

City, University of London Institutional Repository

Citation: Dixit, A., Asif, W. & Rajarajan, M. (2020). Smart-Contract Enabled Decentralized

Identity Management Framework for Industry 4.0. IECON 2020 The 46th Annual
Conference of the IEEE Industrial Electronics Society, pp. 2221-2227. ISSN 1553-572X

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/27852/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Smart-Contract Enabled Decentralized Identity
Management Framework for Industry 4.0

Akanksha Dixit
City, University of London
London, United Kingdom
Akanksha.Dixit@city.ac.uk

Asif Waqar
University of West London
London, United Kingdom

waqar.asif@uwl.ac.uk

Muttukrishnan Rajarajan
City, University of London
London, United Kingdom

R.Muttukrishnan@city.ac.uk

Abstract—The emergence of smart sensors and autonomous
system technology in industrial sector is getting tremendous re-
search attention. Industry 4.0 is heavily using connected machine
paradigm to automate, track and maintain processes. However, a
major challenge in Industrial Internet-of-Things(IIoT) remains
managing the burgeoning number of sensors. The centralized
architecture for managing these devices is raising concerns. In
this work, we propose a novel proof-of-concept framework for
managing identity and access management policies for IIoT. The
new architecture is a smart contract enabled and blockchain
based decentralized life-cycle and access management system.
It is backed by decentralized storage technology InterPlanatery
FileSystem (IPFS). Our architecture is decentralized and scalable
unlike the state-of-art IIoT management architectures designed
for clouds which are centralized.

Index Terms—Industry 4.0, Internet of Things, Blockchain,
Smart contracts, Identity-management.

I. INTRODUCTION

With increased automation in industrial processes, machine-
to-machine communication is becoming pervasive. Since, IoT
provides a connected paradigm of intelligent devices that
can sense the manufacturing processes closely, it is being
widely exploited in industries like manufacturing, supply chain
management and predictive maintenance [21]. This wide use
of such IoT devices brings with itself a large number of man-
agement challenges. Whilst there are several traditional IT en-
terprise identity management solution available in the market,
they are not suited for an Industrial Internet-of-Things(IIoT)
setup. Most of the solutions are heavily centralized around
cloud architecture which creates a bottleneck in real-time data
access and enabling access control policies for smart devices
[6]. When identities are stored in a centralized location they
become a potential attack vector, the confidential information
is prone to data breach and manipulation. A single breach not
only has digital fatality but can have serious repercussions in
a physical environment [2].

Industrial facilities are dynamic environments as compared
to home or office workspaces. They have several mobile
entities and access control of these devices is shared among
various management parties unlike home environment which
has a single controller. Sensors installed in such industrial
facilities gather highly sensitive data and this initiates the
need for secure management practises of such devices. In a
conventional IIoT environment, the security of such sensitive

Figure 1: Client-Server Architecture Vs Decentralized Archi-
tecture

data is at high risk due to the possibility of a single point of
failure. To overcome this problem there is a need to develop
a framework based around a decentralized architecture [14].

The blockchain technology has gained immense popularity
in recent times due to their decentralized nature. It is known to
be a decentralized, peer-to-peer technology which consists of
cryptographically linked blocks of data storing transactions in
the network [16]. These transactions represent the exchange of
information among peers and in order to ensure authenticity,
each transaction is added to the blockchain after a rigorous
consensus mechanism thus making it a suitable decentralized
solution [7] [8]. Decentralized systems promote trust and in-
tegrity in a system where many key-coordinators are managing
a set of resources. Figure 1 illustrates the difference in
data/command propagation both the models. In a client-server
model, the flow of information is always towards or away from
a central server which stores all the information the system.
Whereas, in a decentralized system, each device in the network
is a node hosting and consuming data simultaneously. Even if
a number of nodes fail, the network keeps functioning unlike
a centralized system where server failure means the network
coming to a halt.

