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Abstract
This paper investigates how different genetic and nature-inspired feature selection algorithms operate in systems
where the prediction model changes over time in unforeseen ways. As a result, this study proposes a feature section
architecture, namely FeSA, independent of the underlying classification algorithm and aims to find a set of features
that will improve the longevity of the machine learning classifier. The feature set produced by FeSA is evaluated
by creating scenarios in which concept drift is presented to our trained model. Based on our results, the generated
feature set remains robust and maintains high detection rates of ransomware malware. Throughout this paper, we
will refer to the true-positive rate of ransomware as detection; this is to clearly define what we focus on, as the
high true positive rate for ransomware is the main priority. Our architecture is compared to other nature-inspired
feature selection algorithms such as evolutionary search, genetic search, harmony search, best-first search and the
greedy stepwise feature selection algorithm. Our results show that FeSA displays the least degradation on average
when exposed to concept drift. FeSA is evaluated based on ransomware detection rate, recall, false positives and
precision. The FeSA architecture provides a feature set that shows competitive recall, false positives and precision
under concept drift while maintaining the highest detection rate from the algorithms it has been compared to.

Keywords: Ransomware, Concept-Drift, Detection, Learning-Algorithms, Features

1. Introduction

In recent years ransomware has emerged as one of the most potent malware threats out there. Ran-
somware uses tactics to reduce the victim’s access to their system or prevent files by encrypting them.
Victims pay for various reasons, whether it is a business that needs access to its files and does not have
sufficient backups [4] or a single person who has ”lost” personal files due to a ransomware attack. There
are two types of ransomware, the first being locker ransomware. Locker-ransomware will stop users from
accessing their systems by displaying a lock screen when they log into their systems. The second type of
ransomware is crypto-ransomware that our research is focused on. Crypto-ransomware is a highly sophisti-
cated malware type, a more common form of ransomware used in ransomware attacks. Crypto-ransomware
will use complex encryption schemes to encrypt a victim’s files, rendering them unusable and unrecoverable
unless the ransom is paid and the attacker provides the subsequent decryption keys with a decryption tool.
A popular example of crypto-ransomware CryptoWall appeared in 2014, and it has generated approximately
$320million [1]. Overall it is estimated that in 2020, organisations will pay up to $11 billion in paying ran-
soms or dealing with the damage caused by ransomware attacks [20]. Popular and infamous ransomware
like Petya encrypts the Master Boot Record of a Windows system in terms of behavioural diversity. Modern
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ransomware variants like Maze encrypts files, steals sensitive information from companies and then exposes
it if organisations and individuals do not pay the ransom [2]. Ransomware malware evolves to become more
dangerous and damaging, as history has shown us. In the context of machine-learning detection systems,
the constant evolution of malware can be classed as concept drift, a phenomenon that means the rules and
logic learned by the classifier to classify malware becomes outdated and incorrect.

1.1. Malware Evolution
According to DataProt [21], around 980 million malware programs on the internet today and 350,000

new malware pieces are detected every day. The recent boom in malware evolution is traced back to 2013,
in which the number of malicious files on the web doubled, this growth may have slowed, but it has not
stopped. The statistics show that malware is not only emerging at a rapid rate; this is also acknowledged
in [23] recognised the diversity in malware in 2008, which implies malware has been evolving and changing
for years. Singh et al. described three types of malware evolution, the first being a natural evolution, the
second being environmental evolution, and the third being polymorphic evolution. Most aspects of malware
evolution are due to adaption to avoid anti-virus (AV) detection. Environmental evolution occurs when
software development changes, such as compiler changes. If malware uses different libraries to fulfil its
goals, its behaviour may appear significantly different from what detection systems expect. The definition
of environmental change depends heavily on compiler and library changes as defined in [22], which means
these changes will be far less frequent than natural evolution. Polymorphic evolution occurs in the form of
transformation and obfuscation [22]. The use of packers and protectors create an artificial diversity that
is designed to evade detectors. Packing will not help track drift, as the packers will encrypt and compress
code; drift tracking should be carried out on unpacked malware. Malware evolution poses a large threat to
systems due to the rate of evolution not slowing down, according to Symantec [24]. Enterprise ransomware
like SamSam and Dharma are coordinated hits on organisations using a manual attack methodology [25].
Doxxing is also a new methodology in ransomware attacks, threatening to expose sensitive data of attack
victims [3], yet another example of ransomware’s dangerous evolution. When high diversity and evolution
rates exist in a destructive malware type like ransomware, the consequences for victims become severe.

1.2. Motivation
Our main motivation for this research is the need for robust features which will allow ransomware

detection systems to remain effective when exposed to concept drift. It is observable that features can
quickly be rendered ineffective by concept drift; therefore, this creates the need for an architecture that can
create robust feature sets for ransomware detection under which will not degrade excessively under concept
drift. A zero-day vulnerability is a software vulnerability that attackers discover before the software vendor
is aware of it. A zero-day exploit is a method of exploiting a zero-day vulnerability [41]. A zero-day malware
threat is a threat that has not been seen by the detection system before and can be a variant or malware
type for which no signatures exist [42]. Machine learning classifiers have been proven effective in detecting
zero-day malware threats, as shown in [7] and [33]; however, zero-day ransomware is not necessarily an
example of ransomware that has evolved and will be difficult for a classifier to identify correctly. Machine
learning detection systems like ransomwall [7] and the system designed by Sgandurra et al. use dynamic
features like API calls to differentiate ransomware from benign files; therefore, machine learning detection
systems effectively detect ransomware rapidly without relying on signatures or heuristics. Machine learning
systems will be able to identify patterns and statistical properties of malware that distinguish them from
benign files, hence why they are effective at detecting zero-day threats. Zero-day ransomware may be
considered a zero-day due method of delivery or how it is obfuscated to evade anti-virus detection; however,
once it begins executing, its behaviour determines whether it is an evolved variant or not. A ransomware
variant may be delivered via a zero-day attack that exploits a new vulnerability, but its behavioural patterns
during execution may not deviate much or at all from the patterns of previous ransomware. Ransomware
that displays behavioural patterns during execution that differ from what the machine learning classifier
expects shows true evolutionary characteristics, as the dynamic behaviour of the malware has changed.
The transcend system [14] acknowledges that malware can evolve in ways that make it difficult for even
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machine learning detection systems to detect; this evolution is described as concept drift in a machine
learning system. If malware’s behavioural patterns and statistical properties change beyond the scope
of what a machine learning system defines as malicious behaviour, detection rates will start to decrease.
Changes in statistical properties and dynamic behaviour during execution is what we would classify as
true malware evolution, as even machine learning systems would struggle to detect them. An example of
the differences between evolution and zero-day is the WannaCry ransomware attack, considered a zero-day
threat. The attack was carried out using the eternal blue and double pulsar exploits. These two exploits
are windows SMB and privilege based and allow the ransomware to execute, the zero-day aspect of this
attack. If WannaCry was loaded into a system using eternalBlue; however, it behaved the same as previous
ransomware, its characteristics would not be considered evolutionary, only that it had been propagated
using zero-day exploits, eternalBlue and doublePulsar. WannaCry could be considered evolved because of
the way it encrypted files and propagated itself through networks; these aspects of the ransomware were
behavioural evolutions and would display dynamic behavioural characteristics not previously associated with
ransomware.

1.3. Contributions of this paper
· Behavioural analysis of ransomware characteristics that change or ”evolve” over time.

· Proposal of a feature selection architecture, which provides an optimal feature set showing promising
performance when exposed to concept drift. FeSA’s feature set remains robust over time; the main
element is maintaining a slower degradation rate in detection rate.

