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ABSTRACT 

Recently, modular construction and prefabrication have gained massive momentum as they continue to help 

many cities around the globe to tackle the ongoing housing crisis and to meet the pressing demands for 

healthcare facilities during the coronavirus pandemic. Previous studies focused only on employing optimisation 

techniques at the member level to enhance the structural capacity of steel beams in modular building systems 

(MBS). This paper explores the feasibility and efficacy of an optimality criteria (OC)-based minimum-weight 

design method in reducing self-weights of MBS while maintaining their overall lateral stiffness measured by 

natural/resonant frequency. This is pursued through an innovative optimisation investigation involving a three-

storey, self-standing MBS with hinged inter-module joints, together with a comparative moment-resisting frame 

(MRF) benchmark structure with two different beam-column connection rigidities. Continuous-valued sizing 

optimisation of two structural systems under a single frequency constraint is achieved through a novel, 

numerically stable, iterative algorithm. The latter is developed from a frequency-related OC formulated 

rigorously through the Lagrangian multiplier approach. The discrete minimum-weight design is facilitated by a 

mapping strategy designed to round the continuous optimum to the nearest, most economical standard steel 

sections. It is found that the proposed minimum-weight design method can achieve significant steel savings for 

the adopted MBS without compromising its lateral stiffness. Further, it is shown that the MRF structure with 
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semi-rigid connections can meet the same frequency constraints with slightly smaller steel tonnages. It is 

envisioned that this study will pave the way towards achieving resilient and cost-effective modular units and 

tall MBS that further support the building industry in meeting its goals of efficiency and sustainability. 

 

Keywords: modular building systems; sizing optimisation; minimum-weight design; optimality criteria 

 

1. INTRODUCTION 

In recent years, rapid urbanisation trends have created pressing demands for affordable residential and office 

space in many major cities around the globe, thereby urging the construction industry to adapt towards more 

innovative engineering solutions and construction methods. Meanwhile, buildings and construction are now 

responsible for 39% of all carbon emissions in the world [1], with the upfront/embodied emissions (associated 

with materials and construction processes) accounting for 11% [2]. To this end, one crucial strategy for reducing 

embodied carbon footprints of the building sector is to promote/ensure material utilisation, waste reduction, 

reuse of building components/products, and recycling materials as much as possible [3-6]. In this background, 

steel MBS, underpinned by modern methods of construction (MMC), design for manufacture and assembly 

(DfMA) methodology, and design for deconstruction (DfD) considerations, have become an increasingly viable 

proposition owing to their advantages such as faster construction speed, reduced waste generation, 

demountability and reusability, safer manufacturing, and better quality control [7-12]. In volumetric modular 

construction as shown in Fig. 1 (a), factory-made building modules are prefabricated off-site and subsequently 

transported to construction sites for final assembly to form a complete building through inter-module 

connections, as demonstrated in Fig. 1(b). In order to maximise the above benefits, MBS are best suited for tall 

building structures with repetitive units such as apartments, offices, student accommodations, hotels, and 

healthcare facilities [10,13]. Nevertheless, their application to date concerns mostly low- and mid-rise, with the 

number of tall modular buildings constituting less than 1% [14], due to several plausible causes. First, there is 

a lack of pertinent design provisions on the legislation level such that the current modular design practices are 

mostly based on codes/guidelines for conventional building structures [9]. Secondly, the structural behaviours 

of tall modular buildings in terms of integrity, stability, and serviceability needs to be better understood, 

especially under the dynamic action of strong wind and earthquakes [10]. Thirdly, despite a plethora of inter-

https://www.worldgbc.org/news-media/WorldGBC-embodied-carbon-report-published#_ftn1
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module joints [cf., 15-20] existing in the literature, the current state-of-the-art joining techniques are only able 

to achieve partial satisfaction in fulfilling manufacturing, constructional, and structural requirements [18]. 

Finally, difficulties can also arise due to transportation restrictions on module sizes/weights and the limited 

lifting capacities of tower cranes [21].  

Another important topic of MBS, which has received scant attention in the literature and thus warrants 

further research, is the structural efficiency and material consumption of MBS compared to conventional 

building (structural) systems within a performance-based design context. Indeed, modular buildings can be 

material-intensive/demanding due to double beams and double columns coming from adjacently placed modules, 

as well as due to relatively short spans of modular units as opposed to long spans achieved in conventional 

MRFs. The latter is also attributed to the restrictions imposed on module sizes/weights for transportation and 

erection. In this regard, structural sizing optimisation (SO) is arguably the most commonly applied technique 

for automating code-compliant, material-efficient building designs whose structural layout requires minor or no 

shape/topology improvements. Typically, SO aims to minimise self-weight of the structure while ensuring 

satisfaction of certain prescribed performance criteria/constraints. For tall building applications, these 

constraints are usually given as lower limits on the natural frequencies or critical buckling loads or as upper 

limits on permissible nodal displacements/accelerations or member stresses under external loads [22-25]. 

Incidentally, several technical challenges of modular systems and construction listed previously can be 

collectively addressed by incorporating SO into the design process, enabling safer, stiffer, and economical tall 

modular buildings that are also resilient to wind and seismic effects. In addition to employing advanced design 

tools, innovative lightweight energy-dissipating devices, such as inerter-based dynamic vibration absorbers for 

mitigating wind- and earthquake-induced vibrations in buildings [26-29] and novel slider devises for seismic 

protection of modular buildings [30-33], may also be deployed to help modular buildings achieve performance 

targets in a more cost-effective manner. Furthermore, on the module level, SO can lead to lightweight modular 

units with reduced material wastes and construction costs that are also easier to transport and handle on-site, 

thereby further reducing operational and embodied carbon emissions due to manufacturing, transportation, and 

installation/construction. 

In pursuit of efficient material use, Gatheeshgar et al. [21] recently applied the particle swarm optimisation 

technique to enhance the flexural resistance of cold-form steel beams with web perforations for modular 



Manuscript submitted to Engineering Structures                                                        Wang and Tsavdaridis, Sep 20th, 2021 

 

4/27 

 

building applications. A conceptual MBS design comprising optimal cold-form steel members was developed 

to demonstrate the potential of structural optimisation in creating sustainable and material-efficient MBS design. 

Moreover, Gatheeshgar et al. [34] introduced the concept of employing optimised hollow flange beams to 

enhance the structural performance of MBS. Nevertheless, these two studies focused only on employing 

optimisation techniques at the local/member level; to the authors' best knowledge, there remains a scarcity of 

research on applying structural optimisation at the global/structure level to enhance MBS's overall structural 

performance and material efficiency.  

Consequently, this paper attempts to addresses the above research gap through an innovative minimum-

weight design investigation involving a three-storey MBS and a comparative MRF under a generalised stiffness 

constraint stated in the resonant/natural frequency. The overarching aims of the study are twofold: first, 

introducing a novel optimisation framework for pursuing continuous- and discrete-valued minimum-weight 

design of MBS subjected to natural frequency constraints; and second, comparing the self-weights of two 

optimally designed structural systems (i.e., MBS versus MRF) required to achieve a prescribed level of overall 

lateral stiffness, hence gauging the structural/material efficiency of MBS compared to conventional MRFs. The 

continuous SO of both structures is achieved by a novel OC-based sizing algorithm; the latter is proven to be 

computationally more efficient (in terms of convergence speed) than the conventional OC methods based on 

the uniform strain energy density criterion (cf., [23, 35-38]), which can become erratic for eigenvalue-

constrained problems [39]. The sizing process is expedited by a high-quality estimating technique for efficient 

gradient/sensitivity analysis of design constraints, such that the proposed sizing algorithm can handle large 

design problems at relatively low computational cost. In support of practicality, the discrete minimum-weight 

design of MBS and MRF is achieved by employing a novel mapping technique to convert the continuous 

optimum to the nearest discrete solution using selected standard steel sections. Attention is focused on the 

convergence behaviour and numerical robustness of the sizing algorithm proposed, as well as on quantifying 

the self-weight reduction of the MBS achieved by the minimum-weight design method in lieu of the MRF 

comparative structure. 

