

City, University of London Institutional Repository

Citation: Hafeez, A. B., Alonso, E. & Ter-Sarkisov, A. (2022). Towards Sequential

Multivariate Fault Prediction for Vehicular Predictive Maintenance. In: 2021 20th IEEE
International Conference on Machine Learning and Applications (ICMLA). . UNSPECIFIED.
ISBN 9781665443388 doi: 10.1109/ICMLA52953.2021.00167

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26748/

Link to published version: https://doi.org/10.1109/ICMLA52953.2021.00167

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Towards Sequential Multivariate Fault Prediction for
Vehicular Predictive Maintenance

Abstract—Predictive maintenance, which has traditionally used
anomaly detection methods on sensory data, is now being
replaced by event-based techniques. These methods utilise events
with multiple temporal features, produced by diagnostic mod-
ules. This raises the need for predicting the next fault event
in industrial machines, specially vehicles, that use Diagnostic
Trouble Codes (DTCs). We propose a predictive maintenance ap-
proach, named Sequential Multivariate Fault Prediction (SMFP),
for predicting the next multivariate DTC fault in an event
sequence, using Long Short-Term Memory Networks (LSTMs)
and jointly learned event embeddings. By performing an in-depth
comparison of different architectural choices and contextual
preprocessing techniques, we provide an initial baseline for SMFP
that achieves top-3 accuracy of 63% on predicting multivariate
fault with 3 collective output layers, using vehicle maintenance
data as a case study.

Index Terms—Predictive maintenance, LSTM, DTCs, Embed-
dings

I. INTRODUCTION

Industrial systems, ranging from small machines to ve-
hicles, rely on maintenance for their durability. In recent
years, companies have started to invest in techniques that can
prevent faults in advance. One such technique is Preventive
Maintenance [1], which is a proactive monthly or biannual
routine inspection of the system that tries to reduce major
breakdowns and failures by solving minor problems ahead
of time but requires increased labor and cost. In contrast,
Predictive Maintenance [2] refers to the analysis of historical
data, correlations, and complex patterns to predict the need
for maintenance or to forecast failures of the system instead
of periodic maintenance, hence resulting in cost reduction and
a decrease in the downtime of equipment.

Traditional predictive maintenance systems apply different
anomaly detection techniques and time-series forecasting al-
gorithms to sensory data from vehicles, for example, using
correlation to perform predictive maintenance of compact
electric generators [3]. Time series models like the Auto-
regressive and Moving Average Model (ARMA) have also
been used for anomaly detection [4], [5]. Others include
clustering techniques for outlier detection [6], [7] and recurrent
neural networks to detect anomalies in aircraft data [8].

Instead of sending sensory values to cloud platforms for
analysis, modern vehicles have diagnostic modules installed
in them, which detect the faults themselves. These modules
provide sequences of multivariate fault events called Diagnos-
tic Trouble Codes (DTCs), which convey information about

[Acknowledgements omitted for submission].

the time, mileage, granularity level of fault, etc. Some features,
especially those related to faults, are non-numeric (categorical)
and have a different number of unique categories or classes
(cardinality), for example, 70, 486, and 84. High cardinality
of features and lack of numeric representation restrict the
utilization of machine learning algorithms, which often rely
on the numeric representation of features with low cardinality.
Due to these problems and the complexity of multivariate
sequential dependencies between the events in a sequence,
researches up till now have either relied on DTC relationship
analysis, focused on models that do not cater for sequential
dependencies (i.e, considered events as independent), or have
limited the predictions to a few DTC events only (i.e, few vehi-
cle components) [9], [10], [11]. To overcome the complexity
of performing predictive maintenance on multivariate events
with sequential dependencies, a significant paradigm shift is
necessary.

To this end, we propose a Sequential Multivariate Fault
Prediction (SMFP)1 approach where we predict the next DTC
event at timestep T + 1 given a sequence of multivariate
DTC events up to the current timestep T . This enables
us to perform predictive maintenance by taking a proactive
action of checking or replacing the component predicted by
SMFP. In addition, we use multiple features of the predicted
event to trace the location and granularity of the fault. The
contributions of SMFP are:

1) An embedding mechanism, learned jointly with the pre-
diction task, to map multivariate events into a continuous
representation space, where similar events are close to
each other.

