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Abstract: Recently a variety of nonlocal integrable systems has been introduced that

besides fields located at particlar space-time points simultaneously also contain fields that

are located at different, but symmetrically related, points. Here we investigate different

types of soliton solutions with regard to their stability against linear pertubations obtained

for the nonlocal version of the Hirota/nonlinear Schrödinger equation and the so-called

Alice and Bob versions of the Korteweg-de Vries and Bousinesq equations. We encounter

different types of scenarios: Solition solutions that are linearly stable or unstable and also

solutions that change their stability properties depending on the parameter regime they

are in.

1. Introduction

Quantum nonlocality is a well-established phenomenon [1] that does not allow for an en-

tirely local description, but must in some form take correlations between events at different

space-time points into account. In the context of classical integrable field theories it was

recently observed [2] that when exploiting different versions of CPT -symmetries, theories

containing fields at non-identical space-time points naturally arise. Consistent multi-soliton

solutions to these type of models have been constructed for nonlinear Schödinger equa-

tions [2], for nonlinear Schödinger equations in external potentials [3], Hirota systems [4,5]

and so-called Alice and Bob versions of the Korteweg-de Vries equation (AB-KdV) [6–8],

Boussinesq equation (AB-Boussinesq) [9] and other systems. As a concrete potential physi-

cal application it was shown for instance in [7] that a particular version of AB-KdV systems

can be derived as a multiple vorticity interaction model related to a standard atmospheric

and oceanic dynamical system.
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As these novel systems allow for different types of solutions one needs to specify under

which conditions they are considered to be meaningful. For solutions to be physically

relevant one naturally requires their energies, possibly also other conserved quantities that

have physical interpretations, to be real and in addition demands them to be stable. Despite

some of the solutions to be complex, the reality of their energies is well investigated and can

be established by making use of general arguments based on the underlying CPT -symmetry

of the models [10–13]. However, the crucial stability property has been largely ignored so

far and the main purpose of this manuscript is to start filling this gap.

Our manuscript is organised as follows: In section 2 we discuss the stability properties

of two types of previously constructed one-soliton solutions for the Hirota equation. In

section 3 and 4 we discuss the stability of Alice and Bob KdV and Boussinesq systems,

respectively. Our conclusions are drawn in section 5.

2. Nonlocal Hirota equation with parity conjugated fields

Let us start by recalling from [4] the nonlocal Hirota equation that besides fields q(x, t)

also contains their parity conjugate fields q∗(−x, t)

iqt = −α
(
qxx − 2κq̃∗q2

)
+ δ (qxxx − 6κqq̃∗qx) , α, δ ∈ R, κ = ±1 (2.1)

where we use the abbreviations q := q(x, t), q̃ := q(−x, t) with q∗, q̃∗ denoting their respec-

tive complex conjugates. Since this equation contains fields located at x as well as fields

situated at −x, these type of equations are referred to as nonlocal, as opposed to local

when all fields are situated at the same particular point (x, t). In the limit δ → 0 we re-

cover the nonlocal version of the nonlinear Schrödinger equation, first proposed in [2]. The

nonlocal versions of well-known integrable systems were derived by introducing a different

type compatibility procedure for the two equations that emerge in a Lax pair or AKNS

construction. Instead of making the standard choices for certain quantities so that the two

equations are simply related by complex conjugation, one may also consistently relate them

by a parity, time, parity/time conjugation or simply by parity, time, parity/time transfor-

mation. In this section we exclusively focus on the version that relates the equations by

parity conjugation.