The remainder of the paper is organised as follows. In Section 2, the SO problem of frame structures (i.e., 

structures comprising frame elements) is defined for a single frequency constraint imposed on an arbitrary 

vibration mode. The method of Lagrangian multipliers is applied to formulate a frequency-related OC that 
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defines the optimality in a set of necessary conditions involving sensitivities of the constraint to the cross-

sectional areas of modular members. A sizing algorithm is next established based on the derived OC for updating 

the member sizes and the Lagrangian multiplier in the continuous design space, followed by the presentation of 

a discrete minimum-weight design method assuming standard open and close steel sections. The numerical 

stability/robustness of the sizing algorithm is examined in Section 3 for a three-storey modular testbed model 

with two different sets of initial cross-sections under the same frequency constraint on the fundamental vibration 

mode. Next, in Section 4, the minimum-weight design method is applied to the three-storey MBS and the MRF 

benchmark structure for two frequency constraints imposed on the fundamental and second vibration modes 

separately. Comprehensive numerical results are furnished and discussed, shedding light on the material 

efficiency of MBS compared to conventional MRF systems. Finally, Section 6 summarises the main conclusions 

and recommendations for further research work. The accuracy, efficacy, and computational efficiency of the 

proposed sizing design method in Section 2 are demonstrated in Appendix A using a planar portal frame under 

a single frequency constraint. The OC formulation and sizing algorithm in Section 2, which are limited to a 

single frequency constraint, are generalised in the Appendix B for tackling multiple frequency constraints. 

 

 

Fig. 1 (a) a modular building with corner and edge inter-connection joints only (VectorBloc corp., (2016). 

VectorBloc Standardized Modular Construction System); and (b) assembly view of newly developed corner 

and edge inter-module joints for minimum-weight design investigation in this study. 
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2. FORMULATION OF OPTIMALITY CRITERION AND SIZING ALGORITHM 

In this paper, the natural frequency of a frame structure is adopted as a metric for quantifying its overall lateral 

stiffness associated with a particular vibration mode. Then, within an optimal (i.e., minimum-weight) design 

setting, the structure with lower self-weight is considered to be more efficient than the one that requires more 

structural material to reach the same resonant frequency. More precisely, efficiency here is quantified as the 

ratio of the natural frequency (of a particular vibration mode) to the amount of material (or self-mass) required 

by the structure to achieve that particular frequency. In this setting, an optimality criterion (OC)-based SO 

method is first presented herein for the minimum-weight design of frame structures of fixed layouts while 

satisfying a prespecified frequency constraint. Specifically, the OC methods rely on first characterising the 

optimal structure through some necessary conditions, which are believed to hold at the optimum, and then 

applying a resizing rule to gradually modify/resize the current design to satisfy these conditions, thereby 

indirectly optimising the structure. Compared to mathematical programming techniques and evolutionary 

computing approaches, the main attractions of OC methods for large design problems are their computational 

efficiency [40], benign convergence behaviour [41], and simplicity for practical implementation [39].  

 In what follows, a frequency-based OC is first derived in section 2.1 based on the formulations in Venkayya 

[42]. The OC is stated in a set of mathematically defined, necessary conditions, expressed as a system of 

differential equations involving partial derivatives of the frequency constraint with respect to member sizes. 

Next, a numerically robust, iterative algorithm is developed in section 2.2 for updating the structure's member 

sizes as per the OC derived in section 2.1. Finally, a minimum-weight design method for frame structures, 

including but not limited to MBS, is presented in section 2.3. 

 

2.1 Optimisation problem formulation and optimality criterion derivation 

Herein, a sizing optimisation problem (OP), which aims to minimise the structural self-weight while satisfying 

a frequency constraint on an arbitrary vibration mode k, is first formulated. The considered OP for an elastic 

frame structure comprising m frame elements but only n active design variables (DVs) (note n ≤ m) can be 

expressed as: 
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where M(a): ℝn→ℝ is the objective function, measuring the total mass of structural material to be minimised. 

Furthermore, ρi, li, and ai (i=1,…,n) represent the material density, fixed member length, and cross-sectional 

area of frame i, respectively. In the above formulation, the n cross-sectional areas, ai (i = 1, …, n), are the 

continuous-valued DVs of the OP grouped in the vector a∈ℝ1×n and bounded by the side constraint amin ≤ a ≤ 

amax. Specifically, the lower bound amin of the side constraint needs to ensure that the structure meets minimum 

displacement-based and strength-based (including buckling resistance) requirements under all load 

combinations in line with pertinent design codes, whereas the upper bound amax may be established by other 

considerations such as architectural and/or functional requirements. In addition, there are also m-n inactive 

members whose sectional properties remain constant during the SO process. Additional equal size constraints, 

which enforce sizes of certain structural members remaining the same during the sizing iteration, may be 

additionally imposed on active DVs in support of design practicality (see next section). The behavioural 

constraint in Eq. (1) requires that the structure’s k-th natural frequency, fk(a): ℝn→ℝ, is equal to a prespecified 

target value, fk,target. The frequency for mode k in Eq. (1) can be evaluated by the expression: 

 

( ) ( ) ( )
( ) ,

2

T

k k

kf


=
φ a K a φ a

a                                                                                                                           (2) 

 

in which K(a) is the structural stiffness matrix and φk(a) is the k-th mode shape vector normalised such that 

φk
TMφk=1 where M is the structure’s mass matrix.  

To facilitate a solution to Eq. (1), the method of Lagrange Multipliers is employed to convert the constrained 

OP in Eq. (1) into an unconstrained form. Specifically, the Lagrangian, L(a,λ): ℝn×ℝ→ℝ, that adjoins the 

nonlinear behavioural constraint to the linear objective function is formed as: 
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,target( , ) ( ) ( ) ,k kL M f f   = − − a a a                                                                                                                                (3) 

 

where λ is the multiplier. Assuming fk(a) is differentiable on the feasible solution set of the OP, the stationary 

condition of the Lagrangian in Eq. (3) with respect to active DVs, i.e., aL(a, λ)=0, yields the following equation: 
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=1 ( =1,...., ),k

i i i

f
i n

l a









a
                                                                                                                                                            (4) 

 

which defines the OC for the sizing OP in Eq. (1) in terms of n differential equations. Further, the stationary 

condition of the Lagrangian with respect to the multiplier, λL(a, λ)=0, yields the behavioural constraint in Eq. 

(1), i.e., 

 

,target( ) 0,k kf f− =a                                                                                                                                                                            (5) 

 

which is independent of the multiplier. Therefore, Eqs. (4) and (5) define a system of n+1 coupled equations for 

n+1 unknowns. These are the n cross-sectional areas (i.e., the active DVs) plus the multiplier λ. 

As a remark, the OP in Eq. (1) is strictly convex [43] such that there exists one stationary point in the feasible 

solution set at most for Eq. (4) to hold. Moreover, if such a stationary point exists, it must be the global minimum 

a* to the OP, as for strictly convex OPs a local optimum is also a global optimum [44]. Assured by this fact, the 

OC in Eq. (4) can be used to devise a finite element-based numerical procedure to refine/update the DVs 

iteratively towards the global optimum a* at which the frequency constraint is satisfied with the minimum self-

weight possible. 

 

2.2 Sizing algorithm for frequency-constrained optimisation problems 

Herein, a novel sizing algorithm is presented for iteratively modifying the DVs in accordance with the OC 

defined in Eq. (4) towards the global optimum a*. In OC-based sizing methods, the update formulas (for 

modifying DVs) utilise the DV vector a of dimension n and can take various forms, e.g., exponential, linearised, 
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reciprocal, or melange (cf., [45,46]). The vector a is then calculated from the stationary/optimality conditions 

by scaling, component by component, with respect to the gradient of the Lagrangian function [39]. In the current 

study, a linearised recursive relation for updating the DVs at iteration p attains the form: 

 

( 1)
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where the term in the curly brackets is a scaling factor at iteration p for DV i and is devised directly from Eq. 

(4). Moreover, in the last equation, the relaxation parameter η controls the convergence rate of the sizing process: 

as η becomes smaller, the value of aj
(p) is modified to a larger extent, and vice versa. Suggestion regarding how 

to select η value is given in the next section for an illustrative example. The k-th natural frequency at iteration 

p, fk
(p), can be numerically evaluated using Eq. (2) by setting K = K(p) and φk = φk

(p), where K(p) and φk
(p) denote 

the structure stiffness matrix and k-th mode shape at iteration p, respectively. 

Before utilising Eq. (6) to update the current design a(p), it is necessary for the unknown multiplier at the 

current iteration, i.e., λ(p), to be known. To this aim, the change in the k-th frequency between two consecutive 

iterations, p and p+1, is firstly expressed by the approximation to a first-order Taylor series expansion about the 

DVs as: 
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Upon substituting Eq. (6) into Eq. (7) and assuming the behavioural constraint in Eq. (5) is satisfied after p 

iterations (such that fk
(p+1) = fk,target), the following relation for the multiplier at iteration p is established after 

some algebraic manipulation: 
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At this junction, suppose a stationary point exists in the feasible solution set, the iterative application of Eq. 

