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Abstract

Large web openings introduce complex structural behaviors and additional fail-

ure modes of steel cellular beams, which must be considered in the design using

laborious calculations (e.g., exercising SCI P355). This paper presents seven

machine learning (ML) models, including decision tree (DT), random forest

(RF), k-nearest neighbor (KNN), gradient boosting regressor (GBR), extreme

gradient boosting (XGBoost), light gradient boosting machine (LightGBM), and

gradient boosting with categorical features support (CatBoost), for predicting

the elastic buckling and ultimate loads of steel cellular beams. Large datasets of

finite element (FE) simulation results, validated against experimental data, were

used to develop the models. The ML models were fine-tuned via an extensive

hyperparameter search to obtain their best performance. The elastic buckling

and ultimate loads predicted by the optimized ML models demonstrated ex-

cellent agreement with the numerical data. The accuracy of the ultimate load

predictions by the ML models exceeded the accuracy provided by the existing

design provisions for steel cellular beams published in SCI P355 and AISC De-

∗Corresponding author
Email addresses: vitaliy.degtyarev@newmill.com, vitdegtyarev@yahoo.com (Vitaliy

V. Degtyarev), konstantinos.tsavdaridis@city.ac.uk (Konstantinos Daniel Tsavdaridis)

Preprint submitted to Elsevier March 1, 2022

Degtyarev, V.V., Tsavdaridis, K.D., 2022, Buckling and ultimate load prediction
models for perforated steel beams using machine learning algorithms. Journal of
Building Engineering, 51, 104316. https://doi.org/10.1016/j.jobe.2022.104316.

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0
licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/



sign Guide 31. The relative feature importance and feature dependence of the

models were evaluated and discussed in the paper. An interactive Python-based

notebook and a user-friendly web application for predicting the elastic buckling

and ultimate loads of steel cellular beams using the developed optimized ML

models were created and made publicly available. The web application deployed

to the cloud allows for making predictions in any web browser on any device,

including mobile. The source code of the application available on GitHub allows

running the application locally and independently from the cloud service.

Keywords: Cellular beams, Perforated web, Elastic buckling, Ultimate

strength, Predictive models, Machine learning

1. Introduction1

Perforated steel beams with repeating web openings have been used in con-2

struction for more than a century [1]. They offer several advantages over steel3

beams with solid webs, including weight reduction, higher strength-to-weight4

ratio, integration of utilities, and improved aesthetics. Castellated beams with5

hexagonal openings, which were the first type of beams with perforated web sec-6

tions, have practically been replaced in modern construction by cellular beams7

with circular openings [2]. Multiple large openings cause a significant reduc-8

tion in the beam shear strength and introduce additional possible failure modes9

of the beams, which makes the flexural behavior and design of cellular beams10

complicated. A cellular beam may exhibit one of the following failure modes:11

global bending, lateral-torsional buckling, vertical shear, local Vierendeel bend-12

ing, web post horizontal shear, web post bending, web post buckling, and shear13

buckling. Many researchers have contributed to the body of knowledge about14

the strength and structural behavior of steel cellular beams. Several research15

publications describe numerical studies on the lateral-torsional buckling of cel-16

lular beams [3–8], which allowed for determining the effects of different design17
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parameters on the beam strength governed by the elastic and inelastic lateral-18

torsional buckling. It was found in particular that the cellular beam geometry19

affected the moment-gradient coefficient, which is not the case for the solid-web20

beams [4]. T-shaped stiffeners were proposed to improve the flexural stiffness of21

cellular beams and reduce the lateral-torsional buckling occurrence [5]. Modi-22

fied calculations of the cross-sectional properties and a modified buckling curve23

selection were developed based on the existing European guidelines [6].24

Web post buckling of cellular beams and beams with web openings of dif-25

ferent shapes was studied in [9–11]. Tsavdaridis and D’Mello [9] demonstrated26

that particular non-standard opening shapes improved the beam structural per-27

formance compared with the beams with standard circular, hexagonal, and elon-28

gated web openings. They also proposed an empirical formula for predicting the29

ultimate vertical shear strength of web posts formed by the different opening30

shapes. Panedpojaman et al. [10] proposed design equations for predicting the31

shear strength of local web post buckling in symmetric and asymmetric cellular32

beams, which demonstrated improved accuracy in predicting the shear strength33

compared with BS EN 1993-1-1 [12] and AISC 360 [13].34

Chung et al. [14] investigated the Vierendeel mechanism in cellular steel35

beams and found that shear yielding is more critical in steel beams with cir-36

cular openings than in beams with rectangular openings. They proposed an37

empirical shear moment interaction curve at the perforated sections. Kang et38

al. [15] studied the shear behavior and strength of cellular beams and proposed39

a rational design model for predicting the beam shear strength, which showed a40

good agreement with the numerical and experimental results. Ellobody [16] in-41

vestigated combined buckling modes of steel cellular beams and found that the42

failure load could be significantly reduced when the beams failed in combined43

web distortional and web post-buckling.44
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Several research papers have been dedicated to the optimal design of cellular45

beams [9, 17–24]. The studies demonstrated that the strength and weight of46

the beams with web openings could be significantly improved by using non-47

standard opening shapes [9, 17, 19, 21], applying special optimization techniques48

[18, 20, 22], and selecting specific sizes and spacing of web openings [21, 23, 24].49

Akrami and Erfani [25] assessed design methodologies for perforated steel50

beams presented in ASCE 23-97 [26], SCI P100 [27], SCI P355 [2], Chung et51

al. [28], and Tsavdaridis and D’Mello [17]. The two latter methods were found52

least restrictive and produced the lowest errors. The authors proposed ASCE53

23-97 modifications, which showed a good agreement with experimental and54

numerical data.55

The presented literature review shows that the published research concen-56

trated mainly on studying specific failure modes of cellular beams. To fill the57

gap in the information about the global response of such members, Rajana et al.58

[29] performed an extensive numerical parametric study of the elastic and inelas-59

tic buckling of cellular beams subjected to strong axis bending. The effects of60

various parameters on the elastic buckling and ultimate loads of cellular beams61

were investigated, and an extensive database of the FE simulation results was62

generated. The study showed that the elastic buckling was affected mainly by63

the web thickness and the flange geometry. The diameter of web openings, their64

spacing, flange geometry, and web thickness were the most critical parameters65

affecting the beam strength. It was also determined that the initial geometric66

imperfections had an insignificant effect on the predicted beam strength.67

Artificial intelligence (AI) and machine learning (ML) are emerging fields68

of computer science that allow for developing machines with simulated human69

intelligence and creating data-based descriptive models capable of handling very70

complex problems efficiently. A properly developed ML model for engineering71
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applications reveals hidden relations between the predicted variable and input72

parameters based on the underlying physics. Many industries have successfully73

adopted AI and ML [30–33], whereas their deployment in structural engineering74

is still somewhat limited despite many research publications demonstrating the75

accuracy and effectiveness of the AI and ML methods.76

The number of research publications on ML applications in civil and struc-77

tural engineering had increased exponentially since the second half of the 1980s,78