Alternatively, we demonstrate here that the nonlocal Hirota equation (2.1) can also be

derived directly in a conventional fashion from a Hamiltonian H =
∫
Hdx with complex

parity invariant Hamiltonian density H. We recall for this purpose the lowest nonlocal

charges In =
∫
wndx with charge densities wn for the nonlocal Hirota system that were

systematically derived in [4]. The lowest charges read

w0 = qq̃∗, w1 = −qq̃∗x, w2 = qq̃∗xx − q2 (q̃∗)2 , w3 = qqx(q̃∗)2 + 4q2q̃∗q̃∗x − qq̃∗xxx. (2.2)

The complex parity transformed quantities Ĩ∗n =
∫
w̃∗ndx are also conserved. We observe

that under parity conjugation the charge densities transform as wn → (−1)nwn, when the

solutions are taken of the general form q(x, t) = eiαu(u, t) with complex parity invariant

u∗(−x, t) = u(x, t) and α ∈ R. Thus separating the densities into real and imaginary parts,

– 2 –
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wn = wrn + iwin with wrn, w
i
n ∈ R, it is immediately clear that wi2n(x, t) = −wi2n(−x, t) and

wr2n+1(x, t) = −wr2n+1(−x, t) which implies that I2n ∈ R and I2n+1 ∈ iR. Assuming now

in addition our solutions to be of the form q(x, 0), q̃(x, 0) ∈ R, and using the fact that we

may evaluate the charges at any time, we deduce that I2n+1 ∈ R. As I2n+1 can not be real

and purely imaginary at the same time, the odd charges must vanish I2n+1 = 0.

Using these charge densities we define now the complex parity invariant Hamiltonian

density

H = −α
2

(w2 + w̃∗2) +
δ

2
(w3 + w̃∗3) +

κ− 1

2

[
2αw2

0 − 3δw0(w1 + w̃∗1)
]

(2.3)

=
α

2

[
2κq2(q̃∗)2 − (qq̃∗xx + q̃∗qxx)

]
+
δ

2

[
3κ
(
q2q̃∗q̃∗x − (q̃∗)2qqx

)
− (qq̃∗xxx − q̃∗qxxx)

]
, (2.4)

which by using functional variations for complex Hamiltonians in the form

iqt =
δH

δq̃∗
=
∂H
∂q̃∗
− d

dx

∂H
∂q̃∗x

+
d2

dx2

∂H
∂q̃∗xx

+ . . . (2.5)

leads to the nonlocal Hirota equation (2.1). The complex parity conjugate equation of (2.1)

is then simply obtained from

−iq̃∗t =
δH

δq
=
∂H
∂q
− d

dx

∂H
∂qx

+
d2

dx2

∂H
∂qxx

+ . . . (2.6)

The Hamiltonian allows for a conventional interpretation and in particular enables us to

compute the energy of particular solutions. We note that all terms in the Hamiltonian are

nonlocal involving interactions between fields and their derivatives at x and −x.

For physically meaningful solutions we demand the charges, and in particular the

energy measured by the Hamiltonian, to be real.

2.1 Linear stability of nonlocal solutions

We now address the central question of the manuscript and explore whether a particular

solution q0 of (2.1) is stable or unstable. There exist a large variety of notions of stability

properties and techniques to study them. Here we investigate their linear stability by

carrying out an analysis that was previously employed to establish the stability of solutions

to the nonlinear Schrödinger equation [14]. Surprisingly it will turn out that the nonlocality

of the problem simplifies the techniques involved.

To start we perturb a solution q0 in the usual fashion by replacing

q(x, t)→ q0(x, t) + εσ(x, t), ε� 1, (2.7)

and seek the properties of the perturbing function σ(x, t), in particular its behaviour in

time. We recover (2.1) for q0 in zeroth order and to establish the stability of q0 we demand

in addition that the first order terms in ε vanish

iσt + α
(
σxx − 2κq2

0σ̃
∗ − 4κq0σq̃

∗
0

)
+ δ {6κ [q0σ̃

∗(q0)x + q0q̃
∗
0σx + σq̃∗0(q0)x]− σxxx} = 0.

(2.8)

– 3 –
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Following the standard interpretation, we infer that in the scenario when solutions σ(x, t)

to (2.8) can be found that only introduce oscillations or deformations onto the original

solution, q0 is regarded as stable, whereas when σ(x, t) diverges as a function of time then

the original solution is unstable.

