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Abstract: We conjecture the Quantum Spectral Curve equations for string theory on

AdS3 × S3 × T 4 with RR charge and its CFT2 dual. We show that in the large-length

regime, under additional mild assumptions, the QSC reproduces the Asymptotic Bethe

Ansatz equations for the massive sector of the theory, including the exact dressing phases

found in the literature. The structure of the QSC shares many similarities with the previ-

ously known AdS5 and AdS4 cases, but contains a critical new feature – the branch cuts

are no longer quadratic. Nevertheless, we show that much of the QSC analysis can be

suitably generalised producing a self-consistent system of equations. While further tests

are necessary, particularly outside the massive sector, the simplicity and self-consistency

of our construction suggests the completeness of the QSC.
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1 Introduction

The Quantum Spectral Curve (QSC) has become an indispensable tool of precision spec-

troscopy in AdS5/CFT4 and AdS4/CFT3 holographic models [1–20]. For a review on the

QSC, see [21]. In this paper, we shall take a step towards extending this powerful method to

the spectral problem in another important holographic duality, namely planar AdS3/CFT2.

It is believed that AdS3/CFT2 dual pairs with 8+8 supersymmetries are integrable [22–

24].1 This is the maximal amount of supersymmetry that is allowed for string theory back-

grounds of the form AdS3×M7, withM7 = S3×T4 orM7 = S3×S3×S1. The symmetries

of these two backgrounds are respectively the small and large (4, 4) superconformal symme-

tries, whose Lie sub-algebras are psu(1, 1|2)2 and d(2, 1;α)2. The exact S matrices can be

found by imposing compatibility with the (centrally extended) vacuum-preserving symme-

try algebras of the two theories [27–32], much like what can be done in higher-dimensional

cases [33]. In this paper, we will focus on string theory on AdS3 × S3 × T4 supported by

R-R charge.

An important difference between these theories and higher-dimensional integrable

string backgrounds is the presence of massless excitations in the worldsheet theory, in addi-

tion to the more familiar massive ones. The resulting integrable 2-to-2 S matrix breaks up

into independent pieces for the scattering of massless/massless, massive/massive and mixed

mass excitations. Expressed in terms of Zhukovsky variables, the S matrices resemble those

of higher-dimensional integrable holographic theories, with the mass entering through the

shortening conditions. This resemblance is particularly striking in the case of massive

excitations [22, 28], where in the weak-coupling limit the Bethe Equations (BEs) reduce

to those of a homogeneous nearest-neighbour psu(1, 1|2)× psu(1, 1|2) spin-chain, with the

two factors only connected by the level-matching condition. Away from the weak-coupling

limit, the BEs for each psu(1, 1|2) wing bear a striking similarity to the corresponding part

of the psu(2, 2|4) BEs of AdS5/CFT4. These observations suggest that (at least a part of)

the AdS3/CFT2 Q-system can be constructed using two sets of psu(1, 1|2) Q-functions, one

for each wing, and coupling them together in a way that is consistent with the crossing.

The Q-system is an important part of any known QSC [2, 14]. In this paper, instead of

deriving the QSC following a long route from TBA equations, we use the Q-system as a

starting point supplying it with the analyticity properties following closely the previously

known cases. However, fairly quickly we realise that one of the analyticity assumptions

must be relaxed in our case – namely we no longer assume the square-root type of singu-

larity near the branch points. This new feature is inherently connected with the properties

of the dressing factors of [30–32].

Each S matrix block comes with a dressing factor which is not fixed by symmetry

requirements. Dressing factors satisfy crossing equations [30–32] that follow from the Hopf

algebra structure of the theory [34–36]. In the case of string theory on AdS3 × S3 × T4

supported by R-R charge only, dressing factors which solve these crossing equations have

been found [37, 38]. There are two independent dressing phases that enter the massive S

1For earlier work in this direction see [25, 26].
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matrix, corresponding to either scattering excitations in the same psu(1, 1|2) wing or in dif-

ferent wings. Their sum is equal to (twice) the Beisert-Eden-Staudacher (BES) phase [39],

while their difference is a new phase, which appears only at the so-called Hernandez-Lopez

order [40]. The relative simplicity of this latter factor is related to the fact that bound-

states in the theory can only be made from massive constituent excitations from the same

psu(1, 1|2) wing. As with all solutions of crossing equations, there is potential for CDD

ambiguities due to homogeneous solutions of crossing. The absence of such additional fac-

tors was demonstrated in [41], where it was shown that the proposed dressing factors have

exactly the required Dorey-Hofman-Maldacena (DHM) double poles and zeros [42].

In the case of massive modes, crossing maps the two psu(1, 1|2) wings into one another.

This suggest that, as a consequence of crossing, the two copies of the psu(1, 1|2) Q-systems

should be related by a suitable analytic continuation. Analogous gluing conditions, which

can be traced back to crossing, are known to exist in the AdS5/CFT4 and AdS4/CFT3

QSC and are needed in addition to the QQ-relations to constrain the system to a closed

system of equations, which can be treated analytically [6, 7] in some limits and by means

of numerical analysis [4] in general. Furthermore, the simple gluing of the Q-functions can

be shown [2, 14] to produce a rather involved expression for the BES dressing phase when

considering the large-volume solution.

While a number of ingredients for the current construction are borrowed from the

known cases, the new type of near-branch point singularity is a crucial novel ingredient.

As a test of our proposal we demonstrated how the ABA equations for the massive sector

are precisely reproduced in the large-length limit including the dressing phases. In these

considerations, we had to make an additional simplifying assumption about the monodromy

of µ-function in the asymptotic limit, which we have not managed to prove. At the same

time, we only reproduced the massive sector equations, which suggests that removing this

assumption could revive all the massless degrees of freedom, but we leave this question for

future work. Another important direction is to verify the completeness of our system of

equations by solving it either numerically as in [4] or in a near BPS limits like in [3, 15].

An intuitive way in which to understand the effect of massless modes is that the

massless dispersion relation can be viewed in an approximate sense as the large coupling

limit of the massive one, as long as the particle momentum is kept fixed. In the QSC

formalism, the coupling usually controls the distance between the cuts in the rescaled

spectral parameter u/g. As a result, in the zero mass limit, one might expect this to

lead to a number of quadratic cuts collapsing on top of one another. This suggests that,

in models with massless modes, the QSC may have a more general singularity structure

near the branch points, rather than the conventional square root behaviour seen in higher-

dimensional cases. We also expect the analyticity to be simplified in the purely massless

sector by employing the pseudo-relativistic variable of [43, 44].

In fact, the assumption of a square-root singularity is over-restrictive in AdS3 because it

gives rise to a new algebraic constraint on the Q-functions in addition to the QQ-relations.

In turn, such a condition collapses the two wings of Q-functions into one, likely leading

to drastically simpler analytic properties such as those seen in the Hubbard model [45],

based on a single su(2|2) symmetry.
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The rest of the paper is organised as follows. In section 2, we collect pre-existing

results on integrability for the AdS3/CFT2 duality, which will inspire our conjecture, and

describe the algebraic structure of the Q-system for psu(1, 1|2). Section 3 presents our

main proposal for the Quantum Spectral Curve, and describes the unique features of these

equations as compared to the previous cases. In section 2.1, we study the large-volume

limit of these equations, reproducing precisely the full Asymptotic Bethe Ansatz for massive

modes. Finally, we present our conclusions and discuss some future directions. The paper

also contains three appendices collecting some notations and technical details.

Note added: The work described here begun before the epidemic. Shortly after

the first wave was coming to an end in Europe, we concluded that the large-length limit

was incompatible with square-root cuts as described in section 4.3.1. During the recent

“Integrability in Lower Dimensional AdS/CFT” online workshop we learnt that Simon

Ekhammar and Dima Volin had also independently come to a similar conclusion. We

are grateful to Dima and Simon for informing us of their findings and coordinating on

the release date of the manuscripts to the arXiv. Motivated by these discussions, we

revisited our construction and found that relaxing the branch-cut condition allows for a

consistent definition of the QSC together with a large-length limit that reproduces the

all-loop massive ABA equations found in the literature. Our proposal for the QSC seems

to be fully consistent with the one published simultaneously in [46].

2 Data on the AdS3/CFT2 integrable system

In this section we assemble together the known facts about the AdS3/CFT2 integrable

system. This includes the asymptotic Bethe ansatz for massive modes, classical algebraic

curve and the psu(1, 1|2) Q-system.

2.1 Asymptotic Bethe Ansatz

The massive Asymptotic Bethe Ansatz (ABA) equations which we will be referring to are

those presented in [28]. The symmetry controlling the Bethe equations is psu(1, 1|2)2. Each

copy of psu(1, 1|2) has associated one momentum carrying root and two auxiliary roots.

These are called x, y1 and y3 for one copy of psu(1, 1|2) and x̄, y1̄ and y3̄, respectively, for
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the other copy. The explicit form of the BEs is:

1 =

K2∏
j=1

y1,k − x+
j

y1,k − x−j

K2̄∏
j=1

1− 1
y1,kx̄

−
j

1− 1
y1,kx̄

+
j

,

(
x+
k

x−k

)L
=

K2∏
j 6=k

x+
k − x

−
j

x−k − x
+
j

1− 1
x+
k x
−
j

1− 1
x−k x

+
j

σ2(xk, xj)

K1∏
j=1

x−k − y1,j

x+
k − y1,j

K3∏
j=1

x−k − y3,j

x+
k − y3,j

×
K2̄∏
j=1

1− 1
x+
k x̄

+
j

1− 1
x−k x̄

−
j

1− 1
x+
k x̄
−
j

1− 1
x−k x̄

+
j

σ̃2(xk, x̄j)

K1̄∏
j=1

1− 1
x−k y1̄,j

1− 1
x+
k y1̄,j

K3̄∏
j=1

1− 1
x−k y3̄,j

1− 1
x+
k y3̄,j

,

1 =

K2∏
j=1

y3,k − x+
j

y3,k − x−j

K2̄∏
j=1

1− 1
y3,kx̄

−
j

1− 1
y3,kx̄

+
j

, (2.1)

1 =

K2̄∏
j=1

y1̄,k − x̄−j
y1̄,k − x̄+

j

K2∏
j=1

1− 1
y1̄,kx

+
j

1− 1
y1̄,kx

−
j

,

(
x̄+
k

x̄−k

)L
=

K2̄∏
j 6=k

x̄−k − x̄
+
j

x̄+
k − x̄

−
j

1− 1
x̄+
k x̄
−
j

1− 1
x̄−k x̄

+
j

σ2(x̄k, x̄j)

K1̄∏
j=1

x̄+
k − y1̄,j

x̄−k − y1̄,j

K3̄∏
j=1

x̄+
k − y3̄,j

x̄−k − y3̄,j

×
K2∏
j=1

1− 1
x̄−k x

−
j

1− 1
x̄+
k x

+
j

1− 1
x̄+
k x
−
j

1− 1
x̄−k x

+
j

σ̃2(x̄k, xj)

K1∏
j=1

1− 1
x̄+
k y1,j

1− 1
x̄−k y1,j

K3∏
j=1

1− 1
x̄+
k y3,j

1− 1
x̄−k y3,j

,

1 =

K2̄∏
j=1

y3̄,k − x̄−j
y3̄,k − x̄+

j

K2∏
j=1

1− 1
y3̄,kx

+
j

1− 1
y3̄,kx

−
j

. (2.2)

The Bethe equations are written in the grading described in Figure 3 of [28]. The massless

modes will not be included in our analysis, and they do not feature anywhere in the Bethe

equations we write. There is a further level-matching constraint on the solutions to the

Bethe equations, in the form of

1 =

K2∏
j=1

x+
j

x−j

K2̄∏
j=1

x̄+
j

x̄−j
(2.3)

(once more disregarding massless modes). The Zhukovsky variables satisfy the familiar

constraint given by (suppressing the particle index)

x+ +
1

x+
− x− − 1

x−
=
i

h
,

x+

x−
= eip, (2.4)

where h is the coupling constant of the theory and p is the particle momentum. The same

holds for the barred variables. The dispersion relation that gives the energy of a particle

of momentum p reads

E(p) =

√
1 + 16h2 sin2 p

2
, (2.5)
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and the anomalous dimension of the state associated to a solution of the ABA is given by

δ∆ ≡ γ = 2h

K2∑
k=1

(
i

x+
k

− i

x−k

)
+ 2h

K2̄∑
j=1

(
i

x̄+
j

− i

x̄−j

)
. (2.6)

The explicit form of the dressing phases from [37] is given by

σ(p1, p2) = eiθ(p1,p2), σ̃(p1, p2) = eiθ̃(p1,p2), (2.7)

with the familiar splitting

θ(p1, p2) = χ(x+
1 , x

+
2 ) + χ(x−1 , x

−
2 )− χ(x+

1 , x
−
2 )− χ(x−1 , x

+
2 ), (2.8)

with similar expressions for σ̃. The individual blocks read

χ(x, y) = χBES(x, y)− 1

2

[
χHL(x, y)− χ−(x, y)

]
, (2.9)

χ̃(x, y) = χBES(x, y)− 1

2

[
χHL(x, y) + χ−(x, y)

]
.