2) A multi-output model based on a Long Short-Term
Memory (LSTM) network, which is learned on top of
the embeddings to handle the sequential dependencies
between the multivariate events and to simultaneously
optimize the joint event representation space in embed-
dings.

3) A baseline for this new methodology by performing an
extensive set of experiments with results and observa-
tions relating to different architectures, embeddings, hy-
perparameters, and contextual preprocessing approaches
for SMFP.

1[14] also worked in events prediction in a recommender system, but,
unlike in our proposal, events are univariate and sequentially independent,
and follow a different algorithmic approach (Empirical Risk Minimization
ranking model).

0000–0000/00$00.00˜©˜2021 IEEE

Our experiments achieve a baseline of 63% top-3 test
accuracy for the next event prediction, which is a combined
accuracy of all three output layers, each corresponding to a
different event feature with varying cardinalities. We interpret
63% top-3 accuracy as identifying the actual fault in the top-3
predictions, 63% of the time.

In the next section, we define the methodology for learning
joint event representations, SMFP with LSTMs, and several
architectural choices. In section III, we present results from
our experiments. We shall finish with a conclusion in section
IV.

II. METHODOLOGY

In this section, we will first share the details about the
dataset, the data preprocessing and the problem. We will then
discuss how LSTMs handle the sequential dependencies of
such multivariate events and how we use them in our work for
performing SMFP. Next, we describe how neural embeddings
jointly represent multivariate events and how they affect the
overall architecture of the model, including the choice between
multiple output layers (one for each feature) and a single
output layer (with concatenated raw features). Lastly, we
compare different contextual preprocessing approaches and
their impact on sequential dependency modelling.

A. Dataset and preprocessing

Diagnostic data, which is located in the memory of elec-
tronic modules and control units, is either collected in a
diagnostic session or streamed to the cloud periodically. DTC
events data for this work is provided by [omitted for sub-
mission], which is a [omitted for submission] for vehicles.
Before preprocessing (grouping) data, a single event row in
a dataset corresponds to a fault that occurred in a module
of a car. Besides event related information, each row has
some attributes related to the car and the session where
this event is recorded, for example mileage and time. We
initially preprocess the dataset such that all observations
(multivariate events) corresponding to one car are grouped
into one sequence, ordered by occurrence and mileage. This
preprocessing produced 250,000 such sequences. We further
preprocessed the data by separating individual features f i from
all the events of a sequence, to form feature vectors ~f i. These
two different preprocessing steps are reflected in figure 1 and
are used differently for embeddings later.

In figure 1-b, we can see a single sequence containing
multiple multivariate events from a car. The first feature, which
is at the highest granular level, can be seen as the main control
source of error like Transmission Module (TM), Object-
Detection Module (OD), Break-System Module (BS), etc. The
second feature, which is less granular, provides location infor-
mation such as the part of vehicle (pedal, chassis area or power
area). The third and lowest granular feature can be thought of
as fault-type, for example missing the high or low value of
some chip. This single arbitrary sequence with the last 5 multi-
variate events looks like [..., (TM,Power,01), (OD,Camera,12),

(BS,Pedal,29), (TM,Power,01), (TM,Battery,101)]. As illus-
trated in the figure 1-b, the goal is to predict the next DTC
event with all the three features, given previous multivariate
events. Next, we define this process formally.

B. Sequential Multivariate Fault Prediction

Let s = (eT , eT−1, .., e1) be a single such sequence con-
taining multivariate fault events from timestep T to timestep
1 (i.e., in descending order of occurrence), where et =
(f1t , f

2
t , f

3
t) is an event at timestep t with three variables

(features) and f it represents the i-th feature of this event at
timestep t. If we denote a sequence s = (eT , eT−1, .., e1)
compactly as sT :1 and θ be the parameters of the model that
we aim to learn, then the candidate event ẽ from all possible
events E that maximises the following probability, is selected
as the next predicted event at timestep T + 1.

argmax
ẽ

P (sT+1 = ẽ|sT :1, θ) (1)