To solve the first order auxiliary equation (2.8) we are now making a few modifications

and assumptions. First of all we replace x, t by a new set of variables z, z̄ defined as

z := x− iδµ2t, and z̄ := x+ iδµ2t, (2.9)

so that

x =
z + z̄

2
, t =

i

2δµ2
(z − z̄), ∂x = ∂z + ∂z̄, ∂t = iδµ2(∂z̄ − ∂z). (2.10)

We will see below that the parameter µ plays a vital role in matching the dispersion relation

of particular solutions. Next we assume the original solution and the perturbing function

to factorize in the form

q0(x, t) = µeiαµ
2tu[µz(x, t)], σ(x, t) = iaeiαµ

2tψ[µz(x, t)], (2.11)

where a ∈ R and u, ψ are functions that only depend on z and not z̄. The parity conjugates

of these functions are assumed to be of the form

q∗0(−x, t) = µe−itαµ
2tu[µz(x, t)], σ∗(−x, t) = −iae−itαµ2tωψ[µz(x, t)], (2.12)

where ω = ±1 allows for ψ to have a definite complex parity to be either even or odd

and u is taken to be even. The latter is motivated by the actual solution we will be

investigating below, but additional requirements on ψ and u are made in anticipation of

those functions appearing in a Sturm-Liouville auxiliary equation. In there we may use the

standard arguments for antilinear symmetries to ensure the reality of the energy spectrum.

When substituting these functions into the first order auxiliary equation (2.8) we obtain

iaµ2e
α(z̄−z)

2δ (αAux1 + δAux2) = 0, (2.13)

where

Aux1 =
[
2κ(ω − 2)u2(µz)− 1

]
ψ(µz) + ψ′′(µz), (2.14)

Aux2 = µ
{

6κ(1− ω)u(µz)u′(µz)ψ(µz) +
[
1 + 6κu(µz)2

]
ψ′(µz)− ψ(3)(µz)

}
. (2.15)

We need to distinguish now between complex parity even and odd functions ψ. For ω = −1

we find that

∂zAux1 = −Aux2, (2.16)

so that in this case the problem of solving (2.8) is reduced to the Sturm-Liouville problem

ψ′′(µz)− 6κu2(µz)ψ(µz) = ψ(µz), (2.17)

for the potential V = −6κu2. In contrast, when ω = 1 we obtain that

∂zAux1 = −Aux2 + 4κµu(µz)W (u, ψ), (2.18)

– 4 –
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where W (u, ψ) = uψ′−u′ψ is the Wronskian for the functions u and ψ. This equation may

be solved by taking ψ(µz) = u(µz), so that the Wronskian vanishes, and when in addition

u(µz) solves the equation

u′′(µz)− 2κu3(µz) = u(µz). (2.19)

Let us now see whether we can find solutions q0 that are of the specified form and subse-

quently use the above reasoning to solve the first order equation (2.8).

2.2 One-soliton solutions

In [4] two different types of N-soliton solutions to the nonlocal Hirota equation (2.1)

with qualitatively different behaviour were derived using Hirota’s direct method and also

Darboux-Crum transformation. The one-soliton solutions read

q
(1)
st =

λ(µ− µ∗)2τµ,γ

(µ− µ∗)2 + |λ|2 τµ,γ τ̃∗µ,γ
, and q

(1)
nonst =

(µ+ ν)τµ,iγ
1 + τµ,iγ τ̃

∗
−ν,−iθ

, (2.20)

with λ, µ, γ ∈ C and ν, µ, γ, θ ∈ R, respectively. The so-called tau-functions are defined as

τµ,γ(x, t) := eµx+µ2(iα−iδµ)t+γ , (2.21)

and κ is set to -1. More recently Li and Tian [5] recovered the nonstandard solutions q
(N)
nonst

using the inverse scattering method. This is reassuring, but contrary to the claim made

in [5], where the authors assert that their solutions were in fact new and different from

those found in [4]. It is easily verified that the one-soliton solution (7.15) therein converts

precisely into q
(1)
nonst when identifying the parameters used in [5] simply as β → δ, η1 → µ/2,

η̄1 → −ν/2, θ1 → −γ + π and θ̄1 → −θ.
As discussed in [4] the behaviour of the two types of solutions in (2.20) is quite different.

