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Abstract

The quantum sine-Gordon model is the simplest massive interacting integrable quantum
field theory whose two-particle scattering matrix is generally non-diagonal. As such, it
is a model that has been extensively studied, especially in the context of the bootstrap
program. In this paper we compute low particle-number form factors of a special local
field known as the branch point twist field, whose correlation functions are building
blocks for measures of entanglement. We consider the attractive regime where the theory
possesses a particle spectrum consisting of a soliton, an antisoliton (of opposite Up1q
charges) and several (neutral) breathers. In the breather sector we exploit the fusion
procedure to compute form factors of heavier breathers from those of lighter ones. We
apply our results to the study of the entanglement dynamics after a small mass quench
and for short times. We show that in the presence of two or more breathers the von
Neumann and Rényi entropies display undamped oscillations in time, whose frequencies
are proportional to the even breather masses and whose amplitudes are proportional to
the breather’s one-particle form factor.
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1 Introduction

The quantum relativistic sine-Gordon model is a paradigmatic example of an integrable
quantum field theory (IQFT) that is amenable to solution by the bootstrap program. It provides
the simplest example of a theory that is interacting and has a non-diagonal S-matrix, famously
obtained in [1]. This means that the theory allows for backscattering or, in a different language,
the S-matrix is a non-trivial solution of the Yang-Baxter equation. The theory has a rich particle
spectrum containing two fundamental particles known as the soliton (s) and the antisoliton (s̄)
and a tower of breathers (bk) which can be interpreted both as soliton-antisoliton bound states
and as bound states of lighter breathers. The number and masses of these breathers depend on
the model’s coupling constant. Although the theory is non-diagonal in the standard scattering
matrix sense, the breather sector is diagonal and this simplifies form factor computations
considerably. In addition, in a certain coupling constant regime, the sine-Gordon model can
be seen as the continuum limit of another paradigmatic integrable theory, namely the spin-1

2
XXZ quantum spin chain.

In the context of the bootstrap program for IQFTs, the matrix elements of local operators
(e.g. form factors) of the sine-Gordon model have been extensively studied by many authors.
Some of the earliest results are due to F.A. Smirnov [2, 3], followed by a long series of works
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by the Berlin group [4–8]. In both cases, the form factors are given in terms of integral
representations and expanded on a basis of off-shell Bethe vectors. A different approach known
as free field representation was employed in [11,12] and the fermionic structure of the model
was exploited in [14, 15], where on-shell Bethe vectors are proposed as a basis for the form
factor decomposition. Form factors of the order and disorder fields were first obtained in [9]
and applied in the study of the Ashkin-Teller model in [9, 10]. Of particular interest to us
is the work [12] which focused on breather form factors and used the fusion technique in
order to obtain form factors of heavier breathers from those of the lightest one (note that this
technique had already been employed much earlier in the work of Smirnov [3]). There has
also been intense study and a large body of applications of sine-Gordon form factors in various
other contexts such as the case of finite temperature one-point functions [16, 17], quantum
quenches [18–20] and boundary field theory [21] and, in particular, in finite volume [22–24]
where once again fusion techniques can be employed.

Finally, it is important to note that many studies of the breather form factors (particularly
those where fusion is used) exploit the relationship between the sine-Gordon and sinh-Gordon
theories. At Lagrangian level the two theories are identical up to the complexification of
the coupling constant. In addition, the two-particle S-matrix of the first (lightest) breather
is mapped to the two-particle scattering matrix of the sinh-Gordon particle under the same
transformation. This implies that the form factors of the first breather (and by fusion, also
those of higher breathers) can be obtained from those of the sinh-Gordon field by simply
changing the coupling constant dependence. Then the sinh-Gordon form factors computed in
various papers [7, 13, 25, 26] become the starting point of computations in the sine-Gordon
model.

The works we have referred to so far are concerned with “standard" local fields of the
sine-Gordon theory, such as the sine-Gordon field ϕ, its powers and, especially, exponential
fields of the form eiaϕ which are of particular interest as they are related to the trace of the
stress-energy tensor. In the present work our main aim is to generalize these results to branch
point twist fields, starting with the branch point twist field and associated form factor program
introduced in [27], and then continuing (in part II) with the symmetry resolved branch point
twist field recently introduced in [28, 29]. Twist field form factors of the sine-Gordon model
were first studied in [30] but only in the so-called repulsive regime where no breathers are
present. In this paper we extend those results to the situation when several breathers are
present focussing on all non-vanishing one- and two-particle form factors. In the breather
sector we employ the results of [27] and [31] where the two- and four-particle form factors
of the sinh-Gordon field were obtained, respectively. These will constitute our starting point
when employing the fusion procedure to obtain lower particle form factors of higher breathers.

The paper is organized as follows: In Section 2 we review some general results for the
sine-Gordon model, notably its S-matrix and particle spectrum. In Section 3 we review the
definition of the branch point twist field and the main equations satisfied by its form factors.
In Section 4 we diagonalize the two-particle form factor equations to compute the two-particle
soliton-antisoliton form factor. We put special emphasis on the discussion of its dynamical
pole structure. In Section 5 we use fusion to compute one- and two-particle breather form
factors, including up to four breathers and carry out some simple consistency checks of our
solutions. In Section 6 we evaluate the ∆ sum rule in several coupling regimes, finding very
good agreement with the exact value of the branch point twist field conformal dimension for
all coupling choices. In Section 7 we discuss one application of our results to the study of
the entanglement dynamics following a mass quench. We conclude in Section 8. The more
technical details of our work are presented in various Appendices. Appendix A summarizes
some useful formulae for the minimal form factors. Appendices B and C give details of the
computation of breather form factors for the branch point twist field and the trace of the
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stress-energy tensor, respectively. In both cases we use the fusion procedure. In Appendix D
we analyse in more detail the dynamical pole axiom for the soliton-antisoliton form factors.
In Appendix E we present some additional numerical results concerning our evaluation of the
the ∆ sum rule.

2 Main Features of the Model

The sine-Gordon model is characterized by the following euclidean action

A“
ˆ

d xd t
„

1
16π

“

pB0ϕq
2´ pB1ϕq

2
‰

´ 2µ cospgϕq


, (1)

where g and µ are coupling constants andϕ is a scalar field. As anticipated in the introduction,
this action becomes that of another theory, know as sinh-Gordon model under the mapping
g ÞÑ i g with g P R. For generic values of the coupling, the theory has a rich particle spectrum
consisting of a soliton (s) and anti-soliton (s̄) of opposite Up1q charge and a family of bound
states known as breathers. Defining the new coupling

ξ“
g2

1´ g2
, (2)

we have that the masses of the breathers take the form

mk “ 2m sin
πkξ

2
for k “ 1,2, . . . ,`pξq, (3)

where m is the mass of the soliton and the anti-soliton and `pξq “ 1
ξ ´ 1 if 1

ξ P Z and r 1
ξ s

otherwise, where r¨s denotes the integer part. The mass m is related to the couplings µ and g
through the mass-coupling relation

µ“
Γ pg2q

πΓ p1´ g2q

»

–

m
?
πΓ p 1

2´2g2 q

2Γ p g2

2´2g2 q

fi

fl

2´2g2

, (4)

first found in [32]. There are various interesting regimes:

• For ξ ą 1 there are no bound states and the full spectrum consist only of the soliton
and the antisoliton. This is called the repulsive regime. In this regime, the theory is
equivalent to the massive Thirring model, a perturbation of the massive Dirac theory that
preserves the Up1q symmetry. We studied the entanglement entropy in this particular
regime in [30].

• The point ξ“ 1 is special as can be seen more precisely from the S-matrices given below.
From (5) we have that Sss

sspθq “ S s̄s̄
s̄s̄pθq “ ´1 and also Sss̄

ss̄pθq “ ´1 and S s̄s
ss̄pθq “ 0. At

this point the theory becomes a Dirac free fermion.

• For ξă 1 the model is in the attractive regime were bound states (breathers) are formed
with the masses (3).

• In particular, whenever 1
ξ “ n, with n P Z` the non-diagonal scattering amplitude

S s̄s
ss̄pθq “ 0 is vanishing and the theory becomes diagonal. In fact, it reduces to the

Dn-minimal Toda field theory.

4
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The S-matrices are [1]

Sss
sspθq “S s̄s̄

s̄s̄pθq “ ´exp

«

´i
ˆ 8

0

d t
t

sinh πtp1´ξq
2 sin ptθq

sinh πtξ
2 cosh πt

2

ff

“

8
ź

k“0

Γ
´

2k`1
ξ ´

iθ
πξ ` 1

¯

Γ
´

2k`1
ξ ´

iθ
πξ

¯

Γ
´

2k
ξ `

iθ
πξ ` 1

¯

Γ
´

2k`2
ξ `

iθ
πξ

¯

Γ
´

2k
ξ ´

iθ
πξ ` 1

¯

Γ
´

2k`2
ξ ´

iθ
πξ

¯

Γ
´

2k`1
ξ `

iθ
πξ

¯

Γ
´

2k`1
ξ `

iθ
πξ ` 1

¯ ,

(5)

and

Sss̄
ss̄pθq “ S s̄s

s̄spθq “
sinh θξ

sinh iπ´θ
ξ

Sss
sspθq , Sss̄

s̄spθq “ S s̄s
ss̄pθq “

sinh iπ
ξ

sinh iπ´θ
ξ

Sss
sspθq , (6)

where Sss̄
s̄spθq and S s̄s

ss̄pθq are the off-diagonal amplitudes. Useful linear combinations are

S`pθq “ Sss̄
ss̄pθq ` Sss̄

s̄spθq S´pθq “ Sss̄
ss̄pθq ´ Sss̄

s̄spθq . (7)

The remaining S-matrices are diagonal and can be expressed in terms of the standard blocks:

rxsθ “
tanh 1

2 pθ ` iπxq

tanh 1
2 pθ ´ iπxq

. (8)

For instance

Ssb1
pθq “

„

1` ξ
2



θ

, Sb1 b1
pθq “ rξsθ , Sb2 b2

pθq “ rξs2θ r2ξsθ , (9)

Sb1 b3
pθq “ rξsθ r2ξsθ , Sb1 b2

pθq “

„

ξ

2



θ

„

3ξ
2



θ

. (10)

An important property of these S-matrices is that they have poles in the physical sheet which
can be attributed to the presence of a bound state. The residue of such poles plays a role in
later sections and so we report some of these results here. In general, we define

´i Res
θ“iπuc

ab

Sabpθq :“ pΓ c
abq

2 , (11)

where iπuc
ab is the pole of the S-matrix corresponding to the formation of a bound state c in

the scattering process a ` b ÞÑ c. This equation provides a definition of the “pole strength"
Γ c

ab. For the S-matrices above we have for instance,

Γ
b1
ss̄ “

c

2cot
πξ

2
,

Γ
b2
ss̄ “

c

1
4

sin 2πξ csc2 πξ

2
,

Γ
b3
ss̄ “

c

2cot
3πξ

2
cot
πξ

2
cotπξ ,

Γ
b4
ss̄ “

a

2cot 2πξ cot
πξ

2
cotπξ cot

3πξ
2

,

(12)

which can be obtained using the infinite product representation (5). The above quantities
are associated with the pole strengths of Sss̄

ss̄pθq and Sss
sspθq for the first few breathers and the
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position of the poles are at iπξk with k “ 1, . . . ,`pξq as defined in (3) and assuming we are
in the attractive regime. For the breather S-matrices, we have

Γ
b2
b1 b1

“
a

2 tanπξ, Γ b4
b2 b2

“
2cosπξ` 1
2cosπξ´ 1

a

2 tan2πξ , Γ b3
b1 b2

“

d

2cosπξ` 1
2cosπξ´ 1

Γ
b2
b1 b1

, (13)

and Γ b4
b1 b3

“ Γ
b4
b2 b2
{Γ

b3
b1 b2

. Note that, as mentioned earlier, Sb1 b1
pθq coincides with the sinh-

Gordon S-matrix under the replacement B “ ´2ξ, where B is the sinh-Gordon coupling
constant [33,34]. More generally, the following integral formulae hold

Ssbk
pθq “ p´1qk exp

«

´i
ˆ 8

0

d t
t

2 cosh πtξ
2 sinh πtkξ

2 sin ptθq

sinh πξt
2 cosh πt

2

ff

, (14)

Sbk bp
pθq “ exp

«

´i
ˆ 8

0

d t
t

4cosh πtξ
2 sinh πtkξ

2 cosh πtp1´ξpq
2 sin ptθq

sinh πξt
2 cosh πt

2

ff

, (15)

for k ă p and, finally

Sbk bk
pθq “ ´exp

»

—

–
´i
ˆ 8

0

d t
t

2
”

cosh πtξ
2 sinh πtp2kξ´1q

2 ` sinh p1´ξqπt
2

ı

sin ptθq

sinh πξt
2 cosh πt

2

fi

ffi

fl
. (16)

A good summary of all the S-matrices, and of how to derive Gamma-function representations
from integral representations can be found for instance in [4].

