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Abstract

One of the main problems in the theory of fusion systems is whether a fusion system
occurs as the fusion system of a finite p-group if and only if it occurs as the fusion
system of a p-block of a finite group. It is conjectured that the answer is yes. We
present reduction theorems for this problem, reducing it to blocks of quasisimple groups
in certain cases. One of these reductions is applied to settle the conjecture for a family
of fusion systems discovered by Parker and Semeraro. We state a stronger version of the
conjecture for the class of generalised block fusion systems. We show that several key
reduction results for block fusion systems carry over to generalised block fusion systems.
Finally, we extend a result of Cabanes proving the conjecture for unipotent blocks of
finite groups of Lie type to generalised block fusion systems.
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1 Introduction

The main objects of interest in this thesis are saturated fusion systems. For convenience,

we will drop the term saturated and mean saturated fusion system whenever we say

fusion system. A fusion system F on a finite p-group P is a category, whose objects are

the subgroups of P , with the set HomF (R,Q) of morphisms from R to Q for R,Q ≤ P ,

consisting of injective group homomorphisms from R into Q, such that some additional

axioms are satisfied. The standard example is FP (G), where G is a finite group, P is a

Sylow p-subgroup of G and the morphisms are those induced by conjugation in G. The

theory of fusion systems is linked to many other areas of algebra, such as group theory,

representation theory and algebraic topology.

Local finite group theorists are interested in fusion systems, since methods from local

group theory proved to be effective in the study of fusion systems, but also because

certain results in finite group theory seem to be easier to prove in the category of fusion

systems. One example of this is Aschbacher’s Program, see [2] for details: In the proof of

the Classification of Finite Simple Groups, so-called 2-local subgroups play an important

role. Those are groups of the form NG(P ), where P is a 2-subgroup of G. These 2-

local subgroups can have non-trivial normal 2′-subgroups, which cause some problems.

However, one can use fusion systems to eliminate these problems: For K ≤ G, let K

be the image under the map G→ G/O2′(G). Instead of studying FP (G) one can study

the category FP (G), which is isomorphic to FP (G) for a Sylow 2-subgroup P of G.

Homotopy theorists use the theory of fusion systems to provide a formal setting for, and

prove results about, the p-completed classifying spaces of finite groups. Objects called

p-local finite groups associated to abstract fusion systems were introduced by Broto,

Levi and Oliver. These also possess interesting p-completed classifying spaces. Fusion

systems arise as well in block theory. Let G be a finite group, b a block of kG, where

p is a prime and k is an algebraically closed field of characteristic p and let (P, eP ) be

a maximal b-Brauer pair (which means P is a defect group of b and eP is a p-block of
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CG(P ) in correspondence with b). With this setup, to each quadruple (G, b, P, eP ) is

associated a fusion system F(P,eP )(G, b) on P , called the fusion system of b. If we choose

a maximal b-Brauer pair different from (P, eP ), we obtain an isomorphic fusion system.

Many results and conjectures in modular representation theory are statements relating

the representation theory of b to F(P,eP )(G, b). Examples for this are the Alperin and

the Ordinary Weight Conjecture, see [31].

This thesis is about the connection between fusion systems of groups and fusion systems

of blocks. Not every fusion system needs to be of the form FP (G) from above. Fusion

systems which are not of this form are called exotic. Similarly, not every fusion system

is of the form F(P,eP )(G, b) and if a fusion system is not of this form, we call it block-

exotic. A consequence of Brauer’s Third Main Theorem, see Theorem 2.37, is that every

block-exotic fusion system is exotic. This dissertation is about the reverse implication,

i.e. whether every exotic fusion system is block-exotic, giving rise to the following

Conjecture 1.1. Let F be a fusion system. Then F is exotic if and only if it is block-

exotic.

This conjecture has been around for nearly 20 years. Proving this conjecture would be

very interesting, since it links the local structure fusion systems determine for groups

and for blocks. Conjecture 1.1 is difficult to approach, since there seems to be no way to

directly use the information that a given fusion system is a block fusion system in order

to conclude that it must be the fusion system of a finite group. The only approach so

far has been to work with specific classes of exotic systems and show block-exoticity of

those. This has been done in [28] for the Solomon fusion systems for p = 3, which has

been generalised to all primes in [16], and for fusion systems on extra-special p-groups

of order 73 and exponent 7 in [32]. In this thesis, two new reduction theorems relating

to Conjecture 1.1 are presented. The first reduction theorem is the following result. See

Chapter 2 for notation.

14



Theorem 1.2. Let F be a reduction simple fusion system on a finite non-abelian p-

group P . If F is block-realisable, then there exists a finite group G possessing an F-block

b such that the following holds

(a) |G : Z(G)| is minimal among all groups G having an F-block,

(b) if H EG with P 6⊆ H, then H is a central p′-group and F (G) = Z(G),

(c) the number of components of G is bounded by the rank of Z(P ).

In particular, when specialising to the case of a defect group with cyclic centre, we can

reduce the problem to quasisimple groups. We apply Theorem 1.2 in this version to prove

block-exoticity for a family of exotic fusion systems discovered by Parker and Semeraro,

see [42], obtaining

Theorem 1.3. Conjecture 1.1 is true for all fusion systems F on a Sylow p-subgroup

of G2(p
n) or PSU4(p

n) for all primes p and n ∈ N.

The second main reduction theorem is the following result. Recall that to each fusion

system is associated a group Γp′(F) whose subgroups are in 1:1-correspondence with the

fusion subsystems of p′-index in F , see [3, Part I, Theorem 7.7]. In particular, Op′(F)

corresponds to the trivial subgroup under this bijection.

Theorem 1.4. Let F be a fusion system on a non-abelian p-group P . For any subgroup

H ≤ Γp′(F), denote by FH the subsystem of F corresponding to H. Assume

(a) Op′(F) is reduction simple,

(b) if G is a fusion system on P containing Op′(F), then G ⊆ F ,

(c) if G is a fusion system on P such that GEFH for some H ≤ Γp′(F), then Op′(F) ⊆ G.

If there exists a finite group having an FH-block for some H ≤ Γp′(F), then there exists

a finite quasisimple group with p′-centre having an FH′-block for some H ′ ≤ Γp′(F).

This result generalises the main result of [32] since the main theorem of [32] covers the

cases where |Γp′(F)| ≤ 2.

A more general category than block fusion systems, which we call generalised block fusion
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systems, introduced in [32], plays a key role in the main result of [32], as well as in our

two Reduction Theorems 1.2 and 1.4. Generalised block fusion systems generalise block

fusion systems: They depend on a quintuple (H,G, b, P, eP ), where H is a finite group

with GEH, b is an H-stable block of kG and (P, eP ) is called a maximal (b,H)-Brauer

pair. See Section 2.3 for details. We make the following conjecture.

Conjecture 1.5. Let H be a finite group with normal subgroup G having an H-stable

p-block b with maximal (b,H)-Brauer pair (P, eP ). Then the generalised block fusion

system F(P,eP )(H,G, b) is non-exotic.

When H = G, then F(P,eP )(H,G, b) is the fusion system of b as defined above. In

particular, Conjecture 1.5 implies Conjecture 1.1. We prove three key results for block

fusion systems for this more general category, namely Brauer’s Third Main Theorem and

the First and Second Fong Reduction. The generalised version of Brauer’s Third Main

Theorem is the following result. If G = H, we get the result for block fusion systems,

which can be found in [29, Theorem 3.6].

Theorem 1.6. Let GEH, b the principal block of kG, (P, eP ) a maximal (b,H)-Brauer

pair, then P ∈ Sylp(H), eP is the principal block of kCG(P ) and F(P,eP )(H,G, b) =

FP (H).

The next result is the Generalised First Fong Reduction. If G = H, we obtain the

original result for block fusion systems. This special case was proved in [3, Part IV,

Proposition 6.3]. Let GEH, c be a block of kG and IH(c) = {h ∈ H |h c = c}. If b is a

block of kH covering c, then there is a block of kIH(c) corresponding to b which we call

Fong correspondent of b.

Theorem 1.7. Let F be a fusion system on a p-group P and let G, H be finite groups

such that GEH. Let b be an H-stable block of kG with F = F(P,eP )(H,G, b). Let N be

a normal subgroup of H contained in G and c be a block of kN which is covered by b.
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Then F = F(P,ẽP )(IH(c), IG(c), b̃), where b̃ is the Fong correspondent of b in IG(c) and

(P, ẽP ) is a maximal (b̃, IH(c))-Brauer pair.

Finally, we state the Generalised Second Fong Reduction. If G = H, we obtain the

original theorem for block fusion systems. This special case was proved in [3, Part IV,

Theorem 6.6].

Theorem 1.8. Let M ≤ H such that |H : M |p = 1 and let A be a normal subgroup of

H contained in M . Let c be an H-stable block of kA of defect zero and d be an H-stable

block of kM covering c with maximal (d,H)-Brauer pair (P, eP ). Then there exists a

p′-central extension H̃ of H/A and a block d̃ of M̃ with maximal (d̃, H̃)-Brauer pair

(P̃ , e′P ), with P̃ ∼= P , where M̃ is the full inverse image of M/A in H̃ such that d̃ is

H̃-stable and F(P,eP )(H,M, d) ∼= F(P̃ ,e′P )
(H̃, M̃ , d̃).

When tackling Conjectures 1.1 and 1.5, a first goal would be to prove these for all finite

simple groups. We are interested in the case of finite simple groups of Lie type. For

these, Cabanes proved Conjecture 1.1 for unipotent p-blocks, where p is at least 7 and

not the natural characteristic of the group. We extend this result with some methods

developed by Bonnafé, Dat and Rouquier (henceforth called BDR) in [5] to generalised

block fusion systems. Let GF be a finite group of Lie type with a block d and L ≤ G

a Levi subgroup. BDR prove that, in many cases, the fusion system of d is equivalent

to the fusion system of a block c of a subgroup NF of GF containing LF as a normal

subgroup, where c covers a unipotent block b of LF . We call the generalised block fusion

systems in this situation BDR generalised block fusion systems and prove the following

result about those, which provides some evidence for Conjecture 1.5.

Theorem 1.9. With the notation above, assume p ≥ 7 and let (P, eP ) be a maximal

(b,NF )-Brauer pair. The BDR generalised block fusion system F(P,eP )(N
F ,LF , b) is

non-exotic.

This thesis is organised as follows: In Chapter 2, we recall key concepts and results
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of fusion systems, block fusion systems and generalised block fusion systems. Then in

Section 3.1, we state several well-known reduction theorems for block fusion systems.

In Section 3.2 we prove Theorems 1.2 and 1.4 and in Section 3.3 we prove Theorems

1.6, 1.7 and 1.8. Some of those will be applied in Chapter 4 to prove that the exotic

Parker–Semeraro systems are block-exotic as well, obtaining Theorem 1.3. In Chapter

5, we tackle Conjectures 1.1 and 1.5 for finite groups of Lie type in non-describing

characteristic by extending Cabanes’ result to generalised block fusion systems, obtaining

Theorem 1.9. Finally, in Chapter 6, we give an overview of all exotic fusion systems that

have been discovered and address the state of Conjecture 1.1 for finite simple groups not

covered in Chapter 5. We assume that the reader has basic knowledge in algebra and

group theory.
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2 Fusion Systems

2.1 Introduction to Fusion Systems

In this section, we recall the definition and some key properties of fusion systems. Let p

be a prime number. We begin by defining categories on p-groups. Note that by p-group

we always mean finite p-group.

Definition 2.1. A category whose objects consist of the subgroups of a p-group P is

called category on P .

Definition 2.2. Let G be a finite group.

(a) Let g ∈ G, then for x ∈ G, cg is defined to be the conjugation map cg : G→ G, x 7→

gxg−1.

(b) If P ≤ G and P is a p-group, we write P ≤p G.

(c) Let H,K ≤ G. Note that if gH ≤ K for some g ∈ G, cg induces a map cg|H : H → K.

By HomG(H,K) we denote the set {ϕ : H → K|ϕ = cg|H for some g ∈ G,gH ≤ K}

and by AutG(H) = HomG(H,H).

(d) Let C be a category on a p-group P with Q,R ≤ P . By HomC(Q,R) we denote the

set of morphisms between Q and R in C.

Definition 2.3. (a) Let p be a prime and P be a p-group. A fusion system is a category

F on P , such that for all Q,R ≤ P we have:

(i) HomP (Q,R) ⊆ HomF (Q,R) ⊆ Inj(Q,R), where the latter denotes the set of injective

group homomorphisms between Q and R,

(ii) each homomorphism in F is the composition of an F-isomorphism and an inclusion.

(b) Let F be a fusion system on a p-group P . Two subgroups Q,R ≤ P are called F-

conjugate if they are isomorphic as objects of the category F .

(c) A subgroup Q ≤ P is called fully automised in F if AutP (Q) ∈ Sylp(AutF (Q)).

(d) A subgroup Q ≤ P is called receptive in F if for each R ≤ P and each ϕ ∈ IsoF (R,Q),
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ϕ has an extension to the group Nϕ := NFϕ := {g ∈ NP (R) | ϕcg ∈ AutP (Q)}.

(e) A fusion system is called saturated if each subgroup of P is F-conjugate to a subgroup

which is fully automised and receptive in F .

In many applications, it is crucial for fusion systems to be saturated, since fusion systems

only satisfying part (a) of the previous definition are too general. For convenience, we

drop the term saturated, and mean saturated fusion system whenever we say fusion

system. In the literature, fusion system means categories satisfying only part (a) from

Definition 2.3.

Theorem 2.4. [36, Theorem 2.11] Let G be a finite group with P ∈ Sylp(G). We denote

the category on P with morphisms consisting of homomorphisms induced by conjugation

by elements in G by FP (G). Then FP (G) is a fusion system on P .

If a fusion system is of the form FP (G) for a finite group G and P ∈ Sylp(G), we call

it realisable, otherwise we call it exotic. Furthermore, we say that a fusion system on a

p-group P is trivial if F = F1(1).

Definition 2.5. Let F be a fusion system on a p-group P and Q ≤ P .

(a) If CP (Q′) = Z(Q′) for each Q′ ≤ P which is F-conjugate to Q, then Q is called

F-centric. Define Fc to be the full subcategory of F whose objects are the F-centric

subgroups of P .

(b) A proper subgroup H of a finite group G is called strongly p-embedded if H contains

a Sylow p-subgroup P of G and P 6= 1 but xP ∩H = 1 for any x ∈ G \H.

(c) A subgroup Q ≤ P is called fully F-normalised if |NP (R)| ≤ |NP (Q)| for any R ≤ P

with R ∼= Q in F .

(d) We call a subgroup Q ≤ P F-essential if Q is F-centric and fully normalised in F ,

and if AutF (Q)/AutQ(Q) has a strongly p-embedded subgroup.

Note that if F is a fusion system on P , an F-essential subgroup of P is always a proper

subgroup since AutF (P )/AutP (P ) is a p′-group by Definition 2.3(c).
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Let n ∈ N≥1 and i ∈ {1, · · · , n}. If F is a fusion system on P and Mi ⊆ AutF (Qi)

for some Qi ≤ P , we denote by 〈M1, · · · ,Mn〉 the smallest (not necessarily saturated)

subsystem of F on P such that its morphisms contain all the sets Mi for i = 1, · · · , n.

The following theorem tells us that the structure of a fusion system F on P is determined

by the automorphisms of F-essential subgroups of P and P itself.

Theorem 2.6. (Alperin’s Fusion Theorem) [3, Part I, Theorem 3.5] Let F be a fusion

system on a p-group P . Then F = 〈AutF (Q)|Q = P or Q is F-essential 〉.

We can define a substructure similar to normal subgroups for fusion systems.

Definition 2.7. Let F be a fusion system on a p-group P and E ⊆ F be a subcategory

of F which is a fusion system itself on some subgroup P ′ ≤ P .

(a) A subgroup Q ≤ P is called strongly F-closed, if ϕ(R) ⊆ Q for each ϕ ∈ HomF (R,P )

and each R ≤ Q.

(b) If P ′ is normal in P and strongly F-closed, αE = E for each α ∈ AutF (P ′) and for

each Q ≤ P ′ and ϕ ∈ HomF (Q,P ′), there are α ∈ AutF (P ′) and ϕ0 ∈ HomE(Q,P
′)

with ϕ = α ◦ ϕ0, then E is called weakly normal in F , denoted EĖF .

(c) If E is weakly normal and in addition, we have that each α ∈ AutE(P
′) has an

extension α ∈ AutF (P ′CP (P ′)) with [α,CP (P ′)] ≤ Z(P ′), then we call E normal in F

and write E E F .

(d) A fusion system is called simple if it does not contain any non-trivial proper normal

subsystem.

Definition 2.8. Let G be a group and p be a prime. The subgroup Op
′
(G) is defined to

be the smallest normal subgroup of G such that the index |G : Op
′
(G)| is prime to p.

Definition 2.9. Let F be a fusion system on a p-group P .

(a) We say that a subsystem E of F has index prime to p (or p′-index) if it is also defined

over P and AutE(Q) ≥ Op′(AutF (Q)) for each Q ≤ P .
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(b) We define the (not necessarily saturated) fusion system Op
′
∗ (F) := 〈Op′(AutF (Q)) |

Q ≤ P 〉 and the group Aut0F (F) := 〈α ∈ AutF (P ) | α|Q ∈ HomOp′
∗ (F)(Q,P ) for some

F-centric Q ≤ P 〉.

Note that part (b) of the above definition makes sense since clearly Op
′
∗ (F) ≤ F . Also

note that Aut0F (P )EAutF (P ).

Definition 2.10. For any fusion system F over a p-group P , let Γp′(F) be the free group

on the set Mor(Fc) modulo the relations induced by composition and by dividing out by

Op
′
(Aut(Fc)) for all Q ∈ Fc. In particular, there is a canonical map Mor(Fc)→ Γp′(F).

It turns out that the group Γp′(F) carries a lot of information about F :

Theorem 2.11. [3, Part I, Theorem 7.7] For a fusion system F on a p-group P ,

let θ : Mor(Fc) → Γp′(F) be the canonically defined map. Then we have Γp′(F) =

AutF (P )/Aut0F (P ).

Furthermore, there is a one-to-one-correspondence between the saturated subsystems of

F of index prime to p and subgroups of Γp′(F) given by defining FH = 〈θ−1(H)〉 for

some H ≤ Γp′(F). This correspondence respects normality.

In particular, there is a unique minimal fusion system Op′(F) = 〈θ−1(1)〉 E F of index

prime to p.

Definition 2.12. Let F be a fusion system on a p-group P .

(a) Fix Q ≤ P . Let NF (Q) ⊆ F be the (not necessarily saturated) fusion system over

NP (Q), where for R,S ≤ NP (Q), ϕ ∈ HomNF (Q)(P, S) if and only if ϕ has an extension

ϕ ∈ HomF (RQ,SQ) with ϕ|R = ϕ and ϕ(Q) = Q.

When Q is fully F-normalised, NF (Q) is a (saturated) fusion system on NP (Q) by [3,

Part I, Theorem 5.5].

(b) We call a group Q ≤ P normal in F , denoted QEF , when QEP and NF (Q) = F .

The largest subgroup of P which is normal in F is denoted by Op(F).
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Note that Op(F) = 1 for simple fusion systems.

Lemma 2.13. Let F ,G be fusion systems on a p-group P such that F ≤ G and let

QE P . If Q is normal in G, then Q is normal in F .

Proof. By [3, Part I, Proposition 4.5], this is equivalent to showing that Q is contained

in each F-essential subgroup R of P and for each of these R, Q is AutF (R)-invariant, as

well as AutF (P )-invariant. Since Q is normal in G, it is strongly F-closed. In particular,

Q is AutF (R)-invariant for all R ≤ P such that Q ≤ R.

Now let ϕ : R→ T be a G-isomorphism. To prove containment in F-essential subgroups,

we first claim NP (R) ∩Q ≤ NGϕ . Indeed, since QE G, ϕ extends to a G-homomorphism

ϕ : QR→ QT and thus NP (R) ∩Q ≤ NGϕ by definition.

Now let R ≤ P be F-essential and β ∈ AutF (R) such that NFβ = R (such a β exists

since R is F-essential, see [3, Part I, Proposition 3.3(b)]). One easily verifies NFβ = NGβ .

So, by the above, we have NP (R) ∩ Q ≤ NFβ = R. Since Q E P , we have RQ ≤ P .