(6) for ai
(p+1) and Eq. (8) for λ(p) until convergence of the k-th frequency, fk(a), self-weight, M(a), and the 

multiplier, λ, will provide the global optimal solution a* to the OP in Eq. (1) subjected to the frequency constraint 

in Eq. (5). 

Note in using Eqs. (6) and (8) for updating the DVs and the multiplier, respectively, partial derivatives of 

the constraint function with respect to active DVs, i.e., ∂fk
(p)/∂ai (i=1,…,n), are required. In this regard, an 

efficient numerical procedure is needed for rapid gradient calculation of the natural frequency. To this aim, the 

frequency for mode k at iteration p, fk
(p), is first expressed in terms of structure stiffness matrix K(a)(p) and 

corresponding mode shape vector φk(a)(p) using Eq. (2). Then, derivatives of fk
(p) can be approximated using 

following formula according to Wittrick [47]: 
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Finally, the derivatives of structure stiffness matrix K(p) at iteration p in Eq. (9) can be evaluated 

conveniently using the equation below: 
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where Ki
(p-1) is a mixed structure stiffness matrix in which the element stiffness matrix for member i is from the 

previous iterative step p-1 while the remaining element stiffness matrices are from the current step p. As a 

remark, at the initial step p=1, the element stiffness matrix for member i from the “previous” iterative step, p=0, 
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is set to a zero matrix.  

At this point, it needs to emphasise that the above sizing algorithm is continuous-valued, whereas the DVs 

in realistic optimisation/design problems can only attain discrete values. In this context, a minimum-weight 

design method, featured with a mapping/rounding technique, is presented in the upcoming section to support 

the discrete optimal design of MBS subjected to a single frequency constraint. This technique allows one-to-

one mapping of continuous-valued, optimal sectional properties onto a list of standard steel sections. 

 

2.3 Discrete minimum-weight design method for modular building systems 

With the SO algorithm in the last section, the discrete minimum-weight design of MBS under a frequency 

constraint can be achieved in an automated manner by going through a three-step procedure as shown in Fig. 2 

and detailed below: 

 

(I) Initially, the target frequency for mode k, fk,target, is first specified. Frame members of the structure and 

corresponding DVs are then separated into active and inactive sets. As aforementioned, only active DVs 

are modified in the SO process, whereas inactive DVs remain invariant. Side constraints on the active 

DVs, i.e., amin ≤ a ≤ amax, are established based on strength-based and displacement-based requirements 

according to pertinent design codes.  

(II) Next, the SO algorithm in section 2.2 is applied to update the active DVs of the structure until concurrent 

convergence of the k-th frequency, fk , self-weight, M(a), and Lagrangian multiplier, λ. During the sizing 

iteration, the DVs are unbounded by the side constraint in step (I), i.e., amin ≤ a ≤ amax, so that the sizing 

algorithm can drive the current design towards the global optimum that satisfies the OC in Eq. (4). Only 

upon convergence, the continuous-valued sectional properties are compared with the respective side 

constraints. If any side constraint is violated by the current optimal solution a*(s), the active and inactive 

DV sets initialised in step (I) are modified and updated. Specifically, the DVs falling outside their 

respective constraints are changed from active to inactive and are forced to their bound values. The SO 

process is then re-executed with the same target frequency by setting s=s+1. This process is executed 

repeatedly until no side constraint is violated by any DV, at which point the sizing process is considered 

to be converged and optimal sectional properties of all member groups are retrieved. For three dimensional 
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Euler-Bernoulli beam elements, the sectional properties should at least include a∈ℝ1×n, Iyy∈ℝ1×n, Izz∈ℝ1×n, 

Jt∈ℝ1×n, where Iyy and Izz are two vectors collecting second moments of inertia about major and minor 

bending axes of active frame members, separately, and the vector Jt collects the torsional constants. 

(III) Finally, the continuous-valued optimal sectional properties, obtained in step (II), are mapped onto a list of 

standard steel sections of choice. For frame structures, this one-to-one mapping can be conveniently done 

by selecting a steel section in that list whose major second moment of inertia, Iyy, just exceeds the 

corresponding optimal value, Iyy
*, but with the minimum cross-sectional area possible to reduce the 

structural self-weight. This mapping strategy is proven to be quite effective for frame structures that resist 

lateral loads by bending, as will be seen in section 4. 

 

As final remarks, it is worth to emphasise that a design that satisfies the OC in Eq. (4) and the theoretical 

optimum to the OP in Eq. (1) are synonymous only in the case of a single load condition and no side constraints 

on member sizes [38]. To this effect, the SO iteration in step (II) is unbounded initially; it is not until the 

convergence of the sizing iteration that the side constraints are verified, with active and inactive DV sets updated 

for the next round of sizing iteration. The correctness of the continuous-valued sizing algorithm in Section 2.2 

and efficacy of the mapping strategy proposed herein (for discrete design) are demonstrated in Appendix A 

using a planar MRF structure under a single frequency constraint. Further, although the OC formulation in 

section 2.1 and the sizing algorithm in section 2.2 are derived for frequency-constrained problems, they are 

readily amenable to tackling displacement-, stress-, and buckling-constrained sizing problems of frame 

structures as well. This adaptation can be conveniently done by replacing the frequency constraint in Eq. (1) 

with another type of performance constraint, e.g., a lower limit on critical buckling load, or upper limits on 

either nodal displacements or member stresses. However, in the latter two cases, there are usually more than 

one performance constraints to consider in the design, which need to enter the OP formulation with a unique 

Lagrangian multiplier as a “weighting factor”. Then, it is not a trivial task at all to determine whether a particular 

displacement/stress constraint is active or passive and, if active, the constraint's contribution to the overall 

performance requirement [48]. Further difficulties can arise from the need to initialise the values of Lagrangian 

multipliers at the start of sizing iteration, which can heavily affect the convergence behaviour of the OC methods 

[49]. In this context, the minimum-weight design in this work only considers a single frequency constraint. 
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Nevertheless, the OC formulation and sizing algorithm presented in this section are extended to multiple 

frequency constraints in the Appendix B for theoretical completeness.  

 In the upcoming section, the SO algorithm in section 2.2 is applied to an illustrative example subjected to 

a frequency constraint on its fundamental vibration mode to demonstrate the algorithmic robustness/numerical 

stability for MBS. 

 

 

Fig. 2 Flowchart of discrete minimum-weight design method for frequency-constrained optimisation problems 

of frame structures in general. 

 

 

3. ILLUSTRATIVE APPLICATION 

In this section, the SO numerical routine in Section 2.2, based on an in-house finite element (FE) code for modal 

analysis of 3-dimensional frame structures, is implemented in MATLAB® and applied to a modular building’s 

FE model for self-weight minimisation under a frequency constraint on its fundamental mode. In section 3.1, 

attention is first turned to the effects of inter-module joints’ end releases on dynamic attributes of the modular 

building model. Next, a method for expressing sectional properties of standard open and close steel sections in 
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terms of cross-sectional areas in closed form through regression analysis is presented in section 3.2. This 

expression is essential in the sizing algorithm for deriving element stiffness matrices of frame elements using 

their cross-sectional areas only. In section 3.3, the sizing algorithm's convergence behaviour and numerical 

stability/robustness are demonstrated and discussed in detail, using the modular building model presented in 

section 3.1. 

 

3.1 Effects of inter-connection joint end release on dynamic attributes of modular building systems 

As shown in Fig. 3, the testbed model adopted for illustration of the sizing algorithm is a three-storey modular 

building consisting of nine modular units; the latter are connected through bolted corner and edge inter-module 

joints with shear tenons and tie plates, as shown in Fig. 1(b). A single modular unit is 6m long, 3m wide, and 

3m high, while other dimensions of the building model are fully given in Fig. 3. Corner posts of the modules 

are made of square hollow sections SHS120/6.3, ceiling and floor beams are made of rectangular hollow sections 

RHS150×100/6.3 and RHS180×100/6.3, respectively. The second moments of inertia (about the major bending 

axis) of these sections follow closely a mid-rise modular building reported in the literature (see [50]). As shown 

in Fig. 1(b), modular beams are welded directly to the flanges of corner posts, such that the intra-connection 

joints where the ceiling/floor beams meet the corner post are taken as perfectly rigid. Further, the corner and 

edge joints are modelled using Timoshenko beam elements to take into account the shear deformation effects 

of deep/short beams, as shown in the zoomed-in windows in Fig. 3. For the sake of brevity, the beam elements 

used to model the vertical interconnection between upper and lower modules are referred to as vertical joint 

beams hereafter, whereas the beams representing the tie plate (see Fig. 1(b)) are referred to as horizontal joint 

beams. At this point, it should be noted that modelling bolted inter-module joints using beam elements with 

appropriate end releases is common practice in the scientific literature for simplifying and facilitating global 

analysis of MBS (cf., [51-55]). In this type of simplified joint model, the intra-connection joints are generally 

taken as rigid, whilst a pinned joint is used to capture the independent rotation between the upper and lower 

corner posts [56]. Accuracy of this modelling technique is verified with experimental data by Annan et al. [57]. 