1.4. Paper Organisation
The remainder of this paper is as follows: Section 2 covers work related to our research. Section 3

covers our proposal and the background information that accompanies our work. Section 4 describes our
experiments, and section 5 discusses the results of the experiments shown in section 4. Section 6 concludes
and expands our work.

2. Related work

This section explores related work which has influenced our research. Section 2.1 investigates studies that
apply concept drift with pros and cons. This study also investigates evolutionary algorithms and how they
can be used in concept drift detection and adaption. This study also investigates the use of machine learning
detection for ransomware and how these systems tackle zero-day threats. The related studies identify the
gaps in ransomware detection and concept drift in ransomware detection systems, and the genetic algorithms
in section 2.2 point us towards possible solutions.

2.1. Concept Drift
Ransomware variants that display evolutionary qualities that are different from their predecessors are

always emerging, which may be difficult for ransomware detection systems to identify. Good examples of
evolving ransomware are the MedusaLocker and WannaCry ransomware families. MedusaLocker is a ran-
somware variant that targets antivirus and ransomware detection modules to turn them off and disable them
from running in safe mode [40]; this variant of ransomware is extremely evasive and effective in disabling
endpoint protection and preventing ransomware detection modules from working. The WannaCry ran-
somware variant was propagated through a Windows SMB vulnerability that the public had not seen before
the infection, although it was known to the NSA at the time. The two variants mentioned behaved vastly
differently from the ransomware before them and made it clear that a zero-day that showed characteristics
far beyond the current behavioural profile can cause detection systems to fail.

The Transcend System proposed in [14] is a framework that can work with any machine learning algorithm
to output confidence values for predictions. Predictions can be modelled differently; confidence values can
be extracted from a random forest depending on how many trees vote for the chosen prediction. Confidence
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values can be extracted from a Support Vector Machine by measuring a prediction’s distance from the
hyperplane. Obtaining confidence from a clustering approach would involve measuring the distance of a
prediction from a centroid. The transcend system aims to identify how similar the classified instance is to
the rest of the instances in its class and how similar the instance is to samples in the other classes. The
transcend system measures the confidence of a prediction and combines the value with the confidence the
predictor has in other classes to determine how credible the prediction is. Predictions that fall below the
credibility threshold will have to be investigated manually by an IT team or some administrative presence.
Transcend does not use any evolutionary feature selection algorithms to train algorithms; however, the
framework proposed by them uses a similar structure and approach to an evolutionary algorithm.

The system proposed in [17] combines human intervention with underlying machine algorithms to address
concept drift in an adversarial machine learning scenario; this system attempts to classify adversarial learning
as an evolutionary family of the training dataset. The system proposed in [17] stresses the need for retraining
and human interaction to handle concept drift effectively. The type of concept drift addressed in [17] is a type
of drift introduced by adversarial techniques that are not addressed in any other related studies referenced
in this study. The system proposed in [18] uses anomaly detection to distinguish between genuine changes in
a web application and malicious changes; however, this system also relies on retraining to adapt to concept
drift and reduce false-positive rates. The system proposed in [18] is unique because it looks specifically for
malign and benign changes; despite this, the retraining of parts of the model is necessary to adapt to the
detected changes. The systems that address concept drift seem to rely on retraining and human intervention
instead of having a specifically constructed mechanism to counteract the effects of concept drift.

The system used in [38] uses the Heterogeneous Euclidean Overlap Metric (HEOM) to detect concept
drift in detecting malicious web URLs. The system combines Gradient Boosted Trees to detect malicious
URLs and the GTB algorithm with the HEOM measurement. The concept drifts detection component
of the system in [38] attempts to identify the differences between the data distribution between the old
training data and the new incoming data. The distance between the training set and the newer data is
calculated using the HEOM. The research presented in [39] attempts to detect concept drift in malicious
URL detection systems and uses the Wilcoxon Rank-Sum. The Wilcoxon Rank-Sum test is a non-parametric
test that allows the user to determine whether two samples are from the same population. In the context
of malicious web URLs, the Wilcoxon Rank-Sum test allows the system to determine whether the incoming
URL matches its allocated classification. Thus, if a concept drift is detected, the system will be immediately
retrained.

2.2. Genetic Algorithms
A genetic algorithm is a search heuristic that takes Charles Darwin’s natural evolution theory [29]. This

algorithm mimics the process of natural selection, which will select the strongest to survive and produce
offspring. A genetic algorithm will apply this logic to a dataset and can be used to produce an optimal
feature set. The system proposed in [28] uses a genetic algorithm to produce an optimal feature set for
malware detection. A typical genetic algorithm will repeat its evaluation and crossover phase, creating
numerous features to obtain optimal features. This research uses a genetic engineering approach to reduce
the number of generations and features needed to produce the optimal feature set, otherwise known as a
feature set. The structure of a genetic algorithm is shown below.

· Fitness Function: The fitness function determines the ability each individual has to compete, in the
context of a detection system, this would be determined by how accurate a feature set is.

· Population Generation: The initial population of individuals is generated randomly from the pool of
available chromosomes; in most cases, chromosomes represent features that will create a feature set.

· Selection The selection phase is designed to take the fittest individuals and allow them to pass their
genes onto the next generation. In the context of a detection system, these would be feature sets that
achieve the highest accuracy.
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· Crossover: Crossover is the process of two selected individuals being mated to produce a child, which
will be a combination of both parents. This phase can be repeated with the offspring and so forth but
can be limited to a select number of generations.

· Mutation: Genes of the offspring can be subject to mutation with a low random probability, in the
context of a feature selection algorithm, this can mean inheriting a random feature that does not exist
in either parent.

The StreamGP algorithm [27] constructs an ensemble Genetic Programming and a boosting algorithm. The
StreamGP system generates decision trees that are trained on different parts of a data stream. StreamGP
has a concept drift detection system inbuilt, which, once triggered, will build a new classifier using CGPC,
the cellular genetic programming method described in [27]. The populations of data in this algorithm are
sets of individual data blocks which are initially drawn randomly. The newly created classifier is added to
the ensemble, and the weights of each classifier are then updated; this system creates a new classifier when
concept drift is detected rather than constantly adapted to the newest block of data like the EACD proposed
in [19].

The EACD system [19] proposes a genetic algorithm approach to combatting concept drift. This evo-
lutionary algorithm is multi-layered with a base and a genetic layer; both layers act as a natural selection
mechanism to find the strongest feature set. The base layer will select a set number of features and save
them as feature sets. These feature sets are saved and evaluated. The highest performing feature sets are
passed into a secondary genetic layer that will ”breed” feature sets by randomly crossing strong feature sets
to create strong offspring. This breeding step is carried out until the overall system’s accuracy is higher
on the newest data. The number of repetitions of the breeding step is defined by the maximum number of
generations the system will allow. This genetic approach produces promising results, finding optimal feature
sets for systems that model scenarios that present concept drift.

The Online Genetic Algorithm (OGA) [27] is a rule-based learner that updates its ruleset based on the
data stream’s evolution. Like the base layer in the EACD system, the initial rulesets are chosen randomly,
and the genetic algorithm is applied when a new block of data is encountered to update the rulesets. This
process is repeated until the end of the data stream. Each block of data is a different iteration, which leads
to a large number of iterations. OGA does not limit the number of iterations the algorithm can go through,
which means it can become very expensive.