3 Branch Point Twist Fields in a Nutshell

It has been known for some time that several entanglement measures, including the Rényi
entropies, can be expressed in terms of correlation functions of a special class of local fields T
which have been termed branch point twist fields in [27]. Branch point twist fields are, on the
one hand, twist fields in the broader sense, that is, fields associated with an internal symmetry
of the theory under consideration [27], and on the other hand related to branch points of
multi-sheeted Riemann surfaces [35]. They are twist fields associated to the cyclic permutation
symmetry of a model composed of n copies or “replicas" of a given theory, characterized by
the exchange relations

T pxqOipyq “ Oi`1pyqT pxq for y1 ą x1 , (17)

“ OipyqT pxq for x1 ą y1 , (18)

where Oipyq is any local field on copy number i, and with On`1pyq “O1pyq.
The idea of quantum fields associated with branch points of Riemann surfaces in the

context of entanglement appeared first in [35]. The general picture of branch point twist
fields as symmetry fields associated to cyclic permutation symmetry of the n Riemann surface’s
sheets, as per (17), was given in [27], where they were studied in massive IQFT. This description
is however independent of integrability, and it was first used in massive QFT outside of integrability
in [36].

Cyclic permutation symmetry is not naturally present in most IQFTs, but can be “manufactured"
by considering a replica model, composed of n copies of the original QFT (e.g. the sine-Gordon
model). The connection to replica theories and multi-sheeted Riemann surfaces arises from the
explicit formulae for entanglement measures, which generally depend on the quantity TrApρ

n
Aq

6
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where ρA is the reduced density matrix associated to a particular region A of the system. It is
possible to show that the quantity TrApρ

n
Aq is proportional to a correlation function of branch

point twist fields involving as many twist field insertions as boundary points between the region
A and the rest of the system. We will see an application of these ideas in Section 7 where we
discuss the application of our results to the computation of the entanglement dynamics.

3.1 Form Factors and Form Factor Equations

Starting with the exchange relations (17), in IQFT one can formulate twist field form factor
equations which generalize the standard form factor program for local fields [3, 37]. These
equations were first given in [27] for diagonal theories and then in [30] for non-diagonal
ones. They have been generalized to symmetry resolved branch point twist fields in [28,29].
We will not review all these equations and their properties here but only those relations that
are repeateadly used in the current paper, in particular the equations for one- and two-particle
form factors. Let us start by defining

Fa1...ak
pθ1, ¨ ¨ ¨ ,θk;ξ, nq :“ nx0|T p0q|θ1, ¨ ¨ ¨ ,θkya1...ak;n, (19)

to be a k-particle form factor, that is, a matrix element of the field between the vacuum state
and a k-particle state. Here nx0| represents the vacuum state and |θ1, ¨ ¨ ¨ ,θkya1...ak;n represents
an in-state of k particles with rapidities θ1, . . . ,θk and quantum numbers a1 . . . ak, both in the
replica model. These quantum numbers generally contain two indices, one for the particle
type and one for the copy number. However, in our computations we will generally restrict
ourselves to a single copy and will therefore drop the copy index. This is because form factors of
other copies can be obtained from these solutions by repeated use of the form factor equations.

The branch point twist field is a neutral field in relation to the sine-Gordon Up1q-symmetry
that exchanges soliton and anti-soliton. This implies the vanishing of any twist-field form
factors involving a different number of solitons and anti-solitons. At the one and two-particle
level this means that

Fsspθ ;ξ, nq “ Fs̄s̄pθ ;ξ, nq “ Fs̄bk
pθ ,ξ; nq “ Fsbk

pθ ,ξ; nq “ Fspξ, nq “ Fs̄pξ, nq “ 0 ,@k P Z` .
(20)

Here, we have used relativistic invariance and spinlessness of the twist field, which imply that
the two-particle form factor depends on a single rapidity variable (the rapidity difference of
the particles) and the one-particle form factor is rapidity independent. In addition, because of
Z2 symmetry we also have

Fb2k b2p´1
pθ ;ξ, nq “ Fb2k´1

pξ, nq “ 0 . @ k, p P Z` . (21)

Under these considerations, Watson’s equations for non-vanishing two-particle form factors
and particles in the same copy can be summarized as

Fss̄pθ ;ξ, nq “ S`pθqFss̄p´θ ;ξ, nq “ Fss̄p2πin´ θ ;ξ, nq , (22)

Fbi b j
pθ ;ξ, nq “ Sbi b j

pθqFbi b j
p´θ ;ξ, nq “ Fbi b j

p2πin´ θ ;ξ, nq , for i´ j P 2Z ,(23)

whereas the kinematic residue equations are

´i Res
θ“iπ

Fss̄pθ ;ξ, nq “ ´i Res
θ“iπ

Fbi bi
pθ ;ξ, nq “ xT y @ i P N , (24)

where xT y is the vacuum expectation value of the branch point twist field in the ground state
of the replica theory. Finally, the bound state residue equations are

´i Res
θ“iπuc

ss̄

Fss̄pθ ;ξ, nq “ Γ c
ss̄Fcpξ; nq , (25)

7
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where c is any particle that is formed as a bound state of s` s̄ for rapidity difference θ “ iπuc
ss̄.

In the breather sector we will use the bound state residue equation extensively and repeatedly
to obtain lower particle form factors of heavier breathers in a process known as “fusion". For
this reason it is convenient to write the more general equation

´i Res
θ“θ0

Fbi b j a1...ak
pθ ` iu,θ0´ iũ,θ1 ¨ ¨ ¨ ,θk;ξ, nq “ Γ

bi` j

bi b j
Fbi` j a1...ak

pθ ,θ1 ¨ ¨ ¨ ,θk;ξ, nq , (26)

where a1, . . . , ak are any particle combination for which the form factor is non-vanishing and
u` ũ “ ui` j

i j where θ “ iπui` j
i j is the pole of the scattering matrix Sbi b j

pθq corresponding to
the formation of breather bi` j . Similarly, u and ũ are related to the poles of Sb j bi` j

pθq and
Sbi bi` j

pθq.

4 Soliton-Antisoliton Form Factors

In the following we summarise the necessary formulas for the two-particle soliton-antisoliton
form factors of the branch point twist field. Although these quantities were already derived
in [30], the formulas were strictly speaking only justified in the repulsive regime of the sine-
Gordon model. As we show below they are, nevertheless, valid in the attractive regime as
well once a proper analytic continuation in the parameter ξ is considered. Let us first discuss
the minimal form factor of these objects, which we denote by Gpθ ;ξ, nq. This is the “minimal
solution" to using Eq. (22) which can be constructed in the manner shown in [27], which
itself generalizes a standard method in the context of the form factor program (see e.g. [38]).
This method takes as starting point the S-matrix involved in the middle identity (S`pθq in the
present case) of (22) and assumes that it admits a representation of the type

Spθq “ exp

„ˆ 8
0

dt
t

gptq sinh
tθ
iπ



, (27)

for some function gptq. If such a representation exists, then a minimal solution the equation
(22) is given by

f pθq “N exp

„ˆ 8
0

dt
t

gptq
sinh nt

sin2
ˆ

i tn
2

ˆ

1`
iθ
π

˙˙

, (28)

where N is a normalization constant. To obtain the minimal form factor Gpθ ;ξ, nq of interest,
we therefore need to write S` in the form (27). This is straightforward since

S`pθq “

˜

sinh θξ

sinh iπ´θ
ξ

`
sinh iπ

ξ

sinh iπ´θ
ξ

¸

Sss
sspθq :“ spθqSss

sspθq , (29)

with

spθq :“
sin π´iθ

2ξ

sin π`iθ
2ξ

. (30)

The function Sss
sspθq already has an exponential representation (5) and one can easily write a

similar representation for the function spθq as well

spθq “ exp

«

´2
ˆ 8

0

dt
t

sinh ppξ´ 1q tq sinh i tθ
π

sinhξt

ff

. (31)
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An important remark is that the integral (5) is convergent for any 0 ă ξ ă 1. Nevertheless
(31) is only convergent for 1

2 ă ξ ă 1. To be precise, for other values of ξ an alternative
representation of the function above has to be used given by

spθq “exp

«

2
ˆ 8

0

dt
t

sinh ppp2p` 1qξ´ 1q tq sinh tθ
iπ

sinhξt

ff

, for
1

2p
ě ξą

1
2p` 2

, (32)

with p P Z`. Thus, we have two different representations of the minimal form factor Gpθ ;ξ, nq
depending on whether or not ξ ´ 1

2 ą 0 or ξ ´ 1
2 ď 0 which we denote by G˘pθ ;ξ, nq,

respectively. Interestingly, the value ξ “ 1
2 is precisely the threshold for the formation of

breathers and this is no coincidence. From the symmetry arguments presented in subsection 3.1
we know that the branch point twist field has vanishing one-particle form factors for odd-
indexed breathers. However, the presence of non-zero one-particle breather form factors for
even indices is allowed as we show later. This means that the two-particle soliton-antisoliton
form factor of the branch-point twist field must have bound state poles at imaginary rapidity
values θ “ iπp1´ 2kξq for k “ 1, . . . , r 1

2ξ s. Equivalently, we can formulate this statement as
the dynamical pole axiom (25) which we now specialise to even breather bound states

´i Res
θ“iπp1´2kξq

Fss̄pθ ;ξ, nq “ Γ b2k
ss̄ Fb2k

pξ, nq . (33)

Notice that each new representation of spθq from (32), corresponds to a new breather with an
even index entering the spectrum of the theory.

Thus, when writing down the minimal part of Fss̄pθ ;ξ, nq we have two alternative
representations: if we employ the S-matrix representation (32) together with (5) and apply the
standard machinery (28) to obtain the minimal form factor, the result possesses no breather
bound state poles. This feature, is generally what is meant by “minimal solution". In this
case the dynamical pole equation (33) can only be satisfied by multiplying the minimal form
factor with another function which incorporates the required poles, similarly as for kinematic
poles [27]. On the other hand, if one uses the analytically continued solution (31) instead of
(32), the dynamical pole axiom (33) is automatically satisfied by the minimal form factor. In
other words, this form factor is no-longer “minimal" in the standard sense, but includes also
poles in the physical sheet corresponding to bound states.

Let us now continue our derivation for the minimal form factor, where the above discussed
features can be explicitly demonstrated. The minimal form factor can be written as

Gpθ ;ξ, nq “ ϕpθ ;ξ, nqΦpθ ;ξ, nq , (34)

where the function Φpθ ;ξ, nq follows from the integral representation of Sss
sspθq and can be

written as

Φpθ ;ξ, nq “ ´i sinh
θ

2n
exp

»

—

–

ˆ 8
0

dt
t

sinh
`1

2pξ´ 1qt
˘

sinh2
´

t
2

´

n´ θ
iπ

¯¯

cosh t
2 sinh ξt

2 sinh nt

fi

ffi

fl
, (35)

or, alternatively, as an infinite product of Gamma functions:

Φpθ ;ξ, nq “ ´i sinh
θ

2n

8
ź

k,p“0

»

—

—

–

Γ
´

p`n`pk`1qξ
2n

¯2
Γ

ˆ

1`
iθ
π `p`1`kξ

2n

˙

Γ

ˆ

´
iθ
π `p`1`kξ

2n

˙

Γ
´

p`n`kξ`1
2n

¯2
Γ

ˆ

1`
iθ
π `p`pk`1qξ

2n

˙

Γ

ˆ

´
iθ
π `p`pk`1qξ

2n

˙

fi

ffi

ffi

fl

p´1qp

.

(36)
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However, from a numerical viewpoint, the most useful representation is mixed, combining
both a finite product of Gamma-fuctions and an integral part. This representation (86) is
given in Appendix A. This kind of mixed representation was first used in [25] and is very
rapidly convergent.

