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Abstract 12 
The importance of working memory (WM) in reading and mathematics performance has been widely 13 

studied, with recent research examining the components of WM (i.e., storage and processing) and their roles 14 

in these educational outcomes. However, the differing relationships between these abilities and the 15 

foundational skills involved in the development of reading and mathematics have received less attention. 16 

Additionally, the separation of verbal, visual and spatial storage and processing and subsequent links with 17 

foundational skills and downstream reading and mathematics has not been widely examined. The current 18 

study investigated the separate contributions of processing and storage from verbal, visual and spatial tasks 19 

to reading and mathematics, whilst considering influences on the underlying skills of verbal comprehension 20 

and counting respectively. Ninety-two children aged 7- to 8-years were assessed. It was found that verbal 21 

comprehension (with some caveats) was predicted by verbal storage and reading was predicted by verbal 22 

and spatial storage. Counting was predicted by visual processing and storage, whilst mathematics was 23 

related to verbal and spatial storage. We argue that resources for tasks relying on external representations of 24 

stimuli related mainly to storage, and were largely verbal and spatial in nature. When a task required internal 25 

representation, there was an draw on visual processing and storage abilities. Findings suggest a possible 26 

meaningful separability of types of processing. Further investigation of this could lead to the development of 27 

an enhanced WM model, which might better inform interventions and reasonable adjustment for children 28 

who struggle with reading and mathematics due to WM deficits. 29 

 30 

  31 
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1 Introduction 32 

Working memory (WM) is commonly defined as the ability to process information and maintain it for short 33 

periods of time, in the pursuit of a known goal (Baddeley & Hitch, 1974; Cowan, 1999; 2005; Henry, 2012).  34 

Often separated into verbal WM (i.e., information that can be verbally processed and maintained) and 35 

visuospatial WM (i.e., information that is processed and stored in terms of its location and/or visual 36 

characteristics), studies have shown that primary school-age children demonstrate marked increases in the 37 

quantity of and the length of time that information can be stored in WM. For example, there is evidence that 38 

visual WM capacity doubles between the ages of 5 years and 10 years (Riggs et al., 2006), and the ability to 39 

hold verbal information in WM for longer periods of time might be attributed to the emergence of verbal 40 

rehearsal in 7- to 8-year-olds (Henry & Millar, 1993; but see Jarrold & Citroën, 2013). Also, results from a 41 

study by Gathercole et al. (2004) suggest that the basic structure of WM is evident from 6 years of age. Thus, 42 

the early to mid-primary school years are an important time of development for this ability. 43 

It is beneficial to briefly explain some key theories of WM, relating specifically to what WM is and 44 

what explains individual variation in this ability. First, it is important to consider the enduring 45 

multicomponent model of WM (Baddeley & Hitch, 1974). This model consists of a modality-free control 46 

system (i.e., the central executive) with two modality-specific subsystems which temporarily store 47 

phonological and visuospatial material. Increases in WM ability occur with the use of maintenance strategies 48 

which prolong the duration over which information can be maintained. These include verbal rehearsal of 49 

phonological information (Baddeley, 1996) and image generation for visuospatial information (Logie, 1995). 50 

Second, the time-based resource-sharing (TBRS) model (Barrouillet et al., 2004) argues that an ability to 51 

rapidly switch attention between items being processed and items being remembered is fundamental to 52 

WM. According to this model, increases in WM capacity are explained by faster processing speeds allowing 53 

for more opportunities to refresh items to be remembered. Thirdly, the embedded-process model of WM 54 

(Cowan, 1999; 2008; Cowan et al., 2015) sees the role of attention as fundamental to WM capacity. Cowan 55 

and colleagues argue that increased, effortful attentional abilities to process salient information is the 56 

fundamental component of efficient WM. 57 

Many studies have measured verbal WM and visuospatial WM separately to understand the 58 

respective roles in educational outcomes related to mathematics and reading. For example, there is evidence 59 

that visuospatial WM is important for mathematics (e.g., Giofre et al., 2018; Van der Ven et al., 2013; see 60 

Allen et al., 2019 for a review) and verbal WM for reading (e.g. Giofre et al., 2018; Oakhill et al., 2011; see 61 

Peng et al., 2018 for a meta-analysis). Verbal WM also shows strong links with word-based mathematics 62 

abilities such as problem solving (Andersson, 2007; Rasmussen & Bisanz, 2005; see Peng et al., 2016 for a 63 

review) and can be important in the retrieval of mathematics facts from a knowledge base (Gordon et al., 64 

2021). However, studies have also found visuospatial WM to predict reading comprehension in 9- to 12-year-65 

about:blank#b0025
about:blank#b0015
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olds (e.g., Pham & Hasson, 2014), suggesting that this type of WM may play a role in reading ability once 66 

reading skills have been established. Furthermore, a review by Peng et al., (2016) found mathematics to be 67 

related to verbal and visuospatial WM, and to WM tasks that were numerical in nature. Such variability in 68 

findings highlights the need for further investigation as to why this might be the case. 69 

A consideration, when investigating relationships between WM and academic outcomes, is the 70 

examination of the underlying components of WM to better understand this link. For example, Gordon et al. 71 

(2020) examined processing speeds, recall times, processing accuracy and recall accuracy in numerical, verbal 72 

and visuospatial WM tasks and found that processing speed and storage in a Counting Span task separately 73 

predicted mathematics and reading in 7- and 8-year-olds. More specifically, as manipulations of processing 74 

time allowance did not affect storage in WM, faster processing speeds were interpreted as enabling 75 

downstream academic abilities rather than increasing WM ability itself. A meta-analysis by Swanson et al. 76 