Although blockchain as a distributed ledger is capable of
storing a certain number of transactions but its efficiency
decreases as the amount of data stored on ledger increases.
Increased data storage on blockchain increases the synchro-
nization time among the peers and negatively affects scala-
bility. Currently, the chain is growing at a rate of 1MB per
block every 10 min in Bitcoin [20]. Therefore, it is not viable
technically to store a large amount of data on blockchain

ledger. This becomes an even bigger issue when dealing with
IIoT devices which tend to produce large volumes of data in
a very short amount of time. The amount of data increases
exponentially and the sensitivity of the data dictates that
this information needs to be disseminated at the earliest. To
overcome this issue, our proposed architecture is built using
blockchain in conjunction with Inter-Planetary File system
(IPFS). IPFS is a content addressed peer-to-peer distributed
file system [3]. A file stored in IPFS has a unique hash that
is derived from it’s content. This makes the file secure from
tampering by an unknown entity. IPFS eliminates the need of
centralized storage entity in our architecture.

A. Case Study: Supply chain and warehouse maintenance

To understand the functionality and assess the performance
of the proposed architecture for identity and access manage-
ment, we are taking a use case from manufacturing sector.
There are several reasons for using the IPFS backed blockchain
solution for designing identity and access management in IIoT
scenario. Firstly, there is a need for a decentralized identity
management architecture given the large number of sensors
that need to be managed. A large number of devices will
try to connect simultaneously to the server for access control
permissions, sending multiple request at a single point of
time to central server. This server can be physically hosted
on a different continent, affecting the response rate, hence
resulting in potential degradation of performance. Secondly,
security risk and trust management issues are reduced by
storing identity related information and access control policies
in a decentralized framework instead of using a centralized
architecture or distributed one where the owner still remains
a single entity.

Boeing, a leading aviation equipment manufacturing com-
pany is using IoT technology in factory floors to optimize
production operations by improving predictive maintenance of
the manufacturing sites [5]. The efficiency of such industrial
organizations depends on managing downtime and shipment
delays. And IoT plays a key role to monitor the processes
closely. However, the company today relies on third-party
cloud services to store operational and sensor data [9]. While
using cloud infrastructure may seem an efficient tool in these
scenarios, the problems associated cannot be ignored. The
facility operational data and sensor data is confidential and
must be protected against attacks to maintain accountability
of critical components in aviation industry.

B. Contributions

In this work we propose a novel architecture based on
decentralized technologies namely, blockchain and IPFS. The
proposed architecture uses blockchain technology to manage
identities and access control to these smart devices in the
network. The main contributions of this work are:

• We implement a novel proof-of-concept decentralized
identity management framework, which is based on a
smart contract enabled blockchain architecture that is
supported by distributed storage, IPFS.

• We show how our framework’s performance being at-
par with current state-of-art architecture and yet provide
identity management and security in an industrial setting.
It completely forgoes centralization and associated risks.

• We show that our decentralized framework can achieve a
stable throughput and can be easily scaled up in enterprise
setting which demands security and scalability.

The rest of this paper is organized as follows: Section II
describes the state-of-art and related work in identity man-
agement for industrial IoT. Section III gives the architectural
overview and component details with interaction workflow.
Section IV discusses the experimental settings and presents the
results. Section V provides a security assessment of our system
and Section VI concludes the paper with ideas on future work.

II. PRELIMINARIES

A. State-of-the-Art

Researchers across the world are exploring new technolo-
gies to make the Internet-of-Things scalable, secure and
autonomous. The goal is to develop techniques so that the
devices can communicate securely with minimum human
intervention. A secure identity management framework is
fundamental to achieve device-to-device communication for
authentication and access management purpose with least
human intervention. The present state-of-the-art primarily uses
cloud based identity management infrastructures [10]. The
major processing tasks and storage is delegated to cloud
network. S. Hurrow et al. [12] describes an IdM technique
for cloud based IoT. In this work, the identity manager is
a component of cloud infrastructure that creates and stores
digital identities associated with each device in cloud database,
retrieving it during the device authentication process. Identity
creation for new devices and removing existing devices is also
managed via identity manager.

In the present IdM frameworks, there are two main meth-
ods of creating identities for IoT devices, first by giving
a username-password for devices and second by using PKI
(Public Key Infrastructure) to create digital certificates corre-
sponding to each device. In both the methods device identities
are stored in a central server and the task of authentication
and access control is entrusted on a centralized entity. Often
the authentication information like username and password
are stored in plain-text in databases. This lead to a recent
large-scale attack launched by Mirai botnet which infected
up to 600k devices to successfully take down many online
services [1]. The reason for attack was simple, using default
username-passwords, attackers formed a large army of IoT
devices to launch one of the largest DDoS (Distributed Denial
of Service) attacks. Hence, public-key cryptography is useful
to create identities and binding these identities to the physical
attributes of devices.