The function ϕpθ ;ξ, nq in (34) follows from either the representation (31) valid for ξą 1
2

ϕ`pθ ;ξ, nq “exp

»

—

–
´2
ˆ 8

0

dt
t

sinh ppξ´ 1qtq sinh2
´

t
2

´

n´ θ
iπ

¯¯

sinhpntq sinhpξtq

fi

ffi

fl

“

8
ź

k“0

Γ
´

n`2kξ`1
2n

¯2
Γ

ˆ

´
iθ
π `2ξpk`1q´1

2n

˙

Γ

ˆ

1`
iθ
π `2ξpk`1q´1

2n

˙

Γ
´

n`2ξpk`1q´1
2n

¯2
Γ

ˆ

´
iθ
π `2kξ`1

2n

˙

Γ

ˆ

1`
iθ
π `2kξ`1

2n

˙ ,

(37)

or from (32), which is instead valid for 1
2p ě ξą

1
2p`2 and p P Z`

ϕ´pθ ;ξ, nq “exp

»

—

–
´2
ˆ 8

0

dt
t

sinh ppp2p` 1qξ´ 1qtq sinh2
´

t
2

´

n´ θ
iπ

¯¯

sinhpntq sinhpξtq

fi

ffi

fl

“

8
ź

k“0

Γ
´

n`2pk´pqξ`1
2n

¯2
Γ

ˆ

´
iθ
π `2pk`p`1qξ´1

2n

˙

Γ

ˆ

1`
iθ
π `2pk`p`1qξ´1

2n

˙

Γ
´

n`2pk`p`1qξ´1
2n

¯2
Γ

ˆ

´
iθ
π `2pk´pqξ`1

2n

˙

Γ

ˆ

1`
iθ
π `2pk´pqξ`1

2n

˙ .

(38)

As before, we can also write a mixed representations (see Eq. (87) and (88)). Similar to the
discussion following (31)-(31), the minimal form factors

G˘pθ ;ξ, nq “ ϕ˘pθ ;ξ, nqΦpθ ;ξ, nq , (39)

are two representations both satisfy Eq. (22), but whereas G`pθ ;ξ, nq includes bound state
poles at θ “ iπp1´2kξq for k “ 1, . . . , r 1

2ξ s, G´pθ ;ξ, nq does not. Instead the necessary bound
state poles can be introduced by simply dividing G´pθ ;ξ, nq by standard CDD factors of the
type

r
1

2ξ s
ź

k“1

ˆ

cosh
θ

n
´ cos

πp1´ 2kξq
n

˙

. (40)

A rigorous demonstration of this fact is presented in Appendix D. In this Appendix, the fulfilment
of (25) with our soliton and breather form factors is proven as well, and we also derive some
identities involving fractions of the minimal soliton-antisoliton form factors G˘pθ ;ξ, nq and
breather form factor Rpθ ;ξ, nq (derived in the next section) based on (25).

Now that we have found a minimal form factor that incorporates also the bound state
poles, we just need to introduce the kinematic pole that ensures our solution satisfies (24).
This kinematic pole can be introduced by multiplying with a function already presented in [27].
The final formulae for particles on the same copy are

Fss̄pθ ;ξ, nq “
xT y sin πn

2n sinh iπ´θ
2n sinh iπ`θ

2n

G`pθ ;ξ, nq

G`piπ;ξ, nq

“
xT y sin πn

2n sinh iπ´θ
2n sinh iπ`θ

2n

»

–

r
1

2ξ s
ź

k“1

cos πn ´ cos πp1´2kξq
n

cosh θn ´ cos πp1´2kξq
n

fi

fl

G´pθ ;ξ, nq

G´piπ;ξ, nq
.

(41)
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We stress again that the two formulas are completely identical on the physical sheet and that
the first line is the same expression derived for the repulsive regime in [27].

5 Breather Form Factors

In this section we focus on the breather sector of the theory, where the S-matrices are diagonal.
The form factors

Fb1 b1
pθ ;ξ, nq, Fb1 b1 b1 b1

pθ1,θ2,θ3,θ4;ξ, nq , (42)

can be easily obtained from known results for the sinh-Gordon model under the replacement
B “´2ξ. With this identification one can then take the form factor solutions found in [27,31]
and employ fusion to construct the chains of form factors

Fb1 b1 b1 b1
pθ1,θ2,θ3,θ4;ξ, nq ÞÑ Fb2 b1 b1

pθ1,θ2,θ3;ξ, nq

ÞÑ Fb2 b2
pθ ;ξ, nq or Fb3 b1

pθ ;ξ, nq ÞÑ Fb4
pξ, nq , (43)

and
Fb1 b1

pθ ;ξ, nq ÞÑ Fb2
pξ, nq . (44)

A nice example of this approach was given in Appendix A of [39] for the form factors of
exponential fields.

5.1 Minimal Form Factor and Form Factors of b1

Although we take the sinh-Gordon solutions as starting point, it is still useful to say a few
words about the basic structure of those solutions, specially the minimal form factor. This
function provides a minimal solution to the equations (23) for i “ j “ 1 and two breathers
in the same copy. It can be easily adapted from the solutions presented in various papers
[4, 12, 23–25] and the techniques for the computation of minimal form factors introduced
in [27]. The generalization to branch point twist fields of the representation given in [12]
takes the form

Rpθ ;ξ, nq “exp

»

—

–
2
ˆ 8

0

d t
t

sinh ξt
2 sinh tp1`ξq

2 cosh
´

t
´

n` iθ
π

¯¯

cosh t
2 sinhpntq

fi

ffi

fl

“

8
ź

k“0

»

—

—

–

Γ

ˆ

´
iθ
π ´ξ`k

2n

˙

Γ

ˆ

1`
iθ
π ´ξ`k

2n

˙

Γ

ˆ

´
iθ
π `1`ξ`k

2n

˙

Γ

ˆ

1`
iθ
π `1`ξ`k

2n

˙

Γ

ˆ

´
iθ
π `k
2n

˙

Γ

ˆ

1`
iθ
π `k
2n

˙

Γ

ˆ

´
iθ
π `k`1

2n

˙

Γ

ˆ

1`
iθ
π `k`1

2n

˙

fi

ffi

ffi

fl

p´1qk

.

(45)

This function has the useful properties:

lim
θÑ8

Rpθ ;ξ, nq “ 1 and Rp0;ξ, nq “ 0 . (46)

A similar discussion as presented in the previous section also applies to this solution. First,
although Rpθ ;ξ, nq is constructed from the sinh-Gordon minimal form factor, it has very different
analytic properties. Indeed, once more Rpθ ;ξ, nq is not minimal, in the strictest sense of having
no poles in the physical sheet. Rpθ ;ξ, nq does have poles in the physical sheet, when the
coupling allows for the the first breather to form higher breather bound states. Therefore, the
solution (47) is valid for all values of the coupling ξ, with the function Rpθ ;ξ, nq introducing
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bound state poles as needed. Second, the formula is once more only convergent for ξą 1
2 and

this can be numerically addressed by employing the mixed representation (89).
The full two-particle form factor is then given by

Fb1 b1
pθ ;ξ, nq “

xT y sin πn
2n sinh iπ´θ

2n sinh iπ`θ
2n

Rpθ ;ξ, nq
Rpiπ;ξ, nq

. (47)

The four-particle form factor can be read off from [31] and takes the form

Fb1 b1 b1 b1
pθ1,θ2,θ3,θ4;ξ, nq “ Hpξ, nqQpx1, x2, x3, x4;ξ, nq

ź

1ďiă jď4

Rpθi ´ θ j;ξ, nq

px i ´ωx jqpx j ´ωx iq
,

(48)
with

Hpξ, nq “ xT y
4ω6 sin2 π

n

n2Rpiπ;ξ, nq2
, x i “ e

θi
n , ω“ e

iπ
n , (49)

and

Qpx1, x2, x3, x4;ξ, nq “ σ4

“

σ4
2 ` q1pξ, nqσ2pσ

2
3 `σ

2
1σ4q ` q2pξ, nqσ1σ

2
2σ3` q3pξ, nqσ2

1σ
2
3

q4pξ, nqσ2
2σ4` q5pξ, nqσ1σ3σ4` q6pξ, nqσ2

4

‰

. (50)

Hereσi are the elementary symmetric polynomials on variables tx1, x2, x3, x4u and the coefficients
qipξ, nq where given in the Appendix of [31] (which unfortunately contains a typo). Calling

cpaq :“ cos
πa
2n

, (51)

they can be rewritten as

q1pξ, nq “ cp1q´1 p1` 2cp2qq pcp3q ´ cp1` 2ξqq ,

q2pξ, nq “ ´cp1q´1 pcp2ξ` 1q ` 4cp1q ` cp3qq ,

q3pξ, nq “ 2cp2p1` ξqq ` 2cp2ξq ` 2cp2q ` 3,

q4pξ, nq “ 2 p3cp2ξq ` 3cp2p1` ξqq ` cp2p2` ξqq ` cp2p1´ ξqq ` cp2p1` 2ξqq

`3cp2q ´ cp4q ` 1q ,

q5pξ, nq “ ´2 p6` 6cp2q ` 4cp4q ` cp6q ` cp2p2´ ξqq ` 5cp2ξq ` cp4ξq ` 5cp2p1` ξqq

`cp4p1` ξqq ` 2cp2p2` ξqq ` cp2p3` ξqq ` 2cp2p1´ ξqq ` cp2p1` 2ξqqq ,

q6pξ, nq “ 8cp2q2p3` 3cp2q ´ cp4q ` 3cp2ξq ` 3cp2p1` ξqq ` cp4p1` ξqq ` cp2p2` ξqq

`cp2p1´ ξqq ` cp2p1` 2ξqq . (52)

5.2 Fusion Procedure

In this section we present the results of the fusion procedure as described schematically in
(43). The simplest form factor to be obtained from the bootstrap approach outlined before is
Fb2
pξ, nq. The breather b2 is a bound state of two b1 breathers corresponding to the simple

pole of Sb1 b2
pθq at θ “ iπξ. The bound state residue equation simply tells us that

´i Res
θ“iπξ

Fb1 b1
pθ ;ξ, nq “ Γ b2

b1 b1
Fb2
pξ, nq . (53)

We also know that the minimal form factor Rpθ ;ξ, nq satisfies the equation

Rpθ ;ξ, nq “ Sb1 b1
pθqRp´θ ;ξ, nq , (54)
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Figure 1: Left: The one-particle form factor Fb2
pξ, nq as a function of n for ξ “ 0.4

(pink), 0.3 (blue), 0.2 (green), 0.1 (red), 0.05 (brown) and 0.005 (black). Right:
The one-particle form factor Fb2

pξ, nq as a function of ξ for n“ 2 (red), 5 (blue), 12
(green), 50 (magenta).

and so, at the pole we have that

´i Res
θ“iπξ

Rpθ ;ξ, nq “ ´i Res
θ“iπξ

Sb1 b1
pθqRp´θ ;ξ, nq “ pΓ b2

b1 b1
q2Rp´iπξ;ξ, nq . (55)

Putting all factors together, this gives the formula

Fb2
pξ, nq “

xT y sin πn
a

2 tanπξ

2n sinh iπp1´ξq
2n sinh iπp1`ξq

2n

Rp´iπξ;ξ, nq
Rpiπ;ξ, nq

. (56)

For n Ñ 1 the form factor vanishes as expected (since the twist field becomes the identity if
the replica number is 1). However the limit

lim
nÑ1

Fb2
pξ, nq

1´ n
“
π
a

tanπξ
?

2 cos2 πξ
2

Rp´iπξ;ξ, 1q

Rpiπ;ξ, 1q
, (57)

is non-zero. This limit plays a role in computations of the von Neumann entropy.
Note that the breather b2 is only present for ξ ă 1

2 . Fig. 1 shows the function (56) for
several choices of ξ and n.

