, CI.95 = −0.04, 0.03, nor
for the Cost of PI, V = 239, p = 0.903, CI.95 = -0.06, 0.06.

Analysis in terms of accuracy

As shown in Fig. 6 and Table 5, performance in terms of raw
accuracy differed across the PI Conditions, but was unaf-
fected by the Set-Size. This was confirmed by a generalized
linear mixed model with the within-subject predictors PI
Condition and Set-Size, treating the trial-by-trial accuracy as
binary random variables. Following Baayen et al. (2008), I
then removed the interaction term from the model as it did
not contribute to the model likelihood. I also included the
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Fig. 6 Results of Experiment 2 in terms of raw accuracy, grouped
by the Set-Sizes. U and R represent the Unique and the Repeated
Condition, respectively. A While PI impairs memory performance,
memory performance is largely unaffected by the Set-Size

block order as well as its interactions with the other fac-
tors, but they did not contribute to the model likelihood. The
results are shown in Table 6.

While performance was significantly worse for the
Repeated Condition, the difference between the Set-Sizes
was not significant.

To provide evidence for the absence of a set-size effect, I
calculated the likelihood ratio in favor of the null hypothesis
in the following way. First, for each participant and set-size,
I averaged the accuracy, and, for each participant, subtracted
the averages for the Set-Sizes from each other. A Shapiro-
Wilk test did not detect any deviations from normality
for these differences. Then, following Glover and Dixon
(2004), I calculated the likelihood ratio of the hypotheses
that (1) the differences were not different from zero and
(2) that they were. (This approach is similar to an analysis
using Bayes factors, except that it is frequentist and does
not make arbitrary assumptions about the prior distribution
of the effect sizes.)

The null hypothesis was 3.1 times more likely than
the alternative hypothesis after correction with the Akaike
information criterion, and 5.5 times more likely after
correction with the Bayesian Information criterion.

Appendix D.2 shows the results in terms of the hit rate
or the false alarm rate. The hit rate did not differ among
the PI conditions, while the false alarm rate was higher
in the Repeated Condition. Both the hit rate and the false
alarm rate was greater for Set-Size 20 than for Set-Size
12, suggesting that participants had a greater tendency to
endorse items for the larger set-size.

Discussion

Experiment 2 revealed three crucial results. First, as
in Experiment 1, PI is reliably observed with spatially
distributed items. Second, unlike in Experiment 1 and
Makovski’s (2016) experiments, PI is reliably observed with
a pool-size of 21 — when the set-sizes were increased
to 12 or 20 items (compared to 8 items in Experiment 1
and in Makovski’s (2016) experiments). As the total pool-
size was similar, one would not expect PI to be observed
if participants had encoded item-location combinations, as
they should not be sensitive to the set-size. The results

Table 6 Results of a generalized linear mixed model for Experiment 2.
I treated the Unique Condition and a Set-Size of 12 as the reference
levels for the two predictors

Effect Estimate SE CI t p

PI Condition: −0.177 0.049 −0.273, −0.0808 −3.604 0.000

Repeated

Set-Size: 20 0.004 0.049 −0.0926, 0.0999 0.074 0.941
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of Experiment 2 thus clearly rule out that PI is driven
exclusively by the total pool-size, and thus by interference
between item-location combinations. Participants are thus
sensitive to both the set-size and the total pool-size, ruling
out that they primarily encode item-location combinations
rather than simple items.

Second, neither the performance in theUnique Condition
nor the strength of PI differed between the set-sizes 12 and
20. While the absence of a set-size effect in the Unique
Condition is consistent with earlier results (e.g., Endress &
Potter, 2014a), one would expect a further increase in PI
between Set-Sizes 12 and 20 if PI strength is monotonically
related to the waiting time between simple items.

However, these results have three straightforward and
mutually non-exclusive (post-hoc) interpretations. First, the
set-size varied across trials within a block; plausibly, PI
might just track the mean waiting time between recurrences
of an item; after all, the relative difficulty of the Repeated
Condition compared to the Unique Condition resides in the
fact that it is difficult to determine whether a given test item
occurred in the current as opposed to previous trials, and
not in the number of items presented in a given trial. If so,
an additional set-size effect should be observed when the
set-size is manipulated across blocks and not across trials.

Second, the dose-effect relation between recurring items
and PI might simply not be linear. For example, Endress and
Szabó (2017) noted that people need to search through some
memory space and that this memory space might be more
or less crowded. To the extent that memory spaces function
similarly to other representational spaces, they pointed out
that visual crowding occurs only if items are closer than some
critical distance (e.g., Pelli, Palomares, & Majaj, 2004; van
den Berg, Roerdink, & Cornelissen, 2007); if items are
closer than that distance, recognition is impaired, but not
if items are more separated. If a similar situation holds for
memory, the strength of PI (as measured by the waiting time
between consecutive occurrences of the same item) would
need to be greater than some critical value for interference
effects to be observable, but, beyond this critical value, the
strength of PI might increase much more slowly.

Third, and relatedly, if spatial information acts predomi-
nantly as a retrieval cue rather than as a part of the (short-
term) memory representations, the usefulness of a retrieval
cue likely depends on the overall level of interference. In
the party analogy above, when trying to decide who among
our friends was present at a specific party, we might use the
party as a retrieval cue to run a memory search through our
friends. However, the memory search will not succeed if we
see our friends too often; if we see them every day, it might
be hard to decide if we have seen them at some party as well,

and the difficulty of this memory search does not necessar-
ily show a linear relationship with the frequency of meeting
friends.

Be that as it might, the combined results of Experiments 1
and 2 show that PI is readily observed for spatially
distributed items and that observers are sensitive to both the
total pool-size and the set-size. These results thus rule out
that participants rely on item-location combinations, but are
consistent with the possibility that spatial cues might act as
retrieval cues as long as PI is not too strong.

Experiment 3: The role of spatial distribution
and predictability

In Experiment 3, I explored the effects of the spatial
distribution of the memory items on memory performance
and susceptibility to PI, respectively. I kept the set-size and
the pool-size constant (with a high ratio between the set-
size and the pool-size) and presented items either centrally
on the screen or on an imaginary circle. Critically, when
items were presented on an imaginary circle, they appeared
either in a predictable sequence of locations or in a random
sequence of locations.

Materials andmethods

In all trials, participants viewed a sequence of 15 objects.
Critically, across blocks, items were presented either at
the center of the screen (in the Center Condition), on an
imaginary circle where items proceeded in a clockwise
direction (in the Circle-Ordered Condition ) or on an
imaginary circle where items positions on the circle were
chosen at random (in theCircle-Random Condition). In both
circle conditions, the position of the first sample item was
randomly chosen.

Each block comprised a sub-block with trial-unique
items and a sub-block where items were drawn from a pool
of 16 items in total.

The order of blocks and sub-blocks was counterbalanced
across participants. Specifically, I used all 6 possible orders
of the three blocks; further, for half of the participants,
the Repeated Condition (within each block) preceded the
Unique Condition, while the order was reversed for the
remaining participants, leading to 12 counterbalancing
conditions in total.

Each of the 6 blocks (3 location conditions × 2 PI
conditions) comprised 48 trials; participants were offered
the opportunity to take a break every 24 trials. Experiment 3
comprised 288 trials in total.
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Fig. 7 Results of Experiment 3 in terms of the raw performance
in the Unique Condition (a) and the relative Cost of PI (b). While
performance in the Unique Condition was better when items were
presented at the center of the screen than when they were spatially
distributed, the Cost of PI was relatively unaffected by these spatial
manipulations

Results

I first analyze the results in terms of the performance in the
Unique Condition and in terms of the Cost of PI and then in

terms of the raw accuracy in the Unique Condition and the
Repeated Condition, respectively.

