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COVID-CT-Mask-Net: Prediction of COVID-19 from CT
Scans Using Regional Features

Aram Ter-Sarkisov

Abstract We present COVID-CT-Mask-Net model that

predicts COVID-19 in chest CT scans. The model works

in two stages: in the first stage, Mask R-CNN is trained

to localize and detect two types of lesions in images. In

the second stage, these detections are fused to classify

the whole input image. To develop the solution for the

three-class problem (COVID-19, Common Pneumonia

and Control), we used the COVIDx-CT data split de-

rived from the dataset of chest CT scans collected by

China National Center for Bioinformation. We use 3000

images (about 5% of the train split of COVIDx-CT) to

train the model. Without any complicated data normal-

ization, balancing and regularization, and training only

a small fraction of the model’s parameters, we achieve a

90.80% COVID-19 sensitivity, 91.62% Common Pneu-

monia sensitivity and 92.10% true negative rate (Con-

trol sensitivity), an overall accuracy of 91.66% and F1-

score of 91.50% on the test data split with 21192 im-

ages, bringing the ratio of test to train data to 7.06. We

also establish an important result that regional predic-

tions (bounding boxes with confidence scores) detected

by Mask R-CNN can be used to classify whole images.

The full source code, models and pretrained weights are

available on

https://github.com/AlexTS1980/COVID-CT-Mask-Net

1 Introduction

Since the start of COVID-19 pandemic a large num-

ber of deep learning models predicting COVID-19 from
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chest CT scans and x-rays has been developed. One

of the biggest challenges in this area is a three class

problem: COVID-19 vs Common Pneumonia vs Con-

trol/Negative. Solutions for this problem include COVID

Net-CT [1], that consists of a single feature extractor

trained on COVIDx-CT dataset split, COVNet (aug-

mented Res Net50) [2], ResNet18 [3] and LightCNN [4].

Some solutions use an ensemble of networks (AlexNet,

GoogleNet,ResNet18) and majority voting, see [5]. In

order to achieve the state-of-the-art [1] accuracy, large

amounts of data are required to train (about 60K im-

ages) the model, that are often not available, which

explains the need for various augmentations, both for

the data and the classification model.

One approach that is used to augment the classifier,

is the semantic segmentation model, e.g. in [6, 7] UNet

is used as a pre-processing step: its output (mask) is

concatenated with the feature maps to enhance the

predictive power of the model. The advantage of us-

ing a segmentation model is that it is capable of ex-

plicitly learning and predicting areas of lesions associ-

ated with COVID-19. For a binary classification prob-

lem, COVID-19 vs non-COVID-19, COVID-CT [8] and

Joint Classification and Segmentation (JCS) [7] models

are publicly available. COVID-CT concatenates lung

masks predicted by UNet with deep image features ex-

tracted using DenseNet169 and ResNet50 to predict

the class, achieving an overall accuracy of 89% on the

test data of about 350 images. JCS uses a similar ap-

proach, but with additional loss functions at deep layers

(multiscale training), achieving an F1 score of 0.783 on

the test data of about 120K images. Recently, in [9] a

novel method was introduced that alleviates the lack

of COVID-19 data by generating COVID-19 chest CT

scans from lung cancer scans using CycleGAN [10]. A

number of classifiers, such as ResNet50 and VGG16 are
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trained on the fusion of the generated and real COVID-

19 images. Advanced methodology based on convnets

and wavelets optimized using biogeography-based opti-

mization was introduced in [11] to classify COVID-19

and negative images. Another approach in [12] fused

convnets and Graph convolutional nets. This paper in-

troduced a number of novelties, such as modifications

of convnet operators: pooling, cropping, histogram nor-

malization, etc. Other methodologically advanced mod-

els, such as [13] experimented with the truncation of

the feature extractors and fusion of features on a small

dataset with four classes; in [14] relation among differ-

ent images is captured using Graph Neural Net, which

is fused with a ConvNet; [15] introduced a seven-layer

ConvNet with new operators like stochastic pooling and

a range of data pre-processing and augmentation tech-

niques. At least one recent publication [16] discusses

the use of Mask R-CNN for predicting COVID-19 from

the segmentation of CT scans.

A number of review papers compared different mod-

els directly to establish the best one for accuracy and

COVID-19 sensitivity. From these papers, it appears

that for the chest CT scans data, models with ResNet50,

ResNeXt and DenseNet121 feature extractors produce

the highest overall accuracy across a number of datasets.

For further details see [17–19].