5.2.1 Higher Breather Form Factors

Let us now consider a more involved fusion-based computation, namely that giving the form
factor Fb2 b1 b1

pθ1,θ2,θ3;ξ, nq from the four-particle form factor (48). The key equation in this
case is

´i Res
θ“θ1

Fb1 b1 b1 b1
pθ `

iπξ
2

,θ1´
iπξ
2

,θ2,θ3;ξ, nq “ Γ b2
b1 b1

Fb2 b1 b1
pθ1,θ2,θ3;ξ, nq . (58)

Considering the formula (48) we see once more that the pole will originate from of the R-
factors in the product, giving the contribution (55). More precisely, we obtain a solution of
the form

Fb2 b1 b1
pθ1,θ2,θ3;ξ, nq “ H211pξ, nqQ211px1, x2, x3;ξ, nq

ˆ
Rpθ23;ξ, nqRpθ12`

iπξ
2 ;ξ, nqRpθ13`

iπξ
2 ;ξ, nqRpθ12´

iπξ
2 ;ξ, nqRpθ13´

iπξ
2 ;ξ, nq

px2´ωx3qpx3´ωx2qpx1´ x2ω
a

βqpx2´ x1ω
a

βqpx1´ x3ω
a

βqpx3´ x1ω
a

βq
, (59)
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where β “ e´
iπξ
n and Q211px1, x2, x3;ξ, nq is obtained from evaluating Qpx1β

´
1
2 , x1β

1
2 , x2, x3q

which simplifies with part of the denominator of (48) giving

Q211px1, x2, x3;ξ, nq “ σ2

“

pσ2
2 ` σ̂

2
1σ

2
1 ` σ̂

4
1qcp1q ` 2σ2σ̂

2
1cpξqcpξ´ 5q

´2σ1σ̂1pσ2` σ̂
2
1qcpξ` 2qcp2ξ´ 1q

`2σ2σ̂
2
1pcp1qcp2pξ` 2qq ´ cpξqcp3ξ` 1qq

`2pσ2
1 ´σ2qσ̂

2
1cpξqpcp3ξ´ 1q ´ cp3´ ξqq

‰

, (60)

and σ1 “ x2` x3,σ2 “ x2 x3 and σ̂1 “ x1. As for the constant, we obtain

H211pξ, nq “ xT y
2ω3β sin π

2n sin πn Γ
b2
b1 b1

n2 sin πpξ`1q
2n sin πpξ´1q

2n

Rp´iπξ;ξ, nq
Rpiπ;ξ, nq2

“
4ω3β sin π

2n Fb2
pξ, nq

nRpiπ;ξ, nq
. (61)

Having now seen two applications of the fusion procedure it is easy to proceed for other form
factors. We present more details of those computations in Appendix B. Here we just summarize
the main formulae:

Fb3 b1
pθ12;ξ, nq “ H31pξ, nqQ31px1, x2;ξ, nq

Rpθ12;ξ, nqRpθ12` iπξ;ξ, nqRpθ12´ iπξ;ξ, nq
px1´ x2ωβqpx2´ x1ωβqpx1α´ x2qpx2α´ x1βq

,

(62)
with H31pξ, nq and Q31px1, x2;ξ, nq given in (93), (92), respectively.

Fb2 b2
pθ12;ξ, nq “ H22pξ, nqQ22px1, x2;ξ, nq

Rpθ12;ξ, nq2Rpθ12` iπξ;ξ, nqRpθ12´ iπξ;ξ, nq
px1´αx2qpx2´αx1qpx1´αβ x2qpx2´αβ x1q

,

(63)
with H22pξ, nq and Q22px1, x2;ξ, nq given by (104) and (102) and, finally

Fb4
pξ, nq “ xT y

sin πn sin π
2np1` 2cos πξn q cos πp1´ξq2n Γ

b4
b3 b1
Γ

b3
b2 b1
Γ

b2
b1 b1

2n2 sin2 πp1`ξq
2n sin πp1´2ξq

2n sin πp1´3ξq
2n

ˆ
Rp´3πiξ;ξ, nqRp´2πiξ;ξ, nq2Rp´iπξ;ξ, nq3

Rpiπ;ξ, nq2
, (64)

which, as we see in Appendix B can be obtained from either fusing b3 and b1 or b2 with itself,
giving identical results. Before ending this section, it is worth noting that Watson’s equations
and the bound state residue equation for form factors can be repeatedly used to obtain the form
factors of breather bk starting with a form factor involving k breathers of type b1 in a more
systematic manner. This technique is described for instance in equation (A.3) of Appendix A
in [40]. This method would allow us for instance to reduce (48) to (64) by simultaneously
fusing all particles. The result is the same as presented here.

5.3 Some Consistency Checks

Apart from the ∆ sum rule that we will discuss later, there are a few properties that the form
factors must satisfy and which help us make sure these formulae are correct. One of the
strongest tests is the clustering decomposition property which states that in the absence of
internal symmetries, form factors factorize into products of lower particle number form factors
if a subset of the rapidities is sent to infinity. More precisely, for the form factors above we
expect that

lim
θÑ8

Fb1 b3
pθ ;ξ, nq “ 0 , lim

θÑ8
Fb2 b2

pθ ;ξ, nq “
Fb2
pξ, nq2

xT y
, (65)
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and

lim
θ1Ñ8

Fb2 b1 b1
pθ1,θ2,θ3;ξ, nq “

Fb2
pξ, nqFb1 b1

pθ23;ξ, nq

xT y
, lim
θ1,θ2Ñ8

Fb2 b1 b1
pθ1,θ2,θ3;ξ, nq “ 0 .

(66)
These identities can be easily checked thanks to the first property in (46). The first property
in (65) follows from observing that for θ1 Ñ8 the denominator of the form factor (62) scales
with x4

1 whereas the numerator (that is, the function Q31px1, x2, x2;ξ, nqq scales as x3
1 . A

similar argument applies to the second equality in (66). The second identity in (65) follows
from

lim
θ1Ñ8

Q22px1, x2;ξ, nq „ 2ω
?
ωβ2cp1qx4

1 , (67)

and

lim
θ1Ñ8

Rpθ12;ξ, nq2Rpθ12` iπξ;ξ, nqRpθ12´ iπξ;ξ, nq
px1´ωx2qpx2´ωx1qpx1´ωβ x2qpx2´ωβ x1q

„
1

ω2β x4
1

(68)

together with the formula (104). The first identity in (66) follows from

lim
θ1Ñ8

Q211px1, x2, x3;ξ, nq „ cp1qx4
1 x2 x3 , (69)

lim
θ1Ñ8

Rpθ23;ξ, nqRpθ12`
iπξ
2 ;ξ, nqRpθ13`

iπξ
2 ;ξ, nqRpθ12´

iπξ
2 ;ξ, nqRpθ13´

iπξ
2 ;ξ, nq

px2´ωx3qpx3´ωx2qpx1´ x2ω
a

βqpx2´ x1ω
a

βqpx1´ x3ω
a

βqpx3´ x1ω
a

βq

„
Rpθ23;ξ, nq

ω2β x4
1px2´ωx3qpx3´ωx2q

. (70)

Comparing with (47) and (56) we find that the clustering property is exactly reproduced. We
may also check that the solution Fb2 b2

pθ ;ξ, nq satisfies the kinematic residue equation (24)
which indeed it does. This can be shown by employing the non-trivial identity

Rp´iπξ;ξ, nq2Rpiπp1´ ξq;ξ, nqRpiπp1` ξq;ξ, nq “
n tan πξ2n sin πp1`ξq2n sin πpξ´1q

2n

2ω4 sin π
2n sin πp1`2ξq

2n tanπξ
, (71)

which can be established with the help of the Γ -function representation given in Appendix A
and along similar lines as the proofs presented in Appendix D. We conclude by noting that
similar consistency checks for the form factors of local fields in the sine-Gordon model were
performed also in [10].

6 Consistency Checks by ∆ Sum Rule

The ∆ sum rule [41] is one of the most useful and common methods for testing form factor
solutions. It gives a relationship between the conformal dimension of a local field T and a
certain integral involving the two point function nx0|T p0qΘprq|0yn where Θ is the trace of the
stress-energy tensor and |0yn is again the vacuum state in the replica theory. In its integrated
form given for instance in [42] and after generalizing to branch point twist fields, the rule can
be expressed as follows:

∆T “´
n

2xT y

8
ÿ

k“1

ÿ

a1...ak

ˆ 8
´8

dθ1 . . . dθk

k!p2πqk
FT

a1...ak
pθ1, . . . ,θk;ξ, nqFΘa1...ak

pθ1, . . . ,θk;ξq˚

´

řk
p“1 mp coshθp

¯2 , (72)

15

https://scipost.org
https://scipost.org/SciPostPhys.10.6.132


SciPost Phys. 10, 132 (2021)

Table 1: The contributions to the sum (73) from the soliton-antisoliton term (ss̄) and
the breather-breather term (b1 b1) for ξ “ 0.62734 (left) and ξ “ 0.82734 (right).
The first column shows the exact values of ∆T and the last column the sum of ss̄
and b1 b1 contributions. As expected, the main contribution comes from the ss̄ term.
This contribution gets larger as we approach the threshold value ξ “ 1, while the
breather contribution is reduced.

n ∆T ss̄ b1 b1 ∆
p1q
T

2 0.0625 0.0602025 0.0008771 0.0610796

3 0.11111 0.1064464 0.0016783 0.1081246

4 0.15625 0.1493874 0.0024134 0.1518008

5 0.2 0.1910316 0.0031194 0.1941510

n ∆T ss̄ b1 b1 ∆
p1q
T

2 0.0625 0.0618871 0.0000835 0.0619705

3 0.11111 0.1098190 0.0001636 0.1099826

4 0.15625 0.1543269 0.0002368 0.1545637

5 0.2 0.1974738 0.0003068 0.1977806

where ∆T “
c

24pn´
1
nq is the conformal dimension of the branch point twist field [27,35,43]

and we have now added a superindex to the form factors to indicate the quantum field they
correspond to. The second sum is over all possible choices of particle types ap with masses
mp.

As usual with this type of expansion, convergence of the sum is expected to be quick, and
the main contributions come from the one- and two-particle form factors. Hence, if we can
show such near saturation we can be confident that our form factors solutions are correct.

Let ∆p`pξqqT be the conformal dimension of the branch point twist field as given by (72) in
the regime where `pξq breathers are present. Although the exact value of ∆T is independent
of ξ the number and contribution of the terms in the sum changes substantially depending on
the coupling. In what follows we present numerical results for the sum above for `pξq “ 1,2, 3
and 4. For this we need first to obtain the one- and two-particle breather form factors of the
stress-energy tensor in the sine-Gordon model. This can be done in a similar fashion as for the
branch point twist fields, namely starting from the sinh-Gordon solutions presented in [25]
and carrying out the fusion procedure. The results are presented in appendix E.

Let us consider the regimes when there are one, two, three or four breathers present we
have that the expansion above can be approximated as follows:

• For ξ ą 1 we are in the repulsive regime where no breathers are present. The main
contribution to the ∆ sum rule comes from the soliton-antisoliton form factor and was
computed in [30].

• For 1
2 ď ξă 1 we have a single breather b1 present and the main contributions are

∆
p1q
T «´

n
32π2m2xT y

ˆ 8
´8

dθ
4 sin2 πξ

2 FT
ss̄ pθ ;ξ, nqFΘss̄ pθ ;ξq˚`FT

b1 b1
pθ ;ξ, nqFΘb1 b1

pθ ;ξq˚

4 sin2 πξ
2 cosh2 θ

2

.(73)

The sum for two values of ξ is presented in Table 1.

• For 1
3 ď ξă

1
2 we have two breathers b1, b2 present and the main contributions are

∆
p2q
T «∆

p1q
T ´

n FT
b2
pξ, nqFΘb2

pξq˚

8πm2 sin2πξxT y
´

n
32π2m2xT y

ˆ 8
´8

dθ
FT

b2 b2
pθ ;ξ, nqFΘb2 b2

pθ ;ξq˚

4sin2πξ cosh2 θ
2

.(74)

Numerical values of the sum (74) and of individual contributions to it are presented in
Table 2 of Appendix E.
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• For 1
4 ď ξă

1
3 we have three breathers b1, b2, b3 present and the main contributions are

∆
p3q
T « ∆

p2q
T ´

n
32π2m2xT y

ˆ 8
´8

dθ
FT

b3 b3
pθ ;ξ, nqFΘb3 b3

pθ ;ξq˚

4sin2 3πξ
2 cosh2 θ

2

(75)

´
n

64π2m2xT y

ˆ 8
´8

ˆ 8
´8

dθ1dθ2

FT
b1 b3
pθ1´ θ2;ξ, nqFΘb1 b3

pθ1´ θ2;ξq˚

psin πξ2 coshθ1` sin 3πξ
2 coshθ2q

2

• Finally, for 1
5 ď ξ ă 1

4 we have four breathers b1, b2, b3, b4 present and the main
contributions are

∆
p4q
T « ∆

p3q
T ´

n FT
b4
pξ, nqFΘb4

pξq˚

8πm2 sin2 2πξxT y
´

n
32π2m2xT y

ˆ 8
´8

dθ
FT

b4 b4
pθ ;ξ, nqFΘb4 b4

pθ ;ξq˚

4sin2 2πξ cosh2 θ
2

´
n

64π2m2xT y

ˆ 8
´8

ˆ 8
´8

dθ1dθ2

FT
b2 b4
pθ1´ θ2;ξ, nqFΘb2 b4

pθ1´ θ2;ξq˚

psinπξ coshθ1` sin2πξ coshθ2q
2

. (76)

Table 3 gives an example of the evaluation of the sum (76), albeit without including the b2 b4,
b3 b3 and b4 b4 contributions, which we have not evaluated in this paper. Even so, the sum
rule is approximately 95% saturated.

