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Abstract: In this paper, we apply and further illustrate a recently developed extended continuous
chain ladder model to forecast mesothelioma deaths. Making such a forecast has always been a
challenge for insurance companies as exposure is difficult or impossible to measure, and the latency
of the disease usually lasts several decades. While we compare three approaches to this problem,
we show that the extended continuous chain ladder model is a promising benchmark candidate
for asbestosis mortality forecasting due to its flexible and simple forecasting strategy. Furthermore,
we demonstrate how the model can be used to provide an update for the forecast of the number of
deaths due to mesothelioma in Great Britain using in recent Health and Safety Executive (HSE) data.

Keywords: continuous chain ladder; age-period-cohort model; backfitting; density estimation;
kernel smoothing

JEL Classification: C14; C53

1. Introduction
1.1. Motivation

Since the 1960s, mesothelioma or asbestos-related cancer has gained worldwide inter-
est as a result of its increasing incidence, related medico-legal issues and poor prognosis.
Mesothelioma is mainly caused by occupational exposure to asbestos fibres in sectors
such as mining, road, railway and general construction as well as shipyards, etc., which
have a mainly male workforce [1]. A brief, or even indirect, exposure to a small dose of
asbestos fibres might be enough to trigger the disease much later in life [2]. For example,
the latency period of mesothelioma is between 20 and 70 years with an average of around
40 years. Once the symptoms appear, it is rapidly fatal, with the majority of deaths occur-
ring amongst those over 60 years of age [1]. In Great Britain, mesothelioma mortality has
been steadily increasing in recent years, with 2101 deaths recorded in 2016 and a trend
for the average age of deaths to slowly increase over time. Notifications of mesothelioma
claims have exhibited a stable but increasing trend so far [3].

Asbestos-related claims have a lasting impact on the global insurance industry. The in-
dustry is paying, on average, $1.9 billion for mesothelioma claims annually (2013–2017, [4])
under policies that covered, for example, employer or product liability at the time of
exposure. This has resulted in multiple insurer insolvencies since the 1940s. Still, today, it
is difficult to project the industry’s ultimate loss exposure due to advances in treatment,
increasing life expectancies, changes in litigation and the number of new claimants emerg-
ing. A core uncertainty for the insurance industry is, therefore, whether the amounts of
technical reserves set aside to cover future claims are sufficient. The UK insurance market
estimates are based on population mesothelioma deaths projected by the Health and Safety
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Executive (HSE), which is the UK independent regulator with respect to health and safety
in the workplace.

With respect to mesothelioma mortality forecasting, there are two key questions for
insurers to answer: (i) when the numbers of deaths are going to peak (and establishing the
peak value); and (ii) how the deaths will develop after the peak, that is, the shape of the
forecasts. As insurers have to set aside reserves for future claims payments, the ultimate
claim amounts and shape of how the number of deaths due to mesothelioma will reduce
over time are of critical importance. If the shape is incorrectly forecasted, reserves might be
overestimated or underestimated.

1.2. Literature Review

For decades, mortality forecasting has been an important tool for decision making in
many fields such as actuarial science, economics, epidemiology and demography, to name
only a few. With such great interest in the topic, numerous mortality forecasting approaches
have been developed. The literature on mortality forecasting approaches is large, and
we do not aim to provide a full review here (see for example [5] for a recent description).
The first step in understanding and forecasting mortality patterns is to construct a model
describing observed death counts or mortality rates, across age groups or within cohorts.
The Lee–Carter model [6] is the current benchmark in mortality studies used by government
agencies and pension funds. The model assumes that the dynamics of the logarithms of
the central death rates are driven by an age specific constant plus the speed of change
at each age multiplied by an overall time trend of mortality rates. The model has many
extensions in the literature, which provide improved estimation procedures [7], a relaxation
of assumptions [8] and adjustments to the model [9–11], among others.

Standard mortality approaches rest on dose–response analyses where both death
counts and exposure are available. However, this is not the case in mesothelioma mortality
forecasting, where the number of people who have been exposed to asbestos is unknown.
There are two possible approaches to this problem. The first one is to construct a synthetic
measure for exposure and to use a dose–response model. The second approach is to model
only the observed number of deaths. The first approach has been used in the UK by the
Health and Safety Executive (HSE), using a birth-cohort model [12–14], which assumes that
the risk of mesothelioma depends on age and years of exposure, and that an individual’s
asbestos exposure is related to the year of exposure. However, a key problem with this
approach is that the affected individuals could have been silently exposed to asbestos over
prolonged periods of time so that there is no reliable measure for the exposure to asbestos.
Therefore, the estimates include a high degree of uncertainty, and regular adjustments
are necessary.

A discussion on modelling mortality with synthetic exposure can be found in [15].
Other approaches involving synthetic exposure include [16], who describes an application
of the Lee–Cater model to forecast mesothelioma mortality in Argentina, while [17] con-
sidered Generalised Interactive Linear Models for Italian data, and [18] used Generalised
Additive Models for Brazil. A different and simpler approach to model the observed
number of deaths has been proposed by [15,19]. It does not rely on exposure measures and,
therefore, avoids the difficulties associated with extrapolating them into the future. The
approach is inspired by the so-called “chain ladder” method introduced by [20] in actuarial
science. This is a technique used to calculate the liabilities in the form of outstanding
claims faced by an insurance company. For an overview of the classical chain ladder
method, see [21]. While the method was introduced as a deterministic algorithm, it is has
been shown that it consists of an age-period-cohort (APC) model estimated using Poisson
regression [22].

APC models have been studied for a long time. Refer to [23] for a general review of
age-period-cohort models, and [24] for a recent review and comparison for cancer studies.
They are primarily descriptive tools for data in Lexis diagrams when there are non-trivial
age, period and cohort effects. A key issue in APC models is the overparameterisation
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induced by the relation age = period− cohort. The consequence of this relationship is that,
without further assumptions, APC models are not uniquely identifiable, i.e., the model has
infinitely many fits with infinitely many interpretations [25]. The modelling challenges
that come with this problem have been well formulated by [26,27] in discrete time and
by [28] in continuous time. When facing overparametrisation, there are two choices, either
to work with the over-parametrised model, using for instance an ad hoc identification of
the parameters in order to specify them uniquely, or to use a unique and well-defined
parametrisation based on a maximal invariant (in generalized linear models, this is the
canonical parameter). Following the second approach, [22] proposed second differences
in order to uniquely parametrise APC models. While the canonical parametrisation has
important theoretical advantages, it might feel less intuitive to many researchers and
applied analysts. Therefore, we can find many examples in the literature where non-unique
parametrisations are used. Some additional issues arise when looking at models with
non-linear parametrisations, such as the Lee–Carter model—see [29,30] for a discussion on
the identification problem in this model. Other common approaches in mortality analysis
include Bayesian methods or random effects methods (e.g., [31,32]). Unfortunately the
identification problem remains in these cases—see [30] for a discussion on additional issues
with these methods.