Analyses of memory vs. susceptibility to PI

As shown in Fig. 7 and Table 7, memory performance in the
Unique Condition was better when items were presented at
the center of the screen compared to the two conditions where
they were spatially distributed, with no difference between the
latter two conditions. In contrast, the Cost of PI was not
affected by the Location Condition manipulation at all.

This impression was confirmed by pairwise Wilcoxon
tests among the conditions. As shown in Table 8,
performance in the Unique Condition was better in the
Center Condition than in the Circle Random Condition
and than in the Circle Ordered Condition. In contrast,
performance did not differ significantly among the two
circle conditions, nor were there any statistically significant
differences in terms of the Cost of PI.

In sum, memory (as operationalized in the Unique
Condition) was impaired when items were spatially
distributed, with little difference between predictable and
random positions. In contrast, the strength of PI was largely
unaffected by these manipulations.

I further investigate these results in two ways. First, I
split the Location Condition predictor into two predictors,
indicating whether the spatial location of items was
predictable (i.e., in the Center and the Ordered conditions)
or not (in the Random condition), and whether the items
were spatially distributed or not. I fit models to the data
(separately for the Unique Condition and the Cost of PI)
that included both predictors and models that included only
a single one. (The models for the accuracy data treated data
as binomial, while the models for the Cost of PI treated
it as Gaussian, though similar results are obtained when
both models assume Gaussian distributions.) Following this,
I removed one of the predictors to establish whether it
significantly contributed to the model likelihood.

Table 7 Descriptive statistics
in terms of raw accuracy and
Cost of PI in Experiment 3.
pWilcoxon indicates the p
values of a Wilcoxon test
against the chance levels of
50% (accuracy) and 0 (Cost of
PI), respectively

PI Condition Location Condition N M SD SE pWilcoxon Cohen’s d

Accuracy

Unique Center 60 0.655 0.099 0.013 <.001 1.557
Unique Circle - Random 60 0.624 0.088 0.011 <.001 1.413
Unique Circle - Ordered 60 0.631 0.089 0.012 <.001 1.459
Repeated Center 60 0.586 0.080 0.010 <.001 1.072
Repeated Circle - Random 60 0.576 0.083 0.011 <.001 0.922

Repeated Circle - Ordered 60 0.570 0.079 0.010 <.001 0.879
Cost of PI
– Center 60 0.091 0.143 0.019 <.001 0.638

– Circle - Ordered 60 0.083 0.150 0.019 <.001 0.554

– Circle - Random 60 0.066 0.141 0.018 0.001 0.468
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Table 8 Pairwise Wilcoxon
test for the Location
Conditions in Experiment 3

Measure Location Condition 1 Location Condition 2 V p CI

Unique Center Circle - Ordered 1074 0.049 4.76e-05, 0.0625

Unique Center Circle - Random 994 0.030 3.41e-05, 0.0625

Unique Circle - Ordered Circle - Random 805 0.772 −0.0209, 0.0313

Cost of PI Center Circle - Ordered 978 0.645 −0.039, 0.0624

Cost of PI Center Circle - Random 1092 0.194 −0.0127, 0.0798

Cost of PI Circle - Ordered Circle - Random 949 0.632 −0.041, 0.0669

As shown in Table 9, removing Spatial Distribution
from the model significantly impaired the model fit for the
Unique Condition, but not for the Cost of PI. In contrast,
Location Predictability did not contribute to the model
likelihood for either measure. These analyses thus confirm
that memory is affected by spatially distributing memory
items irrespective of whether their positions are predictable
or not, while PI seems invariant under such manipulations.

To provide direct evidence for the null hypothesis, I
investigated these results using likelihood ratios (Glover &
Dixon, 2004) corresponding to these contrasts. Specifically,
for each participant, I calculated the difference (1) between
performance in the predictable conditions and performance
in the unpredictable ones, and (2) between performance in
the spatially distributed conditions and performance with
central presentation of the items. I then asked if a model
fitting a non-zero value to these differences would fit the
data better than a model where the differences were fixed
to zero, assuming the data were normally distributed and
correcting for the different numbers of parameters (i.e.,
whether an intercept was fit) using Bayesian Information
Criterion and the Akaike Information Criterion.

For the Unique Condition, the likelihood ratios strongly
favored the alternative hypothesis in the case of Distributiv-
ity (likelihood ratios in favor of the null hypothesis: 0.128
(Akaike Information Criterion) and 0.341 (Bayesian Infor-
mation Criterion)). In contrast, they were ambiguous as to
whether Location Predictability affected memory perfor-
mance (likelihood ratios in favor of the null hypothesis:

Table 9 Contributions of the predictability and the spatial distribution
of the items. While the spatial distribution contributed to the
model likelihood in terms of the accuracy in the Unique Condition,
predictability of item locations did not. In contrast, the Cost of PI was
unaffected by either manipulation

Measure Removed Predictor χ2 Df p

Accuracy (Unique Condition) Spatial Distribution 3.763 1 0.052

Accuracy (Unique Condition) Location Predictability 0.272 1 0.602

Cost of PI Spatial Distribution 0.128 1 0.721

Cost of PI Location Predictability 0.494 1 0.482

0.658 (Akaike Information Criterion) and 1.746 ((Bayesian
Information Criterion)).

For the Cost of PI, there was evidence favoring
the null hypothesis: For both the alternative hypothesis
that the Cost of PI is affected by (1) the presence
of spatial information (likelihood ratios in favor of the
null hypothesis: 2.032 (Akaike Information Criterion)
and 5.394 (Bayesian Information Criterion)) and (2)
its predictability (likelihood ratios in favor of the null
hypothesis: 1.731 (Akaike Information Criterion) and 4.597
(Bayesian Information Criterion)).

In other words, memory performance was impaired when
items were spatially distributed, replicating Makovski’s
2016 results. However, memory performance was fairly
unaffected by the predictability of the item locations (but
see below).

In contrast, the Cost of PI was unaffected by either factor.
The latter result is surprising because the Circle-Random
Condition requires extremely rapid shifts in attention, and
yet does not increase the susceptibility to PI. However,
this result is consistent with previous finding that only
memory but not the strength of PI is affected by temporal
manipulations (Endress & Siddique, 2016) or manipulations
of visual or executive attention (Endress, in preparation).

Analysis in terms of accuracy

As shown in Fig. 8, performance was better in the Unique
Condition than in the Repeated Condition. Performance
was also better in the Center Condition than in the Circle-
Random Condition, while the Circle-Ordered Condition
seemed to yield an intermediate performance.

I sought to confirm this impression using a generalized
linear mixed model with the within-subject predictors PI
Condition and Location Condition, treating the trial-by-trial
accuracy as a binary random variable. Following Baayen
et al. (2008), I then removed the interaction term from the
model as it did not contribute to the model likelihood. I
also included the order of the PI conditions, the order of the
Location Conditions and their pairwise interactions (but no
third or fourth order interactions) as fixed factor predictors
as well as the Block Number as a random factor predictor.
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Fig. 8 Results of Experiment 3 in terms of raw accuracy. Performance
was better in the Unique Condition than in the Repeated Condition
and when items were presented at the center for the screen than when
they were spatially distributed. In contrast, the strength of the PI effect
seemed unaffected by the spatial distribution of the items

Only the interaction between the Location Condition and
the Location Condition Order contributed to the model
likelihood.