In conclusion, our numerical evaluation of the∆ sum rule in various regions of the attractive
regime shows near saturation upon inclusion of all relevant one-particle and two-particle
form factors and therefore provides strong backing for our analytical results. It is interesting
to note that the deeper we go into the attractive regime (i.e. the smaller ξ is) the more
significant breather contributions are, so that for instance, in Table 2(d) the soliton-antisoliton
contribution represents only about 20% of the total value of the dimension.

7 Application: Entanglement Oscillations after a Mass Quench

An interesting application of our results is to the study of the entanglement dynamics of the
sine-Gordon model after a global mass quench [44, 45]. That is, we want to study the time-
dependence of a certain measure of entanglement when the mass scale m is abruptly changed
at time zero. Then, if the original hamiltonian of the system was Hpmq and m was the pre-
quench soliton mass, at times t ą 0 the system will time-evolve with a new Hamiltonian Hpm̂q,
where m̂ is the post-quench soliton mass. In such a situation, the reduced density matrix may
be formally written as:

ρA “ TrBpe
´i tHpm̂q|0yx0|ei tHpm̂qq , (77)

where A and B are two complementary regions and |0y is the pre-quench ground state. In
terms of ρA the Rényi and von Neumann entropies are defined in the usual form:

Snptq :“
logpTrρn

Aq

1´ n
, S1ptq :“ lim

nÑ1
Snptq , (78)

and if A is a semi-infinite region, these expressions are equivalent to:

Snptq “
log

`

ε2∆T
nx0|T p0, tq|0ynq

˘

1´ n
, (79)

and its nÑ 1 limit, where ε is a non-universal UV cut-off which can be eliminated by considering
instead the quantities

∆Snptq :“ Snptq ´ Snp0q , (80)
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and |0yn is the pre-quench ground state in the replica theory. Note that Snp0q is a function of
the vacuum expectation value nx0|T p0,0q|0yn which we have abbreviated as xT y in our form
factor formulae.

With these definitions, the situation we want to consider here is entirely analogous to the
studies performed in [46, 47]. In fact, the present model has two key common features with
the minimal E8 Toda field theory studied in [47]. They are the presence of non-vanishing one-
particle form factors and a mass spectrum where all masses are proportional to a fundamental
scale m (the mass of the soliton/antisoliton). Carrying out the quench perturbation theory
proposed in [48], non-vanishing one-particle form factors inevitably lead to entanglement
oscillations at first order in perturbation theory. As observed in [46, 49] the dynamics of
entanglement is closely tied to the dynamics of the one-point function of the order parameter.
Indeed, oscillations of the one-point function of the order parameter in the sine-Gordon model,
following a mass quench were found in [50] employing perturbation theory.

The formulae involved are almost identical to those presented in [47], specially in the
supplementary material. We must just highlight that the field associated with the mass quench
in this case is the perturbing field in the sine-Gordon theory, namely the field Ψ “ 2 cos gϕ
where g is the coupling we first encountered in the action (1). This field is, as usual, proportional
to the trace of the stress-energy tensor, hence its form factors are identical to those of Θ up
to a proportionality constant (essentially, we need to replace xΘy “ 2πm2

1 with xΨy). Let
us consider a perturbation where the original coupling µ in the action (1) is changed by a

small amount δµ, that is µ ÞÑ µ ` δµ with
δµ
µ ! 1. Then, the Opδµq contribution to the

Rényi entropies may be expressed as a series in form factors of T and Ψ, where the leading
contributions to the increment of the Rényi entropies, come from one- and two-particle form
factors. After various simplifications, the series takes the form

∆Snptq “
1

1´ n

δµ

µ

»

–

2∆T
2´ 2∆Ψ

` nCΨ
r
`pξq

2 s
ÿ

k“1

2

r2
2k

F̂Ψb2k
pξq

˚
F̂T

b2k
pξ, nq cospr2km̂tq (81)

`2nCΨ
ˆ 8
´8

dθ
2π

Re
“

rF̂Ψss̄ p2θ ;ξqs˚ F̂T
ss̄ p2θ ;ξ, nqe´2im̂t coshθ

‰

2 cosh2 θ

`2nCΨ
ˆ 8
´8

dθ
2π

`pξq
ÿ

k“1

Re
”

rF̂Ψbk bk
p2θ ;ξqs˚ F̂T

bk bk
p2θ ;ξ, nqe´2irkm̂t coshθ

ı

2r2
k cosh2 θ

`2nCΨ
ˆ 8
´8

dθ
2π

1
ÿ

k‰p

1

rk coshθprk coshθ ` rp cosh θ̃q

ˆRe
”

rF̂Ψbk bp
pθ ´ θ̃qs˚ F̂T

bk bp
pθ ´ θ̃qe´im̂tprk coshθ`rp cosh θ̃q

ı

` . . .
ı

`Opδ2
λq ,

where

θ̃ :“´ sinh´1

˜

rk

rp
sinhθ

¸

, (82)

rk “
m̂k
m̂ are the scaled post-quench breather masses. The “prime" symbol in the last sum

indicates the additional restriction that only terms where k and p are either both even or both
odd will be non-vanishing. The “hatted" form factors are scaled versions of the usual form
factors where the expectation values of the associated fields have been factored out. This
dependency can then be absolved into the ratio of couplings δµ{µ and the constant CΨ . The

conformal dimension ∆Ψ “ g2 “
ξ

1`ξ and the constant

CΨ “
AΨ
κ2

, where xΨy “AΨµ
2∆Ψ

2´2∆Ψ and m“ κµ
1

2´2∆Ψ . (83)
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These are the standard scaling laws for vacuum expectation values and the mass-coupling
relation. A relationship between the constant AΨ and κ can be read off from the paper [51]
where the expectation values of exponential fields in the sine-Gordon model were obtained.
From this formula it follows that

xΨy “ 2

»

—

–

m
?
πΓ

´

1
2´2g2

¯

2Γ
´

g2

2´2g2

¯

fi

ffi

fl

2g2

exp
ˆ 8

0

d t
t

«

sinh2
p2g2 tq

2 sinhpg2 tq sinh t coshpp1´ g2qtq
´ 2g2e´2t

ff

.

(84)
It is important to note that this formula is only convergent for g2 ă

1
2 , which excludes the

repulsive regime [51]. The mass-coupling relation was given earlier in (4). This allows us to
fix the ratio above to

CΨ “
Γ pg2qΓ p 1

2´2g2 q
2

2Γ p1´ g2qΓ p
g2

2´2g2 q
2

exp
ˆ 8

0

d t
t

«

sinh2
p2g2 tq

2 sinhpg2 tq sinh t coshpp1´ g2qtq
´ 2g2e´2t

ff

.

(85)
Despite the messy nature of the formula (81) (a very similar formula can be written for

the von Neumann entropy) the main features of entanglement are rather clear: for small
quenches, there will be undamped oscillations whenever any one-particle form factors are
non-vanishing, confirming the general ideas observed in [47, 48]. In addition, there will be
additional oscillatory terms coming from higher particle form factors which will be suppressed
by a power of t that depends on the leading behaviour of the form factors near zero rapidity
(this can be analysed further by using a saddle-point approximation). This means that the
dynamics of entanglement following a mass quench is rather different in the regime ξ ď 1

2
(undamped oscillations with at least two breathers present) and for for ξ ą 1

2 (damped
oscillations with at most one breather present).

We demonstrate these qualitative differences in the entanglement evolution by evaluating
(81) numerically for various values of n and two particular values of ξ. In Figure 2 ∆Snptq
is displayed for n “ 2,3, 4,5 and for ξ “ 0.810361 and ξ “ 0.420712. Clearly, above the
second breather threshold (ξ “ 0.810361) no undamped oscillations can be seen, which are,
very clearly present when the second breather joins the spectrum (ξ “ 0.420712). Note that
although ∆Snp0q “ 0 by the definition (80), it is not exactly zero numerically (although it
is rather small). This is because Snptq is evaluated at first order in perturbation theory and
therefore its value at zero is only an approximation of the exact analytic value Snp0q that is
subtracted in (80).

Note that these results are only expected to hold for small quenches and times t ă µ´1, as
explained in [48] and also discussed in [52,53]. In addition, we know that for large times the
leading feature of entanglement (in any regime) is linear growth [44,45,54]. As observed in
other studies, this feature is not recovered using first-order perturbation theory as it is a second
order effect [46,47]. In addition, in some cases, like for E8 Toda field theory, linear growth is
very slow so that it only becomes apparent for large times in numerical simulations [47]. The
same phenomenology is also observed for the von Neumann entropy for the same reasons.

It is worth considering whether or not these behaviours will persist for larger times and
quenches. In this regard, arguments have been put forward as to why the undamped oscillations
found at first order should be damped when including higher order terms [19, 52]. At the
same time, we know of at least one theory, E8 Toda field theory, where this eventual damping
is not observed numerically even for large quenches and times [47]. This suggests that this
phenomenology still needs to be better understood. Similar behaviours have been observed
in [19, 20, 50, 52] for the expectation value of the field Ψ and σ and in [18] for two-point
functions of the field ϕ.
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Figure 2: The time evolution of the rescaled Rényi entropy difference
´

δµ
µ

¯´1
∆Sn

after a mass quench in the sine-Gordon model with interaction parameter
ξ “ 0.810361 (a) and ξ “ 0.420712 (b). Time is measured in units of the inverse
soliton mass m and the blue, yellow, green, and red curves correspond to Rényi
entropies with n“ 2, 3,4 and 5, respectively.

8 Conclusion

In this paper we have carried out an in-depth study of low particle-number form factors of the
branch point twist field in the sine-Gordon model in the attractive regime. We have considered
up to four breathers in the spectrum and focused on the one- and two-particle form factors.
Our work extends results for the repulsive regime that were presented in [30].

Although computations are generally tedious, great simplification comes from the presence
of Up1q symmetry in the soliton-antisoliton sector and Z2 symmetry in the breather sector.
The latter imply the vanishing of a large number of form factors so that only form factors
containing the same number of solitons and antisolitons as well as an even number of odd
breathers are non-vanishing. The two-particle form factors of the soliton-antisoliton sector
can be computed by diagonalizing the form factor equations (as the theory is non-diagonal)
and incorporating the correct structure of bound state and kinematic poles, as discussed in
great detail in Section 4 and Appendix D. For the breather sector the combination of the
fusion mechanism with the analytic continuation from sinh-Gordon, provide an effective way
of constructing the form factors of heavier breathers from those of lighter ones leading to the
results of Secion 5 and Appendices B and C.

Our form factors can now be employed to compute correlation functions of branch point
twist fields, hence a number of entanglement measures. In this paper we have highlighted
just one such application, namely to the study of the entanglement dynamics following a mass
quench in the sine-Gordon model. As observed in a similar study [47] we find that at least for
small quenches, undamped oscillations of frequencies proportional to the even breather masses
are present and constitute the leading behaviour of Rényi and von Neumann entropies. This
is analogous to results found in [19,20,50,52] for the expectation value of the field Ψ and σ
and more generally in [18] for two-point functions of the field ϕ.