By general properties of p-groups, either RQ = R or R < NRQ(R). Since we have

NRQ(R) = RNQ(R) = R(NP (R) ∩ Q) = R, we deduce RQ = R, so Q ≤ R. This,

together with our observations above, implies normality of Q in F . �

Lemma 2.14. If F ,G are fusion systems on a p-group P with GĖF , then Op(G) is

normal in F .

Proof. We have to check that each morphism ϕ ∈ HomF (Q,P ) has an extension

ϕ ∈ HomF (QOp(G), P ) with ϕ(Op(G)) = Op(G). Since GĖF , ϕ can be written as

ϕ = α ◦ β, where α ∈ AutF (P ) and β ∈ HomG(Q,P ). Given that β is a morphism in G,

it extends to QOp(G) and this extension sends Op(G) to itself. So we only need to show

that α ∈ AutF (P ) preserves Op(G). Now an F-automorphism of P sends any G-normal

subgroup of P to a G-normal subgroup of P . Indeed, if Q E G then for any R,S ≤ P

and any ϕ ∈ HomG(R,S), ϕ has an extension ϕ ∈ HomG(RQ,SQ). If α ∈ AutF (P ),

clearly α(Q)EP and if ϕ ∈ HomG(R,S) we can extend it to ϕ ∈ HomG(Rα(Q), Sα(Q))
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by defining ϕ(rα(q)) = ϕ(r)α(ϕ(q)) for r ∈ R, q ∈ Q and achieve the desired properties.

In particular, α(Op(G)) ⊆ Op(G). �

Since fusion systems which do not allow many strongly closed subgroups play an impor-

tant role, we make the following definition:

Definition 2.15. Let F be a fusion system on a p-group P . If P does not have any

non-trivial proper strongly F-closed subgroups, we call F reduction simple.

2.2 Fusion systems of blocks

In the previous section, we have seen that every finite group induces a fusion system.

Next, we see that fusion systems can also be induced by blocks of finite groups. We

recall some block-theoretic results, which we need to define these categories. Since block

algebras play an important role in the setup, we first need to define structural notation

for algebras.

Definition 2.16. Let k be a commutative ring and A a k-algebra. We denote by Aut(A)

the group of all k-algebra automorphisms of A. If u ∈ A×, the map a 7→ uau−1, for

a ∈ A, given by conjugation with u is an algebra automorphism of A. Any algebra

automorphism of A arising in this way is called an inner automorphism of A. The set

Inn(A) of inner automorphisms of A is a normal subgroup of Aut(A), and the quotient

Out(A) = Aut(A)/ Inn(A) is called the outer automorphism group of A.

Definition 2.17. Let G be a finite group. A G-algebra over k is a k-algebra A endowed

with an action G × A → A, (x, a) 7→ xa, such that the map sending a ∈ A to xa is an

k-algebra automorphism of A for all x ∈ G.

An important special case of these algebras are group algebras.

Definition 2.18. Let H be a finite group, K ≤ H and A an H-algebra over k. We

denote by AH the H-fixed point subalgebra of A.
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(a) The relative trace map is defined by TrHK : AK → AH , a 7→
∑

x∈[H/K]

xa, where [H/K]

denotes a set of representatives of the right cosets of K in H.

(b) Denote by AHK the image of AK under the relative trace map TrHK .

Before we can discuss block theory, we first recall some definitions from character theory.

Definition 2.19. Let k be a commutative ring, A a k-algebra and V an A-module.

Suppose that V is free of finite rank over k. The character of V is the k-linear map

χV : A→ k, a 7→ trV (ρ(a)), where ρ(a) is the linear endomorphism ρ(a) of V defined by

ρ(a)(v) = av for all v ∈ V . A map χ : A → k is called a character of A over k if χ is

the character of some A-module which is free of finite rank over k.

Definition 2.20. Let k be a field and A be a finite-dimensional k-algebra.

(a) A central function on A is a k-linear map τ : A→ k such that τ(ab) = τ(ba) for all

a, b ∈ A.

(b) A central function χ : A → k is called an irreducible character of A if χ is the

character of a simple A-module. We denote by Irr(A) the set of irreducible characters

of A. If A = kG for some finite group G, we write Irrk(G) instead of Irr(kG).

Definition 2.21. Let p be a prime number. A p-modular system is a triple (K,O, k),

where O is a local principal ideal domain, K is the field of quotients of O and k is the

residue field of O, i.e. k = O/J(O), such that

(a) O is complete with respect to the natural topology induced by J(O),

(b) charK = 0,

(c) char k = p.

If (K,O, k) is a p-modular system and α ∈ O, denote by α the element α+ J(O) in k.

Definition 2.22. Let (K,O, k) be a p-modular system and G a finite group. The prim-

itive central idempotents of KG are in bijection with the isomorphism classes of simple

KG-modules and the isomorphism class of a simple KG-module V is determined by its
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character χV , see [37, Theorem 6.5.3]. Let χ ∈ IrrK(G). Denote by eχ the central

idempotent of KG corresponding to χ.

Definition 2.23. Let (K,O, k) be a p-modular system and G a finite group.

(a) Let R = O or k. A block of RG is a primitive central idempotent of RG.

(b) Let β be a block of OG. The canonical map β 7→ β is a bijection between the blocks of

OG and kG. Furthermore, β is a central idempotent of KG, but in general not primitive

in Z(KG). Let IrrK(G, β) consist of those elements χ ∈ IrrK(G) satisfying βeχ = eχ.

We say that χ belongs to β or that β contains χ. Each element of IrrK(G) belongs to a

unique block of OG (and thus also kG) by [37, Proposition 6.5.2(i)].

(c) The principal block of OG is the block containing the trivial character of KG. The

corresponding block of kG is called the principal block of kG.

Fix k to be an algebraically closed field of characteristic p for the rest of this chapter.

Definition 2.24. Let G be a finite group and b a block of kG. A Brauer pair is a pair

(Q, f) where Q is a p-subgroup of G and f is a block of kCG(Q). We denote the set of

blocks of kCG(Q) for some p-subgroup Q of G by B(Q).

Note that G acts on the set of Brauer pairs by conjugation. We recall the Brauer map

to see how Brauer pairs form a poset.

Definition 2.25. Let G be a finite group and Q ≤ G. For an element a =
∑
g∈G

αgg ∈ kG,

set BrGQ(a) :=
∑

g∈CG(Q)

αgg.

Proposition 2.26. [29, Proposition 2.2] Let G be a finite group and Q ≤p G. Then for

any a, a′ ∈ (kG)Q, BrGQ(aa′) = BrGQ(a) BrGQ(a′). Consequently, the map BrGQ : (kG)Q →

kCG(Q), a 7→ BrGQ(a) is a surjective homomorphism of k-algebras.

Definition 2.27. Let G be a finite group with N EG. We call a block b of kN G-stable

if gb = b for all g ∈ G.
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Definition 2.28. Let G be a finite group, Q,R ≤ G and (Q, f) and (R, e) be Brauer

pairs. Then

(a) (Q, f)E (R, e) if QER, f is R-stable and BrGR(f)e = e,

(b) (Q, f) ≤ (R, e) if Q ≤ R and there exist Brauer pairs (Si, di), 1 ≤ i ≤ n, such that

(Q, f)E (S1, d1)E (S2, d2)E · · ·E (Sn, dn)E (R, e).

Let (R, e) be a Brauer pair and let Q ≤ R. The idempotent f such that (Q, f) ≤ (R, e)

as in the previous definition, is actually uniquely determined:

Theorem 2.29. (Alperin–Broué) [29, Theorem 2.9] Let G be a finite group, R ≤ G

and let (R, e) be a Brauer pair. For any Q ≤ R, there exists a unique f ∈ B(Q) with

(Q, f) ≤ (R, e). Furthermore, if Q E R, then f is the unique element of B(Q)R with

BrGR(f)e = e. The conjugation action of G on the set of Brauer pairs preserves ≤.

Definition 2.30. Let G be a finite group and b a block of kG.

(a) A b-Brauer pair is a Brauer pair (R, e) such that (1, b) ≤ (R, e), or equivalently it is

a Brauer pair (R, e) such that BrGR(b)e = e.

(b) We denote the blocks e of kCG(R) such that (1, b) ≤ (R, e) by B(R, b).

(c) A defect group of b is a p-subgroup P of G maximal such that BrGP (b) 6= 0.

Note that the group G acts by conjugation on the set of b-Brauer pairs. Furthermore,

some p-subgroup P of G is a defect group of b if and only if there is a maximal pair

(P, e) such that (1, b) ≤ (P, e). We refer to such a pair as a maximal b-Brauer pair. The

following theorem shows that defect groups of blocks can be detected locally.

Theorem 2.31. (Brauer’s First Main Theorem) [29, Theorem 3.6] Let G be a finite

group with P ≤p G. The map BrGP induces a bijection between the set of blocks of kG

with defect group P and the set of blocks of kNG(P ) with defect group P .

Definition 2.32. Let G be a finite group and N EG. Let b be a block of kG and c be a

block of kN . We say that b covers c if bc 6= 0.
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We record some facts about covered blocks which we need in later chapters.

Lemma 2.33. Let G be a finite group, P ≤p G, (P, eP ) and (P, fP ) be Brauer pairs

such that fP covers eP . Suppose that eUfU 6= 0 for some U ≤ P . Then eQfQ 6= 0 for

any Q ≤ U .

Proof. This is proven in more generality in the proof of [32, Theorem 3.5]. �

Lemma 2.34. Let G be a finite group, N a normal subgroup of G, d a block of kG and

c an G-stable block of kN . Suppose that there exists a d-Brauer pair (Q, e) such that

N ≤ CG(Q) and e covers c. Then d covers c.

Proof Since e covers c and c is CG(Q)-stable, ce = e, see [37, Proposition 6.8.2(ii)]. So,

dce = de. On the other hand, since (Q, e) is a d-Brauer pair, BrGQ(de) = BrGQ(d) BrGQ(e) =

BrGQ(d)e = e 6= 0. Hence, dce = de 6= 0 which implies that dc 6= 0. �

Lemma 2.35. [21, Chapter V, Lemma 3.5] Let G be a finite group, N a normal subgroup

of G such that G/N is a p-group. If b is a block of kN , then there is a unique block of

kG that covers b.

Theorem 2.36. [29, Theorem 3.9(i)] Let b be a block of kG and (P, eP ) be a maxi-

mal b-Brauer pair. For a subgroup Q ≤ P , denote by eQ the unique block such that

(Q, eQ) ≤ (P, eP ). Denote the category on P whose morphisms consist of all injective

group homomorphisms ϕ : Q → R for which there is some g ∈ G such that ϕ(x) = gx

for all x ∈ Q and g(Q, eQ) ≤ (R, eR) by F(P,eP )(G, b). Then F(P,eP )(G, b) is a fusion

system on P .

If a fusion system is of the form defined in the previous theorem, we call it block-

realisable, otherwise we call it block-exotic. The following theorem connects exotic and

block-exotic fusion systems.

Theorem 2.37. (Brauer’s Third Main Theorem) [29, Theorem 7.1] Let G be a finite

group and b the principal block of kG with maximal b-Brauer pair (P, eP ). Then, for

28



any Q ≤ G, BrGQ(b) is the principal block of kG. In particular, P ∈ Sylp(G) and

F(P,eP )(G, b) = FP (G).

In particular, any realisable fusion system is block-realisable. The converse is still an

open problem, as noted in Conjecture 1.1.

Note that if F is a fusion system on an abelian group, Conjecture 1.1 holds true since

there are no exotic fusion systems on abelian groups: Let F be a fusion system on an

abelian p-group P . In this case, no proper subgroup of P can be F-centric. By The-

orem 2.6, every morphism in F is the restriction of some ϕ ∈ AutF (P ). Since P is

fully F-automised, OutF (P ) = AutF (P ) is a p′-group by Definition 2.3. In particular,

F = FP (P o AutF (P )), so we get that F is realisable.

If F is a fusion system on an extraspecial group of order p3, the conjecture is also known

to hold: There are exotic fusion systems on such groups, but in [32], it has been proven

that all these are block-exotic as well.

We give an overview of some families for which the conjecture has been proven in

Section 6.

We prove that block-realisability is insensitive to taking quotients modulo central sub-

groups.

Definition 2.38. Let b be a block of kG and N E G. We denote by b̂ the image of b

under the canonical surjection kG→ k(G/N),
∑
g∈G

kgg 7→
∑
g∈G

kggN .

Definition 2.39. Let b be a block of kG. The kernel of b, denoted ker(b), is defined to

be the intersection of the kernels of the irreducible representations of G over k belonging

to b.

In particular, if Z is a central p-subgroup of a finite group G, then b̂ is a block of G/Z

for any block b of G. This is being used in the statement below to see that êQ is a block

of CG(Q)/Z (applied to the group CG(Q) and the block eQ).
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Theorem 2.40. Let G be a finite group and b a block of kG with maximal b-Brauer

pair (P, eP ). Assume F(P,eP )(G, b) = FP (H) for some finite group H. Let Z be a

central subgroup of both G and H such that its p′-part is in ker(b). Denote by b̂ the

image of b under the canonical surjection kG→ k(G/Z). Then PZ/Z is a defect group

for b̂. If (PZ/Z, eP/Z) is a maximal b̂-Brauer pair, we have F(PZ/Z,ePZ/Z)(G/Z, b̂) =

FPZ/Z(H/Z).

To prove this theorem, we first need to collect some auxiliary results. We split Z into

its p- and p′-part. Since we are interested in p-blocks, the case of reducing modulo the

p′-part can be dealt with quickly. This stems mainly from the following fact.

Lemma 2.41. Let G be a finite group, Z be a p′-subgroup of Z(G) and P ≤p G. For

H ≤ G, let H be the image of H under the map G→ G/Z. Then CG(P ) = CG(P ).

Proof. Clearly, CG(P ) ⊆ CG(P ). Let x ∈ CG(P ), then there is some z ∈ Z with

xux−1 = uz for all u ∈ P . However, the left hand side is a p-element, which means that

since z is central, that z = 1. Thus, x ∈ CG(P ) and in particular x ∈ CG(P ). �

We need to put more work into the case of central p-subgroups and recall some concepts.

Definition 2.42. Let F be a fusion system on a p-group P and let Q ≤ P . The

centraliser of Q in F is the category CF (Q) on CP (Q) having as morphisms all group

homomorphisms ϕ : R → S for R,S ≤ CP (Q), for which there exists a F-morphism

ψ : QR→ QS in F satisfying ψ|Q = idQ and ψ|R = ϕ.

Definition 2.43. Let F be a fusion system on a p-group P with F = NF (Q) for some

Q E P . Define the category F/Q on P/Q as follows: for any two subgroups Q,S ≤ P

containing Q, a group homomorphism ψ : R/Q→ S/Q is a morphism in F/Q, if there

exists a morphism ϕ : R→ S in F satisfying ϕ(u)Q = ψ(uQ) for all u ∈ R.

Theorem 2.44. [3, Part II, Theorem 2.1] If F is a fusion system and Q is fully F-

normalised, CF (Q) is a fusion system.
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Lemma 2.45. Let G be a finite group and b a block of G with maximal b-Brauer pair

(P, eP ) and let F := F(P,eP )(G, b). Then for any central p-subgroup Z ≤ G, F = CF (Z).

Proof. Since Z is central, it is fully F-normalised. By the previous theorem, CF (Z) is

a fusion system on CP (Z). But since CP (Z) = P , this means that F and CF (Z) have

the same objects. Thus, by Theorem 2.6, it suffices to show AutF (Q) ⊆ AutCF (Z)(Q)

for all Q ≤ P . Hence, let ϕ ∈ AutF (Q) and g ∈ G such that ϕ(u) = gu for all u ∈ Q.

By definition, we then also have geQ = eQ, where eQ denotes the unique block such

that (Q, eQ) ≤ (P, eP ). Denote the conjugation with g on QZ by ψ. Since Z is central,

this is well-defined, restricts to the identity on Z and to ϕ on Q. So, we need to check

geQZ = eQZ . Note that Q is a normal subgroup of QZ containing all its p′-elements. This

holds in particular for blocks, thus, a block idempotent of kQZ is in kQ and eQZ = eQ

by Theorem 2.29. Hence, geQZ = geQ = eQ = eQZ . Thus, ϕ can be extended to an

F-morphism ψ ∈ Aut(QZ) with all desired properties, which implies the claim. �

Lemma 2.46. Let Q ≤p G and Z ≤p G be central with Z ⊆ Q. Then CG(Q)E CG(Q)

and CG(Q)/CG(Q) is a p-group, where Q := Q/Z.

Proof. Consider the map τu : CG(Q)→ Z, y 7→ yuy−1u−1. Since Z is central, it defines

a group homomorphism with kernel CG(u). Since CG(Q) =
⋂
u∈Q

CG(u) this implies

CG(Q)E CG(Q).

Now let y ∈ CG(Q) be a p′-element. We have CG(Q)/ker τu ≤ Z, so this quotient is a

p-group. This implies y ∈ ker(τu) for every u ∈ Q, in particular y ∈ CG(Q). �

Lemma 2.47. Let G be a finite group, b a block of kG and Z a central p-subgroup of G.

Denote Q = Q/Z for all Q with Z ≤ Q ≤p G and for any element a of kG, denote by â

its image under the map kG → k(G/Z). Then (Q, eQ) is a b-Brauer pair if and only if

(Q, fQ) is a b̂-Brauer pair, where fQ = Tr
CG(Q)

H (êQ) and H = StabCG(Q)(êQ).

Proof. First, we show B̂rGQ(a) = BrG
Q

(â) for any Q ≤p G and any central idempotent a of

kG. Write a =
∑
g∈G

αgg, αg ∈ k. We use the notation from Definition 2.38. By definition,

31



BrGQ(a) =
∑

g∈CG(Q)

αgg, so B̂rGQ(a) =
∑

g∈CG(Q)

αgg. On the other hand, â =
∑
g∈G

αgg and

BrG
Q

(â) =
∑

g∈CG(Q)

αgg. Both expressions are the same, since for every block idempotent

a, some coefficient αg can only be non-zero if g is a p′-element, and we have that CG(Q)

is a normal subgroup of CG(Q) with index pn for some n ∈ N by Lemma 2.46. In par-

ticular, for any g ∈ Gp′ , we have g ∈ CG(Q) if and only if g ∈ CG(Q).

Assume (Q, eQ) is a b-Brauer pair. By definition, eQ is a block of kCG(Q), and since

Z is a central p-subgroup of CG(Q), êQ is a block of CG(Q)/Z. By Lemma 2.46,

CG(Q)/Z is of p-power index in CG(Q) hence the blocks of CG(Q) are precisely the

CG(Q)-orbit sums of the blocks of CG(Q)/Z. In particular, fQ is a block of kCG(Q).

Now BrGQ(b)eQ 6= 0, which means BrGQ(b)eQ = eQ, but then also ̂BrGQ(b)eQ = êQ. The

kernel of the reduction of kCG(Q) modulo Z can contain no idempotent, since it is con-

tained in J(kCG(Q)) by [29, Proposition 2.3]. Thus, also using the equality from above,

we have BrG
Q

(b̂)êQ = êQ 6= 0. Since fQ is a sum of blocks of CG(Q)/Z one of which is

êQ, fQêQ = êQ. Thus, 0 6= BrG
Q

(b̂)êQ = BrG
Q

(b̂)fQêQ, which shows that BrG
Q

(b̂)fQ 6= 0,

proving that (Q, fQ) is a b̂-Brauer pair.

Conversely, assume BrG
Q

(b̂)fQ 6= 0, but then by definition of fQ, also BrG
Q

(b̂)êQ 6= 0. Thus,

by the above considerations, ̂BrGQ(b)eQ 6= 0, which certainly implies BrGQ(b)eQ 6= 0, so

(Q, eQ) is a b-Brauer pair. �

Now we have enough tools to prove Theorem 2.40.

Proof of Theorem 2.40. Since Z is abelian, we can assume Z = ZpZp′ and deal with the

quotient modulo one of these two factors at a time. Let R = RZ/Z for R ≤ G.