The majority of COVID-19 deep learning models use

radiography (x-rays) data due to its prevalence, e.g.

the state-of-the-art COVID-Net [12] that has an archi-

tecture similar to COVIDNet-CT. Also, the majority of

published solutions solve two-class problems mentioned

above. To the best of our knowledge, only COVIDNet-

CT [1], LightCNN [4], COVNet [2] and ResNet18 in [3]

use chest CT scans for a 3-class (COVID-19, Common

Pneumonia, Control). This problem is more challeng-

ing due to the similarities and subtle differences be-

tween COVID-19 and Common Pneumonia (CP) on CT

scans. For the discussion of these differences see [20–23].

These models have a number of drawbacks that we

would like to address. COVIDNet-CT [1] requires a

large training data with various augmentations and class

balancing to achieve the reported accuracy and COVID-

19 sensitivity, COVNet [2] was evaluated on a small

dataset (about 500 images), the model using ResNet18

as a feature extractor [3] is not publicly available. Also,

it reported a relatively low COVID-19 sensitivity (81.20%)

and it was evaluated on a small data (90 images). Light

CNN’s reported COVID-19 sensitivity is also quite low,

and it was also evaluated on a small dataset. The biggest

drawback though, is that these models were evaluated

Fig. 1: Examples of chest CT scans from the segmen-

tation dataset with their ground truth masks. Upper

row: major lungs masks, major presence of both GGO

(red) and C (blue) classes, middle row: average lung

mask, negative slice (no lesions), bottom row: small

lung mask, small presence of GGO. In our implemen-

tation all lung masks are merged with the background.

on the test split that was a fraction of the training split,

see Table 1. For further discussion of the pitfalls and

limitations of COVID-19 models see [24] and Section 5,

which raises a question of overfitting and generalization

to other datasets.

In this paper we would like to address some of these

shortcomings by extending the semantic segmentation

and classification solution (e.g. in [6]) to instance seg-

mentation and COVID-19 classification using Mask R-

CNN. Mask R-CNN [25] and Faster R-CNN [26] are the

state-of-the-art models in instance segmentation and

object detection. Mask R-CNN is an extension of Faster

R-CNN with an object mask prediction branch. This

is different to semantic segmentation models like Fully

Convolutional Network (FCN) [27] and UNet [28], which



(a) Number of lesion instances of each type/image.
Left column: GGO, right column: C

(b) Ratio of the total area of instances of each type
to the image size. Left column: GGO, right column:
C

Fig. 2: Distribution of the COVID-19 correlates in the

segmentation data. The absolute majority of images

have a small number (< 5 occurrences of each type) and

the absolute majority of them are very small: GGO are

< 2% of the image size and C are < 1%. This means

that CT scans contain mostly a small number of small

lesion occurrences.

predict objects at pixel level. Mask R-CNN localizes

each object independently of others, by predicting their

location (bounding box coordinates) using Region Pro-

posal Network (RPN) and Regions of Interest (RoI).

Each predicted object has therefore three properties:

bounding box, class and mask. The strength of Faster

and Mask R-CNN comes from the fact that the model

constructs batches of data from each image to make pre-

dictions about the instances. This leverages the scarcity

of the training data, and we use this strength both to

obtain accurate predictions and use a small sample of

images for training. We augment Mask R-CNN with a

classification module and extend Mask R-CNN’s abil-

ity to detect separate objects to the classification of the

whole image. The novelty of our approach to COVID-19

prediction can be summarized in the following way:

1. Results: we use approximately 5% of the COVIDx-

CT training data, (this is approx. 3% of the whole

CNCB-NCOV dataset), to train the model, and,

without any data and model augmentations, e.g.

class weights, background removal and batch bal-

ancing, on which COVIDNet-CT depends, achieve

90.80% COVID-19 sensitivity, and 91.66% overall

accuracy on the full test split (21192 images). The

ratio of the test to the training split is 7.06,

Fig. 3: Overall flowchart of the algorithm. Normal ar-

rows: data and labels, dotted arrow: weights copy from

Mask R-CNN to COVID-CT-Mask-Net, broken arrows:

copy all weights for the classifier’s evaluation.

2. Methodology: we repurpose Mask R-CNN to predict

the class of the whole image by leveraging the ability

of Mask R-CNN to extract regions of interest (RoIs)

from deep features and obtain spatial predictions

(bounding boxes) from them to construct a batch of

ranked regional predictions in each image and use it

to predict the global (image) class.

3. Open-source solutions: We develop, train and eval-

uate two solutions: one for the segmentation and

one for the classification problem, by training two

models. Mask R-CNN segmentation model predicts

and segments instances of Ground Glass Opacity

and Consolidation in chest CT scans, COVID-CT-

Mask-Net extends this model to predict the class of

the image. Models’ code and weights are available

on Github.

In short, we use much less training data than, achieve

both better overall accuracy and COVID-19 sensitivity

than other OS solutions, and our solution has a very

good potential for generalization to other datasets, due

to the ratio of test to training data. In Section 2 we dis-

cuss the datasets for both tasks, in Section 3 we intro-

duce the segmentation and classification models, Sec-

tion 4 introduces the training setup, experimental re-

sults and comparison to other models, Section 5 reports

ablation studies and methodology limitations, Section

6 concludes.