2.3. Ransomware Detection
Ransomware detection research that integrates concept drift is a rarity in the research space. The

Elderan system described in [33] considers zero-day attacks and tests on samples that the model has not
been trained on. The Elderan system’s accuracy drops from 96% to 93% when exposed to zero-day threats;
however, it is unclear if the zero-day threats are more than a couple of months ahead of the training set.
The explicit testing on zero-day threats is explored in [32] and [34], similar to the Elderan system, which
can be considered testing under concept drift; however, the zero-day samples are not guaranteed to display
concept drift in regards to the training samples.

The RansHunt system described in [31] attempts to predict future ransomware trends by training on
”Ransomwall”, a ransomware hybrid that authors predicted to be a future ransomware type. According to
the creators of RansHunt, a worm component would be used to spread ransomware through a compromised
network. This prediction approach and preparation for future trends could prevent models from degrading
under concept drift. The system explored in [35] explores using a generative adversarial system to produce
variations of ransomware that might deceive ransomware detection systems; this approach is designed to
highlight the need for ransomware detection systems to be reinforced.

3. FeSA- Feature Selection Architecture

The previous sections in this study discussed malware evolution and ransomware. This section introduces
our proposal to combat the concept drift in ransomware detection systems. The FESA system proposes using
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an architecture, which generates feature sets for ransomware detection systems through information gain
and a genetic algorithm. Our approach relies on the user’s underlying machine learning algorithm but is
compatible with any machine learning approach. The underlying machine learning algorithm will be the
classifier trained on the feature set produced by the FeSA architecture. Genetic algorithms are proven
effective for concept drift scenarios when used by the systems described in [26], [27] and [28]; the obtained
results lead us to FeSA, which does not entirely rely on the natural selection mechanism to produce an
optimal feature set.

3.1. Preliminaries
This section contains necessary background information on concept drift and genetic algorithms. This

section also presents table 1, which gives the notation of the symbols used throughout the paper.

Table 1: Notations

Symbol Explanation
xi A feature in a feature set.

x The feature x does not appear

IG(xi) Information Gain for a feature xi

ci The classification of an instance into category i

p(ci|x) Conditional probability of the ith category given the feature x appears.

p(ci|x) The conditional probability of the ith category given the feature x does
not appear.

|Z| The size of the set of important features. The important feature set is
added to every feature set produced by FeSA.

a
The proportion of features from the feature set which meet the

requirements for being important features.
T (f) Total features in the initial feature set.

|N |
The size of a feature set generated by the base layer, this feature set is

part of the first generation of feature sets produced.

r A proportion of the original feature pool.

H High performance feature sets.

m Maximum feature set limit.

dr Average detection rate of feature sets in the base layer.

ar Average accuracy of feature sets in the base layer.
Yi A feature set produced in the base layer.

Hrand1
· A selected parent feature set in the genetic layer.

Hrand2 A selected parent feature set in the genetic layer.

Oi An offspring feature set in the genetic layer.

T A set of offspring feature sets.
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3.1.1. Concept Drift
Concept drift is defined as the change in relationships between inputs and output data in the underlying

problem over time [15]. Concept drift will make classifiers degrade over time leading to more incorrect
classifications. Incorrect classifications in the context of malware detection can cause problems. A malware
analysis team would have high standards for abandoning an ageing classification model [14]. In the context
of a ransomware classification, a model would have to be constantly monitored for signs of concept drift
due to the damage one ransomware infection can cause. Concept drift can occur gradually over time or
artificially to cause classifiers’ errors, as stated in [17].

Concept drift can fall into the following three categories;

· Gradual Concept Drift: A gradual change over time.

· Cyclical Concept Drift: A recurring or cyclical change.

· Abrupt Concept Drift: A sudden or abrupt change.

The relationship between a classifier and its predictions is defined as p(y|x) and concept drift can be
defined as changes in p(x, y) [12]. The changes in this joint probability can be identified through its compo-
nents, suggesting that different detection aspects can cause concept drift.

The FeSA system is built to adapt to sudden concept drift and gradual concept drift. Sudden concept
drift is the type of concept drift that poses the biggest threat to a malware detection system. The sudden
appearance of new ransomware which does not conform to a model’s current configuration is a problem
that cannot be solved by retraining unless the retraining is done before the system is exposed to the new
ransomware. FeSA is effective when dealing with gradual concept drift because the system is built using
features from different distributions. Using different distributions to build the FeSA feature set allows the
system to capture the best possible feature set, which applies to ransomware from different eras. Capturing
common features from many different types of ransomware from different periods gives FeSA the best chance
of having features that will remain relevant in the future.

3.2. FeSA Architecture
We propose FeSA, a feature selection architecture for ransomware detection under concept-drift. The

FeSA architecture is shown in figure 1 and is comprised of three main components. FeSA architecture is
built following the structure of a genetic algorithm. The FeSA architecture needs to be provided with an
initial feature pool to create feature sets with. The number of features in this initial feature pool is user-
defined. The larger the number of features in the initial feature pool, the larger the number of unique and
diverse feature sets the base layer can create. The feature ranker selects a set of ”important” features from
the feature pool to pass onto the feature base layer. The base layer generates a set of random feature sets
from the feature pool, ensuring these feature sets include the important features. The feature sets in the
base layer are evaluated, and their detection rate and overall accuracy are calculated. The feature sets that
achieve accuracy and detection rates above the average accuracy and detection rates of all of the feature
sets in the base layer are defined as high-performance and passed onto the genetic layer. The genetic layer
performs a breeding crossover procedure involving selecting two high-performance feature sets from the base
layer and combining them to produce a new feature set; the user defines the number of times the crossover
process is repeated. In theory, the combination of high-performance feature sets from the base layer should
produce new feature sets which can achieve higher accuracy and detection rates than feature sets combined
to create them.
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Figure 1: FeSA: Feature Selection Architecture

3.2.1. FeSA Feature Ranker Algorithm
The initial population of feature sets is randomly generated; however, the FeSA architecture uses a

feature ranker to identify the highest information gain features. Information gain reduces the complexity
of the generated important features because random feature selection requires multiple selections to find
the optimal set. FeSA controls the base each feature set is built upon, ensuring strong feature sets. Before
generating the initial population, a feature ranking algorithm is proposed to decide which features are most
important. The feature ranker is the base component of our system because it ranks features in order of
their importance and attaches a numerical value to this ranking. Information gain is calculated according to
Eq.1. The feature importance step is designed to provide the initial ”building blocks” for each feature set.
The ranker algorithm uses information gain to isolate the most important features; it determines information
gain and then ranks features to gain information. Information gain is the reduction in entropy after a dataset
is split on an attribute. Entropy is defined as a measure of randomness in information; therefore, the higher
the entropy, the harder it is to draw any conclusions from the data [36].

Information gain (IG) is a reduction in entropy when splitting on an attribute and is calculated in eq.1,
ci represents the ith class category i.e. ransomware or benign, and p(ci) is the probability of ith category.
p(ci|x) is the conditional probability of the ith category given the feature x appears. and p(ci|x) is the
conditional probability of the ith category given the feature x does not appear.