B. Related Work

Some work related to distributed identity and access man-
agement of IoT devices are proposed by researchers. Novo [17]
describes a generalized architecture for access management

Figure 2: Decentralized Architecture for Industrial IoT. Each
industrial facility hosts blockchain ledger and IPFS file system
as a local copy.

in IoT using smart contract as enabler for defining access
policies. This work mainly describes managing access policies
for IoT devices by an intermediary interface. However, no
identity creation and management is described in this work.
Also, resource access policies are stored on the blockchain
platform that can impact the performance of the architecture.
Omar et al. [18] focuses on identity management in a general
scenario specifically ownership management and transfer of
IoT devices. They present a framework for identity creation
and ownership transfer for IoT devices using blockchain.

This work relies on a global registry for storing identities
created for IoT devices. Hammi et al. [11] proposes a scheme
for a decentralized authentication in IoT network. In this work,
secure virtual zones containing a few IoT devices are proposed
and the devices in these zones trust each other. The inter-
zone communication requires authentication which is achieved
using smart contracts. However, these trust-bubbles creates
a siloed architecture for sensor communication, in which
authentication requests are directed to one manager node in
the bubble.

Using smart contracts written in a turing complete language,
Papadodimas et al. [19] presents implementation of DApp
for providing data monetization. The devices can buy and
sell data by leveraging the smart contract functionality. Li
et al. [13] introduces the idea of using multiple satellite
chains that form interconnected but independent sub-chains
of a single blockchain network. These chains interact with
each other with the help of specific ’validator’ node. Each
satellite chain implements a business logic. Mell et al. [15]
proposes a federated authentication of user to a relying party
without a third party authenticated service. The authentication
is achieved between the relying party and user through a smart
contract logic.

The above discussed works presents a number of approaches
taken to decentralize the IoT infrastructure using the upcom-
ing blockchain technology. However, most of them rely on
blockchain ledger for data storage which can impede the
scalability of the system with increased volume of IoT de-

vices in the network. Device authentication procedure remains
inexplicit in most of the cases, which as we discussed is an
important feature to achieve device-to-device communication.

III. PROPOSED ARCHITECTURE OVERVIEW

In the proposed work, blockchain acts as a decentralized
identity management authority that is maintaining the mapping
of identities to public keys. Smart contract provides the
necessary logic to help in provisioning and revocation of keys
of the IoT devices. The blockchain used in our architecture
is a consortium blockchain setup by a group of participating
parties to form a network of trust. The participating parties
agree on a set of logical business operations, recorded in the
smart contract. These set of operations govern the autonomous
functioning of the network. Each party acts as a blockchain
node and maintains a copy of ledger. The majority of poli-
cies and relevant metadata is stored on the IPFS while the
blockchain only stores corresponding file hash as immutable
transactions in the ledger. Every identity creation, deletion and
policy update is logged on blockchain as a transaction. Access
control policies defined in the network are retrieved from the
local copy of the ledger.

IoT devices are resource constrained and hence they cannot
act as a blockchain node. Therefore, in our architecture, the
Wireless Sensor Network (WSN) formed by sensors is not
included in blockchain network and interact with the later
through a protocol translator gateway (PTG). PTGs act on
behalf of IoT devices to communicate with blockchain network
and translate protocol between WSN and PTG. Supervisors are
nodes that provision IoT devices in the network and manage
their identity and access control.

A. System architecture

Figure 2 shows the components of the proposed architec-
ture. The architecture consists of the following entities:

1) Administrator Node: The administrator node is a special
node that initiates the blockchain network and invites
other nodes to be a part of the network. This node
deploys the smart contract that defines the functionalities
of the entire system. Since this node deploys the smart
contract in the blockchain it receives the address of
this contract on the network. Later, this node shares
the address with supervisor nodes in the network which
allows them to interact with the smart contract.