when the first papers on this topic were published [34–40]. Many publica-79

tions described ML models considered in this study for predicting properties80

of concrete and reinforced concrete structures [41–66]. Fewer papers have been81

published on ML applications to steel structures, including buckling analysis of82

beam-columns [67], cold-formed steel (CFS) space structure optimization [68],83

web crippling strength prediction [69], elastic distortional buckling stress de-84

termination [70, 71], rotation capacity prediction [72], strength prediction of85

concrete-filled steel tubular columns [73], failure mode identification of column86

base plate connection [74], capacity prediction of cold-formed stainless steel87

tubular columns [75], seismic drift demand estimation for steel moment frame88

buildings [76], and shear strength of CFS channels with staggered perforated89

webs [77–80]. ML techniques were previously applied to steel cellular beams.90

Sharifi et al. [81] developed an artificial neural network (ANN) to predict the91

flexural strength of steel cellular beams governed by lateral-torsional buckling92

using a relatively small dataset with 99 samples. The predicting abilities of93

the developed ANN were superior to those by the Australian Standard [82].94

Abambres et al. [83] developed an ANN model and an ANN-based formula for95

predicting the elastic buckling load of cellular beams using a large dataset of96

numerical results described in [29]. The ANN and the proposed formula showed97

an excellent agreement with the FE simulation results. An ANN and ANN-98
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based formula for predicting the lateral-torsional buckling resistance of slender99

steel cellular beams were presented by Ferreira et al. [84]. Limbachiya and100

Shamass [85] presented an ANN and ANN-based formula for predicting web-101

post buckling shear strength of cellular beams, which demonstrated a higher102

level accuracy compared with the existing design provisions.103

The presented review indicates that ML has excellent potential for develop-104

ing structural engineering expert tools. ML models cannot currently be solely105

used for final designs because building codes do not permit them. However,106

they can be employed in the preliminary design stages to quickly evaluate and107

select options that may work and consider them in the detailed analysis and108

design per building codes. Due to the superior performance of ML models com-109

pared with conventional models demonstrated on many engineering problems,110

the question of what should be done to adopt them in building codes will need111

to be eventually answered. ML models are based on solid mathematical algo-112

rithms, well-described in the literature. The novelty of the algorithms, which113

structural engineers do not fully understand, is one of the significant barriers114

today to their adoption, which will eventually change with more education,115

research, and experience.116

ML models built on top of the available test or numerical data are compu-117

tationally efficient and often more accurate than the existing design methods118

based on the traditional approaches, which often rely on fewer data points and119

engineering intuition. They can replace computationally intensive finite element120

simulations when the design parameters are within the ranges of the data used121

for the ML model training. It should also be noted that accurate finite element122

simulations require advanced software resources, which are not always available123

to designers, and advanced techniques, thus skills and knowledge. Even when124

the appropriate software is available, and the designers possess the required ex-125
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pertise, it is impractical to perform advanced finite element simulations during126

the project design phase due to time constraints. Because of that, engineers are127

often using simplified FEA to perform stress analyses. The downside is that128

these are not very accurate due to the number of assumptions, leading to the129

very same initial problem: the need of higher safety factors and the excessive130

use of material where it is not needed.131

This study aims to explore various ML algorithms for predicting the elastic132

buckling and ultimate loads of steel cellular beams. Considering the complexity133

of the structural behavior and design of such members, ML models are deemed to134

be a promising alternative to the existing design guidelines and computationally135

expensive FE modeling. The objectives of the study were as follows:136

1. Develop and optimize ML models for predicting the elastic buckling and ul-137

timate loads of steel cellular beams based on seven popular ML regressors,138

including decision tree (DT), random forest (RF), k-nearest neighbors139

(KNN), gradient boosting regressor (GBR), extreme gradient boosting140

(XGBoost), light gradient boosting machine (LightGBM), and gradient141

boosting with categorical features support (CatBoost).142

2. Interpret and explain the developed models using the permutations and143

SHapley Additive exPlanations (SHAP) [86] methods.144

3. Compare predictions by the developed ML models with those per SCI145

P355 [2] and AISC Design Guide 31 [87].146

ML models were trained using FE simulation results of steel cellular beams147

published in [29]. The elastic buckling load dataset included 3645 samples. The148

ultimate load (inelastic buckling load) dataset consisted of 78390 samples. All149

models were implemented in open-source Python-based frameworks, and their150

hyperparameters were optimized via an extensive tuning process. The ten-fold151

cross-validation method was employed for the model training and performance152
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evaluation. The final evaluation of the models was performed on the data unseen153

by the models during training. The ML model predictions showed an excellent154

agreement with the FE simulation results. The ultimate loads of the cellular155

beams predicted by the models compared with the FE analysis data considerably156

better than the ultimate loads predicted by SCI P355 [2] and AISC Design Guide157

31 [87]. The developed ML models allow for computing the elastic buckling158

and ultimate loads of cellular beams with a wide range of variables, including159

intermediate values of variables not considered in numerical studies used for the160

model training.161

A web application for predicting the elastic buckling and ultimate loads of162

steel cellular beams was created in Streamlit. A light version of the application163

was deployed to the cloud at https://scba-cb.herokuapp.com/. It allows for164

making predictions in any web browser on any device, including mobile. The165

source codes of the full and lite application versions are available on GitHub166

at https://github.com/vitdegtyarev/SCBA-Streamlit and https://gi167

thub.com/vitdegtyarev/SCBA-Streamlit-CB, respectively. They allow for168

running the application on a local machine. The scientific research part of this169

study consists of creating and optimizing ML models for predicting the behavior170

of cellular beams, while the web application is a convenient tool for obtaining171

predictions by the developed models.172

The novelty of the presented work consists of the development of new opti-173

mized ML models for accurate and computationally efficient predictions of the174

elastic buckling and ultimate loads of steel cellular beams, interpretation and ex-175

planation of the developed models using the permutations and SHAP methods,176

comparison of the performance of seven different ML models, and development177

of a web application based on the optimized ML models for the ease of use by178

engineers in practice.179
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2. Datasets180

The elastic buckling load, wcr, and ultimate load (inelastic buckling load),181

wmax, datasets of FE simulation results from [29] were used for training and per-182

formance evaluation of the ML models. The FE models were validated against183

the experimental data, as described in [29]. The wcr and wmax datasets consist184

of 3645 and 78390 samples, respectively. Fig. 1 shows dimensional parameters185

of the cellular beams considered in the numerical parametric study, including186

beam span length, L; beam height, H; flange width, bf ; flange thickness, tf ;187

web thickness, tw; opening diameter, Do; web post width, WP ; and opening188

end distance, Led.189

Figure 1: Dimensional parameters of steel cellular beams

In addition to the dimensional parameters of the beams, the ultimate load190

dataset included steel yield stress, Fy; steel ultimate stress, Fu; steel yield strain,191

