

City, University of London Institutional Repository

Citation: Ter-Sarkisov, A. & Alonso, E. (2022). Logo Generation Using Regional Features:

A Faster R-CNN Approach to Generative Adversarial Networks. In: ArtsIT, Interactivity and
Game Creation. Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering. (pp. 442-456). Springer. ISBN 9783030955304 doi:
10.1007/978-3-030-95531-1_30

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/26771/

Link to published version: https://doi.org/10.1007/978-3-030-95531-1_30

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Logo Generation Using Regional Features:
A Faster R-CNN Approach to Generative

Adversarial Networks

Aram Ter-Sarkisov[0000−0002−1300−6132] and Eduardo
Alonso[0000−0002−3306−695X]

CitAI Research Center
Department of Computer Science

City, University of London
alex.ter-sarkisov@city.ac.uk

Abstract. In this paper we introduce Local Logo Generative Adversar-
ial Network (LL-GAN) that uses regional features extracted from Faster
R-CNN for logo generation. We demonstrate the strength of this ap-
proach by training the framework on a small style-rich dataset of real
heavy metal logos to generate new ones. LL-GAN achieves Inception
Score of 5.29 and Frechet Inception Distance of 223.94, improving on
state-of-the-art models StyleGAN2 and Self-Attention GAN.

Keywords: Deep Learning · Generative Adversarial Networks · Logo
Generation.

1 Introduction

Generative Adversarial Networks (GANs) were first introduced in [7]. They have
gained a wide recognition in the Artificial Intelligence community due to their
ability to approximate the distribution of real data by generating fake data. Re-
cent advances include Progressive-Growing GANs, StyleGAN and StyleGAN2
that learn styles at different resolutions[14–16], Self-Attention GANs (SAGANs)
that learn the connections between different spatial locations[29], CycleGANs
and Pix2Pix GANs for unpaired style transfer[30, 12] and Wasserstein loss func-
tion[1].

Faster R-CNN and Mask R-CNN[24, 6, 9] are state-of-the-art open-source deep
learning algorithms for object detection and instance segmentation that work in
multiple stages, unlike single-shot models like YOLO[23].

Faster R-CNN first predicts regions containing objects based on overlaps (In-
tersect over Union, IoU) between fixed-size rectangles known as anchors and
ground truth bounding boxes using Region Proposal Network (RPN). Then, it
pools features from these areas by cropping and resizing corresponding areas
in features maps. This is done using Region of Interest Pooling (RoIPool) to

A. Ter-Sarkisov and E. Alonso

construct fixed-size Regions of Interest (RoIs) containing rescaled regional fea-
tures for each object (later replaced by more accurate Region of Interest Align,
RoIAlign[9]). These local features are fed through fully connected (fc) layers to
independently predict the object classes and refine bounding box prediction. In
addition to this, Mask R-CNN segments objects’ masks.

One of the new and challenging areas in GANs and neural style transfer is
the creation of logos and fonts. This area includes style and shape transfer be-
tween fonts[3, 4], logo synthesis[26, 21, 19], transfer of style to font[2] and font
generation[8]. A specific challenge in this area is disentaglement of content and
style learning, often done through training of two different encoders and feature
concatenation, as in [4], and separation of transfer of shape and texture (orna-
mentation), done through pretraining of the shape model and ornamentation
model that takes the shapes and adds ornamentation[3]. Logo synthesis (style
transfer), as in [21, 19, 26], also uses conditional input (random vector + sparse
vector for the class).

We address the shortcomings of the state-of-the-art models, such as the size
of the output, which in most cases is limited to 64x64 pixels. This size is suffi-
cient for separate characters/glyphs or small logos, as readability does not suffer.
For larger logos or words, model output must be upsampled. Another limitation
we address is the size of the training data: we leverage Faster R-CNN’s capacity
to sample a batch of regional features in a single image to overcome the need for
a large dataset.

In this paper we present a GAN model for generating logos of heavy metal
bands. To the best of our knowledge, it would be the first GAN study that
is focused on the generation of band logos. With respect to specifically heavy
metal logos, recently, there were two related publications: in [28] style transfer
model based on [5] was used to fuse the style of heavy metal bands logos, e.g.
Megadeth and the content of corporate logos, e.g. Microsoft. In [25] the styling of
heavy metal logos and its association with genre and readability are investigated.