2 Data

2.1 Segmentation data

For our segmentation model we use the publicly avail-

able dataset released by China National Center for Bioin-

formation (CNCB) [6], consisting of 750 scans across



150 patients with various stages of COVID-19. A total

of 3 classes are segmented at pixel level: clean lungs,

which we merged with the background due to its preva-

lence, and two types of lesions: Ground Glass Opacity

(GGO) and Consolidation (C).

These two types of lesions are often associated with

various stages of COVID-19 and other types of pneumo-

nia, so we treat them as positive classes. We randomly

split the provided dataset into 650 training and vali-

dation and 100 test images, maintaining the patients’

consistency. Due to the shape of the lungs, some slices

of COVID-19 patients do not contain positive classes,

and were therefore removed from the study.

The challenges of the data are summarized in Figure

2: it is clear that positive scans can contain a small

number of small objects of either class, and overall, the

proportion of positive areas to the background is very

low, making the problem of segmenting them a seri-

ous challenge. To avoid overfitting, we merged the clean

lungs regions with the background. Examples of posi-

tive and negative images and their masks are presented

in Figure 1.

In addition to CNCB-NCOV, other open-source seg-

mentation datasets are available, e.g. MosMedData [29],

Zenodo lung and infections segmentation [30] and oth-

ers. One of the key challenges in generalizing segmenta-

tion algorithms to out-of-sample data is the difference

among the input images. Unlike benchmark datasets,

such as Pascal VOC and MS COCO, chest CT scan

datasets were collected using different methodologies

and equipment. The usual approach to minimizing these

differences is image normalization that we used in this

study. Unfortunately, the usual normalization does not

offset these differences. As a result, for all experiments,

we used a single dataset. Nevertheless, development of

data normalization tools and generalization across a

number of datasets is one of our priorities for the future

work.

2.2 Classification data

To compare our model to COVIDNet-CT, we also used

the second part of the dataset provided by CNCB [6],

which is labelled at image level, http://ncov-ai.big.

ac.cn/download and the splits from COVIDx-CT that

was used to train COVIDNet-CT model

(https://github.com/haydengunraj/COVIDNet-CT),

both of which are publicly available. In [1] 104900 im-

ages were partitioned into 60% training, 20% validation

and 20% test data. The difference between COVIDx-

CT and the source data is that for COVID-19 and CP

classes, only scans with observable infected regions were

selected from the patients in those two classes.

One of the advantages of our approach is the size of the

dataset used for training. We randomly extracted 3000

images from COVIDx-CT training split (1000/class, ran-

domized across patients), while maintaining the full size

of the validation (21036 images) and test (21192 im-

ages) splits for the direct comparison. In the valida-

tion split, the shares or Normal, CP and COVID-19

classes are 43%/35%/22%, in the test split they are

45%/35%/20%. As a result, the ratio of test to train

split is 7.06, which is much higher than COVIDx-CT

(0.353). These splits are also available on our Github

repository.

3 Methodology

The overall flow of the algorithm is presented in Figure

3. Our solution is split into three stages: first, we train,

validate and test Mask R-CNN to predict boxes, classes

and masks of GGO and C areas. After that, this model

is converted to COVID-CT-Mask-Net by augmenting it

with a classification module S that uses ranked bound-

ing box predictions to classify the whole input image

(Figure 4) and the weights are copied from Mask R-

CNN to COVID-CT-Mask-Net. Module S logic is pre-

sented in Figure 5. Finally, COVID-CT-Mask-Net is

tested on the test split discussed above. Overall, func-

tionally, COVID-CT-Mask-Net extends Mask R-CNN

to make global (image class) predictions.

3.1 Mask R-CNN

We start with a brief overview of the functionality of the

segmentation model that is at the core of our approach.

Mask R-CNN can be in one of the two stages: train-

ing and testing. At training stage, ground truth data

(class labels, box coordinates and masks) are used to

compute the loss and update weights. At test time, the

model outputs the predicted boxes, masks and class

confidence. One of its strength is the construction of

batches of predictions from each image, which to some

extent alleviates the demand for more data.

At training time, the backbone, which consists of a

ResNet feature extractor and Feature Pyramid Net (FPN,

[31]) extracts features from the input image and outputs

the final image-level feature map. Backbone passes this
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Model
#Total #Trainable

Training Validation Test
Ratio

parameters parameters Test to Train

Mask R-CNN (segmentation) 31.78M 31.78M 650 100 0.153
COVID-CT-Mask-Net (only S)

31.52M
2.25M

3K 20.6K 21.1K 7.060COVID-CT-Mask-Net (S+BN) 2.36M
COVID-CT-Mask-Net (full) 31.52M
LightCNN [4] 1.20M 1.20M 1528/1768 118/138 392/203 0.258/0.117
COVNet [2] 25.61M 25.61M 3K 370 438 0.129
ResNet18 [3] 11.69M 11.69M 528 90 0.170

Table 1: Comparison of the models’ sizes and the sizes of the data splits used for training, validation and testing.