For the testbed model, two end-release scenarios are considered for the inter-connection joints in parallel. In the 

first scenario as depicted by Fig. 3(a), the corner and edge joints are fully fixed at both ends so that bending 

moment can transfer between adjacent corners of modular units. In the second scenario as depicted in Fig. 3(b), 
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a hinge is assigned at the middle point of the vertical joint beams to release biaxial bending at that node. 

Moreover, for edge joints, the horizontal joint beams are released for bending moment about the horizontal 

bending axis. In this setting, the first scenario serves as the most conservative simplification of the bolted joints 

in Fig. 1(b), whereas the second is the least conservative approximation.  

 

 

Fig. 3 A three-storey modular system with (a) fixed and (b) hinged inter-connection joints. 

 

Firstly, standard modal/eigenvalue analysis is performed to the modular system in Fig. 3 with two different 

joint rigidities in SAP2000® software package by assuming identical mass source, i.e., structural self-weight + 

superimposed load + 0.3 live load. Specifically, the superimposed load acting on the ceiling and four walls of 

the modules are taken as 0.5KPa, while the imposed load is increased to 2.0KPa for the floor. A live load of 2.0 

KPa is applied on the floor of all modules. The imposed mass due to superimposed and live loads is lumped at 

the corner joints only, whereas the self-mass (due to structural members) is lumped at both ends of meshed 

frame elements. The first six natural frequencies of the modular system in Fig. 3 and corresponding modal 

assurance criterion (MAC) values between the two end-release scenarios are calculated by SAP2000 and 

summarised in Table 1. Herein, the MAC value for mode j measures the mode shape similarity between the two 

inter-connection rigidities and is defined as (see [58]): 
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where φj,fixed and φj,hinged are the j-th mode shape vectors of the testbed model with fixed and hinged inter-

connection joints, respectively, the superscript “T” denotes vector transposition, and ||φ|| is the length of vector 

φ. Clearly, MACj value equal to unity means that the two mode shape vectors are identical, whereas MACj value 

equal to zero indicates zero degree of consistency/similarity between the two mode shapes. 

It is seen in Table 1 that the testbed model with hinged inter-connection joints has always slightly smaller 

natural frequencies. Nevertheless, for the first four vibration modes, the percentage errors in natural frequency 

between the two models are smaller than 3% (see values in paratheses) with the MAC values always above 

0.998. This observation implies that the end release of inter-module joints in Fig. 3(a) have negligible impacts 

on modal attributes up to mode 4. However, in vibration modes 5 and 6, the difference in frequency starts to 

increase with the MAC values dropping to zero, meaning that the two models have fundamentally different 

mode shapes. This observation is consistent with the findings in Lacey et al. [59], which shows that the overall 

lateral stiffness of modular buildings is mainly affected by shear stiffness of vertical inter-module connections 

but not by their rotational stiffness. In this context, given that the SO in this work always targets at either the 

fundamental or second vibration mode, it is therefore deemed conservative and appropriate to assume hinged 

inter-connection joints for the rest of numerical investigation.  

 

Table 1. Comparison of modal attributes of the modular system with fixed inter-connection joints as in Fig. 3 

(a) and hinged inter-connection joints as in Fig. 3 (b), values computed by SAP2000 and MATLAB FEA tool. 

Modular 

system 

Program 

Natural frequency [Hz] and modal assurance criterion [1] 

1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode 

I. with fixed 

connection 

SAP2000 0.965 1.049 1.216 2.597 2.731 2.839 

MATLAB 0.964 1.042 1.193 2.455 2.808 2.917 

II. with hinged SAP2000 0.937 1.023 1.186 2.574 2.595 2.595 
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connection (-2.90%) (-2.48%) (-2.47%) (-0.89%) (-4.89%) (-8.59%) 

MATLAB 0.937 1.023 1.202 2.447 2.562 2.704 

MAC  

between I & II 

SAP2000 0.9990 0.9997 0.9994 0.9988 0.0000 0.0000 

MAC between MATLAB & 

SAP2000 for scenario I 

1.0000 0.9999 0.9997 0.9976 0.9969 0.9982 

MAC between MATLAB & 

SAP2000 for scenario II 

1.0000 1.0000 0.9998 0.9981 0.9995 0.9983 

 

Finally, to examine the accuracy of the FE code developed in MATLAB® for later sizing optimisation, two 

additional modal analyses are performed for the same modular system with two different inter-connection joint 

rigidities in Figs. 3 (a) and (b), separately. For both end-release scenarios, the first six natural frequencies and 

MAC values between the mode shapes predicted by SAP2000 and MATLAB code are added in Table 1. As 

seen, the difference between the two sets of resonant frequencies is negligibly small, with MAC values greater 

than 0.99 across all six vibration modes regardless of the inter-connection rigidity. Overall, the matching quality 

of modal properties in Table 1 proves the accuracy of the MATLAB FE code for modal analysis of 3-

dimensional frame structures and its applicability for sizing optimisation workflow. 

 

3.2 Expressing sectional properties in terms of cross-sectional area for standard open and close steel 

profiles 

To use the iterative algorithm in section 2.2 for SO of the testbed model in Fig 3(b), it is necessary to express 

all sectional properties of each group of modular members as functions of the cross-sectional area/DV, ai. For 

three-dimensional Timoshenko beams with twelve degrees of freedom, the sectional properties for element i 

should include ai, Ayy,i, Azz,i, Iyy,i, Izz,i, and , Jt,i, where Ayy,i and Azz,i are the shear areas in the frame element’s local 

transverse and vertical directions, respectively, Iyy,i and Izz,i are the second moments of inertia about major and 

minor bending axes, separately, and Jt,i is the torsional constant of inertia. Previous studies by Chan [60] show 

that these sectional properties can be expressed as reciprocal functions of cross-sectional areas through 
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regression analysis. In addition, the widely used simple relationship Ij = caj
r covers many practical cases where 

“c” and “r” are some constants depending on the type of steel sections [46].  Then, for RHS beams of the testbed 

model, above five sectional properties can be expressed as polynomial functions of cross-sectional areas through 

regression analysis as demonstrated in Fig. 4. The same strategy is also applicable to SHS and other types of 

standard close and open steel profiles. However, for the testbed model in Fig. 3(b), an additional constraint on 

the corner posts is that they need to maintain the same outer dimension, b, but can have different thicknesses, t, 

throughout the height. This consideration stems from the fact that changing the corner post size along the 

building height can, arguably, make the connection between adjacent modules more difficult [56]. Further, 

another constraint on the modular beams is that their widths must not exceed the outer dimension of the corner 

posts so that the beams can be fully welded to the columns. These two buildability constraints simply mean that 

the commercially available SHS and RHS profiles need to be pre-filtered for the SO workflow and the regression 

analysis is performed to those selected SHS and RHS profiles only. Finally, the formulas used to relate the 

sectional properties of RHS, SHS, and parallel flange I sections (IPE) to their cross-sectional areas are 

summarised in Table 2. Note in section 4, the MBS in Fig. 3(b) is compared against a conventional MRF with 

identical outer dimensions and imposed masses to gauge their structural/material efficiency in achieving a 

particular frequency. The MRF structure uses SHS for columns and IPE profiles for beams. 

 

 

Fig. 4 Expressing sectional properties of rectangular hollow sections as polynomial functions of cross-
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sectional area. 

 

As a final remark, during the sizing process of the testbed model in Fig. 3(b), formulas in Table 2 are applied 

at the end of each DV update/iteration to evaluate shear areas and various moments of inertia of each group of 

members based on the updated cross-sectional areas a(p+1) determined by Eq. (6). These sectional properties are 

then used to construct element stiffness matrices assuming Timoshenko beam model before assembly of 

structure stiffness matrix for next iteration p+1. Upon convergence, the continuous-valued optimal sectional 

properties are used to find the most economical standard sections (in terms of cross-sectional area) whose major 

second moment of inertia just exceeds the optimal value (see also step (III) in section 2.3). Note for the testbed 

model, the outer width of corner posts is fixed to its initial value of 120mm throughout the sizing process in the 

rest of numerical investigation. 