While q
(1)
st exhibits in general an oscillatory scattering type of behaviour, the solution q

(1)
nonst

can be of rogue wave type by tending to infinity at certain times ts. Simply from the

singularity structure of the solutions it is obvious that in those cases any kind of initial

condition will blow up when evolved according to q
(1)
nonst. This type of behaviour was also

observed for the nonlinear Schrödinger equation, i.e., δ = 0, in [2] and can be verified more

formally using functional analytical methods [15].

Here we are interested in the stability of these solutions when perturbed by additional

fields. For simplicity we first focus on two special solutions in which some parameter choices

are made without loosing the ability to display the different types of behaviours using the

remaining variables. By setting µ → iµ, γ → 0, λ → −2iµ in q
(1)
st and γ = θ → 0, ν → µ

in q
(1)
nonst we obtain the two simpler variants

q
(1)
st,s = µe−iαµ

2t csc
[
µ
(
x+ iδµ2t

)]
, and q

(1)
nonst,s = µeiαµ

2t sech
[
µ
(
x− iδµ2t

)]
. (2.22)

We notice that for x = 0 the solution q
(1)
st,s is singular at the origin ts = 0, whereas q

(1)
nonst,s is

singular at the times ts = (4n+ 1)π/2δµ3, n ∈ Z. Thus the latter solution exhibits a rogue

wave behaviour for µ ∈ R, but is regular in its entire domain when reduced to a solution

for the nonlocal nonlinear Schrödinger equation when δ = 0.

– 5 –
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2.2.1 The nonstandard rogue wave solution

We observe now that the solution q
(1)
nonst,s is a special case of the general form q0 as specified

in equation (2.11) when identifying u(µz) = sech(µz). Solving for the odd case (ω = −1)

the Sturm-Liouville equation (2.17) with the corresponding ubiquitous1 sech2-potential, we

obtain ψ(µz) = sech(µz) tanh(µz), so that the first order equation (2.8) is solved by

σo(x, t) = iaeiαµ
2t sech

[
µ(x− iδµ2t)

]
tanh

[
µ(x− iδµ2t)

]
. (2.23)

For the even case (ω = 1) we have to take ψ(µz) = u(µz) = sech(µz) and verify that u(µz)

indeed solves (2.19). Thus we obtain the additional solution

σe(x, t) = iaeiαµ
2t sech

[
µ(x− iδµ2t)

]
. (2.24)

Both perturbations are asymptotically vanishing for x → ±∞ and only introduce small

variations of the solution as illustrated in figure 1. We observe that the odd perturbations

σo(x, t) are more sensitive in distorting the solutions than the even perturbations σe(x, t).

-6 -4 -2 0 2 4 6
x

0.5

1.0

1.5

2.0

2.5
|qnonst,s

(1)
|,|qnonst,s

(1)
+σo|

t = 0

t = 3

t = 3.5

ts ≈ 4.19

t = 5

-6 -4 -2 0 2 4 6
x

0.5

1.0

1.5

2.0

2.5
|qnonst,s

(1)
|,|qnonst,s

(1)
+σe|

Figure 1: Rogue wave nonstandard one-soliton solution (2.20) (solid) with its odd (2.23) and even

(2.24) perturbed versions (dotted) at different times for ε = 0.02 (odd), ε = 0.2 (even), µ = 0.5,

a = 1, α = 0.2 and δ = 3.