(2009) looked at how storage and processing in short-term memory might explain reading disabilities. They 77 

found that poor readers showed deficits in verbal short-term memory tasks that required the recall of digit 78 

sequences and phonemes. In addition, it was found that measures combining both storage and processing of 79 

digits that were embedded within short sentences also predicted reading ability. Furthermore, a study with 80 

primary school children by Gordon et al. (2021) found that the components of WM (i.e., storage and 81 

processing) changed in their relationships with mathematics dependent on whether the tasks were verbal or 82 

visuospatial in nature. Such findings suggest a possible fractionation of storage and processing within WM in 83 

terms of their relationships with educational outcomes. Given this added dimension to the complex 84 

relationships between WM and the academic abilities, the current study separately measured storage and 85 

processing abilities to better understand how these WM underlying components related to educational 86 

outcomes in reading and mathematics. 87 

The conclusions that can be drawn from the literature become more complex when considering the 88 

foundational abilities upon which downstream skills, such as reading and mathematics, might rely. Reading 89 

can be defined as single word reading of real words often described as ‘word decoding’ or simply ‘decoding’ 90 

(Gough & Tunmer, 1986; Hoover & Gough, 1990). It is important to note that this is separate to phonemic 91 

decoding which refers specifically to speech sounds and might be measured by the ability to read nonsense 92 

words (van Norman et al., 2018). Verbal comprehension is the ability to understand spoken language, and is 93 

a strong predictor of reading ability in children (Reynolds & Turek, 2012). Mathematics can be defined as 94 

the “science of structure, order, and relation that has evolved from elemental practices of counting, 95 

measuring, and describing the shapes of objects.” (Berggren et al., 2020, webpage). Counting is a method of 96 

identifying the number of items in a finite set of those items, and is a strong predictor of mathematics ability 97 

(Durand et al., 2005). 98 

https://www.britannica.com/science/science
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There is evidence for the importance of visuospatial WM in reading (Pham & Hasson, 2014) and 99 

verbal WM in verbal comprehension (Pham & Hasson, 2014; Schwering & MacDonald, 2020), which in turn 100 

predicts later reading ability (Reynolds & Turek, 2012). These findings suggest that verbal WM may better 101 

explain verbal comprehension, and visuospatial and verbal WM together explain reading ability, as reading 102 

also requires comprehension. Similarly, studies have found that verbal WM predicts broader mathematics 103 

ability (Van de Weijer-Bergsma et al., 2021) whereas visuospatial WM predicts counting (Georges et al., 104 

2021; Zhang et al., 2014), which in turn predicts mathematics ability (Durand et al., 2005; Johansson, 2005). 105 

These findings showing visuospatial WM to be important for counting, and visuospatial and verbal WM for 106 

later general mathematics, suggest that mathematics relies on basic number knowledge (e.g., counting), 107 

albeit in a somewhat automated manner. Given this evidence for possible separate roles for verbal and 108 

visuospatial WM dependant on whether foundational or downstream abilities are measured, there is a need 109 

to further examine the different relationships between these cognitive and educational skills in a single 110 

sample. The current study looked at the differing relationships between these four educational outcomes 111 

and performance on processing and storage tasks representative of these underlying components of 112 

different types of WM.  113 

Whilst many studies have measured verbal and visuospatial WM as two separate abilities, it may be 114 

problematic to measure visuospatial WM as a single construct, when, ostensibly, it can be separated into 115 

visual and spatial components. This issue was investigated in a review by Allen et al. (2019), with a 116 

concluding recommendation that the relationship between mathematics and visuospatial WM could be 117 

better understood by examining the subcomponents of the construct. The idea of separating these 118 

subcomponents is not new (see Logie & Pearson, 1997; Vicari et al., 2003). In fact, Cornoldi and Vecchi (2003) 119 

have proposed a model of visuospatial WM with separate subcomponents specifically for the short-term 120 

storage of information related to shapes and colours (i.e., visual WM) and another for the position of objects 121 

(i.e., spatial WM). Further, Fanari et al. (2019) examined both visual and spatial WM abilities, finding that 122 

they separately predicted mathematics in 6- to 7-year-olds. Specifically, they found evidence suggesting that 123 

spatial WM is important in early numeracy, and that both visual and spatial WM predict mathematics as 124 

children grow older (but see Vergauwe et al., 2009, that found no dissociation between visual and spatial 125 

WM in adults). Finally, a study by Caviola et al. (2020) examined verbal and spatial WM as predictors of 126 

mathematics and reading achievement in 7-, 9- and 12-year-olds and found that both verbal and spatial 127 

abilities predicted mathematics, whereas only verbal ability predicted reading. Evidently, the separation of 128 

visual and spatial abilities may alter the interplay with educational outcomes. 129 

There is value in further examining the separate roles of processing and storage within verbal, visual 130 

and spatial WM tasks to better understand which aspects of WM (i.e., processing and storage) enable 131 

acquisition of the complex skills of reading and mathematics. Examining how these separate abilities relate 132 
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to the underlying foundational skills of verbal comprehension and counting can contribute to our 133 

understanding of how they, in turn, explain mathematics and reading ability. However, there is a paucity of 134 

research that has investigated these separate relationships in a single study. This consideration of the 135 

relationships between the components of WM and foundational skills (i.e., counting and verbal 136 

comprehension) and the broader abilities of mathematics and reading respectively, could also provide 137 

valuable insights into the effectiveness of interventions. These questions are particularly important in 138 

relation to the educational outcomes of children in mid-primary education as this is a time when abilities 139 

related to increases in WM begin to emerge.  140 

The current study examined the relative contributions of verbal, visual and spatial storage and 141 

processing abilities to reading and mathematics in 7- to 8-year-olds, whilst also considering influences on 142 

verbal comprehension and counting respectively. The following research questions were addressed. 143 