 

Table 2. Formulas relating sectional properties of various standard steel sections and their cross-sectional 

areas. 

Sectional  

properties 

Steel sections 

RHS SHS IPE 

 
  

Avy [mm2] Avy=0.38A-14.84 

Av=0.50A-0.02 

Avy=0.54A+199.81 

Avz [mm2] Avz=0.62A+14.84 Avz=0.54A-169.66 

Iyy [mm4] Iyy=0.3199A2.1392 

I=0.2238A2.1405 

Iyy=0.1799A2.3209 

Izz [mm4] Izz=0.0947A2.1821 Izz=0.1440A2.0215 

Jt [mm4] Jt=0.2579A2.1598 Jt=0.3773A2.1332 Jt=0.0348A1.8218 

 

3.3 Robustness/numerical stability of the sizing algorithm 

Herein, attention is drawn to the convergence behaviour and numerical stability/robustness of the sizing 
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algorithm in section 2.2 for solving the frequency-constrained OPs of MBS formulated in section 2.1. The aim 

is to examine how different inputs (i.e., different initial designs) affect the algorithm execution and optimisation 

results. To this end, the testbed model in Fig. 3(b) is optimised for minimum self-weight by targeting at its initial 

fundamental frequency, i.e., f1,target=0.937Hz. Cross-sections of corner posts, ceiling, and floor beams of this 

initial design are summarised in Table 3 under the name “design A”, amounting  to a self-mass of 10669.0 kg. 

In addition, a different design, termed “design B”, with exactly the same setup but with different cross-sections 

reported in Table 3, is considered in parallel for SO by targeting at the same fundamental frequency of 0.937Hz. 

To better support the SO process, modular members are categorised into nine groups as listed in Table 3, by 

allowing the corner posts, ceiling beams, and floor beams to attain different cross-sections in different storeys. 

Moreover, the vertical joint beams are required to have the same cross-sections as the adjacent corner posts 

since they are a continuation of the corner posts from within the modules to the endplates, as shown in Fig. 1(b). 

In this setting, the only inactive members during the sizing process are the horizontal joint beams for modelling 

the tie plate in Fig. 1(b).  

In Fig. 5, the variations in the normalised fundamental frequency (normalised by f1,target=0.937Hz), 

normalised self-weight (normalised by 10669.0 kg), and the Lagrangian Multiplier (see Eq. (8)) throughout the 

SO processes of two designs in Table 3 are plotted in the subplots (a), (b), and (c), respectively. As seen in Fig. 

5(a), the normalised frequencies of designs A and B both converge to 1.000 after 83 and 89 iterative steps, 

respectively, despite the fact that these two designs have very different initial fundamental frequencies. Similar 

observation can be made for normalised self-weights in Fig. 5(b) as well as for the Lagrangian Multiplier in Fig. 

5(c). The self-weights are seen to decrease almost monotonically (except in the first a few steps) at a reducing 

rate and become practically flattened after step 70 for both designs. To shed light into the optimal solutions 

retrieved, the optimal cross-sectional areas, obtained from designs A and B, are summarised in Table 4, 

separately, with the average percentage error (APE) reported in the rightmost column. Here, the APE is defined 

as a ratio of the absolute difference between two values over the average of these two values. It can be seen that 

for all nine groups of modular members, the APE values between the two sets of optimal cross-sectional areas 

are smaller than 2.00% across the board, evidencing that the sizing algorithm is indeed numerically stable and 

is able to drive the current design towards the global optimum regardless of variation in the input. 
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Fig. 5 Variations in (a) normalised fundamental frequency, (b) normalised self-weight, and (c) Lagrangian 

Multiplier throughout sizing optimisation process of the modular system in figure 3 with hinged inter-

connection joints. 

 

As a final note, for both optimisation runs behind Fig.5, the relaxation parameter, η (see Eq. (6)), is set to 

50 between iteration steps 1 and 50, and is increased to 1000 from iteration step 51 onwards. In general, larger 

the η value is, smoother the convergence will be and more likely the algorithm will converge to the theoretical 

optimum. However, large η values can result in slow convergence so that some trial and error for selecting 

appropriate η values is required.  

 

Table 3. Continuous-valued, optimal cross-sectional areas of two different designs of the modular system in 

figure 3 (b) with hinged inter-connection joints. 

Member group 

Initial cross-sectional area 

 [mm2] 

Continuous-valued optimal 

cross-sectional area [mm2] 

Design A Design B Design A Design B APE 

Corner 

posts 

1st storey 

2823 

(SHS120/6.3) 

3515 

(SHS120/8.0) 

4430.5 4545.1 0.64% 

2nd storey 2197.0 2246.6 0.56% 

3rd storey 1054.9 1108.9 1.25% 

Ceiling 

beams 

1st storey 

2949 

(RHS150×100/6.3) 

1473 

(RHS100×60/5.0) 

3165.3 3094.6 0.56% 

2nd storey 2986.2 2916.4 0.59% 

3rd storey 1390.9 1301.4 1.66% 
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Floor 

beams 

1st storey 

3327 

(RHS180×100/6.3) 

1919 

(RHS150×100/4.0) 

1095.5 1157.3 1.37% 

2nd storey 3119.8 3132.2 0.10% 

3rd storey 1669.7 1734.5 0.95% 

 

 

4. COMPARATIVE STUDY WITH TRADITIONAL MOMENT RESISTING FRAMES 

In this section, the discrete minimum-weight design method in section 2.3 is applied to the modular building 

model in Fig. 6(a) (the same structure as in Fig. 3(b)) to showcase its usefulness and applicability for the optimal 

design of MBS under a generalised stiffness constraint stated in terms of resonant frequency. For comparative 

purpose, an ordinary three-storey MRF with identical outer dimensions and two different beam-to-column 

connection stiffnesses is considered in parallel as a benchmark structure to gauge the structural efficiency of 

MBS compared to conventional MRFs. In order to make the comparison fair and the investigation focuses solely 

on the MBS, both structural systems considered here are self-standing (i.e., without any additional lateral 

stability system) and without any bracing system.  

 

4.1 Description of two comparative structural systems adopted for sizing optimisation investigation 

For the modular system in Fig. 6(a), the vertical and horizontal joint beams are released for bending as in Fig. 

3(b). The intra-connection joints are still assumed to be perfectly rigid, justified by the fact that the modular 

beams are welded directly to the corner posts as shown in Fig. 1(b). Steel sections used in the modular system 

are detailed in Table 3 under the name "design A", which uses one standard section for ceiling beams, floor 

beams, and corner posts throughout the building height, separately. As shown in Fig. 7, the modular system's 

first and second vibration modes are translational in the global y- and global x-directions, with the corresponding 

natural frequencies equal to 0.937Hz and 1.023Hz, respectively. In the next section, these two eigenvalues (of 

design A in Table 3) are adopted as the target frequencies for two independent minimum-weight designs of the 

modular system in Fig. 6(a) and the MRF benchmark structure in Fig. 6(b).  
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Fig. 6 Two comparative structures: (a) the modular system with hinged inter-connection joints, and (b) a 

moment resisting frame with two bays in global x-direction and one bay in global y-direction, and (c) the 

mechanical models used for modelling beam-column connections in the semi-rigid moment resisting frame. 

 

For the MRF structure in Fig. 6(b), two beam-column connection stiffnesses are considered in parallel: 

perfectly rigid (as considered in the modular system) and semi-rigid as per Eurocode 3. In the latter case, a 

rotational spring with two degrees of freedom, as shown in Fig. 6(c), is added between the ends of ceiling/floor 

beams and the intermediate joint of corner posts. Its rotational stiffness is set to 25EIb/Lb, where E is the elastic 

modulus of structural steel, and Ib and Lb denote the (major) second moment of inertia and the length of the 

MRF beam, respectively. It needs to pointed out that this rotational stiffness value corresponds to the 

classification boundary between “rigid” and “semi-rigid” connections for unbraced frames in Eurocode 3 and 

thus by no means represent a rationally flexible connection. In support of lightweight design, standard IPE 

profiles are used for the MRF beams, while the MRF columns are still made of SHS with a constant/increased 

width of 160mm as opposed to 120mm for the modular system. For the MRF in Fig. 6(b), its first two vibration 

modes are also translational in the global y- and x-directions, respectively, irrespective of the beam-column 

connection stiffness. The same mass source used for modal analysis of the modular system in Fig. 6(a) is adopted 

for the MRF benchmark structure by applying an equivalent, uniformly distributed loading on the floor slabs in 

Fig. 6(b). In this setting, the two structural systems share the same imposed gravitational loads such that a fair 

and meaningful comparison can be made between the two structures. 
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Fig. 7 (a) The first and (b) second vibration modes and corresponding deformation of inter-connection joints 

of the modular system in Figure 6(a). 

