
              

City, University of London Institutional Repository

Citation: Kyriakou, I. & Tsanakas, A. (2022). Efficient evaluation of alternative reinsurance 

strategies using control variates. European Actuarial Journal, 12(1), pp. 425-431. doi: 
10.1007/s13385-022-00304-6 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/27414/

Link to published version: https://doi.org/10.1007/s13385-022-00304-6

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Efficient evaluation of alternative reinsurance

strategies using control variates

Ioannis Kyriakou and Andreas Tsanakas†

Faculty of Actuarial Science and Insurance, Bayes Business
School (formerly Cass), City, University of London, 106 Bunhill

Row, London, EC2Y 8NE, UK.

*Corresponding author(s). E-mail(s): a.tsanakas.1@city.ac.uk;
Contributing authors: ioannis.kyriakou.2@city.ac.uk;

†These authors contributed equally to this work.

Abstract

In this short communication, we present a new, simple control-variate
Monte Carlo procedure for enhancing the evaluation accuracy of alter-
native reinsurance strategies that an insurance company might adopt.
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1 Introduction

The exposure of insurance portfolios to various risk factors renders their val-
uation using Monte Carlo simulation a computationally intensive task. The
resulting estimates can be inaccurate if the sample sizes they are based on are
not sufficiently large. Increasing estimation accuracy comes with considerable
increases in runtime burden, given the square-root convergence of unbiased
Monte Carlo estimators. This is a notable drawback, as practicable runtimes
are crucial in insurance operations, e.g., the calculation of solvency capital
requirements [1], the valuation of life insurance products [2], the assessment of
insurance-based investment products’ risk-return profiles, the chance-risk clas-
sification of pension products [3], and the evaluation of reinsurance strategies,
which represent a key risk mitigation tool for non-life insurers [4, Chapter 9];
[5].
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2 Evaluating alternative reinsurance strategies using control variates

Monte Carlo simulation convergence can be accelerated by incorporating
variance reduction methods [4, Chapter 9]; [6, Chapter 3]; [2]. In this letter, we
introduce a new control variate that results in a simple, yet efficient, variance
reduction framework for evaluating a reinsurance strategy that a company
considers to employ. The main premise of our approach is the anticipated cor-
relation of the gross and net portfolio losses, with both variables calculated as
standard outputs in model runs. This correlation is exploited to evaluate alter-
native reinsurance strategies efficiently, using a reduced number of expensive
simulations.

2 Methodology

An insurer’s portfolio loss is represented as g(X, λ), where X ∼ F is a random
vector of risk factors and λ a vector of reinsurance parameters. We will focus
on three particular choices for λ:

i) λ0 is corresponds to the case of no reinsurance, therefore g(X, λ0) represents
the gross portfolio loss;

ii) λ1 represents the current reinsurance strategy, therefore g(X, λ1) is the net
portfolio loss;

iii) λ2 represents an alternative reinsurance strategy that the company is
considering, under which the net loss is g(X, λ2).

The insurer is interested in quantities of the form E[ψ ◦ g(X, λ)], where
ψ is a function that represents (tail) risk preferences, e.g., for some thresh-
old t, ψ(z; t) := 1{z>t} or ψ(z; t) := max(z − t, 0) = (z − t)+, yielding,
respectively, the survival function or stop-loss transform. The insurer calcu-
lates E[ψ ◦ g(X, λk)] by simulation for a given reinsurance λk. As part of any
simulation run, the gross loss g(X, λ0) is always evaluated by default. Hence, in
each model run, the gross and net (under some λk) portfolio loss distribution
can be worked out. We assume throughout that random number generation is
computationally cheap, whilst the evaluations of g are expensive.

We distinguish between two model runs:

• Baseline run: we simulate i.i.d samples X̂(i) ∼ F , i = 1, . . . , n̂, and evaluate
g(X̂(i), λ1) and g(X̂

(i), λ0).
• Sensitivity run: we simulate i.i.d samples X̃(i) ∼ F , i = 1, . . . , ñ, and
evaluate g(X̃(i), λ2) and g(X̃

(i), λ0).

We require that the samples generated in the two runs are independent.1

The sample size n̂ of the baseline run is large as we require high accuracy to
calculate quantities with respect to the current portfolio, such as the firm’s

1We are grateful to a referee for the observation that independence of simulated sequences can-
not be generally achieved by just using different seeds in a random number generator. Techniques
for Monte Carlo parallelization can be employed instead [e.g. 6, Section 2.8]. Alternatively, a prac-
tical strategy would be to generate the first set of random numbers with a fixed seed. Then, for the
second set of independent random numbers, one starts again the sequence with the same seed, but
now discarding its initial part already ‘used up’ and only employing subsequent pseudo-random
numbers.
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regulatory capital. Instead, the sample size ñ of the sensitivity run is allowed
to differ – for example it could be ñ < n̂, which cuts computational time
and potentially allows the investigation of multiple alternative reinsurance
strategies.