As shown in Table 10, performance was better in
the Unique Condition than in the Repeated Condition
and marginally better in the Center Condition than in
the Circle-Random Condition. There were also a number
of interactions between the Location Condition and the
Location Condition Order that were examined in more
detail in Appendix D.3 in terms of hit and false alarm rates.

Hit rates were lower in the Unique Condition than in
the Repeated Condition, and lower in the Circle-Random
Condition than in either the Circle-Ordered Condition or
the Center Condition, with no difference between the latter
two conditions. However, the pattern of interactions with
the Location Condition Order suggests that hit rates in
the Circle-Random Condition tended to somewhat higher
when it was presented as the first block, while hit rates in
the Circle-Ordered Condition tended to be somewhat lower
when the Circle-Random Condition was presented before
the Circle-Ordered Condition. False alarm rates were higher
in the Repeated compared the Unique Condition.

Taken together, these results provide no evidence for
the hypothesis that spatially distributing items affects the
strength of PI. They reveal indistinguishable PI effects
across the Location Conditions that seem to be primarily
carried by an increase in false alarm rates.

In contrast, spatially distributing items seems to affect
memory. Accuracy as well as hit rates were reduced in the
Circle-Random Condition, while the relative performance
in the Circle-Ordered Condition seemed to depend on the
order in which the Location Conditions were presented.
The numeric performance reduction in the Circle-Ordered
Condition might thus partially reflect (strategic) order
effects.

Discussion

The results of Experiment 3 suggest that the susceptibility to
PI is not affected by spatial information. This is consistent
with the interpretation of Experiments 1 and 2 that spatial
information provides retrieval cues when PI is not too
strong, but that it does not lead to memory for item-location
combinations.

However, an alternative interpretation is that people
cannot encode more than a few item-location bindings.
This possibility might take four different (but not mutually
exclusive) forms, but, as I will argue below, all of them are
either refuted by the data or point to a limited role of spatial
information in the resolution of PI.

First, observers might spontaneously bind items to
location (though they still need to allocate attention to the
items; Treisman and Gelade, 1980), but with too many
locations, each location becomes less distinct and thus less
useful. For example, when eight objects are presented on a
circle, a resolution of 45◦ is sufficient, while a resolution of
24◦ would be required with 15 objects. Critically, however,
if item-location bindings occur spontaneously, the items
should still be bound to some approximate location, even
if the resolution is not sufficient to encode the location
precisely. As a result, the effect of PI should still be reduced
relative to when items are presented at the same central
location, which was clearly not the case. The results of
Experiment 3 thus rule out that the lack of an effect of
spatial distribution is due to a limited precision of the
location encoding system.

Second, item-location bindings might occur sponta-
neously, but observers might only be able to maintain a
limited number of bindings in memory, similarly to how
some authors propose that we can maintain only a limited
number of items in memory (e.g., Cowan, 2001; Fukuda
et al., 2010; Hartshorne, 2008; Luck & Vogel, 1997; Rouder
et al., 2008; Zhang & Luck, 2008). If so, one would pre-
dict that observers retain the last bindings. If binding occurs
spontaneously, they keep binding items to locations as they
experience more item-location combinations; but as they
cannot retain all of them, earlier bindings are overwritten by
later item-location combinations.

I tested the predictions of this account in two ways. (The
detailed results are presented in Appendix C). In the first
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Table 10 Results of a generalized linear mixed model for Experi-
ment 3. For the PI Condition, the reference level was the Unique
Condition; for the Location Condition, the reference level was the

Center Condition. For the Location Order, the reference level was
Ordered-Random-Center

Effect Estimate Std. Error CI t p

PI Condition: Repeated −0.250 0.031 −0.311, −0.189 −8.030 0.000

Location Condition: Circle-Ordered −0.004 0.094 −0.188, 0.179 −0.046 0.963

Location Condition: Circle-Random −0.181 0.093 −0.364, 0.000773 −1.952 0.051

Location Condition: Center × Location Order: Ordered-Center-Random 0.040 0.125 −0.205, 0.285 0.319 0.749

Location Condition: Circle-Ordered × Location Order: Ordered-Center-Random 0.040 0.125 −0.205, 0.286 0.322 0.748

Location Condition: Circle-Random × Location Order: Ordered-Center-Random 0.262 0.125 0.0171, 0.507 2.097 0.036

Location Condition: Center × Location Order: Random-Ordered-Center −0.017 0.128 −0.268, 0.234 −0.131 0.896

Location Condition: Circle-Ordered × Location Order: Random-Ordered-Center 0.144 0.129 −0.109, 0.396 1.116 0.264

Location Condition: Circle-Random × Location Order: Random-Ordered-Center 0.209 0.128 −0.0415, 0.459 1.635 0.102

Location Condition: Center × Location Order: Random-Center-Ordered 0.216 0.129 −0.0368, 0.469 1.675 0.094

Location Condition: Circle-Ordered × Location Order: Random-Center-Ordered −0.071 0.128 −0.322, 0.179 −0.558 0.577

Location Condition: Circle-Random × Location Order: Random-Center-Ordered 0.301 0.128 0.05, 0.553 2.350 0.019

Location Condition: Center × Location Order: Center-Ordered-Random −0.028 0.128 −0.279, 0.223 −0.218 0.827

Location Condition: Circle-Ordered × Location Order: Center-Ordered-Random −0.137 0.128 −0.387, 0.114 −1.070 0.285

Location Condition: Circle-Random × Location Order: Center-Ordered-Random −0.041 0.127 −0.29, 0.208 −0.323 0.747

Location Condition: Center × Location Order: Center-Random-Ordered 0.245 0.129 −0.0082, 0.499 1.897 0.058

Location Condition: Circle-Ordered × Location Order: Center-Random-Ordered 0.013 0.128 −0.239, 0.264 0.098 0.922

Location Condition: Circle-Random × Location Order: Center-Random-Ordered 0.297 0.128 0.0461, 0.549 2.319 0.020

analysis, I consider the Cost of PI in the Circle-Ordered
Condition. One would expect a main effect of the sequential
position: the Cost of PI should be reduced in later positions
compared to earlier positions. However, there was no trace
of such an effect, and, in fact, likelihood ratio analysis
provided evidence in favor of the null hypothesis.

In the second analysis, I consider the raw accuracy in
the Unique and the Repeated Conditions of the Center
Condition and the Circle-Ordered Condition, again as a
function of the sequential position of the items. The critical
prediction is a triple interaction between these factors.
If spatial information reduces PI, one would expect an
interaction between the Location Condition and the PI
Condition. However, if observers cannot encode more
than a few item-location bindings, this double interaction
should be strongest for the most recent sequential positions,
resulting in a triple interaction between the Location
Condition, the PI Condition and the Sequential Position.
Again, these predictions were unsupported.

The third way in which observers might face difficulties
when encoding an excessive number of item-location
bindings assumes that they automatically stop binding
items to locations when there are more than a handful of
locations. While the current experiments do not rule out this
possibility, it does raise the question of why observers would
not use a more approximate representation of the locations
instead of forgoing this source of information altogether,
and if an automatic item-location binding system really

estimates the expected number of bindings even before the
start of each trial to decide whether the bindings should be
encoded.

Fourth, and relatedly, item-location binding might not
occur spontaneously; rather, observers might strategically
avoid encoding such bindings under some conditions. While
this possibility is not ruled out by the data, it would suggest
that location information does not necessarily reduce the
effects of PI.