 

4.2 Self-weight comparison with optimally designed MRFs 

For the modular system and MRF structure in Figs. 6 (a) and (b), their minimum-weight design is firstly pursued 

for the fundamental vibration mode in the global y-direction (referred to as “first-mode optimisation” hereafter) 

and then for the second vibration mode in the global x-direction (referred to as “second-mode optimisation” 

hereafter), independently. The SO is facilitated by targeting the corresponding natural frequency of the initial 

modular design/design A in Table 3, i.e., f1,target=0.937Hz for the first mode and f2,target=1.023Hz for the second 

mode. In this setting, there are six SO runs and minimum-weight design processes in total, arising from the 

combination of three structures (i.e., one modular plus the MRF with two different connection stiffnesses) and 

two vibration modes for each structure considered. In all minimum-weight designs, the DVs (i.e., cross-sectional 

areas of frame members) are lower-bounded by standard sections that satisfy minimum displacement-based and 

strength-based (including buckling resistance) requirements under static, gravitational design load combinations 

according to Eurocode 3. To support the minimum-weight design, frame members of the modular system are 

categorised into nine groups as indicated in Table 4, while for the MRF structure, there are six member groups 

in total as listed in Table 5. Optimal standard sections obtained from the two minimum-weight designs are 

summarised in Table 4 for the modular system and in Table 5 for the MRF with semi-rigid connections only. 

Evidently, the more member groups are allowed in the optimisation, the better the optimisation outcome will be 
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and the smoother/easier it becomes for the continuous SO process to converge. However, from a practical 

standpoint, there is a trade-off between the structural material usage and buildability of a design, as it is 

impractical to allow each structural member to have a unique section. 

 

 

Fig. 8 normalised self-weights and natural frequencies of initial and optimal modular system and MRF 

structure with two different connection rigidities: (left) minimum-weight design is pursued in the global y-

direction for the first mode, and (right) minimum-weight design is pursued in the global x-direction for the 

second mode. 

 

To shed light on the potential gain on material saving, self-weights and corresponding natural frequencies 

of the initial and optimally designed modular systems are first bar-plotted in the left and right panels/columns 

of Fig. 8 for the first-mode and second-mode optimisations, respectively. For comparison, the same quantities 

of optimally designed MRF structure, with two different connection stiffnesses, are also furnished in Fig. 8 with 

the connection rigidity indicated in the parentheses. Specifically, the upper row of subplots in Fig. 8 is for 
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structural self-weights, normalised by the corresponding self-weight of optimally designed modular system such 

that the two bars for the optimised modular system always attain a height of 100.0%. Further, the lower row of 

subplots in Fig. 8 is for natural frequencies of the initial and optimally designed structures considered in the 

upper panel of Fig. 8; the values are normalised by the corresponding target frequencies used in the first-mode 

and second-mode optimisations, respectively. In order to render the results more direct to interpret, 

unnormalised modal stiffness values (in [KN/m]) of initial and optimised modular systems as well as of the 

optimised MRF with two different beam-column rigidities are augmented in the lower row of Fig. 8, right next 

to the vertical bars. Numerically, these modal stiffness values are equal to the corresponding circular frequencies 

squared, due to the normalisation of modal masses to 1.0. In this setting, the two blue bars in the lower panel of 

Fig. 8 for the initial modular system (i.e., design A in Table 3) both attain a height of 1.000, as its first two 

natural frequencies are used as the target frequencies for SO. As seen in the upper subplots, the optimal modular 

system reaches the target frequency of 0.937Hz (for the first vibration mode) and 1.023Hz (for the second 

vibration mode) with a self-weight of 7782.4 kg and 7918.9 kg, respectively. These self-weights correspond to 

a weight reduction of 27.1% and 25.8% compared to the initial modular design in Table 3, which has a self-

weight of 10669.0 kg. Alternatively, one can also say that the initial modular design is 37.0% and 34.7% heavier 

than the optimal designs retrieved by the first-mode and second-mode optimisations, respectively, as indicated 

by the two blue bars in the upper panel of Fig. 8. 

Turning attention to the optimal MRF structures, it is seen in the upper subplots of Fig. 8 that the optimally 

designed modular system always requires the largest self-weights in achieving the target frequencies, whereas 

the MRF with rigid connections always has the smallest self-weights. Specifically, for the first-mode 

optimisation (upper left subplot), the optimal MRFs with semi-rigid and rigid connections achieve the target 

frequency of 0.937 Hz with a self-weight of 7323.3 kg and 6777.0 kg, respectively. These values are 5.9% and 

12.9% lighter than the self-weight of the corresponding optimal modular system, respectively. For the second-

mode optimisation in the global x-direction (upper right subplot), the optimal MRF structures with two different 

connection stiffnesses achieve the target frequency of 1.023 Hz with a self-weight of 6837.7 kg and 6333.3 kg, 

respectively. These values are 13.6% and 20.0% lighter than the self-weight of the corresponding optimal 

modular system, respectively. The above finding suggests that, within an optimal/minimum-weight design 

setting, the conventional MRF system tend to be more efficient than the unbraced modular system in achieving 
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a particular natural frequency. This finding is attributed to two facts. First, the vertical and horizontal joint 

beams in the modular system are released for bending such that adjacent intra-connection joints can undergo 

different rotations and vertical displacements in resisting lateral loads, as can be seen in the zoomed-in views in 

Figs. 7(a) and (b), respectively. Accordingly, the modular system in Fig. 6(a) behaves like three separate one-

bay MRFs that are constrained (by tie plates) to share the same horizontal displacements in the global-x and 

global-y directions. By replacing the horizontal and vertical joint beams in Fig. 6(a) with rigid link elements, 

the fundamental and second natural frequencies of the initial modular system in Table 3 are increased by 5.5% 

and 10.1%, respectively. Secondly, by allowing independent rotations/displacements at adjacent intra-

connection joints, the MBS degenerates to a discontinued MRF with weakened frame members that have smaller 

flexural rigidities than those of the optimal MRF structure. This argument can be verified by cross comparing 

the optimal sections reported in Table 4 for the modular system and in Table 5 for the semi-rigid MRF. Indeed, 

in the optimal modular design, the floor and ceiling beams in the same storey are roughly of the same size with 

similar second moment of inertia about the major axis, which is not the case in the initial design in Table 

3.Incidently, in many previous studies, deeper RHS sections are used for floor beams due to larger gravitational 

loads on the floor deck, while smaller SHS sections are used for ceiling beams due to decreased loads (cf., 

[50,55,61]). Nevertheless, it is revealed here, through SO, that the ceiling beams are also important for 

increasing the lateral stiffness of unbraced modular buildings. At this junction, it should be pointed out that 

although the MRF benchmark structure requires less structural steel in meeting a particular frequency, the 

achievement of rigid connection for MRF structures in practice requires an extensive amount of fabrication on-

site and, consequently, can be relatively expensive [62]. Furthermore, it should be reemphasised that the 

rotational stiffness of the so-called semi-rigid connection here corresponds to the classification boundary 

between the “rigid” and “semi-rigid” connections for unbraced MRFs in Eurocode 3. In this context, the 

material-saving percentages in Fig. 8 for “semi-rigid” MRF are more realistic than those based on the perfectly 

rigid connection assumption. 

Finally, for natural frequencies of optimally designed structures, it is seen in the lower subplots of Fig. 8 

that all optimal designs are able to satisfy their corresponding frequency constraints successfully, in the sense 

that the normalised heights of all bars are above 1.000. The frequency of optimised structural systems usually 

need to exceed but to be as close to the target frequency as possible so that the frequency constraint is satisfied 
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without much redundancy in the systems. Specifically, in the lower subplots of Fig. 8, all normalised frequencies 

are smaller than 1.011 across the board. To this end, it can be safely concluded that the mapping strategy 

proposed in section 2.3 works rather well for both unbraced modular and MRF structures, which are designed 

to carry the lateral loads mainly through member bending. For braced frame structures, the mapping strategy 

for bracing elements can be modified conveniently to only consider their cross-sectional areas for mapping. 

Note, the rounding/mapping operation from continuous to discrete is not as trivial as it seems [63], as it may 

lead to either a feasible but over-conservative design [64] or an infeasible design [65].  

