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ABSTRACT 10 

The governing equations of motion for bridges with rocking piers of unequal height and unequal span lengths 11 

are derived accounting for the effect of end joint gaps and the abutment-backfill system. The attenuation of the rocking 12 

motion stems from the impacts at the rocking interfaces, described through the coefficient of restitution, and also from 13 

the impacts (pounding) of the superstructure on the abutment backwalls. This is the first study that combines both 14 

energy dissipation sources in the analytical derivation of the equations of motion. The results of response-history 15 

analysis of bridges with different levels of asymmetry in their pier height show that the performance of both the 16 

symmetric and asymmetric configurations is very similar with regard to longitudinal displacements. Although the 17 

studied bridges safely resisted ground motions with an intensity about twice that of the design earthquake, regardless 18 

of the degree of asymmetry, it was found that the higher the difference in the pier height, the larger is the rotation of 19 

the superstructure due to the differential uplift of the piers, a point that has to be addressed in seismic design for 20 

rocking response. 21 
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INTRODUCTION 24 

The seismic response of structures with rocking piers is characterized by a sequence of self-centering rigid body 25 

rotations that are combined with dissipative impacts each time the structure returns to the original position of 26 

equilibrium, and it continues until the total energy is dissipated through these impacts; this system is characterized by 27 

a highly nonlinear behavior. The first systematic study on the topic was published by Housner (1963) who developed 28 

a simple analytical two-dimensional (2D) model that has been extensively validated (Bachmann et al. 2018, Thomaidis 29 

et al. 2018 and Ceh et al. 2018). Thereafter, a number of studies have addressed the dynamic response of rocking 30 

columns and established the high stability of this simple configuration (see i.a. Makris and Roussos 2000, Makris and 31 

Zhang 2001, Dimitrakopoulos and DeJong 2012, Vassiliou and Makris 2012, Acikgoz and DeJong 2014, Vassiliou 32 

and Makris 2015, Makris and Kampas 2016, Thiers-Moggia and Malaga-Chuquitaype 2018).  33 

Other authors studied the seismic response of frames wherein the columns have the same section (both in 34 

elevation and cross-section) and height, as is common in ancient monuments (see i.a. Psycharis et al. 2000, Drosos 35 

and Anastasopoulos 2014). Makris and Vassiliou (2013) developed the Equation of Motion (EoM) of a beam 36 

supported on an infinite number of equal-height columns (symmetric or regular configuration), as well as the energy 37 

dissipation at the impacts at the rocking interfaces using the concept of the Coefficient of Restitution (CoR). However, 38 

real bridges usually have piers of different heights to accommodate the topography of the site. To account for this, 39 

DeJong and Dimitrakopoulos (2014) and Dimitrakopoulos and Giouvanidis (2015) studied the dynamics of a frame 40 

supported on two rocking columns with same section but different height (asymmetric or irregular configuration). In 41 

both studies the concept of CoR was utilized for the impact at the rocking interfaces. These works do not address the 42 

effect of the abutment-backfill system, which was found to be significant in the rocking response of symmetric bridges 43 

by Thomaidis et al. (2020a) due not only to the longitudinal constraint to the deck movement, but also to the vertical 44 

impacts between the deck and the abutment seats. Different failure modes were observed in the response of rocking 45 

bridges when the effects of the abutment-backfill are considered, but to the authors’ knowledge this has not been 46 

considered in analytical studies of bridges with unequal pier heights. Developing the EoM and exploring the seismic 47 

response of asymmetric/irregular rocking bridges is the aim of the present study.  48 

The dynamics of asymmetric bridges with two rocking piers of different height are studied here by extending 49 

the analytical models of Dimitrakopoulos and Giouvanidis (2015) and Thomaidis et al. (2020a) to account for the 50 

abutment-backfill (not included in the former study) and the pier asymmetry (not addressed in the latter). The EoM 51 
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accounts for the difference in the spans, the presence of end joints, and the longitudinal and vertical effects of the deck 52 

support at the abutment seats. The CoR in this general case is derived following the ‘classical’ impulse formulation 53 

but incorporating a new inherent energy dissipation mechanism to describe the impact of the superstructure on the 54 

abutment backwall by means of an additional CoR. The proposed formulation is used to analyze the response of 55 

asymmetric rocking bridges subject to high intensity ground motions, and it assesses their seismic behaviour with a 56 

view to establishing the effect of asymmetry in rocking bridges.  57 

ANALYTICAL MODEL OF THE ROCKING RESPONSE OF ASYMMETRIC 58 

BRIDGES 59 

This section presents an analytical model to describe the longitudinal rocking motion of straight bridges 60 

supported by two piers with the same section and different heights, and by seat-type abutments, accounting not only 61 

for the vertical support at the abutment seat, but also for the activation of the abutment-backfill system when the end 62 

gap closes. Fig. 1 illustrates the general bridge configuration at the at-rest position, subject to a horizontal ground 63 

acceleration history üg. The deck consists of a continuous box girder section with depth 2h, cross-sectional area Adeck 64 

and total length Ltot = 2L1 + L2, with L1 and L2 being the side and central spans, respectively. The deck is free to move 65 

longitudinally until the joint gap between one of its ends and the abutment is closed (ujo). At this instant, an impact on 66 

the abutment backwall with height hbw occurs. The superstructure is supported on frictionless sliding bearings at the 67 

abutment seats E and E′ that can accommodate the up-and-down (cyclic vertical) motion of the superstructure; this 68 

selection is conservative in the context of a performance assessment considering that the superstructure is not 69 

restrained and, therefore, the prevailing failure mode of the abutment-backfill system (see discussion below) can be 70 

activated more easily. The two free-standing rocking piers have a width 2B and unequal heights 2H1 and 2H2 for the 71 

tall and short pier, respectively. The semi-diagonals of the piers are given by R1 = √H1
2 + B2 and R2 = √H2

2 + B2, 72 

while the slenderness parameters are α1 = tan-1(B/H1) and α2 = tan-1(B/H2), respectively. Special grooved caps are 73 

introduced at the bottom and the top surfaces of both piers to allow free rocking on the base (pivot points A′-A for the 74 

tall pier and C′-C for the short pier) and the deck interfaces (pivot points B-B′ and D-D′). Two additional parameters 75 

are used in the analytical formulation of the asymmetric bridge rocking motion, namely the distance between the pivot 76 

points of the piers at the foundation level 2rAC = �(2H1 −  2H2)2 + L2
2, and the angle between this line and the 77 

horizontal φAC = tan-1((2H1 − 2H2)/L2).  78 
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 79 
Fig. 1. Schematic of an asymmetric bridge (at the at-rest position) supported on two rectangular-in-elevation free-80 

standing rocking piers, and frictionless sliding bearings at the abutment seats. 81 

The following assumptions are adopted to formulate the rocking motion of the asymmetric bridge structure: 82 

• The rocking motion is constrained within the plane of the bridge, thus ignoring three-dimensional (3D) 83 

rocking response (Chatzis and Smyth 2012a, Vassiliou 2017).  84 

• The deformability of all structural members is ignored (rigid body dynamics), without a significant loss of 85 

accuracy, as shown i.a. by Agalianos et al. (2017) and Thomaidis et al. (2020b).  86 

• The piers are designed to rock freely on the foundation (pivots A′-A and C′-C) and the deck interfaces (pivots 87 