The part denoted by BES is the Beisert-Eden-Staudacher [39] dressing phase - its expression

can be found reproduced in the review [47]. The same holds for the HL part, referring to

the Hernandez-Lopez phase [48]

χHL(x, y) =

(∫
C+

−
∫
C−

)
dw

4π

1

x− w

[
log(y − w)− log(y − 1

w
)
]
. (2.10)

The new ingredient which was constructed in [37] is given by

χ−(x, y) =

(∫
C+

−
∫
C−

)
dw

8π

1

x− w
log
[
(y − w)

(
1− 1

yw

)]
− x↔ y, (2.11)

where the contours C± denote the upper (resp., lower) half semicircle in the complex

w-plane, both running anti-clockwise. These expressions are valid in the physical region

|x| > 1, |y| > 1. The notation χ− is commonly used in the AdS3 literature for this portion

of the phase. The minus sign should not be confused with a shift in the spectral parameter

- as it will otherwise always be meant in this paper.

Since we will be merely concerned with the massive modes, it is expected that the

Asymptotic Bethe equations which we have written above should be valid exactly in the

coupling h but only asymptotically in the length L. In other words, wrapping corrections

are expected to be exponentially suppressed [49]. This situation would be rather differ-

ent were we to include massless modes, whose impact on the TBA is not exponentially

suppressed - they are expected to be polynomially suppressed in the presence of mixed

massive-massless interactions [50], or require exact solutions as in the case of the confor-

mal TBA of [44, 51] (see also [52, 53]).

Notice also that 4h gives the size of the branch cut which goes to zero at weak coupling.

Since all interaction between the two psu(1, 1|2) wings go through the branch-cut, the two

wings become completely decoupled in the limit of small coupling constant h→ 0, except

for the level-matching condition.
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2.2 Main features of the classical curve

The Quantum Spectral Curve is a quantum version of the classical curve, which thus con-

tains crucial structural hints. We shall from now on denote with un-dotted/dotted indices

the variables pertaining to the first/second wing, respectively, of the Dynkin diagram –

corresponding to the first/second copy of psu(1, 1|2).

Here we present a short description of some aspects of the algebraic curve describing

the integrability of classical solutions of string theory on AdS3 × S3 × T 4, following the

discussion in [54]. This description is based on 4+4 quasimomenta, associated to the fun-

damental representations of the two psu(1, 1|2)’s. They will be denoted by (pA1 , p
A
2 , p

S
1 , p

S
2 )

and (pA
1̇
, pA

2̇
, pS

1̇
, pS

2̇
). Each quasimomentum naturally parametrises motion in one of the

factors of the target space, which is marked by the superscripts A, S for AdS3 and S3, re-

spectively. They are very important quantities which are expected to arise in a WKB-type

approximation of the Q-functions in the classical limit of the quantum spectral curve.

The p’s are naturally seen as functions of the Zhukovsky variables, and contain the

symmetry charges of the solution in their asymptotics:
pA1
pA2
pS1
pS2

 ' 1

2hx


−∆− S − B̂
+∆ + S − B̂
−J −K − B̂
+J +K − B̂

 =
1

2hx


−γ − 2K1 − L
+γ + 2K3 + L

−2K1 + 2K2 − L
−2K2 + 2K3 + L

 , (2.12)


pA

1̇

pA
2̇

pS
1̇

pS
2̇

 ' 1

2hx


+∆− S − B̌
−∆ + S − B̌
+J −K − B̌
−J +K − B̌

 =
1

2hx


+γ − 2K1̇ + 2K2̇ + L

−γ − 2K2̇ + 2K3̇ − L
−2K1̇ + L

2K3̇ − L

 , (2.13)

where on the rhs we used the explicit expression of the charges in terms of Bethe roots

numbers. Finally, the classical curve tells us how the quasimomenta in the two wings are

related. In particular, for the quasimomenta describing motion in AdS3, the relation is

extremely simple and consists in analytic continuation

pAa

(
1

x

)
= pAȧ (x), a = 1, 2 , (2.14)

as described in equations (7.13) and (7.38) of [22]. We will lift this property to the quantum

case.

2.3 Algebra of the psu(1, 1|2) Q-system

The sets of functional relations between the Q-functions (known as Q-systems) take a

universal form depending only on the symmetry algebra of the integrable system. Since

our model contains two copies of psu(1, 1|2), important input for our construction comes

from the structure of QQ relations for this algebra.

The psu(1, 1|2) Q-system contains 16 independent Q-functions depending on the spec-

tral parameter u. They can be labelled as QA|I , where A, I are completely anti-symmetric

strings of indices made from {1, 2}

A , I ∈ {∅, 1, 2, (12)} , (2.15)
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interrelated by the QQ relations

QaA|IQA|Ii = Q+
aA|IiQ

−
A|I −Q

−
aA|IiQ

+
A|I , (2.16)

Q12|IQ∅|I = Q+
1|IQ

−
2|I −Q

−
1|IQ

+
2|I , (2.17)

QA|12QA|∅ = Q+
A|1Q

−
A|2 −Q

−
A|1Q

+
A|2 , (2.18)

where a, i ∈ {1, 2} are single indices, and A, I are anti-symmetric multi-indices defined

above. The first type of relation (2.16) is usually called fermionic, and the remaining two

bosonic. In these equations, we are using the notation adopted in the whole paper for shifts

in the spectral parameter u: for any function g,

g[±n](u) ≡ g(u± in
2 ) , g±(u) ≡ g[±1](u). (2.19)

In our proposal, the QSC will contain two copies of these relations, which we will denote

by distinguishing between dotted and undotted indices (giving us 16+16 Q-functions). In

this section, we focus on one wing, and elaborate on some consequences of (2.16)-(2.18).

We will make a simple special choice for the Q-functions with the extremal combina-

tions of indices:

Q∅|∅ = Q12|12 = 1, (2.20)

which is analogous to the choice made in the other known QSC cases, and so far seems fully

consistent with the description of the AdS3 integrable system. From now on, we assume

the validity of (2.20).

We will adopt a special notation for some of the Q-functions,

Qk ≡ Q∅|k, Pa ≡ Qa|∅, Qk ≡ εklQ12|l, Pa ≡ εabQb|12, (2.21)

as well as Qa|i ≡ εabεijQb|j . Explicitly,

Qa|i =

(
Q2|2 −Q2|1
−Q1|2 Q1|1

)
, (2.22)

such that

Qa|iQ
b|i = δba, Qa|iQ

a|j = δji , (2.23)

due to the unimodularity property

det
(
Qa|i

)
= 1, (2.24)

which is a consequence of the Q-system with the boundary conditions (2.20). Let us write

explicitly some of the fermionic equations, which will be used extensively,

Q+
a|i −Q

−
a|i = PaQi, (2.25)

together with Q−a|i −Q
+
a|i = Q12|iQa|12, which can be rewritten in Hodge-dual notation as

Qa|i + −Qa|i − = −PaQi. (2.26)
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Further useful consequences of the QQ relations are:

PaP
a = QiQ

i = 0, (2.27)

and the following relations

Q±a|iQ
i = Pa , Q±a|iP

a = Qi , Qa|i ±Qi = Pa , Qa|i ±Pa = Qi , (2.28)

where the equations with ± signs are compatible due to (2.25)–(2.27).

A useful rewriting of (2.25), (2.26) incorporating Qa|i is

Q−a|i = Q+
a|j

(
δji −QjQi

)
, Qa|i − = Qa|j +

(
δij + QiQj

)
, (2.29)

or alternatively,

Q−a|i = Q+
b|i

(
δba −PbPa

)
, Qa|i − = Qb|i +

(
δba + PbPa

)
. (2.30)

So far, most of these relations are structurally similar to the ones found for psu(2, 2|4) -

the AdS5 case. In this case of lower rank, however, there is an interesting new feature,

which follows from the fact that Qa|i and Qa|i are related in a simple manner by (2.22).

The compatibility of (2.25) and (2.26) then gives

QkPa = −εklεabQlPb, (2.31)

or explicitly,

Q1P1 = −Q2P2 , Q1P2 = +Q2P1 , Q2P1 = +Q1P2 , Q2P2 = +Q1P1, (2.32)

which imply the equalities of certain ratios of P or Q functions:

Q1

Q2
= −Q2

Q1
= −P2

P1
= +

P1

P2
≡ r. (2.33)

The quantity r(u) defined above will have an interesting role in our system. Notice that it

allows to raise or lower the indices

Qk = +rεklQl , Qk = −1

r
εklQ

l , Pk = −1

r
εklPl , Pk = +rεklP

l . (2.34)

Finally, a useful consequence of the Q-system is the existence of a 2nd order finite difference

equation, describing the Q functions in terms of the P functions (and vice versa). These

Baxter-type equations are described in appendix C.

Q-system and Bethe ansatz. An important consequence of a Q-system is that it

immediately implies the existence of Bethe-like equations restricting the positions of the

zeros of the Q-functions, which play the role of Bethe roots. In this argument, we anticipate

a crucial assumption on the Q-functions, namely that they do not have any poles.

One such system of Bethe equations constrains the zeros of the Q-functions

Q∅|1 = Q1, Q1|1, Q12|1 = −Q2. (2.35)
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For instance, from (2.26) we learn that

Q+
1|1 −Q

−
1|1

∣∣∣
u∈{zeros of Q1}

= P1Q1|u∈{zeros of Q1} = 0, (2.36)

while, since Q1P1 = −P2Q2, it is also true that

Q+
1|1 −Q

−
1|1

∣∣∣
u∈{zeros of P1}

= Q+
1|1 −Q

−
1|1

∣∣∣
u∈{zeros of P2}

= Q+
1|1 −Q

−
1|1

∣∣∣
u∈{zeros of Q2}

= 0.

(2.37)

Shifting the bosonic equation Q+
1|1Q

−
2|1 −Q

−
1|1Q

+
2|1 = −Q2Q1 by ±i/2, we also obtain

Q++
1|1 Q2|1

∣∣∣
u∈{zeros of Q1|1}

= −Q2+Q+
1

∣∣
u∈{zeros of Q1|1} , (2.38)

Q−−1|1 Q2|1

∣∣∣
u∈{zeros of Q1|1}

= +Q2−Q−1
∣∣
u∈{zeros of Q1|1} . (2.39)

The above constraints can be recast as the exact Bethe equations2

Q+
1|1

Q−1|1

∣∣∣∣∣
u∈{zeros of Q1}

= 1 (2.40)

Q++
1|1 Q−1 Q2−

Q−−1|1 Q+
1 Q2 +

∣∣∣∣∣
u∈{zeros of Q1|1}

= −1, (2.41)

Q+
1|1

Q−1|1

∣∣∣∣∣
u∈{zeros of Q2}

= 1, (2.42)

where the middle relation comes from the ratio of (2.38),(2.39). In a similar way one can

deduce several other systems of Bethe equations. For instance, relations of the same form

are valid for the zeros of the functions P1, Q1|1, P2. We write these relations with a dot,

anticipating that they will be relevant for the second wing:

Q+
1̇|1̇

Q−
1̇|1̇

∣∣∣∣∣
u∈{zeros of P1̇}

= 1 (2.43)

Q++
1̇|1̇ P−

1̇
P2̇−

Q−−
1̇|1̇ P+

1̇
P2̇ +

∣∣∣∣∣∣
u∈{zeros of Q1̇|1̇}

= −1, (2.44)

Q+
1̇|1̇

Q−
1̇|1̇

∣∣∣∣∣
u∈{zeros of P2̇}

= 1, (2.45)

In a system like the ones arising in AdS/CFT, the Q-functions are in general com-

plicated functions not known explicitly, therefore such exact Bethe equations have limited

practical usefulness when analysing generic solutions of the QSC. However, for certain

2In the case where the Q-functions have cuts, such as will be our system, the relation will be valid on

the main Riemann sheet where the Q-system is defined.
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classes of solutions, such as those with large charges or near special points in the moduli

space of the holographic theory the Q-functions do simplify. In the last section of the

paper, we find the explicit large-volume limit of some Q-functions, arising from our QSC

equations. Exact Bethe equations such as the ones given above will then reduce to the ABA

equations. Additionally, AdS3/CFT2 dual pairs have multiple moduli, which preserve inte-

grability [55] and at special points in the moduli space of each holographic pair additional

simplifications to the exact Bethe equations may occur. For example, the weakly coupled

RR-charged theory is expected to describe a nearest-neighbour integrable spin chain [56].

3 Proposal for the QSC

In this section we describe the structure of the proposed Quantum Spectral Curve for AdS3.

In the absence of the general TBA equations we cannot follow the usual route of [2, 57, 58]

to derive the QSC from TBA. Instead we will be guided by the common properties of the

known QSCs for AdS5 and AdS4.

If we summarise the known QSCs there are two main ingredients: QQ-relations, and

analytical properties of Q-functions. We consider these components in turn in the following.