ϵy; steel ultimate strain, ϵu; and initial geometric imperfections considered in192

the FE models. The dimensional beam characteristics shown in Fig. 1 and Fy193

(in the wmax models only) were considered the ML models’ input parameters.194

The initial geometric imperfections were excluded from the input parameters195

because they have an insignificant effect on wmax [29], and their exact shape196

and magnitude are not usually known to the designer.197

Distributions of the parameters in the elastic buckling and ultimate load198

datasets presented in Figs. 2 and 3 demonstrate that the datasets cover a wide199
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range of the beams and represent the steel cellular beams used in construction.200

Figure 2: Distributions of variables of the elastic buckling load dataset

Figure 3: Distributions of variables of the ultimate load dataset

Fig. 4 and 5 show correlation matrices for the dataset variables. The beam201

span length, L, has the highest negative correlation with wcr and wmax, char-202

acterized by moderate coefficients of correlation of -0.67 and -0.60, respectively.203
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All other variables have weak correlations with wcr and wmax, with coefficients204

of correlation not exceeding 0.37. It is interesting to note that wmax has a con-205

siderably stronger correlation with WP than wcr, which indirectly highlights206

the positive contribution of the web post plastic behavior to the ultimate load207

of the cellular beams. Do has a strong positive correlation with H because the208

Do values were set as fractions of the H values in the numerical parametric209

study. All other dataset variables have weak correlations between themselves.210

Figure 4: Correlation matrix for the elastic buckling load dataset

The datasets used in this study can be found at the following link: https:211

//www.kaggle.com/vitdegtyarev/buckling-and-ultimate-loads-of-cel212

lular-beams.213
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Figure 5: Correlation matrix for the ultimate load dataset

3. Review of machine learning algorithms214

The abilities of seven popular supervised ML algorithms to predict the elas-215

tic buckling load, wcr, and ultimate load, wmax, of steel cellular beams were216

evaluated. Supervised ML algorithms learn by example using labeled train-217

ing data, which consist of input parameters (also known as features) and one218

or more output values (also known as targets). The evaluated ML algorithms219

included decision tree (DT), random forest (RF), k-nearest neighbors (KNN),220

gradient boosting regressor (GBR), extreme gradient boosting (XGBoost), light221

gradient boosting machine (LightGBM), and gradient boosting with categorical222

features support (CatBoost). These algorithms are commonly employed to de-223

velop predictive ML models in civil/structural engineering (as was discussed in224

the Introduction section) and other domains. They are based on different princi-225

ples and may result in different performances when used for different problems.226

One algorithm may demonstrate a better predictive accuracy than others on227

12



one problem and inferior performance on a different problem. Therefore, it is228

important to find an algorithm and its optimal hyperparameters that works the229

best for a given problem.230

Fig. 6 demonstrates the schematic architecture of the considered ML models231

for predicting wcr and wmax. The models consisted of features, ML algorithms,232

and targets. The features of the models for predicting wcr were L, H, bf , tf ,233

tw, Do, WP , and Led. The wmax models also included Fy as a feature.234

All ML algorithms have hyperparameters, or the parameters specified before235

the model training to control the learning process and avoid overfitting or un-236

derfitting. Overfitting is characterized by the ability of a model to make good237

predictions for the samples used in training while making poor predictions on238

the new samples of data unseen by the model before. An underfitted model239

produces poor predictions on the seen and unseen data. The ability of an ML240

model to make good predictions for previously unseen data is referred to as gen-241

eralization. Finding optimal hyperparameters is essential for obtaining a model242

with the best performance and generalization [54, 77]. It is equivalent to finding243

the form and coefficients of a regression equation that gives the best prediction244

accuracy for a given problem.245

The following sections present a brief overview of each ML algorithm con-246

sidered in the study. Detailed information about the ML algorithms and their247

practical implementation can be found in published literature, including [88]248

and [89].249

Figure 6: Architecture of ML models
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3.1. Decision tree250

The DT algorithm bears its name from its tree structure incrementally de-251

veloped by splitting the dataset into smaller subsets. DT models have three252

types of nodes: root node, decision nodes, and terminal nodes (also known as253

leaves). The learning starts at the root node, which includes all training data.254

The root node splits into two or more decision nodes, which include subsets of255

the original training data. The splitting occurs based on a series of questions256

determined by the algorithm. It continues for the subsequent levels until a pre-257

defined maximum depth of the tree is reached or when the nodes have only one258

sample of the training data. The algorithm stops at the terminal nodes, which259

do not split.260

Various algorithms for growing a DT exist. They differ by the possible

tree structure, the split finding criteria, the splitting stoppage criteria, and the

model estimation within the terminal nodes. The classification and regression

trees (CART) algorithm [88] was used in this study. In this algorithm, a dataset

(xi, yi) for i = 1, 2, ..., N , with xi = (xi1, xi2, ..., xip) is considered, where xi and

yi are features and targets, N is the number of samples, and p is the number of

features. The original dataset is split into M regions R1, R2,...,RM . The model

prediction in each region is a constant cm described by Eq. 1.

f(x) =

M∑
m=1

cmI(x ∈ Rm) (1)

where I(x ∈ Rm) is the identity function that returns 1 if x is in the subset Rm261

and 0 otherwise.262

The best ĉm is the average of yi in region Rm when the sum of squared errors∑
(yi − f(xi))

2 is used as the criterion of minimization:

ĉm = ave(yi | xi ∈ Rm) (2)
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The following greedy algorithm is employed to find the best binary partition263

of each node in terms of the minimum sum of squared errors. The pair of264

half-planes partitioned by a splitting variable j and a split point s is defined as265

follows.266

R1(j, s) = {X | Xj ≤ s} and R2(j, s) = {X | Xj > s} (3)

The splitting variable j and the split point s that solve Eq. (4) are sought.267

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 +min

c2

∑
xi∈R2(j,s)

(yi − c2)
2

 (4)

The inner minimization is solved by268

ĉ1 = ave(yi | xi ∈ R1(j, s)) and ĉ2 = ave(yi | xi ∈ R2(j, s)) (5)

Once the best split is found, the dataset is partitioned into two resulting269

subsets, after which the splitting process is repeated for each subset and each270

node in the subsequent levels.271

The DT advantages consist of the relative ease of data preparation, the ease272

of understanding and interpretation, and robustness against missing values. One273

of the main disadvantages of DT is their proneness to overfitting when the tree274

is very large [90, 91]. To avoid overfitting, the DT model should not be very275

large. At the same time, the model should be large enough to capture the276

important relationships between the features and targets to avoid underfitting.277

DT hyperparameters include the maximum depth of the tree, the minimum278

number of samples required to split an internal node, the minimum number of279

samples required to be at a leaf node, and others.280
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3.2. Random forest281