1. What are the roles of verbal, visual and spatial storage and processing for reading and mathematics 144 

abilities in children aged 7 to 8 years? 145 

2. What are the roles of verbal, visual and spatial storage and processing for verbal comprehension and 146 

counting in children aged 7 to 8 years? 147 

3. Are these relationships different for the foundational skills of comprehension and counting 148 

compared the downstream skills of reading and mathematics? 149 

Based on recent research (Gordon et al., 2020), it was predicted that processing abilities would explain 150 

individual variation in the downstream skills of reading and mathematics, while storage abilities would 151 

explain variance in the foundational skills of verbal comprehension and counting. Specifically, it was 152 

predicted that: 153 

1. Spatial storage would explain counting (Fanari et al., 2019; Georges et al., 2021; Gordon et al., 2020; 154 

Zhang et al., 2014) 155 

2. Verbal, visual and spatial processing would explain mathematics performance (Gordon et al. (2021), 156 

Van de Weijer-Bergsma et al., 2021) 157 

3. Verbal storage would explain verbal comprehension skill (Pham & Hasson, 2014; Schwering & 158 

MacDonald, 2020) 159 

4. Verbal processing would explain reading ability (Pham & Hasson, 2014) 160 

5. In addition, although it was expected that visual and/or spatial ability would explain reading, due to a 161 

lack of preceding evidence, there were no specific predictions as to which of these abilities might be 162 

important for reading 163 

  164 
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2 Method 165 

2.1 Participants 166 

An initial sample of 99 7- to 8-year-old children was recruited.  As the aim of this research was to assess a 167 

representative sample of children in the UK mainstream education system the only exclusion criterion 168 

applied was for children with known developmental delays and/or a Special Educational Needs statement.  169 

One child moved to another school before they could complete the third testing session and five more 170 

children left school before completing any of the testing sessions. In addition, one child was excluded during 171 

their second testing session as it was identified that they were colour-blind and, therefore, unable to 172 

complete the spatial processing task. The remaining 92 children (41 male, 51 female) aged between seven 173 

and eight years participated in all testing sessions. All children were unfamiliar with the assessments prior to 174 

the commencement of testing. The mathematics curriculum for each school was assessed and it was found 175 

that content was marginally inconsistent between schools. This was addressed in the measurement stage 176 

and is described in the following Materials section. Mean age and standard deviations at start and end of 177 

testing are shown in Table 1. 178 

2.2 Materials 179 

2.2.1 Verbal storage 180 

Verbal storage (short-term memory) was measured using the digit recall task from the Working Memory Test 181 

Battery for Children (WMTB-C; Pickering & Gathercole, 2001). This task was used as it correlates well with 182 

word span tasks (Oakhill et a., 2011), yet does not depend on word reading ability. This is important because 183 

it avoids the possibility of task impurity in that the task itself overlaps with the core abilities it is attempting 184 

to predict (i.e., reading). For the digit span task, the participant was verbally presented with a sequence of 185 

digits to be recalled in correct serial order. Digit sequences were designed to appear in random, non-186 

repetitive sequences and were spoken at a rate of one digit per second. With six trials per block, the trials 187 

initially consisted of two numbers and increased by one number in each block until the participant was 188 

unable to recall four correct trials in a block. Scores for each trial correct were recorded as a value of ‘1’. The 189 

sum of these scores denoted the total trials correct as the verbal storage performance index. 190 

2.2.2 Verbal processing 191 

Verbal processing was measured using a time score from one component of the Verbal Inhibition Motor 192 

Inhibition (VIMI) task (Henry et al., 2012). The researcher said the words either ‘day’ or ‘night’ out loud and 193 

the participant was required to copy by repeating the word. For example: 194 

  195 
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Researcher: “Day” 196 

Participant: “Day” 197 

Researcher: “Day” 198 

Participant: “Day” 199 

Researcher: “Night” 200 

Participant: “Night” 201 

Researcher: “Day” 202 

Participant: “Day” 203 

The time taken to complete the 20 trials was recorded by the researcher using a digital stopwatch. The 204 

purpose of this was to record the time taken by each child to process what the researcher had said and then 205 

repeat it. Due to the nature of the task, the utterances from the researcher were also included in the time 206 

recorded. However, the duration of the words spoken by the researcher were fixed across trials and 207 

participants (i.e., spoken immediately after the prior response from the child). Therefore, any delay was due 208 

to the hesitancy of the child rather than the researcher. There were twenty trials and the total time taken to 209 

complete the task represented verbal processing ability.  210 

2.2.3 Spatial storage 211 

Spatial storage (short-term memory) was measured using the WMTB-C block recall task (Pickering & 212 

Gathercole, 2001). For this task, the participant was presented with a plastic tray consisting of an array of 213 

nine fixed, three-dimensional cubes. The researcher then pointed to a number of cubes in a sequence and 214 

the participant was required to point to each of the cubes indicated by the researcher in the correct serial 215 

order. The locations of the cubes were designed to appear in random and non-repetitive sequences. Each 216 

block was indicated at a rate of one per second. Trials consisted initially of two items and increased by one 217 

number in each block until the participant was unable to recall four correct trials in a block. The scoring was 218 

similar to that used in the digit span task, wherein a value of ‘1’ was awarded for each trial correctly recalled. 219 

The sum of these scores denoted the total trials correct as the spatial storage performance index. 220 

2.2.4 Spatial processing 221 

Spatial processing was measured by the Colour Number Switch (CNS; Gordon, 2016) task. This assesses each 222 

participant’s ability to search for and connect a series of twelve red dots in an irregular pattern across the 223 

page. The dots were numbered ‘one’ to ‘twelve’. The time taken on this task was recorded by the 224 

experimenter using a digital stopwatch. The time taken on this task denoted the participant’s spatial 225 

processing ability. 226 
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2.2.5 Visual storage 227 

Visual storage (short-term memory) was measured using the Visual Sequential Memory task from the Test of 228 

Memory and Learning (TOMAL; Reynolds & Voress, 1994). The participants were presented with abstract 229 

designs in a linear array. They were then required to indicate the order in which they were originally 230 

presented when given the same designs in a different order. They did this by pointing at each design and 231 

stating the order it appeared in the original presentation (i.e., 1st, 2nd, 3rd, etc.). Up to 12 sets of stimuli were 232 

presented, one per page. The first set consisted of two designs. This increased by one on progression to each 233 

following set, up to a maximum of 7 designs on the final page. Testing was discontinued if a participant failed 234 

to correctly recall the design order in two consecutive trials. The total number of correct positions recalled 235 

was recorded. 236 

2.2.6 Visual processing 237 

Visual processing was assessed using a time score from a component of the Odd One Out Span task (Henry, 238 