3.1 Introducing the Q-functions

QQ-relations. In the known case, the QQ-relations follow from the structure of the

symmetry of the system. In AdS3 we have two copies of psu(1, 1|2) and a natural assump-

tion would be to have two copies of QQ-relations for psu(1, 1|2), described in the previous

section. To distinguish the two copies we will use dotted indices for one of them, so we will

use the following sets of indices (a = 1, 2, k = 1, 2 and same for dotted indices)

Qk, Pa, Qa|k ↔ Qa|k, Qk, Pa , (3.1)

Qk̇, Pȧ, Qȧ|k̇ ↔ Qȧ|k̇, Qk̇, Pȧ . (3.2)

The above Q-functions are related by the QQ-relations. A distinguished subset of them,

from which one can recover the remaining Q-functions are

Pa , Pa and Pȧ , Pȧ constrained by PaP
a = PȧP

ȧ = 0 . (3.3)

For example, Qk can be reconstructed from Pa and Pa by solving the second order finite-

difference equation

Q++
k D−1 −QkD2 + Q−−k D+

1 = 0 , (3.4)

with the coefficients depending solely on P’s:

D1 = εabP
a−Pb+ , D2 = εabP

a−−Pb++ −PcP
c−− εabP

aPb++ . (3.5)

The above relation, derived in appendix C, is a consequence of the QQ-relations, so an

identical equation holds for the dotted Q-functions. Equally one can interchange Q ↔ P

in (3.4) and (3.5).
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Classical correspondence. In the classical limit, described by strong coupling h→∞
and large quantum numbers scaling as ∼ h, we expect that the quasimomenta appear in

a WKB approximation of some of the Q-functions. In particular, they should be directly

related to the Q-functions living in the fundamental representation of each psu(1, 1|2)

algebra. With the notation borrowed from the other cases, we link P’s with the quasi-

momenta associated with S3 and Q’s with the ones for AdS3.

For the first wing, we will take this correspondence to be the following:

(Q1,Q2|P1,P2) ∼
(
e−

∫ u pA1 , e− ∫ u pA2 |e+
∫ u pS1 , e+

∫ u pS2 ) , (3.6)(
Q1,Q2|P1,P2

)
∼
(
e
∫ u pA1 , e∫ u pA2 |e− ∫ u pS1 , e− ∫ u pS2 ) , (3.7)

which is structurally the same as in AdS5. For the second wing, we take3

(Q1̇,Q2̇|P1̇,P2̇) ∼
(
e−

∫ u pA2 , e− ∫ u pA1 |e∫ u pS2 , e∫ u pS1 ) , (3.8)(
Q1̇,Q2̇|P1̇,P2̇

)
∼
(
e
∫ u pA

2̇ , e
∫ u pA

1̇ |e−
∫ u pS

2̇ , e−
∫ u pS

1̇

)
. (3.9)

Large-u asymptotics. Consistently with the quasi-classical identifications (3.9) and

the asymptotics of the quasimomenta described in section 2.2, the Q-functions should

exhibit power-law asymptotics at large u, with behaviour characterised by the charges. In

particular, we assume

Pa ' AauMa , Pa ' Aa u−Ma−1, Qi ' BiuM̂i , Qi ' Biu−M̂i−1, (3.10)

for large u, where

Ma ≡
(
−L

2
+K2 −K1 − 1,

L

2
−K2 +K3

)
, M̂k ≡

(
γ

2
+
L

2
+K1, −

γ

2
− L

2
−K3 − 1

)
,

(3.11)

Mȧ ≡
(
−L

2
+K3̇,

L

2
−K1̇ − 1

)
, M̂k̇ ≡

(
γ

2
+
L

2
+K2̇ −K3̇ − 1, −γ

2
− L

2
−K2̇ +K1̇

)
.

(3.12)

In the following sections, we will see that some of the Q-functions have horizontal cuts

connecting to infinity. In this case, the asymptotic behaviour above will be assumed to be

valid for Im(u) > 0.

Notice that the classical identification is valid in a regime of large quantum numbers,

so that it only fixes the structure of (3.10) up to finite shifts. However, those can be fine-

tuned by the match with the ABA which will be described in the last section of the paper.

We will take the exact asymptotics of the Q-functions to be as above.

3Comparing (3.6) and (3.8), the reader will notice that we reordered some of the labels in the second

wing. This is just an arbitrary choice with no loss of generality at this stage (notice that 1 ↔ 2 in the

indices is a trivial symmetry of the Q-system), but it will be convenient for the future, as it will make the

discussion more symmetric between the two wings.
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Constraints on the constant prefactors and shortening conditions. The pre-

factors A and B in P and Q functions (3.10) usually play an important role. They can be

determined by plugging the large u expansion into the QQ-relations or Baxter equation.

This leads to the following identities

r0 h
B̂

∏
(−y3̇,i)∏
(−y1̇,i)

=
B1

B2
=
A1

A2
r0 h

B̌

∏
(−y3,i)∏
(−y1,i)

=
B1̇

B2̇

=
A1̇

A2̇
. (3.13)

The Baxter equation then implies

B1B
1 = −B2B

2 =
i

4

(∆− J −K + S)(∆ + J +K + S + 2)

∆ + S + 1
, (3.14)

A1A
1 = −A2A

2 =
i

4

(∆− J −K + S)(∆ + J +K + S + 2)

J +K + 1
, (3.15)

and with dots

B1̇B
1̇ = −B2̇B

2̇ =
i

4

(∆− J +K − S)(∆ + J −K − S − 2)

∆− S − 1
, (3.16)

A1̇A
1̇ = −A2̇A

2̇ =
i

4

(∆− J +K − S)(∆ + J −K − S − 2)

J −K − 1
. (3.17)

Above we used the following relation between the charges and the Bethe root numbers:

∆ = γ + L+K2̇ +
K1

2
+
K3

2
−
K1̇

2
−
K3̇

2
,

S =
K1

2
+
K3

2
+
K1̇

2
+
K3̇

2
−K2̇ ,

K =
K1

2
+
K3

2
+
K1̇

2
+
K3̇

2
−K2 ,

J = L−K2 +
K1

2
+
K3

2
−
K1̇

2
−
K3̇

2
,

B̂ = K1 −K3 ,

B̌ = K1̇ −K3̇ .

(3.18)

The half-BPS shortening condition ∆ = J and S = K follows from requiring for A and

B to vanish. This is an integrability-based derivation of a non-renormalization result for

theories with small (4, 4) super-conformal symmetry. In such theories, there are left or

right sub-algebra shortening conditions: ∆L = JL or ∆R = JR. It is well-known that at

generic points in the moduli space states which are short with respect to only one such

sub-algebra (i.e. quarter-BPS states) are not protected, while states which satisfy both

shortening conditions (half-BPS states) do not receive quantum corrections [59–61]. An

independent derivation of these results was found using ABA methods [62, 63] which are

valid in the large L limit. The QSC derivation presented here, showing that only half-BPS

states are protected, is valid for all lengths L.

3.2 Analytic properties

As in all other studied cases, we assume that all 4 types of P’s have only one branch

cut (−2h, 2h) on the real axis and no other singularities on either sheet of their Riemann
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Figure 1. Standard analytic structure of P’s with one branch cut. As a consequence of this, Q

functions will have an infinite ladder of cuts separated by i in the lower or upper half of the analytic

plane.

surface, as shown on Figure 1. Since the Q-functions are determined in terms of P’s by

means of equation (3.4), the analytic properties of Q can be deduced from those of P.

Before describing them let us introduce two different bases of solutions of (3.4):

Q↓k − Upper Half Plane analytic (UHPA) solutions (3.19)

Q↑k − Lower Half Plane analytic (LHPA) solutions . (3.20)

As the coefficients of (3.4) only have a few cuts near the real axis, and are analytic otherwise,

we can always find two solutions of (3.4) Q↓k which do not have cuts in the UHP, and another

pair of solutions Q↑k which are analytic in the LHP. Rewriting (3.4) as

Q↓k =
Q↓++
k D++

2 −Q
↓[+4]
k D+

1

D
[+3]
1

, (3.21)

and assuming that Q↓k is analytic for Im u > 0 we see that the highlighted terms in the r.h.s.

will produce a branch cut on the real axis. Iterating further (3.21) with shifts u→ u− 2in

in general we generate a ladder of cuts going down the complex plane like on Figure 1.

At the same time, since there are only two linearly independent (with periodic coef-

ficients) solutions of a second order equation (3.4) there must exist an i-periodic function

(with short cuts) Ω l
k which relates the two sets of solutions

Q↑k = Ω m
k Q↓m , Ω m

k (u+ i) = Ω m
k (u) . (3.22)

In fact one can write Ω m
k explicitly in terms of Q’s

Ω m
k = εml

Q↑kQ
↓−−
l −Q↑−−k Q↓l

Q↓1Q
↓−−
2 −Q↓−−1 Q↓2

(3.23)

and the periodicity can be verified using (3.4). There are identical equations for the dotted

indices. Furthermore, in Appendix C we show that the Hodge-dual Q-functions also satisfy

Q↑k = Ωk
mQ↓m Ωk

mΩ l
k = δlm . (3.24)
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Figure 2. Two Q’s from different Q-systems are glued together.

Gluing conditions. So far, the two Q-systems were existing independently. Here we

propose a particular way of joining them together. The underlying idea is to fix the

apparent asymmetry between the analytic properties of Q and P (see Figure 1). Whereas

P has only one branch-cut, as we argued above, Q should have a ladder of cuts going either

up or down from the real axis. Following the observation in other QSCs, we notice that a

section of the Riemann surface of Q’s with long cut i.e. (−∞,−2h) ∪ (2h,∞) on the real

axis should not have any other cuts. More specifically we require that

Q↓k(u+ i0) = G ṅ
k Q↑ṅ(u− i0) , Q↓

k̇
(u+ i0) = G n

k̇
Q↑n(u− i0) , u ∈ (−2h, 2h) (3.25)

where G ṅ
k and G n

k̇
are two different independent constant matrices. In the studied cases

of QSC they have several zero components, but in our case their exact form is still to be

deduced. However, one can make a first guess by looking at the classical counterpart of

the gluing relations (2.14). Using the identification (3.6) we see that it suggests G 2̇
1 and

G 1̇
2 to be the only non-zero elements of G ṅ

k .

For the Hodge-dual Q-functions, the gluing conditions take a similar form

Qk↓(u+ i0) = Gkṅ Qṅ↑(u− i0) , Qk̇↓(u+ i0) = Gk̇n Qn↑(u− i0) , u ∈ (−2h, 2h). (3.26)

Like in the known cases, we assert that gluing is a symmetry of the Q-system

Gkṅ = εklεṅṁG
ṁ
l , Gk̇n = εk̇l̇εnmG

m
l̇

, detG = 1 . (3.27)

In the following, we will choose a basis of Q-functions with specified large-u asymptotics on

the first sheet, described in (3.10). after this choice is made, we are not free to diagonalise

the gluing matrix with a linear transformation. For this reason, we will keep track of it

explicitly throughout. We leave for future work the discussion of the matrix structure of

G in this special basis, but as we argued above the classical limit suggests an off-diagonal

structure for this matrix.

Properties of the r-function. The r-function, which was defined in section 2.3 and

allows to lower and raise indices, has interesting analyticity properties. From (2.33) we

note that r = P1/P2, meaning that r (and ṙ) has at most one cut on the main sheet
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Figure 3. Two contours we use for analytic continuation

(−2h, 2h). At the same time r = Q↓1/Q
2↓, meaning that it has only one long cut at the

same time. In other words the analytic continuation from above rγ is analytic in the LHP.

(Qk↓)(u+ i0) = r(u+ i0)εklQ↓l (u+ i0) = r(u+ i0)εklG ṅ
l Q↑ṅ(u− i0), (3.28)

at the same time the l.h.s. can be expressed as

Gkṅ Qṅ↑(u− i0) = Gkṅ ε
ṅṁṙ(u− i0)Q↑ṁ(u− i0) = ṙ(u− i0)εklG ṅ

l Q↑ṅ(u− i0), (3.29)

from where we deduce that r(u+ i0) = ṙ(u− i0). Similarly, we can start from the dotted

version of the derivation above to get r(u − i0) = ṙ(u + i0). From this consideration we

see that r(u) has a single quadratic cut, which connects it to ṙ(u). This branch cut can

be rationalised with the help of the Zhukovsky variable x(u) = u+
√
u−2h

√
u+2h

2h so we can

write r explicitly in terms of its zeros/poles4

r(u) = r0

∏K3−NR
i (x(u)− y3,i)

∏K3̇−NR
i (1/x(u)− y3̇,i)∏K1−NB

i (x(u)− y1,i)
∏K1̇−NB
i (1/x(u)− y1̇,i)

, (3.30)

and ṙ(u) is r(u) with x(u) replaced by 1/x(u). r0 is a constant. In the above expression

we assume |y...| ≥ 1. Finding such a simple expression for a combination of P’s is an

interesting novel feature of the AdS3 QSC.

3.3 On analytic continuation

We now deduce several consequences of the discussion in the previous section. We will see

that the simple set of constraints given above implies the existence of a rich mathematical

structure. The Q-functions live on a Riemann surface with infinitely many sheets, but the

equations we will now deduce allow us to map any one of these sheets to the first one, as

is the case also for the other examples of QSCs.

As anticipated in the introduction, it will turn out that the branch cuts in this system of

QSC equations cannot be quadratic. This means that, for any branch point on the Riemann

surface, we can go around it in two ways, and in principle this yields two different results.