Through simulation, we are interested in evaluating the change in the port-
folio risk arising from moving from the current reinsurance strategy λ1 to the
alternative λ2. In particular, we seek to compute the quantity

ξ = E[Y2]− E[Y1], where

Yk = ψ ◦ g(X, λk), k = 0, 1, 2.

To calculate ξ, we thus need to carry out both the baseline run and the sen-
sitivity run. Our aim is to provide a variance reduction scheme that allows us
to carry out the sensitivity run with sample size ñ that is substantially lower
than n̂.

We define the following standard Monte Carlo estimators:

µ̂0 =
1

n̂

n̂∑
i=1

Ŷ
(i)
0 , µ̂1 =

1

n̂

n̂∑
i=1

Ŷ
(i)
1 , µ̃0 =

1

ñ

ñ∑
i=1

Ỹ
(i)
0 , µ̃2 =

1

ñ

ñ∑
i=1

Ỹ
(i)
2 .

To estimate ξ, we define the estimator:2

ξ̆β = µ̃2 − µ̂1 − β(µ̃0 − µ̂0).

It is immediate that E[ξ̆β ] = ξ. As for the variance, we have, by independence
of the samples of the two runs, that

V[ξ̆β ] = V[µ̃2 − βµ̃0] + V[µ̂1 − βµ̂0] =
1

ñ
V[Y2 − βY0] +

1

n̂
V[Y1 − βY0],

where the equality follows by identical distribution of the samples. It then
holds trivially that

V[ξ̆β ] =
V[Y2] + β2V[Y0]− 2βC[Y2, Y0]

ñ
+

V[Y1] + β2V[Y0]− 2βC[Y1, Y0]
n̂

,

where C[·, ·] denotes the covariance operator, from which the coefficient value

2An alternative is to carry out the baseline and sensitivity runs based on the same sample size
and starting from the same seed, such that the samples from the two runs are not independent, that
is, estimate ξ by µ̂2−µ̂1. Such use of common samples [7, Chapter 8], has two potential drawbacks.
First, as µ̂2 is also estimated on a sample of size n̂, there are no savings in computational time.
Second, the use of common numbers to evaluate µ̂2 and µ̂1 may be impractical, depending on
the commercial software platform used, as a change from λ1 to λ2 could affect the simulated
sequences, even if the same seed is used (e.g., if g is itself evaluated numerically).



4 Evaluating alternative reinsurance strategies using control variates

β = β∗ minimising the variance of the estimator3 is given by

β∗ =
1
ñC[Y2, Y0] +

1
n̂C[Y1, Y0]

V[Y0]
(
1
ñ + 1

n̂

) .

Finally, we get

V[ξ̆β∗ ] =
V[Y2]
ñ

+
V[Y1]
n̂

−
(
1
ñC[Y2, Y0] +

1
n̂C[Y1, Y0]

)2
V[Y0]

(
1
ñ + 1

n̂

) .

Note that in the special case of the naive estimator, we have ξ̆0 = µ̃2 − µ̂1

with E[ξ̆0] = ξ and V[ξ̆0] = V [Y2] /ñ+ V[Y1]/n̂.
If the gross and net portfolio loss have a high correlation, as is typical in

practice, we can achieve a substantial reduction in the variance of our estimator
with respect to the naive one. It is helpful to have a simple rule of thumb
which would indicate the required correlation level for a modest size ñ to yield
sufficient reduction in variance and, thus, potential computational savings.
Upon requiring the variance estimate of ξ̆β∗ to be of similar value to that of
µ̂1, an approximate calculation, not documented here, yields

ñ

n̂
≈ 1

ρ[Y1, Y0]2
− 1,

where ρ[Y1, Y0] := C[Y1, Y0]/
√
V[Y0]V[Y1]. Hence, it follows that ñ < n̂ when

|ρ[Y1, Y0]| >
√
2/2. This is the same benchmark correlation value that appears

in the standard control-variate setting [7, Chapter 8].

3 Example

Here, we illustrate the use of the estimator ξ̆β∗ in a toy example. Consider
a homogeneous portfolio with 10 lines of business, X = (X1, . . . , X10), and
portfolio loss

g(X, λ) =

10∑
j=1

(Xj −Rj + E[Rj ] + 0.5σ[Rj ]) ,

where:

• Xj are gross losses for each line of business, which we assume to be identically
log-normally distributed, with E[Xj ] = 100, σ[Xj ] := V[Xj ]

1/2 = 20, and
dependent via a Gaussian copula with correlation parameter 0.3 for all pairs.