RF is an ensemble of DTs generally trained via bagging, which stands for282

bootstrap aggregating [88]. In this method, the same algorithm (DT) is trained283

many times on different random subsets of the entire training set. The sampling284

is performed with replacement, meaning that the same sample may appear285

in different subsets. Predictions from multiple randomly generated DTs are286

averaged to obtain the final output value of the RF algorithm.287

The RF regression algorithm consists of the following steps [88].288

1. For b=1 to B, where b is an individual DT and B is the total number of289

DTs (estimators):290

(a) A bootstrap sample of size N is drawn from the training data.291

(b) A tree Tb is grown to the bootstrapped data by repeating the fol-292

lowing substeps for each node until the maximum tree depth or the293

minimum node size is reached:294

i. m variables are randomly selected from p variables.295

ii. The best variable among m and the best split point is found.296

iii. The node is split into two nodes.297

2. The ensemble of trees {Tb}B1 is output.298

3. The final prediction is made as f̂B
RF (x) =

1
B

∑B
b=1 Tb(x).299

The RF advantages include those listed in Subsection 3.1 for DT and its300

robustness against overfitting due to the presence of multiple independent DTs301

making predictions. On the negative side, RF requires more computational302

power and resources to build numerous trees and combine their outputs com-303

pared with DT. The RF hyperparameters include those for DTs plus the number304

of trees in the forest.305
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3.3. K-nearest neighbors306

The KNN regression algorithm predicts the output value by interpolating307

the output values of k nearest neighbors in the training set. The number of308

neighbors k is a hyperparameter set before training. The distance between the309

neighbors is defined by the distance function in the form of the Minkowski metric310

described by Eq. (6). The Euclidean and Manhattan distances, which are other311

typical distance metrics, can be obtained from the Minkowski metric by setting312

the power parameter, p, equal to 1 and 2, respectively.313

D(X,Y ) =

(
k∑

i=1

|xi − yi|p
) 1

p

(6)

The output values are obtained by taking either an average (Eq.(7)) or an

inverse distance weighted average (Eq.(8)) of the k nearest neighbors with sim-

ilar features. In the latter approach, closer neighbors have a more significant

influence on the target than the more distant neighbors.

f̂(x) =
1

k

∑
xi∈Nk(x)

yi (7)

f̂(x) =

∑
xi∈Nk(x)

1
di
yi∑

xi∈Nk(x)
1
di

(8)

where Nk(x) is the neighborhood of x defined by the k closest points xi in the314

training data, di is the distance from the ith point to the estimated point.315

The KNN advantages include the ease of implementation, the ability to316

add new data without the effect on the algorithm’s accuracy, and the training317

period absence, which makes the KNN algorithm significantly faster than other318

ML algorithms when the dataset size and the number of input variables are319

relatively small. The KNN disadvantages consist of sensitivity to noisy data,320

missing values and outliers, and slow predictions for large datasets and datasets321
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with a large number of features. The KNN hyperparameters are the number of322

neighbors, the weight function (uniform or inverse distance weighted), and the323

distance metric.324

3.4. Gradient boosting325

Boosting algorithms, or boosting machines, are ensemble methods that com-326

bine several weak learners (usually DTs) to produce a strong learner. Boosting327

machine predictors are trained sequentially, with each subsequent learner im-328

proving the predecessor’s predictions. The algorithm stops when a predefined329

number of predictors is reached or when the perfect fit is achieved. The two330

common boosting algorithms are gradient boosting and adaptive boosting.331

In gradient boosting, the boosting algorithm is combined with gradient de-332

scent, which is an iterative optimization algorithm for finding a local minimum333

of a function. New predictors are fitted to the residual errors from the previous334

predictors. The gradient boosting algorithm includes the following steps [92]:335

1. For a training set (xi, yi)
n
i=1, the model is initialized with a constant value336

of337

F0(x) = argmin
γ

n∑
i=1

L(yi, γ) (9)

where i and n denote the ith sample and the total number of samples338

2. For m=1 to M, where m and M are the mth iteration and the total number339

of iterations:340

(a) Pseudo-residuals are computed as follows:341

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

(10)

(b) The training set (xi, rim)ni=1 is used to fit a predictor hm(x) to342

pseudo-residuals.343
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(c) Multiplier γm is computed by solving the following optimization prob-344

lem:345

γm = argmin
γ

n∑
i=1

L[yi, Fm−1(xi) + γhm(xi)] (11)

(d) The model is updated using the following equation:346

Fm(x) = Fm−1(x) + γmhm(x) (12)

3. FM (x) is obtained.347

The gradient boosting algorithm’s advantages include high accuracy, flexi-348

bility, and the ability to handle missing data. It is generally considered resistant349

to overfitting due to many weak learners involved in the prediction. However,350

the algorithm may overfit when its hyperparameters are poorly selected. The351

disadvantages of gradient boosting are computation cost, the number of hyper-352

parameters that require proper tuning, and limited interpretability.353

The gradient boosting hyperparameters include learning rate, the number of354

boosting iterations, maximum depth of the individual regression estimators, the355

minimum number of samples required to split an internal node, the minimum356

number of samples required to be at a leaf node, and others.357

The gradient boosting algorithms have been implemented in several frame-358

works: GBR [93], XGBoost [94], LightGBM [95], and CatBoost [96]. XGBoost,359

LightGBM, and CatBoost are improved implementations of GBR. XGBoost was360

optimized for more accurate and faster predictions via regularization, custom361

loss functions, parallel processing, and other algorithm improvements. Light-362

GBM offers improved training speed, higher efficiency, better accuracy, lower363

memory use, and the ability to process large datasets by applying the Gradient-364

based One-Side Sampling (GOSS) method and parallel learning. CatBoost can365
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process categorical features to improve accuracy for datasets with categorical366

features, ordered boosting to fight overfitting, missing value support, and others.367

4. Implementation and results368

The ML algorithms were implemented in the following Python-based open-369

source libraries: scikit-learn (DT, RF, KNN, and GBR) [93], XGBoost [94],370

LightGBM [95], and CatBoost [96]. The models were optimized, validated, and371

tested using the ten-fold cross-validation method. The wcr and wmax datasets372

were randomly divided into training and test sets in the 80/20 proportion. The373

training set of each dataset was partitioned into ten groups. The models were374

trained on nine groups of the training set and validated on the remaining group.375

The process was repeated for the remaining groups of the training set until each376

group had served as the validation set. The final performance of the models was377

evaluated on the test data unseen by the models in training. Compared with the378

hold-out method, where the dataset is divided into training, validation, and test379

sets, with each set used for its purpose only, the ten-fold cross-validation method380

makes more samples available for model training and excludes model dependence381

on a particular random choice of the samples selected for the training, validation,382

and test sets. As a result, the ten-fold cross-validation method usually produces383

more accurate models with better generalization performance.384

Figs. 2 and 3 demonstrate that the numerical ranges of the features ranged

widely in the datasets, which is not ideal for ML models, as it might cause

difficulties for the algorithms in finding optimal model parameters. Each feature

value in the training set was standardized using Eq. (13) to make the features’

scales uniform. Each feature in the test set was also standardized using the

mean and standard deviation values of the feature obtained for the training set.

x′ =
x− µ

σ
(13)
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where x′ is the standardized value of the input parameter, x is the original385

(non-standardized) value of the input parameter, µ is the mean of the original386

values of the input parameter, and σ is the standard deviation of the original387

values of the input parameter.388

Performance of the ML learning models was evaluated based on the mean

squared error (MSE) values obtained for the test set calculated as follows.