We will introduce the analytic continuation paths γ and its inverse γ−1, which we will

also denote by γ̄. The path γ goes around a branch point at 2h in anticlockwise sense,

4The number of poles and zeros Kn is introduced to match later the notations in the ABA. NR and NB
are introduced to allow for different types of Bethe roots to coincide and consequently cancel in the ratio.
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or alternatively, it goes around the branch point at −2h in clockwise sense. Since in this

section we think in terms of short cuts for all the Q-functions, we can say that γ goes

through the short cut (−2h,+2h) from above, while γ̄ crosses it from below. The two

paths are represented in figure 3. We denote the analytic continuation of any function of

u along these paths as fγ or fγ
−1 ≡ f γ̄ . In this notation, (3.25) and (3.26) become

(Q↓k)
γ = G ṁ

k Q↑ṅ , (Q↓
k̇
)γ = G n

k̇
Q↑n, (Qk↓)γ = GkṅQ̄

ṅ↑, (Qṅ↓)γ = GȧbQ
b↑. (3.31)

3.3.1 The Qω-system

By defining i-periodic functions ω:

ω ṅ
k = G ṁ

k Ω ṅ
ṁ , ω n

k̇
= G m

k̇
Ω n
m , (3.32)

where Ω’s are the matrices relating LHPA and UHPA bases in (3.24), (3.22), the system

of equations (3.31) can be conveniently rewritten in the form

Q↓γk = ω ṁ
k Q↓ṁ , Q↓γ

k̇
= ω m

k̇
Q↓m. (3.33)

Notice also that by construction, it follows from the properties of the gluing matrix and Ω

function that

ω ṁ
k ωl ṁ = δlk , det(ω) = 1. (3.34)

Similarly, one can introduce

ω̄ m
ṅ = GkṅΩm

k, (3.35)

such that

Q↑γ
−1

k̇
= ω̄ m

k̇
Q↑m. (3.36)

In what follows, we adopt a simplified notation5, where Q↓ is denoted by Q and Q↑ is

denoted by Q̄. So (3.33) and (3.36) become

Qγ
k = ω ṁ

k Qṁ , Q̄γ̄
k = ω̄ ṁ

k Q̄ṁ . (3.37)

Now let us understand the analytic continuation under the cuts of ω, focusing on ω l
k̇

first.

Notice that the matrix Ω l
k can be expressed as Ω l

k = Q̄+
a|kQ

a|l + (see (C.7)) and since

Qa|i + has no cut on the real axis, we only need to understand the analytic continuation of

Q̄+
a|k. The defining relation of this function is

Q̄+
a|k − Q̄

−
a|k = PaQ̄k, (3.38)

where Q̄−a|k is now analytic and invariant under the analytic continuation along γ̄. Com-

puting the discontinuity we obtain

Q̄+γ̄
a|k − Q̄

+
a|k = Pγ̄

aQ̄
γ̄
k −PaQ̄k , (3.39)

5Notice that this notation does not necessarily mean complex conjugation of the Q-functions; however,

we expect that for real parameters there will be a simple relation.
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which, multiplied by Qa|l + on the left, leads to

(Ω l
k )γ̄ − Ω l

k = Q̄γ̄
kQ

l γ̄ − Q̄kQ
l . (3.40)

Next, multiplying these equations by G k
k̇

, and using (3.31), we find:

(ω l
k̇

)γ̄ − ω l
k̇

= Qk̇Q
l γ̄ −Qγ

k̇
Ql . (3.41)

This expression generalises a similar relation found in AdS5 and AdS4 cases, but now we

distinguish two different directions for the analytic continuation on the r.h.s.. As usual one

can replace dotted to undotted indices to get a similar identity for ω l̇
k .

We can use (3.41) to determine the double continuation of Qk̇ along the contour γ –

we will then see explicitly that there may be an obstruction to the cuts being quadratic.

We start by continuing (3.37) along the inverse path γ̄, which gives

Qk̇ = (ω l
k̇

)γ̄Qγ̄
l = ω l

k̇
Qγ̄
l −Qγ

k̇
QlQγ̄

l = ω l
k̇

(
δpl −QlQ

p
)
Qγ̄
p , (3.42)

where the second equality is obtained by using (3.41), and recalling that QiQ
i = 0. In-

verting the factor on the r.h.s., we get

Qγ̄
p =

(
δlp + QpQ

l
)
ωk̇lQk̇ . (3.43)

From this we can compute directly the difference of the analytic continuation of the Q-

function along γ and γ̄:

Qγ
k −Qγ̄

k = Qṁ

(
ω ṁ
k − ωṁk

)
+ QkQ

lω ṁ
l Qṁ. (3.44)

In the case of AdS5, the two terms on the r.h.s. would vanish separately, due to the

symmetry properties of the analogue of ω, ensuring that the branch cuts are quadratic. In

our case, that does not need to be the case, since ω connects different kinds of indices and

there is no reason a priori to expect any symmetry between them.

We make a further interesting observation by rewriting (3.41) in the form

(ω l
k̇

)γ̄ −Qk̇Q
l γ̄ = ω l

k̇
−Qγ

k̇
Ql . (3.45)

This shows immediately that the combination ω l
k̇
−Qγ

k̇
Ql is equal to its analytic contin-

uation, and therefore the cut on the real axis disappears in this combination. We can also

write it as ω m
k̇

(δlm −QmQl). Then taking (3.42) along γ, we get

Qγ

k̇
= ω l

k̇

(
δpl −QlQ

p
)
Qp = ω l

k̇
Ql (3.46)

with the final equality being in agreement with (3.32). The first equality allows us to find

the expression for Qk̇ continued a second time along γ:

Qγ2

k̇
= ω l

k̇

(
δpl −QlQ

p
)
Qγ
p = ω l

k̇

(
δpl −QlQ

p
)
ω ḣ
p Qḣ . (3.47)
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This expression confirms the potential obstruction to the cuts being quadratic. In partic-

ular, we can repeatedly iterate this continuation and obtain in general

(Qk̇)
γn = U p

k̇
(Qp)

γn−1
, (Qk)

γn = U̇ ṗ
k (Qṗ)

γn−1
, (3.48)

(Qk̇)
γ̄n = Ū p

k̇
(Qp)

γ̄n−1
, (Qk)

γ̄n = ˙̄U ṗ
k (Qṗ)

γ̄n−1
, (3.49)

where

U p

k̇
≡ ω l

k̇

(
δpl −QlQ

p
)
, Ū p

k̇
≡
(
U̇−1

) p

k̇
=
(
δṁ
k̇

+ Qk̇Q
ṁ
)
ωpṁ, (3.50)

U̇ ṗ
k ≡ ω

ṁ
k

(
δṗṁ −QṁQṗ

)
, ˙̄U ṗ

k ≡
(
U−1

) ṗ

k
= (δmk + QkQ

m)ωṗm. (3.51)

In general, following the path γn produces a concatenation of monodromies U · U̇ ·U · U̇ . . . ,
but since there is no reason to expect (U · U̇) to be the identity matrix (or a root of the

latter), this is nontrivial, meaning that each branch point has infinite order and connects

to infinitely many sheets.

Notice that, while in general we expect the branch points to be non-quadratic, there

are some special combinations of Q-functions that do exhibit this property. We already

showed that this is the case for the ratio r defined in (2.33). We now consider

QlQγ̄
l = Qlωk̇lQk̇ = Qk̇ γQk̇ , (3.52)

where we used (3.43) and the analogous equation to (3.37) with (raised, dotted) indices.

Lowering the indices with (2.33), and remembering that, as deduced above, rγ = rγ̄ = ṙ,

the same relations (and their dotted version) can be written as

εklQkQ
γ̄
l = −εk̇l̇Qk̇Q

γ

l̇
, εklQkQ

γ
l = −εk̇l̇Qk̇Q

γ̄

l̇
. (3.53)

Continuing the first equation above along γ, we get

εklQγ
kQl = −εk̇l̇Qγ

k̇
Qγ2

l̇
, (3.54)

but due to the second equation in (3.53), the l.h.s. is also equal to −εk̇l̇Qγ̄

k̇
Ql̇, meaning

that the combination εk̇l̇Qγ̄

k̇
Ql̇ = εklQkQ

γ
l comes back after γ2!

As a final observation, we notice that, continuing the two sides of (3.45) along γ, one

can also obtain an explicit equation for ωγ in terms of quantities on the first sheet.

The main results of this section can be summarised in the following equations:6

(Q)γ
k̇

= ω l
k̇

Ql, (Qk̇)γ = ωk̇lQ
l, (3.55)

and(
(ω)γ̄ − ω

) l

k̇
= Qk̇(Q

l)γ̄ − (Qk̇)
γQl,

(
(ω)γ̄ − ω

)k̇
l

= −Qk̇(Ql)
γ̄ + (Qk̇)γQl. (3.56)

Here, as usual, we understand that for every equation there is its double obtained by

interchanging dotted and undotted indices. Together with QiQ
i = 0, ω l

k̇
ωk̇m = δlm, and the

6Results for Q and ω functions with raised indices can be found using the same steps.
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Figure 4. Periodicity of µ as a function with long cuts is identical to the property µ++ = µγ for

a section with short cuts.

periodicity of ω, the relations (3.55),(3.56) may be taken as a self-consistent description of

the QSC, which is usually dubbed Qω-system.7 Bouncing back and forth between these

equations, and using the fact that ω is i-periodic, one can obtain the result of any analytic

continuation of the Q-functions and ω functions, inside any cut, and express it in terms

of their values on the first sheet. This is the same feature that was observed in the other

examples of QSC, see the discussion in [1]. It is encouraging that this property is still valid

here, even though the analytic structure is more complicated due to the branch points

having infinite order.

3.3.2 The Pµ-system

We now describe the constraints on the analytic continuation of P functions. Analogously

to [2], the main object in this case is the matrix µ defined as

µ ḃ
a ≡ Q−a|c ω

c
ḋ
Qḃ|ḋ − , µa

ḃ
≡ Qa|c − ω ḋ

c Q−
ḃ|ḋ, (3.57)

which will play a role similar to ω. Notice that just like in the case of ω, µ has unit

determinant and µ ḃ
a µ

c
ḃ

= δca. We also notice the alternative expression

µ ḃ
a = Q̄−a|i(G

i
k̇
ωk̇lG

l
ṁ)Q̄ḃ|ṁ −, (3.58)

which is obtained through the relations (C.6), and will become useful in the discussion of

the next section.

While ω is an i-periodic function on the Riemann section with short cuts, µ has a

periodicity on the section with long cuts, as depicted in figure 4. Expressed in terms of a

section with short cuts, this “mirror periodicity” becomes

µ++ = (µ)γ . (3.59)

To prove this relation (and thus also long-cut periodicity of µ), we continue it along γ̄ and

show that the combination (µ++)γ̄ − µ vanishes. We can rewrite such a difference as(
(µ++)γ̄ − µ

) ḃ

a
= Q+

a|i (ωi
k̇
)γ̄ Qḃ|k̇ + −Q−a|i ω

i
k̇
Qḃ|k̇ −. (3.60)

7As we saw in this section, these relations can be used to deduce algebraically all remaining properties,

including the effect of crossing the cuts in the opposite directions.
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We can now plug in (ω)γ
−1

from the (undotted version of) (3.56), and, in the second term,

use the identities (2.29) to relate Q−a|i and Q+
a|i. We get

Q+
a|k

(
ωkṁ + (Qk)γQṁ −Qk(Qṁ)γ̄

)
Qḃ|ṁ + (3.61)

−Q+
a|k

(
δkm −QkQm

)
ωmṁ

(
δṁ
k̇

+ QṁQk̇

)
Qḃ|k̇ + = 0, (3.62)

where a perfect cancellation occurs due to (3.55),(3.56), establishing (3.59). We can use

µ to compute the values of P on the second sheet. In particular, the definition (3.57),

together with Pa = Q+
a|iQ

i, immediately implies

(Pa)
γ = µ ḃ ++

a Pḃ = (µ ḃ
a )γPḃ, (3.63)

which is conveniently rewritten as

(Pa)
γ̄ = Pḃµ

ḃ
a . (3.64)

This equation, compared to (3.37), highlights the symmetry of the construction between

P and Q functions. From (3.41), it is also immediate to derive

(µ ḃ
a )γ − µ ḃ

a = Q+
a|k

(
ωkṁ − (ωkṁ)γ̄

)
Qḃ|ṁ+ = Pa(P

b)γ̄ − (Pa)
γPb, (3.65)

which shows that the combination µ ḃ
a +Pa(P

ḃ)γ̄ =
(
δba + PaP

b
)
µ ḃ
b has no cut on the real

axis. From this observation and (3.64) we also deduce

(Pa)
γ =

(
δba + PaP

b
)
µ ḃ
b Pḃ, (Pa)

γ2
=
(
δba + PaP

b
)
µ ḃ
b (Pḃ)

γ , (3.66)

and we obtain, similar to the previous discussion, that the branch points are in general

connected to an infinite series of sheets, which can be reached by iterating

(Pa)
γ̄n = W̄ b

a (Pḃ)
γ̄n−1

, (Pa)
γn = W ḃ

a(Pḃ)
γn−1

, (3.67)

with W , W̄ defined by

W ḃ
a =

(
δba + PaP

b
)
µ ḃ
b , W̄ ḃ

a = µċ a

(
δḃċ −PċP

ḃ
)
, (3.68)

with Ẇ = (W̄ )−1, ˙̄W = (W )−1 defined similarly by dotting/undotting all indices. As

in the previous paragraph, we see that going around the branch point many times keeps

leading to new sheets, since we expect in general that (W ·Ẇ ) ba 6= δba, being there no reason

to expect otherwise.