2) Blockchain Network: The blockchain network in the
proposed architecture is a consortium blockchain as
it mimics the real world industrial scenario. Several
participating parties adopt this model to promote trust
and traceability in the system. A consortium blockchain
allows fair participation of engaging parties as com-
pared to private blockchain. Furthermore, it also has
better transaction throughput and low setup cost when
compared to a public blockchain. As a result, it offers
advantages of both the types of blockchain and still
achieves decentralization. The consensus in this network
is achieved using a multi-party voting system. Each node

Table I: Table of Symbols

Symbol Explanation
KS

pub Public Key of the Supervisor
KS

pri Private Key of the Supervisor
KD

pub Public Key of the Device
KD

pri Private Key of the Device
τS Supervisor ID
τD Device ID

SigKS
pri

(τS) Digitally Signed Supervisor ID

SigKD
pri

(τD) Digitally Signed Device ID

= Ticket with device metadata stored in IPFS

can store transaction history as ledger and access global
IPFS storage to access the identity and access related
policies for IoT devices.

3) Smart Contract: The smart contract contains the core
logic of the architecture in the form of its functions.
A set of operations that allows entities in the net-
work to provision identities to IoT devices, managing
their access control and later revoking identities are
defined in the smart contract. These operations can be
triggered by the smart contract transactions sent by
participating nodes in the network. A security feature is
introduced in the contract function that authorizes only
the registered supervisor nodes enabling them to send
transaction against those functions. This feature restricts
unauthorized access request load on the smart contract.

4) Supervisor Nodes: Any trusted peer node in the network
can register itself as a supervisor node. Once these nodes
are registered as supervisor node with the smart contract
they can now register IoT devices in the blockchain
platform. Supervisor nodes have higher computational
and storage power and hence they can choose to host
a copy of the blockchain. However, if these nodes are
some lightweight node in the system they can choose not
to host the ledger. Even in that case, nodes registered
as supervisors can bring IoT devices on blockchain
system. Each IoT device should register itself with
atleast one registered supervisor node. It can also be
registered under multiple supervisor nodes. That will
ensure robustness in case of any faulty supervisor node.

5) Wireless Sensor Network (WSN): The IoT sensors in-
stalled in facility form a WSN that interacts with
blockchain network through gateway in the architecture.
These sensors have limitations in terms of memory,
power and computational capabilities. Each IoT device
in the network is uniquely identified by its SensorID.

6) Protocol Translator Gateway: Since IoT sensors are
resource constrained devices they use low power com-
munication protocols like MQTT 1(Message Queuing
Telemetry Transport) and CoAP (Constrained Applica-
tion Protocol) within WSN. But blockchain network uses
RPC protocol among it’s peers. In order to provide
interoperability between the blockchain network and IoT

1http://mqtt.org/

sensor network PTGs are used. They convert incoming
MQTT requests from sensors to JSON-RPC message
format before sending it to a supervisor node and vice-
versa.

7) IPFS File System: IPFS file system is a content-
addressable peer-to-peer file system. On uploading a file
to IPFS, a hash of the content of the file is returned. Us-
ing IPFS in our architecture provides two benefits, first
it removes the need of a centralized storage and second
the content of the file is cryptographically secured using
hashing mechanism. Any tampering to a file stored on
IPFS can be detected and traced back.

B. Smart Contract Functions

The functions defined in the smart contract are as follows.
The symbols used in explanation are defined in Table I.

• RegisterSupervisor(KS
pub, τS): to register any node S with

Supervisor ID τS as supervisor.
• RegisterDevice(KD

pub, τD, KS
pub): to register a device D

with help of a supervisor S .
• AuthenticateSupervisor(KS

pub, SigKS
pri

(τS)): before a su-
pervisor S can register/deregister a device, it needs to
authenticate itself.

• AuthenticateDevice(KD
pub, SigKD

pri
(τD)): before a device

can request/access a resource or even give a command to
other IoT device, it needs to authenticate itself.

• AddResourceControl(ResourceList): to add access con-
trol for a resource list of a device.

• PermitResourceAccess(D1, D2, R): permit a device D1
to access a resource R hosted by device D2.

• RemoveSupervisor(KS
pub, τS): to deregister a node S as

supervisor.
• RemoveDevice(KS

pub, τS): to deregister a device D from
the network.

C. System Interaction and WorkFlow

1) Network Setup: In this phase, the consortium blockchain
network is setup between the organizations involved in an
agreement to maintain the network. Trusted peers are added
in this phase to help maintain the distributed ledger. These
peer nodes also host file-system for IPFS since they have high
computational and storage capabilities. The administrator node
in the network deploys the smart contract on the blockchain.
This smart contract defines all the logical functions to register
entities and policies to grant access to the IoT devices in the
network.