MSE =
1

n

n∑
i=1

(y − ŷ)
2

(14)

where n is the number of samples, y is the output value, and ŷ is the predicted389

output value.390

Mean absolute error (MAE), mean absolute percentage error (MAPE), the

coefficient of determination (R2), the minimum, maximum, mean, and coef-

ficient of variation values of the prediction-to-FEA ratios, which are metrics

commonly used for performance evaluation of ML models [97], calculated using

the following equations were also determined for the training and test sets.

MAE =
1

n

n∑
i=1

|y − ŷ| (15)

MAPE =
100

n

n∑
i=1

∣∣∣∣y − ŷ

y

∣∣∣∣ (16)

R2 = 1−
∑n

i=1 (y − ŷ)
2∑n

i=1 (y − ȳ)
2 (17)

where ȳ is the mean of the y values.391

Extensive hyperparameter tuning was carried out for each ML model us-392

ing the grid and random searches to find optimal hyperparameter values that393

give the best model performance. The obtained optimal hyperparameters for394
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each ML model are listed below. The hyperparameter designations used in the395

Python libraries [93–96] are shown in parentheses. The hyperparameters not396

presented below had default values.397

• DT:398

– the maximum depth of the tree (max depth): None for wcr and wmax,399

– the minimum number of samples required to split an internal node400

(min samples split): 4 for wcr and 2 for wmax,401

– the minimum number of samples at a leaf node (min samples leaf):402

2 for wcr and wmax.403

• RF:404

– the number of trees in the forest (n estimators): 80 for wcr and 200405

for wmax,406

– the maximum depth of the tree (max depth): None for wcr and wmax,407

– the minimum number of samples required to split an internal node408

(min samples split): 2 for wcr and wmax,409

– the minimum number of samples at a leaf node (min samples leaf):410

1 for wcr and wmax.411

• KNN412

– the number of neighbors (n neighbors): 5 for wcr and 4 for wmax,413

– weight function (weights): uniform for wcr and wmax,414

– the power parameter for the Minkowski metric (p): 1 for wcr and415

wmax,416

– leaf size (leaf size): 20 for wcr and 30 for wmax.417

• GBR:418
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– learning rate (learning rate): 0.1 for wcr and wmax,419

– the number of boosting stages (n estimators): 200 for wcr and 1300420

for wmax,421

– maximum depth of individual regression estimators (max depth): 5422

for wcr and 9 for wmax,423

– the minimum number of samples required to split an internal node424

(min samples split): 2 for wcr and wmax,425

– the minimum number of samples at a leaf node (min samples leaf):426

3 for wcr and 4 for wmax.427

• XGBoost:428

– learning rate (eta): 0.2 for wcr and wmax,429

– minimum loss reduction required to make a further partition on a430

leaf node of the tree (gamma): 1 for wcr and wmax,431

– the maximum tree depth of base learners (max depth): 5 for wcr and432

12 for wmax,433

– the minimum sum of instance weight (hessian) needed in a child434

(min child weight): 3 for wcr and 6 for wmax.435

• LightGBM:436

– learning rate (learning rate): 0.1 for wcr and wmax,437

– the number of boosting iterations (num iterations): 100 for wcr and438

3800 for wmax,439

– maximum tree leaves for base learners (num leaves): 50 for wcr and440

wmax,441

– the minimum number of observations that must fall into a tree node442

for it to be added (min data in leaf): 10 for wcr and wmax,443
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– maximum tree depth for base learners (max depth): -1 (None) for444

wcr and wmax,445

– the maximum number of bins (max bin): 100 for wcr and wmax.446

• CatBoost447

– learning rate (learning rate): 0.03 for wcr and wmax,448

– the number of iterations (iterations): 850 for wcr and 4000 for449

wmax,450

– tree depth (depth): 6 for wcr and 11 for wmax,451

– L2 regularization term coefficient of the cost function (l2 leaf reg):452

3 for wcr and 1 for wmax,453

– the amount of randomness to use for scoring splits when the tree454

structure is selected (random strength): 1 for wcr and 2 for wmax.455

Figs. 7 and 8 show the performance of the developed ML models with the op-456

timal hyperparameters for predicting wcr and wmax, respectively. The compar-457

isons of the ML model predictions with FE simulation results are demonstrated458

for the training and test datasets in each figure. The values of R2, minimum,459

maximum, mean, and coefficient of variation of the prediction-to-FEA ratios460

are presented in Figs. 7 and 8.The MSE, MAE, and MAPE values are given in461

Tables 1 and 2.462

Table 1: Performance metrics of ML models for predicting elastic buckling loads of steel
cellular beams, wcr (Train/Test)

Model MSE ((kN/m)2) MAE (kN/m) MAPE (%)
DT 155.94/1538.26 6.04/19.07 2.35/7.05
RF 83.79/682.24 4.44/13.00 1.83/5.27
KNN 1320.87/2617.14 21.09/28.99 10.22/12.66
GBR 39.68/319.27 3.85/7.66 1.99/3.24

XGBoost 48.44/294.91 4.51/8.59 2.51/3.95
LightGBM 41.88/366.81 3.57/7.56 1.82/3.06
CatBoost 33.90/295.43 3.16/6.15 1.52/2.48
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Figure 7: Performance of ML models for predicting elastic buckling load of steel cellular beams

Table 2: Performance metrics of ML models for predicting ultimate loads of steel cellular
beams, wmax (Train/Test)

Model MSE ((kN/m)2) MAE (kN/m) MAPE (%)
DT 15.99/20.25 2.08/2.37 1.90/2.18
RF 16.01/20.17 2.08/2.38 1.90/2.18
KNN 18.43/22.61 2.18/2.49 1.99/2.27
GBR 16.01/20.24 2.08/2.38 1.90/2.18

XGBoost 16.03/20.13 2.09/2.39 1.92/2.19
LightGBM 16.10/20.10 2.11/2.40 1.94/2.20
CatBoost 16.05/20.17 2.10/2.39 1.92/2.19

As can be seen from Fig. 7 and Table 1, CatBoost, XGBoost, and GBR463

demonstrated comparable performances in predicting wcr for the test set. The464
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Figure 8: Performance of ML models for predicting ultimate load of steel cellular beams

performance metrics for LightGBM were slightly worse than those for CatBoost,465

XGBoost, and GBR. KNN provided inferior performance compared with other466

considered ML models. Fig. 8 and Table 2 show that all models performed467

well in predicting wmax, with KNN providing slightly worse metrics than other468

algorithms. It is worth reminding that the ultimate load dataset included 78390469

samples and was significantly larger than the elastic buckling load dataset with470