B-B′ and D-D′), without sliding at the initiation of movement, as shown for free-standing rocking columns 88 

by Taniguchi (2002), and throughout the entire motion. This can be achieved by means of grooves provided 89 

on the top surface of the foundation and at the soffit of the deck, and it prevents slide-rock movement 90 

(Taniguchi 2002, and Jeong et al. 2003). 91 

Fig. 2A, B illustrate the rocking motion of the asymmetric bridge for counter-clockwise (positive, superscript p) 92 

and clockwise (negative, superscript n) rotations, respectively. The effect of the abutment and the backfill at each end 93 

of the bridge is modelled with a Kelvin-Voigt system (spring (k) and dashpot (c) elements in parallel).  94 

Despite the apparent complexity of the  longitudinal rocking motion, it can be described by a single Degree of 95 

Freedom (DoF). This is selected as the angle φ formed between the horizontal axis (X) and the diagonal of the tall 96 

pier (starting from the pivot point at its base). Consequently, the relative rocking rotation of the tall pier (θ1) is given 97 

by the following expression 98 

 /
1 1

p nθ φ φ= − ,                      (1) 99 
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where φ1
 p/n  = π 2⁄ ∓ α1 represents the angle of the tall pier diagonal with respect to the horizontal at the at-rest 100 

position. It is noted that the diagonal that is required for determining φ1
 p and φ1

 n is different depending on the direction 101 

of the movement and, therefore, it is determined in each case by the pivot points that drive the rocking motion of the 102 

tall pier, as shown in Fig. 2. This is described mathematically by means of the double sign operator  ‘∓’, with the top 103 

sign referring to positive relative rotation of the piers and vice-versa for the bottom one.  104 

 105 

   106 
Fig. 2. Schematic of an asymmetric bridge with rocking piers during rocking motion. The structure sustains (A) 107 

counter-clockwise (positive) rotation of the piers, and (B) clockwise (negative) rotation of the piers. 108 

Similarly, the rocking rotation of the short pier is θ2 = φCD − φ2
 p/n, where φ2

 p/n = π 2⁄ ∓ α2 is the angle of this 109 

pier at the at-rest rotation. With this notation the dependent variable φCD is a function of the geometrical properties of 110 

the rocking configuration  111 

 
2 2 2

1 11 2 2

1 2

sin sin 4π tan cos
cos cos 4

AC AC
CD

AC AC

R φ r φ BC R Lφ
R φ r φ R BC

− −   − + −
= + −   −   

,               (2) 112 

(A) 

(B) 
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where BC = �(2R1)2 + (2rAC)2 − 8R1 · rAC · cos(φ− φAC) is the distance from point B to point C (or from B′ to C′), as 113 

shown in Fig. 2. Due to the unequal height of the piers, the deck is forced to have a translational movement in the 114 

longitudinal and vertical directions (along the X and Z axes, respectively) that occurs simultaneously with its rotational 115 

movement (about the Y axis). The rocking rotation of the deck is 116 

 1 1 2

1 2

sin sin sintan
cos cos cos

AC AC CD
deck

AC AC CD

R φ r φ R φθ
R φ r φ R φ

−  − + +
=  − + + 

.                 (3) 117 

The longitudinal (u) and the vertical (v) relative displacements of the Centre of Gravity (CG) of the tall and the 118 

short piers are expressed in terms of the DoF φ as 119 

 ,1 1 cosCG
pieru R φ B=               and          ,1 1 1sinCG

pierv R φ H= − ,                (4) 120 

 ,2 2 cosCG
pier CDu R φ B=          and          ,2 2 2sinCG

pier CDv R φ H= − ,                (5) 121 

and the corresponding displacements of the CG of the deck are  122 

 ( )/ / 2
12 cos cos

2
p n p nCG

deck deckBD BD
Lu R φ r θ ψ B= + + −             and 123 

 ( )/ /
1 12 sin sin 2p n p nCG

deck deckBD BDv R φ r θ ψ H h= + + − − ,                              (6) 124 

wherein, as shown in Fig. 2, rBD
 p/n = �h2 + ( L2 2⁄ ∓ B)2 is the length of the segment that connects the upper pivot of 125 

the tall pier (B′ or B) with the CG of the deck, and ψBD
 p/n = tan-1(h/( L2 2⁄ ∓ B)) represents its angle with respect to X. 126 

The convention for positive displacements is shown in Fig. 2. 127 

During the free rocking motion of the system, the translational masses of the tall pier (mpier,1 = 8ρ · B2 · H1), of 128 

the short pier (mpier,2 = 8ρ · B2 · H2) and of the deck (mdeck = 2ρ · Adeck · Ltot) tend to restore the bridge to the at-rest 129 

position. Additionally, the rotational masses of all members with respect to the Y axis resist the induced rotational 130 

movement according to their corresponding rotational inertias I pier,1
CG , I pier,2

CG  and I deck
CG . 131 

Initiation of Rocking Motion 132 

The principle of virtual works is applied to the asymmetric bridge at the onset of rocking under a lateral ground 133 

acceleration üg,min that is the minimum value capable of inducing uplift in the system 134 
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 ,1 ,min ,1 ,2 ,min ,2 ,min

,1 ,1 ,2 ,2g g g

CG CG CG
pier g pier pier g pier deck g deck

CG CG CG
pier pier pier pier deck deck

m u δu m u δu m u δu

m δv m δv m δv

+ + =

+ +

  
,              (7) 135 

where δupier,1
CG , δvpier,1

CG , δupier,2
CG , δvpier,2

CG , δudeck
CG  and δvdeck

CG  are the partial derivatives of Eqs. (4) to (6) with respect to the 136 

DoF of the system, φ. Substituting the relative rotations of the piers (θ1 and θ2) into Eq. (7) and by taking into account 137 

that the rocking motion initiated at this instant, hence θ1 = θ2 = θdeck = 0, Eq. (7) is simplified to 138 

 
( )

( )
,1 ,2

,min 1 1

,1 ,2
1

1 2 1
g tan g tan

2 1 1

pier pier deck
g

pier pier deck

m m h m h b h
u λ α α

bhm m m h
H

 + + + − ± = ± = ±
 

+ + ± + 
 






,           (8) 139 

where h� = H1 H2⁄  is a ratio relating to the level of asymmetry in the height of the piers, and b� = B L2⁄ . Unlike 140 

in the case of symmetric bridges, Eq. (8) shows that for asymmetric bridges the initiation of rocking occurs for different 141 

values of the ground acceleration  üg,min depending on the direction of motion, while the constant λ is influenced by 142 

the geometrical characteristics of the system; it is noted that the latter was found equal to 1 for regular configurations 143 

independently of the geometry of the system (Thomaidis et al. 2020a). In order to explore the effect of asymmetry 144 

through the parameter λ in the value of üg,min, Fig. 3 compares the values of üg,min obtained using Eq. (8) for different 145 

levels of the pier asymmetry. The bridge considered in the analysis has length Ltot = 2L1 + L2 = 2·38 + 60 = 136 m, 146 

and the superstructure consists of a simplified single-cell box girder with depth 2h = 1.7 m, and cross-sectional area 147 

Adeck = 6 m2. The bridge has square piers with width 2B = 2.6 m, height of the tall pier 2H1 = 26 m and a height of 148 

the short pier 2H2 that ranges from 4 m (h� = 6.4) to 26 m (h� = 1) to evaluate the influence of the asymmetry on üg,min. 149 