One may easily verify that both solutions (2.23) and (2.24) are indeed genuine per-

turbations, and not symmetries of the original equation as the combination (2.7) is not a

solution of the original equation. We conclude that the nonlocal solution q
(1)
nonst,s is stable

with regard to the perturbations (2.23) and (2.24).

It is worth noting that when comparing our stability analysis to the one carried out in

the same spirit for the local nonlinear Schrödinger equation in [14], the Ansatz used here

for the nonlocal case appears to be simpler. Whereas for the local case it was essential

to take σ(x, t) as a superposition of two separable functions coupled to each other in a

nontrivial fashion, here when setting δ → 0 our Ansatz in (2.11) demonstrates that for the

nonlocal case one may take the perturbing function as a simple factorization of one term

only, as σ(x, t) = f(x)g(t).

1We recall that this potential with different types of scaling and overall shift also appears in the stability

analysis of the φ4-theory, the sine-Gordon model [16], the Bullough-Dodd model [17] and the KdV equation

as seen below.

– 6 –
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Besides being stable, we also find that the nonlocal charges (2.2) defined on x ∈
(−∞,∞) obtained from these solutions are indeed real

I0(q
(1)
nonst,s) = 2|µ|, I1(q

(1)
nonst,s) = 0, I2(q

(1)
nonst,s) = −2|µ|3, (2.25)

including especially the energy H = E

E(q
(1)
nonst,s) = −2

3
α|µ|3. (2.26)

We notice that the energy of this solution is the same in the Hirota and the nonlinear

Schrödinger equation, as there is no dependence on δ. This is to be expected on general

grounds as the terms involving δ in the Hamiltonian density (2.4) are made of from odd

parity conjugate terms.

The energies of the perturbed solutions are still constant in time, but acquire correction

terms

E(q
(1)
nonst,s + σo) = E(q

(1)
nonst,s) + α

(
2

3
|µ|ε2 − 4

35|µ|
ε4
)
, (2.27)

E(q
(1)
nonst,s + σe) = E(q

(1)
nonst,s)− α

(
2|µ|ε2 +

4

3|µ|
ε4
)
, (2.28)

where we identified the constant a with ε. Thus up to first order in ε, the energies of the

nonstandard solution and their perturbed version are identical.

2.2.2 The standard oscillatory solution

Noticing that we may convert the simplified versions of the solutions in (2.22) into each

other as

iq
(1)
nonst,s [µ→ iµ, x→ x− iπ/2µ] = q

(1)
st,s, (2.29)

the computation for the standard solution goes along the same lines as for the nonstandard

one. Thus it suffices to report the results. The auxiliary equation becomes a Sturm-

Liouville equation for the solvable csc2-potential from which we construct the perturbative

terms as

σo(x, t) = ie−iαµ
2t csc

[
µ(x+ iδµ2t)

]
cot
[
µ(x+ iδµ2t)

]
, (2.30)

σe(x, t) = ie−iαµ
2t csc

[
µ(x+ iδµ2t)

]
. (2.31)

Thus as time evolves, the solutions for real values of µ as well as the perturbations tend

to zero or infinity, but are both in sync as is seen in figure 2. Similar to the nonstandard

solution, also the standard solution is more sensitive to the even perturbations. For these

standard solutions we need to compute the charges related to the densities (2.2) on a finite

interval, e.g. from −π/µ to π/µ. Proceeding in this manner we find that all charges,

including their perturbations, are vanishing for t 6= 0 and δ 6= 0.

– 7 –
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-6 -4 -2 0 2 4 6
x

0.5

1.0

1.5

2.0

2.5
|qst,s

(1)
|,|qst,s

(1)
+σo|

t = 0.5

t = 1.5

t = 2.5

t = 3.5

t = 4.5

t = 5.5

-6 -4 -2 0 2 4 6
x

0.5

1.0

1.5

2.0

2.5
|qst,s

(1)
|,|qst,s

(1)
+σe|

Figure 2: Decaying oscillatory standard one-soliton solution (2.20) (solid) with its odd and even

perturbed versions (dotted) at different times for ε = 0.02 (odd), ε = 0.2 (even), µ = −0.5, α = 0.3

and δ = 4.