First, assume Zp = 1. By [36, Theorem 2.12], we have FP (H) ∼= FP (H). Furthermore,

by [13, Proposition 17.8(ii)], we get that b̂ 6= 0, since any χ ∈ Irr(G, b) has all p′-elements

in its kernel, i.e. χ(Zp′) = χ(1), and that b̂ is a block. Let P0 ≤ G be a p-group such
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that P0 is a defect group for b̂. Assume b =
∑
x∈G

αxx, so b̂ =
∑
x∈G

αxx =
∑
y∈G

( ∑
x|x=y

αxy

)
.

Since BrG
P0

(b̂) 6= 0, there has to be some y ∈ G such that
∑

x|x=y
αx 6= 0 with y ∈ CG(P0).

In particular, there exists some x ∈ G with x = y, y ∈ CG(P0) and αx 6= 0. By Lemma

2.41, x ∈ CG(P0). This implies, if we denote the preimage of P0 under the quotient map

by P0, that BrGP0
(b) 6= 0. The group P0 is thus contained in a defect group P ′ of b. Since

defect groups are conjugate, there is a some g ∈ G with gP ′ = P . Set P0 = gP0, so we

may assume P0 ⊆ P . However, we also have by definition of defect:

|P0| = max

{
|G|p
ρ(1)p

: ρ ∈ Irrk(G, b̂)

}
= max

{
|G|p
χ(1)p

: χ ∈ Irrk(G, b)

}
,

the latter equality holds since Zp = 1. The latter number is the cardinality of a defect

group for b. This means P0 = P and P0
∼= P . Write P0 as P henceforth. We thus have

FP (H) ∼= FP (H) ∼= F(P,eP )(G, b) ∼= F(P ,eP )(G, b̂),

where the last isomorphism is defined by the isomorphism of the defect groups P → P .

Now assume Zp′ = 1. By [29, Lemma 3.7], Zp ≤ P , thus we can apply [36, Proposition

6.6] to obtain FP (H)/Zp = FP (H). But we also have FP (H)/Zp = F(P,eP )(G, b)/Zp by

[36, Theorem 6.4], which is applicable by Lemma 2.45. Finally, we need to show that

F(P,eP )(G, b)/Zp is the fusion system of b̂. First note that by [39, Chapter 5, Theorem

8.11], the latter is indeed a block of kG. For convenience, let F := F(P,eP )(G, b) and

F ′ := F(P ,eP )(G, b̂). Note that we have

|P | = max

{
|G|p
χ(1)p

: χ ∈ Irrk(G, b)

}
≥ |Zp|max

{
|G|p
ρ(1)p

: ρ ∈ Irrk(G, b̂)

}
,

hence, P has at least the order of a defect group of b̂. This observation, together with

Lemma 2.47, implies that the fusion systems F/Zp and F ′ are categories on the same
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group with the same objects. It suffices to show that they also have the same morphisms.

For this, we use the element fQ as defined as in Lemma 2.47 again. We need to show

AutF/Zp
(Q) = AutF ′(Q) for all Q ≤ P . Take some ϕ ∈ AutF/Zp

(Q). Then this map is

induced by ϕ ∈ AutF (Q) and there is some g ∈ NG(Q, eQ) such that conjugation by g

is equal to ϕ. Thus, we have to show that gfQ = fQ. Indeed,

gfQfQ = gfQfQêQ
2 = g(fQêQ)fQêQ 6= 0,

since fQêQ 6= 0. Thus, ϕ ∈ AutF ′(Q). On the other hand, take ψ ∈ AutF ′(Q) and as-

sume this map is induced by conjugation by some x ∈ NG(Q, fQ), so xfQ = fQ. By def-

inition of fQ, this implies xêQ = têQ for some t ∈ CG(Q). In particular, t
−1
xêQ = êQ, so

t−1x ∈ NG(Q, êQ). If we define y := t−1x, then y ∈ NG(Q, eQ), otherwise we would have

êQ = 0, a contradiction since the kernel of the reduction cannot contain idempotents, as

in the proof of Lemma 2.47. Denote the inverse image of NG(Q, fQ) under the canonical

surjection in NG(Q) by NG(Q, fQ), we thus have shown NG(Q, fQ) = CG(Q)NG(Q, eQ).

In particular, for every x ∈ NG(Q, fQ), there exists some y ∈ NG(Q, eQ) such that con-

jugation by x and y are the same map on Q. This implies ψ ∈ AutF/Zp
(Q). Application

of Theorem 2.6 implies F/Zp = F ′, which in turn implies the theorem. �

Finally, we finish this section by proving that a fusion system of a block is invariant

under the tensor product with a linear character.

Theorem 2.48. Let G be a finite group, b a block of kG with maximal b-Brauer pair

(P, eP ) and θ : G → k× a linear character. We get an O-linear map θ̃ : G → OG, g 7→

θ(g−1)g for g ∈ G and can extend it linearly to OG. Then θ̃(b) is also a block of

kG with defect group P and the fusion systems F(P,eP )(G, b) and F(P,θ̃(eP ))(G, θ̃(b)) are

isomorphic.

Proof. For a linear character θ : G → k×, we have a unique lift of θ(g) to O for
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all g ∈ G. It is easy to see that θ̃ is an O-algebra isomorphism, so we get a map

Ĝ → Aut(OG), θ 7→ θ̃. Since θ̃ is an automorphism, it permutes the blocks and in

particular, θ̃(b) is a block.

Furthermore, note that if A is an algebra, ϕ ∈ Aut(A) and M is an A-module, then we

can define another A-module ϕM by a ∗m := ϕ−1(a)m. Thus, in our case, if we have

A = OG and ϕ = θ̃, we get θ̃χ = θ⊗χ for some character χ. In this setting, if a module

M belongs to a block b, then ϕM belongs to ϕ(b). Indeed, M belongs to b if and only

if bm = m for all m ∈ M , which is equivalent by definition to ϕ(b) ∗m = m, thus ϕM

belongs to ϕ(b).

A general linear character θ can be written as θ = θp′θp and clearly θ̃ = θ̃p′ θ̃p. By

[39, Chapter 3, Theorem 6.24], we have that if two characters χ, χ′ belong to the same

block, then |G|χ(x)
|CG(x)|χ(1) ≡

|G|χ′(x)
|CG(x)|χ′(1)(J(O)) for every x ∈ C ∈ Cl(Gp′), where the latter

denotes the conjugacy classes of Gp′ . This implies that χ and θ̃p(χ) both belong to the

same block. In particular, for our remaining considerations we may assume that θ is a

p′-character, i.e. | ord(θ)|p = 1 in Ĝ. In particular, for such an θ we have θ(x) = 1 for

every x ∈ Gp. If Q ≤p G, we thus have θ̃(Q) = Q, i.e. θ̃|Q = idQ.

If Q,R ≤p G, we claim that (Q, bQ) ≤ (R, bR) if and only if (Q, θ̃(bQ)) ≤ (R, θ̃(bR)).

This follows if we can show (Q, bQ) E (R, bR) if and only if (Q, θ̃(bQ)) E (R, θ̃(bR)). By

symmetry, it suffices to prove one direction. Thus, assume (Q, bQ)E (R, bR). One easily

sees g θ̃(b) = θ̃(gb) for some block b and some g ∈ G, which implies that θ̃(bQ) is R-stable.

It is left to show that BrGR(θ̃(bQ))θ̃(bR) = θ̃(bR). This follows from BrGR(bQ)bR = bR, since

θ̃ is an homomorphism and the fact, which is easy to see, that it commutes with the

Brauer map.

So, we have a bijection {b-Brauer pairs} → {θ̃(b)-Brauer pairs} given by (Q, bQ) 7→

(Q, θ̃(bQ)), and (P, eP ) is a maximal b-Brauer pair if and only if (P, θ̃(eP )) is a maximal

θ̃(b)-Brauer pair. In particular, the objects of the categories are the same. Furthermore,

the erstwhile mentioned identity g θ̃(b) = θ̃(gb) implies (gQ,g θ̃(bQ)) = (gQ, θ̃(gbQ)), which

35



means that the morphisms of the categories are also the same. �

2.3 Generalised block fusion systems

We need to introduce more general categories than block fusion systems, since some

group theoretic properties are not captured by these: Assume b is a block of kG with

maximal b-Brauer pair (P, eP ) and N EG. If c is a block of kN covered by b, i.e. bc 6= 0,

P ∩N is a defect group for c, see [39, Chapter 5, Theorem 5.16 (iii)]. However, in general

F(P∩N,eP∩N )(N, c) is not even a subsystem of F(P,eP )(G, b):

Example 2.49. [29, Example 7.5] Let p = 3 and let P be the cyclic group of order 3

with generator r. Let T = 〈x, y | x4 = y4 = 1, xyx−1 = y3〉 be the quaternion group of

order 8 acting on P via xr = r2, yr = r. Let G = PT and N := P 〈x〉 E G. Consider

b = 1
2(1−x2) = 1

2(1−y2). Then b is a block of kG as well as of kN , see e.g. [29, Lemma

3.7]. Now CG(P ) = P × 〈y〉. Thus, BrGP (b) is a sum of two blocks, 1
4(1 + iy − y2 − iy3)

and 1
4(1 − iy − y2 + iy3) of kCG(P ), where i is a primitive fourth root of unity. Set

eP = 1
4(1 + iy − y2 − iy3) and F = F(P,eP )(G, b), then AutF (P ) = 1.

On the other hand, CN (P ) = P × 〈x2〉, whence BrNP (b) = b is a block of kCN (P ). Set

F ′ = F(P,BrNP (b))(N, b), it is clear that AutF ′(P ) is cyclic of order 2.

We use a generalised category, introduced in [32], to circumvent this difficulty, which

will turn out to be very useful when proving results about block fusion systems.

Definition 2.50. Let G be a finite group, N E G and c be a G-stable block of kN . A

(c,G)-Brauer pair is a pair (Q, eQ), where Q is a p-subgroup of G with BrNQ (c) 6= 0 and

eQ is a block of kCN (Q) such that BrNQ (c)eQ 6= 0.

Let (Q, eQ) and (R, eR) be two (c,G)-Brauer pairs. We say that (Q, eQ) is contained

in (R, eR) and write (Q, eQ) ≤ (R, eR), if Q ≤ R and for any primitive idempotent

i ∈ (kN)R with BrNR (i)eR 6= 0, we also have BrNQ (i)eQ 6= 0. This defines an order relation

on the set of (c,G)-Brauer pairs compatible with the conjugation action of G. We also
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have that given a (c,G)-Brauer pair and Q ≤ R there exists a unique (c,G)-Brauer pair

(Q, eQ) contained in (R, eR), see [8, Theorem 1.8(i)]. Also, by [8, Theorem 1.14(2)], all

maximal (c,G)-Brauer pairs are G-conjugate. If (P, eP ) is a maximal (c,G)-Brauer pair

and G = N , P is a defect group as defined in the previous section.

Definition 2.51. Let G be a finite group, N EG and c be a G-stable block of kN . Let

(P, eP ) be a maximal (c,G)-Brauer pair. Let (Q, eQ) ≤ (P, eP ). Denote by F(P,eP )(G,N, c)

the category on P with morphisms consisting of all injective group homomorphisms

ϕ : Q → R for which there is some g ∈ G such that ϕ(x) = gx for all x ∈ Q and

g(Q, eQ) ≤ (R, eR).

Theorem 2.52. [32, Theorem 3.4] Let G be a finite group, N EG and c be a G-stable

block of kN . Let (P, eP ) be a maximal (c,G)-Brauer pair. The category F(P,eP )(G,N, c)

is a fusion system. If (P ′, e′P ) is another maximal (c,G)-Brauer pair, then F(P,eP )(G,N, c)

is isomorphic to F(P ′,e′P )(G,N, c).

We refer to such fusion systems as generalised block fusion systems. If G = N , one

obtains the usual fusion systems of blocks from Theorem 2.36. In Chapter 3 we see

that we need these more general categories to prove reduction theorems for block fusion

systems. The following theorem shows how this category is connected to the block fusion

systems defined before and how we circumvent the problems from Example 2.49.

Theorem 2.53. [32, Theorem 3.5] Let G be a finite group with N E G. Let c be a

G-stable block of kN covered by a block b ∈ kG. Let (P, eP ) be a maximal b-Brauer pair.

Then there exists a maximal (c,G)-Brauer pair (S, e′S) with P ≤ S and F(P,eP )(G, b) ≤

F(S,e′S)
(G,N, c). Furthermore, P ∩ N = S ∩ N , (S ∩ N, e′S∩N ) is a maximal c-Brauer

pair and F(S∩N,e′S∩N )(N,N, c) = F(S∩N,e′S∩N )(N, c)EF(S,e′S)
(G,N, c).

Note that in [32], only weak normality of F(S∩N,e′S∩N )(N, c) in F(S,e′S)
(G,N, c) was

proved, but it was improved to normality in [3, Part IV, Theorem 6.4]. We refer to

the relations between the three fusion systems in this theorem as “triangle relations”.
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These useful relations allow a descent to normal subgroups, which is not possible for

block fusion systems by Example 2.49. This gives reason to believe that in order to

prove Conjecture 1.1, one must prove Conjecture 1.5.

Note that Conjecture 1.5 implies Conjecture 1.1, since any block fusion system F(P,eP )(G, b)

can be written as a generalised block fusion system F(P,eP )(G,G, b).

We finish this section by proving that when specialising to the case when G/N is a

p′-group, the three fusion systems in Theorem 2.53 are categories on the same group.

Proposition 2.54. Let G be a finite group with normal subgroup N and let c be a block

of kG covering a G-stable block b of kN . If G/N is a p′-group, then three fusion systems

occurring in Theorem 2.53 are categories on the same group.

Proof. Let (S, fS) be a maximal c-Brauer pair. As bc = c and BrGS (c)fS = fS , there is a

central primitive idempotent f ′S of kCN (S) such that BrNS (b)f ′S = f ′S and fS covers f ′S .

In particular, (S, f ′S) is a (b,G)-Brauer pair. Let (T, f ′T ) be a maximal (b,G)-Brauer pair

such that (S, f ′S) ≤ (T, f ′T ). By the proof of [32, Theorem 3.5] we get that (T ∩N, f ′T∩N )

is a maximal b-Brauer pair. Since G/N is a p′-group we have that T = T ∩N and thus

S ≤ T ∩N . But we also have |S| ≥ |T ∩N | which implies S = T ∩N = T . �

Note that this proof partially follows the proof of Theorem 2.53.
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3 Reduction Theorems

3.1 Overview of Reduction Theorems

In this section, we recall reduction theorems for block fusion systems. We start off with

two essential results for the study of such systems. These results are respectively called

the First and Second Fong Reduction.

When studying the relations between a group G with a block b and the blocks of a

normal subgroup N EG, a certain subgroup of G plays a huge role:

Theorem 3.1. [3, Part IV, Proposition 6.3] Let G be a finite group with N E G and

let c be a block of kN . Let IG(c) = {g ∈ G|gc = c}, the stabiliser of c in G. The map

e 7→ TrGIG(c)(e) is a bijection between the set of blocks of kIG(c) covering c and the set of

blocks of kG covering c. Furthermore, if b is a block of kG covering c, then the fusion

system of the block b is isomorphic to the fusion system of the block b̃ of IG(c) with

b = TrGIG(c)(b̃).

This theorem is called the First Fong Reduction.

Definition 3.2. Let N EG, c a block of kN covered by b ∈ kG. We call the block b̃ of

IG(c) with b = TrGIG(c)(b̃) Fong correspondent of b.

We use Theorem 3.1 often in the following form:

Corollary 3.3. Let F be a fusion system and G be a finite group possessing an F-block

b such that |G : Z(G)| is minimal among all finite groups having an F-block. Then b is

inertial, i.e. it covers only G-stable blocks.

Proof. Choose N, c as in Theorem 3.1. Since Z(G) ⊆ IG(c), this theorem and the mini-

mality assumption implies directly that IG(c) = G. Hence b is inertial. �

The following theorem is the Second Fong Reduction:
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Theorem 3.4. [3, Part IV, Theorem 6.6] Let G be a finite group with N E G and c

be a G-stable block of kN with trivial defect. Let b be a block of kG covering c and let

(P, eP ) be a maximal b-Brauer pair. Then N ∩P = 1 and there exists a central extension

1→ Z → G̃→ G/N → 1, where Z is a cyclic p′-group such that there is a block b̃ of kG̃

such that if we identify P with the Sylow p-subgroup of the inverse image of PN/N in

G̃, then there is a maximal b̃-Brauer pair (P, fP ) such that F(P,eP )(G, b) = F(P,fP )(G̃, b̃).

We state the two known reduction theorems with respect to Conjecture 1.1.

Theorem 3.5. [28, Theorem 3.1] Let F be a reduction simple fusion system on a p-

group P . Assume that Aut(P ) is a p-group. If G is a finite group having an F-block,

then there exists a quasisimple group with p′-centre also having an F-block.

Theorem 3.6. [32, Theorem 4.2] Let F1 and F2 be fusion systems on a p-group P such

that F1 ⊆ F2. Assume that

(a) F1 is reduction simple,

(b) if F is a fusion system on P containing F1, then F = F1 or F = F2,

(c) if F is a non-trivial weakly normal subsystem of F2, then F = F1 or F = F2.

If there exists a finite group with an F1 or F2-block, then there also exists a quasisimple

group with p′-centre with an F1 or F2-block.

3.2 New Reduction Theorems for block fusion systems

This subsection will be spent proving the Reduction Theorems 1.2 and 1.4. Note that

these results have already been published in a paper of mine, see [48]. We recall some

group-theoretic notation.

Definition 3.7. Let G be a finite group.

(a) The unique maximal semisimple normal subgroup of G is called the layer of G and

denoted by E(G). If E(G) 6= 1, the uniquely determined quasisimple factors of E(G) are

called the components of G.
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(b) The unique maximal nilpotent normal subgroup of G is called the Fitting subgroup of

G and denoted by F (G).

We start by proving Theorem 1.4. First we need two auxiliary results, one of which we

quote directly from [32].

Lemma 3.8. [32, Lemma 6.1] Let G be a finite group with N E G and b be a block of

kG with defect group P . Then there exists a block c of kN , which is covered by b, having

P ∩N as a defect group.

Lemma 3.9. Let F be a reduction simple fusion system and G be a finite group having

an F-block b with non-abelian defect group P . If G = 〈gP : g ∈ G〉, then there exists a

quasisimple group with p′-centre having an F-block.

Proof. We claim that if N EG is proper, then N has a block d which is covered by b and

of defect zero. Indeed, by Lemma 3.8, we can choose d such that it has P ∩N as defect

group. Since N is normal and each morphism in F is induced by conjugation with an

element in G, P ∩N is also strongly F-closed. If P ∩N 6= 1, then by reduction simplicity

P ∩N = P , which would imply that N = G, as G = 〈gP | g ∈ G〉. This contradiction

implies P ∩N = 1. Note that we can furthermore assume that d is G-stable by Theorem

3.1.

Apply Theorem 3.4 to get a p′-central extension G̃ of G/N coming from an exact se-

quence 1→ Z → G̃→ G/N → 1 having a block c that is an F-block. We now construct

a quasisimple group L with an F-block. If we choose N to be a maximal normal sub-

group, then G/N is either cyclic of prime order or G/N is a non-abelian simple group.

First, we assume that G/N is cyclic, thus let g ∈ G/N be a generating element and g̃ be

a preimage of g in G̃. Then G̃ = 〈Z, g̃〉. This means G̃ is abelian, hence so is P , which

is a contradiction.

So, we are left with the case that G/N is non-abelian simple. Note that by simplicity

of G/N , we necessarily have Z = Z(G̃) in the extension above. Define L = [G̃, G̃]. We
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have LZ/Z E G̃/Z = G/N . First assume LZ/Z = 1, then LZ = Z, which means that

L ⊆ Z. If we identify G̃/Z with its image in G̃/L, we thus get G̃/Z ⊆ G̃/L. This is a

contraction since G̃/L is abelian, and G̃/Z, which is a homomorphic image of G/N , is

not. So, by simplicity, LZ/Z = G̃/Z, so LZ = G̃. Taking commutators of this equation

implies [L,L] = [G̃, G̃] = L, so L is perfect. Since we have G̃/Z = LZ/Z ∼= L /L ∩ Z , L

is also a p′-central extension of G/N by Z ∩ L, and thus quasisimple.