The results show that the higher the asymmetry in the height of the rocking piers, the stronger the ground motion 150 

should be to initiate rocking motion; the minimum ground acceleration that triggers rocking in the bridge with piers 151 

of very unequal height (h� = 6.4, üg,min = 0.35g) is 3.5 times larger than the ground acceleration limit for the same 152 

bridge with piers of equal height (h� = 1, üg,min = 0.10g). We note that the value of λ in Eq. (8) is always greater than 153 

1, and the results included in Fig. 3 indicate that it increases with h�, particularly for asymmetric bridges with h� > 2. 154 

This indicates that designers could potentially delay the initiation or rocking, or even prevent it for moderate 155 

earthquakes below certain intensity, if it is possible to reduce the height of the shortest pier while keep the tallest 156 

unchanged. Further studies in this direction are recommended in order to propose design recommendations.  157 
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 158 

Fig. 3. Minimum ground acceleration to initiate rocking motion (üg,min) for bridges with rocking piers of different 159 
degree of asymmetry, accounting for the influence of the short pier height (H2). Results obtained for 160 
constant deck mass and cross-section in the tall pier. 161 

It should be noted that Eq. (8) reduces to the rocking initiation acceleration for symmetric bridges given by 162 

Thomaidis et al. (2020a) when h� = 1. Moreover, the value of üg,min in asymmetric rocking bridges is identical to that 163 

reported by Dimitrakopoulos and Giouvanidis (2015) for asymmetric frames, because the longitudinal and vertical 164 

rocking effects at the abutment (neglected in rocking frame models) only appear after rocking starts when the 165 

superstructure contacts the abutment backwall and impacts at the abutment seats, respectively (Thomaidis et al. 166 

2020a). 167 

Equation of Motion during Rocking 168 

Considering that the ground motion is strong enough to initiate rocking of the bridge in Fig. 1 (i.e., max(|üg|) >169 

|üg,min|), its response can be described by the energy balance using Lagrange’s equation 170 

 
d T T V Q
dt φ φ φ
 ∂ ∂ ∂

− + = ∂ ∂ ∂ & , (9) 171 

where T, V and Q are the kinetic energy, the potential energy and the effect of the non-conservative forces, 172 

respectively. The kinetic energy of the system with respect to the corresponding CG of the members is 173 

 

2 2 2 2 2
,1 ,1 ,1 ,1 ,2 ,2 ,2

2 2 2 2
,2

1 1 1
2 2 2

1 1 1
2 2 2

CG CG CG CG CG
pier pier pier pier pier pier pier

CG CG CG CG
pier CD deck deck deck deck deck

T m u v I φ m u v

I φ m u v I θ

   = + + + +   

 + + + + 

    

  
,            (10) 174 

where u̇pier,1
CG , v̇pier,1

CG , u̇pier,2
CG , v̇pier,2

CG , �̇�𝑢deck
CG  and v̇deck

CG  are the first time-derivatives of Eqs. (4) to (6), respectively, while the 175 

angular velocities of the short pier (φ̇CD = θ2̇) and the deck (θ ̇deck) are 176 

0.0

0.1

0.2

0.3

0.4

2 4 6 8 10 12

üg,min

g
 [-] 

H2 [m] 
Highly asymmetric 

h� = 6.4 
Symmetric 

h� = 1 
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 CD CD CD
CD

dφ φ φdφφ φ
dt φ dt φ

∂ ∂
= = =

∂ ∂
  ,                 (11) 177 

 deck deck deck
deck

dθ θ θdφθ φ
dt φ dt φ

∂ ∂
= = =

∂ ∂
  .                (12) 178 

By introducing Eqs. (11) and (12) into Eq. (10), the total kinetic energy of the system with respect to the active 179 

pivot point (as explained below) of each member is 180 

 

( )

2 2

,1 ,2
2

/ /2
1 1

1 1 1
2 2 2

2 2 cos

Pivot Pivot PivotCD deck
pier pier deck

p n p n deck
deck deckBD BD

φ θI I I
φ φ

T φ
θm R R r φ θ ψ

φ

    ∂ ∂ + +   ∂ ∂    =  
 ∂ + + − −  ∂  

 ,            (13) 181 

wherein I pier,i
Pivot = 4 mpier,i · Ri

2 3⁄  is the mass moment of inertia of the i-th pier with respect to one of its bottom corners 182 

(pivot point) that drive the rocking motion, with i = 1,2; I deck
Pivot = I deck

CG  + mdeck · rBD
 p/n 2 is the mass moment of inertia of 183 

the deck with respect to the active pivot points at the deck-pier contacts.  184 

The potential energy components that describe the gravity effects (Vin) and the elastic spring forces at the 185 

abutments (Vas) are 186 

 ,1 ,1 ,2 ,2g CG CG CG
in pier pier pier pier deck deckV m v m v m v = + +  ,               (14) 187 

 2

0
1
2

as CG
deck jo

V
k u u

 
 =   ±   

               if                              
CG
deck jo

CG
deck jo

u u

u u

<

≥
.             (15) 188 

The total potential energy of the free-standing asymmetric system is V =  Vin + Vas. It can be obtained by 189 

introducing Eqs. (4) to (6) in Eqs. (14) and (15), but it is not included here, for economy of space.  190 

The total effect of the generalized forces is Q = Qin + Qad , with Qin = ∂Win ∂φ⁄  and Qad = ∂Wad ∂φ⁄  given by 191 

the variation of the virtual work δWin = −üg · [mpier,1 · upier,1
CG + mpier,2 · upier,2

CG + mdeck · udeck
CG ] and δWad = −c · u̇deck

CG ·192 

[udeck
CG ± ujo], respectively. Substituting Eqs. (4) to (6) and the first time-derivative of Eq. (6) in the expressions of the 193 

generalized forces  194 
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( )

( )

,1 1 ,2 2

/ /

2 sin sin

sin

CD
pier deck pier CD

in g
p n p n deck

deck deckBD BD

φm m R φ m R φ
φ

Q u
θm r θ ψ

φ

∂ + + ∂ =
∂ + + ∂ 

 ,             (16) 195 

 ( )
2

/2 /
14 sin sin p np n deck

ad deck BD
θQ cR φ r θ ψ φ

φ
 ∂

= − + + ∂ 
 ,              (17) 196 

in which r̅ p/n = rBD
 p/n 2R1⁄ . 197 

Introducing Eqs. (13) - (17) into Eq. (9) yields the EoM for the asymmetric rocking bridge  198 

 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

2 21

1 1 11

1 11

g
g g

g

gf inf inf

f f f

asf adf

f f

uT φ V φ Q φRφ φT φ T φ T φR

V φ Q φ
q k c φT φ T φR

frame system

abutment backfill contribution

      
= − − + −      

      

    
− +    

    

−




 







,           (18) 199 

where 200 

 201 

( ) ( )
2 2

,1 ,2 //
1 2 2 2

1 1 1
4 8 cos

Pivot Pivot Pivot
pier pier p np nCD deck deck deck

f deck deck BD
I I φ θ I θT φ m r φ θ ψ

φ φ φR R R
     ∂ ∂ ∂

= + + + − − +    ∂ ∂ ∂     
  202 

 

( )
( )

( )