As anticipated in the introduction, our immediate goal now is to extend these results to
symmetry resolved twist fields [28,29].
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A Minimal Form Factors Mixed Representations

As mentioned in Sections 4 and 5 the most useful representation for the minimal form factors
is neither exponential nor based entirely on Gamma-function products, but a mixture of the
two. This idea was employed first in [25] and can be implemented in a similar way for any
minimal form factor of the type described in this paper. The function (36) can be written as

Φpθ ;ξ, nq “ ´i sinh
θ

2n

N
ź

k,p“0

»

—

—

–

Γ
´

p`n`pk`1qξ
2n

¯2
Γ

ˆ

n` iθ
π `p`1`kξ`n

2n

˙

Γ

ˆ

´n´ iθ
π `p`1`kξ`n

2n

˙

Γ
´

p`n`kξ`1
2n

¯2
Γ

ˆ

n` iθ
π `p`pk`1qξ`n

2n

˙

Γ

ˆ

´n´ iθ
π `p`pk`1qξ`n

2n

˙

fi

ffi

ffi

fl

p´1qp

ˆ exp

»

—

–
´

ˆ 8
0

dt
t

sinh
`1

2p1´ ξqt
˘`

e´ξpN`1qt ` e´pξ`1qpN`1qt ´ e´pN`1qt
˘

sinh2
´

t
2

´

n´ θ
iπ

¯¯

cosh t
2 sinh ξt

2 sinh nt

fi

ffi

fl
.

(86)

Whereas the functions ϕ˘pθ ;ξ, nq can be written as

ϕ`pθ ;ξ, nq “
N
ź

p“0

Γ
´

n`2pξ`1
2n

¯2
Γ

ˆ

´
iθ
π `2pξ`2ξ´1

2n

˙

Γ

ˆ

2n` iθ
π `2pξ`2ξ´1

2n

˙

Γ
´

n`2pξ`2ξ´1
2n

¯2
Γ

ˆ

´
iθ
π `2pξ`1

2n

˙

Γ

ˆ

2n` iθ
π `2pξ`1

2n

˙

ˆ exp

»

—

–
´2
ˆ 8

0

dt
t

e´2ξpN`1qt sinh ppξ´ 1qtq sinh2
´

t
2

´

n´ θ
iπ

¯¯

sinhpntq sinhpξtq

fi

ffi

fl
.

(87)

This quantity is independent of the choice of N only when ξą 1{2, but can be made convergent
for any positive real values of ξ if the minimal allowed value for N is suitably chosen. In fact
(87) gives a physically motivated (as seen in Appendix D) and correct analytic continuation.
Alternatively, for 1

2p ě ξą
1

2p`2 and p P Z`

ϕ´pθ ;ξ, nq “
N
ź

m“0

Γ
´

n`2pm´pqξ`1
2n

¯2
Γ

ˆ

´
iθ
π `2pm`p`1qξ´1

2n

˙

Γ

ˆ

2n` iθ
π `2pm`p`1qξ´1

2n

˙

Γ
´

n`2pm`p`1qξ´1
2n

¯2
Γ

ˆ

´
iθ
π `2pm´pqξ`1

2n

˙

Γ

ˆ

2n` iθ
π `2pm´pqξ`1

2n

˙

ˆ exp

»

—

–
´2
ˆ 8

0

dt
t

e´2ξpN`1qt sinh ppp2p` 1qξ´ 1qtq sinh2
´

t
2

´

n´ θ
iπ

¯¯

sinhpntq sinhpξtq

fi

ffi

fl
.

(88)
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Finally, the breather-breather minimal form factor also admits the representation

Rpθ ;ξ, nq “

N
ź

k“0

»

—

—

–

Γ

ˆ

´
iθ
π ´ξ`k

2n

˙

Γ

ˆ

1`
iθ
π ´ξ`k

2n

˙

Γ

ˆ

´
iθ
π `1`ξ`k

2n

˙

Γ

ˆ

1`
iθ
π `1`ξ`k

2n

˙

Γ

ˆ

´
iθ
π `k
2n

˙

Γ

ˆ

1`
iθ
π `k
2n

˙

Γ

ˆ

´
iθ
π `k`1

2n

˙

Γ

ˆ

1`
iθ
π `k`1

2n

˙

fi

ffi

ffi

fl

p´1qk

ˆexp

»

—

–
4
ˆ 8

0

dt
t

e´
t
2 p3`4Nq sinh ξt

2 sinh p1`ξqt2 cosh t
´

n` iθ
π

¯

p1` etq sinhpntq

fi

ffi

fl
. (89)

B Computation of Branch Point Twist Field Breather Form Factors
from Fusion

B.1 Computation of Fb3 b1
pθ ;ξ, nq

Using fusion again we have that

´i Res
θ“θ1

Fb2 b1 b1
pθ `

iπξ
2

,θ1´ iπξ,θ2;ξ, nq “ Γ b3
b2 b1

Fb3 b1
pθ12;ξ, nq . (90)

This gives a solution of the form

Fb3 b1
pθ12;ξ, nq “ H31pξ, nqQ31px1, x2;ξ, nq

Rpθ12;ξ, nqRpθ12` iπξ;ξ, nqRpθ12´ iπξ;ξ, nq
px1´ x2ωβqpx2´ x1ωβqpx1ω´ x2qpx2ω´ x1βq

.

(91)
The polynomial Q31px1, x2;ξ, nq follows from the reduction of Q211px1β

´
1
2 , x1β , x2;ξ, nq and

can be written as

Q31px1, x2;ξ, nq “ x1 x2pωx1´ x2qpx2ω´ x1βq , (92)

if we also identify

H31pξ, nq “ ´xT y
2ωβ sin π

2n sin πn cos πp1´ξq2n p1` 2 cos πξn qΓ
b3
b2 b1
Γ

b2
b1 b1

n2 sin πp1`ξq2n sin πp1´2ξq
2n

Rp´2πiξ;ξ, nqRp´iπξ;ξ, nq2

Rpiπ;ξ, nq2
.(93)

B.2 Computation of Fb4
pξ, nq from Fusion in Fb3 b1

pθ ;ξ, nq

Computing
´i Res
θ“2πiξ

Fb3 b1
pθ ;ξ, nq “ Γ b4

b3 b1
Fb4
pξ, nq , (94)

which gives

Fb4
pξ, nq “ xT y

sin πn sin π
2np1` 2cos πξn q cos πp1´ξq2n Γ

b4
b3 b1
Γ

b3
b2 b1
Γ

b2
b1 b1

2n2 sin2 πp1`ξq
2n sin πp1´2ξq

2n sin πp1´3ξq
2n

ˆ
Rp´3πiξ;ξ, nqRp´2πiξ;ξ, nq2Rp´iπξ;ξ, nq3

Rpiπ;ξ, nq2
, (95)

which is plotted in Fig. 3 as a function of ξ and n.
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Figure 3: Left: The one-particle form factor Fb4
pξ, nq as a function of n for ξ“ 0.24

(red), 0.21 (blue), 0.2 (green), 0.1 (magenta) and 0.05 (brown). Right: The one-
particle form factor Fb4

pξ, nq as a function of ξ for n“ 2 (red), 5 (blue), 12 (green),
50 (magenta).

We have also that

lim
nÑ1

Fb4
pξ, nq

1´ n
“

2π sin4 πξ
2 Γ

b4
b3 b1
Γ

b3
b2 b1
Γ

b2
b1 b1

sin2πξ sin2πξ

1` 2 cosπξ
1´ 2 cosπξ

ˆ
Rp´3πiξ;ξ, 1qRp´2πiξ;ξ, 1q2Rp´iπξ;ξ, 1q3

Rpiπ;ξ, 1q2
. (96)

Note that the breather b4 is only present for ξă 1
4 .

B.3 Computation of Fb2 b2
pθ ;ξ, nq

Starting with the form factor Fb2 b1 b1
pθ1,θ2,θ2;ξ, nq we can now fuse the last two particles to

obtain Fb2 b2
pθ ;ξ, nq. The bound state residue equation dictates that

´i Res
θ“θ1

Fb1 b1 b2
pθ `

iπξ
2

,θ1´
iπξ
2

,θ2;ξ, nq “ Γ b2
b1 b1

Fb2 b2
pθ1,θ2;ξ, nq , (97)

From the the form factor axioms we can write the following

´i Res
θ0“θ1

Fb1 b1 b2
pθ0`

iπξ
2

,θ1´
iπξ
2

,θ2;ξq “ Γ b2
b1 b1

Fb2 b2
pθ12;ξq (98)

“´i Res
θ0“θ1

Fb2 b1 b1
pθ2,θ1´

iπξ
2

,θ0`
iπξ
2

;ξqSb1 b2
pθ12´

iπξ
2
qSb1 b2

pθ02`
iπξ
2
qSb1 b1

pθ01` iπξq

“ pΓ
b2
b1 b2
q2Fb2 b1 b1

pθ2,θ1´
iπξ
2

,θ1`
iπξ
2

;ξqSb1 b2
pθ12´

iπξ
2
qSb1 b2

pθ12`
iπξ
2
q

“ pΓ
b2
b1 b2
q2Sb2 b2

pθ12qFb2 b1 b1
pθ2,θ1´

iπξ
2

,θ1`
iπξ
2

;ξq , (99)

where we used the bootstrap equation for the breather S-matrices

Sb1 b2
pθ ´

iπξ
2
qSb1 b2

pθ `
iπξ
2
q “ Sb2 b2

pθq . (100)

Then it immediately follows that the two-particle form factor has the following structure

Fb2 b2
pθ12;ξ, nq “ H22pξ, nqQ22px1, x2;ξ, nq

Rpθ12;ξ, nq2Rpθ12` iπξ;ξ, nqRpθ12´ iπξ;ξ, nq
px1´ωx2qpx2´ωx1qpx1´ωβ x2qpx2´ωβ x1q

,

(101)
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with
Q22px1, x2;ξ, nq “ α1pξ, nqσ4

1 `α2pξ, nqσ2σ
2
1 `α3pξ, nqσ2

2 , (102)

α1pξ, nq “ ωβ2p1`ωq ,

α2pξ, nq “ ´pβp1` βq `ωβ2pβ ` β2` 4q `ω2p4β2` β ` 1q `ω3β2q ,

ω3pξ, nq “ ´1`ω2pβ5` 5β2` 2β4` 3β3` 2β ` 1q ` pω´1`ω4qβp1` β ` β2q

`ωp3β ` 2β3` β4` 5β2` 2` β´1q ´ω3β4 , (103)

and

H22pξ, nq “ xT y

?
ωβ´1 sin πn sin π

2npΓ
b2
b1 b1
q2

4n2 sin2 πpξ´1q
2n sin2 πpξ`1q

2n

Rp´iπξ;ξ, nq2

Rpiπ;ξ, nq2
“

?
ωFb2

pξ, nq2

2β cos π2nxT y
. (104)

B.4 Computation of Fb4
from Fusion in Fb2 b2

pθ ;ξ, nq

Finally, we may consider the fusion of two b2 breathers to form b4. We employ the equation

´i Res
θ“θ1

Fb2 b2
pθ ` iπξ,θ1´ iπξ;ξ, nq “ Γ b4

b2 b2
Fb4
pξ, nq . (105)

This gives us

Fb4
pξ, nq “ xT y

sin πn sin π
2np1` 2 cos πξn q cos πp1´ξq2n pΓ

b2
b1 b1
q2Γ

b4
b2 b2

2n2 sin p1´2ξqπ
2n sin p1´3ξqπ

2n sin2 p1`ξqπ
2n

ˆ
Rp´3πiξ;ξ, nqRp´2πiξ;ξ, nq2Rp´iπξ;ξ, nq3

Rpiπ;ξ, nq2
. (106)

This is identical to the result we obtained from fusing Fb3 b1
pθ ;ξ, nq with the identification

Γ
b4
b3 b1
Γ

b3
b2 b1

“ Γ
b4
b2 b2

. (107)

C Form Factors of the Stress-Energy Tensor from Fusion

The form factors of the trace of the stress-energy tensor in the sinh-Gordon model were first
computed in [25], where closed formulae for special values of the coupling were obtained.
We are interested in the case of generic coupling B for which solutions up to 14 particles were
given. These solutions will be the building blocks for our fusion procedure. We are particularly
interested in the one-particle form factors of the second and fourth breather which requires
the two- and four-particle form factors of the stress energy tensor in sinh-Gordon. Replacing
B “´2ξ these form factors are given by

FΘb1 b1
pθ ;ξq “ 2πm2

1

Rpθ ;ξ, 1q

Rpiπ;ξ, 1q
, (108)

where m1 is the mass of the first breather as given in (3) and

FΘb1 b1 b1 b1
pθ1,θ2,θ3,θ4;ξq “ ´

8πm2
1 sinπξ

Rpiπ;ξ, 1q2
σ1σ2σ3

ź

1ďiă jď4

Rpθi j;ξ, 1q

x i ` x j
, (109)

with x i “ eθi and σi the elementary symmetric polynomial on variables tx1, x2, x3, x4u .
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C.1 Computation of FΘb2
pξq

Applying the fusion procedure to the two-particle form factor we have that

´i Res
θ“iπξ

FΘb1 b1
pθ ;ξq “ Γ b2

b1 b1
FΘb2
pξq , (110)

and we get simply

FΘb2
pξq “ 2πm2

1

a

2 tanπξ
Rp´iπξ;ξ, 1q

Rpiπ;ξ, 1q
, (111)

which is plotted in Fig. 4.