Measured by Frechet inception distance[11], Inception score[27] and detection
accuracy, the presented model confidently outperforms the state-of-the-art Style-
GAN2 and SAGAN frameworks. Our contribution consists of the following:

– Local Logo GAN (LL-GAN) framework: training the Generator by compar-
ing regional features extracted from the fake and real data using RoIAlign
module in Faster R-CNN. Since loss is computed only on regional features,
the Generator’s parameters receive updates only from the region containing
the logo in the real data. This model augments the baseline GAN framework,
serving as an additional source of gradients for the Generator’s parameters.
Ground truth bounding box is used to determine positive RoIs in the fake
image, therefore the Generator learns to output spatially-aware logos. A
number of RoIs is sampled from each image using RPN and RoIAlign mod-

Logo Generation

ules, which compensates for the sparsity of the data,

– Logo generator. The model is capable of generating style-rich heavy metal
logos consisting of glyph-like structures that closely resemble real-life band
logos without suffering from the mode collapse. This includes an augmenta-
tion of the DCGAN’s model architecture[22] that allows for creation of large
images (282×282),

– Style-rich metal band logos dataset. Images with heavy metal band logos
were scraped from the internet and labelled at text level (bounding box
around the band’s logo). Each image contains a single-word logo, with a
simple background (e.g. black or white) across 10 bands selected for the
style of the logo. The dataset consists of 923 images and an equal number of
bounding box coordinates of the logo.

Fig. 1: DCGAN+ framework. Details of the architecture of both models is pre-
sented in Table 2. Values in each module in the number of feature maps in the
Convolution (Discriminator) or Transposed Convolution (Generator) models.
Normal arrows: features and fake data, broken arrow: real data.

2 Our Approach

Model sizes and structures are compared in Table 1.

2.1 DCGAN+ framework

DCGAN+ is an augmentation of the DCGAN architecture[22] that enables gen-
eration of larger images in a single shot. The main idea behind the architecture
is the selection of the right rate of upsampling and downsampling of feature

A. Ter-Sarkisov and E. Alonso

maps in each model (kernel size, stride, padding). Figure 1 and Table 2 provide
a summary of the models’ architectures. This solution successfully addresses the
problem of the size of the generated logo, as we increase it from at most 64×64,
as in [26] to 282×282.

Table 1: Comparison of sizes of the frameworks. G: generator, D: discriminator,
F: Faster R-CNN.

Framework Number of Parameters Structure of the framework

DCGAN+ 43.83M + 3.93M G + D
LL-GAN 43.83M + 3.93M + 41.43M G + D + F

StyleGAN2 [16] 84.69M (Total) G + D
StyleGAN2 w/attention [16] 85.87M (Total) G + D

SAGAN [29] 8.1M + 4.92M G + D

DCGAN [22] 3.5M + 2.7M G +D
Faster R-CNN [10] 41.80M F

Table 2: DCGAN+ framework. G: Generator, D: Discriminator

Model Block Depth Kernel Stride Pad

G

L1(Input) 500 0 0 1
L2 1024 8 2 0
L3 512 4 2 0
L4 256 4 2 1
L5 128 4 2 1
L6 64 2 2 1
L7(tanh) 3 2 2 1

D

L1(Input) 3
L2 64 4 2 1
L3 123 3 2 1
L4 256 3 2 1
L5 512 3 2 1
L6 1024 3 2 1
L7(fc) 1 - - -

2.2 LL-GAN framework

Overall framework is presented in Figure 2. Generator and Discriminator are the
same as in DCGAN+. One of the key contributions of this paper is the use of
local features from the RoIAlign stage in Faster R-CNN to compute style loss.
We use the ground truth bounding box around the band logo to extract one RoI
from the real data, skipping the RPN stage. For the fake data, RPN predicts raw
boxes passed on to RoIAlign that uses these predictions to extract RoI features
and outputs B positive predictions (i.e. RoI box predictions that have IoU with
the ground truth box greater than a pre-defined threshold), each of fixed size
H ×W ×C. Each RoI’s height and width are hyperparameters, and depth C is
determined by the depth of the FPN feature map, see [18].