Once the smart contract is deployed, the administrator node
receives the blockchain address of this smart contract which it
stores in a Setup file in IPFS and hash of this file is stored on
blockchain. The address of this smart contract can be queried
by any valid node from the IPFS which will allow them to
send transactions to smart contract.

2) Registration of the entities: Any trusted node in the
network added by consortium can register itself as a super-
visor. To register, the node generates a public-private key
pair (KS

pri,K
S
pub) using ECDSA algorithm which identifies

Figure 3: Registration of Supervisor

it uniquely in the network. The Keccak hash function [4]
is used to generate a 20 byte supervisor ID τS from the
public key. As shown in Figure 3, the supervisor sends
a transaction to function RegisterSupervisor defined in the
smart contract. This function deploys a smart contract of the
registered supervisor and obtains address of deployed smart
contract. The deployed supervisor’s smart contract contains
supervisor’s metadata which includes supervisor’s public key,
ID and an array of devices registered under the supervisor. The
parent smart contract will contain mapping of every registered
supervisor’s public key to the address of their respective
deployed smart contract. This completes the registration of
Supervisor node.

Figure 4 shows process of device registration. For device
registration, the device will posses a public-private key pair
(KD

pri,K
D
pub) and device ID τD derived from it. The device

will send a registration request to the nearest supervisor, with
its public key and τD. The supervisor will first invoke function
RegisterDevice in the parent smart contract, this function calls
another function AuthenticateSupervisor which takes as input
KS

pub and signature of supervisor over τS . From the received
public key, supervisor’s smart contract will be retrieved taking
address from parent smart contract mapping. The received
signature will be validated against the τS stored in supervisor’s
smart contract. Only a registered supervisor can add any IoT
device in the network. Once validated, the supervisor will be
allowed to create a device ticket, = that will be stored in
IPFS as shown in Figure 5. This = contains all the metadata
related to the device which includes KD

pub, τD, hashed device
attributes H(A) and resource list associated with this device.

A = A1||A2||A3.....An

H(A) = UniqueDeviceF ingerprint

Device attributes are parameters like manufacturer details,
firmware version, hardware version, location etc. All these
attributes hashed together gives a unique fingerprint of the

Figure 4: Registration of IoT Device

device which prevents any tampering of the device. On up-
loading the = in IPFS, a hash string is returned. This ticket
hash is stored in a mapping in parent smart contract along with
KD

pub and a dictionary of supervisors under which this device
is registered as a device can be registered under more than
one supervisor. This marks complete registration of a device
in the system.

3) Add Resource policies: Supervisors can add resource
access policies for IoT devices registered under them. After
a device is registered under a supervisor, the access policies
can be defined for that device. These policies can be defined
in several ways. In our work, all the resources of a device are
listed in their respective =. To set the access permissions,
the supervisor first authenticates itself as explained in the
device registration process. After successful authentication,
supervisor is given access to = location in IPFS to set the
resource access policies of the device. The new hash of the
ticket is updated in parent smart contract mapping which
contains device public key mapped to = hash in IPFS . This
creates a distributed registry of device resources which can be
accessed by any trusted node of the network to grant access
to the devices.

Figure 5: Format of device ticket =

4) Permit Resource Access: When a device D1 wants to
access a resource R hosted by device D2, D1 sends a request
containing it’s signature over τD and public key to a PTG
in the form of an MQTT message requesting the resource.
The PTG transforms MQTT message to RPC-JSON request
and forwards it to the nearest blockchain node. The node

Figure 6: Permit Resource Access

calls PermitResourceAccess function defined in parent smart
contract. This function first authenticates device D1 and if
authenticated, allows the node to query the resource access
policy for D1 stored in = of device D2 in IPFS file system
as shown in Figure 6. If D1 has access policy defined for
resource R it sends the permission to PTG which sends it to
D1. Since, the query is made to the copy of IPFS hosted on
node, the process is completed immediately. In this case, there
is no reliance to receive the information from a centralized
storage.

IV. IMPLEMENTATION AND RESULTS

A. Experimental setup

The experiment was setup on a machine installed with Linux
operating system with the following hardware specifications:
Intel® Core™ i5-7200U CPU@2.50GHz and 8 GiB RAM.
A private Ethereum blockchain 2 was used to deploy smart
contracts, perform transactions and run tests. An IPFS node 3

written in Go v1.12.0 was installed on the system. This node
can be a part of IPFS cluster hosted in an industrial zone. In
order to interact with the IoT devices and enable exchange of
messages between the devices, a Mosquitto MQTT 4 message
broker v1.6.9 from Eclipse foundation is installed on the
testing machine.