2
/

22
,2 /

2 2 2
1 /

2

2 2
1

cos
4

sin 1

p n deck
deck BDPivot

pier p nCD CD
f deck

p n deck deck
deck BD

Pivot
deck deck deck

θφ θ ψ
I φφ φT φ m r

φR φ θ θφ θ ψ
φ φ

I θ θ
φR φ

 ∂
− − ∂∂ ∂  = +  ∂ ∂  ∂ ∂

 − − − − ∂ ∂   
∂ ∂

+
∂ ∂

  203 

 ( ) ( )//
,1 ,22 cos cos 2 cos p np nCD deck

inf pier deck pier CD deck deck BD
φ θV φ m m φ m R φ m r θ ψ

φ φ
∂ ∂ = + + + +  ∂ ∂

  204 

 ( ) ( )//
,1 ,22 sin sin 2 sin p np nCD deck

inf pier deck pier CD deck deck BD
φ θQ φ m m φ m R φ m r θ ψ

φ φ
∂ ∂ = + + + +  ∂ ∂

  205 
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 ( )
( )//
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1 1 1

cos cos
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asf pier pier deck jo

φ r θ ψ
V φ m m m uLB

R R R
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 

 = + +   
± + 
  


  206 

 ( )//sin sin p np n deck
deck BD

θφ r θ ψ
φ

 ∂
+ + ∂ 

  207 

 ( ) ( )//
,1 ,2 3 sin sin p np n deck

adf pier pier deck deck BD
θQ φ m m m φ r θ ψ

φ
 ∂ = + + + +   ∂ 

 , 208 

and R� = R2 R1⁄ .  The EoM described in Eq. (18) is composed of two parts; the first one (‘frame system’) describes the 209 

motion before the deck contacts the abutments in the longitudinal direction (|udeck
CG | < ujo), whilst the second term 210 

(‘abutment-backfill contribution’) is only active when the deck contacts the abutments longitudinally (|udeck
CG | ≥ ujo), 211 

and it describes the constraint of the rocking motion of the frame due to the presence of the abutment-backfill system. 212 

This second term has a significant effect on the seismic response of asymmetric rocking bridges, as shown below. If 213 

there is no contact between the superstructure and the abutments at the ends of the deck (|udeck
CG | < ujo), the spring 214 

stiffness (k) and the dashpot coefficient (c) of the end supports are neglected and the EoM reduces to that of an 215 

asymmetric frame without end restraints as presented by Dimitrakopoulos and Giouvanidis (2015). Moreover, Eq. 216 

(18) coincides with the corresponding EoM for symmetric bridges presented by Thomaidis et al. (2020a) for the case 217 

of two rocking piers with same height (h� = 1 and mpier,1 = mpier,2). In this context, the proposed EoM is a generalization 218 

of the aforementioned works. 219 

The effect of the abutment-backfill system on the longitudinal rocking response is directly linked to the 220 

parameter q = 4R1 g · [mpier,1 + mpier,2 + 3mdeck]⁄ , and it is beneficial as q > 1. In order to explore this effect, we 221 

consider a typical bridge with square piers of dimension 2B = 2.6 m and height of the tall pier 2H1 = 26 m, thus 222 

resulting in mpier,1 = 44·104 kg, and a deck mass mdeck = 200·104 kg. Fig. 4 plots the value of q with respect to the 223 

mass of the short pier (mpier,2), which is  obtained by changing the height of this member (2H2) from 26 m (symmetric 224 

case, h� = 1) to 5.2 m (asymmetric case, h� = 5). It is seen from Fig. 4 that bridges in which the mass of the short pier 225 

is much smaller than that of the long one (i.e., with a higher level of asymmetry), have larger interaction with the 226 

abutment-backfill system due to the reduction in the total mass of the system. However, the difference between the 227 

two extreme cases is only 4%, which shows that the contribution of the abutment-backfill system is not significantly 228 

affected by differences in the height of the piers. 229 
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 230 

Fig. 4. Influence of the abutment-backfill system (q) in bridges with rocking piers of different degree of asymmetry 231 
expressed by the mass of the short pier (mpier,2). Results obtained when the tall pier section and the deck 232 
mass are constant. 233 

Impact on the Abutment Backwall 234 

When a bridge starts rocking as described by Eq. (8), the term of the EoM in Eq. (18) that is related to the ‘frame 235 

system’ describes the time-history of the angle of rotation (φ) of the tall pier before the deck is in contact with the 236 

abutments. If the joint gap is closed  (|udeck
CG | = ujo), the deck impacts on the backwall of one of the abutments. This 237 

impact dissipates energy instantly, and subsequently the structure either behaves as a frame system in a free rocking 238 

motion described by the first part of Eq. (18) (i.e., ‘frame system’) if the dissipation is large enough and the ground 239 

motion decays, or otherwise it continues activating the abutment-backfill system and the time-history of angle of 240 

rotation is described by both parts of Eq. (18) (i.e., ‘frame system’ plus ‘abutment-backfill contribution’).  241 

The pounding problem is modelled using several concepts (e.g., Muthukumar and DesRoches 2006, Shi and 242 

Dimitrakopoulos 2017), the key idea being to capture the attenuation of motion whenever an impact between 243 

superstructure and abutment takes place. The present study adopts the ‘stereomechanical approach’ based on the 244 

conservation of linear momentum in the normal direction, as described in the study of Muthukumar and DesRoches 245 

(2006). This approach utilizes the CoR (e) to describe pounding. Fig. 5A illustrates the superstructure of the rocking 246 

system just before impacting on the abutment backwall with a longitudinal velocity u̇deck,I
CG , while Fig. 5B depicts the 247 

post-pounding condition where the superstructure moves longitudinally, either towards the at-rest position or towards 248 

the abutment-backfill system, with a decreased value of longitudinal velocity u̇deck,II
CG .  249 

The pre-pounding and post-pounding longitudinal velocities of the superstructure are related as follows 250 

 , (19) 251 
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wherein mabut. = ρs · Lcr. · Babut. · hbw refers to the mass of the backfill related to the mass density of the soil (ρs), the 252 

length of the backfill soil that is expected to resist the impact of the superstructure on the abutment backwall (Lcr.), as 253 

well as the width (Babut.) and the height (hbw) of the abutment backwall that represent the contact surface between the 254 

deck and the abutment. It is noted that this definition of mabut. is valid for seat-type abutments with ‘sacrificial’ 255 

backwalls; when this is not the case, a larger mass of the abutment will resist the deck impact (through passive 256 

pressure), and in that case the proposed value is on the safe side. Introducing the first time-derivative of Eq. (6) in Eq. 257 

(19) gives the ratio of the angular velocities of the tall pier (φ ̇ II φ ̇ I⁄ ) to describe the pounding effect in the abutments 258 

of asymmetric bridges with rocking piers  259 

 260 

 261 
Fig. 5. Schematic of the pounding problem considered in the rocking motion of an asymmetric bridge with rocking 262 

piers, including (A) the pre-pounding state with a longitudinal velocity of the superstructure u̇deck,I
CG , and (B) 263 

the post-pounding state with an associated deck velocity u̇deck,II
CG . 264 
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.                    (20) 265 

Thus, when the superstructure impacts on the abutments, the angular velocity of the tall pier will be reduced 266 

according to Eq. (20).  267 
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Impact at the Rocking Interfaces 268 