Fig. 4: Mask R-CNN (Backbone+FPN, RPN, RoI) and COVID-CT-Mask-Net architectures. The architecture of

Mask R-CNN at training and test time is the same, except that at training time LSEG is computed for RPN

and RoI. At test time, RPN and RoI do not compute any losses. See Section 3.1 for a detailed discussion of its

functionality. The new classification module S (Figure 5) takes the batch size N of the ranked encoded boxes with

their confidence scores as an input and predicts the class of the input image. Normal arrows: tensors or data,

broken arrows: boxes, dotted arrow: image class label. Best viewed in color.

Fig. 5: Batch output from RoI layer and image classification module S of COVID-CT-Mask-Net: RoI batch is

reshaped from N × 5 to a feature vector size 1 × N · 5 by concatenating the encoded boxes (green) and their

scores(red, blue), followed by two fully connected layers, and the last prediction layer outputting 3 logits (scores),

1 per image class. The colors in each element reflect the normalized (sigmoid) confidence score (red:high, blue:low).

Best viewed in color.

map to the Region Proposal Net (RPN) module that

uses a large number of anchors (predefined rectangles)

and these features, to construct a batch of candidate

bounding boxes and their objectness (object vs back-

ground scores) and compute losses by matching anchors

to the ground truth.

Next, Region of Interest (RoI) module maps these can-

didates to the backbone’s feature map and extracts re-

gional feature maps (also known as regions of interest)

of the predefined dimensionality. This is done in three

steps: 1) align the box coordinates predicted by RPN to

the feature map, 2) crop the local features to match the

coordinates of the object’s box, 3) resize the cropped

features to the predefined size using RoIAlign function-

ality. As a result, each region of interest has the same

dimensionality, C × H × W (C: number of channels,

H,W : height and width of the region).



1 Define: E:number of epochs, and COVID-CT-Mask-Net hyperparameters.
2 for 1 to E do

Input: Input images and their labels
3 Process the input image through the backbone and RPN, output RPN candidates

Region Of Interest: Extract regions of interest and batchify N predictions
Module S: Convert batch to feature vector, extract global features and class logits
COVID-CT-Mask-Net Output: Vector of image class predictions

4 Compute binary cross-entropy loss
5 Update the weights using backpropagation

6 end
7 Return the best model

Algorithm 1: COVID-CT-Mask-Net training protocol.

First, RoIs output encoded box coordinates, that are

used to compute the box loss. For each box, its class

and mask losses are computed too. In total, 5 loss func-

tions are computed: objectness loss, LRPNObj , LRPNBox box

coordinates in the RPN module, class LRoICl loss, box

coordinates in RoI LRoIBox and pixel-wise loss for masks,

LMask (Equation 1). Mask loss is class-aware, i.e. its

loss is calculated only for the correct class. Mask and

bounding box losses are calculated only for positive pre-

dictions.

LSEG = LRPNObj + LRPNBox + LRoICl + LRoIBox + LMask (1)

All loss terms in Equation 1 are taken from the respec-

tive publications (LRPNObj , LRPNBox , LRoICl , L
RoI
Box from Faster

R-CNN and LMask from Mask R-CNN) and their out-

of-the-box implementation from Torchvision library

v0.8.0.

At test time, the model outputs predictions that con-

sist of decoded boxes, masks and class confidence scores.

Those that have confidence score below a certain thresh-

old are discarded. Also, NMS threshold is used to dis-

card overlapping predictions with higher confidence

scores. For the details of NMS threshold, see Section

3.2.3. Also, some important bits of RoI functionality are

discussed in Section 3.2.1. Final box and mask predic-

tions are resized to the object’s and image dimensions.

3.2 COVID-CT-Mask-Net

The main motivation for the development of the clas-

sifier is to explore the idea of fusing local (object) in-

formation to make a global (image) prediction (image

class). In this study, we select a set of RoI encoded boxes

and class confidence scores, as they can explicitly de-

tect both lesions and the background. In this section

we introduce our model and explain its functionality.

The training of COVID-CT-Mask-Net algorithm is for-

malized in Algorithm 1 and visualized in Figure 4. The

architecture of the image classification layer S is pre-

sented in Figure 5. The image class loss is computed

using Equation 2, where ŝk is the vector of class logits

(COVID-19, CP, Control) output by the model, σ is a

sigmoid function and C∗ is the correct class. We chose

to use binary cross-entropy loss (each class is either 0

or 1) instead of the multilabel cross-entropy (softmax)

to improve the total loss computation.