Logo Generation

Fig. 2: LL-GAN framework. Normal arrows: features, dotted arrows: box coor-
dinates, broken line box: Faster R-CNN.

Feature loss is computed between B positive RoIs from the fake and the sin-
gle RoI from the real data (ground truth region). The number of RoIs varies
from image to image, but on the average grows as the fake data increasingly
resembles the real data.

Each of C feature maps extracted from the real data is vectorized, i.e. an ith

feature map is converted into a vector with H ·W = HW elements which we
refer to as Fr

i . Dot-product is computed between each (i, j) pair of vectorized
feature maps to obtain matrix Gr with dimensionality C × C (i.e. each (i, j)
element in Gr is a dot product of the vectors Fr

i and Fr
j), see Equation 1.

Gri,j = Fr
i ⊗Fr

j (1)

For each kth RoI extracted from the fake data, we also compute Gram matrix
Gk,f , Equation 2, where Fk,f

i is an ith vectorized feature map in the kth RoI.

Therefore Gk,fi,j is the dot-product between each (i, j) pair of vectorized feature

maps in kth RoI, Fk,f
i ⊗Fk,f

j .

Gk,fi,j = Fk,f
i ⊗Fk,f

j (2)

Equations 1 and 2 compute correlation between regional features, which rep-
resents the style. The normalized style loss of kth RoI, Dk is computed using
L2 distance between Gr and Gk,f elementwise, Equation 3. Finally, we sum B
normalized RoI losses, Equation 4.

Dk =

∑C
i=1

∑C
j=1

(
Gri,j − G

k,f
i,j

)2
(2×H ×W)2

(3)

LS =

∑B
k=1Dk

B
(4)

A. Ter-Sarkisov and E. Alonso

The main idea of computing style loss using Equations 1 - 4 is to train the
Generator to evolve features that approximate the distribution of the real logos,
and in the same region as in the real data. The first requirement (style) is satis-
fied by Equations 1 and 2, the second one (spatial awareness) by the RoIAlign
functionality: by backpropagating loss extracted from a region in the fake data,
Generator learns to evolve region-aware logos. Total loss in this framework is
computed using Equation 7.

LD = Ex∼p(x) logD(x) + Ez∼p(z) log(1−D(G(z))) (5)

LG = Ez∼p(z) logD(G(z)) (6)

LTotal = LG + LD + LS (7)

Equations 5 and 6 are the usual Discriminator and Generator losses, both com-
puted using binary cross-entropy, for the real data x and fake data z, except that
Generator loss maximizes the loss function instead of minimizing it, see Section
4 for details. LS is the style loss in Equation 4.

Fig. 3: Examples of logos used in the training data overlaid with bounding box
and score predictions by Faster R-CNN. Best viewed in color.

3 Dataset construction and labeling

To train LL-GAN models, dataset must have labels consisting of bounding boxes
around logos (one box per image). Therefore, dataset construction consists of
three stages: first, we scrape the logos from the internet and manually labelled
a small portion of it. Next, we train Faster R-CNN on a labelled text and logo
ICDAR dataset, to predict boxes around words, and finetuned it to the labelled
portion of the metal logo data. Finally, we use this model on the remaining
scraped data to label each metal logo with the bounding box.

3.1 Raw dataset

Our real dataset consists of 923 images of varying sizes. Each image contains
a heavy metal band’s logo, predominantly with a neutral (e.g. black or white)
background. This was done in order to prevent the generator from learning

Logo Generation

background features and instead focus on the logo style and semantics. Ten bands
were selected purely for the style of their logos: Anthrax, Kreator, Manowar,
Megadeth, Metallica, Motorhead, Sepultura, Slayer, Slipknot, Sodom. The sizes
of images vary between 50x50 and 512x1024 pixels, with the majority about
200x200. Examples with the overlaid bounding boxes are presented in Figure 3.
This is a very challenging dataset, for two reasons: it is very small, and it is rich
in style (specific styles of heavy metal logos/fonts) and weak in content, because
each image contains only a single logo, there’s a limited number of observations
for each logo. As we explained in Section 2 and show in Section 4, the ability
of Faster R-CNN to learn and extract regional features from a single image
addresses this challenge.