3. Alice and Bob KdV system

Another closely related and well-studied class of nonlocal systems can be constructed from

the prototype nonlinear wave equation, the Korteweg-de Vries (KdV) [18] equation

ut + 6uux + uxxx = 0. (3.1)

The stability of the KdV one-soliton [19] and multi-soliton solutions [20] has been estab-

lished formally some time ago. Linear stability as previously discussed is easily seen to

hold. For the investigation of some special type of solutions we may use the more con-

venient travelling wave coordinate ζ :=
(
αx− α3t

)
/2 and convert (3.1) into the ordinary

differential equation

uζζζ +
24

α2
uuζ − 4uζ = 0. (3.2)

When replacing

u(ζ)→ u0(ζ) + εσu(ζ), ε� 1, (3.3)

in (3.2) the equation of first order in ε becomes

∂ζ

[
(σu)ζζ +

24u0

α2
σu − 4σu

]
= 0. (3.4)

For the well-known KdV one-soliton solution

u0(x, t) =
α2

2
sech2

[
1

2

(
αx− α3t

)]
, (3.5)

the associated Sturm-Liouville auxiliary problem in the square bracket is easily solved to

σu(x, t) = sech2

[
1

2

(
αx− α3t

)]
tanh

[
1

2

(
αx− α3t

)]
. (3.6)

A nonlocal version of the KdV equation can be obtained from its Lax pair [6–8]. An

alternative more direct way of construction consists of first decomposing the KdV field as

– 8 –
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u(x, t) = 1/2 [a(x, t) + b(x, t)], where the two components are PT -symmetrically related as

PT a(x, t) = a(−x,−t) = b(x, t) [6–8]. In this way equation (3.1) converts into

at + 3(a+ b)ax + axxx + bt + 3(a+ b)bx + bxxx = 0, (3.7)

where the first three terms of this equation are anti-PT -symmetrically related to the last

three terms. Splitting then (3.7) accordingly, one may also add an arbitrary PT -invariant

function, i.e. PT f(a, b) = f(a, b), to the first and subtract it from the second equation.

This function constitutes an ambiguity that vanishes when one adds the two equations

back together again. As will be discussed below, different choices lead to different types of

behaviour and also affect the stability of the resulting system.

Here we select two particular cases. Taking the function f for instance to be f1(a, b) =

3/2(a+ b)(bx − ax) one obtains the two equations

at + 3/2(a+ b)(ax + bx) + axxx = 0, (3.8)

bt + 3/2(a+ b)(ax + bx) + bxxx = 0, (3.9)

whereas the choice f2(a, b) = 3/4(a+ b)(bx − ax) produces

at + 3/4(a+ b)(3ax + bx) + axxx = 0, (3.10)

bt + 3/4(a+ b)(ax + 3bx) + bxxx = 0. (3.11)

The equations in each pair (3.8), (3.9) and (3.10), (3.11) are anti-PT -symmetrically related

to each other. They are often referred to as Alice and Bob KdV (AB-KdV) equations in

reference to conventions used in discussions within the context of cryptographic systems.

Alternatively we may also obtain the AB-KdV equations (3.8) and (3.9) from a Hamil-

tonian with PT -invariant Hamiltonian density

H = axbx −
1

4
(a+ b)3 (3.12)

when using functional variations for a real Hamiltonian with two independent fields a and

b in the form

at = ∂x
δH

δb
= ∂x

(
∂H
∂b
− d

dx

∂H
∂bx

+
d2

dx2

∂H
∂bxx

+ . . .

)
, (3.13)

bt = ∂x
δH

δa
= ∂x

(
∂H
∂a
− d

dx

∂H
∂ax

+
d2

dx2

∂H
∂axx

+ . . .