Usually, the objective of a mortality study is to forecast the future mortality, and
extrapolation is often used. A major challenge when using extrapolative approaches is to
identify the underlying long-term mortality trend that can be extrapolated. Unfortunately,
the data might not contain enough information, and a careful analysis of past mortality
and its determinants is often required. Within the APC models, the period and cohort
parameters are typically treated as independent time series processes, which are used to
project the parameters stochastically into the future. Reference [33] combines the canonical
parametrisation of [22] with standard methods for the forecasting of non-stationary time
series. Reference [34] considers Box–Jenkins procedures to determine the time series pro-
cesses generating the parameters. Recently, [35,36] defined the term “in-sample forecasting”
to mean forecasting a structured function in regions where the function is not observed, but
where it is determined by its values in the observed region. This has several advantages
over methods based on time series analysis, as [37] discussed. Standard APC models can
be understood as discrete density models with a simple multiplicative structure (or log
lineal). There are many examples in actuarial science and epidemiology where in-sample
forecasting is possible under an age-cohort (AC) model. Reference [38] called this approach
the “continuous chain ladder” because of its relationship to the chain ladder method used
in non-life insurance. Our paper shows that mesothelioma mortality forecasting is one
such example even when a period effect is included in the model.

1.3. Aim and Outline

The aim of our paper is to propose, apply and further illustrate in-sample forecasting,
by providing a projection of future mesothelioma deaths using simple methodology. We
build on the approach of [37] by using the updated dataset from the HSE to conduct a
study that forecasts the number of deaths due to mesothelioma. Furthermore, we analyse
the differences in forecasts of future expected mesothelioma deaths due in respect of three
models: the model applied in this paper, the discrete APC model of [19] and the model
using synthetic exposure measures adopted by HSE [39].

Our paper makes two main contributions: First, we illustrate the method in which
the approach of [37] addresses the problem of the lack of exposure data by applying
the method to a real dataset that would normally pose a challenge to an insurer’s claim
reserving methodology. Our study expands on the method in terms of usability and
applications. While [37] developed an extended continuous chain ladder model which
allows for a calendar (period) effect and they illustrated the broad applicability using
two empirical examples, we are able to explore further implications of the method when
applying it to the challenging problem of mesothelioma mortality forecasting. We show
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that the approach is very flexible by introducing a smoothing technique for the temporal
effects. Second, we provide an up-to-date estimate of the future number of asbestos related
deaths using this new methodology, together with the recent data released by the HSE for
1968–2016.

The remainder of the paper is organised as follows: In Section 2 we formulate the
approach of [37] in the context of mortality forecasting and show how it can be applied to
provide forecasts of the number of deaths due to mesothelioma. We conduct this in three
parts: first, a statistical structured density model is motivated and formulated; second, the
density components are estimated non-parametrically; and finally, mortality projections
are made into the future. Under the formulated model, we describe how the past data
can provide the density component estimates as well as a complete forecast of the future;
hence, the name “in-sample forecasting” is used. Section 3 presents the mesothelioma
mortality forecasting analysis, together with discussion, before the paper finishes with
concluding remarks in Section 4. Further details on the theoretical approach are provided
in Appendices A and B.

2. Materials and Methods
2.1. Density Model

Let X denote cohort (birth-year) of an individual and let Y denote age at death for that
same individual. Thus, X + Y is the period or calendar year of death. Let us consider X
and Y as the two main time effects so we aim to describe the number of deaths as a function
of X and Y. According to these variables, past observations {(Xi, Yi); i = 1, . . . , n} are
typically supported by a trapezium. Figure 1 shows the special trapezium support of the
observations in the dataset analysed later in this paper (see more details in the next section).
In this context, the aim is to forecast the number of deaths which will occur in the periods
beyond the most recent one where we have observations. The area with observations is
a trapezium, and the area we aim to forecast is a triangle. Both areas are presented in
Figure 1.
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Figure 1. Support of the observations and forecast region.

To derive forecasts for the targeted triangle, Reference [36] suggested modelling and
estimating the density of deaths on the full rectangle shown in Figure 1, which is the two
dimensional density f of (X, Y). The problem is that, from the available observations, we
can only estimate the density from the data contained within the trapezium. The solution
to the problem comes from imposing a suitable multiplicative structure for the density.
A simple structured density model is as follows:

f (x, y) = f1(x) f2(y), (1)

where f1 represents the cohort density, and f2 denotes the age at death density. With the
help of a backfitting algorithm, Reference [36] derived estimated components f̂1 and f̂2
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from the data in the trapezium and used them to forecast the density on the target triangle.
This can be performed since the data provide information for all cohorts and ages involved
in the forecasting region.

Model (1) is, however, too simple in many respects. From a mathematical perspective it
means that variables X and Y are independent. In the context of this paper, this means that
mesothelioma deaths only depend on birth cohort and age of individuals. Reference [36]
extended the simple model described above by including a third component f3 in the
multiplicative structure, corresponding to the period or calendar time, that is, the variable
X + Y. In this paper, we used such an extended model and described the density f of the
observations with the following multiplicative structure:

f (x, y) = f1(x) f2(y) f3(x + y), (2)

where f3 represents the calendar or period effect on deaths. This model can be described as
being a continuous APC model, while model (1) is a continuous AC model.

To simplify the notation in these sections we normalize Xi and Yi to take values in
the unit interval [0, 1] (see left panel of Figure 2) and assume that the observations (Xi, Yi)
are given on the trapezium I = {(x, y) ∈ [0, 1]2 : c ≤ x + y ≤ 1} for some c > 0, where
[c, 1] is the interval of calendar times where we have observations. The forecast region
corresponds to the triangle I fc = {(x, y) ∈ [0, 1]2 : x + y > 1}. The assumed trapezium
and the forecast region are shown in the right panel of Figure 2.

0 c 1

c

1

0 1

1

Figure 2. Normalized support of the observations (green) and corresponding forecast region (red).