3.2 Faster R-CNN Logo Detector

To detect boxes around text in logos, we finetuned the out-of-the-box Faster
R-CNN model from Torchvision v0.3.0 library with ResNet50 backbone feature
extractor and FPN pretrained on MS COCO 2017 to ICDAR Focused Scene
Text (ICDAR-FST2013), [13] dataset that contains 223 images of street signs
for 100 epochs. This model was trained to detect separate words in various
contexts. Next, we fintetuned it for 500 epochs to a portion of the metal logo
dataset. The model predicts only two classes (object vs background) per RoI,
and we capped the number of candidates in RPN stage at 1024 and also used
a slightly larger RPN anchor generator (5 anchor sizes between 16 and 256 and
5 scales, between 0.25 and 2, a total of 25/location), learning rate of 1e − 5,
regularization hyperparameter (weight decay) of 1e − 2 and Adam optimizer
with β1 = 0.9, β2 = 0.99. Other important hyperparameters (positive/negative
box thresholds, RoI dimensions, RoI batch size, heads sizes) were the same as in
the baseline Torchvision model. First, this model was used to label the rest of the
metal logo data for experiments in Section 4.Then, in Section 5, this model was
used to detect logos produced by generators in all LL-GAN frameworks and to
evaluate the accuracy of outputs of all generators and produce results in Table
4.

4 Experiments

4.1 DCGAN+ framework

We trained both Generator and Discriminator in the DCGAN+ framework from
scratch with a learning rate of 1e − 4 and weight regularization coefficient of
1e− 3 for both models using Adam optimizer [17], batch size of 128 and binary
cross-entropy loss for 1000 epochs. This took about 6 hours on a GPU with
8Gb VRAM. Following the recommendations in [7] and Pytorch GAN tutorial,
Discriminator is updated using real and fake data (1 iteration). Then, the fake
data is relabelled as real and the Generator is updated by computing loss using
real labels. This is done to avoid premature convergence.

A. Ter-Sarkisov and E. Alonso

4.2 LL-GAN framework

For LL-GAN we used the pretrained weights and the same architecture for the
Generator and Discriminator from DCGAN+. Only Generator and Discrimina-
tor were trained, all Faster R-CNN weights trained in Section 3 remained frozen,
since the logo detector model was specifically trained to detect single logos any-
where. Real and fake data is processed differently by the logo detector. From
the real data, only single RoI regional features with dimensions C ×H ×W is
extracted and vectorized, Equation 1, using ground truth bounding box, hence
RPN stage is skipped, and no gradients are computed. Fake data is fed for-
ward through the whole framework (see Figure 2), RoI features are extracted
and vectorized, Equation 2 for the loss, Equations 3-7 and gradient computation.

Also, RoI module, during processing of fake images, always appends the ground
truth bounding box coordinates to the list of RoIs. The reason for that is that
early in training, Generator cannot output high-quality logos, and therefore
Faster R-CNN will not be able to find good RoIs anywhere in the fake data.
As a result, the number of positive RoIs (B in Equation 4) varied from image to
image, but overall increased due to the improvement in the work of the Gener-
ator. In addition to the baseline LL-GAN framework that uses Equation 7 loss
function, we experimented with a number of tricks:

– In addition to style loss in Equation 4, we added detection loss from fake
data. Ground truth bounding box coordinates were taken from the real logo
that was used to train the Generator. This added two more loss functions:
raw boxes in RPN and refined boxes in RoI,

– Extend ground truth bounding boxes around logos to add more context when
computing the Generator’s loss. We experimented with different values and
found 20 pixels in each direction the optimal number for the tradeoff between
context and background noise.

– Compute L2 loss between backbone features extracted from real and fake
data, similar to content loss in neural style transfer [5]. Features were taken
from all outputs of FPN layers. Therefore, in addition to B RoIs from which
we compute LS , we add the loss from features extracted from the whole im-
age. The objective of adding this loss is to improve the Generator’s ability
to output a more neutral, e.g. black, background.