3645 samples. The good predictions of the ultimate load by all considered471

ML models, which was not the case for the elastic buckling dataset, highlight472
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that good data with a very large number of samples contributes more to the473

accuracy of ML models than the ML algorithm differences. It can also be seen474

from comparisons of the performance metrics for the training and test sets that475

the created ML models with the optimal hyperparameters have a reasonably476

good generalization performance.477

Developed ML models can be accessed at the following link: https://ww478

w.kaggle.com/vitdegtyarev/cellular-beams-ml-models. An interactive479

notebook for predicting the elastic buckling and ultimate loads of steel cellular480

beams with the developed ML models can be found at the following link: https:481

//www.kaggle.com/vitdegtyarev/ml-models-for-cellular-beams?scrip482

tVersionId=63075739.483

5. Relative feature importance and feature dependence484

Structural engineers often perceive ML methods as black boxes because hu-485

mans cannot easily explain and interpret ML predictions. To remove this barrier486

to adopting ML methods, several ML explainability and interpretability tech-487

niques are available, including relative feature importance, partial dependence,488

feature interactions, and SHAP [98]. These techniques shed light on why and489

how an ML model made its predictions and expose how ML model predictions490

compare with mechanics-based knowledge. The application of the explainability491

and interpretability methods to the developed ML models is described in this492

section.493

Relative effects of the features on the wcr and wmax predictions by each con-494

sidered ML model were analyzed using the permutation and SHAP methods.495

The permutation feature importance is a decrease in a model score when the496

feature values are randomly shuffled (permuted). A feature with a more sig-497

nificant score decrease is more important than others. The model score in the498
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form of coefficient of determination, R2, was used in this study. The random499

shuffling of values is repeated several times for each feature to obtain the mean500

and the standard deviation of the permutation importance score.501

The SHAP method [86] aims to explain a prediction for a sample by deter-502

mining the contribution of each feature to the prediction by computing Shapley503

values from coalitional game theory [99]. The Shapley value represents the av-504

erage contribution of one player, which is a model feature in our case, to the505

model predictions taken for all possible combinations, which may consist of all506

dataset samples or a predefined portion of them. SHAP uses an additive feature507

attribution method – a linear explanation model of the summation of present508

features. The feature importance is determined based on the absolute average509

Shapley values. Features with larger Shapley values are more important than510

others. SHAP feature importance is based on the magnitude of feature attri-511

butions, while permutation feature importance is based on the decrease in the512

model performance. Thus, the relative feature importance predicted by these513

two methods might be different.514

The relative feature importance was determined for all considered MLmodels515

using both methods. The relative feature importance plots were similar for all516

models. Therefore, the relative feature importance for the CatBoost models,517

which are ones of the most accurate models for predicting wcr and wmax, is518

presented and discussed hereafter. Fig. 9 shows permutation and SHAP feature519

importance plots for the optimized CatBoost models for predicting wcr and520

wmax.521

The relative feature importance in predicting the elastic buckling load, wcr,522

of steel cellular beams is discussed first. The span length, L, has the most523

significant importance according to both methods, which was expected. The524

next important beam parameters are the flange width, bf , the web thickness,525
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Figure 9: Permutation and SHAP feature importance for CatBoost models

tw, and the flange thickness, tf . The permutation method indicated that tw526

is more important than bf in predicting wcr, while the SHAP method showed527

bf above tw. However, the difference in the importance scores for bf and tw is528

small, especially per the permutation method. These results compare well with529

the conclusions made in [29], indicating that the CatBoost model can capture530

the mechanics of the cellular beam behavior. The relative importance of the531

web post width, WP , the opening diameter, Do, the beam height, H, and the532

opening end distance, Led, have relatively small importance in predicting wcr533

according to both methods.534

The permutation and SHAP relative feature importance plots for wmax535

demonstrate that the span length, L, is the most important feature, followed536

by WP , tw, bf , Fy, and tf . It should be noted that WP has a more significant537

impact on wmax than on wcr. These results align with the conclusion made538

in [29] and confirm the positive contribution of the web post plastic behavior539
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to the strength of steel cellular beams mentioned in Section 2. The relative540

importance of H, Do, and Led for predicting wmax is minor.541

SHAP feature importance plots provide useful information, which is, how-542

ever, somewhat limited. SHAP summary plots shown in Fig. 10 are more543

informative as they combine feature importance and feature effects. Each point544

on the summary plots represents a Shapley value for a dataset sample. The545

color shows the feature value from low (blue) to high (red). Points with the546

same Shapley values are scattered vertically to demonstrate their distribution547

for each feature. The order of the features follows their importance; so, it is548

the same as shown in Fig. 9. The SHAP summary plots presented in Fig.549

10 indicate that wcr and wmax increase when the beam span reduces and vice550

versa. Wide web posts have higher wcr and wmax, which decrease when the551

web post width reduces. Greater values of tw, bf , tf , and Led produce higher552

wcr and wmax, whereas an increase in the opening diameter Do results in wcr553

and wmax reductions. The beam height H affects wcr and wmax differently:554

wcr goes down when H increases, while wmax increases when H goes up. The555

reduction of wcr with an increase in H can be explained by an increase in the556

web post slenderness, which results in the elastic buckling load reduction.557

Figure 10: SHAP summary plots for CatBoost models

SHAP dependence plots given in Figs. 11 and 12 for wcr and wmax illus-558

trate exact relationships between feature values and predictions. Each point559
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represents a prediction for a dataset sample. Feature values are shown on the560

horizontal axes, while SHAP values are given on the vertical axes. The SHAP561

values demonstrate the magnitude of change in wcr and wmax when the feature’s562

value is known. The color of each point corresponds to the second feature, which563

was determined by the algorithm to have the highest interaction with the con-564

sidered feature shown on the horizontal axis.565

Figure 11: SHAP dependence plots for CatBoost model for predicting elastic buckling load
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The SHAP dependence plots for wcr show that L and bf have the highest566

interactions with tw, while other features interact with L most frequently. An567

increase in L results in an exponential decrease in wcr, which is more pronounced568

for the cellular beams with thicker webs. An increase in H results in reductions569

of wcr for the beams with short spans and smaller reductions or no reduction570

for the beams with long spans, which can be seen from the comparison of the571

SHAP values for the beams with long spans (red dots) with the SHAP values for572

the beams with short spans (blue dots). These results indicate that the elastic573

buckling load of the beams with short spans was likely governed by the local web574

buckling. In contrast, the elastic buckling load of the beams with long spans was575

likely governed by the global lateral-torsional buckling of the beams, which was576

less sensitive to the changes in H for the beams considered in this study. The577

elastic buckling loads increase when bf increases, especially for the beams with578

thicker webs. The elastic buckling load, wcr, increases when tf and tw increase,579

especially in the beams with short spans. The elastic buckling loads reduce580

when Do goes up. The wcr reduction is more significant due to the Do increase581

for the cellular beams with short spans. When WP increases, wcr increases,582

especially for the beams with short spans. The plot also shows that web posts583

with widths of 56 mm and narrower contribute to wcr reductions, indicated by584

the negative SHAP values, while web posts of 72 mm wide and wider contribute585

to wcr positively. An increase in Led results in a more significant increase in wcr586

for the beams with short spans and a smaller increase in wcr for those with long587

spans. It should be noted that the beam elastic buckling loads in the dataset588

were obtained for different buckling modes, including global lateral-torsional589

buckling of the beams, local buckling of the web posts, and their interaction.590