IG(xi) = −
m∑

i=1
p(ci) + p(x)

m∑
i=1

p(ci|x) · log p(ci|x) + p(x)
m∑

i=1
p(ci|x) · log p(ci|x) (1)

The feature set, taken from the feature ranker, is defined in eq.2. The variable a is dependent on the
features defined by the feature ranker as essential. T (f) represents the total features in the original feature
pool. Our FeSA implementation chooses features with an information gain equal to or greater than 0.5 as
”important” features. The decision to set 0.5 as the threshold value was based on the fact that information
gain is a reduction in entropy, a measure of randomness; therefore, features were chosen, which took away
at least half of the data’s randomness. Based on experimental observations, very few features exceeded or
matched this value during our experiments which meant a threshold of 0.5 would mean only some features
are selected as ”important”. Z is defined as the set of important features, which every feature set must
contain, |Z| is the cardinality of this set. An algorithmic representation of the feature ranker is shown in
Algorithm 1. In addition to defining the key features included in each feature set, the ranker eliminates
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features deemed to provide 0 information gain. The FeSA system uses the ranker to identify features that
present zero information gain and excludes them from the base layer and subsequent genetic layer.

|Z| = a

T (f) (2)

Algorithm 1 FeSA Feature Ranker
Input: Initial features x0, ..., xi

Output: Important feature set Z

1: for Initial Features x0 to xi do
2: Calculate Information Gain for each feature using:

IG(xi) = −
∑m

i=1 p(ci) + p(x)
∑m

i=1 p(ci|x) · log p(ci|x) + p(x)
∑m

i=1 p(ci|x) · log p(ci|x)
3: if IG(xi) > 0.5 then
4: Add xi to important feature set Z
5: end if
6: Return important feature set Z
7: end for

Algorithm 1 shows the operation of the feature ranker. The feature ranker takes an initial set of features
x0 to xi and calculates each feature’s information gain IG. If the feature xi has an information gain value
above or equal to 0.5, it is added to the important feature set Z. Each feature in the important feature set
is denoted as zi.

3.2.2. FeSA Fitness Function
The fitness function used by FeSA calculates the average detection rate and accuracy amongst all feature

sets in the current generation. The highest performing feature sets which display above average detection
rates and accuracy are passed onto the next generation by the fitness function. The fitness function is used in
the base layer and the subsequent genetic layer. Our fitness function uses the ranker’s values, but indirectly
as opposed to directly in its calculations. The ranker will enforce features with the highest information gain
and eliminate features with no information gain, thus ensuring that the feature sets produced in the base
and genetic layers will provide as much information as possible while removing excess features that provide
no information.

3.2.3. FeSA Base Layer
The FeSA base layer acts as the initial population generation required by a genetic algorithm. The base

layer randomly generates feature sets from a pool of initial features. The initial population is a requirement
of a genetic algorithm and is needed in order to generate strong feature sets in the genetic layer; the main
difference between the base layer and a regular population layer is that the ranker has already defined a set
of features that are enforced in each generated feature set. The ranker enforcing important features in the
base layer feature sets means the base layer feature sets will already have higher accuracy than if the feature
sets were randomly generated. The base layer follows on from the ranker.

|N | = ( r

100 · T (f)) + |Z| (3)

The number of features selected per feature set is shown in eq.3, where r is the proportion of the initial
feature pool in each generated feature set and N is a feature set generated by the base layer. N is calculated
as r divided by 100, which obtains a proportion of T (f), T (f) being all the of the features in the initial
feature pool plus |Z| which is the important feature set chosen by the ranker.
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This process of generating feature sets is repeated as often as the user defines and will define the popula-
tion size for each generation. The number of repetitions will be balanced with a defined size for each feature
set. There are many features in the feature pool; therefore, possible combinations should be heavily regu-
lated to avoid massive computational costs. FeSA evaluates the feature sets that have been generated using
the initial population with a random forest classifier. The user’s use of the underlying algorithm is flexible
and determined based on their features and data. The random forest performed best with our features;
therefore, it is chosen as our underlying algorithm. The feature sets will be evaluated on overall accuracy
and ransomware detection rate; therefore, only the most accurate feature sets with the highest detection
rates are passed onto the next phase. The highest performing feature sets are determined by calculating
the average accuracy and ransomware detection rates of all feature sets and passing on the feature sets with
accuracy and detection rate above the average. The structure of the feature set generation layer is shown in
algorithm 2. The abbreviations used in algorithm 2 are as follows, True Positive (TP), False Positives (FP),
False Negatives (FN), True Negatives(TN).

Algorithm 2 shows the operation of the FeSA architecture base layer. The initial features are taken,
and new feature sets are generated, including the important feature sets Z, denoted as Yi. The important
features from the feature ranker are added to each generated feature set. The average detection rate and
accuracy of every feature set generated, Yi, is calculated, and if it shows above-average performance, it is
placed in the H, the set of high-performance features.

Algorithm 2 FeSA Base Layer
Input: Initial features x0, ..., xi, Important feature set Z
Output: High performance feature sets H

1: m →maximum feature sets
2: Average detection rate dr = 0
3: Average accuracy ar = 0
4: Total detection rate td = 0
5: while feature set count< m do
6: Generate feature set Yi

7: Add important features Z to Yi

8: end while
9: Calculate detection rate of Yi using:

10: True Positive Rate (TPR) = T P
T P +F N

11: Calculate accuracy of Yi using:
12: Accuracy (ACC) = T P R

T P R+T N+F P +F N
13: Calculate average detection rate dr using:
14: dr =

∑m

i=0
T P R(Yi)
m

15: Calculate average accuracy ar using:
16: ar =

∑m

i=0
ACC(Yi)
m

17: for Y0..., Yi do
18: if detection rate & accuracy of Yi > dr & ar then
19: Add Yi to high performance feature sets H
20: end if
21: end for

return H

3.2.4. FeSA Genetic Layer Algorithm
The FeSA genetic layer acts as the crossover phase in a genetic algorithm. The genetic layer is needed to

produce strong feature sets. The feature sets are expected to reach optimal performance after the crossover
phase has been completed multiple times. The feature sets produced in the genetic layer will be candidates
for the optimal feature set. The genetic layer contains the high-performance feature sets from the base layer
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and will combine these high-performance feature sets using the uniform crossover method to yield more
accurate feature sets. The genetic layer has the advantage of enforcing important features in each feature
set; therefore, the iterations needed for the feature sets to reach optimal performance is reduced in theory.

The genetic selection layer is a breeding mechanism for the highest performing feature sets taken from
the initial feature selection layer. The genetic layer is made up of ”parent” and ”offspring” feature sets.
The ”parent” feature sets are the high-performance feature sets from the base layer. The ”offspring” feature
sets are produced by choosing two-parent feature sets and combining them with a crossover function. High
performing ”parent” feature sets will be combined using uniform crossover, generating ”offspring” feature
sets. In theory, the offspring feature sets will display a higher performance level than the preceding gener-
ation. Uniform crossover takes two-parent feature sets and combines them. For each corresponding feature
in each parent feature set, the feature the offspring feature set receives is determined by a coin-flip; this
is a probability of 0.5. The crossover function used by FeSA is user-defined; however, for our purpose and
need to enforce particular features into feature sets, the uniform crossover function proved to be the most
efficient. The resulting offspring feature sets are evaluated, and the feature set with the highest average
detection rate and overall accuracy is chosen as the optimal feature set. An important factor in this phase
is that only one generation generates the optimal feature set. The structure of the genetic layer is shown in
algorithm 3.

Algorithm 3 FeSA Genetic Layer
Input: High performance feature sets H
Output: Optimal feature set Oi

1: m →Max feature set count
2: n →Current feature set count
3: Offspring feature set T
4: while n < m do
5: Select random base feature set 1 Hrand1 from set H
6: Select random base feature set 2 Hrand2 from set H
7: Perform uniform crossover using Hrand1 and Hrand2 & Generate mixed feature set Oi

8: if Duplicate features are detected then
Replace duplicate feature with a random feature xi from feature pool

9: end if
10: Add Oi to offspring set T
11: end while
12: return Optimal Oi ∈ T which has the highest average detection rate & accuracy.