Taken together then, the possibility that people might
face difficulties when encoding more than a few item-
location bindings is either contradicted by the data or seems
to suggest a limited role of spatial information for PI
resolution.

Analysis by recency

So far, I analyzed the effects of PI by comparing
performance in high-PI blocks with higher Set-Size-to-
Pool-Size ratios to low-PI blocks with lower Set-Size-to-
Pool-Size ratios. However, it also possible to analyze the
effects of recent occurrences of items within blocks.12 To do
so, I combined all trials from all blocks in all experiments
where items were presented in a predictable order on
a circle, excluding all blocks with trial-unique items as

12I am grateful to an anonymous reviewer for this suggestion.
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Fig. 9 Performance in terms of accuracy, hit rates and correct rejection
rates as a function of four measures that might affect the strength of
PI: (a) the number of trials elapsed since the current test item appeared
as a sample item, (b) the total number of prior trials on which the cur-
rent test item has appeared as a sample item, (c) the number of trials
elapsed since the current test item appeared as a test item, and (d) the
total number of prior trials on which the current test item has appeared
as a test item. The x-axis labels use interval notation; for example, (3,6]

is the set of all numbers strictly greater than 3 and up to (and includ-
ing) 6. Performance is more affected when test items were previously
encountered as sample items than when they previously occurred as
test items. Accuracy and correct rejection rates were decreased when
a test item has occurred more recently or more of often as a sample
item (while hit rates were increased). In contrast, recent or frequent
test items seem to have a much weaker effect on performance

well as the Center and Circle-Random conditions from
Experiment 3. For each trial, I then calculated 4 measures
that might affect the strength of PI: (i) the number of trials
elapsed since the current test item appeared as a sample
item (“Lag as sample” in Fig. 9a), (ii) the total number of
prior trials on which the current test item has appeared as a
sample item (“# Occurrences as sample” in Fig. 9b), (iii) the
number of trials elapsed since the current test item appeared
as a test item (“Lag as test” in Fig. 9c), and (iv) the total
number of prior trials on which the current test item has
appeared as a test item (“# Occurrences as test” in Fig. 9b).

While the current experiments were not designed with
this analysis in mind, Fig. 9 shows a number of interesting
trends. First, performance (in terms of accuracy, hit rates
and correct rejections) seems much more affected when
test items were previously encountered as sample items
than when they previously occurred as test items. Accuracy
and correct rejection rates were reduced when a test item
has occurred more recently or more of often as a sample
item (while hit rates were increased). In contrast, recent or
frequent test items seem to have a much weaker effect on
performance.

These impressions were confirmed in separate Gener-
alized Linear Mixed Models, predicting performance (in

terms of accuracy, hit rates and correct rejection rates) based
on the four recency and frequency measures above. Before
fitting the models, I set the lag of items that had never
occurred as (sample or test items) to the maximum lag in
the other trials, and transformed all four measures using
the function log(1 + x) to make their distribution less left-
skewed. “Success” on individual trials was treated as a
binary random variable.

As shown in Table 11, accuracy was improved when the
test items had appeared less recently and less frequently as
samples. In contrast, the recency of the test item as test item
did not affect accuracy, while the frequency as test items had
only a smaller effect.

Hit rates were somewhat increased for test items that
were recent or frequent sample items, while the frequency
as test items had a less pronounced effect. In contrast, hit
rates were reduced for items that had frequently occurred as
test items, maybe because participants change their response
criterion for items that occur frequently as test items.

The estimates for hit rates were relatively small
compared to those found for correct rejection rates. Correct
rejections were much lower for test items that had appeared
recently or frequently as sample items, while occurrences as
test items did not appear to have an effect.
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Table 11 Results of a generalized linear mixed model the effect of item recency and frequency on accuracy, hit rates and correct rejection rates.
See Fig. 9 for a description of the different measures

Effect Estimate Std. Error CI t p

Accuracy

Lag as sample 0.212 0.042 0.129, 0.295 5.013 0.000

# Occurrences as sample −0.064 0.018 −0.099, −0.0299 −3.660 0.000

Lag as test 0.014 0.014 −0.0129, 0.0401 1.005 0.315

# Occurrences as test −0.055 0.024 −0.101, −0.00799 −2.296 0.022

Hits

Lag as sample −0.137 0.060 −0.254, −0.0196 −2.289 0.022

# Occurrences as sample −0.087 0.026 −0.138, −0.0358 −3.327 0.001

Lag as test 0.030 0.020 −0.00934, 0.0685 1.489 0.136

# Occurrences as test −0.184 0.035 −0.253, −0.116 −5.262 0.000

Correct Rejections

Lag as sample 0.666 0.074 0.522, 0.81 9.043 0.000

# Occurrences as sample −0.071 0.027 −0.124, −0.0173 −2.597 0.009

Lag as test 0.010 0.021 −0.0309, 0.0506 0.474 0.636

# Occurrences as test 0.020 0.037 −0.0516, 0.0921 0.553 0.580

While the current experiments were not designed to
address these issues, these results allow for three tentative
conclusions. First, at least in the current paradigm, PI might
act predominantly by increasing false alarm rates when
test items have been encountered recently or frequently as
samples. Second, prior occurrences as test items seem to
have a less pronounced effect. One possible explanation is
that test items are presented for much longer than sample
items; they also presented in a distinct context because
they are not surrounded by other items. This might allow
participants to better encode the context of the test items,
which, in turn, makes them less likely to interfere on
subsequent trials.

Third, the frequency of test items as test items had a
detrimental effect on hit rates. A possible explanation is that
participants might adjust their response criterion for items
that occur frequently as test items. While this would explain
why, in Experiment 1, hit rates are higher in the Unique
Condition compared to the Pool-Size-9 Condition, it would
not explain this opposite effect in Experiments 2 and 3. As
a result, more targeted experiments are needed to confirm
these conclusions.

General discussion

Why are some WM experiments more sensitive to PI than
others? One possibility is that spatial information protects
memory from PI. Indeed, previous research has found
only limited evidence for PI when items were spatially
distributed and presented sequentially (though PI effects
were reliable in very similar experiments where items

were presented simultaneously; Makovski, 2016). This
leads to three hypotheses about why PI is reduced when
items are spatially distributed. First, observers might store
item-location combinations; as there are many more item-
location combinations than simple items, this should reduce
PI among the relevant memory representations. Second, the
availability of spatial cues might change the task demands,
in that they introduce retrieval cues for memory searches.
Third, some WM paradigms might be intrinsically less
sensitive to PI than others.

The current experiments revealed two critical results.
First, PI is readily observed with spatially distributed items,
at least when it is sufficiently strong. In Experiment 1,
performance was impaired when sequences of 8 items were
drawn from a total pool of 9 items compared to a condition
with trial-unique items. In contrast, with a total Pool-
Size of 21 items, performance was undistinguishable from
performance with trial-unique items, but the sensitivity to PI
reemerged in Experiment 2 when the set-size was increased
to 12 or 20 (in different trials). Further, a combined analyses
of all three experiments revealed reduced performance when
the test items had occurred as sample items on recent
trials, in contrast to similar analysis of color-change change
detection experiments (e.g., Hartshorne, 2008; Lin & Luck,
2012; Makovski & Jiang, 2008). In contrast, prior or recent
occurrences as test items had a much smaller effect, possibly
because it is easier to encode the context of the test items.
Accordingly, PI was most visible in an increase in false
alarm rates. However, participants also had reduced hit
rates for test items that frequently occurred as test items,
suggesting that, under some conditions, participants also
adjust their response criteria.
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Second, observers are sensitive to the ratio between
the set-size and the pool-size. This constrains the role
of spatial information for short-lived forms of memory,
because observers should be sensitive to the set-size only
if they store simple items, but not if the primary memory
representations are item-location combinations; in the latter
case, they should only be sensitive to the total pool-size, but
not the set-size.