2001). In this task, the participant was asked to identify, from a horizontal line of three shapes in three 239 

separate boxes, which shape was different to the other two (i.e., was the “odd one out”). Two of the shapes 240 

were always identical, whilst a third (in any of the three available positions) was the odd one out. The odd 241 

one out was always designed to be definitely identifiable without being immediately obvious. For example, 242 

two arrows pointing left and one arrow point right; or two squares tilted right and one square tilted left. The 243 

time taken on this task was recorded and denoted the participants visual processing ability. 244 

2.2.7 Verbal Comprehension 245 

To assess verbal comprehension, a computerised task specifically developed for the study was presented on 246 

a Dell 5000 Series Inspiron laptop, and written in E-Prime Version 2.0 (Schneider et al., 2002). The task was 247 

driven by a push-button response box operated by the researcher. Children completed a series of twenty 248 

trials to calculate their verbal comprehension ability. The participants were requested to complete these 249 

trials “as quickly and as carefully as possible”. In individual sessions, each child listened to a sentence (e.g. 250 

“Apples have noses”), deciding whether or not it made sense and informing the researcher of their decision 251 

by saying “yes” or “no” (in this case, “no”). The researcher recorded the response by pressing the 252 

corresponding button on the box. After the twenty trials, the program calculated each participant’s mean 253 

verbal comprehension ability based on their time taken to engage in the processing tasks and provide a 254 

response. To ensure children were attending to the stimuli (and therefore comprehending it), an 85% 255 

accuracy rate with regard to the veracity of the sentences was required for inclusion in further assessment. 256 

This calculation of 85% accuracy was based on the automated OSPAN task developed by Unsworth, Heitz, 257 
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Schrock, and Engle (2005) to assess WM capacity. It was designed to ensure that participants were attending 258 

sufficiently to the stimuli. However, no participant performed below this ability level. 259 

2.2.8 Reading Ability 260 

Reading ability was measured using the Word Reading task from The British Ability Scales third edition (BAS 261 

III, Elliot & Smith, 2011). The participants were required to read single words that became progressively more 262 

difficult to decode. Testing was discontinued after 10 successive reading failures. A single point was awarded 263 

for each correctly articulated word.  264 

2.2.9 Counting 265 

There was a need to ensure the counting task was sensitive enough to identify differences in ability between 266 

children aged 7 to 8 years, as they are already proficient in this skill (Simms et al., 2013). Therefore, counting 267 

ability was assessed using a component score from the Creature Counting task from the Test of Everyday 268 

Attention for Children (TEA-Ch; Manly et al., 2001). The task features nine pages presented in a stimulus 269 

booklet. On each page, a picture showed a variable number of “creatures” in a tunnel. Interposed at varying 270 

stages between the creatures were arrows either pointing up or down. The participant was asked to count 271 

the creatures from the start of the tunnel beginning with number one, and to use the arrows as a trigger to 272 

switch the direction of the count (e.g., from counting up to counting down, or vice versa). This requirement 273 

to switch from counting up to counting down (and vice versa) introduces a level of difficulty that can identify 274 

individual differences in counting ability in this age group (Thompson, 1995). Two practice pages were 275 

completed prior to commencing the task in order to establish the participant’s ability to count up and down. 276 

Each subsequent page was timed. This task was originally designed to assess the executive skill of task-277 

switching. For that ability, a time and error cost were calculated for each child, to represent an attentional 278 

capacity to switch between two rules. Therefore, errors would indicate attentional lapses by ‘losing track’ of 279 

counting. As the purpose of the current study was to assess counting only, there was a need to minimise the 280 

possibility of confounding measurement with this executive aspect. Therefore, only sets that were counted 281 

correctly by the child were included. This was done to isolate the speed with which each child could count up 282 

and down, without introducing an index of their ability to switch between rules. A calculation of each child’s 283 

time score on correct sets was used to measure counting ability. 284 

2.2.10  Mathematical ability 285 

A review of the mathematics curriculum across the schools involved in the study indicated that learning was 286 

not consistent across the schools in terms of curriculum content (e.g., one school included teaching 287 

percentages, another school did not).  This is because Year 3 was not a mandatory testing year in the UK at 288 

the time of data collection. Therefore, the schools were not required to include specific content in their 289 
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mathematics curriculum for that year. As this would almost certainly induce performance differences due to 290 

variations in exposure to certain topics, it was decided that a standardised mathematics test would not 291 

provide the correct insight into ability. However, each school had assessed the children’s mathematics ability 292 

using the UK’s Standard Assessment Tasks (SATs; Kirkup et al., 2005), tailored within each school in 293 

consideration of the taught topics for that academic year. Hence it was decided that the SATs scores 294 

provided by the school would be the best indication of mathematics ability (for a similar approach see 295 

Gathercole & Pickering, 2000; Lépine et al., 2005; St Clair-Thompson & Gathercole, 2006). An equivalency 296 

measure of ability between schools is included in the results section. 297 

2.3 Procedure 298 

Each participant was tested individually in a quiet room at school, during class times in the school day. Due to 299 

the number of tests, assessment was carried out over three sessions. Each session lasted between 30 and 45 300 

minutes. Occasionally, it was necessary to break a session into two parts due to interruptions such as break-301 

time, lunch, or non-curriculum-related demands (e.g., school play rehearsal, school photograph). However, 302 

on such occasions, the testing session was always completed within a single school day. The tasks were 303 

presented in the order shown in Table 2. Counter-balancing was not used as this is not appropriate for 304 

studies investigating individual differences (Tolmie et al., 2011). This is due to the fact that counter-balancing 305 

creates a confound between order and individual differences as the source of variation. With the exception 306 

of the SATs mathematics grades, which were collected from the class teachers at the end of Year Three, the 307 

remaining nine tasks were administered throughout the Year Three academic year. There was a mean 308 

duration of four months between first and last session.  309 

3 Results 310 

Exploratory analysis identified some skewed distributions for some of the variables. For these variables, the 311 

values were converted to z-scores to identify any values more than 2.5 standard deviations from the mean. 312 