– Full model: we combine base model and all three extensions

We trained in total five frameworks (baseline + three augmentations + full
model). Each framework was trained for 500 epochs, using Adam optimizer(β1 =
0.9, β2 = 0.999), regularization parameter (weight decay) of 1e−3. Hyperparam-
eters of Faster R-CNN logo detector were the same across all frameworks, and
shared most of them with the pre-trained logo detector, including the size of the
RoIs, H = 7,W = 7, C = 256. Since logo generation is a very spatially sensitive

Logo Generation

task, we used different thresholds for positive and negative candidates both at
RPN and RoIAlign stages: the positive threshold was 0.9 and negative 0.1.

4.3 StyleGAN2

StyleGAN[15] and StyleGAN2[16] are the state-of-the art GANs that can learn
different styles and generate high-quality large images, this includes training on
small dataset (<5000 images). We trained StyleGAN2 on our data to generate
images size 256×256, using high truncation ψ = 1 coefficient(no gradient averag-
ing), augment the data by 25%, with the learning rate of 1e−4 for both Generator
and Discriminator, Adam optimizer (β1 = 0.5, β2 = 0.999), self-attention mech-
anism [29] and batch size of 4 (maximum possible for this image size on the GPU
with 8Gb of VRAM. We trained each model (with and without attention mod-
ules) for 100000 steps (∼ 100 epochs), which took about 72 hours, but we noticed
that after about 20000 steps the model starts to overfit and exhibits a strong
mode collapse. We therefore report the best result for each model (20000 steps
for the StyleGAN2 with attention and 15000 for StyleGAN2 without attention).

4.4 Self-Attention GANs

We also train SAGAN, [29], with spectral normalization[20] and Hinge loss func-
tion. We used the recommended hyperparameters: latent dimension size 128,
batch size of 64, Generator learning rate 1e − 4, Discriminator learning rate
4e− 4 and Adam optimizer (β1 = 0, β2 = 0.9). Generator’s architecture consists
of 7 modules (ConvTranspose2D + BatchNorm + ReLU , each equipped with
a spectral transformer. Self-attention module is added to block 3 with 256 fea-
ture maps and map size of 16 × 16. The model outputs images size 256×256.
SAGAN framework was trained for 300000 iterations (∼ 330 epochs). Training
was stopped due to the obvious mode collapse.

5 Evaluation of Results

Examples of outputs of all models are presented in Figure 5. In Table 3 we
report FID and IS scores, in Table 4 we report quality and detection results for
all models. The best results are bold+italicized, second best bold and third-best
italicized. For FID score, we used the layer with 2048 maps, for IS scores we
split the sample into either 1 or 10 subsets. Each model generates 512 images
which are processed by Faster R-CNN logo detector. If it predicts a logo with
confidence score exceeding the pre-defined threshold of 0.75, the detection is
considered to be a True Positive (TP), otherwise it is a False Positive (FP).
The assumption of this test is that a good Generator would output images that
contain exactly single identifiable logo. If the detector predicts more than one
logo in a single image with confidence exceeding this threshold, all predictions
other than the best-scored one are counted as FPs. If it predicts no logos at
all, it is also counted as an FP. Detection rate is defined as TP

TP+FP , average
confidence is averaged over all detections, including those below the threshold.

A. Ter-Sarkisov and E. Alonso

5.1 DCGAN+ and LL-GAN

DCGAN+ achieves the best FID score of 220.155, in which it confidently outper-
forms far more sophisticated state-of-the-art models. It also achieves the third-
best results across all other scores. The baseline model is capable of producing
high-quality realistic logos in the style of heavy metal bands without overfit-
ting to any particular feature. Among its weaknesses are the inconsistency in
glyph stlye, both in terms of color and background noise, see Figures 4 and 5.
In particular, some logos are red and yellow and consist of thin vertical lines.
Vanilla LL-GAN model achieves the best IS scores of 6.339 and 5.292 and out-
puts highly detectable logos with high confidence. Most logos generated by the

Table 3: Comparison of models’ performance-Quality. Italicized+bold: best,
bold: second-best, italicized: third-best

Framework name FID IS(1) IS(10)