3In practice, the optimal β∗ value is estimated via its sample counterpart, which is likely to
introduce some bias, still usually small [8]. A simple way to eliminate this bias is by estimating
β∗ independently using a pilot sample – we do not pursue this route further here.
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• Rj = min
(
(Xj − d)+, l

)
is the reinsurance recovery for each line of business

and E[Rj ] + 0.5σ[Rj ] is the reinsurance premium. We, thus, have that λ =
(d, l). Specifically, for the gross loss we have λ0 = (0, 0), for the net loss of
the baseline run we choose λ1 =

(
F−1
Xj

(0.7) , F−1
Xj

(0.8)−F−1
Xj

(0.7)
)
, whereas

for the sensitivity run we choose λ2 =
(
F−1
Xj

(0.75) , F−1
Xj

(0.85)−F−1
Xj

(0.75)
)
.

Hence, the sensitivity run aims at evaluating the effect of making all
reinsurance layers somewhat higher.

We simulate from this model, with baseline run sample size n̂ = 105 and
sensitivity run sample size ñ = 104, and derive estimates of the quantities
E[Yk], k = 0, 1, 2, where

Yk = ψ (g(X, λk); tk)

ψ(z; tk) =

{
1{z>tk} (survival function); or

(z − tk)+ (stop-loss transform)

t0 = F−1
Y0

(α), t1 = t2 = F−1
Y1

(α), α ∈ [0.9, 0.995].

We compare the performance of the naive Monte Carlo estimator ξ̆0 with the
improved one ξ̆β∗ , by evaluating both on m = 500 blocks of simulated samples.
The results of this exercise are summarised in Figure 1, for different thresholds
t2, corresponding to portfolio net loss levels. The top plots (a, b) deal with
estimating the survival function under the alternative reinsurance strategy λ2,
whereas the bottom plots (c, d) show the estimation of the stop-loss transform.

On the left (a, c), we show realisations of the difference estimators ξ̆0 (in grey)

and ξ̆β∗ (in blue). On the right, we show estimates of the survival function (b)
and the stop-loss transform (d) under the reinsurance strategy λ2, together
with 95% confidence intervals evaluated across them = 500 experiments. From
all plots, it is seen that the control-variate estimator ξ̆β∗ exhibits a major

improvement compared to the naive estimator ξ̆0 – more so in the case of the
stop-loss transform. From experiments not documented here, we found that
the same holds after changes in the number of lines of business, their volatility,
and their copula/correlation specification.

Nonetheless, one part of the problem specification that does impact per-
formance is the reinsurance strategy λk, k = 1, 2; if these λk are such that
the correlations (Y0, Yk) are not high enough, adopting the control-variate

estimator ξ̆β∗ may not offer a substantial benefit. For example, in the simu-
lation study above, for survival function estimation and threshold loss levels
derived with α = 0.95, we have t1 = t2 = 1197, correlations ρ[Y1, Y0] = 0.956,

ρ[Y2, Y0] = 0.948 and variance reduction factor σ[ξ̆β∗ ]/σ[ξ̆0] = 0.31. Alterna-
tively, let us consider the case of λ2 =

(
F−1
Xj

(0.6) , F−1
Xj

(0.85) − F−1
Xj

(0.6)
)
,

such that much more of the company’s risk is ceded to reinsurers. Then, for
the same loss thresholds, we have ρ[Y2, Y0] = 0.796 and σ[ξ̆β∗ ]/σ[ξ̆0] = 0.57,
reflecting a more modest variance reduction.
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Fig. 1 Performance of naive and improved estimators against net portfolio losses (at thresh-
olds t2). (a, b): estimation of the portfolio survival function; (c, d): estimation of the portfolio

stop-loss transform; (a, c): realisations of ξ̆0 and ξ̆β∗ ; (b, d): risk estimates with 95% confi-
dence intervals (log-log scale).

4 Conclusion

We presented a simple approach for improving the accuracy of simulation-
based risk estimates when different model runs, as a default, produce samples
from two correlated outputs (in this case, gross and net loss). By reducing
computational costs, insurers can expand the scope of their exploration of
alternative reinsurance strategies, resulting in more efficient portfolio struc-
tures. The proposed method is easily applicable in practice, as it is generic
and not tailored to any particular stochastic model specification.

The proposed approach to variance reduction can be further refined by
introducing additional control variates [e.g. 9]. These can be constructed, for
example, from more granular data, such as losses for different lines of business.
Alternatively, one could envisage a synthesis of our current proposal with the
method of common numbers (see Footnote 2), to obtain two control variates,
(µ̃0 − µ̂0) and (µ̃1 − µ̂1). Evaluating the practical utility of such refinements
on real-life examples remains a topic for future research.
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