We can summarise the finding of this section in a set of Pµ equations. For the first

wing they read,

(Pa)
γ̄ = Pḃµ

ḃ
a, (Pa)γ̄ = Pḃµ a

ḃ
, (3.69)

and

(µ ḃ
a )γ − µ ḃ

a = Pa(P
b)γ̄ − (Pa)

γPb, (µa
ḃ
)γ − µa

ḃ
= −Pa(Pb)

γ̄ + (Pa)γPb. (3.70)

Together with the mirror-periodicity of µ, this can also be taken as a self-consistent de-

scription of the QSC. As remarked for the Qω-system, these equations contain enough

information to map the values of P and µ functions on any sheet, back to the first main

one.
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4 The ABA limit

In this section, we will find an asymptotic solution for some of the Q-functions in the

large-L limit. This will lead us to a perfect match with the Asymptotic Bethe Ansatz for

massive states, including the dressing phases.

4.1 Large-volume scaling of the QSC

To deduce the large-L solution, we will use arguments developed for the AdS5 case in

[2] and then also successfully used for AdS4 case to derive the ABA in [14]. The crucial

observation is that, for large L, some Q-functions are exponentially suppressed/enhanced,

following the pattern of their large-u asymptotics (3.10). Following the notation of [2], we

introduce a parameter ε ∝ e−L to keep track of this scaling. We then see that for large L

(i.e., ε ∼ 0),

Qa|i ∼

(
1 ε2

1
ε2

1

)
, Qa|i ∼

(
1 1

ε2

ε2 1

)
, (4.1)

Qi ∼ (ε−1, ε), Qi ∼ (ε, ε−1), Pi ∼ (ε, ε−1), Pi ∼ (ε−1, ε). (4.2)

In the second wing, we would have exactly the same pattern for the dotted Q-functions.

In addition, since the ω functions are periodic on a Riemann section with short cuts, they

have constant asymptotics. We will then assume that they all scale as

ω ṁ
k ∼ O(1), ωkm ∼ O(1), ω m

k̇
∼ O(1), ωk̇m ∼ O(1), ε→ 0. (4.3)

We then notice that some of the QQ relations, Pµ and Qω equations simplify significantly.

Dropping the subleading terms for ε→ 0 we find for instance, from (3.57),

µ 2̇
1 = Q−1|kω

k
l̇
Q2̇|l̇ − ∼ Q−1|1ω

1
2̇
Q2̇|2̇ − = Q−1|1ω

1
2̇
Q−

1̇|1̇, (4.4)

and similarly we get to

µ2
1̇
∼ Q−1|1ω

1̇
2 Q−

1̇|1̇, (4.5)

where we recalled that by definition Q2|2 = Q1|1. Another important equation is obtained

starting from P1 = (Q+
1|i)Q

i, and considering the analytic continuation along γ (recall that

Q+
a|1 has no cut on the real axis). Using the Qω-system, and then considering the large-L

scaling, we get

(P1)γ = Q+
1|lω

l
k̇
Qk̇ ∼ Q+

1|1ω
1
2̇
Q2̇, (4.6)

which will play an important role in the following derivation of the ABA.

We now proceed to deduce the form of some of the elements of the QSC in the ABA

scaling. To do that, we will take as a working hypothesis the property that, for the functions

µ 2̇
1 , µ 2

1̇
, µ1̇

2, µ1
2̇
, the cut on the real axis becomes quadratic in the large-L limit. We will

– 21 –



see that all the solutions for massive states fall into this category.8

We will also make an assumption that the gluing matrix follows the pattern one can

deduce from the gluing equations in the classical limit, namely that all the diagonal elements

vanish. Our derivation assumes that this is true at least in the ABA limit, but we suspect

it may be true even at finite L (this is what happens in AdS5).

Finally, we will use the expressions obtained from (3.58) in the ABA limit, such as

µ 2̇
1 ∼ Q̄−1|1(G 1

k̇
ωk̇lG

l
2̇
)Q̄−

1̇|1̇ ∝ Q̄
−
1|1ω

2̇
1Q̄
−
1̇|1̇. (4.7)

4.2 Fixing Q-functions on the first sheet

Finding Q1|1, µ
2̇

1 and ω1
2̇
. To determine these functions, we use the assumption

on the quadratic nature of the branch point of µ 2̇
1 in the ABA limit. Even though this

assumption could appear to be too restrictive, we will nevertheless show that in the ABA

limit this extra restriction does not lead to any inconsistencies. The simplification of the

analytic structure of µ is quite typical in the ABA limit – for instance in the AdS5 case

the discontinuity of log µ appears to be a simple rational function of x, whereas in general

it would have an infinity tower of cuts. With that in mind, we can follow closely [2], and

this part may be skimmed through by the reader familiar with that paper. The surprises

begin from section 4.3, where the non-quadratic nature of the branch points pops up again

in a crucial way.

We start by considering the function µ 2̇
1 (u+ i/2). We take it to have a finite number

of zeros on the first Riemann sheet with short cuts, and we store such zeros in a polynomial

Q(u) =
∏
i(u− ui). We then consider

(F )2 ≡ µ 2̇
1

µ 2̇++
1

Q+

Q−
=

µ 2̇
1

(µ 2̇
1 )γ

Q+

Q−
(4.8)

which by definition has no zeros or poles on the first Riemann sheet with short cuts. Since

by our assumption the branch points of µ become quadratic in the ABA limit, using the

property (µ)γ = µ++ ∼ µγ̄ , it is simple to obtain the same equations as in [2]:

F (F )γ ∼ F (F )γ̄ ∼ Q+

Q−
. (4.9)

All the other cuts in F must disappear in the ABA limit. In fact, using (4.5), and the

periodicity of ω, we see that F 2 can be rewritten as

F 2 =
Q−1|1Q

−
1̇|1̇

Q+
1|1Q

+
1̇|1̇

Q+

Q−
, (4.10)

8It is tempting to speculate that asymptotic solutions including massless modes might be found by

relaxing this assumption on the behaviour at large L. On the other hand the massless modes suffer from

stronger wrapping effects, which limits the range of validity of the corresponding ABA regime, which may

mean that the approach of [2] is not sensitive enough to detect those power-like effects, and the ABA should

be recovered via a different route. We reserve these questions for future studies.
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which does not have cuts in the upper half plane, while (4.7) leads us to the expression

F 2 =
Q̄−1|1 Q̄

−
1̇|1̇

Q̄+
1|1 Q̄

+
1̇|1̇

Q+

Q−
, (4.11)

which shows that there are no cuts in the lower half plane either. Taking into account that

F has constant asymptotics at large u on the first sheet, we have a simple Riemann-Hilbert

problem (4.9), with the standard solution

F = ±ei
P
2
B(+)

B(−)
, (4.12)

with eiP ≡
∏
i
x+
i

x−i
, and B(±)(u) ≡

√
h
x∓i

( 1
x(u) − x

∓
i ). The constant factor will not be very

important in the current considerations.9

Setting Q1|1Q1̇|1̇ ≡ Q(f+)2, equation (4.10) then gives us a difference equation

f++

f
=
B(−)

B(+)
, (4.13)

where by construction f should have neither poles nor zeros in the upper half plane, and

power-like asymptotics. Up to a multiplicative constant, the solution is

f(u) ∝ exp

(
−
∫ 2h

−2h

dz

2πi
log

B(−)(z)R(+)(z)

B(+)(z)R(−)(z)
∂z log Γ(iz − iu)

)
, (4.14)

where we use ∝ to indicate that there could be an irrelevant constant factor in the equation.

With the explicit form of f in (4.14), we have fixed Q1|1Q1̇|1̇ completely. Noticing that

µ 2̇
1 = Q−1|1Q

−
1̇|1̇ω

1
2̇
∝ Q̄−1|1Q̄

−
1̇|1̇ω

1
2̇
, where ω should be i-periodic, we can also find

µ 2̇
1 ∝ Q−ff̄−−, ω1

2̇
∝ f̄−−

f
, Q1|1Q1̇|1̇ ∝ Q (f+)2, (4.15)

where f̄ is solution of f̄/f̄−− =
B(−)

B(+)
with no cuts in the lower half plane and constant

asymptotics.10 From the expression (4.10), we also see that the set of zeros of Q must

coincide with the union of the zeros of Q1|1 and Q1̇|1̇. Therefore we split this polynomial

as Q(u) ≡ Q2(u)Q2̇(u), with Q2(u) ≡
∏K2
i=1(u − u2,i), Q2̇(u) ≡

∏K2̇
i=1(u − u2̇,i), with the

understanding that Q2 contains zeros of Q1|1, and Q2̇ zeros of Q1̇|1̇. This notation is chosen

in anticipation of the role of the zeros in the ABA. With these conventions, we have

µ 2̇
1 ∝ Q−2 Q

−
2̇
f2f2̇f̄

−−
2 f̄−−

2̇
, ω1

2̇
∝
f̄−−2 f̄−−

2̇

f2 f2̇

, Q1|1 ∝ Q2 f
+
2 f

+
2̇
P, Q1̇|1̇ ∝ Q2̇ f

+
2 f

+
2̇

1

P
,

(4.16)

9In any case, one can establish by an argument parallel to the one in [2], that eiP = 1, which can be

recognised as the level matching condition in the ABA interpretation.
10We have that f̄ is simply the complex conjugate of f for real roots, and otherwise it is given by a simple

integral representation similar to (4.14).
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with the obvious notation that fα are solutions of f++
α /fα =

Bα,(−)

Bα,(+)
, with α ∈

{
2, 2̇
}

(see

appendix A), and where P is a yet unfixed function of u coming from splitting the product

Q1|1Q1̇|1̇. This function should have neither zeros nor poles, and moreover P− cannot have

any cuts in the upper half plane. On the other hand, the quantity

Q̄+
1|1 = Q+

1|jΩ
j

1 ∼ Q
+
1|1Ω 1

1 for ε→ 0, (4.17)

should be analytic in the lower half plane, where the matrix Ω is defined by ω b
ȧ = G c

ȧ Ω b
c .

Using the assumed classics-inspired off-diagonal property of the gluing matrix, we see

that Ω 1
1 ∝ ω 1

2̇
. Then, from (4.17) and the above found solution for ω 1

2̇
, we deduce

that Q̄+
1|1 - which should be analytic in the lower half plane - can also be written as

Q2
B2,(−)B2̇,(−)

B2,(+)B2̇,(+)
f̄−−2 f̄−−

2̇
P+. Since all the other factors already have this property, we con-

clude that P+ should have no cuts in the lower half plane. All together, we found that the

function P cannot have any singularities or zeroes and thus is a constant (due to regularity

at infinity). In conclusion, we found

Q1|1 ∝ Q2 f
+
2̇
f+

2 , Q1̇|1̇ ∝ Q2̇ f
+
2̇
f+

2 , (4.18)

µ 2̇
1 ∝ µ 2

1̇
∝ Q−2 Q−

2̇
f2 f̄

−−
2 f2̇ f̄

−−
2̇

,

ω1
2̇
∝ ω1̇

2 ∝
f̄−−2

f2

f̄−−
2̇

f2̇

,

where we included the values of more ω, µ functions, obtained by obvious generalisations

of the argument above.

Parametrising P and Q functions. From the AdS5 and AdS4 cases, we expect that

a special subset of P and Q functions will converge to simple explicit expressions in the

ABA limit. This is the subset of the P functions which are small, together with the Q

functions that are large, for ε→ 0. From (4.2), we see that those are P1, P2, Q1, Q2, and

their dotted counterparts. We expect that their zeros on the first sheet will acquire the

meaning of Bethe roots.

With this in mind, we make the following ansatz:

P1 ∝ x−L/2A×R1̃B˜̇1
B2,(−), P2 ∝ x−L/2A×R3̃B˜̇3

B2,(−), (4.19)

Q1 ∝
xL/2

A′
×R1B1̇f2

f2̇

B2̇,(+)

, Q2 ∝ xL/2

A′
×R3B3̇ f2

f2̇

B2̇,(+)

. (4.20)

Above, we have stored the zeros of the P and Q functions on the first sheet inside the

Zhukovsky polynomials Rα, defined11 in appendix A (again, the notation anticipates the

role of these zeros in the ABA, but for now they are generic parameters). The other Bα
and fα factors (also defined in the appendix) are chosen for future convenience, but they

do not have zeros on the first sheet. Notice that the ansatz above is fully general, because

11In the definitions (A.6),(A.5), we take the zeros to satisfy |xα,j | > 1, which means the zeros of Rα (Bα)

are on the first (second) sheet in terms of the spectral parameter u.
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it contains the arbitrary functions of u A(u), A′(u). By construction they should have no

poles or zeros on the first sheet, and moreover A, which appears in the P functions, can

have only a single cut.