During the rocking motion, when the structure returns to the at-rest position (θ1 = θ2 = θdeck = 0 or φ = φ1
 p/n) 269 

impacts at the rocking interfaces occur, thus dissipating energy. This is described by means of a CoR  270 

η = | φ ̇ II φ ̇ I⁄ | that relates the independent variable of the angular velocity of the tall pier before and after impact (φ̇I, 271 

and φ̇II , respectively). An impulse formulation is adopted here that extends the work of Dimitrakopoulos and 272 

Giouvanidis (2015) by incorporating in the formulation the effect of the abutments acting as vertical supports, as well 273 

as the length of the end spans (L1). This is based on the following assumptions: 274 

• The reversal of the rocking direction at each impact at the rocking interfaces takes place smoothly, without 275 

bouncing or sliding. Therefore, the angular momentum is conserved just before and after the impact. This is 276 

strictly valid only for slender piers (Cheng 2007) and for large values of the coefficient of friction (Di Egidio 277 

and Contento 2009).  278 

• The impact forces are concentrated at the corresponding pivot points (Housner 1963), thus ignoring the 279 

potential migration of the resultant force towards the center of the pier base due to an extended contact 280 

surface (Kalliontzis et al. 2016).  281 

and these assumptions have been found accurate in the study of Bachmann et al. (2018) who showed that the analytical 282 

model of Housner (1963) is capable of capturing experimental results in a statistical sense.  283 

Without loss of generality, let the displaced position of the bridge change from counter-clockwise (positive) to 284 

clockwise (negative) as shown in Fig. 6. Considering that additional reaction forces (or impulses) are developed at the 285 

abutment seats compared to the corresponding asymmetric frame without abutments, there are seven unknowns that 286 

need to be determined. These are the impulses ΛA,x and ΛA,z at pivot A of the tall pier, ΛC,x and ΛC,z  at pivot C of the 287 

short pier, ΛE,z  as well as ΛE',z at the two abutment seats E and E′, respectively, and the angular velocity of the tall 288 

pier after the impact at the rocking interfaces φ̇II. However, only five equations can be used to describe the impact 289 

problem. For this reason, two additional relationships between the impulses at the abutment seats and those at the pier-290 

deck interfaces are introduced, based on the fraction of the weight of the deck that is resisted by each support of the 291 

bridge under gravity loading  292 

 ,                   (21) 293 1
, ,

1 2
Λ ΛE z B z

L=
L + L
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 .                   (22) 294 

 295 

 296 
Fig. 6. Schematic of the impact problem considered in the rocking motion of an asymmetric bridge with rocking 297 

piers that (A) undergoes counter-clockwise (positive) rotation with an angular velocity of the tall pier φ̇I, 298 
(B) impacts at the corresponding pivot points, and then reverses to (C) clockwise (negative) rotation with 299 
an angular velocity of the tall pier φ̇II.  300 

Introducing the conservation of linear momentum before and after impact at the rocking interfaces along the Z 301 

axis for the tall and the short piers into Eqs. (21) and (22), respectively, establishes the relationship between the 302 

impacts at the abutments (E-E′) and those at the base of the piers (A-C) 303 

 ( )1
, , ,1 I II

1 2
Λ ΛE z A z pier

L m B φ φ
L + L

 = + + & & .                (23) 304 

 ( )1
, , ,2 I II

1 2
Λ ΛE' z C z pier

L m Bh φ φ
L + L

 = + + & & .                (24) 305 

Eqs. (23) and (24) reduce the unknowns of the impact problem from seven to five (ΛA,x, ΛA,z, ΛC,x, ΛC,z and φ̇II), 306 

and the following equations are considered in the determination of these unknowns; 307 

1.  Linear momentum along the longitudinal (X) axis for the entire bridge 308 

 ( ) ( ), , ,1 ,2 1 I II I IIΛ Λ 2 2 1A x C x pier pier deck deckm m m H φ φ m bh h φ φ   + = + + − + − +       .           (25) 309 

2.  Linear momentum along the vertical (Z) axis for the entire bridge 310 

1
, ,

1 2
Λ ΛE' z D z

L=
L + L

(A) (C) 

(B) 

∂φCD

∂φ
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( ) ( ) ( )

, , , ,

I II ,1 ,2 I II

Λ Λ Λ Λ

2 1 1

E z A z C z E' z

deck pier pier deckm Bb h φ φ m B m Bh m B h φ φ

+ + + =

  − − − + + + +      
.           (26) 311 

3.  Angular momentum about pivot B for the tall pier 312 

 ( ) ( )2 2
1 , , ,1 1 ,1 I II ,1 I II2 Λ 2 Λ CG

A x A z pier pier pierH B m H I φ φ m B φ φ + = − − − +      .            (27) 313 

4.  Angular momentum about pivot D for the short pier 314 

 ( ) ( )2
2 , , ,2 1 2 ,2 I II ,2 I II2 Λ 2 Λ CG

C x C z pier pier pierH B m H H I h φ φ m B h φ φ + = − − − +      .           (28) 315 

5.  Angular momentum about pivot A for the entire bridge 316 
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.           (29) 317 

After solving the system of equations, the CoR at the rocking interfaces η = |φ̇II φ̇I⁄ | is given by 318 
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where 320 

 3 2
1 4 6 4 1α L L L= + + +                 3 2

2 4 4α L L L= + +                    2
3 2 3 1α L L= + +                                          321 

 3 2
4 2 4 3 1α L L L= + + +                 

2
5 1α L = +                                3 2

6 2 3α L L L= + +   322 

 3 2
7 4 8 7 2α L L L= + + +                 3 2

8 2 5 5 2α L L L= + + +   323 

and L� = L1/L2 describes the effect of the span arrangement. It is observed that, due to the asymmetric configuration, 324 

Eq. (30) depends on the direction of rocking reversal, and the value of η obtained with the upper signs in the operators 325 

‘±’ and ‘∓’ corresponds to the movement in which the rotation of the rocking piers changes from positive to negative, 326 

and vice-versa for the lower signs; the impulse formulation that leads to the bottom signs of Eq. (30) is not presented 327 

herein (for brevity), and can be found in Thomaidis (2020). It must be noted that both expressions of Eq. (30) (i.e., 328 

with upper or lower signs) reduce to the CoR at the rocking interfaces of the symmetric bridges with two rocking piers 329 

(Thomaidis et al. 2020a) when both piers have the same height.  330 

Eq. (30) is different from that for the CoR η in asymmetric frames with rocking columns (Dimitrakopoulos and 331 

Giouvanidis 2015) due to the additional impulses developed at the abutment seats. If such impulses are neglected 332 

(ΛE,z = ΛE',z = 0) in the system of Eqs. (25) to (29), the solution of this system of equations gives exactly the CoR 333 

derived by Dimitrakopoulos and Giouvanidis (2015) for asymmetric frames. To this end, and to establish the effect of 334 

the additional impacts at the end of the superstructure in the value of η, Fig. 7 compares the values obtained using Eq. 335 

(30) with those from the corresponding expression for asymmetric rocking frames. The bridge considered in this 336 

comparison has three spans of equal length (L� = 1), to make the expression proposed by Dimitrakopoulos and 337 