Therefore, the effects of the ML model features discussed above reflect possible591

changes in the buckling modes when the beam geometry changes.592
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The SHAP dependence plots for wmax demonstrate that the strongest in-593

teractions are between L and tw, H and Do, bf/tf and WP , and Led and bf .594

All other features of the ultimate load model interact with L the most. An595

increase in L results in a wmax reduction, which is more pronounced in the cel-596

lular beams with thicker webs. Increases in H, bf , tf , and tw cause an increase597

in wmax, which goes down when Do increases. An increase in WP makes the598

beam ultimate load higher, which is more pronounced for the beams with short599

spans. Similar to the observed effect of WP on wcr, web post widths up to 56600

mm have a negative contribution to the beam ultimate load, while web posts601

of 72 mm wide and wider contribute to the beam ultimate load positively. It602

implies that the beam ultimate load in the dataset was governed by the web603

post strength when WP was 56 mm or lower. The beam ultimate load becomes604

higher when Led and Fy increase. The positive effect of Fy on wmax is more605

significant in the beams with short spans and when Fy increases from 235 to606

355 MPa compared with the Fy increase from 355 to 440 MPa.607

Fig. 13 shows contour plots of wcr predicted by the developed CatBoost608

model as functions ofH/Do and So/Do (where So is the center-to-center spacing609

of the web openings) for the beams with different span lengths and cross-section610

dimensions. The beam designations are presented in the L-H-tw-bf -tf format,611

with all dimensions in mm. Fig. 13 demonstrates that So/Do has a greater612

influence on wcr than H/Do for the beams with short spans. For many short-613

span beams, an increase in So/Do from 1.1 to 1.3 results in a greater increase614

in wcr than a further increase in So/Do from 1.3 to 1.49. It indicates that615

web opening spacing of approximately 1.3Do is optimal for many short-span616

beams. Only short-span beams with H=420 mm and tw=9 mm demonstrate617

an approximately uniform wcr increase when So/Do increases from 1.1 to 1.49.618

The long-span beams show a wider variety of the wcr contour shapes. For619
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example, H/Do has a more significant effect on wcr than So/Do for the beam620

with H=420 mm, tw=9 mm, bf=162 mm, and tf=15 mm compared with other621

analyzed beams. The wcr values for the 8000-420-9-162-15 and 8000-700-15-622

162-15 beams reduce slightly when So/Do increase from 1.1 to 1.3 and increase623

with the further increase in So/Do from 1.3 to 1.49. However, it should be noted624

that the absolute magnitude of the wcr change is relatively small in those cases.625

The contour plots also show the effects of the cross-section dimensions on the626

wcr values of the cellular beams discussed earlier in the paper.627

Figs. 14 and 15 present contour plots of wmax predicted by the CatBoost628

model as functions of H/Do and So/Do for the cellular beams made from steel629

with Fy of 235 and 440 MPa, respectively. The beam designation format is as630

described previously, with the steel yield strength added at the end. Similar631

to wcr, So/Do shows a more significant effect on wmax than H/Do for most of632

the considered beams. The effect of the opening diameter on wmax is more pro-633

nounced in the H/Do range from 1.25 to approximately 1.45 for many beams.634

A further increase in H/Do at a constant So/Do value changes wmax insignif-635

icantly. It can also be seen from the contour plots that for some beams (see636

4000-420-15-162-15-235, 7000-420-15-162-15-235, 4000-420-15-270-15-440, and637

7000-700-9-270-15-440, for example), the effects of H/Do varying in the range638

from 1.25 to 1.45 on wmax are relatively small when So/Do is low. They be-639

come more pronounced as So/Do increases. The So/Do of approximately 1.3 is640

optimal for many considered beams. The effects of the cross-section dimensions641

on wmax discussed earlier in the paper can also be seen from Figs. 14 and 15.642
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Figure 12: SHAP dependence plots for CatBoost model for predicting ultimate load
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Figure 13: Contour plots of wcr (kN/m) as functions of H/Do and So/Do
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Figure 14: Contour plots of wmax (kN/m) as functions of H/Do and So/Do for beams made
from 235 MPa steel
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Figure 15: Contour plots of wmax (kN/m) as functions of H/Do and So/Do for beams made
from 440 MPa steel
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6. Comparisons of ultimate loads of cellular beams predicted by ML643

models, SCI P355, and AISC Design Guide 31644

The ultimate loads of cellular beams predicted by the developed ML models645

were compared with the nominal beam strengths determined per SCI P355 [2]646

and AISC Design Guide 31 [87]. According to SCI P355 and AISC Design647

Guide 31, the cellular beam strength may be governed by shear resistance of648

perforated beam section, shear resistance of solid beam section, shear buckling649

resistance of perforated web, bending resistance of beam at the centerline of650

opening, bending resistance of tees, web post shear resistance, and web post651

buckling resistance. The beam, tee, and web post resistances are computed652

per EN 1993-1-1 [12] and EN 1993-1-5 [100] in SCI P355 and per AISC 360653

[101] in AISC Design Guide 31. The most significant differences between the654

SCI P355 and AISC Design Guide 31 provisions are in the web post buckling655

resistance and lateral-torsional buckling calculations [102]. In SCI P355, the656

web post buckling resistance is calculated using analytical equations, which657

account for the web post slenderness, while AISC Design Guide 31 adopted658

empirical equations from SCI P100 [27]. SCI P355 also requires checking web659

shear buckling near openings, whereas AISC Design Guide 31 does not include660

such a requirement.661

The SCI P355 provisions apply to cellular beams with the following geo-662

metric limits: H/Do ≥ 1.25, 2.0 ≥ So/Do ≥ 1.3, Led/Do ≥ 0.5, and the663

depth of tees not less than tf+30 mm. The beams considered in the study664

had the following parameters: 1.70 ≥ H/Do ≥ 1.25, 1.49 ≥ So/Do ≥ 1.10,665

1.49 ≥ Led/Do ≥ 0.04, and the depth of tees between tf+29.5 mm and tf+136.5666

mm. So/Do, Led/Do, and the depth of tees of some beams did not comply667

with the SCI P355 limits. Therefore, the SCI P355 predictions were com-668

pared with the FE simulation results for all beams and 17,982 beams that met669
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the geometric limits. AISC Design Guide 31 applies to cellular beams with670