A key observation at this point is that model (2) is not identified, which means that
the functions f1, f2 and f3 are not uniquely determined. Identification of this model relates
to the identification of the commonly used age-period-cohort models (see [22,30]). On a
logarithmic scale, the model becomes log f (x, y) = log f1(x) + log f2(y) + log f3(x + y),
which can be rewritten as log f (x, y) = log g1(x) + log g2(y) + log g3(x + y), where the
following is the case:

log g1(x) = −a1 − bx + log f1(x)

log g2(y) = −a2 − by + log f2(y)

log g3(x + y) = a1 + a2 + b(x + y) + log f3(x + y),

with three arbitrary real-valued constants a1, a2 and b. This means that the density compo-
nents (on a logarithmic scale) can only be determined up to two linear trends. To overcome
this problem we imposed the following three identification constraints:∫ 1

0
f1(x)dx = 1 (3)∫ 1

0
f2(y)dy = 1 (4)

f3(z) = constant for all z ∈ [1− κ, 1], (5)
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for an appropriate parameter 0 ≤ κ ≤ 1, which must be determined later on. Notice that
determining κ = 1 means that model (2) becomes the simple continuous AC model (1).
In this sense, κ represents the distance from a (continuous) APC model to an AC submodel
(the distance being bigger for small values of κ).

Although the conditions (3)–(5) might seem very restrictive, they can always be
fulfilled for smooth functions. Conditions (3) and (4) ensure that f1 and f2 can be interpreted
as proper densities, and they can easily be achieved just by rescaling. Thus, the only
assumption to be ensured is that f3 is constant in the near past (5), which is justified
from smoothness considerations. Assuming that log f3(z) is differentiable at z = 1, it
can be approximated by a linear function in that region, i.e., log f3(z) = a + bz + χ(z)
for z ∈ [1− κ, 1], with κ being small, where χ(z) is approximately zero, and a and b are
constants. Notice that this interval might be very small at worst, but it could also be the
entire interval [0, 1]. Now we can move the linear trend a + bz to log( f1) and log( f2), and
condition (5) is fulfilled. This is illustrated in Appendix A with a simple example.

2.2. Data

We consider data provided by UK Health Service Executive that consist of annual
aggregated counts of deaths caused by exposure to asbestos in Great Britain. The original
data are given by age levels and calendar year of death between 1968 and 2016 (all given in
years). We consider only data corresponding to males with ages between 25 and 89, which
gives an array with dimensions 65 (age levels) by 49 (calendar year). The observed total
number of deaths (sample size) is n = 49,750. The authors of [19] analysed the same data at
the time but only up to calendar year 2013 by using a discrete APC model. They showed
that the main variables to consider in relation to death due to mesothelioma are the cohort
and the age (see also [15] for similar conclusions from data up to 2007). Figure 3 shows
the data according to these effects and visualizes the special trapezium support available
for estimation.

Number of deaths

cohort (x)

age (y)

0

20

40

60

80

100

Figure 3. Histogram of the mesothelioma mortality data in UK from 1968 to 2016. The number of
deaths are shown according to the cohort (x) and age of death (y), for periods (x + y) between 1968
and 2016.

As discussed in Section 1.2 the only actual data available for forecasting mesothelioma
deaths is the observed number of deaths (by age and period of deaths), while the number
of people at risk (exposure) is not known. The risk set consists of those who have survived
relative to the time of exposure and who have then been exposed. The long latency period
of mesothelioma, and its rapid fatal end once discovered, contributes to the problem of
finding reliable measures on exposure, as well as data on mortality from competing risks.
Many researchers in this area, including the UK Health Service Executive, chose to estimate
the exposure and used it in conjunction with the actual data. However constructing these
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estimates is nontrivial, and they include a high degree of uncertainty; moreover, regular
adjustments are necessary when these measures of exposure are extrapolated [39]. Our
approach, which follows that of [15], is to avoid having to estimate the exposure. Instead,
we only need to model the observed number of deaths. In fact, in our specific case where
we are adopting a continuous approach, we modelled the density of deaths. This suffices
since our objective is to forecast aggregated mortality, and its simplicity is an advantage
in forecasting.

2.3. Estimation

The density components f1, f2 and f3 in model (2) are the building blocks of any
information about mortality in I . If the density f (x, y) is known, all sorts of information
could be extracted, such as the number of future deaths in I fc. Let us denote this number
as DI fc . An estimate can be calculated through the following expression:

DI fc = τ
∫
I fc

f (x, y)dxdy,

where τ is the number of all deaths in the full rectangle in Figure 3. Notice that τ satis-
fies the relation τ

∫
I f (x, y)dxdy = DI , where DI is the number of observed deaths in

I . This implies that τ can be estimated, in practice, given an estimate f̂ (x, y) of f (x, y)
evaluated on I just by computing τ̂ = DI (

∫
I f̂ (x, y)dxdy)−1. Then, the forecast DI fc is

obtained by D̂I fc = τ̂
∫
I fc f̂ fc(x, y)dxdy, given a forecast f̂ fc(x, y) of f (x, y) on I fc. Thus,

the problem of forecasting the future number of deaths reduces to a density estimation and
forecasting problem.

Next, we describe how to estimate the density components f1, f2 and f3 from a data
sample {(Xi, Yi) : i = 1, . . . , n}. Consider the following notation: Let S = {(x, y) ∈ I : x ≤
1− δ, y ≤ 1− δ}, with a small δ > 0, be a subset of I where we have sufficiently many
data points for estimation. Define the following:

J1(y) = {x ∈ [0, 1] : (x, y) ∈ S}
J2(x) = {y ∈ [0, 1] : (x, y) ∈ S}
J3(z) = {x ∈ [0, 1] : (x, z− x) ∈ S},

and the following is the case.

fw,1(x) =
∫
J2(x)

f (x, y)dy

fw,2(y) =
∫
J1(y)

f (x, y)dx

fw,3(z) =
∫
J3(z)

f (x, z− x)dx.

Under model (2), the density components f1, f2 and f3 fulfill the following
integral equations:

f1(x) =
fw,1(x)∫

J2(x) f2(y) f3(x + y)dy
(6)

f2(y) =
fw,2(y)∫

J1(y)
f1(x) f3(x + y)dx

(7)

f3(z) =
1[0,1−κ)(z) fw,3(z)∫
J3(z)

f1(x) f2(z− x)dx
+

1[1−κ,1](z)
∫ 1

1−κ fw,3(v)dv∫ 1
1−κ

∫
J3(v)

f1(x) f2(v− x)dxdv
, (8)

where1A(x) is the indicator function defined by1A(x) = 1 if x ∈ A and1A(x) = 0 otherwise.
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In practice, the exact solutions of the above integral equations are unknown because
f is unknown. To estimate f1, f2 and f3, we formulated empirical integral equations by
substituting f in (6)–(8) by a suitable estimator. We considered the local linear density
estimator of [40] with a bandwidth vector (b1, b2), which is defined in Appendix B. With
this choice, the empirical integral equations are defined as follows:

f̂1(x) = φ̂1
f̂w,1(x)∫

J2(x) f̂2(y) f̂3(x + y) dy
(9)

f̂2(y) = φ̂2
f̂w,2(y)∫

J1(y)
f̂1(x) f̂3(x + y) dx

(10)

f̂3(z) = φ̂3
1[0,1−κ)(z) f̂w,3(z)∫
J3(z)

f̂1(x) f̂2(z− x)dx
+ φ̂3

1[1−κ,1](z)
∫ 1

1−κ f̂w,3(v)dv∫ 1
1−κ

∫
J3(v)

f̂1(x) f̂2(v− x)dxdv
(11)

under following constraints:

∫
S

f̂1(x)dx = 1,
∫
S

f̂2(y)dy = 1 and
∫
S

f̂1(x) f̂2(y) f̂3(x + y)dxdy = ϑ̂, (12)

where ϑ̂ = n−1 ∑n
i=1 1((Xi, Yi) ∈ S) is an estimator of ϑ =

∫
S f (x, y)dxdy. The coefficients

φ̂j (j = 1, 2, 3) in (9)–(11) are chosen such that the constraints in (12) are satisfied. Here,
we have used the notation f̂w,l for the estimator of fw,l above (l = 1, 2, 3), which has been
obtained by replacing f with f̂ .

Reference [37] proved the existence of a unique solution for the above empirical
equations (see also [41] for related theoretical tools); however, the solution cannot be
explicitly obtained, and a backfitting algorithm is required in practice to derive estimates
f̂1, f̂2 and f̂3. The algorithm can be written as follows.

Step 0. Let f̂ [0]1 and f̂ [0]2 be starting values for estimating f1 and f2, which satisfy the first
two constraints in (12). Calculate the following:

f̃ [0]3 (z) =



f̂w,3(z)∫
J3(z)

f̂ [0]1 (x) f̂ [0]2 (z− x)dx
for z ∈ [0, 1− κ)

∫ 1
1−κ f̂w,3(v)dv∫ 1

1−κ

∫
J3(v)

f̂ [0]1 (x) f̂ [0]2 (v− x)dxdv
for z ∈ [1− κ, 1]

and set f̂ [0]3 (z) = φ̂
[0]
3 f̃ [0]3 (z), where φ̂

[0]
3 is chosen such that the third constraint

in (12) is satisfied.

Step r. Let f̂ [r−1]
1 , f̂ [r−1]

2 and f̂ [r−1]
3 be the backfitting estimates from the previous iteration

step. Compute updates as follows.

(a) Calculate the following:

f̃ [r]1 (x) =
f̂w,1(x)∫

J2(x) f̂ [r−1]
2 (y) f̂ [r−1]

3 (x + y)dy

and set f̂ [r]1 (x) = φ̂
[r]
1 f̃ [r]1 (x), where φ̂

[r]
1 is chosen such that the first constraint

of (12) is fulfilled.
(b) Calculate the following:

f̃ [r]2 (y) =
f̂w,2(y)∫

J1(y)
f̂ [r]1 (x) f̂ [r−1]

3 (x + y)dx
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and set f̂ [r]2 (y) = φ̂
[r]
2 f̃ [r]2 (y), where φ̂

[r]
2 is chosen such that the second

constraint of (12) is satisfied.
(c) Compute f̂ [r]3 analogous to f̂ [0]3 in Step 0.

Step r in the algorithm is iterated (r = 2, 3, . . .) until convergence. As a convergence
criterion, we evaluate the change | f̂ [r]i (x) − f̂ [r−1]

i (x)|/ max f̂ [r]i (x) and stop when it is
smaller than a tiny constant c > 0, for all i = 1, 2, 3. In our empirical analyses, we used
c = 1e− 7 with a maximum number of iterations of 1000.

Notice that from the above algorithm we obtain estimates for f1(x) and f2(y) for
x, y ∈ [0, 1]; that is, for all observed cohorts and ages. However we only obtained estimates
of f3(x + y) for x + y in the trapezium I , which is the past period x + y. Thus, to derive the
required forecasts, we will need to extrapolate f3. Among other aspects, this issue makes
the model (2) more challenging than the simpler model (1). A convenient extrapolation of
f3 is described in Section 2.4.

2.4. Forecasting

Under model (2), from the density components’ estimates that were derived in the
previous section, we obtained an estimator of the density f of deaths observed in the past
calendar times, i.e., in the trapezium I . However, the aim in mesothelioma mortality
forecasting is to derive mortality projections for future calendar years, i.e., those lying in
the triangle I f c = {(x, y) ∈ [0, 1]2 : x + y > 1} shown on the right panel of Figure 2. To
satisfy this aim we need to estimate the two-dimensional density f also on I fc. Under
model (2), this can be performed from the previous backfitting estimates f̂1 and f̂2, along
with a method of extrapolating f̂3 to the future calendar year points (z = x + y ∈ (1, 2]).
Recall that the backfitting algorithm only estimates the calendar effect density f3(z) up to
the present time point (z = 1).

From the identification constraints (3)–(5), we have assumed that the calendar effect f3
is constant around the present time point z = 1, to be more precise on the interval [1− κ, 1].
The authors of [37] used this assumption to extrapolate the calendar effect as a constant
into the future, that is, by setting f̂ fc

3 (z) = f̂3(1) for z > 1 (recall that z = 1 represents the
more recent observed calendar time). Thus, projections of f (x, y) at future time points
(x, y) ∈ I fc are given by the following.

f̂ fc(x, y) = f̂1(x) f̂2(y) f̂ fc
3 (x + y).

By contrast to other forecasting strategies, such as the I(0), I(1) and I(2) forecaster
of [33], the above extrapolation strategy is a natural method for describing the future
based only on the past data (in-sample) and smoothness considerations. While the former
forecasters extrapolate the (logarithmic) calendar effect linearly into the future, estimating
the slope of such a line in three different ways, our approach eliminates the calendar
effect from the model, normalizing it to have zero slope in the recent past by the imposed
identification constraints.

At this point there is only one issue left: how to choose, in practice, the constant κ.
This parameter can be interpreted as the length of the recent past which should be used to
estimate and forecast the calendar effect. Therefore, it is of interest in practice to illustrate
the effect of such a parameter on the forecasts. In our application to mesothelioma mortality,
we perform this and conclude with a data-driven choice derived by cross-validation. The
cross-validation method estimate κ from the data as follows: pick some small δ > 0 and
define the following.