The corresponding true values were winsorized and substituted with the closest criterion value that fell 313 

within 2.5 standard deviations from the mean. This process was undertaken to remove the influence of any 314 

extreme responses as recommended by Ratcliff (1993); for a similar approach, see Bayliss et al,. 2003; 2005, 315 

and Gordon et al., 2020). Means and standard deviations for all measures of storage, processing, verbal 316 

comprehension, counting, reading, and mathematics, including the number of values winsorized for each 317 

measure are included in Table 3. 318 

To understand the relationships between each of the cognitive measures and the academic 319 

measures, a parametric correlation was run. With regard to the inter-correlations between the academic 320 

measures, mathematics and reading were significantly correlated (r = .522, p < .001) and counting speed 321 
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(lower scores indicating faster counting) correlated significantly with both reading (r = -.415, p < .001) and 322 

mathematics (r = -.423, p < .001). Verbal comprehension was not significantly associated with reading, 323 

counting or mathematics. All correlations between academic and cognitive measures can be seen in Table 4. 324 

Verbal comprehension was related to verbal storage only, with slower response times in the verbal 325 

comprehension task linked to lower storage scores (indicated by a negative relationship). Reading correlated 326 

with both verbal and spatial storage, as did mathematics ability. Counting was negatively correlated with 327 

visual and spatial storage, with slower response times in the counting task times linked to lower storage 328 

scores. Counting was also correlated with verbal and visual processing. There were no other significant 329 

relationships. 330 

Given the difference in curriculum between the two schools that participated in this study, there was 331 

a need to ensure equivalency in terms of the relationships between mathematics and the individual cognitive 332 

measures. A comparison of r-values from the two schools is shown in Table 5. For all but one of the 333 

measures, there were no significant differences in the correlations between mathematics grade and each of 334 

the cognitive measures. There was a significant difference in the relationship between mathematics ability 335 

and verbal storage (p = .047). Therefore, a further correlational analysis was conducted to examine the links 336 

between mathematics ability and verbal storage for each school. For one school there was a significant 337 

relationship (r = .358, p <.01, n = 70); whereas, for the other, there was not (r = -.079, p = 739, n = 20). 338 

Although this non-equivalence is acknowledged, it is possible that the smaller sample (i.e., n = 20) was too 339 

small to detect the effect. As there was a significant correlation in the larger sample (i.e., n = 70), and the 340 

comparison of r-values showed borderline significance (i.e., p =.047) it was decided that the two schools 341 

could be considered comparable in terms of the relationships between mathematics and the cognitive 342 

measures used in this study. 343 

To identify the roles of verbal, visual and spatial storage and processing in verbal comprehension, 344 

reading, counting and mathematics, a series of multiple regressions were run to understand the overall 345 

relationships between performance on the cognitive and academic measures. The processing and storage 346 

measures for verbal, visual and spatial abilities were entered together as predictors and assessed in terms of 347 

the variance explained in reading, verbal comprehension, mathematics and counting in turn. Squared semi-348 

partial correlations are included to show the unique contributions from each predictor to the academic 349 

outcomes. These are shown in Table 6. For ease of reading, significant values are shown in bold. The models 350 

for reading, mathematics and counting were all significant. In terms of individual relationships with the 351 

cognitive measures, counting was predicted by visual storage and processing. Mathematics was predicted by 352 

verbal and spatial storage. Verbal comprehension was predicted by verbal storage; however, as the overall 353 

model was not significant, this is treated with some caution in the discussion. Reading was predicted by 354 

verbal and spatial storage. None of the academic skills were predicted by verbal and spatial processing.  355 
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4 Discussion 356 

This study examined the relative contributions of verbal, visual and spatial storage and processing abilities to 357 

reading and mathematics, whilst also considering their influences on the underlying skills of verbal 358 

comprehension and counting respectively. The findings are now discussed in the context of the predictions. 359 

The first prediction was that spatial storage would explain variance in counting skill. However, this 360 

was not found to be the case, as visual storage and processing were the only measures that predicted 361 

counting. Although this finding does not support the suggestion of Fanari et al. (2019) that spatial WM is 362 

important in early numeracy, it could explain why studies have found visuospatial abilities to predict 363 

counting (Georges et al., 2021; Zhang et al., 2014). The current study separated visual and spatial abilities 364 

and storage and processing WM sub-components, which permitted identification of a specific relationship 365 

between visual processing and storage and counting in this age group. This approach supports a 366 

recommendation by Allen at al. (2019) that the relationship between WM and numeracy could be better 367 

understood by separating visual and spatial abilities.  368 

 The second prediction was that verbal, visual and spatial processing would be related to 369 

mathematics performance. However, contrary to this prediction, it was found that verbal and spatial storage 370 

were related to mathematics performance. This finding does not support the results of Gordon et al. (2021). 371 

They found stronger links between processing times (within WM tasks) and mathematics than between 372 

storage measures and mathematics.  Gordon et al. concluded that processing abilities explained downstream 373 

mathematics outcomes, although, importantly, they used measures of WM that required concurrent 374 

processing and storage, and extracted these measures separately from task performance. The findings from 375 

the current study suggest that, without the executive load created by the need to process and store 376 

information concurrently, the links between processing and academic abilities are lost. There is a view that 377 

WM and short-term storage of information simply represent varying grades of executive attentional abilities 378 

(see Unsworth & Engle, 2007). Therefore, the current finding that storage, but not processing, abilities 379 

explain mathematics outcomes may be due to there being very little executive load in the processing tasks. 380 