C. Sequential dependencies and recurrent neural networks

Since sequences consist of multiple DTC events up to
timestep T , it is necessary to capture sequential order and
dependencies between events in order to predict the next DTC
event. Unlike regular feed-forward networks, Recurrent Neural
Networks (RNNs) use a recurrent loop that acts as a memory
and helps treating a history of events as a latent hidden state
(h). At timestep T , instead of modelling based on a complete
sequence sT :1, the goal is to efficiently store all the history in
the current hidden state hT and model following

P (sT+1|sT :1 = (eT , eT−1.., e1)) = P (sT+1|hT) (2)

The previous hidden state hT−1 and the current input timestep
sT contribute to calculating hT with different learned weights:
the weights between the inputs and the hidden layer Wsh, the
bias weight for the hidden layer bh and the weights between
hidden states Whh. The hidden state hT is then computed with
an activation function a as

hT = a(sT , hT−1) = a(sT ·Wsh + hT−1 ·Whh + bh) (3)

Similarly, we have output weights Whq and a bias weight
for the output layer bq . We use Whq and hT to calculate the
output YT as

YT = a(hT ·Whq + bq) (4)

Learning long term dependencies with RNNs involves mul-
tiplying gradients, which results in either very large exploding
gradient values or very small vanishing ones. LSTM networks,
introduced in [12], are a type of RNNs that addresses the
problem of remembering long-term dependencies in sequences
by incorporating additional components, namely a forget
gate, an input gate, a cell state, and an output gate. Three
gates with their respective weight matrices for input layers

Fig. 1. (a) An initial preprocessing (grouping) of data resulting in single sequence per vehicle ordered by occurrence and mileage. (b) A detailed view of
a single DTC event sequence having an event containing all the three features at each timestep (e.g., the last timestep shows a Transmission Module (TM)
related fault in the battery component, with fault type 101). (c) Further preprocessing done on (a) to separate individual features for applying embeddings.

(Wsf ,Wsi,Wso), bias weights (bf ,bi,bo) and hidden layers
weights (Whf ,Whi, and Who) are defined as

fT = a(sT ·Wsf + hT−1 ·Whf + bf) (5)
IT = a(sT ·Wsi + hT−1 ·Whi + bi) (6)

OT = a(sT ·Wso + hT−1 ·Who + bo) (7)

The forget gate (fT) provides a reset mechanism for the
content of a cell state CT . The input gate (IT) helps to decide
how much information should be read into the candidate cell
state C̃T , which has a weight Wsc with the input, a bias
weight bc and a weight Whc with the hidden layer. The output
gate (OT) channels how much information should the network
process, based on CT . LSTMs prevent unnecessary updates
of content, by avoiding the linear transformation of the cell
state CT and replacing it by point-wise multiplication of the
candidate memory and the gates.

C̃T = tanh(sT ·Wsc + hT−1 ·Whc + bc) (8)

CT = FT � C̃T + IT � C̃T (9)

D. Learning to represent events

Representing textual events numerically is required to apply
deep learning algorithms and calculate similarity metrics.
Some representations are human-interpretable as they use
simple metrics like count, presence and absence, etc., of the
events. For example, in a Bag-Of-Words (BOW) model [13],
the count of occurrences of each word is used as a feature for
training. In our case, we can denote a sequence of a feature f2

with the count of occurrences of its categories (Camera, Pedal,
Chassis, etc.). Similarly, One-Hot Encoding (OHE) represents
each event in a sequence as an N -dimensional vector, where
N is the cardinality of the event. Each vector uses 1 only at the
index of that particular word and 0 elsewhere. Unlike BOW,
OHE preserves the order of token but suffers from the curse of
dimensionality (for instance, f2 of every event at each timestep
will be replaced by a 486 dimensional vector, where 486 is the
cardinality of f2). Other types of representation are derived
representations, produced by some algorithm or mathematical
formula and hence they might not be directly interpretable (for
example, Frequency-Inverse Document Frequency (TF-IDF),
in [14]).