S<δ = {(x, y) ∈ S : x + y ≤ 1− δ}
S>δ = {(x, y) ∈ S : x + y > 1− δ, x ≤ 1− δ, y ≤ 1− δ}.
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Let D be the set of data points (Xi, Yi) that lie in S<δ , that is, (Xi, Yi) ∈ S<δ . For
any κ ∈ (δ, 1], compute the backfitting estimators f̂ κ

1 , f̂ κ
2 , f̂ κ

3 from the data sample D, as
described in Section 2.3, where the set S is replaced by S<δ . Next, we define the following.

f̂ κ
3 (z) = f̂ κ

3 (1− δ) for z ∈ (1− δ, 1],

The estimator of κ is defined as follows:

κ̂ = arg minκ∈(δ,1]CV(κ). (13)

where the following is the case.

CV(κ) =
∫
S>δ
{ f̂ κ(x, y)}2dxdy− 2

n

n

∑
i=1

1((Xi, Yi) ∈ S>δ ) f̂ κ(Xi, Yi).

The justification of the above criterion comes from the fact that CV is an estimator
of the Mean Integrated Squared Error (MISE) of f̂ κ(x, y) in the set S>δ , which ideally one
would minimise to choose κ. To observe this, we expand the MISE as follows.

MISE( f̂ κ(x, y)) =
∫
S>δ

( f̂ κ(x, y)− f (x, y))2dxdy

=
∫
S>δ

f̂ κ(x, y)2 − 2 f (x, y) f̂ κ(x, y) + f (x, y)2dxdy.

Since the last term is positive and does not dependent on κ, we can minimise the above
expression for MISE and ignore the final term. Then, as the second term depends on the

unknown f , we can replace it with the simple non-parametric estimator n−1
n
∑

i=1
1((Xi, Yi) ∈

S>δ ). This provides the above expression for CV(κ).

3. Results

Using the methodology described above, we have analysed a dataset consisting of
annual aggregated counts of deaths caused by exposure to asbestos in Great Britain for
males aged between 25 and 89. From this data, we can update the results from the previous
analysis of [19] using the additional data and applying model (2), which allows us to take
into account the calendar year effect on the mesothelioma deaths.

Therefore, we assume that the two-dimensional density f (x, y), with x denoting
the cohort and y the age, can be written as the product of three functions: the densities
corresponding to the cohort and the age effects, f1 and f2, as well as a third function, f3,
describing the effect of the year (period) of death. In order to estimate the three density
components, we have used the backfitting algorithm described in Section 2.3. For the
local linear estimator f̂ of the two-dimensional density f , we have considered bandwidths
b̂1 = 6, b̂2 = 4.2 years. The bandwidths b̂1 and b̂2 were obtained as follows: we first
computed the common cross-validated bandwidths b̃1 and b̃2 for the local linear estimator
f̂ and then rescaled them by the factor n−1/5/n−1/6. The justification of this rescaling is
based on theory. The authors of [37] proved the consistency of the backfitting estimates
assuming that the component bandwidths satisfy the condition n1/5bj → cj for some
constant cj > 0 (j = 1, 2), i.e., they have convergence order of n−1/5. The cross-validated
estimates derived for the two-dimensional density have order n−1/6 (see [40]), so rescaling
the cross-validated bandwidths with the above factor provides the theoretical requirements.

The estimated density components are shown in Figure 4. The graphs display the
estimates produced by the backfitting algorithm for different values of the parameter κ.
Recall that this parameter defines the length of the most recent time interval where the
calendar effect function f3 is constant. It can be also interpreted as the length of the recent
past, which is used to estimate the calendar effect. For an easier interpretation here, we
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provide this parameter in number of years so the value κ = 49 corresponds to a constant
calendar effect over the whole period from 1968 to 2016, κ = 10 corresponds to a constant
calendar effect in the last 10 years, i.e., from 2007 to 2016, and non-constant from 1968 to
2006; in general, κ = 49− p corresponds to a constant calendar effect in the last p years,
i.e., from 2016− p + 1 to 2016, and non-constant from 1968 to 2016− p. This can be seen in
the last graph of Figure 4 where the bigger κs correspond to nearly constant estimates of f3,
while smaller values allow for general shapes. The estimates of f1 and f2 also vary slightly
with the value of κ. Notice that the shapes of the densities do not allow us to observe the
variations in more detail in the graphs.
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Figure 4. Estimated density components for the mesothelioma mortality data considering different
κ values (given in years). The dashed black line shows the estimated density components for the
κ = 49 years chosen by cross-validation.

Applying the forecasting method described in Section 2.4 in conjunction with the
density component estimates for different κ’s, we have calculated the predicted total
number of deaths in future years (that is, in the years following 2016). The results are
shown in Figure 5 for κ = 10, . . . , 49, along with the observed number of past deaths. We
can observe that κ does not have a big effect on the forecasts, which agrees with the slight
variations in the density component estimates for each κ shown in Figure 4.

It is of interest to predict the peak value (highest number of deaths) as well as the
year of peaking. From Figure 5, we can observe that the peak had already been reached in
2016, and it is confirmed for all the κ values considered. The peak value was 2101 observed
deaths. This agrees with the provisional data for 2017 published by the HSE [39], where
the number of deaths in the year 2017 had decreased to 2087.
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To derive our final forecasts, we consider the cross-validation method defined above to
choose the value of κ, see Equation (13). In order to minimize the function CV, we evaluate
it on κ = 10, . . . , 49. The CV function is quite flat, showing slightly smaller values for the
bigger κ’s. This seems to be in line with the stable behaviour of the density component
estimates shown in Figure 4 and suggests choosing the maximum value of κ, which is
κ = 49 years. This value corresponds to the case of f3 being constant for every period,
that is, it corresponds to a simple age-cohort model. For this choice we predicted 2063
deaths in the year 2017, which is a bit lower than the available provisional figure of 2087
for 2017 [39]. The number of deaths decreases slowly until 2032 deaths were reached in
2020. Table 1 shows our forecasts until 2022 using the full dataset (third column), as well
as using only data up to 2013 (sixth column). The available data are shown for assessing
forecasts derived from data up to 2013 (second column).
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Figure 5. Forecasts of the annual number of deaths using different values of κ. The observed past
numbers of deaths are indicated by dots.

Table 1. Mesotheolioma mortality forecasts in the UK. Five forecasts of numbers of deaths are
compared: “our-201x” corresponds to our proposal using data up to 201x and constant calendar
effect; “apc-201x*” to the discrete approach of [19] using data up to 201x and truncating cohorts from
1966 (x = 3, 6); and HSE projections also using provisional data for 2017, “HSE-2017p”. Available
data are shown for assessing forecasts.