This suggests that it is the executive element of the processing tasks that relates to mathematics (see Bayliss 381 

et al., 2003, for a supporting argument).  382 

 The third, fourth and fifth predictions are best discussed together. It was predicted that verbal 383 

storage would explain variance in verbal comprehension. This was found to be the case, although the overall 384 

model was not significant so this finding should be treated with caution. It suggests that any effect of verbal 385 

storage as a predictor was diluted by the presence of the other predictors. However, there is value in further 386 

investigation to understand the role verbal storage plays in verbal comprehension. It was also predicted that 387 

verbal processing would predict reading, and this relationship was not found. Finally, it was expected that 388 

some form of visual/spatial ability would also explain reading and, indeed, it was found that spatial storage 389 
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predicted reading. These findings, in part, support the supposition that the early ability to store information 390 

verbally is a precursor to later reading ability, when the information is presented non-verbally. As stated in 391 

the introduction, there is no preceding evidence to direct a detailed prediction here as to whether visual or 392 

spatial processing or storage would be important for reading. Although speculative, the current study 393 

provides some early evidence for the role of spatial storage in reading. 394 

Explanations for these findings are now discussed in more detail, in the context of the different abilities. 395 

Though interpreted with caution, the finding that verbal storage predicted performance on the verbal 396 

comprehension measure supports the idea that verbal comprehension requires the online processing of 397 

continuous language input. Diamond (2013) notes that storage in working memory may underpin 398 

comprehension as it is fundamental for understanding input that unfolds over time. As auditory information 399 

is the only stimulus provided (i.e., there is no written text), the participant must hold continuous verbal input 400 

in mind for long enough to process and understand it. 401 

For reading, the key material is provided in written and spatial form on a page but reading nevertheless 402 

requires the continuous processing of meaning from continuous input, as well as keeping track of spatial 403 

position on the page. Therefore, the links between reading and both verbal and spatial storage could reflect 404 

the need to hold in mind and process key verbal and spatial information during the reading process (Pham & 405 

Hasson, 2014). Although the reading task required single word reading, it was developed based on its robust 406 

validity in reflecting reading comprehension (Elliot & Smith, 2011); therefore, the extension here to reading 407 

comprehension was not considered unreasonable. A further possibility is that there is a specific spatial 408 

demand in single word reading, especially for younger readers, as there is a requirement to accurately map 409 

the letters to create the correct word. The absence of a relationship with either visual measure is plausible as 410 

the visual information is stored externally (i.e., in written form), reducing demands on resources in this 411 

domain. This latter finding also suggests that the separation of visual and spatial WM may provide further 412 

insights into the importance of these abilities in reading. The finding of relationships between mathematics 413 

and verbal and spatial storage supports previous research that has shown both these abilities might be 414 

important in mathematics generally (see Andersson, 2004; Peng et al. 2016). However, the absence of any 415 

relationships with visual task performance again highlights the value in separating visual and spatial abilities 416 

when examining WM. 417 

It was surprising, however, that for verbal comprehension, reading and mathematics, only the storage 418 

variables were found to be important, with no relationships found for the processing variables (verbal 419 

storage related to verbal comprehension; and verbal and spatial storage related to reading and 420 

mathematics). Conversely, counting was the only skill that showed any relationship with processing, showing 421 

links to visual processing (as well as to visual storage). There are a few possible explanations for this finding. 422 

Firstly, the counting task requires an additional visual processing stage prior to task commencement, in 423 
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contrast to the other skills measures. Words (reading task), sentences (comprehension) and sums 424 

(mathematics) are all provided (either verbally or visually) for the child to use in order to complete the task. 425 

However, for the counting task, the child is required to translate the creatures into meaningful information 426 

(i.e., numbers). Therefore, there is a need for internal visual storage of the count objects along with continual 427 

processing (for the purpose of updating) as children progress through the task. Secondly, links between 428 

counting and visual storage and processing may indicate that children who were able to use a visual strategy 429 

such as a number line, were better at this counting task (see Schneider et al., 2018, for a review). Thirdly, the 430 

visual nature of the task (i.e., counting pictures of creatures and using arrows to indicate the task rule) could 431 

simply reflect a visual processing ability. Fourthly, and more speculatively, there is a need for conversion to 432 

symbolic numbers in counting objects that requires a visual representation (i.e., of the Arabic symbol). For 433 

children with established number knowledge, number symbols are automatically brought to mind when 434 

saying the number word (Mundy & Gilmore, 2009). This may assist storage, in the same way as spoken and 435 

written words have been argued to automatically trigger each other (cf. the visual word form area; Dehaene 436 

& Cohen, 2011).  437 

One of the important features about these findings, overall, is that the storage and processing tasks 438 

for the measures of verbal, visual and spatial abilities all held separate relationships with reading, verbal 439 

comprehension, mathematics and counting. These findings will now be considered in the context of the key 440 

WM models. 441 

Only one variable, verbal storage, was related to verbal comprehension, suggesting that the 442 

embedded process model (Cowan, 1999,  2008; Cowan et al., 2015) might best represent WM in this 443 

instance. This model proposes that WM is the use of attention to activate and hold in mind information from 444 

long-term memory. This attentional capacity is argued to be capacity-limited and consciously controlled, 445 

whilst supported by unconscious automatic processes. Verbal comprehension demands the activation of 446 

information from long-term memory (i.e., word meaning) and continuous attention that is updated as new 447 

information (i.e., subsequent words in the sentence) is presented. For the task used in the current study, 448 

there was also an additional requirement for the child to draw on their knowledge of the world from long-449 

term memory (as well as accessing word meaning), in order to determine the veracity of the sentence and 450 

respond accordingly. This proposal is in line with Cowan’s (1999) argument that WM relies on long-term 451 

memory to allow new episodic representations to be available for recall. 452 

Similarly, the role of verbal and spatial storage found here in reading ability is best explained by the 453 

embedded-process model (e.g., Cowan, 1999), as verbal and spatial storage could reflect an attentional 454 

capacity which activates the relevant information (i.e., phonological and graphic word knowledge 455 

respectively) from long-term memory in pursuit of the known goal of reading the word out loud correctly. 456 