The map L × Z → G̃ = LZ defined by (l, z) 7→ lz, l ∈ L, z ∈ Z, is a surjective group

homomorphism with kernel K = {(x, x−1) : x ∈ Z ∩ L}, a central p′-group. This means

there exists a bijection, preserving the associated fusion systems, between the blocks of

G̃ and the blocks of L×Z having K in their kernel, see Theorem 2.40. Since Z is cyclic,

it is abelian, and thus its blocks are linear characters, see [37, Theorem 3.3.14]. Theorem

2.48 implies that there is a block of kL which is an F-block. �

Proof of Theorem 1.4. Assume G to be of minimal order among the groups possessing

an FH -block b for some H ≤ Γp′(F). Let N E G and c be a block of kN covered by b.

By Theorem 3.1, and our assumption, we may assume that G = IG(c). In particular, for

any normal subgroup N of G, we may assume that c is G-stable and the unique block

of kN covered by b.

By construction, P is a defect group for b. Consider M := 〈gP | g ∈ G〉 E G. Let d be

the block of kM covered by b. We can apply the first paragraph to M E G and thus

assume d is G-stable. So, we have a homomorphism G → Aut(kMd), g 7→ cg, inducing

a map G → Out(kMd). Let K be the kernel of this map. Clearly, M ⊆ K. We claim

K = G.

Indeed, let f be the block of kK covered by b. Let (P, eP ) be a maximal b-Brauer pair

and (S, e′S) a maximal (f,G)-Brauer pair as in Theorem 2.53. By [34, Section 5], G/K

is a p′-group. Thus, by Proposition 2.54, P = S. Furthermore FH ≤ F(P,e′P )(G,K, f)

and F(P,e′P )(K, f)EF(P,e′P )(G,K, f) by Theorem 2.53.

42



Thus, by assumption (b), F(P,e′P )(G,K, f) ⊆ F and by definition it is also of p′-index.

Hence, there is some H ′ ≤ Γp′(F) such that F(P,e′P )(G,K, f) = FH′ . Similarly, by

assumption (c), there is also a J ≤ Γp′(F) such that F(P,e′P )(K, f) = FJ . By the mini-

mality of G, we deduce G = K.

By this observation, G acts as inner automorphisms on kMd. Thus, by [33, Theorem

7], kMd and kGb have isomorphic source algebras. By [28, Proposition 2.12], we have

that d is an FH -block as well. Using the minimality once more, we obtain G = M .

Note that reduction simplicity of Op′(F) implies reduction simplicity of F for a fusion

system F , since the non-existence of proper non-trivial strongly Op′(F)-closed subgroups

of P implies also the non-existence of proper non-trivial strongly F-closed subgroups of

P . In particular, we can apply Lemma 3.9 to deduce the theorem. �

Note that we obtain Theorem 3.6 as a corollary of the theorem we just proved by setting

Γp′(F) = C2.

We finish this section with proving Theorem 1.2, which further restricts the structure of

reduction simple fusion systems:

Proof of Theorem 1.2. Let G̃ be a group having an F-block b̃ subject to |G̃ : Z(G̃)|

being minimal and M E G̃ be maximal such that P 6⊆ M . By [1, 2.9], each normal

p-subgroup is contained in each defect group of a block, so we have that Op(G̃) ≤ P .

Furthermore, Op(G̃) is strongly F-closed, so either Op(G̃) = 1 or Op(G̃) = P . Suppose

that Op(G̃) = P , then Z(P )E G̃, since Z(P ) is characteristic in P . In particular, Z(P )

is strongly F-closed, which is not possible since P is non-abelian and F is reduction

simple. Thus, Op(G̃) = 1.

In particular, Z(G̃) is a p′-group. By maximality, we must have Z(G̃) ⊆ M . Since

P 6⊆ M and P ∩M is strongly F-closed, reduction simplicity implies that P ∩M = 1.
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However, P ∩M is a defect group of a block of kM , which is covered by b̃ by Lemma 3.8.

This block is furthermore G̃-stable by our assumptions and Corollary 3.3. In particular,

there is a central extension 1 → Z → G
π−→ G̃/M → 1 for some central p′-group Z and

G has an F-block b by Theorem 3.4 (with the roles of G and G̃ interchanged).

We check that G satisfies the claims (a), (b) and (c). To prove claim (a), note that

|G : Z(G)| ≤ |G : Z| = |G̃ : M | ≤ |G̃ : Z(G̃)|. Now part (a) follows by our assumption.

In particular, by Corollary 3.3, b is inertial.

Let ε : G̃ � G̃/M be the canonical surjection. The maps ε and π induce a bijection

between the set of subgroups of G containing Z and the set of subgroups of G̃ contain-

ing M , which preserves normality, by sending a subgroup H ≤ G to ε−1(π(H)) ≤ G̃.

Suppose H E G with P 6⊆ H. We show H ⊆ Z(G). We may assume Z ( H. Now

P ⊆ H if and only if ε−1(π(P )) ⊆ ε−1(π(H)). Since there is no normal subgroup of G̃

properly containing M and not containing P , it follows that there is no normal subgroup

of G properly containing Z and not containing P , which proves the first part of (b). In

particular, Z(G) is a p′-group since it clearly does not contain P .

Note that we have Op(G) = 1 for any G having an F-block. Note that F (G) =∏
q∈P

∏
Q∈Sylq(F (G))

Q. In particular, Sylp(F (G)) = 1 since these subgroups are characteris-

tic in F (G) and otherwise Op(G) 6= 1. Thus, by the above, F (G) ⊆ Z(G), so in fact

F (G) = Z(G).

Now let c be the block of kE(G) which is covered by b. If E(G) ∩ P = 1, E(G) ⊆ Z(G)

again by the above. But then E(G) = 1. Since F (G) is central, by Bender’s Theo-

rem, see [23, Theorem 4.8], this means CG(Z(G)) = G ≤ Z(G), so G is abelian. Thus,

E(G) ∩ P 6= 1 and P ⊆ E(G) = L1 · · ·Lt, where {L1, . . . , Lt} are the components of G.

We have E(G) ∼= (L1 × · · · × Lt) /K for K ⊆ Z(L1 × · · · × Lt) = Z(L1) × · · · × Z(Lt).

We claim that K is a p′-group. It suffices to prove Op(Li) = 1 for each 1 ≤ i ≤ t. Indeed,

if we assume the contrary, then the group Op(L1) · · ·Op(Lt) is a non-trivial normal sub-

group of E(G). In particular, Op(E(G)) 6= 1. However, this is a characteristic subgroup
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of the layer, which implies Op(G) 6= 1, a contradiction.

Thus, there is a fusion system preserving bijection between the blocks of E(G) and the

blocks of L1 × · · · × Lt which have K in their kernel. In particular, we may assume

P = P1 × · · · × Pt and c = c1 × · · · × ct, where for 1 ≤ i ≤ t, Pi is a defect group of the

block ci, which is a block of kLi covered by c. If r is the rank of Z(P ), then at most

r of the blocks ci can have non-trivial defect. Let s ≤ r be such that s of the blocks ci

have non-trivial defect. After possibly reordering, we may assume these are c1, · · · , cs.

We claim Ls+1 · · ·LtEG. Indeed, the conjugation action of G on E(G) induces a group

homomorphism σ : G → Sym({L1, . . . , Lt}) ∼= St as follows: σ(x)(i) := j iff xLi = Lj .

Assume there is an x ∈ G such that xLi = Lj for i ≤ s, j > s. Since b is inertial, c is

G-stable. This means xc = c, so xc1 × · · ·× xct = c1 × · · · × ct, but this implies xPi is

non-trivial. This contradiction implies normality. Now we can apply part (b) to deduce

Ls+1 · · ·Lt = 1, which implies claim (c). �

We can further restrict the structure of reduction simple fusion systems by specialising

to the case of Z(P ) being cyclic:

Theorem 3.10. Let P be a non-abelian p-group such that Z(P ) is cyclic and let F be a

reduction simple fusion system on P . If F is block-realisable, then there exists a fusion

system F0 on P and a quasisimple group with an F0-block, where Op(F0) = 1.

Proof. Assume G is a finite group having an F-block b with defect group P . We may

choose G such that the conclusions of Theorem 1.2 hold. Let L = 〈gP | g ∈ G〉. Thus,

since P ⊆ E(G) as in the proof of Theorem 1.2, we have L E E(G). By Theorem 1.2,

the number of components of G is bounded by the rank of Z(P ). By cyclicity of that

group, E(G) is quasisimple. Furthermore, L is non-central, so we must have L = E(G)

is quasisimple.

Let d be the block of kL which is covered by b. Define K to be the kernel of the map

G → Out(kLd), which is induced by G → Aut(kLd), g 7→ cg, and assume K has a
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block c which is covered by b. We get the triangle relations F ⊆ F(P,e′P )(G,K, c) and

F(P,e′P )(K, c)EF(P,e′P )(G,K, c) =: F̃ as in the proof of Theorem 1.4. In the same fashion

as in the proof of this theorem, application of [34, Theorem 7] and [28, Proposition

2.12] also implies F(P,e′P )(K, c) ∼= F(P,fP )(L, d) =: F0. We have Op(F) = 1 by reduction

simplicity. Thus, Lemma 2.13 implies Op(F̃) = 1 and Lemma 2.14 implies Op(F0) = 1.

�

3.3 Reduction Theorems for generalised block fusion systems

In this chapter, we generalise key results for block fusion systems to generalised block

fusion systems. We start with Brauer’s Third Main Theorem.

Proof of Theorem 1.6. Let d be the principal block of kH. Then db 6= 0 and b

is H-stable. By Brauer’s Third Main Theorem (see Theorem 2.37), BrHQ (d) is the

principal block of kCH(Q) for any Q ≤p H. In particular, there is a maximal d-

Brauer pair (P, eP ), where P ∈ Sylp(H) and eP is the principal block of kCH(P )

and F(P,eP )(H, d) = FP (H). By Theorem 2.53, there exists a maximal (b,H)-Brauer

pair (S, e′S) such that FP (H) = F(P,eP )(H, d) ⊆ F(S,e′S)
(H,G, b) ⊆ FS(H). Since

P ∈ Sylp(H), it follows that S = P and that F(S,e′S)
(H,G, b) = FP (H).

By the above, S = P . For any Q ≤ P , let eQ be the unique block of kCH(Q) such that

(Q, eQ) ≤ (P, eP ) as d-Brauer pairs and let e′Q be the unique block of kCG(Q) such that

(Q, e′Q) ≤ (P, e′P ) as (b,H)-Brauer pairs. By Lemma 2.33, eQe
′
Q 6= 0. In other words,

the block eQ of kCH(Q) covers the block e′Q of kCG(Q). But eQ is the principal block of

kCH(Q). Since a principal block covers only principal blocks, e′Q is the principal block

of kCG(Q). �

Note that if G = H, Theorem 1.6 becomes the original Brauer’s Third Main Theorem

(see Theorem 2.37).

46



Next, we generalise both Fong reductions, starting with the first one. We need some

background before proving it. We follow the approach of [37, Chapter 8.7] and directly

quote some of the background needed. Fix (K,O, k) to be a p-modular system.

Definition 3.11. Let G be a finite group.

(a) Let A be an O-algebra which is finitely generated as an O-module. A point of A is

an A×-conjugacy class α of primitive idempotents in A.

(b) Let A be a G-algebra over O and let P ≤p G. We set

A(P ) = AP /(
∑
Q<P

APQ + J(O)AP )

and call the canonical map BrAP : AP → A(P ) Brauer homomorphism.

(c) Let A be a G-algebra over O and let P ≤p G. A local point of P on A is a point γ

of P on A with BrAP (γ) 6= 0.

Let G,H be finite groups with G EH and b be an H-stable block of kG with P ≤p H

being maximal such that BrGP (b) 6= 0. A source idempotent is a primitive idempotent

i ∈ (kGb)P satisfying BrGP (i) 6= 0 such that for any Q ≤ P , there is a unique block

eQ with BrGQ(i)eQ 6= 0. The interior P -algebra A = ikHi is called a source algebra of

the block b. The pair (P, eP ) is thus a maximal (b,H)-Brauer pair. In particular, any

source idempotent i determines a generalised block fusion system F = F(P,eP )(H,G, b)

on P and we call F the fusion system of the source algebra A or the fusion system on

P determined by the source idempotent i.

Proposition 3.12. Let G E H, b an H-stable block of kG, (P, eP ) a maximal (b,H)-

Brauer pair, i a source idempotent of (kGb)P such that BrGP (i)eP = BrGP (i). Then

F(P,eP )(H,G, b) is generated by the set of inclusions between subgroups of P and those

automorphisms ϕ of subgroups Q of P such that ϕ|kQ is isomorphic to a direct summand

of ikHi as k[Q×Q]-module.
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We need two auxiliary results before proving this proposition.

Proposition 3.13. Let G E H, b an H-stable block of kG, (P, eP ) a maximal (b,H)-

Brauer pair, i a source idempotent of (kGb)P and A = ikHi. Let F be the fusion system

of A on P and Q ≤ P fully F-centralised with eQ being the unique idempotent such that

(Q, eQ) ≤ (P, eP ). For any local point δ of Q on OHb satisfying BrGQ(δ)eQ 6= {0}, we

have δ ∩A 6= ∅.

Proof. By definition, if δ is a local point of Q on OHb satisfying BrGQ(δ)eQ 6= {0}, then

BrGQ(δ) is a conjugacy class of primitive idempotents in kCH(Q)eQ. Since kCH(Q)eQ is

Morita equivalent to A(Q) = BrGQ(i)kCH(Q) BrGQ(i), see [37, Theorem 6.4.6], it follows

that there is j ∈ δ such that BrGQ(j) ∈ BrGQ(i)kCH(Q) BrGQ(i). The lifting theorems for

idempotents imply that j can be chosen in AQ = i(kH)Qi. �

Proposition 3.14. Keep the assumptions of Proposition 3.12, let A = ikHi, F be the

fusion system of A on P and Q,R ≤ P .

(i) Every indecomposable direct summand of A as OQ-OR-bimodule is isomorphic to

OQ⊗ϕ OR for some S ≤ Q and ϕ ∈ HomF (S,R);

(ii) If ϕ ∈ HomF (S,R), R fully F-centralised, then ϕR is isomorphic to a direct sum-

mand of A as OQ-OR-bimodule.

Proof. (i) Let Y be an indecomposable direct summand of A as an OQ-OR-bimodule.

Then Y has a Q × R-stable O-basis on which Q and R act freely on the left and on

the right, respectively. So Y ∼= OQ ⊗OS ϕOR for some S ≤ Q and some injective

group homomorphism ϕ : S → R. Let T = ϕ(S). Restricting Y to S × T shows that

ϕOT is isomorphic to a direct summand of Y , hence of A, as an OS-OT -bimodule.

Now A is a direct summand of OH as an OP -OP -bimodule. In particular, ϕOT is

isomorphic to a direct summand of OH as an OS-OT -bimodule, hence isomorphic to

OSy−1 = y−1OT for some y ∈ H with yS = T and ys = ϕ(s) for all s ∈ S. Then OS is

isomorphic to a direct summand of iOHiy = iOHy−1iy as an OS-OS-bimodule. Thus
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BrGS (iOHy−1iy) 6= 0 by [37, Lemma 5.8.8]. Since BrGS (i) ∈ kCH(S)eS this also forces

BrGS (y−1iy)eS 6= 0. Conjugating by y yields BrGT (i)yeS 6= 0. But this means yeS = eT

because eT is the unique block of kCH(T ) with the property BrGT (i)eT 6= 0. This shows

that ϕ ∈ Mor(F), whence (i).

(ii) By definition, there is x ∈ H such that ϕ(u)=xu for all u ∈ Q and xeQ = eR. Let

µ be a local point of Q on OHb such that µ ∩ A 6= ∅. Set ν=xµ, i.e. x(Qδ) = Rν .

µ∩A 6= ∅ implies BrGQ(µ)eQ 6= 0. Conjugating by x gives BrGR(µ)eR 6= 0. Since R is fully

F-centralised, we get from the previous proposition that ν ∩A 6= 0. Let m ∈ µ ∩A and

n ∈ ν ∩ A. Then xm and n both belong to ν, so they are conjugate in (AR)×. Since

BrGQ(m) 6= 0, we get (mOHm)(Q) 6= {0}. This means mOHm has a direct summand

isomorphic to OQ as an OQ-OQ-bimodule. This means mOHmx−1 = mOHxmx−1 ∼=

mOHm = mAn has a direct summand isomorphic to OQϕ−1
∼=ϕ OR as an OQ-OR-

bimodule. �

Proof of Proposition 3.12. The result follows from the previous proposition together

with Alperin’s Fusion Theorem, see Theorem 2.6. �

Proposition 3.15. Let N EGEH with N EH, c be a block of kN covered by b ∈ kG

and let b̃ be the Fong correspondent of b in IG(b). There exists a subgroup P of IH(c)

and i ∈ (kIG(c)b̃)P such that i is a source idempotent of the IH(c)-algebra kIG(c)b̃ and

of the H-algebra kGb.

Proof. By Frattini argument, H = GIH(c) (G E H and G transitively permutes all

H-conjugates of c).

In particular, H/IH(c) = GIH(c)/IH(c) = G/(G ∩ IH(c)) = G/IG(c). Thus, a system

of left coset representatives of IG(c) in G is also a system of left coset representatives of

IH(c) in H. Since b̃ is IH(c)-stable, we obtain b = TrGIG(c) b̃ = TrHIH(c) b̃. Let x ∈ H\IH(c),

then b̃xb̃ = b̃cxcxb̃ = 0.

We are viewing kGb as H-algebra and kIG(c)b̃ as IH(c)-algebra. Let P ≤ H be maximal

49



s.t. BrGP (b) 6= 0 and j ∈ (kGb)P primitive idempotent s.t. BrGP (j) 6= 0. Let m be

the maximal ideal of (kGb)P not containing j and let π : (kGb)P → (kGb)P /m be the

canonical surjection. Since BrGP (j) 6= 0, we have a factorisation, see [49, Lemma 14.4],

(kGb)P (kGb)P /m

BrGP ((kGb)P )

BrGP

π

π0

We have: 0 6= π(j) = π(jb) = π(j)π(b). Hence, π(b) 6= 0. Further π(b) = π0 ◦

BrGP (TrHIH(c) b̃) = π0(BrGP (TrHIH(c) b̃)). By the Mackey formula, see [37, Proposition 2.5.5],

the latter expression is equal to π0(BrGP (
∑

x∈P\H/IH(c)

TrPP∩xIH(c)(
xb̃))), which means that

π(b) = π0(
∑

x∈P\H/IH(c)

BrGP (TrPP∩xIH(c)(
xb̃))).

However, BrGP (TrPR a) = 0 for any proper subgroup R of P and a ∈ AR. Thus, the above

shows that there is x ∈ H s.t. P ∩x IH(c) = P and 0 6= π0(BrGP (xb̃)) = π(xb̃).

The equation 0 6= π(xb̃) implies that there is a primitive idempotent i of (kGb)P s.t. i is

(kGb)P -conjugate to j and s.t. ixb̃i = i, i.e. i ∈x b̃kGxb̃. In particular, π(i) 6= 0, hence

BrGP (i) 6= 0. Setting i′ =x−1
i, P ′ =x−1

P we get: i′ is a primitive idempotent of (kGb)P
′

with Br
IG(c)
P ′ (i′) 6= 0 and i′ ∈ b̃kGb̃ = kIG(c)b̃.

Thus, we have shown: If j is a primitive idempotent of (kGb)P s.t. BrGP (j) 6= 0, then

there exists x ∈ H s.t. x−1
P ⊆ IH(c) and a (kGb)P -conjugate i of j s.t. x−1

i is a

primitive idempotent of kIG(c)b̃ with Br
IG(c)
x−1P

(x
−1
i) 6= 0.

Replacing (P, i) with (x
−1
P,x

−1
i) we obtain: There exists a p-subgroup P of IH(c) and

a primitive idempotent i of kIH(c)b̃ s.t. BrGP (i) 6= 0, i is primitive in kGb and P is

maximal among p-subgroups of H s.t. Br
IG(c)
P (b) 6= 0.

Conversely, suppose that P ≤ IH(c) is maximal s.t. Br
IG(c)
P (b̃) 6= 0. By maximality,

b̃ = Tr
IH(c)
P (a) for some a ∈ (kGb̃)P . Thus, b = TrHIH(c) b̃ = TrHP (a). This shows that P

is contained in a maximal p-subgroup Q of H s.t. BrGQ(b) 6= 0.