However, when the set-size further increased from 12
to 20, no further changes were observed, neither for
memory performance nor for the Cost of PI. In the case of
memory performance in the Unique Condition, this result
is consistent with Endress and Potter’s (2014a) finding
that performance in the Unique Condition is relatively
unaffected by the set-size, at least for larger set-sizes.13 In
the case of the Cost of PI, as mentioned in the discussion
of Experiment 2, the lack of a further increase in the Cost
of PI has three mutually non-exclusive explanations. First,
PI might just track the mean frequency of recurrence of
memory items (which does not change across set-sizes if
set-sizes are chosen randomly within a block). Second,
the relationship between the waiting time between two
occurrences of an item and the observable strength of PI
might be non-linear. Third, and relatedly, retrieval cues
might become less useful with stronger background PI.

Finally, Experiment 3 investigated the role of spatial
information of PI more directly. While, in line with previ-
ous experiments (Makovski, 2016), memory performance
suffered when items were spatially distributed, spatially dis-
tributing item had no effect at all on the strength of PI.
Interestingly, depending on the analysis, spatially distribut-
ing items impaired memory irrespective of whether the item
locations were predictable or not, though the reduced perfor-
mance for spatially distributed items in predictable locations
might partially reflect ordering effects.

Taken together, the present results show that, just like
other forms of memory, visual WM is susceptible to PI.
This, in turn, raises the question of why visual WM as
implemented in change detection experiments is relatively
insensitive to PI, especially given how superficially
similar the current experiments are to change detection
experiments: in both types of paradigms, participants view
arrays that exceed their WM capacity (e.g., up to 12 items
in Luck & Vogel, 1997; experiments), and, at least in tasks
where participants have to respond to single items (e.g.,
Balaban et al., 2019), they can successfully complete the
task by just binding these items to the current temporal
context (i.e., the current trial). The current results rule out
another potential explanation of these discrepant results,

13In the pilot experiment presented in Appendix B, we did find an
effect of Set-Size on performance in the Unique Condition, but this
might be because the smaller set-size was relatively small.

namely that the role of spatial information is to make items
more distinct by allowing observers to encode item-location
combinations. However, spatial information might still have
other effects.

One such possibility is that spatial cues provide partici-
pants with retrieval cues that allow them to performmemory
searches, similarly to how, in the party analogy above, we
can search our memory to discriminate friends who were at
a party from friends who were not (provided that the friends
are sufficiently familiar to begin a memory search).

A second possibility is that spatial information might
allow observers to encode entire displays as configurations
of items by binding together the items in the displays. If
so, visual WM limitations might reflect encoding rather than
memory limitations (Tsubomi et al., 2013; see also Fukuda
& Vogel, 2009; Fukuda & Vogel, 2011). The memory
representations are still likely to be susceptible to PI, but the
PI effects might be relatively minor if the limitations due
to encoding are much more pronounced than any limitations
due to PI. This hypothesis would be in line with previous
suggestions that an important function of WM is to
create temporary bindings (e.g., Bateman & Birney, 2019;
Oberauer et al., 2008), though the bindings in the case
of change detection experiments would be much more
perceptual than those in earlier non-visual WM experiments.

A third and mutually non-exclusive possibility is that
change detection experiments are relatively insensitive to PI
because they reflect attentional encoding processes rather
than memory per se, which is arguably a classic theory
about WM capacity (e.g., Cowan, 2005). In fact, “WM”
limitations can be observed even when objects are in full
view: Tsubomi et al. (2013) found similar change detection
performance irrespective of whether the sample array was
followed by a blank retention interval or whether the sample
array remained visible until the test item.

Further, WM capacity estimates derived from change
detection experiments correlate with the maximum number
of items people can apprehend without counting (i.e., their
subitizing range; Piazza et al., 2011), which, in turn, are
thought to be related to attentional processes (e.g., Trick
& Pylyshyn, 1994). If so, one would expect the underlying
processes to be relatively insensitive to PI as observers can
allocate attention on each trial anew (even though long-term
memory can affect attention as well; Fan and Turk-Browne,
2016; Kerzel & Andres, 2020).

Be that as it might, the present experiments confirm that
WM experiments with real-world objects are sensitive to
PI even when the items are spatially distributed, in contrast
to change detection experiments with simple features (e.g.,
Balaban et al., 2019; Hartshorne, 2008; Lin & Luck, 2012;
Makovski & Jiang, 2008). This contrast raises the question
of whether all WM experiments index the same cognitive
processes.
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Appendix A: Formulae for waiting times

Let the set-size S be the number of pictures presented on
each trial and let T be the total number of pictures presented
in the entire (block of an) experiment. The probability that a
given picture appears as a sample (in a sample sequence or
in a sample array) is thus p = S/T and the probability of a
lag of N trials between successive occurrences of a sample
picture is thus P(lag = N) = p(1 − p)N ,

Based on these definitions, one can easily derive some
further properties of the waiting time.

Claim 1 (Waiting time) The probability of waiting at least
N trials for the next occurrence of a picture is P(lag ≥
N) = (1 − p)N .

Proof By noting that P(lag ≥ N) = 1 − P(lag < N), we
can apply the geometric series formula and obtain

P(lag ≥ N) = 1 −
N−1∑

k=0

p(1 − p)k = 1 − p
1 − (1 − p)N

1 − (1 − p)
= (1 − p)N .

Claim 2 (Mean waiting time) The mean lag is between two
occurrences of a picture 1−p

p
trials.

Proof I first note that we can drop the first term in the series:
〈lag〉 = ∑∞

N=0 NP(lag = N) = ∑∞
N=1 NP(lag = N) =

p
∑∞

N=1 N(1−p)N , which is a polylogarithm of order −1.
We thus obtain

〈lag〉 = p
1 − p

(1 − (1 − p))2
= 1 − p

p
= 1

p
− 1

Claim 3 (Waiting time for test items) The probability of
occurrence as a test item does not depend on the set-size.

Proof The probability of an item occurring as a test item is
the sum of the probability of it occurring as an old test item
and as a new test item (i.e., a foil):

P(test item) = P(test item|old trial)P (old trial)

+P(test item|new trial)P (new trial).

An item can be an old test item if (i) it is selected as a
sample item, (ii) it is not in the first or the last position, and
(iii) if it is selected as a test item:

P(test item|old trial) = S

T

S − 2

S

1

S − 2
= 1

T
.

Likewise, an item can be a new test item if (i) it is not
selected as a sample item, and (ii) it is selected as a test item:

P(test item|new trial) =
(
1 − S

T

)
1

T − S
= 1

T
.

In sum, the probability of an item occurring as a test
item is thus given by P(test item|old trial)P (old trial) +
P(test item|new trial)P (new trial) = 2 1

T
1
2 = 1

T
and does

not depend on the set-size.

Appendix B: Pilot Experiment: The role
of the set-size (2)

The pilot experiment was similar to Experiment 2 (testing
the role of the set-size), except that the set-sizes were 8 or
16 and that items were drawn from a total pool of 17 items.

B.1 Results and discussion

I first analyze the results in terms of the performance in the
Unique Condition and in terms of the Cost of PI and then in
terms of the raw accuracy in the Unique Condition and the
Repeated Condition, respectively.