Comparing with (2.33), we see that we can write the important function r in two

alternative ways as

r ∝
R1̃B˜̇1

R3̃B˜̇3

∝
R3B3̇

R1B1̇

, (4.21)

which means that R3̃ and R1̃ could have common zeroes.

Likewise we make a similar ansatz for the second wing:

P1̇ ∝ x
−L/2 Ȧ ×R′

3̇
B′3B2̇,(−), P2̇ ∝ x−L/2 Ȧ ×R′

1̇
B′1B2̇,(−), (4.22)

Q1̇ ∝
xL/2

Ȧ′
×R′˜̇3B

′
3̃
f2̇

f2

B2,(+)
, Q2̇ ∝ xL/2

Ȧ′
×R′˜̇1B

′
1̃
f2̇

f2

B2,(+)
, (4.23)

with functions Ȧ(u), Ȧ′(u) having no zeroes on the main sheet. In (4.22),(4.23), we have

introduced polynomials in x vs 1
x , R′α and B′α, respectively. They are defined just like in

(A.5),(A.6), but where the zeros of these polynomials (and their number) are in principle

unrelated to the ones appearing in the first wing. We will however soon see that there is a

simple identification. From (2.33) we again get

ṙ ∝
R′

3̇
B′3

R′
1̇
B′1
∝
R′˜̇1
B′

1̃

R′˜̇3
B′

3̃

. (4.24)

Furthermore, recalling that ṙγ = r we get

R1̃B˜̇1

R3̃B˜̇3

∝
R3B3̇

R1B1̇

∝
B′

3̇
R′3

B′
1̇
R′1
∝
B′˜̇1
R′

1̃

B′˜̇3
R′

3̃

. (4.25)

One can for example deduce that R1̃R1 = R3R3̃ etc. from the above equation.

Fermionic duality equation. An important constraint comes from one of the QQ

relations

Q+
1|1 −Q

−
1|1 = Q1P1 , (4.26)

where we see the appearance of Q1|1 determined in (4.18). Plugging in that value, and the

ansatz (4.19),(4.20), we find, from the first equality in (4.26),

R2,(+)B2̇,(−) −R2,(−)B2̇,(+) ∝ R1R1̃B1̇B˜̇1

A
A′

, (4.27)

where we used the property that Q±α = ±Bα,(±)Rα,(±). Since the left hand side is a

rational function in 1/x(u), and A, A′ should have no zeros or poles on the first sheet,

the ratio A(u)/A′(u) can only be a polynomial in the variable 1
x(u) . But we can absorb

any such function in a redefinition of the B˜̇1
, B1̇ polynomials (which are so far completely

unconstrained), so without loss of generality we can take A/A′ = 1. Similar considerations

arise from considering (4.26) in the second wing. From now on, therefore we take

A(u) = A′(u) , Ȧ(u) = Ȧ′(u). (4.28)
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Notice that we still have two undetermined functions, which will be fixed in the next

section. Using that A = A′, from (4.27) we obtain

R2,(+)B2̇,(−) −R2,(−)B2̇,(+) ∝ R1R1̃B1̇B˜̇1
. (4.29)

The analogous constraint obtained by considering the second wing reads

B2,(−)R2̇,(+) −B2,(+)R2̇,(+) ∝ B
′
1B
′
1̃
R′

1̇
R′˜̇1

, (4.30)

and analytically continuing this equation to another sheet we find the identity

R1R1̃B1̇B˜̇1
∝ R′1R′1̃B

′
1̇
B′˜̇1

(4.31)

which implies

R1R1̃ = R′1R
′
1̃
. (4.32)

Equations of the form (4.29) are examples of fermionic duality relations. They imply

that the sets of roots with labels 1, 2, 3 (or alternatively the “dual” set obtained with

1↔ 1̃, 3↔ 3̃) satisfy the auxiliary ABA equations of the form

1 =
Q+

2 B2,(−)B2̇,(−)

Q−2 B2,(+)B2̇,(+)

∣∣∣∣∣
u∈{roots of type 1,1̃,3,3̃}

. (4.33)

4.3 Going inside the cut: fixing the dressing phases

So far we reduced the ansatz for P’s and Q’s to just two unknown functions with one cut

and no zeroes A and Ȧ on the main sheet. In order to constrain them further, we need to

go to the next sheet of their Riemann surfaces.

This will bring us to the most interesting part of the analysis, where things will be

radically different than in AdS5 and AdS4. By studying equations of the form (4.6), which

we repeat here,

(P1)γ ∼ Q+
1|1ω

1
2̇
Q2̇ , (P1̇)γ ∼ Q+

1̇|1̇ω
1̇
2Q

2 (4.34)

we will find that the P and Q functions cannot have a quadratic cut even in the ABA

limit. We will also be able to fix the form of the yet undetermined functions A(u), Ȧ(u)

and relate them to the dressing phases of [37].

4.3.1 The cuts cannot be quadratic

The strategy will be to compare the r.h.s. of each of the equations (4.34), with the analytic

continuation of P functions, starting from their form in (4.19),(4.23).12 From the first

equation in (4.6), in particular, we obtain:

Pγ
1 = xL/2(A)γB1̃R˜̇1

R2,(−) =
(
Q+

2 f
++
2̇

f++
2

)( f̄2f̄2̇

f++
2 f++

2̇

)(
xL/2

Ȧ
R′˜̇1
B′

1̃

f2f2̇

B2,(+)

)
. (4.35)

12Here a comment is in order: in principle, the analytic continuation through the cut might not commute

with the large-L limit, due to the presence of Stokes-type phenomena - where a subleading correction on

the first sheet might become large on the second sheet invalidating the result. However, as discussed in [2],

one can expect that it is safe to analytically continue the ABA limit of a Q-function that is already small

on the first sheet. This is the case of the P functions we consider which are of order ε.
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We noticed in the previous section that the roots of R1̃ and R′
1̃

satisfy the same BAE

equation (4.33). The same is true for the roots of R˜̇1
and R′˜̇1

. Whereas this does not

necessarily mean that all roots coincide, we will assume R1̃ = R′
1̃

and R˜̇1
= R′˜̇1

. In

this case we get a nice cancellation in the above equation, which further supports this

requirement. Then we get a simple relation

(A)γ Ȧ =

(
R2,(+)

R2,(−)

)(
f̄−−2 f++

2 f̄−−
2̇

f++
2̇

)
. (4.36)

It is striking to compare this with the consequence of the second relation in (4.34), which

yields

A (Ȧ)γ =

(
R2̇,(+)

R2̇,(−)

) (
f̄−−2 f++

2 f̄−−
2̇

f++
2̇

)
. (4.37)

Now we continue this relation along the reverse path γ̄: the result on the l.h.s. is (A)γ̄Ȧ,

and the analytic continuation of the r.h.s. is simple to compute, since the f++, f̄−−

functions have no cut on the real axis, so are left unchanged. By comparing the result with

(4.36), we get the following “double-discontinuity” relations

Aγ

Aγ̄
=
R2,(+)

R2,(−)

B2̇,(−)

B2̇,(+)

,
Ȧγ

Ȧγ̄
=
R2̇,(+)

R2̇,(−)

B2,(−)

B2,(+)
, (4.38)

where the r.h.s. clearly cannot vanish (except for the vacuum) since the Rα and Bα
functions have zeros on different sheets. We will now solve (4.36) and (4.37).

4.3.2 Relation to the dressing phases

In order to find the solution, without lack of generality we introduce the following ansatz

in terms of ρ and ρ̇

A =

√
B2,(+)

B2,(−)
σ1

2 σ
1
2̇
ρ , Ȧ =

√
B2̇,(+)

B2̇,(−)

σ1
2 σ

1
2̇
ρ̇ , (4.39)

where, using notation from [2], σ1,BES
α denote natural building blocks of the Beisert-Eden-

Staudacher dressing factor. They satisfy

(σ1,BES
α )γ σ1,BES

α = (σ1,BES
α )γ̄ σ1,BES

α ∝ f++
α f̄−−α , α = 2, 2̇ , (4.40)

and are related to the product of the BES dressing factors via

σBES(u) =
σ1,BES(u+ i

2)

σ1,BES(u− i
2)
, (4.41)

with the notation explained in appendix A. With this redefinition, (4.36), (4.37) become

(ρ)γ ρ̇ ∝

√
R2,(+)

R2,(−)

B2̇,(−)

B2̇,(+)

, (ρ̇)γ ρ ∝

√
R2̇,(+)

R2̇,(−)

B2,(−)

B2,(+)
. (4.42)
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In appendix B, we define the functions σ1,extra and σ̃1,extra which are related to the two

independent dressing phases appearing in ABA equations of section 2.1 in the following

way:

σ(u) = σBES(u)
σ1,extra(u+ i

2)

σ1,extra(u− i
2)
, σ̃(u) = σBES(u)

σ̃1,extra(u+ i
2)

σ̃1,extra(u− i
2)
. (4.43)

In the same appendix, we also show that these extra pieces satisfy the following identities

(σ1,extra
α )γ σ̃1,extra

α =

√
Rα,(+)

Rα,(−)
, (σ̃1,extra

α )γ σα
1,extra =

√
Bα,(−)

Bα,(+)
, α ∈

{
2, 2̇
}
, (4.44)

which we both verify directly and also independently deduce from crossing via functional

arguments.

Using those building blocks, we can write

ρ = σ1,extra
2 σ̃1,extra

2̇
ρ0 , ρ̇ = σ1,extra

2̇
σ̃1,extra

2 ρ̇0 , (4.45)

where ρ0 and ρ̇0 should be functions with square-root branch cut on the real axis satisfying

ργ0 = 1/ρ̇0 , ρ̇γ0 = 1/ρ0 . (4.46)

This equation tells us that ργ0 is a function with a single cut and neither zeroes nor poles,

and likewise ρ̇0 and ρ0. In other words it can only be a power of x, which can be included

into a re-definition of L. So without reducing the generality we can set ρ̇0 = ρ0 = 1. This

completes the derivation of the asymptotic limit of our QSC.

4.4 Summary of results for the asymptotic limit

Let us summarise what we found for the expressions of P and Q functions. In the first

wing we have:

P1 ∝ x−L/2R1̃B˜̇1

√
B2,(+)B2,(−) σ

1
2 σ̃

1
2̇
, P2 ∝ x−L/2R3̃B˜̇3

√
B2,(+)B2,(−) σ

1
2 σ̃

1
2̇
, (4.47)

Q1 ∝ xL/2R1B1̇

√
B2,(−)

B2,(+)

f2 f2̇

B2̇,(+) σ
1
2 σ̃

1
2̇

, Q2 ∝ xL/2R3B3̇

√
B2,(−)

B2,(+)

f2 f2̇

B2̇,(+) σ
1
2 σ̃

1
2̇

, (4.48)

and in the second wing:

P1̇ ∝ x
−L/2R3̇B3

√
B2̇,(+)B2̇,(−) σ1

2̇
σ̃1

2, P2̇ ∝ x−L/2R1̇B1

√
B2̇,(+)B2̇,(−) σ1

2̇
σ̃1

2, (4.49)

Q1̇ ∝ x
L/2R˜̇3

B3̃

√
B2̇,(−)

B2̇,(+)

f2f2̇

B2,(+) σ
1
2̇
σ̃1

2

, Q2̇ ∝ xL/2R˜̇1
B1̃

√
B2̇,(−)

B2̇,(+)

f2f2̇

B2,(+) σ
1
2̇
σ̃1

2

. (4.50)

Having an asymptotic solution for all relevant P and Q functions we can plug them into

the exact Bethe ansatz equations (2.40) and compare the result with the ABA (2.1).
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4.5 Match with the Asymptotic Bethe Ansatz

We have finally arrived at a full specification of the Q-functions P1, P2, Q1, Q2, Q1|1, and

their dotted cousins, in the ABA limit. To obtain the Asymptotic Bethe Ansatz, we can

just plug their values in the exact Bethe equations following from the Q-system (2.40).

We will have the following correspondence between the zeros appearing on the first

sheet of the Q-functions, and the Bethe roots appearing in the Asymptotic Bethe Ansatz:

for the first wing

Roots: u1,k u2,k u3,k

Q-function: Q1 Q1|1 Q2 ,
Dual roots: u1̃,k u3̃,k

Q-function: P1 P2 , (4.51)

and for the second wing:

Root: u1̇,k u2̇,k u3̇,k

Q-function: P1̇ Q1̇|1̇ P2̇ ,
Dual roots: u˜̇1,k

u˜̇3,k

Q-function: Q1̇ Q2̇
. (4.52)

In particular, the exact Bethe equations (2.40) for the first wing reduce exactly the

ABA equations (A.14)-(A.17) using the Q-functions (4.47)-(4.48). Similarly, using the

exact Bethe equations of the form (2.43), but for the dotted Q-functions, we reproduce the

ABA equations (A.18)-(A.21) using the asymptotic values (4.49)-(4.50).