Period Data Our-2016 apc-2016* HSE-2017p Our-2013 apc-2013*

2014 2032 2048 2056
2015 2042 2062 2070
2016 2101 2071 2077
2017 2087 2063 2069 2074 2079
2018 2058 2062 2068 2072 2074
2019 2048 2049 2036 2063 2063
2020 2032 2030 1994 2049 2045
2021 2010 2002 1943 2028 2018
2022 1982 1969 1885 2002 1988

For comparison purposes we have included in the table forecasts derived from the
discrete approach of [19] (fourth and last columns) and the more recent HSE forecasts [39]
(fifth column). The discrete approach of [19] is computed by truncating the data corre-
sponding to the youngest cohorts, that is, from 1966 as those authors suggested. This
is necessary since the approach does not perform any smoothing and cannot properly
deal with sparsity in the data corresponding to those cohorts. These forecasts have been
computed using the apc package [42] and are shown for years up to 2022. Our approach
and the discrete approach of [19] provide similar forecasts, but we do not need to perform
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any arbitrary truncation in contrast to the discrete approach. Moreover, truncating cohorts
from 1966 means that mortality is only projected from ages above 50, which might explain
the slightly lower forecasts from the discrete model. On the other hand, HSE provides a
similar forecast for calendar year 2018 but differs substantially for future periods. Figure 6
shows the differences in the shapes of forecasts being compared. HSE projects a notably
faster decline of deaths than the other approaches. For reference, we have also shown in
this figure the forecasts published in [19] using (truncated) data up to 2013 (the truncation
in this case resulted in projections only for ages above 47 years). Moreover, we have
added our forecasts with data up to 2013 (without truncation) and constant calendar effect
(corresponding to the value of κ chosen by cross-validation).
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Figure 6. Comparison of forecasts. The observed past numbers of deaths are indicated by dots.

By restricting the data for estimation up to 2013, we can assess whether our proposal
would have been able to predict the peak in 2016. Figure 7 shows the peak forecasts for
different values of κ along with the year of peak. Peak values vary with κ between 2032
and 2077 and the year of peaking between 2016 and 2018. The observed peak of 2101 in
2016 is, therefore, hardly predicted using data up to 2013. The same happens with the
forecasts derived by [19], which predicted a peak of 2079 deaths in 2017. This seems to be
natural since the statistical projections describe the expected future mortality as a smooth
curve, while the actual numbers in years close to the peak are expected to fluctuate above
and below due to year-on-year random variation [39].
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Figure 7. Peak forecasts (left) and year of peak (right) for different values of κ. Based on data up
to 2013.
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4. Discussion and Conclusions

Standard methods and common benchmarks in the literature on mortality forecasting
rely on dose–response models where both deaths and exposure are observed. Such methods
involve the non-trivial and risky exercise of estimating the exposure when it is not known,
as happens in the case of asbestos-related mortality. Our paper demonstrates that the
methodology of [37] can be another benchmark with important benefits. First, it does not
require any modelling, estimating and extrapolating of the exposure when it is unknown.
This makes the approach more robust compared with those that are more detailed in this
regard, especially when the model for the exposure is mis-specified. Second, it is very
intuitive due to its connection with the popular APC models. Third, it takes advantage of
the powerful non-parametric structured models, which exhibit excellent theoretical and
practical properties, compared to the standard (discrete) APC models. Finally, forecasting
is entirely determined by the data, avoiding the need to use time series modelling and other
more sophisticated extrapolation techniques. This further contributes to the robustness of
the approach in practice.

We applied our method to actual data consisting of the number of deaths due to
mesothelioma between 1968 and 2016, which we obtained from the Health and Safety
Executive. From this, we have been able to produce an up to date forecast for the number of
deaths in the future. We have also compared the results from our model to those from the
discrete AC model of [19] and the model used by the Health and Safety Executive. While
our forecasts, and those from the discrete age-cohort model, show very similar shapes,
the HSE forecasts differ notably, showing a much faster decline in the number of deaths
up to calendar year 2030. In addition, we have provided forecasts with truncated data
which could be compared to data for the following years. In all cases, the forecasts were
reasonable but differed depending on the constant κ, which is the length of the interval in
the past for which the period function is set as constant. While choosing κ is challenging,
we explained a cross validation approach on how to choose it in practice.

Modelling the number of deaths by our density approach suffices when the objective
is to forecast aggregated mortality. However, more detailed information might be required
beyond this objective. For instance, if a further study considers the prevention of deaths
due to mesothelioma, then it would be necessary to model the length of the latency period
and to take into account survival from competing risks.

A limitation of previous approaches compared in this paper ([19,39]) is that the age-
profile is assumed to be common for all cohorts [12]. The model considered in this paper
relaxes this assumption by introducing some dependence between age and cohorts. More
general structures could be assumed under a similar density approach, but with the risk
of increasing the uncertainty arising out of such more general models. Therefore, further
research would be required to find a good compromise between model complexity and
uncertainty. Evaluating the uncertainty of the forecasts is another issue which will require
further work, e.g., to derive confidence bands for the forecasts.
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Appendix A

Here, we describe how the identification constraint (5) can be fulfilled in practice
by using a simple example. Recall that, under smoothness assumptions, this amounts
to removing from f3 a log-linear trend in the interval [1− κ, 1] so it becomes (approxi-
mately) constant.

Define the density components in model (2) as f1(x) = 1 (cohort effect), f2(y) =
exp(−y) (age effect), for 0 ≤ x, y ≤ 1 and f3(z) = exp(z/3) , for 0 ≤ z ≤ κ, and
f3(z) = exp(−κ/2 + 5z/6) and for 1− κ ≤ z ≤ 1 with κ = 0.4 (period effect). The three
components are displayed in black in Figure A1. Now, we remove the log-linear trend of f3
in the interval [0.6, 1], that is, exp(5z/6) = exp(5x/6) exp(5y/6), and allocate exp(5x/6)
into f1(x) and exp(5y/6) into f2(y). The resulting density components are displayed in
red in the same figure. Thus, we have rewritten the density components in the model in
such a manner that f3 fulfills the constraint (5). Notice that this practice can be extended to
any function f3 as long it is smooth around z = 1 for at least a small κ.
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Figure A1. Illustration of how the identification works in an example. The log-linear trend of f3 in
the interval [1− κ, 1] is removed and allocated into the components f1 and f2.

www.hse.gov.uk/statistics/
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Appendix B. Two-Dimensional Local Linear Density Estimator

The local linear estimator of a two-dimensional density function f (x, y) was intro-
duced by [40] as follows. Let the following:

f̃h1,h2(x, y) =
1

nh1h2

n

∑
i=1

K
(Xi − x

b1

)
K
(Yi − y

b2

)
Wi

be a standard kernel density estimator of f (see for example [43]), where Wi = 1((Xi, Yi) ∈
S), K is a two-dimensional kernel function, and (h1, h2) is the bandwidth vector. Consider
the following minimization problem:

η̂(x, y) = arg minη=(η0,η1,η2)
lim

h1,h2→0

∫
S

[
f̃h1,h2(v, w)− a(v, w; x, y)>η(x, y)

]2
× K

(v− x
b1

)
K
(w− y

b2

)
dvdw, (A1)

where a(v, w; x, y) = (1, (v− x)/b1, (w− y)/b2)
>, and let η̂ = (η̂0, η̂1, η̂2) denote its solu-

tion. It can be shown [37] that the following is the case:

η̂(x, y) = A(x, y)−1b(x, y),

where the following results.