C.2 Computation of FΘb2 b1 b1
pθ1,θ2,θ3;ξq

In order to get higher breather form factors we must use the four-particle solution above.
For instance we may fuse the first two particles to obtain FΘb2 b1 b1

pθ1,θ2,θ3;ξq. The relevant
equation is

´i Res
θ0“θ1

FΘb1 b1 b1 b1
pθ0`

iπξ
2

,θ1´
iπξ
2

,θ2,θ3;ξq “ Γ b2
b1 b1

FΘb2 b1 b1
pθ1,θ2,θ3;ξq , (112)

which after some simplifications gives

FΘb2 b1 b1
pθ1,θ2,θ3;ξq “ HΘ211pξqQ

Θ
211px1, x2, x3;ξq

Rpθ23;ξ, 1q

x2` x3
(113)

ˆ
Rpθ12`

iπξ
2 ;ξ, 1qRpθ12´

iπξ
2 ;ξ, 1qRpθ13´

iπξ
2 ;ξ, 1qRpθ13`

iπξ
2 ;ξ, 1q

px2`αx1qpx1`αx2qpx3`αx1qpx1`αx3q
,

with α :“ e
iπξ
2 and

QΘ211px1, x2, x3;ξq “ pσ1` 2cos
πξ

2
σ̂1qpσ2` 2 cos

πξ

2
σ1σ̂1` σ̂

2
1qpσ̂1σ1` 2cos

πξ

2
σ2q ,

(114)
for σ̂1 “ x1, σ1 “ x2` x3 and σ2 “ x2 x3. The normalization constant is

HΘ211pξq “ ´
8πm2

1α
2 sin πξ2 Rp´iπξ;ξ, 1qΓ b2

b1 b1

Rpiπ;ξ, 1q2
. (115)
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Figure 4: The one particle form factor FΘb2
pξq for m“ 1.
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C.3 Computation of FΘb2 b2
pθ ;ξq

We know from Watson’s equation that

FΘb1 b1 b2
pθ1,θ2,θ3;ξq “ FΘb2 b1 b1

pθ3,θ2,θ1;ξqSb1 b2
pθ23qSb1 b2

pθ13qSb1 b1
pθ12q . (116)

So we have that

´i Res
θ0“θ1

FΘb1 b1 b2
pθ0`

iπξ
2

,θ1´
iπξ
2

,θ2;ξq “ Γ b2
b1 b1

FΘb2 b2
pθ12;ξq (117)

“ pΓ
b2
b1 b2
q2S22pθ12qF

Θ
b2 b1 b1

pθ2,θ1´
iπξ
2

,θ1`
iπξ
2

;ξq , (118)

which follows exactly as in (99). This gives

FΘb2 b2
pθ12;ξq “ HΘ22pξqQ

Θ
22px1, x2;ξq

Rpθ12;ξ, 1q2Rpθ12` iπξ;ξ, 1qRpθ12´ iπξ;ξ, 1q

px1`α2 x2qpx2`α2 x1q
, (119)

where

HΘ22pξq “ ´
8πm2

1α
2 sinπξRp´iπξ;ξ, 1q2pΓ b2

b1 b1
q2

Rpiπ;ξ, 1q2
, QΘ22px1, x2;ξq “ σ2

1 ` 2cosπξσ2 ,

(120)
with σ1 “ x1` x2 and σ2 “ x1 x2 .

C.4 Computation of FΘb4
pξq

By computing the residue

´i Res
θ“2πiξ

FΘb2 b2
pθ ;ξq “ Γ b4

b2 b2
FΘb4
pξq , (121)

which gives

FΘb4
pξq “ ´4πm2

1 sec
3πξ

2

ˆ

sin
πξ

2
` sin

5πξ
2

˙

pΓ
b2
b1 b1
q2Γ

b4
b2 b2

ˆ
Rp´3πiξ;ξ, 1qRp´2πiξ;ξ, 1q2Rp´πiξ;ξ, 1q3

Rpiπ;ξ, 1q2
. (122)

A plot of FΘb4
pξq as a function of ξ is presented in Fig. 5.
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Figure 5: The one-particle form factor FΘb4
pξq for m“ 1.
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C.5 Computation of FΘb3 b1
pθ ;ξq

The last two-particle form factor that we can obtain starting with (109) is FΘb1 b3
pθ ;ξq, resulting

from the fusion process:

´i Res
θ1“θ0

FΘb2 b1 b1
pθ1`

iπξ
2

,θ0´ iπξ,θ2;ξq (123)

FΘb3 b1
pθ12;ξq “ HΘ31pξqQ

Θ
31px1, x2;ξq

Rpθ12;ξ, 1qRpθ12´ iπξ;ξ, 1qRpθ12` iπξ;ξ, 1q

px1`α2 x2qpx2`α2 x1q
, (124)

with

HΘ31pξq “ ´
8πm2

1α
2 sin πξ2 sin 3πξ

2

sin2πξ

Rp´iπξ;ξ, 1q2Rp´2πiξ;ξ, 1qΓ b2
b1 b1
Γ

b3
b2 b1

Rpiπ;ξ, 1q2
, (125)

QΘ31px1, x2;ξq “ px1` x2` 2x2 cosπξqpx1` x2` 2x1 cosπξq . (126)

D Dynamical Poles of the Soliton-Antisoliton Form Factors

In this appendix we first show that the two representations G˘pθ ;ξ, nq of the minimal soliton-
antisoliton form factor are indeed proportional to each other when the proper CDD-factors
accounting for the bound state poles are introduced. We also demonstrate the precise working
of the dynamical pole axiom (33).

Considering the first point, as G˘pθ ;ξ, nq “ ϕ˘pθ ;ξ, nqΦpθ ;ξ, nq, it is enough to show
that

ϕ`pθ ;ξ, nq “ constˆ

r
1

2ξ s
ź

k“1

cos πn ´ cos πp1´2kξq
n

cosh θn ´ cos πp1´2kξq
n

ϕ´pθ ;ξ, nq . (127)

From Eqs. (37) and (38) we have that

ϕ`pθ ;ξ, nq

ϕ´pθ ;ξ, nq
“

r
1

2ξ s
ź

k“1

Γ

ˆ

´
iθ
π ´2kξ`1

2n

˙

Γ

ˆ

1`
iθ
π ´2kξ`1

2n

˙

Γ

ˆ

´
iθ
π `2kξ´1

2n

˙

Γ

ˆ

1`
iθ
π `2kξ´1

2n

˙

Γ
´

n´2kξ`1
2n

¯2
Γ
´

n`2kξ´1
2n

¯2 ,

“

r
1

2ξ s
ź

k“1

cos πp1´2kξq
n ` 1

cos πp1´2kξq
n ´ cosh θn

, (128)

hence (127) holds.

Let us now turn to the issue of the dynamical pole axiom (33) and write down some
identities involving the ratios of the minimal form factors Rpθ ;ξ, nq and G˘pθ ;ξ, nq. Restricting
ourselves first on the b2 bound state when 1

2 ě ξ, we can evaluate the residue in Fss̄pθ ;ξ, nq
corresponding to the second breather as

´iRes
θ“0

Fss̄pθ ` iπp1´ 2ξq;ξ, nq “ ´xT y
sin πn

sin πp1´2ξq
n

G´piπp1´ 2ξq;ξnq

G´piπ;ξnq
. (129)
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This function is compared to

Γ
b2
ss̄ Fb2

pξ, nq “

a

sinp2πξq csc2 πξ
2

2

sin πn
a

2 tanπξRp´iπξ;ξ, nq

2n sin πpξ´1q
2n sin πpξ`1q

2n Rpiπ;ξ, nq

“ csc2 πξ

2

xT y sin πn sinπξRp´iπξ;ξ, nq

2n sin πpξ´1q
2n sin πpξ`1q

2n Rpiπ;ξ, nq
.

(130)

This means, that the following identity holds

n tan πξ2 sin πp1´ξq2n sin πp1`ξq2n

sin πp1´2ξq
n

“
Rp´iπξ;ξ, nqG´piπ;ξ, nq

Rpiπ;ξ, nqG´piπp1´ 2ξq;ξ, nq
, (131)

for any integer n ě 1 and 1
2 ě ξ. To prove the above formula, we use the infinite product

representations of Rpθ ;ξ, nq and G´pθ ;ξ, nq. First, one can easily show via (36) the following
identity

Φpiπ;ξ, nq
Φpiπp1´ 2ξq;ξ, nq

“
sin π

2n

sin πp1´2ξq
2n

8
ź

k“0

»

—

–

Γ
´

k`1
2n

¯

Γ
´

1` k
2n

¯

Γ
´

k´ξ`1
2n

¯

Γ
´

1` k`ξ
2n

¯

Γ
´

k´2ξ`2
2n

¯

Γ
´

k´ξ`2
2n

¯

Γ
´

1` k`ξ´1
2n

¯

Γ
´

1` k`2ξ´1
2n

¯

fi

ffi

fl

p´1qk

,

(132)
and similarly from (38) we have

ϕ´piπ;ξ, nq

ϕ´piπp1´ 2ξq;ξ, nq
“

sin πξn

sin πp1´2ξq
n

, (133)

and so multiplying these two formula, we obtain a simple expression for the ratio of G-
functions above. For the other ratio of R-functions, we can use (89) after sending N to infinity.
This cancels the integral and leaves an infinite product equivalent to (45) but more suitable
for our ongoing studies. We have, therefore, the following expression

Rp´iπξ;ξ, nq
Rpiπ;ξ, nq

“ (134)

8
ź

k“0

»

—

–

Γ
´

k´ξ`1
2n

¯2
Γ
´

1` k`ξ
2n

¯2
Γ
´

k´ξ
2n

¯

Γ
´

1` k`ξ`1
2n

¯

Γ
´

k`ξ`2
2n

¯

Γ
´

1` k´ξ´1
2n

¯

Γ
´

k`1
2n

¯2
Γ
´

1` k
2n

¯2
Γ
´

k´2ξ
2n

¯

Γ
´

1` k`2ξ`1
2n

¯

Γ
´

k`2
2n

¯

Γ
´

1` k´1
2n

¯

fi

ffi

fl

p´1qk

.

Then, putting these results together and carrying out some Gamma-function cancellations, the
r.h.s. of (131) becomes

Rp´iπξ;ξ, nqG´piπ;ξ, nq

Rpiπ;ξ, nqG´piπp1´ 2ξq;ξ, nq
“

sin πξ2n

sin πp1´2ξq
n

Γ
´

1` ξ
2n

¯

Γ
´

1´ ξ
2n

¯

Γ
´

ξ
2n

¯

Γ
´

´
ξ
2n

¯

Γ
´

1` ξ´1
2n

¯

Γ
´

1´ ξ`1
2n

¯

Γ
´

ξ`1
2n

¯

Γ
´

1´ξ
2n

¯

ˆ

8
ź

k“0

¨

˚

˝

Γ 2
´

k`1
2n

¯

Γ 2
´

1` k
2n

¯

Γ
´

1` k`1`ξ
2n

¯

Γ
´

1` k`1´ξ
2n

¯

Γ
´

k´ξ
2n

¯

Γ
´

k`ξ
2n

¯

˛

‹

‚

p´1qk

.