)
. (3.14)

When compared with previously proposed Hamiltonian structure for the nonlocal Hirota

equation we note the difference here is due to the well-known bi-Hamiltonian structure of

the KdV-equation [21–23] that is not inherited by their AB-versions.

3.1 Orbitally stability of nonlocal Alice and Bob solutions

Let us now comment on the stability of the solutions a(x, t) and b(x, t) to these equations.

We will treat the two systems simultaneously and also focus in each case just on one

equation, (3.8) and (3.10), as the corresponding partner equations are simply obtained by
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a PT -transformation. Using the travelling wave coordinate ζ converts the two equations

into

aζζζ +
4τ1

α2
(a+ b) (τ2aζ + bζ)− 4aζ = 0, (3.15)

with τ1 = 3/2, τ2 = 1 for f1 and τ1 = 3/4, τ2 = 3 for f2. Next we perturb both solutions

for each of the pair of equations linearly as

a(ζ)→ a(ζ) + εσa(ζ), b(ζ)→ b(ζ) + εσb(ζ), ε� 1. (3.16)

so that the first order equation in ε becomes

4τ1 (σa + σb) (τ2a
′ + b′)

α2
+

[
4τ1τ2(a+ b)

α2
− 4

]
σ′a +

4τ1(a+ b)

α2
σ′b + σ′′′a = 0. (3.17)

Assuming that the two perturbations are anti-PT related to each other, i.e. σb(ζ) =

−σa(ζ), equation (3.17) reduces to a Sturm-Liouville equation for (σa)ζ

[(σa)ζ ]ζζ +
8τ1(τ2 − 1)

α2
u(σa)ζ = 4(σa)ζ , (3.18)

for the potential V = [8τ1(τ2 − 1)]/α2u. Moreover, all higher order terms in ε vanish, so

that for the solutions of (3.18) the combinations in (3.16) always constitute new solutions

to the AB-KdV equation with a free parameter ε→ ν, rather than a perturbation thereof.

In order to distinguish this behaviour from linear perturbations with nonvanishing higher

order terms, we refer to this behaviour here as orbital stability in a slight abuse of language

when compared to the usage of the term in the context of functional analysis.

3.1.1 Unstable solutions for the type I system

We note that for the f1 choice, τ1 = 3/2, τ2 = 1, the potential term in the auxiliary

Sturm-Liouville equation (3.18) drops out so that the equation is simply solved by

σa(ζ) = c3 +
1

2

(
c1e

2ζ − c2e
−2ζ
)
. (3.19)

Thus, apart from the trivial solution c1 = c2 = 0, σa(ζ) is asymptotically divergent for

either x → ∞ or x → −∞ and also t → ∞ or t → −∞. Thus any solution for this

type of AB-KdV-equation is unstable. We find a similar behaviour when assuming the two

perturbations to be PT related to each other, i.e. σb(ζ) = σa(ζ), which we, however, do

not report here.

3.1.2 Orbitally stable solutions for the type II system

In contrast, we may find orbitally stable solutions for the second type of system with the

choice of τ1 = 3/4, τ2 = 3 for f2. First we notice that for any given solution u(x, t) of

the KdV equation we may set a(x, t) = b(x, t) = u(x, t) and construct a new solution by

means of (3.18) and (3.16) since all higher order terms in ε vanish. For instance, starting

with the trivial solution u(x, t) = c, we easily solve (3.18) and obtain the solution

a(ζ) = c+ ν
α√

α2 − 3c
sinh

(
2
√
α2 − 3c

α
ζ

)
, b(ζ) = c− ν α√

α2 − 3c
sinh

(
2
√
α2 − 3c

α
ζ

)
,

(3.20)
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which is oscillatory when α2 < 3c but asymptotically divergent for α2 > 3c. In the

first instance this will allow us to draw a conclusion about the stability of the solution

a(x, t) = b(x, t) = c, however, noting that in (3.18) only u occurs, these stability properties

are also shared with the solutions in (3.20). Notice that in both regimes the solutions are

related via PT -symmetry, so that one should not draw the conclusion that the stability is

governed by the symmetry.