Neural embedding is a type of derived representation
that maps data to continuous low-dimensional representations
learned using neural networks. They provide meaningful repre-
sentations by preserving the similarity of events and mapping
each event to a continuous space, such that the events that
appear together are close in the new representation. There are
many efficient embedding algorithms that produce represen-
tations with neural networks, for example by predicting the
next words given their context (words appearing together) like
Word2Vec [15].

1) Representation with neural embeddings: Due to the
high cardinality of features, for each feature f i, a neural
embedding matrix f iEMB is learned jointly with a prediction
task such that size(f iEMB) < size(f i). A linear projection
(f iEMB · f iOHE) is applied to obtain a new reduced repre-
sentation of an OHE i-th feature (f iOHE). In our study, there
were two architectural choices for learning joint embeddings
(FEMB) for all three features and both have an impact on
the number of output layers and on the performance of the
resulting architecture. We briefly describe them next.

a) Feature concatenation and single entity embedding:
In the first approach, we concatenated 3 raw features per
time step (fconcat = f1 ‖ f2 ‖ f3) and used it to calculate
an embedding for the event. We also used the OHE of raw
concatenation as outputs, which resulted in one output layer,
as shown in figure 2.

b) Multi-input multi-output model with separate embed-
dings: The drawback of concatenating raw features is that
if a feature is missing in the concatenation (fconcat), the
whole concatenation becomes invalid. This problem reduces
the dataset size and the quality of the model, and is expected
to get worse as new categories arise for each feature. To handle
this issue, we changed the approach of preprocessing the data
as well as the architecture involving embedding layers. We
applied separate embedding layers to individual feature vectors
~f i. After obtaining separate embeddings for each ~f i, all three
embeddings were horizontally stacked to form (FEMB), before
passing to LSTMs. We then introduced separate output layers
for each feature. The architecture for this approach is depicted
in figure 3.

Since weights for these embeddings are learned jointly with
the downstream prediction task using LSTMs, they are opti-

Fig. 2. Architecture diagram with a single embedding for concatenated
features and a single output.

Fig. 3. Architecture diagram for the approach of concatenating separate
embeddings for every feature and multiple-outputs.

mized such that they retain sequential and semantic similarities
in the learned continuous representation space.

E. On context length and its influence

Theoretically, LSTMs can handle sequences of variable
lengths with long-term dependencies without encountering
vanishing or exploding gradients. Despite this, due to the
large variations in the length of sequences and computational
constraints, the number of events to consider (i.e., context)
to predict the next event is an important decision for the
architectural choice of an LSTM network. Moreover, within
a single sequence corresponding to one vehicle, there can be
different unrelated event sub-sequences. For example, if we
aim to predict the next DTC event in a sequence containing
15 total events, it is possible that only the last 7 events (a sub-
sequence from t8 to T) are related and will result in failure of
power. We compare taking only the last N events to different
sequence preprocessing techniques, in order to ascertain if an
LSTM can learn these relations without additional context.

Using the Fixed Window Split technique [16], we divided
long sequences into separate sequences after a fixed window
size of N timesteps. For instance, if one sequence has a length
of 80, it will be divided into 8 sub-sequences with a split size

of N=10. The Sliding window approach is used in many areas
of information theory such as in time-series prediction [17]
and NLP. In our study, for each sequence, we took a fixed
window of N timesteps of a sequence at a time and then slid
this window to the right with stride size 1.

We also used Overlapping windows, where for each window
of size N , instead of sliding it with stride size 1, we included
the last M timesteps of the previous window into the window,
giving an effect of smooth overlap and transition. Finally, we
used Last-N Timesteps, where we considered only the last
N timesteps of each sequence. In most of the approaches
mentioned above, we had some sequences which were shorter
than the window size and had to be padded by 0.