B.1.1. Analyses of memory vs. susceptibility to PI

As shown in Fig. 10 and Tables 12 and 13, performance
in the Unique Condition was well above chance for both
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Fig. 10 Results of the Pilot Experiment in terms of the accuracy in the
Unique Condition (a) and the relative Cost of PI (b)
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Table 12 Descriptive statistics in terms of raw accuracy for the Pilot
Experiment. pWilcoxon indicates the p values of aWilcoxon test against
the chance level of 50%

PI Condition Set-Size N M SD SE pWilcoxon Cohen’s d

Repeated 8 32 0.655 0.083 0.015 <.001 1.88

Repeated 16 32 0.620 0.065 0.011 <.001 1.85

Unique 8 32 0.678 0.080 0.014 <.001 2.21

Unique 16 32 0.635 0.093 0.017 <.001 1.44

Set-Sizes, while the Cost of PI was not significantly
different from zero for either Set-Size, probably because, in
the Repeated Condition, the set-sizes were too small relative
to the size of the pool from which items were drawn. In fact,
the set-sizes in Experiment 2 were 12 and 20 for a pool-size
of 21, while the set-sizes in the Pilot Experiment were 8
and 16 for a pool-size of 17. The ratio between the average
set-size and the pool-size was thus somewhat higher in
Experiment 2 (0.76; 0.57 for the smaller set-size) compared
to the Pilot Experiment (0.7; 0.47 for the smaller set-size).
This corresponds to average lags between two occurrences
of an item of .3125 and .417 trials, respectively.

Further, a pairedWilcoxon test revealed that performance
in the Unique Condition was significantly better for the
smaller set-size, V = 308.5, p = 0.05, CI.95 = -5.3e-
05, 0.0834, maybe mirroring Endress and Potter’s (2014a)
finding that performance in the absence of PI drops from
small set-sizes to larger set-sizes, with a limited change in
performance for larger set-sizes. In contrast, there was no
difference between the set-sizes in terms of the Cost of PI,
V = 259, p = 0.837, CI.95 = −0.0624, 0.09.

B.1.2. Analysis in terms of accuracy

As shown in Fig. 11 and Table 12, performance in Terms of
raw accuracy differed somewhat across the Set-Size, but the
effect of PI Condition seemed small. This was confirmed
by a generalized linear mixed model with the within-subject
predictors PI Condition and Set-Size, treating the trial-
by-trial accuracy as a binary random variable. Following
Baayen et al. (2008), I then removed the interaction term
from the model as it did not contribute to the model
likelihood. The results are shown in Table 14

Table 13 Descriptive statistics in terms of the Cost of PI for the Pilot
Experiment. pWilcoxon indicates the p values of aWilcoxon test against
the chance level of 0

Set-Size N M SD SE pWilcoxon Cohen’s d

8 32 0.029 0.116 0.020 0.217 0.247

16 32 0.005 0.164 0.029 0.439 0.029
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Fig. 11 Results of the Pilot Experiment in terms of raw accuracy. U
and R represent the Unique and the Repeated Conditions, respectively,
Both figures show the same data, grouped by the PI Conditions (a) or
the Set-Sizes (b)

Table 14 Results of a generalized linear mixed model for the Pilot
Experiment. I used the Unique Condition and the Set-Size of 8 as the
reference levels of the two predictors

Effect Estimate Std. Error CI t p

PI Condition: −0.083 0.048 −0.177, 0.011 −1.73 0.084

Repeated

Set-Size: 16 −0.173 0.048 −0.267, −0.0789 −3.60 0.000

While performance was significantly worse for the Set-
Size 16, the difference between theUnique and the Repeated
condition was only marginal.

Appendix C: The Cost of PI across serial
positions

A possible limitation of Experiment 3 is that observers
might face difficulties when encoding more than a few item-
location bindings because later bindings overwrite earlier
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bindings. I analyze the predictions of this account in two
ways, one involving theCost of PI and one the raw accuracy.

In the first analysis, I consider the Cost of PI in
the Circle-Ordered Condition. One would expect a main
effect of the sequential position: the Cost of PI should be
reduced in later positions. (Due to violations of normality,
I will actually calculate pairwise differences rather than
an ANOVA). As described in the Methods section above,
the serial positions are two sequence-initial positions,
two sequence-medial positions and two sequence-final
positions. For “new” responses, sequential positions were
randomly assigned to the items.

In the second analysis, I consider the raw accuracy
(on a trial-by-trial basis) in the Unique and the Repeated
Conditions of the Center Condition and the Circle-Ordered
Condition, again as a function of the sequential position
of the items. The critical prediction is a triple interaction
between these factors. If spatial information reduces PI,
one would expect an interaction between the Location
Condition and the PI Condition. However, if observers
cannot encode more than a few item-location bindings, this
double interaction should be strongest for the most recent
sequential positions, resulting in a triple interaction between
the Location Condition, the PI Condition and the Sequential
Position.

C.1 Analyses in terms of the susceptibility to PI

In the analyses below, I excluded one participant whose
Cost of PI for the initial positions differed by more than
4.5 standard deviations from the mean. Further, as shown
in Table 15, some cells showed deviation from normality.
The analyses below are thus based on pairwise differences
assessed by Wilcoxon tests.

As shown in Table 16, the present data do not support the
prediction that the Cost of PI is most pronounced towards
the beginning of the sequences. In fact, numerically at
least, it is more pronounced for later positions. However,
as shown in Table 17 and Fig. 12, these numeric trends are
not statistically reliable, as no pairwise difference between
sequential positions reaches significance.

To provide evidence for the null hypothesis, I computed,
for each participant, the pair-wise differences between

Table 15 Cells in the Serial Position analysis for Experiment 3 where
a violation of normality was detected by a Shapiro-Wilk test when
performance was measured in terms of the Cost of PI

Sequential Position Location Condition W p p ≤ .05

First Center 0.903 0.000 ***

Middle Circle - Ordered 0.941 0.006 **

First Circle - Ordered 0.947 0.012 *

Table 16 Descriptive statistics in terms of Cost of PI of the different
sequential positions (top 3 rows), and in terms of differences of the
Cost of PI across sequential positions (bottom 3 rows)

N M SD SE

Cost of PI

First 59 0.054 0.305 0.040

Middle 59 0.046 0.283 0.037

Last 59 0.098 0.210 0.027

Differences

First-Middle 59 0.007 0.425 0.055

Last-First 59 0.044 0.375 0.049

Last-Middle 59 0.051 0.322 0.042

Table 17 Pairwise Wilcoxon test for the differences in the Cost of
PI across Sequential Positions for the Circle-Ordered Condition from
Experiment 3. The last two columns show the likelihood ratios for the
null hypothesis for these differences after correction with the Akaike
Information Criterion (AIC) and the Bayesian Information Criterion
(BIC)

AIC BIC

Difference V p CI in favor of null

Last–Middle 984 0.459 −0.0531, 0.135 1.37 3.61

Last–First 943 0.357 −0.0657, 0.148 1.95 5.12

First–Middle 859 0.622 −0.0972, 0.145 2.90 7.61
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Ordered Condition of Experiment 3
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Table 18 Results of a generalized linear mixed model for Experi-
ment 3. For the PI Condition, the reference level was the Unique
Condition, for the Location Condition, the reference level was theCen-
ter Condition, and for the Sequential Position, the reference level were

the final positions. The table shows only those effects that contributed
to the model likelihood

Effect Estimate Std. Error CI t p

PI Condition: Repeated −0.277 0.039 −0.352, −0.201 −7.17 0.000

Location Condition: same 0.087 0.039 0.0114, 0.163 2.26 0.024

Sequential Position: middle −0.269 0.048 −0.362, −0.176 −5.66 0.000

Sequential Position: first −0.266 0.048 −0.359, −0.172 −5.59 0.000

the Cost of PI in the different sequential positions (e.g.,
the difference between the Cost of PI for sequence-
initial positions and sequence-medial positions). For each
difference, I then compared two linear models with
Gaussian noise with a mean of zero and a standard deviation
estimated from the data. The null model set the intercept
term to zero (i.e., there was no data fitting on top of
estimating the variance), while the alternative model fitted
the intercept term on top of estimating the variance. I then
compared these models using likelihood ratios, adjust for
the different number of parameters (i.e., the intercept term)
using the Akaike Information Criterion and the Bayesian
Information Criterion (Glover & Dixon, 2004).