Combining, we obtain: There exists a p-subgroup P of IH(c) and a primitive idempotent

i of (kIG(c)b̃)P s.t. P is maximal among subgroups Q of H s.t. BrGQ(b) 6= 0, P is maximal
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among subgroups Q of IH(c) s.t. Br
IG(c)
Q (b̃) 6= 0, i is a primitive idempotent of (kGb)P

and BrGP (i) 6= 0. �

Proposition 3.16. Keep the notation from the previous proposition. Then the algebras

ikHi and ikIH(c)i are isomorphic as interior P -algebras.

Proof. Let P, i be as above, then we claim that also have ikHi = ikIH(c)i. Indeed,

clearly ikIH(c)i ⊆ ikHi.

Now suppose x ∈ H \ IH(c). Then ixi = ib̃xb̃i = ib̃xb̃xi = 0. This shows that

ikHi ⊆ ikIH(c)i. �

Proof of Theorem 1.7. Since IG(c) = IH(c) ∩G, and G is normal in H, IG(c) is normal

in IH(c).

Next, we claim that b̃ is IH(c)-stable. Let x ∈ IH(c), then

b =x b =x TrGIG(c)(b̃) = Tr
xG
xIG(c)(

xb̃) = TrGIG(c)(
xb̃),

where the last equality follows from the normality of G in H and IG(c) in IH(c). This

equation, together with the uniqueness of the Fong correspondent, implies stability. Note

that xb̃ is indeed a block of kIG(c) covering c since xb̃c=xb̃xc=x(b̃c) 6= 0.

We apply Propositions 3.15 and 3.16 to obtain a source idempotent i of b and b̃ respec-

tively with ikHi = ikIH(c)i. This observation, together with Proposition 3.12, implies

the theorem. �

Theorem 1.7 is a generalisation of the First Fong Reduction, which we obtain from it

if G and H coincide. We give an example proving that the assumption N E H in the

theorem is necessary.

Example 3.17. Let b and c be principal blocks, then, by Theorem 1.6, the statement

becomes FS(H) = FS(IH(c)). In particular, since c is principal, we also have IH(c) =
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NH(N), thus FS(H) = FS(NH(N)) whenever N EGEH.

Now let p = 3, N = (C3 × C3) o C2, where C2 acts as a reflection, then S = C3 ×

C3 ∈ Sylp(N). Let H = S o D8, G = S o (C2 × C2) then NH(N) = G, but clearly

FS(G) ( FS(H).

Finally, we also generalise the Second Fong Reduction to generalised block fusion sys-

tems.

Proof of Theorem 1.8. First, we apply the second Fong reduction to AEH. We use the

notation from [28, Proof of Theorem 3.1] and are recalling some key steps. Let S be a

p-subgroup of H containing P , maximal such that BrAS (c) 6= 0. For each h ∈ H there is

an element ih ∈ (kAc)× such that cih = ch on (kAc)×. We can choose the elements ih

such that iha = ihac for h ∈ H, a ∈ A and such that

S → (kAc)×, s 7→ is

is a homomorphism. Now define a 2-cocyle α on H via igih = α(g, h)igh for g, h ∈ H.

Denote by kα−1H/A the twisted group algebra corresponding to α−1, i.e. the free module

on {ĥ|h ∈ H/A} with multiplication given by ĥĝ = α−1(h, g)ĥg. Define a function

φ : kAc⊗ kα−1Ĥ/A → kHc via the k-linear extension of the map x⊗ ĥ 7→ xi−1h h. This

gives a central p′-extension

1→ Z → H̃ → H/A→ 1

and by our choice of the elements ih also a p′-extension

1→ Z → M̃ →M/A→ 1,

where M̃ is the full inverse image of M/A in H̃. Furthermore, we get an idempotent
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e of kZ and an algebra isomorphism τ : kH̃e → kα−1Ĥ/A with τ(h̃e) = αh̃ĥ for some

αh̃ ∈ k
×, see [49, Proposition 10.8]. Denote by τM the restriction to kM̃e. If we define

αM to be the restriction of α to M ×M , then τM becomes an algebra isomorphism from

kM̃e to kαM
−1M̂/A.

For each s ∈ S, let s̃ denote the unique lift of s in H̃ which is also a p-element and for

Q ≤ S define Q̃ = {q̃ | q ∈ Q}. Note that the groups S/A, S̃ and S are isomorphic and

we identify them henceforth. In particular, P̃ ∼= P . If we consider kAc⊗kH̃e as interior

S-algebras via s 7→ is ⊗ se, we obtain an S-algebra isomorphism

ψ : kAc⊗ kH̃e→ kHc, x⊗ y 7→ φ(x⊗ τ(y)).

Again, we denote the restriction to kAc⊗ kM̃e, which is also an S-algebra isomorphism

to kMc, by ψM . Since kAc and kH̃e are p-permutation algebras, see [49, Proposition

28.3], ψ induces algebra isomorphisms ψQ : kAc(Q) ⊗ kH̃e(Q) → kHc(Q) and ψQ,M :

kAc(Q)⊗ kM̃e(Q)→ kMc(Q) satisfying ψQ,M (BrMQ (x)⊗ BrMQ (y)) = BrMQ (ψM (x⊗ y)).

Since kAc is a matrix algebra, we get bijections between the blocks of H covering c and

the blocks of H̃ covering e as well as between the blocks of M covering c and the blocks

of M̃ covering e. For the same reason, ψQ,M induces a bijection between the blocks of

kMc(Q) and kM̃e(Q) via f 7→ ψQ,M (1⊗f). Thus, (Q, f) 7→ (Q,ψQ,M (1⊗f)) provides a

bijection between the set of Brauer pairs associated to blocks of M̃ covering e and the set

of Brauer pairs associated to blocks of M covering c with first components respectively

contained in S.

Let d̃ be the block of kM̃ corresponding to d under ψM , i.e. d = ψM (c⊗ d̃). Note that d

is H-stable if and only if d ∈ Z(kHc). Since ψM is an k-algebra isomorphism, this is if

and only if c⊗ d̃ ∈ Z(kH̃c̃⊗ kAc). The latter expression is equal to Z(kH̃c̃)⊗ k. Since

d = ψM (c⊗ d̃), we get that d is H-stable if and only if d̃ is H̃-stable.

Define ẽP by ψM,P (c ⊗ ẽP ) = eP . Note that by the description above, ψM,P is an
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inclusion-preserving map of Brauer pairs. Since P ≤ M we thus get that (P, ẽP ) is a

maximal (d̃, H̃)-Brauer pair. We can thus define the category F(P,ẽP )(H̃, M̃ , d̃). Now we

define a map from F(P,eP )(H,M, d) to F(P,ẽP )(H̃, M̃ , d̃) by (Q, eQ) 7→ (Q,ψM,Q(1⊗eQ)).

The objects of the generalised block fusion systems F(P,eP )(H,M, d) and F(P,ẽP )(H̃, M̃ , d̃)

are the same by the above. For the morphisms we want to prove that NH(Q, eQ) and

N
H̃

(Q,ψM,Q(1⊗ eQ)) have the same image in Aut(Q). For this, we need to prove that

ψM,Q is H-equivariant. Note that we can apply [28, 3.4] to get that for any h ∈ H with

lift h̃ of hA in N
H̃

(Q), there exists some a ∈ A such that n := ah ∈ NH(Q) and ñx =h̃ x̃

for all x ∈ Q. Let ẽQ := ψM,Q(1 ⊗ eQ) and f̃Q ∈ (kM̃e)Q such that BrMQ (f̃Q) = ẽQ. If

we define fQ := ψM (1⊗ f̃Q), then BrMQ (fQ) = eQ by the observations about ψM above.

Let h ∈ NH(Q) with h̃ ∈ H̃ a lift of h. If we define t := ψ−1(hc), then t = ih ⊗ αh̃e for

some α ∈ k×. We get:

heQ =h BrMQ (fQ) = BrMQ (hfQ) = BrMQ (ψ(t(1⊗ f̃Q))) = BrMQ (ψ(1⊗h̃ f̃Q))

= BrMQ (ψM (1⊗h̃ f̃Q)) = ψM,Q(1⊗ BrMQ (h̃f̃Q)) = ψM,Q(1⊗h̃ BrMQ (f̃Q)) = ψM,Q(1⊗h̃ ẽQ)

In particular, h stabilises eQ if and only if h̃ stabilises ẽQ. Theorem 2.6 implies our

claim. �

If H = M , we obtain the original second Fong reduction. Note that the First and

Second Fong Reductions for generalised block fusion systems might be used to gener-

alise Theorems 1.2 and 1.4 from block fusion systems to generalised block fusion systems.
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4 Parker–Semeraro systems

In this section, we provide further evidence for Conjecture 1.1. The results in this chap-

ter have already been published in a paper of mine, see [48]. The main result of this

section is Theorem 1.3. The fusion systems on a Sylow p-subgroup of G2(p) for odd p

and Op(F) = 1 have been classified by Parker and Semeraro in [42] and thus we refer to

them as Parker–Semeraro systems. For p 6= 7, all Parker–Semeraro systems are realised

by finite groups, whereas for p = 7, there are 29 Parker–Semeraro systems, of which 27

are exotic. In [51], the classification has been extended to any fusion system on a Sylow

p-subgroup of G2(p
n) and PSU4(p

n) for any prime p and n ∈ N. It remains that the 27

systems found by Parker and Semeraro are the only exotic systems on such groups. In

this section, we prove block-exoticity of these. We give an overview of these systems in

the Table 1. The groups W,R and Q mentioned in this table are essential subgroups,

see [42, 5] for details and explanation of the different cases. Fix M to be the Monster

group for the rest of this section.

The relevance of the systems on groups as described above stems from the fact that one

wants to classify all fusion systems over maximal unipotent subgroups of finite groups

of Lie type of small rank. Note that the Solomon systems belong to this class of fusion

systems as well. Furthermore, another important factor is that 7 is a good prime and

thus, many results for groups of Lie type are applicable.

Also note that neither of the Reduction Theorems 3.5 and 3.6 can be applied to the

exotic Parker–Semeraro system F1
7 (6) on a Sylow 7-subgroup S of G2(7): Since subsys-

tems of F1
7 (6) are in correspondence to the subgroups of C6, it is not possible to fit each

subsystem into a pair fulfilling the assumptions of Theorem 3.6. Since Aut(S) is not a

7-group, Theorem 3.5 is also not applicable.
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In what follows, we use the notation of [42], where these systems have been classified.

We start by proving that it is not possible for most finite quasisimple groups to have a

block with S ∈ Syl7(G2(7)) as a defect group.

F OutF (W ) OutF (R) OutF (Q) OutF (S) Γp′(F) Group

F0
7 - GL2(7) 3× 2S7 6× 6 1 -

F1
7 (11) SL2(7) - - 6 1 -

F1
7 (21) SL2(7) - - 6 1 -

F1
7 (22) SL2(7) - - 6 1 -

F1
7 (23) SL2(7) - - 6× 2 2 -

F1
7 (31) SL2(7) - - 6 1 -

F1
7 (32) SL2(7) - - 6 1 -

F1
7 (33) SL2(7) - - 6 1 -

F1
7 (34) SL2(7) - - 6× 3 3 -

F1
7 (41) SL2(7) - - 6 1 -

F1
7 (42) SL2(7) - - 6 1 -

F1
7 (43) SL2(7) - - 6× 2 2 -

F1
7 (5) SL2(7) - - 6 1 -

F1
7 (6) SL2(7) - - 6× 6 6 -

F2
7 (1) SL2(7) SL2(7).2 - 6× 2 1 -

F2
7 (2) SL2(7) SL2(7).2 - 6× 2 1 -

F2
7 (3) SL2(7) GL2(7) - 6× 6 3 -

F3
7 SL2(7) - GL2(7) 6× 6 1 -

F4
7 SL2(7) - 3× 2S7 6× 6 1 -

F5
7 SL2(7) GL2(7) GL2(7) 6× 6 1 -

F6
7 SL2(7) GL2(7) 3× 2S7 6× 6 1 M

Table 1: Parker–Semeraro systems F , F 6= FS(G2(7))
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Proposition 4.1. Let S ∈ Syl7(G2(7)). Assume G is a finite quasisimple group having

a block with defect group S. Then either G = M or G = G2(7).

Most work has to be done to deal with groups of Lie type. We follow a similar approach

as in [32] and are going to restate a lemma from that paper, which is very useful to deal

with these groups.

Lemma 4.2. [32, Lemma 6.2] Let H = LP be a finite group such that L E H and P

is a p-group. Furthermore, let c be a P -stable block of kL with defect group P ∩ L and

BrHP (c) 6= 0 and let P ′ be such that P ∩ L ≤ P ′ ≤ P . Then,

(a) c is a block of kLP ′ with defect group P ′,

(b) if P ′ acts on L as elements of Inn(L), then P ′ = (P ′ ∩ L)CP ′(L).

Proposition 4.3. Let G be a quasisimple finite group and denote the quotient G/Z(G)

by G. Suppose G = G(q) is a finite group of Lie type and let p be a prime number ≥ 7,

(p, q) = 1. Let D be a p-group such that Z(D) is cyclic of order p and Z(D) ⊆ [D,D].

If D is a defect group of a block of kG, then there are n, k ∈ N and a finite group H

with SLn(qk) ≤ H ≤ GLn(qk) (or SUn(qk) ≤ H ≤ GUn(qk)) such that there is a block

c of H with non-abelian defect group D′ such that D′/Z is of order |D/Z(D)| for some

Z ≤ D′ ∩ Z(H).

Proof. Suppose G has a block with defect group D. Then the Sylow p-subgroups of

G cannot be abelian, which implies that the Weyl group of the algebraic group corre-

sponding to G has an order divisible by p, see [24, Theorem 4.10.2(a)]. This implies that

the exceptional part of the Schur multiplier of G is trivial, see [24, Table 6.1.3]. Thus,

there is a simple simply connected algebraic group K defined over Fq and a Frobenius

morphism F : K → K such that K
F

is a central extension of G. If K is of type A,

set H := K
F

and c to be the block whose image has defect group D under the algebra

homomorphism kH → kG induced by H � G.

Thus, assume K is not of type A. Since the kernel of KF → K
F

is a p′-group, we have
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|KF |p = |KF |p, so we may assume G = K
F

.

Denote a generator of Z(D) by z. By Theorem 2.31, we may assume the group CG(z) has

a block b with defect group D. Since K is simply connected, CK(z) is a Levi subgroup of

K. If we denote Z := Z(CK(z))◦, it is a well-known fact that CK(z) = [CK(z), CK(z)]Z.

The latter commutator is simply connected and thus a direct product of its components,

which are simply connected as well and permuted by F . In particular, we have a decom-

position [CK(z), CK(z)] =
t∏
i=1

ri∏
j=1

Lij , where each Lij is simply connected simple, and

the set of these groups for a fixed i lie in the same F -orbit.

Set Li = (
ri∏
j=1

Lij)
F . Then we have CG(z) = (L1× · · · ×Lt)TF , for an F -stable maximal

torus T ≤ CK(z).

Now TF is abelian and we have D
/
D ∩ (L1 × · · · × Lt) ∼= TF

/
TF ∩ (L1 × · · · × Lt) .

So [D,D] ≤ D ∩ (L1 × · · · × Lt) 6= 1. By Lemma 3.8, the latter group is furthermore a

defect group of a block of kL1×· · ·×Lt. Now defect groups respect direct products and

Z(D) ∼= Cp. Thus, we may assume D ∩ (L1 × · · · ×Lt) ≤ L1. In particular, [D,D] ≤ L1

and we may assume Z(D) ≤ L1. Since Z(D) is central in CG(z), each L1j is of type A

and Lie rank at least p, so L1 is isomorphic to either SLn(qk) or SUn(qk).

Let x ∈ D \ Z(D). We want to show that x does not centralise L1. First note, if

L = SLn(Fq) and σ a Frobenius morphism then L
σ

is either SLn(qk) or SUn(qk) for

some k and we have CL(L
σ
) ≤ Z(L). Using the decomposition from above, we may

write x = (
t∏
i=1

ri∏
j=1

xij)tx for xij ∈ Lij , tx ∈ Z(L). Let y ∈ D such that [x, y] 6= 1 and

write y = (
t∏
i=1

ri∏
j=1

yij)ty for yij ∈ Lij , ty ∈ Z(L). We have [D,D] ≤ L1, which means

[x11, y11] 6= 1, so x11 does not centralise L11 as well as L
F r1

11 by the above and thus also

not L1.

Now let c be a block of kL1 covered by b, then we may assume that c is D-stable,

BrL1D
D (c) 6= 0 and D ∩ L1 is a defect group of c, see Lemma 3.8. Let D0 be the kernel

of the map D → Out(L1). Then Z(D) ≤ (D ∩ L1) ≤ D0. Now if we apply Lemma 4.2,

we obtain D0 = (D0 ∩ L1)CD0(L1). But we have seen that CD(L1) = Z(D) ≤ L1. So
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D0 ≤ L1.

If D0 = D, we can take H = L1, D
′ = D and Z = 1 and the claim holds. Thus, assume

D 6= D0. The elements of TF induce diagonal automorphisms of L1. For special linear

or unitary groups, the group of diagonal automorphisms modulo inner automorphisms

is cyclic. In particular, D/D0 is cyclic. Let D/D0 = 〈y〉. Let η ∈ GLn(qk)p (respectively

GUn(qk)p) such that ηu = yu for u ∈ L1. In particular, η stabilises c. Define H := L1〈η〉

to obtain H as in the claim. Furthermore, define D′ := 〈D0, η〉 ≤ H. We also have

CL1(D) = CL1(D′), so BrHD′(c) 6= 0. Now H = L1D
′ and D0(∼= D′ ∩L1 by construction)

is a defect group of c as a block of kL1. Thus, we can apply Lemma 4.2 to obtain that

c is a block of kH with defect group D′.

We have D′ = 〈D0, η〉 and D = 〈D0, y〉. The canonical maps D′ → Aut(L1) and

D → Aut(L1) have the same image. Thus, D
′
/
CD′(L1)

∼= D
/
CD(L1) = D/Z(D).

Define Z := Z(GLn(qk)) ∩D′ or Z := Z(GUn(qk)) ∩ D′, so Z = CD′(L1), which gives

D′/Z ∼= D/Z(D). In particular, D′ is non-abelian since y acts non-trivially on D0. �

Proposition 4.4. If G is as in the previous proposition, then G has no blocks with

defect groups isomorphic to a Sylow 7-subgroup of G2(7).

Proof. Assume P ∈ Syl7(G2(7)), in particular |P | = 76 and Z(P ) ∼= C7. Let H,

P ′ be as in the assertion of the previous proposition with p = 7. Assume first H ≤

GLn(qk) and let a be such that |qk − 1|7 = 7a. Then, since SLn(qk) ≤ H, we have

|P ′| = |P/Z(P )| · |Z| = 75|Z| ≤ 75|Z(H)| ≤ 75|Z(SLn(qk))| ≤ 75+a. Now the block of

kGLn(qk) covering c has a defect group of order at most 72a+5. But it is a well-known

fact, that (non-abelian) defect groups of GLn(qk) have order at least 77a+1, see [22, The-

orem 3C]. Thus, 77a+1 ≤ 72a+5, which is a contradiction. The case H ≤ GUn(qk) can

be shown in the same fashion by considering the 7-part of qk + 1 instead of qk − 1. �

We use this observation to prove Proposition 4.1.
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Proof of Proposition 4.1. By the previous proposition, we may assume G is not a group

of Lie type in characteristic not equal to 7.

First, assume G/Z(G) is an alternating group Am. Then S is isomorphic to a Sy-

low 7-subgroup of some symmetric group S7w with w ≤ 6. Define the cycle σi =

((i − 1)7 + 1, . . . , i7) and the subgroup S′ = 〈σ1, . . . , σ6〉 ≤ Am. Then S′ ∈ Syl7(Am).

But this group is abelian, which means that S /∈ Syl7(Am).