In order to analyze the performance of the setup, an MQTT
benchmark tool written in Python 3.6 called PyMQTTBench5

from Python Packages is used. The tool was modified to
incorporate authentication process via blockchain and IPFS.
This benchmark tool helps to create several virtual IoT clients,
simultaneously requesting resource access in the network. We
chose to implement the IoT devices communication using
MQTT as it is a lightweight protocol and closely resembles the
communication requirement of an industrial setup where real
time data is used to drive machines and take decisions. MQTT
protocol works in a pub-sub model where the clients publish to
a topic, another term for a specific data stream from sensors.
Publishers are clients that publish the data to the broker in

2https://www.trufflesuite.com/ganache
3https://ipfs.io/
4https://mosquitto.org/
5https://pypi.org/project/pymqtt/

(a) Throughput performed on subscribers requesting access control for a resource
hosted on a device in the network through PTG

(b) Latency experienced in resource access message delivery for the tests per-
formed in Figure 7(a)

Figure 7: Results

specific topics and subscribers are the clients that subscribe to
the topics the application is interested in.

B. Performance Evaluation

In the experimental setup, we assume that IoT devices cre-
ated as virtual clients in the benchmark tools try to subscribe
to resources hosted by other devices in the network. In order to
subscribe to these data streams, the client’s request the nearest
PTG which in turn forwards the request to the blockchain
network. The interaction between blockchain network and
IPFS node then follows as explained in Figure 6.

The goal of the benchmark is to evaluate the impact
of number of concurrent client requests on the network in
terms of first, delivered throughput i.e. message rate on the
subscriber side and second, message transmission latency i.e.

time required to transmit a message to the client. Both
of these parameters are evaluated for levels QoS = 0 and
QoS = 1. MQTT protocol defines QoS as Quality of service
which is assigned for both publishers and subscribers. QoS
= 0 level, also called ”at most once” means that message
may be delivered once or not at all and QoS = 1 level, also
called ”at least once” ensures that receiver gets the message
at least once. This is achieved through an acknowledgement

exchange between subscriber and broker. In our experiment
both publishers and subscribers are configured.

The test is executed as a sequence of three steps. In
the first step, the network is setup, smart contract is de-
ployed, IPFS node is initialized and keys are generated for
supervisors and devices. In the second step, the supervisors
are registered followed by registration of devices through a
PTG. In the third step, MQTT broker is setup and virtual
publishers start publishing data concurrently to a topic like
”/resource/temperature/D1”. A large number of subscribers
send resource access request simultaneously to the PTG for
connecting to MQTT broker for topic subscription. Once the
authentication is obtained from blockchain network with the
help of device metadata on IPFS, the subscriber can connect
to broker and subscribe to the topic to start receiving the
requested data. Each test was run ten times and average values
are taken.

Figure ?? shows the results for throughput for both QoS
= 0 and QoS = 1. The throughput for client requests steadily
increases from 750 requests served per second until it achieves
a throughput of 1000 requests per second for approx 600
client requests in case of QoS = 0. Similarly, for QoS = 1,
the throughput increases from 720 requests to 930 requests
per second. However, the overall throughput for QoS = 1
remains smaller then QoS = 0 due to the fact that after each
message delivery the broker waits for acknowledgement in
QoS = 1 resulting in lower throughput values. The decrease in
the performance is directly related to the increase in message
transmission latency as shown in Figure ??. The latency for
QoS = 1 is always greater than that for case QoS = 0 due to the
acknowledgment that takes place after each message exchange
and authentication process completion in blockchain network.
The latency in both the cases remain well below 4 msec until
the number of requests are below 600 and further increases
with increase in the number of requests.

A greater throughput and better latency can be achieved with
higher number of PTGs in the network and faster authentica-
tion processing in blockchain and IPFS network. Nevertheless,
the performance of the overall setup performs well with up
to 1000 requests served per second for 600 clients. The
performance can be considered acceptable considering that
with the increase in PTGs the performance will improve. And
a WSN will have several PTGs interacting with supervisors.