As a final remark, the numerical data and conclusion herein should be taken with caution, as several factors 

can influence the results, such as outer widths of corner posts and MRF columns assumed in the minimum-

weight design process. Another factor is the number of columns/bays of the MRF in the global x-direction: by 

removing the two central columns in Fig. 6(b), the optimised MRF structure (now with one bay in the global-x 

direction) becomes even lighter in meeting the first target frequency for the fundamental vibration mode in the 

global-y direction but heavier than the optimal modular structure in satisfying the second frequency constraint 

on the second mode in the global-x direction. At last, the two structural systems are forced to share the same 

total additional/imposed gravitational loads in order for the cross-comparison to be meaningful and fair. In 

reality, however, superimposed loads in the two structures can vary significantly depending on their usage, 

floor/ceiling system, wall panels/partition walls, cladding, etc. In this regard, innovative structural solutions, 

such as prefabricated lightweight components using composite materials (cf., [66,67]), cellular/perforated 

beams with large web openings (cf., [68-72]), composite beams with precast hollow-core slabs (cf., [73]), and 

fully prefabricated lightweight flooring systems [74-77], can naturally find their application in MBS, with the 

potential of reducing imposed masses significantly. 

 

Table 4. Optimal sections of the modular building system in figure 6(a) with hinged inter-connection joints. 

Sizing optimisation is first for the fundamental vibration mode in global y-direction and then for the second 

vibration mode in global x-direction. 

Member group 

Optimal sections 

(for f1,target=0.937Hz) 

Optimal sections 

(for f2,target=1.023Hz) 
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Corner 

posts 

1st storey SHS120/10.0 SHS120/12.5 

2nd storey SHS120/6.3 

SHS120/5.0 

3rd storey SHS120/5.0 

Ceiling 

beams 

1st storey RHS180×100/4.0 RHS180×100/4.0 

2nd storey RHS180×100/4.0 RHS160×80/4.0 

3rd storey RHS120×60/4.0 RHS100×60/4.0 

Floor 

beams 

1st storey RHS160×80/4.0 RHS160×80/4.0 

2nd storey RHS160×80/5.0 RHS180×100/4.0 

3rd storey RHS160×80/4.0 RHS160×80/4.0 

 

Table 5. Optimal sections of the MRF in figure 6(b) with semi-rigid beam-column connections. Sizing 

optimisation is first for the fundamental vibration mode in global y-direction and then for the second vibration 

mode in global x-direction. 

Member group 

Optimal sections 

(for f1,target=0.937Hz) 

Optimal sections 

(for f2,target=1.023Hz) 

MRF 

columns 

1st storey SHS160/14.2 SHS160/12.5 

2nd storey SHS160/8.0 SHS160/10.0 

3rd storey SHS160/6.3 SHS160/5.0 

MRF 

beams 

1st storey IPE360 IPE330 

2nd storey IPE330 IPE300 

3rd storey IPE200 IPE220 

 

 

5. CONCLUDING REMARKS 

The efficacy of an optimality criteria-based minimum-weight design method for modular building systems 

subjected to a generalised stiffness constraint (stated in natural frequency) has been herein established. This was 

achieved through an innovative optimisation study involving a three-storey modular building system with 
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hinged inter-module joints, together with a comparative MRF benchmark structure with two different beam-

column connection stiffnesses. The discrete minimum-weight design of the two structures, based on standard 

steel sections, was obtained through first applying the continuous sizing optimisation algorithm to the structures 

to find their global optimums and then by rounding the optimums to the nearest, most economical discrete 

solutions through a one-to-one mapping algorithm. The convergence behaviour and robustness of the sizing 

algorithm for modular building systems have been numerically verified using a modular testbed model with two 

different sets of initial cross-sections. Structural efficiency of the modular system (with hinged inter-connection 

joints) and the comparative MRF (with two different connection stiffnesses) was quantified by cross-comparing 

the self-weights of optimally designed structures that share similar natural frequencies for the fundamental and 

second vibration modes separately. 

Numerical data demonstrated that the overall lateral stiffness of unbraced modular building systems, 

measured by natural frequency, is not affected noticeably by the moment release of the bolted inter-module 

joints considered in this study. It is not until vibration modes 5 and 6 that significant difference in mode shape 

starts to manifest, meaning that the flexural rigidity of vertical interconnection between upper and lower 

modules only affects higher modes. More importantly, it was shown that the proposed minimum-weight design 

method could significantly reduce the self-weight (27.1% and 25.8% lighter for the first and second modes, 

respectively) of modular building systems while maintaining their overall lateral stiffnesses, depending on how 

efficient/economical the initial design is. Since the optimality criteria formulation presented herein can be 

readily adapted to other types of performance constraints (e.g., buckling, displacement, stress), the proposed 

design method has the potential to be integrated into the design process of modular buildings and modular units 

for maximising their material utilisation and promoting sustainability. On the other hand, it was found that the 

semi-rigid MRF with identical outer dimensions and imposed masses can achieve the same target frequencies 

with smaller self-weights. Within an optimal design setting, the semi-rigid MRF is 13.6% and 5.9% lighter than 

the modular system (with hinged inter-connection joints) in meeting the first and second target frequencies, 

respectively. This result was attributed to two facts. First, the end release of inter-connection joints makes the 

modular system behave like a discontinued MRF such that adjacent intra-connection joints can develop different 

rotations and displacements under lateral loads, hence undermining the double-beam and double-column effects. 

Second, by cross-comparing optimal sections of two structural systems, the sizing algorithm seemed to equally 
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redistribute the material between the ceiling beams and floor beams in the same storey of the modular building 

system, making the optimal beam sections less stiff (bending wise) than those used in the optimally designed 

MRF.  

As a closing note, it is envisaged that the structural optimisation tools and numerical results furnished in 

this study will serve as a valuable first stepping stone towards achieving resilient, sustainable, and economic 

modular tall buildings. Based on the current study, future research endeavours are expected and welcomed in 

the following three areas. First, the proposed design method may be applied to realistic modular buildings of 

different heights with initial geometric and physical (e.g., residual stresses) imperfections considered to 

systematically investigate their material efficiency (at the structure level) vis-à-vis conventional building 

structural systems. These advanced modelling features are excluded in the current study as the finite element 

analysis in this work is limited to linear elastic modal analysis only, while global and local instability behaviours 

of modular building systems, which are more susceptible to the above imperfections, fall outside of the scope 

of work. Second, given the information here, a smart inter-connection joint, which enables easy deconstruction 

and reuse while having adequate rigidity and resistance, is to be devised so that efficacy of the proposed 

optimisation method can be further improved with even larger steel savings. In developing such a joint, sizing 

optimisation techniques may be employed again to determine optimal values of certain design parameters of the 

inter-module joint. At last, a more comprehensive optimisation strategy, which takes into account 

manufacturability of modular units and buildability of modular building systems, is warranted to help design 

engineers reduce overall costs and improve schedule certainty of modular building systems. 

 

 

APPENDIX - A 

For demonstrating correctness of the proposed sizing design method, a planar MRF shown in Fig. A.1(a) is 

adopted as the testbed structure with a frequency constraint imposed on its fundamental vibration mode. The 

structure comprises one IPE beam and two SHS columns of the same section. The SO problem here involves 

determining optimal cross-sectional areas of the MRF’s columns, a1, and beam, a2, to increase its fundamental 

frequency, f1(a1,a2), by 100% while requiring minimum amount of steel. For illustrative purpose, the two DVs 

are bounded by the side constraint [1.0ao, 3.0ao], where ao is a vector collecting initial, non-optimal cross-
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sectional areas of the MRF, i.e., ao = [a1,o, a2,o]. The demonstration is done numerically at two levels. Firstly, 

the continuous-valued sizing algorithm in Section 2.2 is applied to find optimal cross-sectional areas of the 

beam and columns; then, the numerically determined optimal DVs are verified against the theoretical optimal 

values, found by a graphical method. Next, the mapping algorithm in Section 2.3 is employed to convert the 

continuous-valued optimal solution to standard steel sections; the latter are then compared with optimal standard 

sections found via combinatorial/exhaustive search. 

In pursuit of the first aim, the SO problem is solved graphically using MATLAB® in the continuous design 

space to find the theoretical optimum, as shown in Figs. A.1 (a) and (b). Specifically, Fig. A.1 (a) plots the 

fundamental frequency surface f1(a) of the MRF and target frequency plane f1,target in the normalised a1-a2-f1(a1,a2) 

performance space; both surfaces are normalised by the fundamental frequency of initial MRF, f1,o, such that 

f1(a1,o, a2,o) = 1.0 and f1,target = 2.0, while two DVs are normalised by the corresponding values of ao, respectively. 