LCLS = −
C∑
k=1

Lk × log σ(ŝk) (2)

Lk =

{
1 if C∗ = k

0 otherwise

3.2.1 Detection of regions of interest

The backbone, anchor scales and sizes, architecture of

RPN and RoI layers in COVID-CT-Mask-Net are iden-

tical to Mask R-CNN, but RoI hyperparameters and

functionality is quite different and needs to be put in

the context of the classification problem.

As discussed previously, at test time, each region pre-

dicts objects’ classes and box coordinates (including

the background class). RoI collects all of these predic-

tions, filters out backgrounds, and outputs positive ob-

ject predictions with class confidence score exceeding a

predefined threshold (RoI confidence scoreθ). The max-

imum number of predictions is also capped at a prede-

fined number N . We adapt this functionality for the

image classification problem.

Our objective is to extract a N (fixed number, defined

as a hyperparameters) of predictions from each image:

obviously, in Negative images there are no lesions at



Backbone
Anchor Anchor RPN RoI RPN RoI RPN RoI RPN RoI RoI

sizes scales NMSθ NMSθ batch batch output output∗ IoUθ IoUθ conf. score∗θ
ResNet50

22:5 0.1, 0.25, 0.5,
0.75 0.25 256 256 1000 100 0.75 0.75 0.05

+FPN 1, 1.5, 2

Table 2: Key hyperparameters of Mask R-CNN. Hyperparameters marked with ∗ are used only at test time.

Backbone
Anchor Anchor RPN RoI RPN RoI RoI Classifier

sizes scales NMSθ NMSθ output batch class. scoreθ Module S

ResNet50
22:5 0.1, 0.25, 0.5,

0.75 0.75 1000 256 -0.01 2.26M
+FPN 1, 1.5, 2

Table 3: Key hyperparameters of COVID-CT-Mask-Net

all, and our objective is to address this fact. We do this

by accepting all N predictions, regardless of their con-

fidence scores. This is achieved by setting the threshold

that we call RoI classification scoreθ to a value that

guarantees acceptance of exactly the predefined num-

ber of predictions.

We discard the decoded, object and image-adjusted box

coordinates predicted by RoI, and, instead, use the en-

coded ones (confidence scores are kept the same). Next,

all of these predictions are ranked in the decreasing or-

der of their confidence scores. This ranking is essential

for the next step. At this stage we are ready to extract

the output batch of fixed size N from RoI (N = 256 in

Table 3) of top-ranking predictions from this set, which

is used as an input in the image classification module.

The challenge of the classification problem is that RoI

box scores for lesions in Control images are very low,

barely above 0. Additionally, in order to keep the batch

size fixed at N , we need a sufficient number of proposals

after discarding highly overlapping and empty boxes.

For this reason, RoI classification scoreθ is set to −0.01,

which ensures both of these condition. As a result, we

extract the same number of predictions from each type

of image. All predictions from Normal/Control images

are in fact background, for the obvious reason, but they

are still ranked in the same decreasing order of confi-

dence scores, however low.

3.2.2 Conversion of the RoI batch to a feature vector

The ranked RoI predictions from the previous step are

concatenated into a batch with dimensions N × 5 (N

predictions × 4 encoded box coordinates + 1 confidence

score), which is illustrated in Figure 5. As a result of

this operation, this batch has three important proper-

ties that the image classification module S can learn:

– Object’s location (encoded box coordinates),

– Object’s confidence score (actual predicted class is

discarded),

– Object’s area (box size, boxes below a threshold are

discarded),

These properties are important factors in determining

the difference between the classes:

– COVID-19 vs Control, CP vs Control: higher box

scores, different box coordinates,

– COVID-19 vs CP: different box coordinates, higher

number of high-scoring boxes, larger box area

Finally, image classification module S accepts the batch

and reshapes it into a single feature vector with dimen-

sionality 1 × (N · 5), by vertically concatenating the

predictions in the batch while maintaining their rank-

ing order explained above. This feature vector is passed

through two fully connected layers in S that outputs

three class logits, predicting the class of the image. Fi-

nally, the loss, Equation 2 is computed and backpropa-

gated through the model (including RoI and RPN lay-

ers), updating the weights.