Giouvanidis (2015) applicable. The bridge has square piers with width 2B = 2.5 m, height of the tall pier 2H1 = 30 m 338 

and a height of the short pier 2H2 that ranges from 6 m (h� = 5) to 30 m (h� = 1) to evaluate the influence of the 339 

asymmetry on the response. The superstructure in the bridges and frames has length Ltot = 2L1 + L2 = 2·45 + 45 = 340 

135 m and consists in a simplified single-cell box girder with depth 2h = 2 m, width of the bottom and the top slabs 341 

Bbot = 6.5 m and Btop = 10 m, respectively, and flange and wall thicknesses tf = 0.35 m and tw = 0.9 m, respectively, 342 

thus resulting in Adeck = 7 m2. The mass of the tall pier is equal to mpier,1 = 47·104 kg and that of the superstructure is 343 

mdeck = 240·104 kg, while the mass moment of inertia of the box girder section of the deck is I deck
CG = 360·107 kg·m2. 344 

The results show that the value of η is always larger in the bridge than in the corresponding frame with the same 345 

dimensions. This indicates that the presence of the abutment (vertical) supports reduces the energy dissipation (at the 346 
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pier-deck interfaces) as the abutments carry part of the deck weight. The increase in the value of η for bridges with 347 

rocking piers with respect to the equivalent frames is relatively small for levels of asymmetry below h� = 2 (the 348 

difference is 0.5% for the symmetric configuration, h� = 1), but it increases significantly above this value, reaching 349 

12.5% for the highly asymmetric configuration (h� = 5). This is expected taking into account that the effect of the deck 350 

weight carried by the piers due to the presence of the end supports is more significant when short piers are considered 351 

(i.e., as in highly asymmetric configurations) noting that in the case of tall piers the total weight impacting on the 352 

bottom rocking interfaces is already large due to the self-weight of the pier.  353 

 354 

Fig. 7. CoR at the rocking interfaces (η) for bridges with rocking piers of different degree of asymmetry and for 355 
corresponding frames (Dimitrakopoulos and Giouvanidis 2015), accounting for the influence of the short 356 
pier height (H2). Results obtained for constant deck mass and tall pier section. 357 

The value of the CoR at the rocking interfaces of the asymmetric bridge described in Eq. (30) is also influenced 358 

by the span arrangement (lengths L1 and L2). The effect of these parameters on η is presented in Fig. 8, which considers 359 

the same bridge dimensions as in the previous study on the influence of the pier asymmetry, with the exception of a 360 

constant height of the short pier equal to 2H2 = 20 m (h� = 1.5) and variable span lengths. For comparison purposes, 361 

the mass of the deck is kept constant (mdeck = 240·104 kg), regardless of its length. It is seen from Fig. 8A (depicting 362 

influence of L1 for constant L2 = 45 m) that by increasing the length of the end spans (L1) while keeping constant the 363 

length of the intermediate spans (L2) the CoR η increases slightly, leading to lower energy dissipation. This is due to 364 

the axial forces at the piers that are progressively decreasing (they are increasing at the abutment seats), which reduces 365 

the energy dissipation at every impact at the rocking interfaces during the rocking motion. On the other hand, Fig. 8B 366 

(depicting influence of L2 for constant L1 = 45 m) shows that higher amount of energy is dissipated when the length 367 

of the central span (L2) is increased while keeping constant the length of the end spans (L1); the justification is based 368 

on the same reasoning as before.  369 
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 370 

Fig. 8. CoR at the rocking interfaces (η) for asymmetric bridges with rocking piers, accounting for the influence 371 
of (A) the length of the end spans (L1) and (B) the length of the intermediate spans (L2). Results obtained 372 
for constant deck mass. 373 

It must be noted that the CoR calculated from Eq. (30) and presented in Figs. 7 and 8 is conservative, i.e. higher 374 

than those expected in reality because the analytical formulation ignores (i) the angular velocity just before impact 375 

(Jankowski 2007), (ii) the inelastic behaviour of the interface material at the instant of impact (Roh and Reinhorn 376 

2010), (iii) the sliding effects that take place during rocking motion (Chatzis and Smyth 2012b) and (iv) the 377 

imperfections of the contact surfaces (ElGawady et al. 2011).  378 

RESPONSE HISTORY ANALYSIS OF ASYMMETRIC ROCKING BRIDGES UNDER 379 

GROUND MOTIONS 380 

This section addresses the seismic response of symmetric (h� = 1) and asymmetric (h� > 1) bridges with rocking 381 

piers subjected to seismic ground motions. The rocking motion is analyzed using an algorithm based on the equations 382 

given in the previous section, implemented in MATLAB (2016). The analysis starts with the calculation of the 383 

minimum ground acceleration that initiates rocking using Eq. (8). If the ground motion is not capable of exceeding 384 

this value, rocking motion does not take place and the piers remain in a vertical position. When this is not the case, 385 

the EoM Eq. (18) is integrated step-by-step using the Runge-Kutta method with a time-step of 10-3 s that was selected 386 

through a sensitivity analysis. Response-history analysis of bridges with rocking piers requires identifying the instants 387 

at which impact on the abutment backwall (|udeck
CG | = ujo), and at the rocking interfaces (φ = φ1

 p/n) occur. This is 388 

implemented in the code with an iterative process that reduces the time-step down to a value of 5‧10-6 s in the vicinity 389 

of these impact effects. After impact is identified, the next time-step updates the angular velocity of the rocking motion 390 

using the restitution coefficients defined in Eqs. (20) and (30). Failure of the rocking structures, as defined in the 391 

following, is checked at each time-step of the analysis and triggers its termination if met. 392 
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For practical implementation, a simplified procedure was devised for analyzing asymmetric bridges governed 393 

by EoM Eq. (18). The procedure aimed to avoid using the full expressions for the first and second partial derivatives 394 

of Eq. (2) with respect to the DoF φ (∂φCD ∂φ⁄  and ∂φCD
2 ∂φ2� ) and also the first and second partial derivatives of Eq. 395 

(3) (∂θdeck ∂φ⁄  and ∂θdeck
2 ∂φ2� ), which take a significant amount of time to calculate. These expressions reduce to 396 

linear and second-order parabolic (regardless of the degree of asymmetry) when plotted for the full range of φ i.e. 397 

from  φ = − π 2⁄  (representing the overturning condition in the range of negative rocking tilt of the tall pier) to φ = 398 

π 2⁄  (representing the same condition in the corresponding positive range). Therefore, the complex expressions were 399 

substituted by simpler ones that depend on φ, which speed up the solution of the EoM in each time-step of the analysis; 400 

the simplified equations are not given here, for brevity, and can be found in Thomaidis (2020). 401 

Description of the Studied Bridges 402 

Three bridges with two rocking piers and different levels of asymmetry in their height are analyzed to establish 403 

the effect of pier irregularity on the seismic response.  The height of the left pier is constant, equal to 2H1 = 26 m for 404 

all bridges, with the level of asymmetry being introduced through the height of the right pier (H2) to yield: (i) a 405 

symmetric configuration with 2H2 = 26 m, hence h� = 1, (ii) a moderately asymmetric configuration with 2H2 = 20.8 406 

m, hence h� = 1.25, and (iii) a highly asymmetric configuration with 2H2 = 13 m, hence h� = 2. In all cases, the width 407 

of the square piers is 2B = 2.6 m. The decks consist in a continuous prestressed concrete box girder with length Ltot =408 