DCGAN+ 220.155 6.023 5.105

LL-GAN 223.948 6.339 5.292
+ FRCNN loss 271.030 5.705 4.947
+ extended boxes 247.181 5.753 4.901
+ backbone features 237.752 4.590 4.095
full 249.694 6.232 5.150

StyleGAN2 (ψ = 0.6) 329.026 2.840 2.766
StyleGAN2 (ψ = 1.0) 354.873 2.497 2.433

+attention 328.859 2.356 2.298
SAGAN 283.554 3.581 3.394

vanilla model are very realistic, resemble real glyphs, are consistent in colors
(mostly red and white, as in the training data), and do not experience mode
collapse. Also LL-GAN with all three augmentations perform well, producing IS
scores of 6.232 and 5.150. In Figure 4 we placed outputs from DCGAN+ and
different LL-GAN models that output logos with similar features side-by-side
to highlight the advantages of our approach. The same features produced by
LL-GAN generators are more homogeneous in color and shape, the background
contains fewer geometric artefacts and is more consistent and neutral. Metrics
discussed in this section confirm that this consistency does not come at the cost
of lower variance in the output.

5.2 State-of-the-art models

StyleGAN2 is capable of producing logos with very consistent structures, but
due to the size of the dataset suffers from mode collapse. This is reflected in
the highest detection score of 0.687 and low FID and IS scores: the generated
structures are consistent enough to be classified as a logo, but do not resemble
the training data and are very similar. SAGAN also suffers from mode collapse.

Logo Generation

By comparing results in Tables 3 and 4 and Figure 5 to the models’ architectures
and sizes in Table 1, LL-GAN models are comparable in size to StyleGAN2, but
their Generators output more interesting logos.

Table 4: Comparison of models’ performance-Detection. Italicized+bold: best,
bold: second-best, italicized: third-best

Framework name Detection Rate AvgConf

DCGAN+ 0.670 0.739

LL-GAN 0.674 0.746
+ FRCNN loss 0.640 0.827
+ extended boxes 0.666 0.707
+ backbone features 0.622 0.701
full 0.590 0.638

StyleGAN2(ψ = 0.6) 0.554 0.670
StyleGAN2(ψ = 1.0) 0.687 0.684

+attention 0.578 0.569
SAGAN 0.561 0.600

6 Conclusion

Generation of logos is a challenging problem that is becoming increasingly more
popular in deep learning community. In this paper we presented a novel frame-
work that fuses Faster R-CNN and GANs for generating large (282x282) heavy
metal logos. The model was trained on a small style-rich dataset of real-life band
logos. Results achieved by LL-GAN confidently outperform the state-of-the-art
models trained on the same dataset, and we intend to explore the capacity of
Faster R-CNN detector to extract and learn from regional features further. The
advantages of our approach include:

– The novel idea of training the Generator using losses extracted from regional
features in the real and fake data using Faster R-CNN.

– Computation of the style loss (Gram matrix) on regional features. This al-
lows to use correlation between features in the fake and real data to transfer
style from real to fake data, and construct samples from every image.

– The use of bounding boxes to determine the size of the RoIs in the fake
data. Changing this size can improve results, e.g. by creating a more stable
background.

Also, we would like to address certain limitations of the presented solution:

– Dataset and scope. All models were trained on a small dataset collected
specifically to create logos in a particular style. We are confident this ap-
proach can be scaled to more general problems (e.g. logo stylization, style

A. Ter-Sarkisov and E. Alonso

Fig. 4: Comparison of DCGAN+ (left) and LL-GAN output (right). First row:
DCGAN+ vs LL-GAN, second row: DCGAN+ vs LL-GAN(+backbone fea-
tures), third row: DCGAN+ vs LL-GAN (full), fourth row: DCGAN+ vs LL-
GAN(+FRCNN losses). The obvious weakness of DCGAN+ that LL-GAN fixes
is the lack of shape (glyphs are made up of thicker, shorter features without
gaps) and color (all glyphs in the logo have the same color) consistency. Each
row used the same Generator input. Best viewed in color.