3.2.3 NMS threshold

As discussed in Section 3.1, this hyperparameter is used

to filter out overlapping predictions, which is essential

to the detection/segmentation problem, both at train-

ing and test stages to avoid multiple predictions for the

same object. For the classification problem, its role is

different. As shown in [23, 32], the frequently observed

difference between COVID-19 and other types of pneu-

monia is the distribution of the location of lesions in

the lungs, e.g. COVID-19 lesions tend to be bilateral

in comparison to other types of pneumonia, therefore

the presence of a larger number of high-scoring over-

lapping box predictions can be learnt by S to indicate

the presence of COVID-19 rather than CP. This is il-

lustrated in Figure 6: left column is the output with

RoI NMSθ = 0.25, central column is the output with



RoI NMSθ = 0.75. This motivated our choice of se-

lecting RPN and RoI NMSθ for Mask R-CNN, set out

in Tables 2 and COVID-CT-Mask-Net, set out in Ta-

ble 3. This threshold ensures a higher number of high

scoring predictions, which are an important factor in

distinguishing between COVID-19 and CP.

4 Experiments and Results

4.1 Mask R-CNN

We design hyperparameters of Mask R-CNN to max-

imize its capacity to detect and segment a number of

small objects of varying shapes, which are widespread in

chest CT scans of patients with COVID-19, see Table 2,

Figures 1 and 2. Most anchor sizes are small (< 32×32

pixels) and have a large number of scales (6 in total

between 0.1 and 2), allowing for accurate detection of

various shapes of GGO and C. Examples of Mask R-

CNN’s outputs are presented in Figure 6.

Mask R-CNN model was trained for 100 epochs on the

train split using Adam optimizer [34] with a learning

rate of 1e− 5 and regularization factor if 1e− 3. Tables

1 and 2 report the key hyperparameters of Mask R-

CNN. At training time, RPN/RoI IoUθ are thresholds

for determining whether the prediction is positive. RPN

and RoI batches are the number of candidates selected

for training. RPN output is the set of positive predic-

tions passed from RPN to RoI at both stages. At test

stage, RoI output is the cap on the number of predic-

tions, and RoI confidence scoreθ is the cut-off value for

positive predictions. RPN/RoI NMSθ are as described

in Section 3.2.3, and are also the same in both stages.

To evaluate the model on the test split in Table 1 we

use the main criteria from MS COCO dataset intro-

duced in [35]: average precision at IoU thresholds, 0.5

and 0.75, and a mean average precision across 10 IoU

thresholds, 0.5 : 0.95 with a step of 0.05. For each image

in the test split, the model’s predictions are compared

to the ground truth masks (GGO, C, see Figure 1). If

the IoU between the predicted and gt masks exceeds

the IoU threshold, and the class prediction is correct,

it is considered a True Positive. Other predictions are

False Positives. Gt objects without positive predictions

are False Negatives. Average precision across all images

is similar to a Precision-Recall curve. For further details

see [35].

Segmentation results are reported in Table 6. Back-

bones in both networks were initialized from the weights

of the model trained on ImageNet. We trained two

Mask R-CNN models, which is a common practice in

the literature: only RPN and RoI modules (‘heads’),

and the ‘full’ model: backbone, RPN and RoI. The

‘full’ model strongly outperforms the ‘heads’ across all

IoU thresholds. We explain it by the fact that both

coarse and semantic features in the pretrained back-

bone do not immediately translate from the general-

purpose ImageNet model to a specific chest CT scans

dataset. Although both results appear strong, we could

not compare them to any benchmark, as we did not

find another Mask R-CNN model trained on a chest CT

scans dataset that uses the same precision metrics, and

our results cannot be directly compared to MS COCO

leaderboard. Examples of lesion instance prediction by

Mask R-CNN are presented in Figures 6.

4.2 COVID-CT-Mask-Net

The weights from the best Mask R-CNN model were

used to initialize COVID-CT-Mask-Net. As explained

in Section 3, mask branch in RoI is not used in our

implementation, which is reflected in the model sizes

(#Total parameters in Table 1).

Key hyperparameters for the training of COVID-CT-

Mask-Net are presented in Table 3 (the number of train-

able parameters in S is 2.26M). We reimplement Torchvi-

sion’s Mask R-CNN library for the necessary augmen-

tation and hacking. During the training of the classi-

fier, RPN and RoI do not compute any loss. RoI clas-

sification scoreθ, as mentioned above, is set to −0.01

to accept all box predictions, however low-scoring, to

guarantee the RoI batch size is equal to 256, this is

particularly important for Negative images without le-

sions. In their case all predictions are very low-scoring

(e.g. 0.001), which is a pattern that S can learn. RPN

and RoI NMSθ defined in Section 3.2.3 are set to 0.75.

RPN output is the same as in Mask R-CNN.

We train COVID-CT-Mask-Net in three different ways,

which determines the total number of trainable param-

eters, see Table 1: 1) only classification module S, 2)

S+batch normalization (BN) layers in the backbone,

3) all weights.