III. EXPERIMENTS AND RESULTS

Our model predicts a multivariate event using three dense
outputs layers. We use OHE to represent actual output features
(ground truth labels) of an event and a softmax activation func-
tion in output layers. These layers provide Kfi probabilities,
where Kfi is the cardinality of a particular feature f i. All
output layers have cross-entropy loss as the measure of errors
on predicted outputs. The overall loss is the sum of the three
individual losses for each feature f i. If ŷ denotes the predicted
class, y corresponds to an actual class, and Kfi is the size of
the output layer for a particular feature, the overall categorical
loss of all F features is calculated as

L(ŷ, y) =

F∑
fi

(−
Kfi∑
k

y(k) log(ˆy(k))) (10)

Binary and multi-class classification problems use accuracy
to evaluate the performance of the model. This metric mea-
sures the fraction of correct predictions out of total predictions.
Due to the high cardinality of features (70, 486, and 84,
respectively), we used a top-3 accuracy metric. This metric
measures if the actual values of all three features fall in their
respective top-3 predictions, which are probabilities sorted in
descending order. For example, imagine that the actual fault
that occurred was Camera (f2 in the event) and that the
model assigns the highest probabilities to Battery, Chassis,
and Camera in descending order (i.e., Camera is in the top-3
probabilities for this feature f2): if the same stands true for
the other two features, then we count it as a true prediction.

A. Experimental setup and hyperparameter tuning

We have trained our model using 250,000 sequences, each
of which corresponds to a unique vehicle. We performed
training and test split of the dataset before applying any
contextual preprocessing technique. We kept aside 12,500
sequences for testing, 4,750 sequences for validation, and
used the remaining 232,750 sequences for training. Adam
optimizer, with a learning rate of 0.001, was used for opti-
mizing the network. Data preprocessing, including ordering
the sequences with mileage and time, is done using Apache
Spark [18] while the rest of the implementation uses Keras
[19].

Hyperparameter choices, which we explain in detail in
individual result sections, include (i) using one wide LSTM
layer instead of two LSTM layers, (ii) using 60 to 240 units
in each LSTM layer, (iii) whether to use a dense layer on top
of the LSTM layer (iv) dropout values (both recurrent dropout
and dropout after LSTM layers), and (v) the output size of the
embedding (5 to 20 percent of the original feature cardinality)
for each feature. All hyperparameters are selected using Keras
Tuner, which provides different hyperparameter tuning algo-
rithms like Random Search and Bayesian Optimization [20].
Common hyperparameter choices are listed in Table I.

TABLE I
COMMON HYPERPARAMETER CHOICES

Choice Values
Optimizer Adam (beta-1 = 0.9 & beta-2 = 0.999)

Learning rate 0.001
Dropout & Recurrent Dropout 0.1 to 0.3

B. Comparing feature concatenation with separate embed-
dings and selecting embedding dimension

Before running all experiments with the different hyper-
parameters and architectural choices, we evaluated the per-
formance of two basic feature representation mechanisms;
concatenating all three features before applying embedding
and concatenating separately learned embeddings of each
feature. The first row in Table II shows the performance of
SMFP with a single concatenated input feature and a single
output, while the second row reflects the result of a multi-input
and multi-output model. We achieve 63% top-3 test accuracy
for the separate embedding concatenation approach, while the
alternative approach resulted in 51% top-3 test accuracy. Be-
sides the difference in the results, the embedding concatenation
approach is also flexible for feature preparation, as explained
in II-D, so we have used separate feature embeddings in all
other experiments.

The impact and choice of embedding dimensionality, which
is currently a much-focused research area [21], depends on
the cardinality of the feature being embedded. Although
embeddings avert the curse of dimensionality, a very low
dimension can also fail to find the latent features. With
hyperparameter tuning, 10% of the original feature cardinality
(e.g., the cardinality of f2 = 486 maps to 486 · 0.10 ≈ 48
dimensions vector) was selected as the embedding dimension
for the experiments.

TABLE II
RESULTS OF SINGLE EMBEDDING OF CONCATENATED FEATURES AND

SEPARATE FEATURE EMBEDDINGS, WHILE KEEPING THE OTHER
CONFIGURATIONS CONSTANT

Representation Type Top-3 Accuracy
Concatenated Features and Embedding 51%

Separate Embeddings 63%

C. Contextual preprocessing approaches

We experimented with the multiple contextual preprocessing
designs, discussed in section II-E. We preprocessed all the
250,000 sequences. Each preprocessing approach resulted in
a different number of sub-sequences. For a single sequence
corresponding to one vehicle, while the Last-N Timesteps ap-
proach produces only one sub-sequence, the Sliding Window
and Overlapping Window approaches produce a large number
of sub-sequences due to overlapping repeated events and hence
they start to overfit very early. We compared these alternatives
to ascertain which one captures the context better. As shown
by Table III, the Last-N Timesteps method reached the lowest
validation loss of 4.621 and the highest top-3 test accuracy of
61%.