As shown in Table 17, this analysis favored the null
hypothesis. For example, the null hypothesis was about 5
times more likely than the alternative hypothesis the Cost
of PI differed between the initial and the final position
when correcting with the Bayesian Information Criterion,

and about twice as likely when correcting with the Akaike
Information Criterion. As a result, we can exclude that
people spontaneously encode item-position bindings, and
that earlier bindings get overwritten by later bindings.

C.2 Analysis in terms of accuracy

In the second serial position analysis, I used a generalized
linear mixed model with the within-subject predictors PI
Condition, Location Condition and Sequential Position (two
initial, medial, and final position, respectively). Sequential
positions for “new” test items were assigned pro-forma, but,
of course, new items has no real sequential position. In
this analysis, I treated the data as binary. Following Baayen
et al. (2008), I then removed all interaction terms from the
model as they did not contribute to the model likelihood.
The critical three-way interaction did not contribute to the
model likelihood. In fact, the Akaike Information Criterion

Table 19 Results of a
generalized linear mixed model
for Experiment 3. For the PI
Condition, the reference level
was the Unique Condition, for
the Location Condition, the
reference level was the Center
Condition, and for the
Sequential Position, the
reference level were the final
positions. The table shows the
results of the full model

Effect Estimate Std. Error CI t p

PI Condition: Repeated −0.372 0.097 −0.562, −0.183 −3.846 0.000

Location Condition: same −0.029 0.099 −0.224, 0.165 −0.297 0.766

Sequential Position: middle −0.381 0.097 −0.571, −0.192 −3.940 0.000

Sequential Position: first −0.460 0.096 −0.649, −0.271 −4.772 0.000

PI Condition: Repeated ×
Location Condition: same 0.047 0.137 −0.221, 0.315 0.345 0.730

PI Condition: Repeated ×
Sequential Position: middle 0.156 0.134 −0.108, 0.419 1.159 0.247

PI Condition: Repeated ×
Sequential Position: first 0.179 0.134 −0.0835, 0.442 1.337 0.181

Location Condition: same ×
Sequential Position: middle 0.141 0.137 −0.127, 0.41 1.031 0.303

Location Condition: same ×
Sequential Position: first 0.257 0.137 −0.0117, 0.525 1.874 0.061

PI Condition: Repeated × Location Condition: same ×
Sequential Position: middle −0.150 0.190 −0.523, 0.222 −0.791 0.429

PI Condition: Repeated × Location Condition: same ×
Sequential Position: first −0.099 0.190 −0.472, 0.274 −0.519 0.604
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Table 20 Results of a
generalized linear mixed model
for Experiment 1, separately
for hits and false alarms. I used
the Unique Condition as the
reference level for the Pool-Size

Effect Estimate Std. Error CI t p

Hits — all trials

Pool-Size 22 −0.047 0.062 −0.168, 0.0732 −0.770 0.441

Pool-Size 9 −0.313 0.060 −0.431, −0.195 −5.191 0.000

Hits—Unique Condition excluded

Pool-Size 9 0.007 0.086 −0.161, 0.176 0.087 0.931

False Alarms—all trials

Pool-Size 22 0.561 0.110 0.345, 0.777 5.090 0.000

Pool-Size 9 1.241 0.106 1.03, 1.45 11.725 0.000

False Alarms—Unique Condition excluded

Pool-Size 9 0.700 0.098 0.508, 0.892 7.152 0.000

favored the reduced model by a factor of 55, while the
Bayesian Information Criterion favored the reduced model
by a factor of 7×107, though these values are not necessarily
interpretable as likelihood ratios in a generalized linear
mixed model.

As shown in Table 18, performance was better in
the Unique Condition than in the Repeated Condition,
confirming the effect of PI; it was better in the Center
Condition and in theCircle-RandomConditions, confirming
that spatially distributing items has a cost for memory; and
it was better for the final positions than for either initial
or medial positions. In line with previous results, I thus
observed a recency effect on overall accuracy, but recency
did not affect the strength of PI.

For completeness, Table 19 shows the results of the full
model. Critically, the triple interaction is not significant.

Appendix D: Analyses in terms of hits
and false alarms

Hit and false alarm rates were analyzed using similar
generalized linear mixed models as the accuracy data above,
treating responses in each trial as binary random variables.
Unless otherwise stated, the fixed and random factors were
the same as for the accuracy data, except that the data
was restricted to “old” and “new” trials, respectively. I
also included the block order and its interactions with the

Fig. 13 Results of Experiment 1
in terms of hits and false alarms.
Each dot represents a
participant, the diamond
represents the sample mean,
while the thick line represents
the median
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Table 21 Results of a generalized linear mixed model for Exper-
iment 2, separately for hits and false alarms. I used the Unique
Condition as the reference level for the PI Condition and Set-Size 12
as the reference level for the Set-Size

Effect Estimate Std. Error CI t p

Hits

PI Condition: 0.108 0.068 −0.0265, 0.242 1.57 0.116

Repeated

Set-Size: 20 0.178 0.068 0.0436, 0.312 2.60 0.009

False Alarms

PI Condition: 0.547 0.076 0.398, 0.696 7.21 0.000

Repeated

Set-Size: 20 0.208 0.075 0.06, 0.356 2.75 0.006

other predictors as a fixed factor predictors, but, except
in Experiment 3, they did not contribute to the model
likelihood.

D.1 Experiment 1: The role of PI strength

As shown in Table 20 and Fig. 13, the hit rate was
slightly increased for Pool-Sizes 22 and 9 compared to the
Unique Condition, with no difference between the latter
two conditions. In contrast, the false alarm rate tracked
the strength of PI; false alarm rates were greater Pool-Size
9 than for Pool-Size 22; false alarm rates in the Unique
Condition were lower than for either of these Pool-Sizes.

D.2 Experiment 2: The role of the set-size

As shown in Table 21 and Fig. 14, the hit rate was higher for
Set-Size 20 than for Set-Size 12, but did not differ between

the Repeated and the Unique Conditions. In contrast, the
false alarm rate was much higher in the Repeated Condition
than in theUnique Condition, but also increased for Set-size
20 compared to Set-Size 12.

These results suggest that the effect of PI was mainly
carried by an increase in false alarm rates, but that
participants also had a greater tendency to endorse items for
larger set-sizes.

D.3 Experiment 3: The role of spatial information

As shown in Table 22 and Fig. 15, hit rates were lower
in the Unique Condition than in the Repeated Condition,
and lower in the Circle-Random Condition than in either
the Circle-Ordered Condition or the Center Condition, with
no difference between the latter two conditions. However,
the pattern of interactions with the Block Order suggested
that hit rates in the Circle-Random Condition tended to
somewhat higher when it was presented as the first block,
while hit rates in the Circle-Ordered Condition tended to
be somewhat lower when the Circle-Random Condition was
presented before the Circle-Ordered Condition.