Next, assume G is a group of Lie type over a field of characteristic p = 7. In this case,

Z(G) is a 7′-group, and we may assume that G = GF , where G is simple and simply

connected, F is a Frobenius morphism. Furthermore, S ∈ Syl7(G) by [13, Theorem

6.18]. We first deal with the classical groups. First consider type Bn, here we have

|G|p = qn
2
, which can be equal to 76 only if n = 1, which is not possible since n > 1 for

these groups. The case is the same for the groups of type Cn. For type Dn and 2Dn, we

have |G|p = qn(n−1). Since n > 3, p6 is also no possibility here. Finally, consider types

An and 2An, here we have |G|p = q
1
2
(n+1)n. If n = 1, these groups have abelian Sylow

p-subgroups and if n ≥ 4, the order is too big. Thus, the only possibilities are n = 2

or n = 3. However, in these cases we obtain Sylow 7-subgroups which are conjugate

to the groups of upper unitary triangle matrices. Hence, these groups have nilpotency

class 2 respectively 3. However, the nilpotency class of S is 5. This leaves us with

the exceptional groups of Lie type. Looking at their orders, we can directly exclude

the exceptional Steinberg groups, the Suzuki, Ree and Tits groups. For the exceptional

Chevalley groups, G2(7) is the only possibility.

Finally, if G/Z(G) is sporadic, the monster M is the only group with a 7-part big enough

to contain S, which implies our claim. �

This result can be used to achieve a reduction specifically for the Parker–Semeraro

systems.

Lemma 4.5. Let F be an exotic Parker–Semeraro system. Then F is reduction simple.
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Proof. Assume 1 6= N ≤ S is strongly F-closed. In particular N E S, which implies

Z(S) ≤ N . Thus, as in the proof of [42, Theorem 6.2], we obtain N = S. �

We use the reduction simplicity of the Parker–Semeraro systems in the following theorem.

Theorem 4.6. Suppose there is an exotic Parker–Semeraro system F which is block-

realisable. Then there is an exotic Parker–Semeraro system F0 which is block-realisable

by a block of a quasisimple group.

Proof. Assume G is a finite group having an F-block b. We may choose G such that

the conclusions of Theorem 1.2 hold, with S ∈ Syl7(G2(7)) in the role of P . Define

L = 〈gS | g ∈ G〉 E G. Since Z(S) is cyclic of order p, F satisfies the hypothesis of

Theorem 3.10 with P = S. Arguing as in the proof of that theorem, L = E(G) is

quasisimple, and there is a block of kL with defect group S and fusion system F0 such

that Op(F0) = 1. So, F0 is a Parker–Semeraro system.

If F0 is exotic, we are done. Suppose F0 is realisable. So, either F0 = FS(M) or

F0 = FS(G2(7)). By Proposition 4.1, L = M or L = G2(7) and hence L is simple.

We claim G = L. Indeed, consider the map ϕ : G → Out(F ∗(G)) and let g ∈

ker(ϕ). Then there exists x ∈ F ∗(G) such that y ∈ F ∗(G) with gyg−1 = xyx−1, i.e.

x−1g ∈ CG(F ∗(G)) = Z(F ∗(G)). This implies kerϕ = F ∗(G) and thus G/F ∗(G) ∼=

OutG(F ∗(G)). But in our case, we have F ∗(G) = Z(G)E(G), so OutG(F ∗(G)) =

OutG(E(G)). However, this group needs to be trivial since Out(M) = Out(G2(7)) = 1.

This implies G = Z(G)E(G) and in either case G = Z(G)×L. By choice of G, the claim

follows.

We now claim that in either of these cases, b needs to be the principal block. For G2(7)

this is a well known fact, see e.g. [30, Example 3.8]. So, assume G = M . We want

to compute CNM (P )(S), where P is a subgroup of order 7 of the monster. We know

that CNM (P )(S) = Z(S)×O7′(CNM (P )(S)). Furthermore, by [44, Theorem 1.1], NM (P )

is 7-constrained, i.e. CNM (P )(O7(NM (P ))) ⊆ O7(NM (P )). Also, by [44, Theorem 1.1],
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NM (P ) = 71+4(2S7 × 3), i.e. O7(NM (P )) = 71+4 and thus CNM (P )(S) ∼= Cp. But

this means CM (S)/Z(S) is trivial and since the NM (S)-classes of irreducible charac-

ters of this group are in 1:1-correspondence with blocks of M with defect group S, the

claim follows. However, this implies that F cannot be exotic, which is a contradiction. �

We use this to deduce block-exoticity of the Parker–Semeraro systems.

Proof of Theorem 1.3. By [51, Main Theorem], the only exotic fusion systems on such

groups are the 27 exotic Parker–Semeraro systems. Let S be a Sylow 7-subgroup of

G2(7) and let F be one of these exotic systems. Assume G is a group with an F-block.

By the previous theorem, we may assume that G is quasisimple. Let A be the simple

quotient of G. By Proposition 4.1, we may assume either A = G2(7) or A = M , and

thus, since Out(A) = 1 in both these cases, also either G = G2(7) or G = M . But as

in the proof of the previous theorem, this means that the F-block is principal, which is

not possible for an exotic fusion system. �
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5 On fusion systems of finite groups of Lie type in

non-describing characteristic

5.1 Background on block theory of finite groups of Lie type

After proving Conjecture 1.1 for a given family of exotic fusion systems in the previous

chapter, we are tackling the conjecture for fusion systems of blocks of finite groups of Lie

type in non-describing characteristic. We start by giving some background on character

and block theory of such groups.

For the rest of this chapter, let G be a connected, algebraic group defined over Fq where

q is a prime power and let F : G→ G be a Frobenius morphism defining an Fq-structure

on G. Let L ≤ G be an F -stable Levi subgroup of a parabolic subgroup P of G.

Recall that RG
L : Z Irr(LF ) → Z Irr(GF ), [M ] 7→

∑
i∈Z

(−1)i[H i
c(YP)⊗CLF M ], where [M ]

is the class of a CLF -module M in Irr(LF ), is the Lusztig induction map. This is defined

using a parabolic subgroup P of which L is a Levi. However, in all cases we consider,

RG
L is independent of the choice of P and hence we will suppress it from the notation.

We use this construction in the case where L is a maximal torus to parametrise the

irreducible characters of GF .

If we fix an F -stable torus of G, we can define G∗ to be a group in duality with G with

respect to this torus, with corresponding Frobenius again denoted by F . Then there is a

bijection {GF -conjugacy classes of pairs (T, θ) where T is an F -stable maximal torus of

G and θ ∈ Irr(TF )} ↔ {G∗F -classes of pairs (T∗, s) where T∗ is an F -stable maximal

torus of G∗ and s ∈ T∗
F }.

Theorem 5.1. (Deligne–Lusztig). [10, Theorem 4.7] For s ∈ G∗
F

a semisimple element,

one defines E(GF , s) to be the set of irreducible components of generalised characters

RG
Tθ for (T, θ) corresponding to some (T∗, s) through the above correspondence. One
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gets a partition Irr GF =
⊔
s
E(GF , s), where s ranges over semisimple classes of G∗

F
.

This theorem plays an important role when studying blocks of groups of Lie type. The

blocks obtained when specialising to s = 1 are the starting point for many constructions.

Definition 5.2. Keep the notation of the previous theorem. The elements of E(GF , 1)

are called unipotent characters. A block b of GF such that Irr(GF , b) ∩ E(GF , 1) 6= ∅ is

called a unipotent block of GF .

If χ is a unipotent character of LF , then all constituents of RG
L χ are unipotent. We

recall an important result related to the parametrisation by Deligne–Lusztig.

Theorem 5.3. (Broué–Michel, Hiss). [13, Theorem 9.12] Let s ∈ G∗ be a semisimple

p′-element, define b(GF , s) =
∑

χ∈E(GF ,s)

eχ and Ep(GF , s) as the union of rational series

E(GF , t) such that s = tp′.

(a) The set Ep(GF , s) is a union of blocks Irr(GF , bi), i.e. b(GF , s) ∈ OGF .

(b) For each block b of kGF with Irr(GF , b) ⊆ Ep(GF , s), one has Irr(GF , b) ∩ E(GF , s) 6= ∅.

If e ≥ 1, recall that φe(x) ∈ Z[x] denotes the e-th cyclotomic polynomial, whose complex

roots are the roots of unity of order e. Any F -stable torus S of G has so-called polynomial

order PS,F ∈ Z[x] defined by |SFm | = PS,F (qm) for some a ≥ 1 and any m ∈ 1 + aN.

Moreover, PS,F is a product of cyclotomic polynomials PS,F =
∏
e≥1

φne
e , ne ≥ 0. A φe-

torus of G is an F -stable torus whose polynomial order is a power of φe. An e-split Levi

subgroup is any CG(S), where S is a φe-torus of G.

Let Li, i = 1, 2, be an e-split Levi subgroup in G and ζi ∈ E(LFi , 1). We write (L1, ζ1) ≤e

(L2, ζ2) if ζ2 is a component of RL2
L1

(ζ1), i.e. 〈RL2
L1

(ζ1), ζ2〉 6= 0.

Definition 5.4. A unipotent character χ ∈ E(GF , 1) is said to be e-cuspidal if a relation

(G, χ) ≥e (L, ζ) is only possible with L = G. A pair (L, ζ) with L an e-split Levi subgroup

and an e-cuspidal ζ ∈ E(LF , 1) is called a unipotent e-cuspidal pair of GF .
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Theorem 5.5. (Cabanes–Enguehard). [10, Theorem 6.10] Assume p ≥ 7 is a prime not

dividing q. Let e be the multiplicative order of q mod p. If (L, ζ) is an e-cuspidal pair

of G, then there exists a block bGF (L, ζ) such that all constituents of RG
L (ζ) belong to

bGF (L, ζ). The map (L, ζ) 7→ bGF (L, ζ) gives a bijection between GF -classes of unipotent

e-cuspidal pairs of GF and unipotent blocks of GF .

A starting point to prove Conjecture 1.1 for groups of Lie type in non-describing char-

acteristic is the following theorem by Cabanes, which proves the conjecture for almost

all primes if the underlying block is unipotent:

Theorem 5.6. (Cabanes) [10, Theorem 7.11] Let p ≥ 7 a prime with (p, q) = 1 and b

a unipotent block of kGF with maximal b-Brauer pair (P, eP ). Then the fusion system

F(P,eP )(G
F , b) is non-exotic.

Let GF be a finite group of Lie type with block d and L ≤ G a Levi subgroup. In [5],

Bonnafé, Dat and Rouquier(BDR) prove that, in many cases, the fusion system of d is

equivalent to the fusion system of a block c of a subgroup of GF containing LF as a

normal subgroup, where c covers a unipotent block of LF . We want to combine this

result with Theorem 5.6 to tackle Conjectures 1.1 and 1.5.

We need to set up some of the notation from [5].

Remark 5.7. The duality between (G, F ) and (G∗, F ) gives a correspondence L 7→ L∗

between G-classes of Levi subgroups of G and G∗-classes of Levi subgroups of G∗ and

isomorphisms NG(L)/L ∼= NG∗(L
∗)/L∗ for such Levi subgroups in duality. Moreover,

L is F -stable if and only if L∗ is F -stable.

Definition 5.8. Let s ∈ G∗F be a semisimple p′-element and L∗ ≤ G∗ an F -stable Levi

subgroup minimal with respect to the property of containing C◦G∗(s). Let N∗ be such

that L∗ ≤ N∗ ≤ NG∗(L
∗). Define N as the subgroup of G containing L such that N/L
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corresponds to N∗/L∗ under the isomorphism between NG(L)/L and NG∗(L
∗)/L∗. We

refer to such LEN as a BDR-extension in G.

We state the theorem by Bonnafé, Dat and Rouquier relating the fusion systems in a

simplified version.

Theorem 5.9. [5, Theorem 7.7+Example 7.9] Let G be a connected, reductive group

with Frobenius F in duality with (G∗, F ). Let s be a semisimple p′-element of G∗ and d

a block of kGF such that Irr(GF , d) ∩ E(GF , s) 6= ∅. Let L EN be the BDR-extension

defined by setting N∗ := CG∗(s)
F · L∗. If N/L is cyclic, then there is a block c of kNF

covering a unipotent block of kLF such that the fusion system of c is equivalent to the

fusion system of d.

We state the triangle relations from Theorem 2.53 in the case of a BDR-extension and

fix notation for the occurring fusion systems.

Definition 5.10. Let LEN be a BDR-extension in G. Let b be an NF -stable unipotent

block of kLF covered by a block c ∈ kNF . Let (P, eP ) be a maximal c-Brauer pair

and let (S, e′S) be a maximal (b,NF )-Brauer pair with P ≤ S and F(P,eP )(N
F , c) ≤

F(S,e′S)
(NF ,LF , b). We have P ∩ LF = S ∩ LF and (S ∩ LF , e′

S∩LF ) is a maximal b-

Brauer pair with F(S∩LF ,e′
S∩LF )(L

F , b)EF(S,e′S)
(NF ,LF , b).

We call F(S∩LF ,e′
S∩LF )(L

F , b) a unipotent block fusion system, F(S,e′S)
(NF ,LF , b) BDR

generalised block fusion system and F(P,eP )(N
F , c) BDR block fusion system.

5.2 Extension of Cabanes’ Theorem

In this section, we extend Cabanes’ Theorem to BDR generalised block fusion systems.

For this section, fix X to be a connected, reductive group with Frobenius F defining an

Fq-structure on X, G EN a BDR-extension in X, where G ≤ X is a Levi subgroup.

Let c be a block of kNF covering a unipotent block b of kGF with b = bGF (L, ζ) for an
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e-cuspidal pair (L, ζ) of GF .

Let (Q, bQ) be a Brauer pair of a finite group H. Then it is called centric if and only if

bQ has defect group Z(Q) in CH(Q). Note that this is equivalent to Q being centric in

the fusion system of a block b of kH such that (1, b) ≤ (Q, bQ). Then there is a single

ζ ∈ Irr(bQ) with Z(Q) in its kernel, we call it the canonical character of the centric

subpair.

We assume for the rest of this section that p ≥ 7. Let Z = Z◦(L)Fp . By [11, Proposition

2.2], Z = Z(L)Fp , L = C◦G(Z) and LF = C◦G(Z)F = CGF (Z).

Let eZ be the block of LF containing the character ζ. Since LF = CGF (Z), (Z, eZ) is a

Brauer pair for GF . By [11, Lemma 4.5], (Z, eZ) is a b-Brauer pair, (Z, eZ) is a centric

Brauer pair and ζ is the canonical character of eZ . Further, there exists a maximal

b-Brauer pair (P, eP ) such that (Z, eZ) E (P, eP ) and such that the canonical character

of eP is ResL
F

C
GF (P )(ζ). Here we note that if (Q, e) is a centric Brauer pair, then for any

Brauer pair (R, f) such that (Q, e) ≤ (R, f), we also have that (R, f) is also centric.

Note that P is a Sylow p-subgroup of (C◦G([L,L]))F . Furthermore, note that by Theo-

rem 3.1, we can always choose the BDR-extension N such that b is NF -stable and such

that NF /GF is a p′-group by [5, 7.A]. If we thus consider the fusion systems occurring

in Definition 5.10, we can assume that all of them are defined on the same p-group by

Proposition 2.54.

Recall that for a semisimple, algebraic group X, there exist natural isogenies Xsc →

X→ Xad, where Xsc is simply connected and Xad is of adjoint type. There is a decom-

position of [X,X] = X1 · · ·Xm as a central product of F -stable, closed subgroups, see

[13, Definition 22.4] for more details. Define Xa = Z◦(X)X′a, where X′a is the subgroup

generated by the Xi with (Xi)
F
ad
∼= PGLni(εiq

mi) and p dividing qmi − εi. Let Xb be
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generated by the remaining Xi. We thus have a decomposition X = XaXb.

Let M = NGF ([L,L],ResL
F

[L,L]F ζ). As noted above, (Z, eZ) E (P, eP ). Thus, P nor-

malises L = CG◦(Z) and consequently P normalises [L,L] and [L,L]F . Again, since

(Z, eZ)E (P, eP ), xeZ = eZ for all x ∈ P . Since ζ is the canonical character of eZ , xζ = ζ

for all x ∈ P . Since restriction induces a bijection between E(LF , 1) and E([L,L]F , 1),

see [19, Proposition 13.20], x ResL
F

[L,L]F ζ = ResL
F

[L,L]F ζ for all x ∈ P . Thus, P ≤M . Also,

CGF (P ) ≤ CGF (Z) = LF ≤ M . Since PCGF (P ) ≤ M , (P, eP ) is a Brauer pair for a

block of M .

We recall some details which can be found in the proof of [10, Theorem 7.11]: Let Q ≤ P

be F(P,eP )(G
F , b)-centric. We have C◦G(Q)b = [L,L]. Let ζQ be the canonical character

of eQ. Then ζ◦Q := Res
C

GF (Q)

C◦G(Q)F
ζQ is the unique unipotent character of C◦G(Q)F whose

restriction to [L,L]F is ResL
F

[L,L]F ζ.

Proposition 5.11. Let H := NNF ([L,L],ResL
F

[L,L]F ζ, d), where d is the unique block

of kM , where M := NGF ([L,L],ResL
F

[L,L]F ζ), with (P, eP ) a d-Brauer pair. We have

F(P,eP )(N
F ,GF , b) = F(P,eP )(H,M, d).

Proof. Let F = F(P,eP )(N
F ,GF , b), G = F(P,eP )(H,M, d) and F0 = F(P,eP )(G

F , b).

Assume (X, eX) ≤ (P, eP ) is F0-centric. Let x ∈ NNF (X, eX), then x normalises CG(X),

hence, also CG(X)b = [L,L]. Also, x stabilises ζX and thus also ζX |[L,L]F = ResL
F

[L,L]F ζ.

We thus have x ∈ NNF ([L,L]F ,ResL
F

[L,L]F ζ).

Furthermore, CGF (X) ≤ M , so eX is a block of kCM (X) and hence (X, eX) is the

unique d-Brauer pair with first component X such that (X, eX) ≤ (P, eP ). In partic-

ular, b-Brauer pairs and d-Brauer pairs, for which the first component is a F0-centric

subgroup of P , are the same.

Thus, if x stabilises (X, eX), it also stabilises d, and we get NNF (X, eX) ≤ H for all

X ≤ P which are F0-centric. Now if X ≤ P is F-centric, it is in particular F0-centric,
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so F ⊆ G.

Conversely, suppose that (X, eX) ≤ (P, eP ) is G-centric. In particular, by the previous

paragraph, X is F- and thus also F0-centric. But again, since eX is a block of kCM (X),

(X, eX) is an (d,H)-Brauer pair if and only if it is an (b,NF )-Brauer pair and hence

AutG(X) ≤ AutF (X). This shows G ⊆ F and hence G = F . �

Fix H as in the previous proposition for the rest of this section.

Lemma 5.12. For a p-group Q, the group CGF (Q)/C◦G(Q)F is also a p-group.

Proof. By [20, Proposition 2.1.6(e)], CG(Q)/C◦G(Q) is a p-group. Now compose the

inclusion CGF (Q) → CG(Q) with the natural surjection CGF (Q) → CGF (Q)/C◦G(Q)F

and denote this morphism by ϕ. Then kerϕ = C◦G(Q)F . Thus CGF (Q)/C◦G(Q)F is

isomorphic to a subgroup of CG(Q)/C◦G(Q) and in particular also a p-group. �

Lemma 5.13. We have NNF (Q, eQ) = NH(Q) for any Q which is F(P,eP )(G
F , b)-

centric.

Proof. In the proof of Proposition 5.11, we proved NNF (Q, eQ) ≤ H. Let x ∈ NH(Q).

We need to prove that x stabilises eQ. First, we prove that x preserves the set of unipo-

tent characters of C◦G(Q)F . Note that N ⊆ NX(G). Further, NN(Q) ⊆ NX(G) ∩

NX(Q) ⊆ NX(G) ∩NX(CX(Q)) ⊆ NX(CG(Q)) ⊆ NX(C◦G(Q)), whereas the last inclu-

sion follows from the fact that X is an algebraic group. Now x normalises [L,L],ResL
F

[L,L]F ζ

and C◦G(Q) and thus, by the remarks before Proposition 5.11 together with the obser-

vation about unipotent characters, also ζ◦Q. In particular, it also stabilises the block of

kC◦G(Q)F containing ζ◦Q. Further, by Lemmas 5.12 and 2.35, eQ is the unique block

of kCGF (Q) covering the block of kC◦G(Q)F containing ζ◦Q. Thus, x stabilises eQ, so

NH(Q) ⊆ NNF (Q, eQ). �

Lemma 5.14. Let A = [L,L]F . The group PA/A is in Sylp(H/A).
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Proof. Since |H : M |p = 1, it suffices to prove that PA/A is a Sylow p-subgroup of

M/A. Now P is a Sylow p-subgroup of (C◦G([L,L]))F . Hence, it suffices to prove that

p does not divide |M : (C◦G([L,L]))FA|. Since C◦G([L,L]) and [L,L] commute element

wise and C◦G([L,L]) ∩ [L,L] ≤ Z([L,L]), a standard application of the Lang–Steinberg

theorem, see [19, 3.10], gives

|(C◦G([L,L])[L,L])|F = |C◦G([L,L])|F |[L,L]|F = |C◦G([L,L])|F |A|.