A(x, y) =
∫
S

a(v, w; x, y)a(v, w; x, y)>b−1
1 b−1

2 K
(v− x

b1

)
K
(w− y

b2

)
dvdw

b(x, y) =
1
n

n

∑
i=1

a(Xi, Yi; x, y)h−1
1 h−1

2 K
(Xi − x

b1

)
K
(Yi − y

b2

)
Wi.

The local linear estimator f̂ is defined as the first component of the vector η̂.

References
1. Selby, K. Mesothelioma Statistics. Available online: https://www.asbestos.com/mesothelioma/statistics/ (accessed on 25

August 2021).
2. O’Reilly, K.M.; Mclaughlin, A.M.; Beckett, W.S.; Sime, P.J. Asbestos-related lung disease. Am. Fam. Physician 2007, 75, 683–688.
3. UK Asbestos Working Party. Update from UK Asbestos Working Party. Available online: www.actuaries.org.uk/practice-areas/

general-insurance/research-working-parties/uk-asbestos (accessed on 18 December 2020).
4. AM Best. Asbestos and Environmental Losses Continue. Available online: http://news.ambest.com/articlecontent.aspx?

refnum=281133&altsrc=43 (accessed on 18 December 2020).
5. Janssen, F. Advances in mortality forecasting: Introduction. Genus 2018, 74, 21. [CrossRef]
6. Lee, R.; Carter, L. Modeling and forecasting U.S. mortality. J. Am. Stat. Assoc. 1992, 87, 659–671. [CrossRef]
7. Hatzopoulos, P.; Haberman, S. A parameterized approach to modeling and forecasting mortality. Insur. Math. Econ. 2009,

44, 103–123. [CrossRef]
8. Booth, H.; Tickle, L. Mortality modelling and forecasting: A review of methods. Ann. Actuar. Sci. 2008, 3, 3–43. [CrossRef]
9. Hyndman, R.J.; Ullah, M. Robust forecasting of mortality and fertility rates: a functional data approach. Comput. Stat. Data Anal.

2007, 51, 4942–4956. [CrossRef]
10. Renshaw, A.; Haberman, S. A cohort-based extension to the Lee-Carter model for mortality reduction factors. Insur. Math. Econ.

2006, 38, 556–570. [CrossRef]
11. Russolillo, M.; Giordano, G.; Haberman, S. Extending the Lee-Carter model: a three-way decomposition. Scand. Actuar. J. 2011,

2011, 97–117. [CrossRef]
12. Hodgson, J.; McElvenny, D.; Darnton, A.; Price, M.; Peto, J. The expected burden of mesothelioma mortality in Great Britain from

2002 to 2050. Br. J. Cancer 2005, 92, 587–593. [CrossRef]
13. Tan, E.; Warren, N. Projection of mesothelioma mortality in Great Britain. In Health and Safety Executive, Research Report; HSE

Books: Norwich, UK, 2009; p. 728.
14. Tan, E.; Warren, N.; Darnton, A.J.; Hodgson, J.T. Projection of mesothelioma mortality in Britain using Bayesian methods. Br. J.

Cancer 2010, 103, 430–436. [CrossRef] [PubMed]
15. Miranda, M.D.M.; Nielsen, B.; Nielsen, J.P. Inference and forecasting in the age–period–cohort model with unknown exposure

with an application to mesothelioma mortality. J. R. Stat. Soc. Ser. A Stat. Soc. 2015, 178, 29–55. [CrossRef]

https://www.asbestos.com/mesothelioma/statistics/ 
www.actuaries.org.uk/practice-areas/general-insurance/research-working-parties/uk-asbestos 
www.actuaries.org.uk/practice-areas/general-insurance/research-working-parties/uk-asbestos 
http://news.ambest.com/articlecontent.aspx?refnum=281133&altsrc=43
http://news.ambest.com/articlecontent.aspx?refnum=281133&altsrc=43
http://doi.org/10.1186/s41118-018-0045-7
http://dx.doi.org/10.1080/01621459.1992.10475265
http://dx.doi.org/10.1016/j.insmatheco.2008.10.008
http://dx.doi.org/10.1017/S1748499500000440
http://dx.doi.org/10.1016/j.csda.2006.07.028
http://dx.doi.org/10.1016/j.insmatheco.2005.12.001
http://dx.doi.org/10.1080/03461231003611933
http://dx.doi.org/10.1038/sj.bjc.6602307
http://dx.doi.org/10.1038/sj.bjc.6605781
http://www.ncbi.nlm.nih.gov/pubmed/20628377
http://dx.doi.org/10.1111/rssa.12051


Mathematics 2021, 9, 2260 17 of 17

16. Trotta, A.; Santana, V.S.; Andreozzi, L. P010 Forecasting of Mesothelioma Mortality in Argentina, 2014–2023. Available online:
http://dx.doi.org/10.1136/oemed-2016-103951.335 (accessed on 24 August 2021).

17. Oddone, E.; Bollon, J.; Nava, C.R.; Consonni, D.; Marinaccio, A.; Magnani, C.; Gasparrini, A.; Barone-Adesi, F. Effect of Asbestos
Consumption on Malignant Pleural Mesothelioma in Italy: Forecasts of Mortality up to 2040. Cancers 2021, 13, 3338. [CrossRef]

18. Algranti, E.; Saito, C.A.; Carneiro, A.P.S.; Moreira, B.; Mendonça, E.M.C.; Bussacos, M.A. The next mesothelioma wave: mortality
trends and forecast to 2030 in Brazil. Cancer Epidemiol. 2015, 39, 687–692. [CrossRef]

19. Martínez-Miranda, M.D.; Nielsen, B.; Nielsen, J.P. Simple benchmark for mesothelioma projection for Great Britain. Occup.
Environ. Med. 2016, 73, 561–563. [CrossRef] [PubMed]

20. Zehnwirth, B. Probabilistic Development Factor Models with Applications to Loss Reserve Variability, Prediction Intervals and Risk Based
Capital; Casualty Actuarial Society Forum: Arlington, VA, USA, 1994; Volume 2, pp. 447–606.