Algorithm 3 shows the genetic layer of the FeSA architecture. The High-performance feature sets from
the base layer. Two random high-performance feature sets are selected Hrand1 and Hrand2 , and uniform
crossover is carried out to mix the two high-performance feature sets to create a new feature set Oi. The
process of mixing the high-performance feature sets is repeated m times until completion. The best per-
forming of these newly generated feature sets is stored in set T . The best performing feature set out of the
newly generated feature sets in T is selected as optimal.

3.3. Mutation
The mutation function in a genetic algorithm is the introduction of diversity. A mutation would mean

an offspring feature set inheriting a feature not present in either parent feature set in a feature selection
context. During the crossover phase, duplicate features are prohibited from being in a feature set. If there
is a feature set with duplicate features, duplicates will be replaced with a random feature from the feature
pool, leading to a 0.01% mutation rate. The low mutation rate is used to eliminate unnecessary randomness
from the FeSA architecture.
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4. Experimental Setup

Our experiments’ main aim was to test the FeSA architecture’s effectiveness and compare it to a genetic
and an evolutionary-based feature selection algorithm. The architecture is evaluated in scenarios where the
test samples display concept drift and do not behave according to what the classifier expects and compare
it with other similar feature selection algorithms. FeSA has also compared a greedy stepwise algorithm,
genetic search, evolutionary search, best-first search and harmony search. Table 2 shows the formulas used
to calculate the performance metrics. We refer to the TPR of ransomware as detection rate throughout this
paper.

Table 2: Performance Metrics

Metric Calculation Value
TPR (True Positive Rate)

/ Recall
T P

(T P +F N)
Correct classification of

Ransomware.

False Positive Rate (FPR) F P
F P +T N

Benign software classed as
Ransomware.

False Negative Rate (FNR) 1-TPR Ransomware classed as benign.

Precision
T P

T P +F P

Proportion of ransomware
classifications, that are actually

ransomware.

4.1. Testbed
4.1.1. Environment

Our test environment consists of a Cuckoo sandbox analysis environment that generates the data used for
our datasets. Each ransomware and benign executable in our dataset was executed in a virtual machine run-
ning Windows 7 in VirtualBox. The virtual machines were cloaked and hardened by VMCloak and Paranoid
Fish. The virtual machines were hardened to make them look and behave as close to a physical machine as
possible. The hardening process was undertaken due to modern malware using anti-sandbox technology to
prevent proper execution in a sandbox environment. Each execution was limited to two minutes; this was the
default for Cuckoo Sandbox. The machine learning platform used for the is WEKA(Waikato Environment
for Knowledge Analysis), a collection of machine learning algorithms for data analysis.

4.1.2. Data
The ransomware samples used are from 2013 to 2019; the samples from 2013 to 2015 were gathered

using the Elderan dataset[6], which contained a list of hashes for each ransomware sample they used. These
samples are used as there was a wide range of ransomware from 2013 to 2015. The samples from 2016 to 2019
were gathered based on popularity and how much each ransomware family has made in ransoms. The dataset
consists of 639 ransomware files and 531 benign files; the benign files are a mix of windows executables that
includes legitimate software that behaves similarly to ransomware, such as AxCrypt, Bitlocker 7zip and
VerCrypt. Our experiments are carried out using a random forest and 10-fold cross-validation. The random
forest algorithm is used because it is the algorithm that performs the best with our API features. Our base
data set contains 400 benign and 531 ransomware samples. New ransomware files and new benign files were
added for each round of experiments in concept drift conditions. Each round of experiments uses the most
prominent ransomware samples from 2017, 2018 and 2019. API (Application Programming Interface) data
is extracted for each sample. The API calls dictate how an executable interacts with the OS and what
functions an executable invokes.
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This research uses a nonconformity measure to prove concept drift exists in the datasets used. The
credibility p-value of each prediction is to measure the credibility of each prediction a classifier makes. The
p-value measures the proportion of instances, which are as different or more different from the rest of the
instances in the dataset as the new instance z. A high credibility value means that z is very similar to the
objects in the class chosen by the classifier, and low credibility would imply the opposite. The experiments
were carried out using the random forest classifier; therefore, the prediction probabilities extracted from the
random forest are used to calculate the p-values needed to prove drift. For example, it can be observed that,
when trained on data from 2013-15, the average credibility of predictions on ransomware from 2015 was 0.9.
When the 2015 model is tested on ransomware from 2016-17, predictions’ credibility drops to an average of
0.74. The drop in credibility is present in every scenario in the series of experiments carried out. There is
an average drop in the credibility of predictions of 0.21. The drop in credibility shows that the classifier
becomes more uncertain of its predictions, which indicates the data is behaving in a way it is not prepared
for; this indicates concept drift.

4.1.3. Features
The feature pool of 320 features consisted of API calls used by Windows programs during execution. The

320 features fall into API 16 call categories, which the feature set sizes are based on. We aim to capture two
features per category on average; however, this does not always prove the case due to the natural selection
mechanism. We choose to capture two features from each category to limit the feature size and complexity
of the crossover phase.

4.2. Experiments
Our experiments are set up to test the strength of the feature sets produced by FeSA in concept drift

scenarios. The experiments compare the performance of the FeSA feature sets with other nature-inspired
feature selection algorithms. The datasets used in these experiments are structured to display real-life
concept drift scenarios, and the validity of the concept drift in these datasets are tested by p-values, as
mentioned in section 4. The concept drift effect is achieved by having ransomware and benign software from
different periods. Each classifier is tested on data produced after the data the classifier is trained on. The
process runs on our base dataset that contains ransomware and benign samples from 2013 to 2015. The
optimal feature set is produced, and FeSA trains a random forest using 10-fold cross-validation and observes
the results. The benchmark algorithms are tuned and run by us. The settings used for the benchmark
algorithms are tuned to compare them to FeSA as fairly as possible. The closest algorithms to FeSA, the
genetic search and the evolutionary search, are given an advantage over FeSA, in which they use more
generations to generate their feature sets. The underlying classification algorithm used with FeSA and the
benchmark feature selection algorithms is the random forest classifier. FeSA’s results are compared to the
results obtained from the greedy stepwise algorithm, genetic search, evolutionary search, best-first search
and harmony search. After observing results on data the classifiers would see as up to date data, FeSA tests
how the classifiers perform on ransomware and benign data from 2016 and 2017. Ransomware and benign
samples from 2016 and 2017 would represent concept drift as their behavioural patterns are different, as per
our observations. The process of observing detection rates under concept drift is repeated by training on
data from 2013-2017 and testing on data from 2018 and again, repeated for data up to 2019. It is observed
how the feature sets produced by the FeSA architecture perform compared to the feature sets produced by
the greedy stepwise algorithm, genetic search, evolutionary search, best-first search and harmony search.
The results of our experiments are shown in section 5.