To train the full model, a large hack was applied: all lay-

ers, including the backbone, were set to test mode (no

targets for object detection and segmentation, batch

normalization layers’ tracking of means and standard

deviations switched off), while the gradients were com-

puted for all layers. Therefore, although formally, RPN

and RoI were in the test mode, in fact their weights were

updated using image class loss. We use a small fraction
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(a)

(b)

Fig. 6: GGO and C (Figure 6a) and only GGO (Figure 6b) segmentation by the same model with RoI NMSθ = 0.25

in the left column and RoI NMSθ = 0.75 in the central column. The right column is the ground-truth mask for

each scan slice. Predictions with scores above RoI confidence scoreθ = 0.05 for each detection and all pixels in

mask logits> 0 are considered positive.

Model COVID Pneumonia Normal Overall F1-score

COVID-CT-Mask-Net (only S) 76.30% (81.13%) 71.13% (67.70%) 82.37% (83.38%) 77.20% 77.30%
COVID-CT-Mask-Net (S+BN) 90.80% (94.75%) 91.62% (87.08%) 91.10% (94.33%) 91.66% 91.50%

COVID-CT-Mask-Net (full) 82.26% (87.01%) 91.70% (95.22%) 97.21% (95.33%) 92.22% 92.93%

Table 4: Results on COVIDx-CT test split (21192 images). Sensitivity (PPV) per class. Best results in bold

Model COVID Sensitivity Overall accuracy COVID prevalence #Test images

Ours (best) 90.80% 91.66% 20.00% 21191
ResNet50 [8] 85.90% 88.10% 46.84% 746
LightCNN [4] 88.23% 84.56% 25.39% 392
COVNet [2] 90.00% 89.04% 30.00% 434
ResNet18 [3] 81.30% 86.70% 35.79% 210

DarkCOVIDNet [33] 85.25% 87.02% 50.00% 1000
DreNet [17] 93.00% 87.00% 47.38% 57
WRE [11] 86.40% 86.12% 50.00% 29

Table 5: Comparison to OS models trained on the 3-class problem (COVID-19 vs CP vs Control). Due to the

difference in sample size/COVID-19 prevalence, in fact, models are not directly comparable.

of the dataset of COVIDx-CT for training, while main-

taining the full size of the test and validation sets. We

use Adam optimizer [34], the learning rate of 1e − 5,

weight regularization parameter of 1e − 3, and train

each algorithm for 50 epochs.

As pointed out in Sections 1 and 2, the share of test

to training split in our experiments is very high com-

pared to other solutions. We explain high accuracy of

the models trained on this small split by Mask R-CNN’s

innovative functionality to construct batches of candi-

dates from each image in RPN and RoI modules. This

functionality greatly augments the classifier’s ability to

learn from a single image and reduces its demand for



larger dataset.

To evaluate each model, we compute the sensitivity (re-

call) and precision (positive predictive value) for each

class Cl, overall accuracy and class-adjusted F1 score,

see Equations 3 - 6 (TP: true positive, FP: false posi-

tive, FN: false negative). In Equation 6 wCl is the share

of class Cl in the test split.

Sens(Cl) =
TP(Cl)

TP(Cl) + FN(Cl)
(3)

Prec(Cl) =
TP(Cl)

TP(Cl) + FP(Cl)
(4)

Overall Accuracy =

∑
Cl TP(Cl)∑

Cl TP(Cl) +
∑
Cl FN(Cl)

=

∑
Cl TP(Cl)∑

Cl TP(Cl) +
∑
Cl FP(Cl)

(5)

F1 score =
∑
Cl

wCl ·
2 · Sens(Cl)Prec(Cl)

Sens(Cl) + Prec(Cl)
(6)

Best results for each version of COVID-CT-Mask-Net

are presented in Table 4. The variant where we train

S and batch normalization layers achieved the highest

COVID-19 sensitivity, while keeping the sensitivity to

other classes, overall accuracy and F1-score above 90%.

The model training all parameters achieves the high-

est overall accuracy and F1-score and the second best

COVID-19 sensitivity. Comparison of the models’ sizes

and main results for other COVID-19 classifiers for 3

classes are presented in Tables 1 and 5.

Although S adds only a small overhead in terms of

weights, the results are quite strong compared to other

models with a feature extractor + classification head

architecture, that are mostly much larger. To obtain

results for LightCNN and COVIDNet-CT we used the

best reported models (resp. Model1 and COVIDNet-

CT-A), COVNet and ResNet18 in [3] report only one

model. The results for COVIDNet-CT were obtained by

running the publicly available model on the test split.

Results for the other models are taken from the re-

spective publication. Ours(best) is the model with the

highest COVID-19 sensitivity.

Although OS models in Table 5 report very high ac-

curacy and COVID-19 sensitivity, they are not directly

comparable for a number of reasons. These reasons are

discussed in-depth in [24] and include the size of the

datasets, reproducibility of the solutions, lack of the de-

tails of the training and test protocols, and many other.