21. England, P.D.; Verrall, R.J. Stochastic claims reserving in general insurance. Br. Actuar. J. 2002, 8, 443–518. [CrossRef]
22. Kuang, D.; Nielsen, B.; Nielsen, J.P. Identification of the age-period-cohort model and the extended chain-ladder model. Biometrika

2008, 95, 979–986. [CrossRef]
23. O’Brien, R. Age-Period-Cohort Models: Approaches and Analyses with Aggregate Data; Chapman and Hall CRC Press: Boca Raton, FL,

USA, 2014.
24. Smith, T.R.; Wakefield, J. A review and comparison of age-period-cohort models for cancer incidence. Stat. Sci. 2016, 31, 591–610.

[CrossRef]
25. Carstensen, B. Age–period–cohort models for the Lexis diagram. Stat. Med. 2007, 26, 3018–3045. [CrossRef]
26. Clayton, D.; Schifflers, E. Models for temporal variation in cancer rates. I: Age–period and age–cohort models. Stat. Med. 1987,

6, 449–467. [CrossRef]
27. Clayton, D.; Schifflers, E. Models for temporal variation in cancer rates. II: Age–period–cohort models. Stat. Med. 1987, 6, 469–481.

[CrossRef] [PubMed]
28. Keiding, N. Statistical inference in the Lexis diagram. Philos. Trans. R. Soc. Lond. Ser. Phys. Eng. Sci. 1990, 332, 487–509.
29. Beutner, E.A.; Reese, S.; Urbain, J.P. Identificability issues of age-period and age-period-cohort models of the Lee-Carter type.

Insur. Math. Econ. 2017, 75, 117–125. [CrossRef]
30. Nielsen, B.; Nielsen, J.P. Identification and forecasting in mortality models. Sci. World J. 2014, 2014, 347043. [CrossRef] [PubMed]
31. Berzuini, C.; Clayton, D. Bayesian analysis of survival on multiple time scales. Stat. Med. 1994, 13, 823–838. [CrossRef]
32. Yang, Y.; Land, K.C. Age–period–cohort analysis of repeated cross-section surveys: Fixed or random effects? Sociol. Methods Res.

2008, 36, 297–326. [CrossRef]
33. Kuang, D.; Nielsen, B.; Perch Nielsen, J. Forecasting in an extended chain-ladder-type model. J. Risk Insur. 2011, 78, 345–359.

[CrossRef]
34. Hunt, A.; Blake, D. Identifiability in age/period/cohort mortality models. Ann. Actuar. Sci. 2020, 14, 500–536. [CrossRef]
35. Lee, Y.; Mammen, E.; Nielsen, J.P.; Park, B. Asymptotics for in-sample density forecasting. Ann. Stat. 2015, 43, 620–651. [CrossRef]
36. Mammen, E.; Miranda, M.D.M.; Nielsen, J.P. In-sample forecasting applied to reserving and mesothelioma mortality. Insur. Math.

Econ. 2015, 61, 76–86. [CrossRef]
37. Mammen, E.; Martínez-Miranda, M.D.; Nielsen, J.P.; Vogt, M. Calendar effect and in-sample forecasting. Insur. Math. Econ. 2021,

96, 31–52. [CrossRef]
38. Miranda, M.D.M.; Nielsen, J.P.; Sperlich, S.; Verrall, R. Continuous Chain Ladder: Reformulating and generalizing a classical

insurance problem. Expert Syst. Appl. 2013, 40, 5588–5603. [CrossRef]
39. Health and Safety Executive (HSE). Mesothelioma Statistics for Great Britain. Annual Statistics. 2019. Available online:

www.hse.gov.uk/statistics/ (accessed on 14 July 2021).
40. Neilsen, J.P. Multivariate boundary kernels from local linear estimation. Scand. Actuar. J. 1999, 1999, 93–95. [CrossRef]
41. Mohammadi, B.; Shole Haghighi, A.A.; Khorshidi, M.; De la Sen, M.; Parvaneh, V. Existence of Solutions for a System of Integral

Equations Using a Generalization of Darbo’s Fixed Point Theorem. Mathematics 2020, 8, 492. [CrossRef]
42. Nielsen, B. apc: Age-Period-Cohort Analysis, R Package Version 1.4. Available online: https://cran.r-project.org/web/packages/

apc/index.html (accessed on 14 July 2021).
43. Wand, M.; Jones, M. Kernel Smoothing; Chapman and Hall: London, UK, 1995.

http://dx.doi.org/10.1136/oemed-2016-103951.335
http://dx.doi.org/10.3390/cancers13133338
http://dx.doi.org/10.1016/j.canep.2015.08.007
http://dx.doi.org/10.1136/oemed-2015-103303
http://www.ncbi.nlm.nih.gov/pubmed/27245376
http://dx.doi.org/10.1017/S1357321700003809
http://dx.doi.org/10.1093/biomet/asn026
http://dx.doi.org/10.1214/16-STS580
http://dx.doi.org/10.1002/sim.2764
http://dx.doi.org/10.1002/sim.4780060405
http://dx.doi.org/10.1002/sim.4780060406
http://www.ncbi.nlm.nih.gov/pubmed/3629048
http://dx.doi.org/10.1016/j.insmatheco.2017.04.006
http://dx.doi.org/10.1155/2014/347043
http://www.ncbi.nlm.nih.gov/pubmed/24987729
http://dx.doi.org/10.1002/sim.4780130804
http://dx.doi.org/10.1177/0049124106292360
http://dx.doi.org/10.1111/j.1539-6975.2010.01395.x
http://dx.doi.org/10.1017/S1748499520000123
http://dx.doi.org/10.1214/14-AOS1288
http://dx.doi.org/10.1016/j.insmatheco.2014.12.001
http://dx.doi.org/10.1016/j.insmatheco.2020.10.003
http://dx.doi.org/10.1016/j.eswa.2013.04.006
www.hse.gov.uk/statistics/
http://dx.doi.org/10.1080/03461230050131902
http://dx.doi.org/10.3390/math8040492
https://cran.r-project.org/web/packages/apc/index.html
https://cran.r-project.org/web/packages/apc/index.html

	Introduction
	Motivation
	Literature Review
	Aim and Outline

	Materials and Methods
	Density Model
	Data
	Estimation
	Forecasting

	Results
	Discussion and Conclusions
	
	Two-Dimensional Local Linear Density Estimator
	References