V. SECURITY ANALYSIS

Security is a prominent feature of any system architecture.
And when it comes to a huge manufacturing plant, security
cannot be negotiated as these are critical infrastructures. Our
proposed architecture should be no exception to this. In our
architecture there are four main entities that interact with each
other to fulfil the objective. They are IoT devices, PTGs, Su-
pervisor nodes and IPFS nodes. We identify the susceptibility
of each of the components for following threats: Spoofing,
Denial-of-service, Tampering, Man-in-the-middle attack and
Repudiation.

Spoofing attack takes place when a malicious entity tries to
impersonate another device in the network. The IoT devices
in WSN and supervisor nodes are not susceptible to this
attack as they possess a public-private key-pair, which they
use in all the interaction with the blockchain. However, since
IoT devices are not a part of blockchain network and their
communication with Supervisor nodes depends on PTGs. A
malicious PTG can change the information to and from IoT
devices. To overcome this issue, the PTGs can be assigned
signed certificates by a trusted authority in the network. Each
IPFS node has it’s unique identity created at the time of
installation and hence can prevent spoofing.

Denial-of-service (DoS) attack is possible on IoT devices
and to avoid it, the devices must be non-reachable from
an open network. To ensure it, firewalls can be installed in
the network to prevent any malicious entity from across the
network to launch DoS attack. Also, the unique identity of
devices can help mitigate DoS attack on the network. The
blockchain network in general provides a certain level of secu-
rity against malicious nodes. Moreover, since the blockchain in
our architecture is a permissioned network hence, only trusted
nodes are added in the network. This significantly improves the
performance of the network as the resource intensive mining
process is replaced by a voting mechanism.

Tampering of access control information can be done by
a malicious entity posing as PTG, but as proposed earlier,
a signed certificate can help mitigate the attack. Tamper-
ing of device metadata in IPFS and transaction record in
blockchain in difficult because both are cryptographically
protected. In IPFS, each change to the device ticket = is stored
on blockchain as a hash of the file and any tampering with
the data will result in a different hash. Similarly, in blockchain
each block is cryptographically linked to the previous block
making tampering highly difficult.

Man-in-the-middle attack is launched on IoT devices to
access the resources from the devices by sniffing packets
communicated between client and server. However, since all
the devices and supervisor nodes are pre-registered in the
network, it will be difficult for an impersonator to launch this
type of attack as any resource access request from a malicious
device will fail the authentication process. Non-repudiation is
a major asset of using blockchain technology as the sequence
of events are logged in the form of transactions in the blocks.
In our architecture, direct interaction between IoT devices is
not encouraged, and this will prevent any spoofing attack by
one device on another.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the issues in current Industry 4.0
implementation where IoT technology is completely based on
a centralized ecosystem hence causing scalability issues on a
horizontal and vertical scale. The identity and access manage-
ment software used in industry are designed around the legacy
centralized architecture. This paper proposes a novel identity
management solution which is completely decentralized and
based on decentralized technologies like blockchain and IPFS.

Due to the resource constrained nature of the IoT devices, they
are not made a part of blockchain network and communication
with them is achieved via a PTG. This makes the integration
of IoT technology and blockchain technology highly adaptable
with no major changes to the existing infrastructure.

The goal of this paper was to provide a decentralized and
secure architecture for managing identities of IoT devices in
the network with no single point of failure. The architecture
should also be scalable without overloading the existing net-
work. Such an architecture has been proposed in this work with
some preliminary results. The throughput scales up with higher
number of supervisors in the network and does not require
any modification in current network layout. In the future, we
continue to work towards addressing aspects of authorization
and authentication in a decentralized manner for the proposed
scheme.

REFERENCES

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E.
Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman,
L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma,
J. Mason, D. Menscher, C. Seaman, N. Sullivan, K.
Thomas, and Y. Zhou. “Understanding the Mirai Bot-
net”. In: Proceedings of the 26th USENIX Conference
on Security Symposium. USENIX Association, 2017,
pp. 1093–1110. ISBN: 9781931971409.

[2] B. Bencsáth, G. Pék, L. Buttyán, and M. Félegyházi.
“Duqu: Analysis, Detection, and Lessons Learned”. In:
ACM European Workshop on System Security (EuroSec)
(2012).

[3] J. Benet. “IPFS - Content Addressed, Versioned, P2P
File System”. In: CoRR abs/1407.3561 (2014).