4.2.1. Detection Phase
The detection phase of the framework is tested in the experimental test phase. The optimal feature

set chosen by FeSA is tested on a dataset made up of ransomware and benign files from a future time to
the training data. Our detection phase simulates the system coming into contact with ransomware which
displays concept drift and is from a different distribution and may behave differently to what the classifier
expects of ransomware. The breakdown of the datasets is described in section 4.2. The detection phase is
repeated for the algorithms FeSA is compared with.
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4.2.2. Genetic Search Algorithm
The genetic algorithm used as a benchmark for our experiments was a basic genetic algorithm that fol-

lowed the structure described in section 3.1. The experiments used the configuration suggested by WEKA
[37], a generational and population limit of 20, a crossover probability of 0.6, and a mutation probability
of 0.033. The default settings in both the genetic search and evolutionary meant these algorithms had a
significant advantage over FeSA in population generation and feature set size. The machine learning algo-
rithm used with the Genetic Search feature selection algorithm is the random forest to maintain consistency
and fairness compared with the FeSA algorithm. The genetic algorithm used in the experiments used both
overall accuracy and overall information gain as fitness functions as provided by WEKA and found minimal
difference between the two; therefore, the overall accuracy was chosen as it was closest to the fitness function
used by FeSA.

4.2.3. Evolutionary Search Algorithm
As presented in WEKA, the evolutionary algorithm also followed a similar structure to the genetic

algorithm described in section 3.1; however, it uses a different configuration. The evolutionary algorithm
used a tournament selection method with a mutation probability of 0.1. The tournament selection approach
ensures that the fittest feature sets are passed onto the next generation. The generation and population
limit were set to 20, respectively, like the genetic algorithm. The machine learning algorithm used with the
evolutionary algorithm feature selection is the random forest to maintain consistency and fairness compared
with the FeSA algorithm. The fitness function used for the evolutionary algorithm is the overall accuracy
to maintain consistency with the FeSA algorithm.

5. Experimental Results and Discussion

5.1. Experimental Results
This section explores and elucidates our results. In our experiments, the FeSA architecture used the

random forest classifier with 10-fold cross-validation. Our implementation used the WEKA API and an
in-house feature extraction program to create our dataset. The experimental findings are presented in Table
3, Table 4 and figure 2. Table 3 shows the key statistics of the detection algorithms tested, including
the FeSA architecture when concept drift is not applied. The experiments’ first aim was to ensure that
FeSA was a viable feature extraction without considering concept drift. FeSA must function as a normal
feature selection algorithm before it is tested on an evolving concept. Based on the results in Table 3, FeSA
architecture produces features robust in time. Table 4 shows the performance of FeSA and the algorithms
FeSA is compared with when under concept drift. The experiments aimed to demonstrate that the FeSA
architecture will be superior when exposed to concept drift, and we conclude this has been achieved. Our
initial observations are as expected, that the effect of concept drift degrades a ransomware classifier, as it
would degrade any other classifier which works in a rapidly changing environment. Our second observation
is that using nature-based feature selection algorithms helps slow the degradation of detection rate and
accuracy caused by concept drift. Figure 2 provides a visual representation of the classifiers’ performance
degradation trained and tested under concept drift. Figure 2 does not consider the testing on 2018 data, as
the results showed an increase in the detection rate. The detection rate is specifically the rate of correctly
identified ransomware samples. The false-positive rate, precision, and recall are based on the systems’ overall
performance, including the benign samples.

Table 4 shows the average reduction in detection rate under concept drift; it is observed that a feature
selection algorithm that pinpoints distinguishing features can help significantly reduce the effects of concept
drift on a classifier. Table 3 shows that FeSA architecture maintains a detection rate above 96% and a
false positive rate close to the greedy stepwise algorithm, genetic search, evolutionary search, best-first
search and harmony search. The first set of experiments simulates a scenario where the samples adhere
to the current concept, and the test samples do not stray from the statistical rules the model has created
for differentiating ransomware and benign software. Our results presented in Table 3 show that FeSA is
a viable feature selection algorithm for training a system and is not necessarily viable for systems prone
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to concept drift. The FeSA architecture achieved stronger detection rates across the periods it has been
deployed in and consistently outperforms the feature selection algorithms it has been compared to. Most
importantly, it can be observed that the FeSA architecture outperforms the evolutionary search and the
genetic search while using significantly fewer features and generations of feature sets. There is an emphasis
on detection because it is the most important statistic; however, our false-positive rates are competitive
with other feature selection algorithms. It can be observed that the FeSA architecture can generate a strong
feature set for a random forest classifier while using only two generations, compared to the 20 generations
used by the genetic and evolutionary search algorithms.

The experimental results for a detection scenario that introduces concept drift is presented in Table 4.
A concept drift scenario is when the test samples do not adhere to the statistical rules and properties the
classifier has learned to differentiate ransomware and benign software, in Table 4. It is observed that the
most consistent algorithms are the genetic search, evolutionary search and our feature selection architecture,
FeSA. Our experiments use the same data and concept drift scenario for each algorithm while observing
each classifier’s performance changes. The classifier’s accuracy and detection rate fell in each scenario except
being trained on data from 2013 to 2017 and tested on data from 2018. The feature set generated by FeSA
maintains a detection rate above 93% in all our concept drift scenarios, which is higher than all the other
approaches it is compared to. The results presented in table 4 gives us a promising base to further build
on for dealing with concept drift in ransomware detection systems. The discrepancy in the year 2018 may
explain the behavioural changes in ransomware inadvertently benefiting our API based feature pool. The key
observation made from Table 4 is that the average reduction in detection rate in concept drift is the lowest
in our feature selection algorithm. The other feature sets suffer a higher average reduction in detection rate,
which is the key statistic. Figure 2 shows the average reduction in detection rate by each approach; this does
not consider the anomalous behaviour in the 2018 dataset. In terms of false positives, our approach appears
to struggle marginally more than the other approaches, which would require further research. Our approach
appears highly effective when generating a feature set that can identify ransomware. The maintenance of the
high detection rate is the key statistic in malware, especially ransomware. Besides ours, the best performing
algorithm is the evolutionary search; however, it required 20 generations to reach its optimal solution with
a population size of 20 per generation. Our solution uses an initial population of 32 feature sets and one
generation of offspring with a population size of 64 feature sets. Our feature sets are also significantly smaller
than the genetic and evolutionary search algorithms’ optimal feature sets.

Our initial population’s average accuracy and detection rate are 77%, and the first generation’s average
accuracy and detection rate rise to an average of 94%. The accuracy and detection are not expected to
increase similarly with increased feature set generations; however, a marginal increase is expected if the
number of generations created is higher than one generation. Our experiments use one initial population
and one generation to demonstrate the potential of this scenario.
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Table 3: Experimental Results without Concept Drift

FeSA Best First Evolutionary
Search Genetic Search Greedy

Stepwise Harmony Search

Time
Complexity O(n) + O(gnm)) O(n · Log(n)) O(gnm)) O(gnm)) O(n)2 O(n)

Feature
Count 32 20 110 106 20 33

Trained
and tested
on 13-15

· Detection:
96.3%

· FPR: 5.8%

· Precision: 0.942

· Recall: 0.941

· Detection:
92.0%

· FPR: 6.7%

· Precision:
0.940

· Recall:
0.940

· Detection:
95.7%

· FPR: 4.4%

· Precision: 0.955

· Recall: 0.955

· Detection:
93.2%

· FPR: 6.2%

· Precision:
0.942

· Recall:
0.942

· Detection :
90.4%

· False Positive
Rate: 4.4%

· Precision: 0.963

· Recall: 0.936

· Detection:
93.0%

· FPR: 5.9%

· Precision: 0.944

· Recall: 0.944

Trained
and tested
on 13-17

· Detection:
96.7%

· FPR: 5.8%

· Precision: 0.942

· Recall: 0.941

· Detection :
90.1%

· FPR: 8.0%

· Precision: 0.931

· Recall: 0.932

· Detection: 95.3%

· FPR: 5.2%

· Precision: 0.948

· Recall: 0.948

· Detection:
95.3%

· FPR: 5.2%

· Precision: 0.948

· Recall: 0.948

· Detection:
90.1%

· FPR: 8.0%

· Precision: 0.931

· Recall: 0.932

· Detection:
93.0%

· FPR: 5.9%

· Precision: 0.944

· Recall: 0.944

Trained
and tested
on 13-18

· Detection:
96.3%

· FPR: 5.9%

· Precision: 0.941

· Recall: 0.940

· Detection:
91.5%

· FPR: 7.0%

· Precision: 0.935

· Recall: 0.936

· Detection: 94.7%

· FPR: 5.4%

· Precision: 0.946

· Recall: 0.946

· Detection:
91.5%

· FPR: 6.5%

· Precision: 0.927

· Recall: 0.927

· Detection:
91.5%

· FPR: 7.7%

· Precision: 0.927

· Recall: 0.927

· Detection:
95.0%

· FPR: 5.5%

· Precision: 0.945

· Recall: 0.945
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Table 4: Experimental Results under Concept Drift