Having good performance using Last-N Timesteps suggests
that the LSTM is able to learn dependencies between events
as well as sub-sequence breakpoints within sequences, which
is a concern that we discussed in section II-E.

D. Using dense layer on top of LSTM layers

We also added a dense hidden layer (with 120 neurons) after
the LSTM layers to the best performing preprocessing (Last-N
Timesteps) to see if it would help in learning more relations.
But as shown in Table III, it didn’t result in an improvement
in accuracy or validation loss. Despite the increment in the
number of parameters, top-3 test accuracy scored 62% and
validation loss 4.60.

E. Dropout and recurrent dropout

Dropout, originally introduced in [22], is a regularization
technique used in deep learning to prevent overfitting and
improve generalization. For each training iteration, dropout
randomly selects a set of neurons to be deactivated. It prevents
the network from relying only on a few units and forces all
units to learn independently. In [23], it is argued that applying
the same dropout mask at each time step is more efficient than
applying it randomly. The authors also suggest that recurrent
activations should be masked with a constant mask, which is
often called recurrent dropout.

In Table III, it can be seen that, without dropout, the
validation error stopped decreasing in all contextual prepro-
cessing variations, while the training loss was still lower than
the validation loss, which showed overfitting in the network.
Using recurrent dropout and dropout of 0.2, which means
deactivating 20% of the units randomly in the LSTM layer
at the time of training, helped controlling overfitting in the
network. These dropouts produced the lowest validation error
of 4.52 among all the experiments.

F. Comparing LSTM units and wider-deeper networks

The number of LSTM units corresponds to the size of the
hidden state, where one state captures one latent feature, for
example, the presence or absence of an event that leads to
engine malfunction. For the first layer of the LSTM, a final
value of 120 units in a single LSTM layer was selected using
hyperparameter tuning. One of the architectural choices for

TABLE III
RESULTS WITH MULTIPLE CONTEXTUAL PREPROCESSING APPROACHES, DIFFERENT HYPERPARAMETERS AND ARCHITECTURAL CHOICES

Method LSTM
Layers

LSTM
Units

Dense
Layer

Dense
Units Embedding Output Dimension Dropout Training

Loss
Valid
Loss

Top-3
Test
Acc

Last-N Timesteps 1 120 0 - 10% · size(f i) - 4.44 4.62 0.61
Last-N Timesteps 2 64+84 0 - 10% · size(f i) - 4.42 4.63 0.60

Last-N (with Dense Layer) 1 120 1 120 10% · size(f i) - 4.38 4.60 0.62
Last-N Timesteps 1 120 0 - 10% · size(f i) 0.2,0.2 4.58 4.52 0.63

Fixed Window 1 120 0 - 10% · size(f i) - 5.43 5.20 0.50
Sliding Window 1 120 0 - 10% · size(f i) - 5.37 5.33 0.47

Overlapping Window 1 120 0 - 10% · size(f i) - 5.38 5.57 0.49
Overlapping Window 2 64+84 0 - 10% · size(f i) - 5.39 5.61 0.48

this study was to use a wider network instead of a deeper
network [24] by adding more units in the first layer instead
of stacking a second LSTM layer on top of the first layer.
We noticed that the wider network showed the same or
slightly better performance than the deeper network. These
results were consistent across all preprocessing approaches in
Table III. To perform a balanced comparison for two-layered
LSTMs, we kept the number of LSTM parameters close to the
single-layered experiment, using 64 units in the first LSTM
layer and 84 neurons in the second layer.

IV. DISCUSSION AND CONCLUSION

In this work, we propose a new event-based predictive
maintenance model, Sequential Multivariate Fault Prediction
(SMFP), which differs from the anomaly detection approaches
that rely on sensor data having numeric representations.
We show how complex multivariate events, which are non-
numeric, can be mapped to continuous representations by
jointly learned embeddings. We propose an LSTM based
architecture that uses these representations for SMFP.