Logo Generation

(a) DCGAN+

(b) LL-GAN

(c) LL-GAN + extended boxes

(d) LL-GAN + Faster R-CNN loss

(e) LL-GAN + backbone features

(f) LL-GAN (full)

(g) StyleGAN2 (ψ = 1)

(h) StyleGAN2 (ψ = 1) + attention module

(i) SAGAN

Fig. 5: Examples generated by the models presented in the paper overlaid with
bounding boxes predicted by the Faster R-CNN logo detection (+confidence
score). Three last images for StyleGAN2 and StyleGAN2+Attention models were
obtained using mixing regularities, see [16] for details. All DCGAN+ and LL-
GAN images are 282×282, all other models are 256×256. Best viewed in color.

A. Ter-Sarkisov and E. Alonso

transfer, conditional logo creation) and larger datasets.

– Disentaglement and fusion of style and content. Disentanglement of style
from content is active area of research in the font generation community[4,
3]. In this paper we only used a single Generator for the logo generation. This
result can be improved both by augmenting the architectures, and fusing the
style and content datasets.

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein gan. arXiv preprint
arXiv:1701.07875 (2017)

2. Atarsaikhan, G., Iwana, B.K., Uchida, S.: Contained neural style transfer for dec-
orated logo generation. In: 2018 13th IAPR International Workshop on Document
Analysis Systems (DAS). pp. 317–322. IEEE (2018)

3. Azadi, S., Fisher, M., Kim, V.G., Wang, Z., Shechtman, E., Darrell, T.: Multi-
content gan for few-shot font style transfer. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 7564–7573 (2018)

4. Gao, Y., Guo, Y., Lian, Z., Tang, Y., Xiao, J.: Artistic glyph image synthesis via
one-stage few-shot learning. ACM Transactions on Graphics (TOG) 38(6), 1–12
(2019)

5. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional
neural networks. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 2414–2423 (2016)

6. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 580–587 (2014)

7. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

8. Hayashi, H., Abe, K., Uchida, S.: Glyphgan: Style-consistent font generation based
on generative adversarial networks. arXiv preprint arXiv:1905.12502 (2019)

9. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the
IEEE international conference on computer vision. pp. 2961–2969 (2017)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

11. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained
by a two time-scale update rule converge to a local nash equilibrium. In: Advances
in neural information processing systems. pp. 6626–6637 (2017)

12. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1125–1134 (2017)

13. Karatzas, D., Shafait, F., Uchida, S., Iwamura, M., i Bigorda, L.G., Mestre, S.R.,
Mas, J., Mota, D.F., Almazan, J.A., De Las Heras, L.P.: Icdar 2013 robust reading
competition. In: 2013 12th International Conference on Document Analysis and
Recognition. pp. 1484–1493. IEEE (2013)

14. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for im-
proved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

Logo Generation

15. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 4401–4410 (2019)

16. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 8110–8119 (2020)

17. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

18. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 2117–2125 (2017)

19. Mino, A., Spanakis, G.: Logan: Generating logos with a generative adversarial
neural network conditioned on color. In: 2018 17th IEEE International Conference
on Machine Learning and Applications (ICMLA). pp. 965–970. IEEE (2018)

20. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957 (2018)

21. Oeldorf, C., Spanakis, G.: Loganv2: Conditional style-based logo generation with
generative adversarial networks. arXiv preprint arXiv:1909.09974 (2019)

22. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015)

23. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 779–788 (2016)

24. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in neural information processing
systems. pp. 91–99 (2015)

25. Rijken, G.J., Cutura, R., Heyen, F., Sedlmair, M., Correll, M., Dykes, J., Smit,
N.: Illegible semantics: Exploring the design space of metal logos. arXiv preprint
arXiv:2109.01688 (2021)

26. Sage, A., Agustsson, E., Timofte, R., Van Gool, L.: Logo synthesis and manipula-
tion with clustered generative adversarial networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 5879–5888 (2018)

27. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Im-
proved techniques for training gans. In: Advances in neural information processing
systems. pp. 2234–2242 (2016)

28. Ter-Sarkisov, A.: Network of steel: Neural font style transfer from heavy metal to
corporate logos. arXiv preprint arXiv:2001.03659 (2020)

29. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adver-
sarial networks. In: International Conference on Machine Learning. pp. 7354–7363
(2019)

30. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 2223–2232 (2017)