FeSA Best First Evolutionary
Search

Genetic
Search

Greedy
Stepwise

Harmony
Search

Feature
Count 32 20 110 106 20 33

13-15
Tested on
2016/17

· Detection:
93.2%

· FPR: 7.4%
· Precision: 0.913
· Recall: 0.846

· Detection:
77.4%

· FPR: 2.7%

· Precision: 0.940

· Recall: 0.942

· Detection:
86.7%

· FPR: 1.4%

· Precision: 0.968

· Recall: 0.968

· Detection:
73.5%

· FPR: 4.4%

· Precision:
0.961

· Recall:
0.919

· Detection:
79.2%

· FPR: 2.4%

· Precision:
0.946

· Recall:
0.948

· Detection:
83.0%

· FPR: 1.4%

· Precision:
0.961

· Recall:
0.962

13-17
Tested on
2018 Data

· Detection:
100%

· FPR: 3.4%

· Precision: 0.917

· Recall: 0.786

· Detection:
97.8%

· FPR: 2.22%

· Precision: 0.979

· Recall: 0.976

· Detection:
100%

· FPR: 5.5%

· Precision: 0.943

· Recall: 0.936

· Detection:
100%

· FPR: 1.4%

· Precision:
0.989

· Recall:
0.988

· Detection:
100%

· FPR: 2.4%

· Precision:
0.982

· Recall:
0.979

· Detection:
54.0%

· FPR: 1.4%

· Precision:
0.922

· Recall:
0.926

13-18
Tested on
2019 Data

· Detection:
93.5%

· FPR: 3.4%

· Precision: 0.917

· Recall: 0.944

· Detection:
87.1%

· FPR: 11.9%

· Precision: 0.968

· Recall: 0.966

· Detection :
90.3%

· FPR: 1.4%

· Precision: 0.979

· Recall: 0.978

· Detection :
87.1%

· FPR: 1.4%

· Precision:
0.975

· Recall:
0.975

· Detection:
87.1%

· FPR: 3.1%

· Precision:
0.963

· Recall:
0.960

· Detection:
83.9%

· FPR: 1.7%

· Precision:
0.969

· Recall:
0.969
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Figure 2: Detection Rates Drop-off

5.2. Discussion
Our results show promise that the FeSA architecture can provide effective and accurate machine-learning

detection for evolving ransomware. Regarding situations that do not involve concept drift, FeSA proves to
be an effective feature selection algorithm. Table 3 demonstrates that the feature set provided by FeSA
yields competitive figures in terms of false positives, recall and, precision. The statistic to be improved is
the false-positive rate. FeSA maintains a false positive rate between 5.8% and 5.9%, whereas evolutionary
search achieves a false positive rate as low as 4.4% for the 2013-2015 data. FeSA has a more competitive
false-positive rate in 2013-2017 and 2013-2018 data sets, but it does not achieve the lowest in either test, as
evolutionary search achieves the lowest false-positive rate in each test; however, in all tests demonstrated
in Table 3, FeSA yields the highest detection rate maintaining a detection rate above 96% consistently,
this is a positive sign as the detection rate is what is viewed as most important for ransomware detection.
Once again, the algorithms compared to the evolutionary search achieves a consistent detection rate close to
FeSA. Figure 2 and Table 4 show that the performance drop off is reduced compared to other popular feature
selection algorithms when encountering concept drift. Table 4 shows that the FeSA architecture produces a
feature set that achieves the highest or joint-highest detection rate during the three concept drift scenarios
tested. In the concept drift scenarios, FeSA is consistent and maintains a minimal and consistent drop off in
detection rate, whereas the algorithms FeSA is compared to behave erratically, showing a much steeper drop-
off in detection rate. An example of erratic behaviour would be the harmony-search dataset, which displays
an initial detection rate of 93% for 13-17 data, as seen in Table 3. However, when exposed to data from 2018,
the detection rate plummets to 54%. Table 4 shows that the FeSA false positive rate remains competitive,
yet it is greater than the false-positive rates of genetic search and evolutionary search. We believe the
false-positive rate increases due to the limits on feature set sizes and the generation of feature sets produced.
Evolutionary and genetic search that FeSA competes with do not have constraints on feature set size and
have a higher limit on generations of feature sets it can produce, allowing them to produce feature sets with
higher accuracy and reduced false-positive rates. The constraints on FeSA might limit its ability to capture a
full picture of benign behaviour; however, this can be improved in the future. Figure 2 shows the drop-off in
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the detection rate under concept drift for a random forest trained on the feature sets suggested by different
feature selection algorithms. It is observed that the random forest trained on the FeSA features experiences
an average reduction in the detection rate of 3%. The x-axis of figure 2 shows which algorithms have been
tested with and against, and the y-axis shows the average reduction in the detection rate under concept drift.
The high detection rates that FeSA shows in Table 3 and the maintenance of a high detection rate shown in
Table 4 are because FeSA enforces fundamental features in distinguishing ransomware from benign software
while being combined with the already proven process of natural selection via a genetic algorithm. The
detection rate’s importance is stressed because of the damaging effects ransomware can have on any system
it infects. False positives, in the case of ransomware, are significantly more damaging than false negatives.
The experiments use the random forest classifier because this algorithm, in particular, works well with the
API-based feature set; it can distinguish the difference between benign files and ransomware effectively and
consistently. Our research has explored the use of different algorithms, similar to the approaches used in
[5-12], but the random forest proved the most effective to use as an underlying algorithm. Our use of API
calls can be expanded to optimise the capabilities of a genetic approach by incorporating the use of static
and network features. Regardless of how expansive the feature set is, the main shortcoming of this approach
is that it cannot actively react to concept drift and will need further work to incorporate a mechanism that
allows the system to react to concept drift. In the system’s current state, it is proactive to combat concept
drift and shown its effectiveness; however, a mechanism that allows the system to be reactive to concept
drift is necessary. Overall, FeSA achieved what it sets out to do; the use of FeSA will provide a machine
learning detection system with a robust feature set that will show consistent performance under concept
drift. FeSA reduces the need for constant re-training and can increase the time intervals between re-training
an intrusion detection machine-learning system.