As an example to demonstrate the procedure, we display the case of the middle-node

equation for the first wing. At the roots of Q1|1 i.e. at u = u2,i we have

−1 =
Q++

1|1 Q
−
∅|1Q

−
12|1

Q−−1|1 Q
+
∅|1Q

+
12|1

=
Q++

1|1 Q−1 Q2−

Q−−1|1 Q+
1 Q2+

=
(x−)L(σ1+

2 σ̃1+
2̇

)2Q++
2 R−1 B

−
1̇
R−3 B

−
3̇
f

[+3]
2 f

[+3]

2̇
f−2 f

−
2̇
B−2(−)B

+
2(+)[B

+
2̇(+)

]2

(x+)L(σ1−
2 σ̃1−

2̇
)2Q−−2 R+

1 B
+
1̇
R+

3 B
+
3̇
f+

2 f+
2̇

f+
2 f

+
2̇
B+

2(−)B
−
2(+)[B

−
2̇(+)

]2
,

where we have cancelled some terms repeated in the numerator and denominator. Next

we have to use the defining property of the function fα: f++
α
fα

=
Bα,(−)

Bα,(+)
in appropriate

shifted version, to re-create various B functions, some of which then cancel out and some

remain. At the end of this massive simplification what is left is exactly the middle-node

ABA equation for the first wing, where one needs to recall how the dressing phases are

reconstructed from σ1 and σ̃1 via σα = σ1+

σ1− and σ̃α = σ̃1+
α

σ̃1−
α

:

−1 =

(
x−

x+

)L
× Q++

2

Q−−2

× (σ2)2 × R−1 R
−
3

R+
1 R

+
3

×
B+

2̇,(−)
B+

2̇,(+)

B−
2̇,(−)

B−
2̇,(+)

× (σ̃2̇)2 ×
B−

1̇
B−

3̇

B+
1̇
B+

3̇

∣∣∣∣∣
u=u2,i

, i = 1, . . . ,K2. (4.53)

Finally, since the ABA equations (2.1) in the classical regime, h → ∞, L ∼ Kα → ∞
with fixed L ≡ L/h reproduce the classical limit (3.6)-(3.9) via condensation of roots into

cuts in the standard way [54], it follows that we also reproduce the classical limit from the

QSC, similarly to [2]. Thus we see that our QSC successfully reproduces all the data from

section 2.
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5 Discussion and outlook

The QSCs for AdS5 and AdS4 have a lot in common with one another – both are based

on QQ-relations dictated by the global symmetries and have similar additional analyt-

icity constraints. We use these general features to propose a QSC for string theory on

AdS3 × S3 × T 4 with RR charge and its CFT2 dual. However, in contrast to the higher-

dimensional QSCs, the assumption of square-root singularity near the branch points needs

to be dropped. While we reproduced successfully the ABA equations for massive modes,

we should still emphasise that, unlike in the previous cases [2, 14], we do not have the lux-

ury of TBA equations which can be used as a starting point to derive the QSC equations.

Instead, we use a bottom-up approach where we guess the QSC based on the symmetries

and analogy with previous cases, and then verify it in some limits.

On the important point of the order of the cuts, we notice that if we assume them

to be of the usual square-root type, unlike in previous cases, we get a further nontrivial

algebraic constraint (3.47) on the Q-functions in addition to the QQ-relations, resulting in

a too restrictive set of equations. So to some extent the absence of square-root behaviour

is dictated by symmetries.

To be fully confident in the self-consistency and completeness of equations proposed

here, we need to perform further tests beyond the matching with the ABA presented here.

For example, constructing the perturbative weak coupling solution at several loop orders

would be useful, which can be done with the methods of [6, 7]. The QSC should also

reproduce the protected spectrum of the theory [59], accounting for all-order wrapping

corrections not considered in the ABA analysis [62, 63]. Further, it would be interesting

to consider near-BPS limits where one can expect a non-trivial analytic solution at finite

coupling [3, 15]. Finally, one should try to solve the system numerically with high precision

like in [4]. Another potential way to test our equations would be to re-derive the TBA

equations for the massless modes [44, 51]. Note that at the moment we do not have any

evidence that the massless modes are contained in our QSC. However, the QSC structure is

usually very rigid and does not allow for much more freedom. One potential option would

be to relax the Q12|12 = Q1̇2̇|1̇2̇ = 1 or modify the gluing condition, but we cannot at this

stage exclude the possibility that neither of these options will be necessary and the QSC

presented here is already complete.

If these additional tests can be satisfactorily performed, one can hope that AdS3 would

become an ideal background for application of SoV program for correlators [18]. Further,

combining the AdS3 QSC spectral methods with Conformal Bootstrap [20] techniques could

provide a simpler testing ground for these ideas compared to the N = 4 SYM case.

Following these tests of our conjecture, it would be interesting to extend the AdS3

QSC construction to AdS3 × S3 × T 4 backgrounds supported by combinations of RR and

NSNS charges. The ABA for these theories is also known [31] and solutions to the crossing

equations have recently been found [64], which should provide a further testing ground for

the QSC analysis. String theory on AdS3×S3×S3×S1 is also expected to be integrable [32].

Finding the QSC for this model would be particularly interesting since the global symmetry

algebra is d(2, 1;α)2, for which the Q-system should exhibit novel features.
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It would be interesting to see whether similar techniques to the ones we have employed

here can be extended to the AdS2/CFT1 integrable system [65], which also features the

presence of massless modes and has an algebraic structure of a similar complexity. The

issue of long vs short representations, which is relevant in that case, is likely to represent

an additional novelty and a reason for adapting the method even further.
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A Rewriting the ABA equations

Notations. We introduce some useful notations for the ABA equations. First, using

the Zhukovsky map,

x(u) =
1

2h

(
u+
√
u− 2h

√
u+ 2h

)
, (A.1)

we reparametrise the roots in terms of u2,k, u1,k, u3,k, such that x±k ≡ x(u2,k± i
2), 1 ≤ k ≤

K2, y1,k ≡ x(u1,k), 1 ≤ k ≤ K1, y3,k ≡ x(u3,k), 1 ≤ k ≤ K3, and similarly for the other

wing introducing u2̇,k, u1̇,k, u3̇,k. We also accordingly rename Kᾱ ≡ Kα̇, α = 1, 2, 3, as

compared to the notations of section 2.1.
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It is convenient to introduce the generalised Baxter polynomials

Bα,(±)(u) ≡
Kα∏
j=1

√
h

x∓α,j
(

1

x(u)
− x∓α,j), α ∈

{
2, 2̇
}

(A.2)

Rα,(±)(u) ≡
Kα∏
j=1

√
h

x∓α,j
(x(u)− x∓α,j), α ∈

{
2, 2̇
}

(A.3)

Qα(u) =

Kα∏
j=1

(u− uα,j), α ∈
{

2, 2̇
}
, (A.4)

Bα(u) =

Kα∏
j=1

(
1

x(u)
− yα,j), α ∈

{
1, 3, 1̇, 3̇

}
(A.5)

Rα(u) =

Kα∏
j=1

(x(u)− yα,j), α ∈
{

1, 3, 1̇, 3̇
}
. (A.6)

Notice that Bα,(±)Rα,(±) ∝ Q±α , where the shift of a function of u is defined as g[±n](u) ≡
g(u+ in2 ), g± ≡ g[±1]. Through the Zhukovsky map, we also consider the dressing phase a

function of rapidities:

σ(u, v) ≡ exp
(
iχ(x+(u), x+(v))− iχ(x+(u), x−(v)) + iχ(x−(u), x−(v))− iχ(x−(u), x+(v))

)
,

(A.7)

and we introduce the notation:

σα(u) ≡
Kα∏
i=1

σ(u, uα,i), α = 2, 2̇, (A.8)

and the same conventions are taken for σ̃. We also use the same notation for the BES

dressing phase. We also introduce useful building blocks

σ1(u, v) ≡ exp
(
iχ(x(u), x+(v))− iχ(x(u), x−(v))

)
, (A.9)

and similarly for σ̃1, and σ1BES, and denote again the products over roots as

σ1
α(u) ≡

Kα∏
i=1

σ1(u, uα,i), (A.10)

with the analogous definitions made for σ̃1
α(u) and σ1,BES(u). We then have the relation

σα(u) =
σ1
α(u+ i

2)

σ1
α(u− i

2)
, (A.11)

and its generalisations. It will also be useful for some of our discussions to define σ1,extra
α (u),

σ̃1,extra
α (u) through

σ1
α(u) ≡ σ1,BES

α (u) σ1,extra
α (u), σ̃1

α(u) ≡ σ1,BES
α (u) σ̃1,extra

α (u). (A.12)
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Finally, for the reader’s convenience we collect the defining relations for the functions fα,

f̄α appearing in the large-volume solution of the QSC:

f++
α

fα
=
Bα,(−)

Bα,(+)
,

f̄α

f̄−−α
=
Bα,(−)

Bα,(+)
, (A.13)

where fα is assumed analytic in the upper half plane and f̄α in the lower half plane, and

both are free of poles everywhere. These functions are given explicitly (up to an arbitrary

multiplicative constant) by DHM-type integral representations similar to (4.14).

Compact rewriting of the ABA equations. With the notations above, the ABA

equations can be rewritten as

1 =
Q−2 B2,(+)B2̇,(+)

Q+
2 B2,(−)B2̇,(−)

∣∣∣∣∣
u=u1,i

, i = 1, . . . ,K1, (A.14)

−1 =

(
x[−]

x[+]

)L
× Q++

2

Q−−2

× (σ2)2 × R−1 R
−
3

R+
1 R

+
3

(A.15)

×
B+

2̇,(−)
B+

2̇,(+)

B−
2̇,(−)

B−
2̇,(+)

× (σ̃2̇)2 ×
B−

1̇
B−

3̇

B+
1̇
B+

3̇

∣∣∣∣∣
u=u2,i

, i = 1, . . . ,K2 (A.16)

1 =
Q−2 B2,(+)B2̇,(+)

Q+
2 B2,(−)B2̇,(−)

∣∣∣∣∣
u=u3,i

, i = 1, . . . ,K3 (A.17)

for the first wing, and

1 =
Q−

2̇
B2̇,(+)B2,(+)

Q+
2̇
B2̇,(−)B2,(−)

∣∣∣∣∣
u=u1̇,i

, i = 1, . . . ,K1̇, (A.18)

−1 =

(
x[−]

x[+]

)−L
×

Q++
2̇

Q−−
2̇

×

(
B−

2̇,(−)

B+
2̇,(+)

)2

(σ2̇)−2 ×
R−

1̇
R−

3̇

R+
1̇
R+

3̇

(A.19)

×
B−2,(−)B

+
2,(−)

B−2,(+)B
+
2,(+)

× (σ̃2)−2 × B−1 B
−
3

B+
1 B

+
3

∣∣∣∣∣
u=u2̇,i

, i = 1, . . . ,K2̇ (A.20)

1 =
Q−

2̇
B2̇,(+)B2,(+)

Q+
2̇
B2̇,(−)B2,(−)

∣∣∣∣∣
u=u3̇,i

, i = 1, . . . ,K3̇ (A.21)

for the second wing.

B Functional equations for the building blocks of dressing factors

In this section, we decompose the two types of dressing factors appearing in the ABA as

σ(u, v) = σBES(u, v)σextra(u, v) , σ̃(u, v) = σBES σ̃extra(u, v) , (B.1)
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and similarly

σ1(u, v) = σ1,BES(u, v)σ1,extra(u, v) , σ̃1(u, v) = σ1,BES σ̃1,extra(u, v), (B.2)

see section A for notation. The goal of this appendix is to establish the functional relations

σ1,extra(uγ , v) σ̃1,extra(u, v) =

√
R(+)(u, v)

R(−)(u, v)
, σ̃1,extra(uγ , v) σ1,extra(u, v) =

√
B(−)(u, v)

B(+)(u, v)
,

(B.3)

where in this appendix we denote

R(±)(u, v) =
x(u)− x∓(v)√

x∓(v)
, B(±)(u, v) = R(±)(u

γ , v) =

1
x(u) − x

∓(v)√
x∓(v)

. (B.4)

These relations are important for deriving the ABA from the QSC, as they imply the

crucial equation (4.44). In presenting their proof here, we will also deduce

σ1,extra(uγ
−1
, v) σ̃1,extra(u, v) =

√
R(−)(u, v)

R(+)(u, v)
, σ̃1,extra(uγ

−1
, v) σ1,extra(u, v) =

√
B(+)(u, v)

B(−)(u, v)
.

(B.5)

B.1 Direct derivation

We start by verifying these relations directly, based on the expressions for the dressing

phases of [37]. From the results of this paper we deduce

σ1,extra(x, x±2 ) = exp iΛLL(x, x±2 ), σ̃1,extra,RL(x, x±2 ) = exp iΛRL(x, x±2 ), (B.6)

where we have defined13

ΛLL(x, x±2 ) = −1

2
χHL(x, x+

2 ) +
1

2
χHL(x, x−2 ) +

1

2
χ−(x, x+

2 )− 1

2
χ−(x, x−2 ),

ΛRL(x, x±2 ) = −1

2
χHL(x, x+

2 ) +
1

2
χHL(x, x−2 )− 1

2
χ−(x, x+

2 ) +
1

2
χ−(x, x−2 ), (B.7)

and we have the integral representations

χHL(x, y) =
π

2

∮
dw

2πi

∮
dw′

2πi

sign(w′ + 1/w′ − w − 1/w)

(x− w)(y − w′)
,

χ−(x, y) =

(∫
C+

−
∫
C−

)
dw

8π

1

x− w
log
[
(y − w)

(
1− 1

yw

)]
− x↔ y, (B.8)

where the full circles run counterclockwise and the contours C± denote the upper (resp.,

lower) half semicircle in the complex w-plane, running counterclockwise.