1.75 ≥ H/Do ≥ 1.25 and 1.50 ≥ So/Do ≥ 1.08. All beams considered in the671

present study complied with the AISC Design Guide 31 limits.672

Fig. 16 compares the ultimate loads of the cellular beams from the FE673

simulations with those predicted by the developed ML models, SCI P355, and674

AISC Design Guide 31. Fig. 16 clearly shows that the developed ML models675

predict the ultimate loads of the cellular beams considerably better than SCI676

P355 and AISC Design Guide 31. For the best models, the mean ratio and the677

coefficient of variation of the ML predictions to the FE simulation results are678

1.00 and 0.034, respectively. The coefficient of determination, R2, is 0.997. The679

corresponding metrics for SCI P355 are 0.75, 0.253, and 0.638 for all beams680

and 0.75, 0.298, and 0.535 for the beams meeting the geometric limits. It is681

interesting to note that the SCI P355 provisions demonstrate better comparison682

with the FE simulation results when all beams are considered neglecting the683

geometric limits. AISC Design Guide 31 showed even worse accuracy than SCI684

P355, characterized by the mean ratio and the coefficient of variation of the685

prediction-to-FEA ratios of 0.69 and 0.429, and the coefficient of determination686

of 0.416.687
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Figure 16: Comparisons of ultimate loads of steel cellular beams predicted by ML models,
SCI P355, and AISC Design Guide 31 with FE simulation results

7. Web application688

A user-friendly web application was created in the Streamlit framework (ht689

tps://streamlit.io) to predict the elastic buckling and ultimate loads of690
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steel cellular beams with the ML models developed in the present work. Fig.691

17 demonstrates a flow chart of the web application.692

Figure 17: Flow chart of the web application

In the beginning, the user specifies the following parameters via the web693

application sliders and radio buttons: L, H, bf , tf , tw, H/Do, So/Do, and Fy.694

Ranges of the parameters available in the application correspond to the feature695

ranges in the datasets used for the ML training. At the next step, the following696

parameters are computed: Do, So, Led, the number of openings evenly spaced697

along the beam length, the cellular beam weight, and the percentage of the698

beam weight reduction due to the openings compared with the identical solid-699

web beam. The parameters specified by the user and the computed ones are700

displayed on the screen. Next, the developed ML models and scalers are loaded;701

the features are standardized, and predictions by all ML models considered702
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in this study are made and displayed. The code runs automatically after any703

change of input variables. The prediction process takes only several seconds.704

The graphical user interface of the web application is presented in Fig. 18.705

Figure 18: Graphical user interface of the developed web application

It was found challenging to deploy the web application with all consid-706

ered ML to cloud platforms due to the application size and required compu-707

tational resources, which exceeded the limits of free cloud accounts. There-708

fore, a lite version of the application based on CatBoost predictions was cre-709

ated and successfully deployed on Heroku at the following address: https:710

//scba-cb.herokuapp.com/. The deployed lite version of the application711

opens and runs in any web browser on any device, including mobile.712

It should be noted that the computational resources provided by the free713

Heroku account are sufficient for running the application by one user at a time.714

Multiple users can open the application, but it crashes when two or more users715

run the computations simultaneously. If that happens, it is recommended to716

close the application and use it later. The use of a paid Heroku account, which717

offers more powerful computational resources, would resolve this issue.718

The source codes of the full and lite application versions can be accessed719
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on GitHub at https://github.com/vitdegtyarev/SCBA-Streamlit and720

https://github.com/vitdegtyarev/SCBA-Streamlit-CB, respectively. The721

GitHub pages include instructions on how the web applications can be used722

independently from the cloud services on a local machine.723

8. Conclusions724

ML models for predicting the elastic buckling and ultimate loads of steel725

cellular beams were developed and optimized using the following algorithms:726

decision tree (DT), random forest (RF), k-nearest neighbor (KNN), gradient727

boosting regressor (GBR), extreme gradient boosting (XGBoost), light gradient728

boosting machine (LightGBM), and gradient boosting with categorical features729

support (CatBoost). Large datasets of FE simulation results from the literature730

[29], validated against experimental data, were employed to train and evaluate731

the ML models implemented in open-source Python-based libraries.732

The ML models were optimized by tuning their hyperparameters via ex-733

tensive grid and random searches and validated through the ten-fold cross-734

validation method. The final evaluation of the ML models was performed on735

the test sets unseen by the models during training. The elastic buckling and736

ultimate loads predicted by the optimized ML models demonstrated excellent737

agreements with the numerical data. The accuracy of the ultimate load predic-738

tions by the ML models exceeded the accuracy provided by the existing design739

provisions for steel cellular beams. An interactive Python-based notebook for740

predicting the elastic buckling and ultimate loads of steel cellular beams using741

the developed optimized ML models was created and made publicly available742

at the following link: https://www.kaggle.com/vitdegtyarev/ml-models-743

for-cellular-beams?scriptVersionId=63075739.744

The developed ML models were explained and interpreted by evaluating the745
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relative feature importance using the permutations and SHAP methods. SHAP746

feature dependence was also determined and discussed. It was demonstrated747

that the beam span length, beam flange width, and beam web thickness are748

the most important features in predicting the elastic buckling by the developed749

models, with the opening end distance and beam height being the least im-750

portant parameters. The most important features in predicting the ultimate751

load are the beam span length, web post width, beam web thickness, and beam752

flange width. The opening end distance and opening diameter are the least753

important characteristics. These results align well with the mechanics-based754

knowledge demonstrating that the developed ML models can capture the web755

opening effects from the data used for their training. Contour plots of wcr and756

wmax predicted by the CatBoost model as functions of H/Do and So/Do were757

presented and discussed. For most beams, So/Do affects wcr and wmax more758

significantly than H/Do, with So/Do=1.3 being the optimal value.759

A web application for predicting the elastic buckling and ultimate loads was760

created in Streamlit. The lite version of the application has been deployed to761

the cloud at: https://scba-cb.herokuapp.com/. It can be opened and762

run in any web browser on any device, including mobile. The source codes763

of the full and lite application versions can be accessed on GitHub at https:764

//github.com/vitdegtyarev/SCBA-Streamlit and https://github.com/v765

itdegtyarev/SCBA-Streamlit-CB, respectively.766

The presented study demonstrates the opportunities for using ML methods767

for predicting the elastic buckling and ultimate loads of cellular beams. However,768

it should be noted that the developed models are based on the data for cellular769

beams with relatively short spans, not exceeding 8 m in the elastic buckling770

load dataset and 7 m in the ultimate load dataset. Therefore, the developed771

models are limited to beams with such spans. In modern construction, cellular772
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beams are often used for spans ranging from 9 to 18 m [103]. Future work773

should concentrate on extending the datasets to the beams with longer spans774

and retraining the ML models using the extended data. The reliability of the775

ultimate load predictions by the ML models should also be evaluated, and an776

appropriate safety factor determined.777
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