For both reading and verbal comprehension, the absence of a role for processing in contributing to these 457 

about:blank#b0095
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academic abilities has been explained previously in this section as being the result of a reduced demand on 458 

the need to internalise representations. 459 

Links between verbal and spatial storage and the written mathematics task again suggest the 460 

embedded-process model (e.g., Cowan, 1999) as the preferred explanation for the role of WM in this ability. 461 

In such a task, the processing of information is external (i.e., in written and numerical text). The child must 462 

draw on knowledge from long-term memory, even at the most basic level such as recognising the Arabic 463 

numeral ‘2’ as representative of a quantity of two. Attention must be focused on the relevant information in 464 

order to complete the task in written form and this information can be verbal (e.g., reciting a number) or 465 

spatial such as a reliance on a workspace to support a transition from concrete informal knowledge to formal 466 

operation (see Holmes et al., 2008). 467 

Counting ability was related to visual storage and processing, and this might be best explained by the 468 

TBRS model of WM (Camos & Barrouillet, 2011). It is noted that the combined abilities of processing and 469 

storing information reflect the multicomponent model (Baddeley & Hitch, 1974), but a negative relationship 470 

between storage and processing in WM tasks would suggest that the greater a child’s capacity for storing 471 

visual information, the faster they are at processing numbers. This trade-off between processing and storage 472 

is in line with the TBRS model that posits there is a need to rapidly switch attention from processing to 473 

storage in order to maintain relevant information when pursuing a known goal. The faster a child’s 474 

processing ability, the better able they are to switch attention and thus maintain information for longer 475 

periods before it decays. Although it is noted that the processing and storage tasks in the current study were 476 

not integrated (i.e., they were not part of the same task, which does place limits on the conclusions), the 477 

links between counting and visual processing and storage could imply a greater role for processing beyond 478 

that covered by Cowan’s (e.g., 1999) embedded-process model.  Also, no variance in performance on any 479 

academic measures was explained by any of the other processing tasks. This suggests there may be some 480 

meaningful separability of types of processing, a finding which does not wholly support other studies (e.g., 481 

Bayliss et al., 2003) which have argued for domain-general processing in children, as opposed to domain-482 

specific storage. There are presently no models of WM that argue for discrete types of processing (i.e., 483 

verbal, visual, spatial). However, findings from a recent study by Alghamdi et al. (2021) suggest that visual 484 

processing ability relates only to the development of visual WM and not verbal WM in 5- to 7-year-olds, 485 

supporting the suggestion here that types of processing within WM might be discrete. As the Alghamdi et al. 486 

study only examined visual processing ability, there is value in further investigating visual, spatial and verbal 487 

processing to understand links with the development of the respective storage abilities in WM.  This possible 488 

enhanced structure of WM could better inform the links between WM and academic outcomes. 489 

The current study provides some insights as to why the literature continues to be so varied, with 490 

differing relationships between WM and reading and mathematics found, depending on the different 491 
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cognitive tasks used. This may reflect a phenomenon similar to that related to the Miyake et al. (2000; 492 

Miyake & Friedman, 2012) model of executive function. That is, when different measures are used for 493 

(supposedly) the same executive abilities, disparate relationships with academic abilities are found (see 494 

Gordon et al., 2018, for a review). This is referred to as the task impurity problem (Burgess, 1997). That is, 495 

when participants complete tasks aimed at measuring a specific ability, other cognitive mechanisms are 496 

called into play (e.g., verbal ability in a spatial task). This can make it challenging when trying to isolate what 497 

aspect of cognitive task performance relates to a specific outcome (e.g., reading or mathematics). The 498 

Miyake model does become more stable as its application moves up the age range (Friedman et al., 2016; 499 

see Karr et al., 2018, for a review). In terms of child development this makes sense as, early in childhood, 500 

children make use of a mass of processes that are, to a large degree, not directed toward specific tasks or 501 

contexts. As they become more familiar with external tasks (e.g., reading and mathematics), these processes 502 

become more stable and fractionate out to specific types of function as the tasks demand (Best & Miller, 503 

2010). 504 

At present, for young children, it does not seem to be the case that one model can explain how the 505 

development of certain academic abilities is supported by WM. Although the embedded-process model (e.g., 506 

Cowan, 1999) goes a long way in explaining the four academic abilities included in this study, it is limited in 507 

how it might explain the role of processing. Given what we know about neural processes, it is plausible that 508 

brain mechanisms differentiate according to different underlying task demands. This, in part, is in line with 509 

the findings of Gordon et al. (2020), who found that time-based demands within WM tasks altered 510 

relationships with academic measures, whereby links with storage became weaker and links with processing 511 

were strengthened. Although the limitations of some of the tasks used in the current study are 512 

acknowledged below, there is value in further pursuing the roles of verbal, visual and spatial processing in 513 

WM, and how their influence on educational outcomes might change when task demands are manipulated 514 

(e.g., time allowed for processing). 515 

It is acknowledged that the choice of mathematics measure in the current study limits findings to 516 

very broad ability. There would be benefit in examining these relationships with mathematical 517 

subcomponents, such as those used by Gordon et al. (2021; see also Allen et al., 2019) in their 518 

developmental investigation into the WM-mathematics relationship. Similarly, it would be informative to 519 

apply the method employed in the current study to different age groups to better understand how the 520 

relationships examined here change in younger and older children. It must also be noted that the 521 

mathematics measure used in the current study was not consistent across the two schools involved. The end 522 

of year mathematics grades awarded by the form teachers were used to minimise a risk of findings being 523 

confounded by differences in the curriculum between schools. A comparison of the correlations between 524 

each of the cognitive measures and the mathematics measure revealed a possible significant difference 525 
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between the schools with regard to the link with verbal storage. Further analysis indicated that this 526 

difference may be negligible. However, it is acknowledged that a consistent mathematics measure for all 527 

participants would be preferable. In addition, it is possible that some of the cognitive tasks used could 528 

explain some of the links with academic abilities. For example, the fact that the verbal storage task used 529 

numbers might explain the link with mathematics. However, set against this, a study by Oakhill et al. (2011) 530 

found that the predictive nature of WM tasks did not depend on the processing stimuli being either word- or 531 

number-based. This is in line with other studies that have found different processing stimuli in WM do not 532 

affect relationships with academic abilities; rather it is the separability of processing and storage skills that 533 

explain this link (Bayliss et al., 2003; 2005).  534 

In summary, the current study found that verbal storage was important for verbal comprehension 535 

and reading, and spatial storage was additionally important for reading. However, for counting, visual 536 

processing and storage both played a role, but only verbal and spatial storage were relevant for 537 

mathematics. We have argued that cognitive resources for tasks that did not require internal representations 538 

of the stimuli being monitored related mainly to storage, and were largely verbal and spatial in nature. 539 