2L1 + L2 = 2·38 + 60 = 136 m, depth 2h = 1.7 m, width of the bottom and the top slabs Bbot = 6 m and Btop = 9.5 m, 409 

respectively, and flange and wall thicknesses tf = 0.3 m and tw = 0.8 m, respectively. With these dimensions the 410 

cross-section area of the deck is Adeck = 6 m2. The bridges are built on soil type C according to the European Seismic 411 

Code EN-19981 (CEN 2004) in a seismicity zone with PGA equal to 0.36 g. 412 

Table 1 provides further details of each bridge analyzed. The parameter γ = mdeck (mpier,1 + mpier,2⁄ ) relates the 413 

mass of the deck to that of the piers, and it is an indicator of stability in rocking seismic response (Makris and Vassiliou 414 

2014). The more asymmetric the bridge configuration, the higher are the values of the longitudinal influence of the 415 

abutments and the backfills (q), and (even more so) of the deck mass ratio (γ). This is favorable for the rocking stability 416 

of asymmetric bridges, and it is due to the reduction in the mass of their substructure (mpier,1 + mpier,2) compared to the 417 

symmetric bridge with tall piers.  418 
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The abutment-backfill system is defined with a longitudinal spring with effective stiffness k = 132 MN/m  and 419 

displacement at failure uab = 100 mm  taken from the analysis presented by Kappos et al. (2007), further discussed in 420 

Thomaidis et al. (2020a) and Thomaidis (2020). A longitudinal dashpot with coefficient c = 48 MN·s/m (Mylonakis 421 

et al. 2006) is introduced to account for the effect of both material and radiation damping of the backfill soil that is a 422 

typical dense sand of category C according to Eurocode 8 (CEN 2004). The springs and dashpots form a Kelvin-Voigt 423 

system activated when the joint gap closes, and the superstructure contacts the backwall.  424 

Table 1. Information on the bridges with rocking piers of different degree of asymmetry, including the deck mass 425 
(mdeck), the pier masses (mpier,1 and mpier,2), and the total mass (mtot) as well as the stabilizing factors of the 426 
superstructure mass effect (γ) and the longitudinal influence of the abutment-backfill system (q). 427 

Degree of Asymmetry mdeck ∙104 
[kg] 

mpier,1 ∙104 
[kg] 

mpier,2 ∙104 
[kg] 

mtot ∙104 
[kg] 

γ 
[-] 

q ∙10-3 
[m/kN] 

Symmetric 
(h� = 1) 204 44 44 292 2.3 0.761 

Moderately 
asymmetric 
(h� = 1.25) 

204 44 35 283 2.6 0.771 

Highly 
asymmetric 

(h� = 2) 
204 44 22 270 3.1 0.786 

A CoR value of e = 0.6 is used to describe pounding between the deck and the abutment backwalls, which is in 428 

line with the values of this coefficient reported by Jankowski (2007). The minimum gap sizes at each end of the 429 

superstructure are equal to 60 mm for all bridge configurations based on shrinkage, creep, temperature and prestressing 430 

requirements. However, due to the relatively large longitudinal influence of the abutment-backfill system (q) reported 431 

in Table 1, the abutment-backfill system is expected to suppress considerably the longitudinal displacement of the 432 

deck during rocking, which would not permit to properly evaluate the seismic response of bridges with rocking piers 433 

which are characterized by large displacements. For this reason, a relatively large gap size ujo = 120 mm was selected 434 

for the end joints, to reduce the longitudinal effective stiffness in the closed gap stage of the systems. 435 

Failure Criteria 436 

The overturning failure mode occurs when a rocking pier exceeds its overturning capacity that is described by 437 

|upier,1
CG | ≥ B and |upier,2

CG | ≥ B for the tall and short rocking pier, respectively (Fig. 1). Moreover, failure of the abutment-438 

backfill system is considered when |udeck
CG | ≥ ujo + uab  (ultimate displacement of the abutment-backfill system 439 

exceeded). Therefore, the predominant failure mode of the asymmetric bridges is failure of the abutment-backfill 440 
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system if B > ujo + uab, while overturning of the piers occurs if B < ujo + uab. Both failure modes would occur 441 

simultaneously if B = ujo + uab. In the structures analyzed here, the abutment-backfill failure always precedes pier 442 

overturning because B = 1.3 m, much larger than ujo + uab = 0.22 m, as is the case in most bridges. 443 

Rocking Response under Ground Motions 444 

A total of ten Artificial Records (ARs) are utilized for the analyses. The ARs were generated with a view to 445 

matching the shape of the reference Eurocode 8 target spectrum (CEN 2004) but for a PGA higher than the design 446 

one. This is because the suppression of the rocking motion (q) by the abutment-backfill system makes it necessary to 447 

increase the seismic displacement demand to detect potential differences in the response of the examined 448 

configurations. To this end, the ARs were generated to match the Type 1 Eurocode 8 spectrum for site conditions C 449 

(CEN 2004) scaled to a PGA equal to 0.6 g.  450 

Figs. 9A, B, C illustrate the peak displacements of the superstructure in the three bridges. Fig. 9A also depicts 451 

the longitudinal displacement of the deck for which contact with the abutments starts (ujo = 120 mm, dotted line), and 452 

the ultimate longitudinal deck displacement for which the abutment-backfill system fails (220 mm, dashed line). It is 453 

observed that while the joint gaps are closed during rocking, none of the bridges fails under the strong ground motions 454 

(almost double the design one) applied. The results also indicate that the peak longitudinal displacement of the deck 455 

(udeck
CG ) is not strongly influenced by the asymmetry in the height of the piers, although the most asymmetric bridge 456 

(h� = 2) has the lowest demand of longitudinal displacements for six out of ten records. This may be attributed to the 457 

effect of the larger stabilizing factors of the deck effect (γ) and the effect of the abutment-backfill system on the 458 

longitudinal rocking motion (q) shown in Table 1, as h� increases. This result expands the finding of the study of 459 

Dimitrakopoulos and Giouvanidis (2015)  that the degree of pier asymmetry does not affect the rocking response, by 460 

establishing that this applies regardless of the effects of the end supports.  From the seismic performance point of 461 

view, it is observed that the symmetric bridge reaches the largest value of its capacity against the governing failure 462 

mode (i.e., failure of the abutment-backfill system), which is around 46% for AR6, while in the moderately and highly 463 

asymmetric systems the corresponding values are 44.5% and 42%, respectively, i.e. very similar to those for the 464 

symmetric bridge. 465 
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          466 

 467 

          468 
Fig. 9. Peak responses of the: (A) longitudinal (udeck

CG ) and (B) vertical displacements of the superstructure (vdeck
CG ); 469 

(C) superstructure rotation (θdeck); (D) relative rotation of the left rocking pier (θ1) and (E) relative rotation 470 
of the right rocking pier (θ2) for the bridges with rocking piers of different degrees of asymmetry. 471 