(135)
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Using the standard identity Γ pxqΓ p1´ xq “ π cscπx the first set of Gamma-functions can be
simplified to

Γ
´

1` ξ
2n

¯

Γ
´

1´ ξ
2n

¯

Γ
´

ξ
2n

¯

Γ
´

´
ξ
2n

¯

Γ
´

1` ξ´1
2n

¯

Γ
´

1´ ξ`1
2n

¯

Γ
´

ξ`1
2n

¯

Γ
´

1´ξ
2n

¯ “
sin πpξ`1q

2n sin πpξ´1q
2n

sin2 πξ
2n

, (136)

while the infinite product can be easily rewritten using the standard identity Γ px`1q “ xΓ pxq
yielding

lim
NÑ8

p2nq4Γ
´

2N`2´ξ
2n ` 1

¯

Γ
´

2N`2`ξ
2n ` 1

¯

Γ
´

´
ξ
2n

¯

Γ
´

ξ
2n

¯

Γ
`N`1

n

˘2

2N`1
ź

k“1

`

k2pk´ ξqpk` ξq
˘p´1qk

“´n tan
πξ

2
sin
πξ

2n
,

(137)
where the l.h.s. can be evaluated analytically. For fixed N , the product can be expressed in
terms of Gamma functions and Pochhammer’s symbols and then the limit can be performed
straightforwardly. Putting everything together, we find (131), as expected.

Concerning now the regime when the the breather b4 is present, that is, 1
4 ě ξ ą 0, we

now write

´iRes
θ“0

Fss̄pθ ` iπp1´ 4ξq;ξ, nq “ xT y
sin πn sin πp1´ξqn

sin πp1´3ξq
n sin πp1´4ξq

n

G´piπp1´ 4ξq;ξ, nq

G´piπ;ξ, nq
, (138)

which is expected to be equal to

Γ
b4
ss̄ Fb4

“xT y
2 sin π

2n sin πn cot2 πξ
2 cos πp1´ξq2n

´

1` 2cos πξn

¯

n2 sin2 πp1`ξq
2n sin πp1´2ξq

2n sin πp1´3ξq
2n

ˆ
Rp´3πiξ;ξ, nqRp´2πiξ;ξ, nq2Rp´iπξ;ξ, nq3

Rpiπ;ξ, nq2
.

(139)

This means, that the following identity holds

n2 tan2 πξ
2 sin2 πp1`ξq

2n sin πp1´3ξq
2n sin πp1´2ξq

2n sin πp1´ξqn

2sin π
2n

´

1` 2cos πξn

¯

sin πp1´3ξq
n sin πp1´4ξq

n cos πp1´ξq2n

“
Rp´3πiξ;ξ, nqRp´2πiξ;ξ, nq2Rp´iπξ;ξ, nq3G´piπ;ξ, nq

Rpiπ;ξ, nq2G´piπp1´ 4ξq;ξ, nq
, (140)

for any integer n ě 1 and 1
4 ě ξ. This expression can be proven in a similar fashion to the

proof of (131). For brevity, we just write the main steps. We can show

Φpiπ;ξnq
Φpiπp1´ 4ξq;ξnq

“
sin π

2n

sin πp1´4ξq
2n

8
ź

k“0

»

—

–

Γ
´

k`1
2n

¯

Γ
´

1` k
2n

¯

Γ
´

k´ξ`1
2n

¯

Γ
´

1` k`ξ
2n

¯

Γ
´

k´2ξ`2
2n

¯

Γ
´

k´ξ`2
2n

¯

Γ
´

1` k`ξ´1
2n

¯

Γ
´

1` k`2ξ´1
2n

¯

fi

ffi

fl

p´1qk

,

(141)
from Eq. (36) and from Eq. (38) we have

ϕ´piπ;ξ, nq

ϕ´piπp1´ 4ξq;ξ, nq
“

sin πξn sin 2πξ
n

sin πp1´4ξq
n sin πp1´3ξq

n

. (142)
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The other expression for Rp´i2πξ;ξ, nq and Rp´i3πξ;ξ, nq can obtained by a simple substitution
into the infinite product formula obtained from (89). When all the terms are collected, we end
up with

Rp´3πiξ;ξ, nqRp´2πiξ;ξ, nq2Rp´iπξ;ξ, nq3G´piπ;ξ, nq

Rpiπ;ξ, nq2G´piπp1´ 4ξq;ξ, nq
“

“
sin πξn sin 2πξ

n sin π
2n

sin πp1´4ξq
n sin πp1´3ξq

n sin πp1´4ξq
2n

Γ
´

1` ξ
n

¯

Γ
´

1` 3ξ
2n

¯

Γ
´

1` 2ξ
n

¯

Γ
´

1` 2ξ´1
2n

¯

Γ
´

1` 3ξ´1
2n

¯

Γ
´

1` 4ξ´1
2n

¯

8
ź

k“0

¨

˚

˝

Γ
´

1` k´1
2n

¯2
Γ
´

1` k
2n

¯6
Γ
´

k`1
2n

¯6
Γ
´

k`2
2n

¯2

Γ
´

k´4ξ`2
2n

¯

Γ
´

k´3ξ`2
2n

¯

Γ
´

k´2ξ`2
2n

¯

Γ
´

k´ξ
2n

¯3
Γ
´

k´ξ`1
2n

¯2
Γ
´

k´ξ`2
2n

¯

Γ
´

k´4ξ
2n

¯

Γ
´

k´3ξ
2n

¯

Γ
´

k´2ξ
2n

¯

Γ
´

1` k´ξ´1
2n

¯2
Γ
´

k`ξ`2
2n

¯2
Γ
´

1` k`ξ´1
2n

¯

Γ
´

1` k`ξ
2n

¯2
Γ
´

1` k`ξ`1
2n

¯3

˛

‹

‚

p´1qk

,

(143)

which, proceeding as above, can be simplified to

Rp´3πiξ;ξ, nqRp´2πiξ;ξ, nq2Rp´iπξ;ξ, nq3G´piπ;ξ, nq

Rpiπ;ξ, nq2G´piπp1´ 4ξq;ξ, nq
“

sin πξn sin 2πξ
n sin π

2n

sin πp1´4ξq
n sin πp1´3ξq

n sin πp1´4ξq
2n

ˆ

p2nq4ξ2Γ
` 1.

2n

˘2
Γ
`

1´ 1
2n

˘2
Γ
´

1` ξ
n

¯

Γ
´

1` 3ξ
2n

¯

Γ
´

1` 2ξ
n

¯

p1´ ξq2Γ
´

1` 2ξ´1
2n

¯

Γ
´

1` 3ξ´1
2n

¯

Γ
´

1` 4ξ´1
2n

¯

Γ
´

1´4ξ
2n

¯

Γ
´

1´3ξ
2n

¯

Γ
´

1´2ξ
2n

¯

ˆ

Γ
´

´
2ξ
n

¯

Γ
´

´
3ξ
2n

¯

Γ
´

´
ξ
n

¯

Γ
´

1` ξ´1
2n

¯

Γ
´

1` ξ
2n

¯

Γ
´

1` ξ`1
2n

¯2
Γ
´

´
ξ
2n

¯

Γ
´

1´ξ
2n

¯

Γ
´

1´ ξ`1
2n

¯2

ˆ lim
NÑ8

»

—

–

Γ
´

1` 2N`1´ξ
2n

¯2
Γ
´

1` 2N`2`ξ
2n

¯3
Γ
´

2N`3`ξ
2n

¯2

Γ
`2N`3

2n

˘2
Γ
´

2N`2`ξ
2n

¯2

ˆ

Γ
´

2N`2´ξ
2n

¯

Γ
´

2N`3´ξ
2n

¯

Γ
´

1` 2N`1`ξ
2n

¯

Γ
`

1` 2N`1
2n

˘2
Γ
`N`1

n

˘4

2N`1
ź

k“2

`

k4pk` ξq2pk´ ξq2
˘p´1qk

fi

ffi

fl
.

(144)

Just as in the earlier proof, the product of Gamma-functions outside the limit can easily be
simplified. The infinite product can be again expressed in terms of Gamma-functions and
Pochhammer’s symbols and eventually the limit can be performed. Omitting details such as
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the extensive use of Gamma-function identities, we finally have

Rp´3πiξ;ξ, nqRp´2πiξ;ξ, nq2Rp´iπξ;ξ, nq3G´piπ;ξ, nq

Rpiπ;ξ, nq2G´piπp1´ 4ξq;ξ, nq
“

“
sin πξn sin 2πξ

n sin π
2n

sin πp1´4ξq
n sin πp1´3ξq

n sin πp1´4ξq
2n

ˆ
64n6ξ2

π2 pξ2´ 1q2
sin2 πpξ` 1q

2n
sin
πp1´ ξq

2n
csc
πξ

n
csc

2πξ
2n

csc
3πξ

n

ˆ sin
πp1´ 4ξq

2n
sin
πp1´ 3ξq

2n
sin
πp1´ 2ξq

2n
csc2 π

2n
sin
πξ

2n

ˆ
π2pξ´ 1q2pξ` 1q2 tan2 πξ

2

64n4ξ2
,

(145)

where the last line is the result of the limit and the two lines before last are the result of
simplifying all the Gamma-functions outside the infinite product. Simplifying further we
obtain the l.h.s. of (140), completing our proof.

E ∆ Sum Rule Evaluation

In this Appendix we summarize our numerical results for the sum (72) and several distinct
values of ξ and n. As discussed in Section 6 we include one- and two-particle contributions.
In the regime 1 ě ξ ą 1

3 all the non-vanishing two- and one-particle contributions are taken
into account as described in equations (73)-(74).

As we can see in Tables 1 and 2, the contribution from the b1 b1 and b2 b2 terms is very small
compared to those of ss̄ and b2. Assuming this tendency to hold for the contributions b3 b3,
b2 b4 and b4 b4, in the interaction regimes 1

3 ě ξ ą
1
5 we have neglected the corresponding

terms and still found good saturation of the rule (see Table 3).
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Table 2: One- and two-particle contributions to the ∆ sum rule for four values of
ξ P p1

3 , 1
2). It is interesting to observe how the breather contributions become larger

as ξ is decreased, sending the theory deeper into the attractive regime. For instance,
in Table (d) the ss̄ contribution accounts only for 20% of the value of ∆T .

(a) ξ“ 0.48734

n ∆T ss̄ b1 b1 b2 b2 b2

ř

2 0.0625 0.0526252 0.0026597 0.0000016 0.0050643 0.0603508

3 0.11111 0.0930742 0.0049999 0.0000030 0.0085415 0.1066187

4 0.15625 0.1306165 0.0071536 0.0000044 0.0117942 0.1495687

5 0.2 0.1670215 0.0092264 0.0000057 0.0149699 0.1912235

(b) ξ“ 0.45133

n ∆T ss̄ b1 b1 b2 b2 b2

ř

2 0.0625 0.0398813 0.0034363 0.0000204 0.0168508 0.0601887

3 0.11111 0.0712682 0.0064312 0.0000387 0.0285433 0.1062814

4 0.15625 0.1003544 0.0091893 0.0000555 0.0394690 0.1490682

5 0.2 0.1285211 0.0118452 0.0000717 0.0501288 0.1905668

(c) ξ“ 0.38231

n ∆T ss̄ b1 b1 b2 b2 b2

ř

2 0.0625 0.0230446 0.0054990 0.0000904 0.0313208 0.0599548

3 0.11111 0.0419772 0.0102062 0.0001745 0.0534327 0.1057905

4 0.15625 0.0594778 0.0145467 0.0002518 0.0740622 0.1483385

5 0.2 0.0763850 0.0187308 0.0003260 0.0941674 0.1896092

(d) ξ“ 0.30091

n ∆T ss̄ b1 b1 b2 b2 b2

ř

2 0.0625 0.0112334 0.0093408 0.0001931 0.0390784 0.0598457

3 0.11111 0.0209003 0.0171719 0.0003779 0.0671062 0.1055563

4 0.15625 0.0298140 0.0244039 0.0005479 0.0932251 0.1479910

5 0.2 0.0384043 0.0313831 0.0007111 0.1186557 0.1891542

Table 3: One- and two-particle contributions to the ∆ sum rule for ξ“ 0.22108. For
this value of the coupling the first four breathers can be formed and approximately
half the value of ∆T comes from breather contributions. Even after neglecting the
terms b3 b3, b2 b4 and b4 b4 the rule is 95% saturated.

n ∆T ss̄ b1 b1 b2 b2 b1 b3 b2 b4

ř

2 0.0625 0.0031453 0.0154695 0.0002683 0.0004363 0.0395954 0.0015294 0.060444

3 0.11111 0.0060694 0.0281816 0.0005309 0.0008206 0.0683090 0.0027951 0.106707

4 0.15625 0.0087587 0.0399377 0.0007727 0.0011717 0.0950521 0.0039606 0.149653

5 0.2 0.0113407 0.0512960 0.0010044 0.0015091 0.1210735 0.0050857 0.191309
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