On the other hand, C◦G([L,L])F ∩ A ≤ Z([L,L]F ) = Z([L,L])F is a p′-group by [12,

Proposition 4]. Hence, the p-part of |C◦G([L,L])F ||A| =
|C◦GL,L])F ||A|
|C◦G([L,L]F∩A| equals the p-part

of |C◦G([L,L])F ||A|. Thus, by the above displayed equation, it suffices to prove that p

does not divide |M : (C◦G([L,L])[L,L])F |. This follows from [12, Proposition 6] �

Proof of Theorem 1.9. Let H := NNF ([L,L],ResL
F

[L,L]F ζ, d), where d is the unique

block of kM , where M := NGF ([L,L],ResL
F

[L,L]F ζ), with (P, eP ) a d-Brauer pair. By

Proposition 5.11, we have F(P,eP )(N
F ,GF , b) ∼= F(P,eP )(H,M, d).

Next we apply the Generalised Second Fong Reduction to F(P,eP )(H,M, d). For this,

let A := [L,L]F . In particular, we have normal inclusions A ≤ M ≤ H with A E H

and |H : M |p = 1. Let c be the block of A containing ResL
F

[L,L]F ζ. Apply [13, Theorem

22.9(ii)] to L to see that ResL
F

[L,L]F ζ is a defect zero character and thus c is of defect

zero. Clearly, c is M -stable, so we can apply Lemma 2.34 with Z = Z(L)Fp and e = eZ

to see that c is covered by d. Thus, we can apply Theorem 1.8 to this situation and

get a fusion system F(P,e′P )(H̃, M̃ , d̃) such that H̃ is a p′-central extension of H/A, M̃

is the full inverse image of M/A in H̃ and d̃ is an H̃-stable block of kM̃ with maximal

(d̃, H̃)-Brauer pair (P, e′P ).

The final step is now to prove that F(P,e′P )(H̃, M̃ , d̃) is non-exotic. Let X ≤ P be

F(P,e′P )(H̃, M̃ , d̃)-centric, then by Lemma 5.13 we have that the normaliser of (X, eX) is
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the normaliser of X. Furthermore, P ∈ Sylp(H̃) by Lemma 5.14, which together with

the observation about the normalisers implies F(P,e′P )(H̃, M̃ , d̃) = FP (H̃). �

5.3 Alternative proof of Theorem 1.9 in special cases using control

subgroup

The proof of Theorem 5.6 uses a concept called control subgroups, which are defined in

[12]. The following main theorem of this section uses these control subgroups to prove

non-exoticity of certain generalised BDR block fusion systems.

Theorem 5.15. Let (L, ζ) be a unipotent e-cuspidal pair corresponding to a block b of

GF , N be a BDR-extension of G such that b is NF -stable and let (P, eP ) be a maximal

(b,NF )-Brauer pair. If there is a group H̃ ≤ NNF ([L,L],ResL
F

[L,L]F ζ) with H̃[L,L]F =

NNF ([L,L],ResL
F

[L,L]F ζ) and P is a Sylow p-subgroup of H̃, then the BDR-generalised

block fusion system F(P,eP )(N
F ,LF , b) is isomorphic to FP (H̃).

The purpose of this section is to show how far we can go by using control subgroups.

We use the above theorem to prove non-exoticity for generalised block fusion systems

of special linear groups, achieving an alternative proof of Theorem 1.9 in this case. We

will see that these methods only work for type A.

The proof of Theorem 5.15 follows some of the steps as in Section 5.2. We give all these

steps again for convenience.

Proof of Theorem 5.15. Define a map F(P,eP )(N
F ,GF , b) → FP (H̃), (Q, eQ) 7→ Q for

Q ≤ P . By Theorem 2.6, it suffices to prove AutF(P,eP )(N
F ,GF ,b)(Q) = AutFP (H̃)

(Q),

which is equivalent to proving NNF (Q, eQ)/CNF (Q, eQ) = N
H̃

(Q)/C
H̃

(Q). Thus, we

need to prove NNF (Q, eQ) = N
H̃

(Q)CNF (Q, eQ), since H̃ ≤ NF .

Since NGF (Q, eQ) acts by algebraic automorphisms of C◦G(Q) commuting with F , and

NF acts on G by automorphisms, NNF (Q, eQ) normalises ([L,L],ResL
F

[L,L]F ζ). To-

gether with our assumption and [12, Proposition 5] we get NNF (Q, eQ) ≤ H̃[L,L]F ≤
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H̃CGF (Q) = H̃CGF (Q, eQ) ≤ H̃CNF (Q, eQ). Now let g ∈ NNF (Q, eQ) and write

g = ht for h ∈ H̃, t ∈ CNF (Q, eQ). Note that t ∈ CNF (Q, eQ) ≤ NNF (Q) and thus

h = gt−1 ∈ NNF (Q) ∩ H̃ = N
H̃

(Q) and so g ∈ N
H̃

(Q)CNF (Q, eQ).

For the other inclusion, we use the decomposition G = GaGb, associated to a pair

(G, F ), and define K = GaC
◦
G(Z(P )). We have E(KF , 1) ∼= E(KF

a , 1) × E(LF , 1), see

[19, Proposition 13.20]. Let ζ̃ ∈ E(KF , 1) be the character corresponding to (1, ζ)

under this bijection and define ζQ = ResK
F

C
GF (Q) ζ̃. This character is the canonical

character of eQ since it has Z(Q) in its kernel. Moreover, C◦G(Q) = C◦Ga
(Q)Kb. So,

C◦G(Q)b = Kb = [L,L]. Thus, the restriction of ζ̃ to C◦G(Q)F is a unipotent charac-

ter, it is the unique one whose restriction to [L,L]F is the restriction of ζ. We thus

get that Res
C

GF (Q)

C◦G(Q)F
ζQ is the only unipotent character ζ◦Q ∈ E(C◦G(Q)F , 1) such that

Res
C◦G(Q)F

[L,L]F
ζ◦Q = ResL

F

[L,L]F ζ.

Now assume h ∈ H̃ normalises Q and thus by assumption also ([L,L],ResL
F

[L,L]F ζ). Fur-

thermore, h normalises C◦G(Q) and sends Res
CG(Q)F

C◦G(Q)F
ζQ to a unipotent character whose

restriction to [L,L]F is h Res
CG(Q)F

[L,L]F
ζQ=h ResL

F

[L,L]F ζ = ResL
F

[L,L]F ζ by the above. This

means h fixes Res
CG(Q)F

C◦G(Q)F
ζQ. By Lemmas 5.12 and 2.35, eQ is the unique block covering

eC◦G(Q)F (Res
CG(Q)F

C◦G(Q)F
ζQ). Thus, eQ is fixed by h which implies N

H̃
(Q) ≤ NNF (Q, eQ). �

Before specialising to special linear groups, we recall the definition of control subgroups.

Definition 5.16. Let F be a fusion system on a p-group P . We call a group H with

P ≤ H control group for F if every homomorphism in F is induced by an element in

H. If F is the fusion system of a block b, we call H b-control subgroup.

For fusion systems F that are induced by a group G, or a block b of a group G, we are

often interested in groups H ≤ G that are control groups for F and call these control

subgroups or control b-subgroups.

In [12], Cabanes and Enguehard construct such a subgroup for a unipotent block of a

finite group of Lie type GF . Cabanes later proved in [10] that the fusion system of this
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group realises the fusion system of this unipotent block. Note that the H̃ constructed in

the previous section is not a subgroup of NF like this, but we construct such a control

subgroup for some cases in this chapter.

Lemma 5.17. Let ϕ : G → H be a surjective morphism of affine algebraic groups.

Suppose that H and kerϕ are connected, then G is connected.

Proof. By [27, 7.4, Proposition B], ϕ(G◦) = ϕ(G)◦ = H◦ = H. Thus G = G◦ kerϕ

and G/G◦ = kerϕ
/

(kerϕ ∩G◦) . By, [27, 7.3, Proposition], G/G◦ is a finite group. So

kerϕ ∩G◦ is of finite index in kerϕ and kerϕ ∩G◦ is a closed subgroup of kerϕ. Hence

again by [27, 7.3, Proposition], kerϕ ∩ G◦ contains (kerϕ)◦ = kerϕ. So, kerϕ ⊆ G◦,

hence G = G◦ kerϕ = G◦. �

Corollary 5.18. Let X = {(A,B) | A = αIr, B ∈ GLm−r(Fq), α ∈ F×q ,det(AB) = 1} ⊆

GLm−r(Fq)×GLr(Fq) ⊆ GLm(Fq). Then X is connected.

Proof. Define the map d : X → F×q by d(A,B) = detB. Then d is surjective,

ker d = {(Ir, B) | B ∈ SLm−r(Fq)} is connected and F×q is connected. By the previ-

ous lemma, X is connected. �

We specialise now to the case of special linear groups. Fix the following notation for

the rest of this section. Let X = SLn(Fq) and G =
k∏
i=1

GLmi(Fq)) ∩ SLn(Fq), where

k∑
i=1

mi = n, F the standard Frobenius and let p be an odd prime which is good for

G with (p, q) = 1. Then G is a Levi subgroup of X. Let b be a unipotent block of

kGF with b = bGF (L, ζ) for an e-cuspidal pair (L, ζ) of GF . Further, let G EN be a

BDR-extension in X.

Theorem 5.19. The group TF
p′CG([L,L])F is a b-control subgroup of GF , where T is

a maximally split torus of [L,L]C◦G([L,L]).

Proof. In [12, Theorem 7], a group H, which is a b-control subgroup of GF , is con-

structed. It is shown there that one can define H = (NF
V )SC◦G([L,L])F . We recall the
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groups that make up this control subgroup. Let K = [L,L] CG([L,L]). The group

V is the stabiliser of an F -stable basis of the root system of K with respect to T in

NM (T)/TF , where M = NGF ([L,L],ResL
F

[L,L]F ζ). Now N is a subgroup of NG(T) such

that N ∩T = Tφ2 and NT = NG(T). The group NV is defined to be the inverse image

of V in N under the quotient map by T. The group S′ ≤ TF
p′ is characterised by the

equation TF = S′(T ∩ [L,L]FCG([L,L])F ). Finally, define S = S′[S′, V ]. We analyse

these groups which make up H under our assumptions.

Let G̃ =
k∏
i=1

GLmi(Fq), then, by [26, 6.2], (Z(G̃)L, ζ) is a unipotent e-cuspidal pair for

G̃. Let L̃ = Z(G̃)L, then again by [26, 6.2] we can choose L̃ = (
k∏
i=1

GLsi(Fq) × Ri),

for tori Ri with |RFi | = (qe − 1)ai such that si + eai = mi. Now L = L̃ ∩ G =

(
k∏
i=1

GLsi(Fq)×Ri)∩SLn(Fq), [L,L] = (
k∏
i=1

SLsi(Fq)× 1) and C◦G([L,L]) = CG([L,L]) =

(
k∏
i=1

F×q ×GLmi−si(Fq)) ∩ SLn(Fq) by the previous corollary.

We claim K = (
k∏
i=1

(GLsi(Fq)×GLmi−si(Fq))) ∩ SLn(Fq). Clearly, K ⊆ (
k∏
i=1

(GLsi(Fq)×

GLmi−si(Fq))) ∩ SLn(Fq). For the other inclusion, let (A1, B1) × · · · × (Ak, Bk) ∈

(
k∏
i=1

(GLsi(Fq)×GLmi−si(Fq)))∩ SLn(Fq). If ai = detAi and αi = a
1/s
i , then Ai = Ai0Zi

for Zi = αiIsi and Ai0 is a matrix with determinant 1, i.e. A10 × · · · × Ak0 ∈ [L,L].

Furthermore, det(Z1B1 × · · · × ZkBk) = 1, so Z1B1 × · · · × ZkBk ∈ CG([L,L]), which

proves the equality.

SinceNG([L,L]) must normalise CG([L,L]), we haveM ⊆ NG([L,L]CG([L,L])). By the

previous arguments, we get M ⊆ (
k∏
i=1

(GLsi(Fq)×GLmi−si(Fq))) ∩ SLn(Fq). In our case

we can choose the root system given by the basis
k⋃
i=1
{(eMi+i − eMi+i+1), · · · , (eMi+si −

eMi+si), (eMi+si+1 − eMi+si+2), · · · , (eMi+mi−1 − eMi+mi)}, for Mi = m1 + · · · + mi−1.

This basis has trivial stabiliser and thus V = 1. Note that we may assume Tφ2 = 1, since

we can choose T to be the torus consisting of diagonal matrices in SLn(Fq). Since V is

trivial, we have NV ⊆ N∩T = Tφ2 = 1. This means, we may assume that SCG([L,L])F

controls fusion.
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Since V = 1, we obtain S = S′. The equation clearly holds if we choose S = S′ = TF
p′ .

This choice implies our claim about the control subgroup. �

Proposition 5.20. The group NF normalises the control subgroup TF
p′CG([L,L])F from

the previous theorem.

Proof. The group GF acts transitively on all unipotent e-cuspidal pairs for b. By

Theorem 3.1, we can assume that b is NF -stable, thus NF acts on the set of unipo-

tent e-cuspidal pairs for b. Now we can apply Frattini’s argument to see that NF =

GF StabNF ((L, ζ)). Now note that T ≤ [L,L]CG([L,L]) is normalised by StabNF ((L, ζ)).

Furthermore, note that all 1-split F -stable maximal tori of K are KF -conjugate. Again,

by Frattini’s argument, we obtain StabNF ((L, ζ)) = TF StabNF (T).

In conclusion, we get NF = GF StabStab
NF ((L,ζ))(T) = GF StabNF ((L, ζ)∩ StabNF (T))

which implies our claim. �

Keep the assumptions of Proposition 5.20 for the rest of this chapter and let x be a

generator of NF /GF and define H̃ = 〈TF
p′CG([L,L])F , x〉.

Lemma 5.21. We have H̃[L,L]F = NNF ([L,L],ResL
F

[L,L]F ζ).

Proof. The proof of the previous proposition gives NF = GF StabNF ((L, ζ)∩StabNF (T)).

Thus, NF /GF=StabNF ((L, ζ) ∩ StabNF (T))
/

(GF ∩ StabNF ((L, ζ) ∩ StabNF (T))) . So

we can choose x generating NF /GF to be in StabNF ((L, ζ)∩StabNF (T)). In particular,

this x stabilises ([L,L],ResL
F

[L,L]F ζ) and thus we have the equalityNNF ([L,L],ResL
F

[L,L]F ζ)

=NGF ([L,L],ResL
F

[L,L]F ζ)〈x〉. Now by [12, Theorem 7] we know TF
p′CG([L,L])F [L,L]F =

NGF ([L,L],ResL
F

[L,L]F ζ) which implies our claim together with the previous observation.

�

We prove now that H̃ is a control subgroup for the corresponding BDR-generalised block

fusion system.
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Proposition 5.22. Let F = F(P,eP )(N
F ,LF , b), where b is a unipotent block of GF

defined by a unipotent e-cuspidal pair (L, ζ) with maximal (b,NF )-Brauer pair (P, eP ).

We have P ∈ Sylp(H̃) and H̃ is a control subgroup for F .

Proof. We have that P is a Sylow p-subgroup of CN([L,L])F since it is one of CG([L,L])F

by [12, Proposition 5] and we can choose the p′-element x generating NF /GF to sta-

bilise [L,L] in similar fashion as in Lemma 5.21. Let (Q, eQ) be an F-centric Brauer

pair with Q ≤ P . We need to prove NNF (Q, eQ) ≤ H̃CNF (Q). Since NGF (Q, eQ) acts

by algebraic automorphisms of C◦G(Q) commuting with F , and NF acts on G by auto-

morphisms, we have that NNF (Q, eQ) normalises the pair ([L,L],ResL
F

[L,L]F ζ). Together

with Lemma 5.21 and [12, Proposition 5] we get NNF (Q, eQ) ≤ H̃[L,L]F ≤ H̃CGF (Q) =

H̃CGF (Q, eQ) ≤ H̃CNF (Q, eQ). �

We can apply this proposition together with the main result of this section to prove

non-exoticity of the generalised block fusion system.

Corollary 5.23. Let (P, eP ) be a maximal (b,NF )-Brauer pair. The BDR-generalised

block fusion system F(P,eP )(N
F ,LF , b) is non-exotic.

Proof. Follows immediately from combining Lemma 5.21, Proposition 5.22 and Theorem

5.15. �

It is not clear currently how to acquire a similar result when dropping the assumption

that the group is of type A, since in this case it is not clear whether a basis of the

root system in the proof of Theorem 5.19 has trivial stabiliser. We would need to apply

Frattini-esque arguments to the group N , which boils down to the uniqueness up to

conjugacy of the Tits extension, see [50, 4.4], which is not answered. However, the proof

of Theorem 1.9 circumvents using control subgroups and Tits’ theorem.
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5.4 Non-exoticity of BDR block fusion system in special cases

In many cases for type A, Theorem 5.6 easily implies the non-exoticity of fusion systems

of blocks:

Theorem 5.24. If p ≥ 7, q a prime power coprime to p, n ∈ N≥2 and G one of

GLn(q),PGLn(q),GUn(q) or PGUn(q), then fusion systems of blocks of kG are non-

exotic.

Proof. For a connected, reductive group G, with Steinberg morphism F and a block d

of GF , Theorem 5.9 gives an equivalence between the fusion system of d and the fusion

system of a block of the group NF , which covers a unipotent block. If G∗ is among

GLn(Fq),SLn(Fq),GUn(Fq) or SUn(Fq), we have CG∗(s) = C◦G∗(s) for a semisimple

element s of G∗
F

, and C◦G∗(s) = L∗, where L is an F -stable Levi subgroup L ≤ G. In

particular, in this case NF = LF and by [5, Example 7.9], we get that for each block b

of GF , there exists a unipotent block of kLF which differs from b only by tensoring with

a linear character. Thus, combining these observations with Theorem 5.6 and Theorem

2.48 implies the claim. �

Remark 5.25. To apply [5, Example 7.9], one needs cyclicity of the quotient C :=

CG∗(s)/C
◦
G∗(s). While the equality C◦G∗(s) = L∗ holds for all groups of type A, the re-

lation CG∗(s) = C◦G∗(s) does not hold for G∗ = PGLn(Fq) or G∗ = PGUn(Fq). Nonethe-

less, the group C is still cyclic, since it is isomorphic to a subgroup of Z(G)/Z◦(G) and

Z(G) is cyclic, see [19, Lemma 13.14]. However, by these observations we get that

NF 6= LF if G is equal to SLn(Fq) or SUn(Fq).

In the following two subsections, we study some special cases in which we can also

prove non-exoticity for block fusion systems of special linear groups. We can only prove

these cases under very specific assumptions, which provides some further evidence that

it might be better to work with Conjecture 1.5 rather than Conjecture 1.1.
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We recall some definitions and results we need for these special cases.

Definition 5.26. Let G be a connected reductive group and s a semisimple element in

G.

(a) The element s is called G-quasi-isolated, if CG(s) is not contained in a Levi subgroup

of a proper parabolic subgroup of G.

(b) We define AG(s) to be the quotient CG(s)/C◦G(s).

Proposition 5.27. Let G = SLn(Fq) with Levi subgroup L. If s is G∗-quasi-isolated,

there is a BDR extension N in G, such that NF /LF ∼= Cr for some r | n.

Proof. In [4, Proposition 5.2], it is shown that AG∗(s) ∼= Ck for some k | n.

Define N∗ = CG∗(s)
FL∗, then this is a BDR extension, and we get the equality N∗F /L∗F =

CG∗(s)
F /C◦G∗(s)

F . The latter group is a subgroup of AG∗(s) and thus there is a r | k

such that NF /LF ∼= Cr. Since r divides n, the result follows. �

Definition 5.28. Let G be a finite group, b a block of kG and P a defect group of b.