These methodological flaws prevent their comparison,

generalization, and application in-the-wild, i.e. in radi-

ological departments. In this study, to address the issue

of the size of the datasets, we used CNCB-NCOV, the

largest open-source dataset to adapt and evaluate our

models.

5 Ablation Studies

We perform additional testing of the introduced model.

First, we use the remaining 58782 images from the train-

ing dataset of CNCB-NCOV that were left after the

random the sampling of 3000 training images. Results

in Table 7 are consistent with the test results in Table 4.

To address the issue of the ability of the model to gener-

alize to out-of-sample data, we use the 2-class publicly

available iCTCF [36, 37] dataset (Table 8) to finetune

the models for 10 epochs. Only 600 images from the

training data were used to finetune each model that

took about 15 minutes on a single GPU. Each model

was evaluated on 12976 images in the test split. Results

in Table 9 confirm the ability of our approach to quickly

and successfully adapt to the new data.

Although in this ablation study we had to turn to an

additional finetuning on the new dataset, we kept the

ratio of the train to test splits low, following the setup

of the base dataset. Fast and simple finetuning proto-

col demonstrate the potential of our model to general-

ize to new data. Nevertheless, we see this as the major

limitation of our solution, that we share, to the best

of our knowledge, with all other COVID-19 solutions,

both that report a very high accuracy one dataset, and

those that claim out-of-the box generalization to other

datasets, because in the latter case the reported accu-

racy on the other dataset is low.

We also addressed other limitations in the COVID-19

literature discussed in [24]: we provided the OS dataset

details, such as test splits and class distribution; crit-

ical hyperparameters for both models, results on the

test splits for both problems; comparison to a set of OS

models; other details, including all remaining hyperpa-

rameters, can be found in the source code in a Github

repository that we made available. Therefore, we mini-

mized the list of methodological flaws discussed in [24],

and our solution can be both verified and used in other

studies.

6 Conclusions

It is often a challenge to find a sufficiently large dataset

to train models for accurate predictions of COVID-19.
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Model AP@0.5 IoU AP@0.75 IoU AP@[0.5:0.95] IoU

Mask R-CNN (head only) 0.511 0.301 0.298
Mask R-CNN (full) 0.565 0.413 0.352

Table 6: Average Precision on the segmentation data test split (100 images). Best results in bold.

Model COVID Pneumonia Normal Overall F1-score

COVID-CT-Mask-Net (only S) 79.21% (86.01%) 70.12% (68.34%) 85.73% (82.28%) 78.56% 78.30%
COVID-CT-Mask-Net (S+BN) 93.18% (96.51%) 90.68% (88.04%) 94.22% (97.31%) 93.89% 93.55%

COVID-CT-Mask-Net (full) 81.14% (85.91%) 90.01% (95.22%) 94.00% (91.32%) 90.22% 90.93%

Table 7: Results on COVIDx-CT left-out train split (58782 images). Sensitivity (PPV) per class. Best results in

bold

Split COVID-19 Negative Total

Train/Val 300 300 600
Test 3701 9275 12976

Table 8: Summary of the iCTCF-CT [36,37] classifica-

tion dataset.

Model COVID-19 Negative F1score

Ours (only S) 85.45% 81.27% 82.01%
Ours (S+BN) 93.91% 91.46% 92.20%

Ours (full) 91.31% 87.27% 88.91%

Table 9: Accuracy results on the iCTCF-CT test split

(12976 images). Best results in bold.

This means that the model must either be trained us-

ing various augmentation tricks, or it is evaluated on a

relatively small dataset, and therefore may not general-

ize well to the new data. One of the strongest features

of COVID-CT-Mask-Net’s methodology is the ability

to train on very small training split relative to the test

split, without any balancing and augmentation tweaks

due to the functionality of Mask R-CNN.

We trained our model on 3000 images from COVIDx-

CT training split, and evaluated it on more than 21192

test images achieving a 91.66% overall accuracy and

90.80% COVID-19 sensitivity. The model can be eas-

ily and quickly adapt to new chest CT scans data to

achieve a high sensitivity to COVID-19. Mask R-CNN

achieved a 0.352 average precision of the segmentation

of instances of Ground Glass Opacity and Consolida-

tion lesions in chest CT scans. The source code with

all models and weights are on https://github.com/

AlexTS1980/COVID-CT-Mask-Net.

Despite these achievements, unlike Faster and Mask R-

CNN, that were trained on large benchmark datasets,

our model at present does not generalize out-of-the-box.

In our future work we will focus on developing models

that, without any additional finetuning, will generalize

to other datasets, and could be introduced in radiology

departments. Very likely, this will include new archi-

tectural solutions, pre-processing algorithms and loss

functions.
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