[4] G Bertoni, J Daemen, M Peeters, and G. V. Assche.
“The KECCAK SHA-3”. In: “Proceedings Eurocrypt
2013-32nd Annual International Conference Theory Ap-
plications Cryptograph. Vol. 7881, pp. 313–314.

[5] M. Castillo. Honeywell Is Now Tracking $1 Billion In
Boeing Parts On A Blockchain. https://www.forbes.com/
sites/michaeldelcastillo/2020/03/07/honeywell-is-now-
tracking- 1- billion- in- boeing- parts- on- a- blockchain/.
[Online; accessed 23-March-2020s].

[6] H. Choi, J. Song, and K. Yi. “Brightics-IoT: Towards
Effective Industrial IoT Platforms for Connected Smart
Factories”. In: 2018 IEEE International Conference on
Industrial Internet (ICII). 2018, pp. 146–152.

[7] K. Christidis and M. Devetsikiotis. “Blockchains and
Smart Contracts for the Internet of Things”. In: IEEE
Access 4 (2016), pp. 2292–2303. ISSN: 2169-3536.

[8] T. M. Fernández-Caramés and P. Fraga-Lamas. “A
Review on the Use of Blockchain for the Internet of
Things”. In: IEEE Access 6 (2018), pp. 32979–33001.
ISSN: 2169-3536.

[9] C. Gutierrez. Boeing Improves Operations with
Blockchain and the Internet of Things. https : / /www.
altoros . com/blog /boeing - improves - operations - with -

blockchain - and - the - internet - of - things/. [Online;
accessed 23-March-2020s].

[10] U. Habiba, R Masood, M. A. Shibli, and M. A. Ni-
azi. “Cloud identity management security issues &
solutions: a taxonomy”. In: Complex Adaptive Systems
Modeling 2.1 (2014), p. 5. ISSN: 2194-3206.

[11] M.T. Hammi, B. Hammi, P. Bellot, and A. Serhrouchni.
“Bubbles of Trust: A decentralized blockchain-based
authentication system for IoT”. In: Computers Security
78 (2018), pp. 126–142. ISSN: 0167-4048.

[12] S. Horrow and A. Sardana. “Identity Management
Framework for Cloud Based Internet of Things”. In:
Proceedings of the First International Conference on
Security of Internet of Things. 2012, pp. 200–203. ISBN:
9781450318228.

[13] W. Li, A. Sforzin, S. Fedorov, and G. O. Karame.
“Towards Scalable and Private Industrial Blockchains”.
In: Proceedings of the ACM Workshop on Blockchain,
Cryptocurrencies and Contracts. 2017, pp. 9–14. ISBN:
9781450349741.

[14] P. Mahalle, S. Babar, R.N. Prasad, and R. Prasad.
“Identity Management Framework towards Internet of
Things (IoT): Roadmap and Key Challenges”. In: Re-
cent Trends in Network Security and Applications. 2010,
pp. 430–439. ISBN: 978-3-642-14478-3.

[15] P. M. Mell, J. F. Dray, and J. Shook. “Smart Contract
Federated Identity Management without Third Party
Authentication Services”. In: Open Identity Summit
2019.

[16] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. 2009. URL: http://www.bitcoin.org/bitcoin.pdf.

[17] O. Novo. “Blockchain Meets IoT: An Architecture for
Scalable Access Management in IoT”. In: IEEE Internet
of Things Journal 5.2 (Apr. 2018), pp. 1184–1195.
ISSN: 2372-2541.

[18] A. S. Omar and O. Basir. “Identity Management in
IoT Networks Using Blockchain and Smart Contracts”.
In: 2018 IEEE International Conference on Internet of
Things (iThings). July 2018, pp. 994–1000.

[19] G. Papadodimas, G. Palaiokrasas, A. Litke, and T.
Varvarigou. “Implementation of smart contracts for
blockchain based IoT applications”. In: 2018 9th In-
ternational Conference on the Network of the Future
(NOF). Nov. 2018, pp. 60–67.

[20] A. Reyna, C. Martı́n, J. Chen, E. Soler, and M. Dı́az.
“On blockchain and its integration with IoT. Challenges
and opportunities”. In: Future Generation Computer
Systems 88 (2018), pp. 173–190. ISSN: 0167-739X.

[21] L. D. Xu, W. He, and S. Li. “Internet of Things
in Industries: A Survey”. In: IEEE Transactions on
Industrial Informatics 10.4 (2014), pp. 2233–2243.