However, when the tasks did not have externally presented representations (i.e., the numbers sequence in 540 

counting tasks), there was a draw on visual storage and processing abilities. Additional research could further 541 

examine whether there is indeed a difference in cognitive demands for these internalised tasks. 542 

Furthermore, investigation into the possible meaningful separability of types of processing could lead to the 543 

development of a new or enhanced WM model, which might better inform interventions and reasonable 544 

adjustment for children who struggle with reading and mathematics due to WM deficits.  545 
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4.1 Tables 546 

 547 
Table 1: Mean age, standard deviation and range at first and last testing session 548 

Variable (n = 92; 51 females, 41 males) Mean SD Min Max 

Age at testing first session (in months) 93.95 4.23  86 103 

Age at testing last session (in months) 97.76 3.55  92 107 

 549 

Table 2: Sequence of tasks within each testing session. 550 

Session Ability 

One 1. Counting 

2. Verbal storage 

3. Spatial storage 

Two 4. Reading 

5. Spatial processing 

6. Visual processing 

7. Verbal comprehension 

Three 8. Verbal processing 

9. Visual storage 

 551 

Table 3: Mean and standard deviations for all cognitive and academic measures 552 

Task Mean SD Min Max Values winsorized 

Mathematics1 8.26 1.34 6 11 1a 

Reading2 67.37 8.1 47 80 2b 

Verbal Comprehension (s) 3.04 1.6 0.89 7.07 2a 

Counting Ability (s) 123.85 37.33 45 202 1a 

Verbal Storage (TTC) 28.98 3.53 22 37 3a 

Verbal Processing (s) 33.65 3.77 24 43 1a 

Visual Storage (TTC) 18.54 4.3 8 28 0 

Visual Processing (s) 3.32 2.07 0.89 12.9 1a 

Spatial Storage (TTC) 24.26 3.02 17 31 0 

Spatial Processing (s) 21.23 6.43 12 36 4a 

1 = school grade converted; 2 = total words correct; S = seconds; TTC = total trials correct; a = above the mean; b = below the mean 553 
 554 
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Table 4: Correlation between all cognitive and academic measures 555 

 Reading 
Verbal 

Comprehension Counting 
Verbal 

Storage 
Verbal 

Processing 
Visual 

Storage 
Visual 

Processing 
Spatial 
Storage 

Spatial 
Processing 

Mathematics .522** .085 -.423** .284** -.002 .173 -.188 .326** -.186 

Reading - -.143 -.415** .320** -.127 .034 -.193 .293** -.010 

Verbal Comprehension  - -.118 -.216* -.155 .038 .052 .056 -.046 

Counting   - -0.009 .312** -.365** .313** -.290** .093 

Verbal Storage    - -.046 .057 .065 -.049 -.026 

Verbal Processing     - -.249* .019 -.359** .158 

Visual Storage      - -.094 .338** .047 

Visual Processing       - -.211* .060 

Spatial Storage        - -.196 
 *p < .05, **p < .01 556 

 557 

Table 5: Comparison of correlations (r’s) between school maths grades and cognitive measures in each of the 558 

two schools 559 

Verbal storage 
Verbal 

processing 
Visual 

storage 
Visual 

processing 
Spatial 
storage 

Spatial 
processing 

Z = -1.673 
p = .047 

Z = .730 
p = .233 

Z = .084 
p = .467 

Z = -.528 
p = .299 

Z = -1.024 
p = .153 

Z = -1.139 
p = .127 

 560 

Table 6: Multiple regressions showing combined predictors of performance on academic measures  561 
 Overall model Verbal 

storage 

Verbal 

processing 

Visual 

storage 

Visual 

processing 

Spatial 

storage 

Spatial 

processing 

Mathematics F(6,83) = 4.12** 

Adjusted R2 = .17 

t = 3.091** 

β = .300 

t = -.475 

β = -.050 

t = .427 

β = .045 

t = -1.392 

β = -.138 

t = .2.271* 

β = .253 

t = -1.119 

β = -.112 

sr2  .089 .002 .002 .018 .048 .012 

Reading F(6,83) = 4.35** 

Adjusted R2 = .18 

t = 3.660*** 

β = .353 

t = -.406 

β = -.042 

t = -1.161 

β = -.121 

t = -1.1689 

β = -.166 

t = 2.872** 

β = .318 

t = .825 

β = .082 

sr2  .123 .002 .012 .026 .076 .006 

Verbal 

comprehension 

F(6,81) = 1.11 

Adjusted R2 = .01 

t = -2.139* 

β = -.231 

t = -1.240 

β = -.145 

t = .169 

β = .020 

t = .673 

β = .074 

t = -.060 

β = -.007 

t = -.320 

β = -.035 

sr2  .052 .017 <.001 .005 <.001 .001 

Counting F(6,83) = 4.86*** 

Adjusted R2 = .21 

t = -.042 

β = -.004 

t = 1.877 

β = .194 

t = -2.652* 

β = -.272 

t = 2.759** 

β = .267 

t = -.539 

β = -.059 

t = .443 

β = .043 

sr2  <.001 .031 .063 .068 .003 .002 

*p < .05, **p < .01, *** p < .001; sr2 = squared semi-partial correlations for each predictor against each outcome 562 

 563 
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