We can write

t(x, x±2 ) ≡
(
σ1,extra

)2
(x, x±2 ) = exp

[
2iχextra(x, x+

2 )− 2iχextra(x, x−2 )
]
, (B.9)

13We use the notation χ− of [37], where the minus does not denote a shift in the spectral parameter but

is just a label.
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and the same for the other block denoted with tilde, where

χextra = −1

2

(
χHL − χ−

)
, χ̃extra = −1

2

(
χHL + χ−

)
, (B.10)

and χHL χ− are given by an explicit integral representation.

Equations (3.8) and (3.9) of [37] are consistent with

χHL + (χHL)γ
−1

=
i

2
log `HL, `HL(x, y) =

x− y
1− 1

xy

, (B.11)

while equations (3.14) and (3.15) in the same paper are consistent with

χ− − (χ−)γ
−1

=
i

2
log `−, `−(x, y) = (x− y)(1− 1

xy
). (B.12)

Therefore, we can assemble

(σ1,extra)γ
−1
σ̃1,extra = exp

1

4
log

`HL(x, x+
2 )`−(x, x+

2 )

`HL(x, x−2 )`−(x, x−2 )
=
(x−2
x+

2

) 1
4

√
(x− x+

2 )

(x− x−2 )
. (B.13)

Recalling the definition of the function R(±), we can reproduce the first equation in (B.5).

Likewise, we can compute

(σ̃1,extra)γ
−1
σ1,extra = exp

1

4
log

`HL(x, x+
2 )`−(x, x−2 )

`HL(x, x−2 )`−(x, x+
2 )

=
(x+

2

x−2

) 1
4

√
1
x − x

−
2

1
x − x

+
2

, (B.14)

which reproduces the second equation in (B.5) if we recall the definition of the function

B(±). The other relations in (B.26) also follow: since the cut is of logarithmic type, we get

the reciprocal results on the r.h.s. if we cross it in the other direction.

B.2 Functional argument

Here we establish the same relations starting from the crossing equation, and assuming

certain minimality requirements on its solution. The crossing equation can be decomposed

into the crossing satisfied by the BES part,

σBES(uγcross
1 , u2)σBES(u1, u2) =

x−2
x+

2

x−1 − x
+
2

x−1 − x
−
2

1− 1
x+

1 x
+
2

1− 1
x+

1 x
−
2

, (B.15)

and the crossing relations for the extra pieces:

σextra(uγcross
1 , u2)2 σ̃extra(u1, u2)2 =

(x+
1 − x

+
2 )(x−1 − x

−
2 )

(x−1 − x
+
2 )(x+

1 − x
−
2 )
, (B.16)

σextra(u1, u2)2 σ̃extra(uγcross1 , u2)2 =

(
1− 1

x+
1 x
−
2

)(
1− 1

x−1 x
+
2

)
(

1− 1
x+

1 x
+
2

)(
1− 1

x−1 x
−
2

) . (B.17)

The path γcross is depicted in figure 5, and it can be decomposed as the concatenation of

the path γ+, entering the lower cut, followed by γ− which enters the upper cut. Notice
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Figure 5. The analytic continuation path used in the crossing relation. It crosses the cuts of the

dressing factors at (−2h, 2h)± i
2 , and can be decomposed into γ+ and γ−, which cross only one cut

each.

that in our notations, different from some of the literature, both γ± cross one cut from

below.

We now follow a similar route to the one described in [47], and disentangle the path

γcross to derive a simpler equation for a natural building block of the solution to the crossing

constraints. We will assume that, for the minimal solution, the crossing path is equivalent to

the one obtained by concatenating γ− and γ+ in opposite order, γcross ' γ+ · γ− ' γ− · γ+.

Under this assumption, analytically continuing along the inverse path γ−1
+ the crossing

relations (B.16),(B.17), we get:

s(u
γ−
1 , u2)ŝ(u

γ−1
+

1 , u2) =
R+

(−)B
−
(+)

R+
(+)B

−
(−)

≡ A, (B.18)

ŝ(u
γ−
1 , u2)s(u

γ−1
+

1 , u2) =
R−(−)B

+
(+)

R−(+)B
+
(−)

≡ C, (B.19)

while continuing the same variable along γ−1
− , we get:

s(u
γ+

1 , u2)ŝ(u
γ−1
−

1 , u2) =
B+

(−)R
−
(+)

B+
(+)R

−
(−)

≡ B, (B.20)

ŝ(u
γ+

1 , u2)s(u
γ−1
−

1 , u2) =
B−(−)R

+
(+)

B−(+)R
+
(−)

≡ D, (B.21)

where for simplicity of the next expressions, we denoted s(u1, u2) ≡ σextra(u1, u2)2, s̃(u1, u2) ≡
σ̃extra(u1, u2)2.

From now on, we omit the second variable, since it is simply a spectator in all these

functional relations, and use the notation g[n], described in the main text, to shift the first

variable of various functions. We proceed by making the ansatz

s ≡ t+

t−
, s̃ ≡ t̃+

t̃−
, (B.22)

where t, t̃ are assumed to be functions with a single cut (−2h, 2h). The relations between

these blocks and the ones introduced above is simply t ∝ (σ1,extra)2, t̃ ∝ (σ̃1,extra)2.
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Now we notice that,(
t+

t−

)γ−
=

(tγ
−1

)+

t−
,

(
t+

t−

)γ+

=
t+

(tγ−1)−
, (B.23)

and there are similar relations if we do analytic continuations along the inverse paths γ−1
± ,

which are simply obtained by replacing γ−1 → γ on the r.h.s. Taking the product of

(B.18),(B.20), we arrive at

(
(t)γ

−1
t̃ t (t̃)γ

)D̂−D̂−1

= AB =

(
R(−)B(−)

R(+)B(+)

)D̂−D̂−1

, (B.24)

where D̂ ≡ i
2∂u, so that in this notation gnD̂ ≡ g[n]. Since we look for the minimal solution

to crossing, we take the simplest solution to the previous functional relation:

(t)γ
−1
t̃ t (t̃)γ =

R(−)B(−)

R(+)B(+)
. (B.25)

Similarly, considering the ratio of the same two equations, and assuming the minimal

solution, we obtain (
(t)γ

−1
t̃
)
/
(
t (t̃)γ

)
=
R(−)B(+)

R(+)B(−)
, (B.26)

and finally from (B.25),(B.26) we read:

(t)γ
−1
t̃ =

R(−)

R(+)
, t (t̃)γ =

B(−)

B(+)
. (B.27)

By the same arguments from the remaining two equations we extract:

(t)γ t̃ =
R(+)

R(−)
, (t) (t̃)γ

−1
=
B(+)

B(−)
. (B.28)

Taking into account that, in the notations of the main text, t ≡ (σ1,extra)2, t̃ ≡ (σ̃1,extra)2,

we have therefore deduced the relations (B.3), (B.5).

C Baxter equations

Baxter equations for Q and P functions. The obvious identities

Q++
k εijQ−−i Qj −Qkε

ijQ−−i Q++
j + Q−−k εijQiQ

++
j = 0 , k = 1, 2, (C.1)

can be recast as the Baxter equations

Q++
k D−1 −QkD2 + Q−−k D+

1 = 0 , k = 1, 2, (C.2)

where the coefficients can also be rewritten in terms of P functions using the QQ relations:

D1 ≡ εijQ−i Q+
j = εabP

a−Pb+ (C.3)

D2 ≡ εijQ−−i Q++
j = εabP

a−−Pb++ −PcP
c−−εabP

aPb++ (C.4)

= εabP
a−−Pb++ −PcP

c++εabP
aPb−−
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(the last equality follows from PaP
a = 0). These equations, supplemented by the large-u

asymptotics, give a way to compute the Q functions starting from the knowledge of the P

functions.

There are also equations of the same form, obtained by replacing P↔ Q, which may

be used to compute the P functions starting from the Q’s.

Finite difference relations for Qa|i. We close this appendix by noticing that also

the middle node Q-functions can be defined as the solutions of a system of finite-difference

equations, which are simply obtained from the Q-system.

One such system of relations is

Q+
a|i −Q

−
a|i = PaP

bQ+
b|i. (C.5)

These relations can be used to construct Qa|i from the knowledge of the P functions. The

solution is specified by requiring the appropriate asymptotic behaviour, and the region of

analyticity. Solutions analytic in the upper half plane are denoted as Q↓a|i. The solutions

analytic in the lower half plane form an alternative basis of solutions, denoted by Q↑a|i. The

numerical method to compute Q↓a|i and Q↑a|i in terms of the P functions is described in [4].

The two bases of solutions of the same finite-difference equations are related by an

i-periodic matrix

Q↑+a|i = Ω j
i Q

↓+
a|j , Qa|i↑+ = Ωi

jQ
a|j↓+, (C.6)

which imply

Ω l
k = Q↑+a|kQ

a|l↓+, Ωk
l = Qa|k↑+Q↓+a|l . (C.7)

Multiplying the first equation in (C.6) by Pa on the left, we see immediately that Ω is the

same matrix relating Q↑ and Q↓ in (3.22). Similarly, the second equation show that

Qi↑ = Ωi
jQ

j↓. (C.8)

Since Qa|i has unit determinant and Qa|iQ
a|j = δji , from (C.7) we see immediately that Ω

has unit determinant as well, and

Ωi
jΩ

j
k = δik. (C.9)

Finally, another useful form of (C.5) is

Q+
a|i −Q

−
a|i = QiQ

jQ+
a|j , (C.10)

which can be used to determine Qa|i from the knowledge of the Q functions.
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AdS3 × S3 × T 4 strings with Ramond-Ramond flux, J. Phys. A 49 (2016) 41LT03

[1605.00518].

[39] N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech.

0701 (2007) P01021 [hep-th/0610251].

[40] M. Beccaria, F. Levkovich-Maslyuk, G. Macorini and A. A. Tseytlin, Quantum corrections to

spinning superstrings in AdS3 × S3 ×M4: determining the dressing phase, JHEP 04 (2013)

006 [1211.6090].

[41] O. Ohlsson Sax and B. Stefański, jr., On the singularities of the RR AdS3 × S3 × T 4 S

matrix, J. Phys. A 53 (2020) 155402 [1912.04320].

– 40 –

https://doi.org/10.1007/JHEP08(2011)029
https://arxiv.org/abs/1106.2558
https://doi.org/10.1007/JHEP11(2012)133
https://arxiv.org/abs/1209.4049
https://doi.org/10.1088/1126-6708/2008/07/033
https://arxiv.org/abs/0804.3267
https://doi.org/10.1007/JHEP10(2010)112
https://arxiv.org/abs/1005.0501
https://doi.org/10.1007/JHEP04(2013)113
https://arxiv.org/abs/1211.5119
https://doi.org/10.1007/JHEP08(2013)043
https://arxiv.org/abs/1303.5995
https://doi.org/10.1103/PhysRevLett.113.131601
https://arxiv.org/abs/1403.4543
https://doi.org/10.1007/JHEP10(2014)066
https://arxiv.org/abs/1406.0453
https://doi.org/10.1016/j.nuclphysb.2014.12.019
https://doi.org/10.1016/j.nuclphysb.2014.12.019
https://arxiv.org/abs/1410.0866
https://doi.org/10.1088/1751-8113/48/41/415401
https://arxiv.org/abs/1506.00218
https://doi.org/10.4310/ATMP.2008.v12.n5.a1
https://arxiv.org/abs/hep-th/0511082
https://doi.org/10.1103/PhysRevD.73.086006
https://doi.org/10.1103/PhysRevD.73.086006
https://arxiv.org/abs/hep-th/0603038
https://doi.org/10.1088/1126-6708/2006/11/021
https://arxiv.org/abs/hep-th/0608029
https://doi.org/10.1103/PhysRevD.74.066008
https://arxiv.org/abs/hep-th/0608038
https://doi.org/10.1103/PhysRevD.88.066004
https://arxiv.org/abs/1306.2512
https://doi.org/10.1088/1751-8113/49/41/41LT03
https://arxiv.org/abs/1605.00518
https://doi.org/10.1088/1742-5468/2007/01/P01021
https://doi.org/10.1088/1742-5468/2007/01/P01021
https://arxiv.org/abs/hep-th/0610251
https://doi.org/10.1007/JHEP04(2013)006
https://doi.org/10.1007/JHEP04(2013)006
https://arxiv.org/abs/1211.6090
https://doi.org/10.1088/1751-8121/ab7c1c
https://arxiv.org/abs/1912.04320


[42] N. Dorey, D. M. Hofman and J. M. Maldacena, On the Singularities of the Magnon S-matrix,

Phys. Rev. D 76 (2007) 025011 [hep-th/0703104].

[43] A. Fontanella and A. Torrielli, Geometry of Massless Scattering in Integrable Superstring,

JHEP 06 (2019) 116 [1903.10759].
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