Fig. 9B shows that the more unsymmetrical the configuration, the larger is the maximum uplift of the deck, with 472 

values of vdeck
CG  in the moderately and highly asymmetric systems that are up to 14% and 52% larger than those of the 473 

symmetric structure, respectively. This can be explained by the rotation of the superstructure (θdeck) shown in Fig. 9C, 474 

which is zero in the symmetric structure because the top of the two piers have exactly the same synchronous 475 

longitudinal movements, and it increases significantly with the level of asymmetry; the peak deck rotations are 0.07 476 

and 0.26 rad for the moderately and highly asymmetric bridges subject to the AR6 and AR7 accelerograms, 477 

respectively. The unequal rotation of the piers (θ1 and θ2) shown in Figs. 9D, E increases significantly the vertical 478 

movement (vdeck
CG ) of the deck in asymmetric rocking bridges (Fig. 9B); introducing pier asymmetry h� = 1.25 and 2 479 

results in increments of vdeck
CG  of 17% and 50% compared to the demand in the symmetric bridge, respectively, which 480 
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needs to be considered in the design of the abutment supports (e.g., by allowing uplift through appropriate bearings). 481 

This effect is mostly due to the larger rotation of the short pier (θ2), with the rotation of the tall pier (θ1) being almost 482 

unaltered.  483 

To further explore the effect of asymmetry on the rocking behaviour, Fig. 10 shows the response histories of the 484 

superstructure and the piers for the three different bridge configurations subjected to the ground motion AR7. It is 485 

noted that the start of the rocking motion in the highly asymmetric bridge (h� = 2) is delayed with respect to that in 486 

other structures, which can be explained from the discussion about the effect of h� on üg,min in Fig. 3. For this record, 487 

the symmetric bridge starts rocking at t ≈ 5.5 s (üg,min = 0.10g), the moderately asymmetric structure at 6 s (üg,min = 488 

0.13g), and the highly asymmetric bridge at t ≈ 7 s (üg,min = 0.15g), when the other two bridges develop longitudinal 489 

movements that are able to close the end joint gaps and engage the abutment backwalls in the response (see dotted 490 

line in Fig. 10A). After rocking evolves, as can be seen in Fig. 10A, the superstructure moves longitudinally in a 491 

similar way for all bridge configurations for the remainder of the ground motion, showing similar amplitudes and the 492 

same number of rocking cycles. Therefore, the longitudinal behaviour of the superstructure is hardly affected by the 493 

bridge asymmetry.  494 

Figs. 10B and C further confirm that the irregular structures present substantially larger vertical deck 495 

displacements (vdeck
CG ) and deck rotations (θdeck) than the symmetric bridge. As expected, this is more significant in the 496 

highly asymmetric configuration due to the differential rotations of its two piers. Figs. 10D, E show the histories of 497 

the rocking rotations of the two piers θ1 and θ2, respectively, and it is seen that the tall rocking pier (whose height 498 

remains constant) has almost the same response at each rocking cycle regardless of the height of the short pier. 499 

However, reducing the height of a pier increases significantly its rotation at each rocking cycle, reaching rotational 500 

demand that is up to 140% larger than that in the piers of the symmetric bridge at t ≈ 12 s. Nevertheless, the rocking 501 

movement attenuates faster in asymmetric structures thanks to the higher energy dissipation introduced by the impacts 502 

at the rocking interfaces, which is particularly clear after t ≈ 24 s. This is explained by the lower values of the CoR η 503 

(which are equal to 0.986, 0.982 and 0.96 in the symmetric, moderately, and highly asymmetric bridges in Fig. 7, 504 

respectively), and by the slightly higher influence of the abutment-backfill system in the longitudinal movement (q, 505 

see Table 1).  Finally, it is observed that the irregularity in pier height reduces the number of impacts during the 506 

earthquake, which can improve the structural integrity of the rocking interfaces in the bridge (e.g., Mathey et al. 2016).  507 
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 511 

Fig. 10. Histories of the: (A) longitudinal (udeck
CG ) and (B) vertical displacements of the superstructure (vdeck

CG ); (C) 512 
superstructure rotation (θdeck); (D) relative rotation of the left rocking pier (θ1) and (E) relative rotation of 513 
the right rocking pier (θ2) for the bridges with rocking piers of different degrees of asymmetry. Results 514 
obtained when subject to AR7. 515 

CONCLUSIONS 516 

A new analytical model was developed to capture the rocking response of bridges with unequal pier heights, 517 

including in the formulation the end joint gaps and the abutment-backfill system. The expressions to describe initiation 518 

of rocking motion, movement during rocking, and impact at the rocking interfaces were derived based on the 519 

assumptions of (i) rigid body dynamics and (ii) avoidance of pier end sliding throughout the rocking movement; it is 520 

noted that both assumptions have been found to be fairly accurate for the rocking movement described herein. A key 521 

novelty of the analytical model is the treatment of the energy dissipation due to pounding of the superstructure on the 522 

abutment backwall through a CoR value based on the conservation of momentum.  523 
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The first part of the analysis showed that the deck supports at the abutments of asymmetric structures do not 524 

affect the magnitude of the ground acceleration that initiates rocking, so long as the abutments do not restrain the 525 

longitudinal movement of the superstructure (open end joint). A general form of the EoM for asymmetric rocking 526 

bridges was developed, which includes a term that is not present in corresponding rocking frames without end supports 527 

and expresses the stiffness and damping of the backfill when the longitudinal end joint gap is closed. A parameter q 528 

was introduced that includes the masses of the bridge components and represents the level of longitudinal resistance 529 

of the abutment-backfill. Moreover, a new expression for describing the impact at the rocking interfaces was derived, 530 

accounting for the vertical impulses developed at the abutment seats, and for different span lengths. Application of 531 

these expressions showed that the vertical supports at the abutment seats increase the value of the CoR at the rocking 532 

interfaces (η), leading to lower energy dissipation by the bridge compared to the corresponding frame without end 533 

supports. This is more significant for higher degree of asymmetry in the pier heights. Arguably, the most critical 534 

finding in a design context is that for both symmetric and unsymmetric bridge configurations the critical failure mode 535 

is not overturning of the piers (that was the focus of the bulk of previous analytical studies of rocking bridges) but 536 

rather the failure of the abutment-backfill system due to large longitudinal displacements of the deck.  537 

The seismic response of rocking bridges with different levels of asymmetry in the pier height was studied using 538 

the developed analytical model. The results reveal that bridges with rocking piers resisted a high seismic excitation 539 

(PGA = 0.60 g, almost double that of the design seismic action) with a significant reserve capacity against the 540 

prevailing failure mode (i.e., failure of the abutment-backfill system); this reserve capacity is slightly higher in the 541 

more asymmetric structures. Importantly, so long as the critical assumptions made are valid (in particular that sliding 542 

does not occur during rocking) overturning of rocking pier is not an issue. It was also observed that reducing the height 543 

of one of the piers, hence reaching a more asymmetric configuration, increases significantly its rotation demand during 544 

the rocking motion and also the rotation and the uplift of the deck; importantly, however, it does not increase the 545 

longitudinal displacement demand of the bridge. Furthermore, the response-histories of the bridges showed that 546 

structures with higher level of asymmetry experience less impacts during the rocking motion due to the delay in the 547 

initiation of the rocking motion, and the slightly higher attenuation of this motion. The latter is explained because 548 

asymmetric bridges have a slightly lower CoR at the rocking interfaces (η) and higher levels of participation of the 549 

abutment/backfill (q). Finally, it should be noted that the uplift of the deck at the abutments of bridges with rocking 550 

piers with unequal height should by duly accommodated in design; one option is to use end bearing that allow this 551 
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uplift, e.g. with concave  surfaces (as in friction pendulum bearings). If this uplift is prevented (by a proper design of 552 

the anchorage of the bearings) the rocking response will be different from that described herein. 553 
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