As shown in Fig. A.1 (a), the two normalised surfaces intersect at the red dotted curve, which characterises the 

frequency constraint for the two DVs to satisfy. This constraint/curve is then projected onto the normalised OF 

surface M(a) (also by self-weight of the initial MRF) in the normalised a1-a2-M(a1,a2) design space as shown in 

Fig. A.1(b) to form another red dotted curve. Evidently, the lowest point on this curve (highlighted by the red 

dot) corresponds to the minimum-weight design being graphically sought. Normalised optimal values of DVs 

of this minimum-weight design are summarised in Table A.1 under the name “Theoretical”, which reveals that 

the two DVs need to increase to [2.190a1,o, 1.160a2,o] respectively for the MRF to see the specified increase in 

the fundamental frequency. Accordingly, the self-weight required for this increase is about 67.0% of the initial 

design, i.e., M(a*)=1.670M(ao). For verification, optimal values of the same DVs are numerically determined 

using the sizing algorithm in Section 2.2 and summarised in Table A.1 under the name “Numerical”, with the 

percentage errors (between the numerical and theoretical optimums) reported in the rightmost column. As seen, 

errors for the two DVs are within +/-3.0%, resulting in a near-optimal solution that is only 0.6% heavier than 

the theoretical optimum. Moreover, the above sizing optimisation process is fully visualised/traced in Fig. A.1 

(b) by the black dash-dotted line, with the arrows indicating moving directions of the current design in the design 

space as the sizing algorithm iterates. As shown, the sizing process starts at coordinates (1, 1, 1) or green point 

where the initial MRF is located (due to the above normalisation), and converges successfully at the theoretical 

optimum or red point after 48 iterations. To shed further light into the convergence behaviour, variations of the 
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MRF’s fundamental frequency throughout the sizing iteration, obtained by the proposed sizing algorithm and 

the conventional OC method (cf., [38]), are plotted in Fig. A.1(c). As shown, the proposed continuous sizing 

method converges successfully after 48 iterations, whereas the conventional method fails to converge to the 

optimum even after 180 iterative steps. 

 

 

Fig. A.1 (a) fundamental frequency surface of the planar MRF and target frequency plane; (b) theoretical 

optimum versus numerical optimum found by the proposed sizing optimisation method; and (c) variation 

histories of the MRF’s fundamental frequency during sizing iterations obtained by the proposed OC method 

and conventional OC method, all values normalised by the corresponding values of the initial (non-optimal) 

MRF. 

 

Table A.1 Theoretical and numerical optimal values of DVs of the MRF under a frequency constraint on the 

fundamental vibration mode, quantities normalised by the corresponding values of the initial MRF.  

 Continuous-valued optimal solutions 
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 Theoretical Numerical Percentage error 

a1
* / a1,o 2.190 2.223 +1.51% 

a2
* / a2,o 1.160 1.130 -2.59% 

f1(a*) / f1,o 2.000 2.000 0.00% 

M(a*) / M(ao
*) 1.670 1.671 +0.06% 

 

To the second aim, optimal sectional properties found by the sizing algorithm are used to select standard 

sections for the MRF following the same mapping strategy in Section 2.3. Sections computed by the proposed 

discrete design method (see Section 2.3) entail IPE120 profile for the beam and SHS120/5 profile for two 

columns as in Table A.2. In parallel, a combinatorial search, which includes 1908 combinations of design to 

evaluate in total (coming from 18 IPE profiles and 106 SHS profiles), is conducted in the discrete design space 

to determine the absolute optimal standard sections. As shown in the leftmost column in Table A.2, the optimal 

sections for the beam and columns from the combinatorial search are IPE140 and SHS100/5, respectively. To 

this end, the discrete design method is unable to find the absolute optimum but instead yields a sub-optimal 

design. However, the difference in self-weights between the two remains practically small, as the latter is only 

5.13% heavier than the former. More importantly, it should be recognised that the absolute optimum is seldom 

achieved in practice by any numerical optimisation method [39,40], except those found by exhaustive search, 

which are computationally extremely expensive to retrieve for even moderate-sized SO problems. Overall, 

pertinent numerical results furnished herein demonstrate correctness of the proposed optimisation techniques 

for solving continuous- and/or discrete-valued SO problems subjected to natural frequency constraint. 

 

Table A.2 Optimal standard sections of the MRF found by the exhaustive search method and the proposed 

discrete design method. 

 

 

 

Discrete-valued optimal solutions 

by combinatorial 

search method 

by proposed discrete 

design method 

Percentage 

error 

Columns’ section SHS100/5 SHS120/5 N/A 
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Beam’s section IPE140 IPE120 

f1 / f1,o 2.016 2.150 

Self-weight [kg] 97.5 102.5 +5.13% 

 

 

APPENDIX - B 

Herein, the optimality criteria in section 2.1 and sizing algorithm in section 2.2 are extended from a single 

frequency constraint to multiple constraints. To this end, the sizing optimisation problem, now subjected to r 

inequality frequency constraints, is expressed as: 

 

min max
1
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A precondition behind Eq. (A.1) is that the number of active behavioural constraints is smaller than the 

number of active DVs, i.e., r < n, as is typically the case in structural design. In this setting, the Lagrangian 

function, L(a, λ): ℝn×ℝr→ℝ, adjoining r behavioural constraint to the linear objective function, is formed as: 

 

,target

1

( , ) ( ) ( ) ,
r

k k k

k
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where λ ∈ ℝr×1 is a vector collecting r multipliers for r frequency constraints. Assuming differentiability of fk(a) 

(k=1,…,r) on the feasible solution set of the OP, the stationary condition of the Lagrangian in Eq. (A.2) with 

respect to active DVs, i.e., aL(a, λ)=0, yields the following equation: 
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which defines the generalised OC for the sizing OP in Eq. (A.1) in terms of n differential equations. Further, 

the stationary condition of the Lagrangian in Eq. (A.2) with respect to the multipliers, λL(a, λ)=0, leads back 

to the r behavioural constraints in Eq. (A.1), i.e., 

 

,target( ) 0 ( =1,..., ),k kf f k r− =a                                                                                                                                                             (A.4) 

 

which are independent of the multipliers. Therefore, Eqs. (A.3) and (A.4) define a system of n+r coupled 

equations for n+r unknowns, i.e., n DVs plus r multipliers. The original formula for updating the DVs (see Eq. 

(6)) is modified accordingly based on the new OC in Eq. (A.3) and attains the following form: 
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                                                                                                                     (A.5) 

 

Upon substituting Eq. (A.5) into Eq. (7) for k = 1, …, r, the following equation can be obtained for updating 

the multipliers at iteration p: 

 

( )
1

( ) ( ) 1,p p
−

−=λ A B                                                                                                                                                                                    (A.6) 

 

in which the superscript “-1” denotes matrix inversion, and A(p) ∈ ℝr×r and B(p) ∈ ℝr×1 are given by 
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respectively. In Eq. (A.7),  f(p) ∈ ℝ1×r is a row vector collecting the r natural frequencies of the structure at 

iteration p, i.e., f(p) = [f1, f2, …, fr](p), and the superscript “T” denotes the transpose of a vector. Clearly, by 

decreasing the number of behavioural constraints from multiple to single, Eqs. (A.5) for updating the DVs and 

(A.6) for updating the Lagrangian multipliers degenerate to Eqs. (6) and (8), respectively. At this point, it needs 

to be pointed out that the above formulation inherently assumes that all r frequency constraints are 

active/binding simultaneously, i.e., fk(a) - fk,target = 0 (k=1,…,r). In reality, however, not all behavioural 

constraints are binding at the same time so that there is a need to separate active constraints from inactive ones 

at every iteration p. Further, during the resizing process, only active constraints and their corresponding 

multipliers are taken into account when using Eqs. (A.5) and (A.6) for updating the DVs and the multipliers, 

respectively. To this aim, the active (behavioural) constraint set can be estimated through a so-called constraint 

thickness parameter, t(p), that defines a gradually tightened finite interval [-t(p), 0] within which all constraints 

are considered active. This thickness interval can be evaluated by the following equation according to Patnaik 

et al. [39]: 

 

( ) ( 1)

0

p pt t −= ,                                                                                                                                                                      (A.9)  

 

where t(p) is the constraint thickness at iteration p, t0 is the initial constraint thickness, and τ ∈ (0,1) is a factor 

by which the constraint thickness is tightened at each iteration. 
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