5.3. Alternative Datasets
We have carried out experiments with our framework on two alternative datasets produced by the

researchers in [6] and [42]. This dataset produced by Sgandurra et al. contains ransomware files found
between 2012 to 2015 and has a feature count of over 30,000. The feature set produced by Sgandurra et al.
contained static strings and directory specific features, which meant some features were exclusive to the test
machines used by the researchers. The feature set also contained API calls and drops, which we retained to
carry out experiments, as API calls and drops were not exclusive to the machine the ransomware had run
on. The experimental results of the imperial dataset are presented in Tables 5 and 6. The experimental
results demonstrate that the binary nature of the feature set is not optimal, and the rate of false positives
is high for all the feature selection algorithms used in the experiments. FeSA performs the best overall,
crucially maintaining performance from year to year instead of the majority of the other feature selection
algorithms. The dataset produced by Berrueta et al. contains data from 70 ransomware strains, with features
constructed from network data. The ransomware strains are taken from 2015 to 2019, and the dataset is
structured to allow testing to be done on zero-day ransomware strains. The experiments on this data are
shown in table 7, and we observe that FeSA performs well compared to all of the alternative feature selection
algorithms besides the Greedy-Stepwise approach. We observe FeSA achieves strong detection results on
zero-day ransomware in this dataset with significantly fewer features and performs consistently well across
the three datasets that we have evaluated.
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Table 5: Experimental Results with Imperial Dataset

FeSA Best First Evolutionary
Search Genetic Search Greedy

Stepwise Harmony Search

Feature
Count 16 258 160 106 14 36

Trained
and tested
on 12-13

· Detection:
99.3%

· FPR: 5.1%

· Precision: 0.931

· Recall: 0.918

· Detection:
98.0%

· FPR: 6.9%

· Precision:
0.921

· Recall:
0.910

· Detection:
95.5%

· FPR: 9.6%

· Precision: 0.920

· Recall: 0.920

· Detection:
92.2%

· FPR: 5.6%

· Precision:
0.955

· Recall:
0.955

· Detection :
98.0%

· False Positive
Rate: 6.9%

· Precision: 0.921

· Recall: 0.909

· Detection:
81.0%

· FPR: 12.7%

· Precision: 0.904

· Recall: 0.901

Trained
and tested

on 2014

· Detection:
97.5%

· FPR: 8.4%

· Precision: 0.918

· Recall: 0.911

· Detection :
83.9%

· FPR: 13.2%

· Precision: 0.871

· Recall: 0.870

· Detection: 92.4%

· FPR: 6.2%

· Precision: 0.939

· Recall: 0.939

· Detection:
89.0%

· FPR: 9.5%

· Precision: 0.905

· Recall: 0.907

· Detection:
84.7%

· FPR: 13.5%

· Precision: 0.866

· Recall: 0.866

· Detection:
95.8%

· FPR: 11.1%

· Precision: 0.893

· Recall: 0.883

Trained
and tested

on 2015

· Detection:
97.1%

· FPR: 12.8%

· Precision: 0.912

· Recall: 0.909

· Detection:
94.7%

· FPR: 16.1%

· Precision: 0.881

· Recall: 0.879

· Detection: 96.2%

· FPR: 9.5%

· Precision: 0.927

· Recall: 0.926

· Detection:
95.1%

· FPR: 13.6%

· Precision: 0.898

· Recall: 0.897

· Detection:
94.7%

· FPR: 16.1%

· Precision: 0.881

· Recall: 0.879

· Detection:
94.3%

· FPR: 14.4%

· Precision: 0.889

· Recall: 0.888

Table 6: Imperial Dataset with Concept Drift

FeSA Best First Evolutionary
Search Genetic Search Greedy

Stepwise Harmony Search

Feature
Count 16 258 160 106 14 36

Trained
2013 and
tested on

2014

· Detection:
96.6%

· FPR: 11.0%

· Precision: 0.895

· Recall: 0.883

· Detection:
95.8%

· FPR: 8.5%

· Precision:
0.151

· Recall:
0.911

· Detection:
87.1%

· FPR: 7.0%

· Precision: 0.941

· Recall: 0.953

· Detection:
89.8%

· FPR: 5.3%

· Precision:
0.956

· Recall:
0.951

· Detection :
95.8%

· False Positive
Rate: 8.5%

· Precision: 0.911

· Recall: 0.915

· Detection:
94.1%

· FPR: 9.8%

· Precision: 0.902

· Recall: 0.899

Trained on
2014 and
tested on

2015

· Detection:
91.4%

· FPR: 16.0%

· Precision: 0.868

· Recall: 0.867

· Detection :
57.4%

· FPR: 21.1%

· Precision: 0.789

· Recall: 0.709

· Detection: 86.6%

· FPR: 9.4%

· Precision: 0.899

· Recall: 0.891

· Detection:
81.3%

· FPR: 10.9%

· Precision: 0.88

· Recall: 0.862

· Detection:
59.3%

· FPR: 19.4%

· Precision: 0.805

· Recall: 0.726

· Detection:
89.5%

· FPR: 15.8%

· Precision: 0.861

· Recall: 0.861
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Table 7: Navarra University Dataset with Concept Drift

FeSA Best First Evolutionary
Search Genetic Search Greedy

Stepwise Harmony Search

Feature
Count 32 97 114 109 106 111

Tested on
Training
Distribu-

tion

· Detection:
99.9%

· FPR: 0.4%

· Precision: 0.998

· Recall: 0.998

· Detection:
99.4%

· FPR: 0.4%

· Precision:
0.998

· Recall:
0.998

· Detection:
99.8%

· FPR: 0.4%

· Precision: 0.998

· Recall: 0.998

· Detection:
99.9%

· FPR: 0.4%

· Precision:
0.998

· Recall:
0.999

· Detection :
99.6%

· FPR: 0.4%

· Precision: 0.996

· Recall: 0.996

· Detection:
99.8%

· FPR: 0.4%

· Precision: 0.998

· Recall: 0.998

Tested on
Zero-Day
Distribu-

tion

· Detection:
85.1%

· FPR: 14.9%

· Precision: 0.999

· Recall: 0.999

· Detection:
78.9%

· FPR: 21.1%

· Precision:
0.989

· Recall:
0.989

· Detection:
78.1%

· FPR: 21.9%

· Precision: 0.989

· Recall: 0.989

· Detection:
78.8%

· FPR: 21.2%

· Precision:
0.956

· Recall:
0.951

· Detection :
87.7%

· FPR: 12.3%

· Precision: 0.998

· Recall: 0.998

· Detection:
78.1%

· FPR: 21.9%

· Precision: 0.998

· Recall: 0.998

6. Conclusion and Future Work

To conclude, Our research has demonstrated that using a feature selection algorithm can combat the
effects of concept drift in a classification system. Our research has also demonstrated that FeSA is an
effective feature selection algorithm for ransomware detection under concept drift. Our research uses a wide
array of benign and ransomware files to simulate concept drift, showing its existence in the ransomware
detection space and how to remediate its effects. Our system is evaluated realistically, and the results
produced are promising, with the FeSA system outperforming the genetic search and evolutionary search
algorithms. The FeSA system can maintain a high-performance level with fewer offspring feature sets and
smaller set sizes. We acknowledge that the system proposed would be a part of a system that would work as
a complete ransomware detection system. The feature set generation is a proactive measure for concept drift
in a detection system; however, FeSA requires a mechanism to react to concept drift as no preparation can
fully prepare for every way ransomware may evolve. Our future work on this system will have to take the
results and data from this feature engineering approach and incorporate them into a concept drift adaption
system. In the future, the aim is to combine our feature selection algorithm with a mechanism that can
classify unknown and drifting samples using the measured concept drift of a sample. A secondary objective
is to use non-conformity and similarity measures to aid classifiers when the classifier is uncertain in its
predictions. Our goal is to maintain the same detection rates under concept drift as expected under normal
conditions with low false-positive rates when building on our system.
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