We say that b is of principal type if BrGQ(b) is a block of kCG(Q) for every Q ≤ P .

5.4.1 Structural assumptions on Levi

We prove the non-exoticity of the BDR block fusion system in a special case.

Fix the following notation for this section. Let G = SLn(Fq), F the standard Frobenius

such that (G, F ) is in duality with (G∗, F ). Let s a G∗-quasi-isolated semisimple ele-

ment and L∗ = C◦G∗(s). By Theorem 5.9, the fusion system of a block d of kGF with

Irr(GF , d)∩E(GF , s) 6= ∅ is equivalent to the fusion system of a block of kNF covering a

block of kLF in E(LF , s) for a BDR extension N in G. Since s is central in L∗, the fusion

system of d is equivalent to the fusion system of a block c of NF covering a unipotent

block b of LF , see also [5, Example 7.9]. Thus, we can prove that d induces a non-exotic

fusion system by proving that the BDR block fusion system of c is non-exotic. Denote
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the BDR block fusion system of c by H and the generalised BDR block fusion system of

b and the extension LF ENF by G. Let L̃ ⊆ GLn(Fq) such that L̃ ∩ SLn(Fq) = L

Theorem 5.29. Let G = SLn(Fq), F the standard Frobenius and s a G∗-quasi-isolated

semisimple element. Assume AG∗(s) = NF /LF and thus L̃F =
k/d∏
i=1

GLm(qd). If we

furthermore assume that d = 1 and L̃F ∩G = L̃F , then the BDR block fusion system H

and the BDR generalised block fusion system G coincide. In particular, H is non-exotic.

To prove the result in the theorem, one needs a series of intermediate results, that are

dealt with in the following five lemmas and propositions.

Lemma 5.30. Let π : G̃ � G∗ be the canonical projection, then we have L∗F =

π(C
G̃

(s̃)F ).

Proof. Note L∗ = CG∗(s)
◦ since we are in type An. Since π(G̃F ) ⊆ G∗F , we have

π(C
G̃

(s̃)F ) ⊆ (π(C
G̃

(s̃)))F = (CG∗(s)
◦)F = L∗F .

Suppose y ∈ (CG∗(s)
◦)F . Let ỹ ∈ C

G̃
(s̃) with π(ỹ) = y. We have π(F (ỹ)) = F (π(ỹ)) =

F (y) = y = π(ỹ), so ỹ−1F (ỹ) ∈ kerπ = Z(G̃). Now Z(G̃) is connected. By the Lang–

Steinberg theorem, see [19, 3.10], we have ỹ−1F (ỹ) = z−1F (z) for some z ∈ Z(G̃). We

thus get ỹz−1 ∈ G̃F with π(ỹz−1) = π(ỹ) = y. �

Proposition 5.31. Let s be G∗-quasi-isolated and |AG∗(s)| = k. We have L̃F =
t∏
i=1

GLm(qdi) for some 1 ≤ t, di ≤ k such that
t∑
i=1

di = k and mk = n.

Proof. Since s is quasi-isolated, by [4, Proposition 5.2] we have s=G∗π(s̃) where s̃ =

Im ⊗ Jk, Jk = diag(1, ζ, . . . , ζk−1) for a primitive k-th root of unity ζ and mk = n. It

is easy to see that C
G̃

(s̃) =
k∏
i=1

GLm(Fq). Note that G̃ = G̃∗. Let L = C
G̃

(s̃) ∩G. If

L̃∗ = C
G̃∗(s̃), we have L∗ = C◦G∗(s) = π(L̃∗). Let M := LZ(G̃). Then M is a Levi of

G̃ corresponding to L̃∗ under the identification of G̃∗ and G̃. Now let L̃ = C
G̃

(s̃) and

write L̃ = L̃1 × L̃2 × · · · × L̃k, where L̃i = GLm(Fq) for 1 ≤ i ≤ k, mk = n.

Since L̃ is F -stable, F acts on L̃ by permuting the factors L̃1, . . . , L̃k i.e. for all i we
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have F (L̃i) = L̃j for some 1 ≤ j ≤ k. Let O1, . . . , Ot be the orbits of the F -action on

{L̃1, . . . , L̃k}. If di = |Oi| for 1 ≤ i ≤ t, then L̃F =
t∏
i=1

GLm(qdi). �

Lemma 5.32. Let s be G∗-quasi-isolated, r = |NF /LF |, k = |AG∗(s)|. We have natural

maps NF /LF ↪−→ AG∗(s) → Sk given by the action of these groups on the components

of L̃. If T0 is the image of NF /LF in Sk, then CSk
(T0) = Cr o Ck0 with k = rk0.

Proof. Since s is quasi-isolated, we get an action of AG∗(s) on{L̃1, . . . , L̃k} induced

by permutation of the eigenvalues, see [4, Proposition 5.2]. This proposition also im-

plies that if T ≤ Sk is the image of AG∗(s) under the homomorphism AG∗(s) → Sk,

we get T = 〈(1, 2, . . . , k)〉. If T0 ≤ T is the image of NF /LF in Sk, then it is gen-

erated (up to reordering of the indices 1, 2, . . . , k) by the permutation (1, 2, . . . , r)(r +

1, . . . , 2r) . . . ((k0−1)r+1, . . . , k) for some k0 such that k = rk0. Let τ = (1, 2, . . . , r)(r+

1, . . . , 2r) . . . ((k0 − 1)r + 1, . . . , k). Then CSk
(τ) = (〈(1, 2, . . . , r)〉 × 〈(r + 1, . . . , 2r)〉 ×

· · ·×〈((k0−1)r+1, . . . , k)〉)H, where H = 〈(1, r+1, . . . , (k0−1)r+1)(2, r+2, . . . , (k0−

1)r + 2) . . . (r, 2r, . . . , k0r)〉 ∼= Ck0 . In other words, CSk
(τ) ∼= Cr o Ck0 , see also [38, The-

orem 2]. �

We now specialise Lemma 5.31 to the case where there is no gap between NF /LF and

AG∗(s), in which case all the di coincide.

Proposition 5.33. If s is G∗-quasi-isolated and NF /LF = AG∗(s) ∼= Ck, then L̃F =
k/d∏
i=1

GLm(qd) for some d | k and mk = n.

Proof. Let σ, τ ∈ Sk correspond to the action of F respectively NF /LF on {L̃1, . . . , L̃k}.

Since the action of F and NF /LF on {L̃1, . . . , L̃k} commute, σ ∈ CSk
(τ). So by the

previous lemma, we have σ = (1, 2, . . . , r)i1(r+ 1, . . . , 2r)i2 . . . ((k0 − 1)r+ 1, . . . , k)ik0hj

where h = (1, r + 1, . . . , (k0 − 1)r + 1)(2, r + 2, . . . , (k0 − 1)r + 2) . . . (r, 2r, . . . , k) and

0 ≤ ij ≤ r − 1, 0 ≤ j ≤ k0 − 1.

First assume j = 0. In this case, each of the sets {1, 2, . . . , r}, {r+ 1, . . . , 2r}, . . . , {(k0−
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1)r+ 1, . . . , k} is a union of 〈σ〉-orbits and the orbits of 〈σ〉 on {i+ 1, . . . , i+ r} for any

i ∈ {1, r + 1, . . . , (k0 − 1)r + 1} are of equal length, say di and there are r/di of these.

So we obtain C
G̃

(s̃)F =
∏

i∈{1,r+1,...,(k0−1)r+1}
GLm(qdi)r/di and 〈τ〉 transitively permutes

the r/di factors GLm(qdi) for each i.

The assumption NF /LF = AG∗(s) implies τ = (1, 2, . . . , k) and thus CSk
(τ) ∼= Ck and

so indeed j = 0. We furthermore have k0 = 1 which implies the claim about L̃F with

the above. �

Proposition 5.34. Let N EG and S = S1× ...×Sk ≤ N . Assume that g ∈ NG(S) acts

on S such that gSi = Sj and furthermore that if u ∈ Si and n ∈ N are such that nu ∈ S,

then nu ∈ Si. Define ϕ : NG(S)→ Sk by the action of NG(S) on the components of S.

Suppose that NN (S) = kerϕ. Then for all Q ≤ S such that CS(Q) ⊆ Q, we have that

CG(Q) = CN (Q).

Proof. Since CS(Q) ⊆ Q, we have Z(Si) ⊆ Q for all 1 ≤ i ≤ k. If g ∈ CG(Q), we can

use Frattini’s argument to write it as g = nx for n ∈ N, x ∈ NG(S). Let 1 6= ui ∈ Z(Si),

then ui=
gui=

nxui. We have xui ∈ Sϕ(x)(i). By assumption, we get ϕ(x)(i) = i for every

i, which means x ∈ ker(ϕ) ⊆ N and thus g ∈ CN (Q). �

We can now prove the theorem.

Proof of Theorem 5.29. The claim L̃F =
k/d∏
i=1

GLm(qd) follows from Proposition 5.33.

Let P be a defect group for b. By Theorem 2.6, it suffices to prove AutG(Q) = AutH(Q)

for all subgroupsQ ≤ P with CP (Q) ⊆ Q. We have AutG(Q) =NNF (Q, eQ)/QCNF (Q, eQ)

and AutH(Q) = NNF (Q, fQ)/QCNF (Q). If we prove CNF (Q) = CLF (Q), this implies

eQ = fQ by Lemma 2.33. In particular, the equality of these centralisers implies our

claim.

We have P ∈ Sylp(C
◦
L([M,M])F ) for a Levi subgroup M ≤ L. Since C◦L([M,M])F ⊆ LF ,

we can apply Proposition 5.33 together with our assumption d = 1 to see that P is of the
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form as in the previous proposition. Now we have NF /LF ∼= Ck acting by permutation

of the components and thus we see that kerϕ = NLF (P ) with the notation from the

previous proposition. Thus, the previous proposition with G = NF and N = LF gives

us CG(Q) = CN (Q).

The claim about non-exoticity follows from Theorem 1.9. �

5.4.2 Block of principal type and stable defect group

We identify another situation where the different side of the triangle collapses. The

following is the main result of this section.

Theorem 5.35. Let G = SLn(Fq), F the Standard Frobenius, L a Levi subgroup of G

in duality with L∗ = CG∗(s)
◦ for some quasi-isolated semisimple s ∈ G∗ and let N be

a BDR extension in G corresponding to s. Let b be a unipotent block of LF with defect

group P . If b is of principal type and every element in P is NF /LF -stable, then the

unipotent block fusion system F of b and the BDR generalised block fusion system G of

b and the extension LF ENF coincide.

First, we prove the following:

Lemma 5.36. Suppose G is a connected, reductive group, F : G → G a Steinberg

morphism, s ∈ GF semisimple and G-conjugate to t. Suppose that CG(s) is connected

and w ∈ G such that wF t = t. Then there exists h ∈ G such that t = hsh−1 and

CGF (s) = h−1CGwF (t)h.

Proof. Let t = gsg−1 for g ∈ G. We have wF t = t if and only if wF (gsg−1) =

gsg−1 which is the case if and only if w ∈ gCG(s)F (g−1). Since CG(s) is connected,

w = guF (u−1)F (g−1) = guF (g−1u−1) for some u ∈ CG(s). Set h = gu. Then

t = gsg−1 = gusu−1g−1 = hsh−1. Let x ∈ G, then y := hxh−1 ∈ CG(t) and as

above wF (y) = y if and only if F (x) = x. Hence, CGF (s) = h−1CGwF (t)h. �
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We construct such a t for the quasi-isolated s defining L and want to use this lemma to

construct a BDR extension N in this situation.

Construction 5.37. Let G̃ = G̃∗ = GLn(Fq) and F be the standard Frobenius. Let

ζ ∈ F×q be a primitive k-th root of unity and let η ∈ F×q be such that ηq−1 = ζ. Then

for all i ∈ Z/kZ, (ηζi)q = ηζi+1. In particular, {η, ηζ, · · · , ηζk−1} is an orbit of F×q

under α 7→ αq. Let t̃0 = Im ⊗ Jk where Jk = diag(1, ζ, · · · , ζk−1). Let t̃ = ηt̃0 and

t := π(t̃) = π(t̃0). Then t is quasi-isolated in G∗. Let w := (1,m + 1, · · · , (k − 1)m +

1)(2,m+2, · · · , (k−1)m+2) · · · (m, 2m, · · · , km) ∈ Sn ≤ G̃∗. By the above observation,

wF t̃ = t̃.

Hence, by the previous lemma, there is an s̃ ∈ G̃∗F such that s̃ and t̃ are G̃-conjugate,

so s̃ = h̃−1t̃h̃ with w = h̃F (h̃−1) for some h̃ ∈ G̃∗. Also, C◦G∗(s) = π(C
G̃∗(s̃)) =

π(h)−1π(C
G̃∗(t̃))π(h), C◦G∗(s)

F = π(h)−1π(C
G̃∗wF (t̃))π(h), CG∗(s) = π(h−1)CG∗(t)π(h)

and CG∗(s)
F = π(h−1)CG∗wF (t)π(h).

Lemma 5.38. If w is as in the previous construction, we have L̃wF ∼= GLm(qk) is a

Levi of G̃ and ÑF ∼= GLm(qk) o 〈σ〉, where σ is the field automorphism of order k, is a

BDR extension in G̃.

Proof. We calculate L̃ as in the proof of Proposition 5.31 with t taking the role of a

G̃∗-quasi-isolated element. Together with the previous construction, we obtain L̃∗ =

h̃−1C
G̃∗(t̃)h̃, Ñ∗ = h̃−1(C

G̃∗(t̃)CG̃∗(t)
wF )h̃ and ÑF = h̃−1C

G̃∗(t)
wF h̃ for some h̃ ∈ G̃∗.

Identifying G̃ with G̃∗, L̃ with L̃∗ and Ñ with Ñ∗ we obtain N = Ñ ∩G hence NF =

ÑF ∩G, i.e. N = (h̃−1C
G̃

(t̃)C
G̃

(t)wF h̃) ∩G and NF = (h̃−1C
G̃

(t)wF h̃) ∩G.

Now C
G̃

(t) = 〈L̃, w〉 and L̃ =
k∏
i=1

GLm(Fq). Since F (w) = w,w ∈ C
G̃

(t)wF , hence

C
G̃

(t)wF = 〈L̃wF , w〉 = L̃wF o 〈w〉.

For the claim about L̃wF , let x = (x1, · · · , xk) ∈ L̃, xi ∈ GLm(Fq). We have wFx =

(xqk, x
q
1, · · · , x

q
k−1). Hence wFx = x if and only if x = (x1, x

q
1, · · · , x

qm−1

1 ), xq
m

1 = x1, thus

x1 ∈ GLm(qk) and we get L̃wF ∼= GLm(qk) via the isomorphism (x1, x
q
1, · · · , x

qm−1

1 ) 7→
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x1.

Under this isomorphism, the action of 〈w〉 on L̃wF is transported to the action of 〈w〉 on

GLm(qk) given by wx1 = xq
m−1

1 = x−q1 . Thus, w acts as Frobenius x 7→ xq on GLm(qk).

Thus ÑF ∼= L̃wF o 〈w〉 ∼= GLm(qk) o 〈σ〉 where σ is the field automorphism of order k.

�

Proposition 5.39. Let P be a defect group for the unipotent block b of LF . If we have

the assumptions of the previous lemma, then every element in P is w-stable.

Proof. We have L̃F = GLm(qk) and LF = GLm(qk) ∩ SLn(q), where mk = n. Fur-

thermore, P ∈ Sylp(C
◦
L([M,M]F )) where M ≤ L is a Levi subgroup. If M̃ is a

Levi of GLm(Fq), then we may assume M̃ = T × GLr for some torus T . Thus,

M = (T ×GLr(Fq))∩SLm(Fq), [M,M] = 1×SLr(Fq) and C◦L([M,M]) = (GLm−r(Fq)×

(Fq)r) ∩ SLm(Fq). So we may assume P ∈ Sylp(SLm−r(q
k)). Now let x ∈ P , we have

wx = x if and only if x ∈ SLm−r(q). Since we have (p, q) = 1 the p-parts of the groups

SLm−r(q) and SLm−r(q
k) coincide. �

Proof of Theorem 5.35. Let Q ≤ P be centric. Since b is of principal type, there

is a unique block eQ of CLF (Q) such that (Q, eQ) is a b-Brauer pair. Thus, we have

NNF (Q, eQ) = NNF (Q) and NLF (Q, eQ) = NLF (Q) which also implies CNF (Q, eQ) =

CNF (Q). By assumption, CNF (Q) = CLF (Q) o x, where 〈x〉 = NF /LF and thus

also, NNF (Q) = NLF (Q) o x. We get NLF (Q, eQ)CNF (Q, eQ) = NLF (Q)CNF (Q) =

NLF (Q)(CLF (Q) o x) = NNF (Q) = NNF (Q, eQ) which is equivalent to AutF (Q) =

AutG(Q). Theorem 2.6 implies the claim. �
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6 Conclusion

6.1 Overview of exotic fusion systems

We give an overview of all exotic fusion systems which have been discovered, point out

for which ones block-exoticity has been proven, and make some remarks. The order in

this table aligns with the bibliography. See the respective references for details.

S # Reference Remarks

S ∈ Sylp(Z/pZ)p−1 o (Cp−1 o Σp) ∞ [6] f.s. reduction simple, Z(S) cyclic

S group of order p4, p odd ∞ [7]
Proposition gives fusion systems,

Exotic examples given

S ∈ Sylp(S(n, p)) ∞ [14] f.s. reduction simple, Aut(S) no p-group

S Sylow p-subgroup of amalgamated
product of matrix groups ∞ [15] Two families of exotic systems

non-abelian p-group S with
unique abelian subgroup A of index p ∞ [17] A essential, elementary abelian

3-group of rank 2 ∞ [18]
generalises systems from [47],

only exotic systems on odd rank 2-group

S ∈ Sylp(PSp4(p
a)) ∞ [25] -

S ∈ Syl2(Spinz(q)), q ≥ 3 ∞ [35]
block-exoticity proven in [28],[16],

only known exotic systems for p = 2

non-abelian p-group S with
unique abelian subgroup A of index p ∞ [40] A not essential

non-abelian p-group S with
unique abelian subgroup A of index p ∞ [41] A essential, not elementary abelian

S ∈ Syl7(G2(7)) 27 [42] block-exoticity proven in Chapter 4

S ∈ Sylp(QL), p ≥ 5 ∞ [43]
Q extra-special of order pp−2,
L ∼= GL2(p), Z(S) cyclic

S ∈ Sylp(GLn(q)), q prime power

with (q, p) = 1, p odd d(e)− 1 [46]
subsystems of realisable system,
e := ord(q) mod p > 2, n ≥ ep

71+2
+ 3 [47] block-exoticity proven in [32]

Table 2: Exotic fusion systems

If we say that the number of fusion systems is∞, we mean that it is an infinite family of
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exotic fusion systems. Note that the proof of block-exoticity of the exotic fusion systems

on 71+2
+ answers Conjecture 1.1 for all extraspecial groups of order p3, since it is shown

in [47] that these are the only exotic fusion systems on such groups. This is the only

family of non-abelian groups for which the conjecture is proven. Furthermore, note that

it is conjectured that the exotic fusion systems on Syl2(Spinz(q)), q ≥ 3 are the only

exotic systems on 2-groups.

6.2 Overview for finite quasisimple groups not covered in Chapter 5

In this final section, we give an overview on where we stand with Conjecture 1.1 for fusion

systems on finite quasisimple groups other than the ones studied in Chapter 5. First

of all, note that we can restrict ourselves to non-abelian quasisimple groups, since the

conjecture holds for all fusion systems on abelian groups. This is due to non-existence

of exotic systems on such groups, as discussed in Chapter 2. For alternating groups and

their covers, the conjecture is also known to hold. It can be deduced from [9] together

with [45]. For sporadic groups, the conjecture has been proven in [16]:

Theorem 6.1. [16, Theorem 9.22] Let G be sporadic simple group. Let k be a field of

characteristic p and b a block of kG, then the fusion system of b is non-exotic.

We are left with groups of Lie type. For these, we see that the conjecture holds true if

the underlying characteristic is p.

Theorem 6.2. Let F be a fusion system realised by a p-block of a finite quasisimple

group of Lie type over characteristic p, then F is non-exotic.

Proof. Immediately follows from [13, Theorem 6.18]. �
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