In order to set a baseline for SMFP, we show various con-
textual preprocessing approaches and architectural choices in-
cluding multiple-output modelling, embeddings on raw feature
concatenations, and stacking separate embedding layers. Our
experiments achieve a baseline of 63% top-3 test accuracy for
SMFP. We aim to further improve these results by trying other
algorithms such as Seq2Seq models and Attention methods
[25], [26].

[Due to confidentiality, associated code can be made public
after the paper is accepted.]

REFERENCES

[1] S. Duffuaa, M. Ben-Daya, K. Al-Sultan, and A. Andijani, “A generic
conceptual simulation model for maintenance systems,” Journal of
Quality in Maintenance Engineering, vol. 7, pp. 207–219, 09 2001.

[2] F.M.Discenzo, “Motor diagnostics: technological drivers leading to 21st
century predictive diagnostics.”

[3] M. Sarnovsky, P. Kostelnik, P. Butka, J. Hreno, and D. Lacková, “First
demonstrator of hydra middleware architecture for building automation,”
02 2008.

[4] Z. Liang, M. A. C. Martell, and T. Nishimura, “A personalized approach
for detecting unusual sleep from time series sleep-tracking data,” pp.
18–23, 10 2016.

[5] P. Gaikwad, A. Mandal, P. Ruth, G. Juve, D. Król, and E. Deelman,
“Anomaly detection for scientific workflow applications on networked
clouds,” 07 2016.

[6] H. N. Akouemo and R. J. Povinelli, “Data improving in time series using
arx and ann models,” IEEE Transactions on Power Systems, vol. PP, pp.
1–1, 01 2017.

[7] H.-x. Tian, X.-j. Liu, and M. Han, “An outliers detection method of time
series data for soft sensor modeling,” pp. 3918–3922, 05 2016.

[8] A. Nanduri and L. Sherry, “Anomaly detection in aircraft data using
recurrent neural networks (rnn),” in 2016 Integrated Communications
Navigation and Surveillance (ICNS), 2016, pp. 5C2–1–5C2–8.

[9] P. Pirasteh, S. Nowaczyk, S. Pashami, M. Löwenadler, K. Thunberg,
H. Ydreskog, and P. Berck, “Interactive feature extraction for diagnostic
trouble codes in predictive maintenance: A case study from automotive
domain,” 02 2019, pp. 1–10.

[10] L. Virkkala and J. Haglund, “Modelling of patterns between operational
data, diagnostic trouble codes and workshop history using big data and
machine learning,” 2016.

[11] M. Fransson and L. Fåhraeus, “Finding patterns in vehicle diagnostic
trouble codes : A data mining study applying associative classification,”
2015.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735–1780, Nov. 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[13] A. Mccallum and K. Nigam, “A comparison of event models for naive
bayes text classification,” Work Learn Text Categ, vol. 752, 05 2001.

[14] H. P. Luhn, “The automatic creation of literature abstracts,” IBM Journal
of Research and Development, vol. 2, no. 2, pp. 159–165, 1958.

[15] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” pp. 1–12, 01 2013.

[16] Pham et al., “Recurrent neural network for classifying of hpc applica-
tions,” 04 2019, p. 15.

[17] F. A. Gers, D. Eck, and J. Schmidhuber, “Applying LSTM to time series
predictable through time-window approaches,” pp. 669–676, 2001.

[18] Apache Software Foundation, “Apache spark.” [Online]. Available:
https://spark.apache.org/

[19] F. Chollet, “open-source library that provides a Python interface for
artificial neural networks,” https://keras.io/.

[20] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” 2012.

[21] Z. Yin and Y. Shen, “On the dimensionality of word embedding,” 2018.
[22] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.

Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” 2012.

[23] Y. Gal and Z. Ghahramani, “A theoretically grounded application of
dropout in recurrent neural networks,” 2016.

[24] M. Z. Alom, T. Josue, M. N. Rahman, W. Mitchell, C. Yakopcic, and
T. M. Taha, “Deep versus wide convolutional neural networks for object
recognition on neuromorphic system,” 2018.

[25] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” 2014.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