False alarm rates were higher in the Repeated compared
the Unique Condition. Taken together, these results suggest
that PI is primarily carried by an increase in false alarm
rates, and that, in line with the accuracy analyses, only
memory but not PI is sensitive to spatial manipulations.
However, while hit rates were clearly reduced in the Circle-
Random Condition, it is unclear to what extent they are
reduced in the Circle-Ordered Condition compared to the
Center Condition, in that the relatively low performance
in the Circle-Ordered Condition in the accuracy analyses

Fig. 14 Results of Experiment 2
in terms of hits and false alarms.
Each dot represents a
participant, the diamond
represents the sample mean,
while the thick line represents
the median
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Table 22 Results of a generalized linear mixed model for Experi-
ment 3, separately for hits and false alarms. For the PI Condition, the
reference level was the Unique Condition. For the Location Condi-
tion, the reference level was the Center Condition when it was present

(top) and the Circle-Ordered Condition when the Center Condition was
removed (bottom)

Effect Estimate Std. Error CI t p

Hits — all trials

PI Condition: Repeated 0.492 0.045 0.403, 0.58 10.881 0.000

Location Condition: Circle-Ordered 0.164 0.135 −0.101, 0.429 1.214 0.225

Location Condition: Circle-Random −0.329 0.134 −0.592, −0.0675 −2.465 0.014

Location Order: Ordered-Center-Random 0.346 0.293 −0.23, 0.921 1.178 0.239

Location Order: Random-Ordered-Center −0.175 0.299 −0.761, 0.411 −0.584 0.559

Location Order: Random-Center-Ordered 0.087 0.302 −0.505, 0.679 0.288 0.773

Location Order: Center-Ordered-Random 0.021 0.299 −0.565, 0.608 0.072 0.943

Location Order: Center-Random-Ordered 0.302 0.300 −0.286, 0.889 1.007 0.314

Location Condition: Circle-Ordered × Location Order: Ordered-Center-Random −0.190 0.189 −0.561, 0.181 −1.006 0.315

Location Condition: Circle-Random × Location Order: Ordered-Center-Random 0.114 0.187 −0.253, 0.481 0.608 0.543

Location Condition: Circle-Ordered × Location Order: Random-Ordered-Center 0.141 0.190 −0.232, 0.514 0.742 0.458

Location Condition: Circle-Random × Location Order: Random-Ordered-Center 0.553 0.189 0.182, 0.924 2.923 0.003

Location Condition: Circle-Ordered × Location Order: Random-Center-Ordered −0.382 0.198 −0.769, 0.00492 −1.935 0.053

Location Condition: Circle-Random × Location Order: Random-Center-Ordered 0.340 0.197 −0.0468, 0.727 1.723 0.085

Location Condition: Circle-Ordered × Location Order: Center-Ordered-Random −0.209 0.191 −0.583, 0.164 −1.098 0.272

Location Condition: Circle-Random × Location Order: Center-Ordered-Random 0.149 0.189 −0.222, 0.521 0.789 0.430

Location Condition: Circle-Ordered × Location Order: Center-Random-Ordered −0.487 0.190 −0.86, −0.114 −2.558 0.011

Location Condition: Circle-Random × Location Order: Center-Random-Ordered 0.086 0.190 −0.286, 0.457 0.451 0.652

Hits — Circle-Center Condition excluded

PI Condition: Repeated 0.464 0.055 0.356, 0.572 8.441 0.000

Location Condition: Circle-Random −0.491 0.134 −0.754, −0.228 −3.656 0.000

Location Order: Ordered-Center-Random 0.147 0.275 −0.392, 0.687 0.536 0.592

Location Order: Random-Ordered-Center −0.042 0.281 −0.592, 0.508 −0.150 0.881

Location Order: Random-Center-Ordered −0.270 0.283 −0.824, 0.284 −0.955 0.340

Location Order: Center-Ordered-Random −0.186 0.281 −0.737, 0.364 −0.663 0.507

Location Order: Center-Random-Ordered −0.181 0.280 −0.73, 0.369 −0.644 0.520

Location Condition: Circle-Random × Location Order: Ordered-Center-Random 0.304 0.187 −0.0626, 0.671 1.626 0.104

Location Condition: Circle-Random × Location Order: Random-Ordered-Center 0.410 0.190 0.0386, 0.782 2.163 0.031

Location Condition: Circle-Random × Location Order: Random-Center-Ordered 0.714 0.196 0.33, 1.1 3.648 0.000

Location Condition: Circle-Random × Location Order: Center-Ordered-Random 0.356 0.190 −0.0156, 0.728 1.877 0.060

Location Condition: Circle-Random × Location Order: Center-Random-Ordered 0.571 0.189 0.2, 0.941 3.018 0.003

False Alarms – all trials

PI condition: Repeated 1.132 0.049 1.04, 1.23 22.985 0.000

Location Condition: Circle-Ordered 0.196 0.144 −0.0857, 0.477 1.363 0.173

Location Condition: Circle-Random 0.052 0.145 −0.231, 0.335 0.360 0.719

Location Order: Ordered-Center-Random 0.278 0.340 −0.389, 0.945 0.817 0.414

Location Order: Random-Ordered-Center −0.167 0.350 −0.852, 0.519 −0.477 0.633

Location Order: Random-Center-Ordered −0.534 0.355 −1.23, 0.161 −1.505 0.132

Location Order: Center-Ordered-Random 0.123 0.348 −0.559, 0.805 0.353 0.724

Location Order: Center-Random-Ordered −0.184 0.350 −0.869, 0.502 −0.525 0.600

Location Condition: Circle-Ordered × Location Order: Ordered-Center-Random −0.214 0.196 −0.599, 0.171 −1.087 0.277

Location Condition: Circle-Random × Location Order: Ordered-Center-Random −0.375 0.198 −0.764, 0.0143 −1.888 0.059

Location Condition: Circle-Ordered × Location Order: Random-Ordered-Center −0.207 0.206 −0.61, 0.197 −1.003 0.316
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Table 22 (continued)

Effect Estimate Std. Error CI t p

Location Condition: Circle-Random × Location Order: Random-Ordered-Center 0.108 0.206 −0.294, 0.511 0.527 0.598

Location Condition: Circle-Ordered × Location Order: Random-Center-Ordered 0.364 0.215 −0.0582, 0.786 1.690 0.091

Location Condition: Circle-Random × Location Order: Random-Center-Ordered 0.237 0.217 −0.188, 0.663 1.093 0.274

Location Condition: Circle-Ordered × Location Order: Center-Ordered-Random 0.009 0.200 −0.383, 0.402 0.047 0.962

Location Condition: Circle-Random × Location Order: Center-Ordered-Random 0.192 0.201 −0.202, 0.586 0.953 0.341

Location Condition: Circle-Ordered × Location Order: Center-Random-Ordered −0.025 0.205 −0.427, 0.376 −0.124 0.901

Location Condition: Circle-Random × Location Order: Center-Random-Ordered −0.041 0.206 −0.446, 0.363 −0.200 0.842

Fig. 15 Results of Experiment 3
in terms of hits and false alarms.
Each dot represents a
participant, the diamond
represents the sample mean,
while the thick line represents
the median
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might partially reflect different response strategies due to
different block orderings.
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