Taking u(x, t) instead in the form (3.5), as a particular solution for the stable AB-KdV

equation we solve (3.18) to

(σa)ζ = sech2(ζ) ⇒ σa(x, t) = tanh

[
1

2

(
αx− α3t

)]
, (3.21)

so that we obtain the AB-KdV solution

a(x, t) = u(x, t) + ν tanh

[
1

2

(
αx− α3t

)]
, b(x, t) = u(x, t)− ν tanh

[
1

2

(
αx− α3t

)]
,

(3.22)

which is stable by the same reasoning as above. We depict the solutions (3.20) and (3.22)

together with their orbital perturbations in figure 3.
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Figure 3: Panel (a): Orbitally stable and unstable solutions solutions a(x, t) (solid) and b(x, t)

(dotted) in (3.20) to the AB-KdV equation with c = 1/2, αc =
√

3/2 ≈ 1.22 at t = 1 for different

values of α and ν. Panel (b): Orbitally stable solutions a(x, t) (solid) and b(x, t) (dotted) in (3.22)

to the AB-KdV equation with α = 2 at t = 1 for different values of ν.

In panel (a) we see how the constant solution converts into oscillatory solutions until

it becomes unstable when the critical value αc =
√

3c is passed. Panel (b) depicts how

the initial soliton solutions is gradually deformed into kink and anti-kink solutions with

asymptotic values ±ν.

4. Alice and Bob Boussinesq system

A further example of a so-called Alice and Bob system is a modification [9] of the Boussinesq

equation

utt −
(
3u2 + δu+ uxx

)
xx

= 0, δ ∈ R. (4.1)
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Using the same approach as described for the KdV system by separating u(x, t) into a sum

of two PT related functions one derives [9] the following nonlocal AB-Boussinesq equation

att −
(

9

4
a2 +

3

2
ab− 3

4
b2 + δa+ axx

)
xx

= 0, (4.2)

where b(x, t) = PT a(x, t). Thus when perturbing the fields as

a(x, t)→ u(x, t) + εσ(x, t), b(x, t)→ u(x, t)− εσ(x, t), ε� 1, (4.3)

the zeroth order in ε becomes the Boussinesq equation and the first order equation reads

σtt − 12uxσx − 6σuxx − 6uσxx − δσxx − σxxxx = 0. (4.4)

Similarly as in the previous subsection, all higher order equations are zero. Equation (4.4)

is solved by taking σ = c1ux + c2ut for arbitrary constants c1, c2 as it converts (4.4) into

(c1∂x + c2∂t)
[
utt −

(
3u2 + δu+ uxx

)
xx

]
= 0, δ ∈ R. (4.5)

Thus starting from the concrete solution to the Boussinesq equation

u(x, t) =
α2

1 + cosh
(
αx± α

√
α2 + δt

) , (4.6)

we obtain the new exact solution

a(x, t) = b(−x,−t) = u(x, t)− ν sinh4

[
1

2

(
αx± αt

√
α2 + δ

)]
csch3

[
αx± αt

√
α2 + δ

]
.

(4.7)

We absorbed here the constants into the arbitrary parameter ν = 4εα3(c1 ± c2

√
α2 + δ).

By the same reasoning as in the previous subsection we conclude that the solutions (4.6)

and (4.7) to the AB-Boussinesq equation are linearly stable. As also seen in figure (4) the

solutions are regular, asymptotically vanishing real for α2 + δ ≥ 0 (panel a) and complex

for α2 + δ < 0 (panel b).

5. Conclusions

We analysed several known one-soliton solutions with regard to their stability for different

types of nonlocal nonlinear equations. For the nonlocal version of the Hirota system that

contains interaction terms of fields at a particular space-time point with their complex

parity conjugates, we found that the standard oscillatory and nonstandard rogue wave

solutions have real energies and are stable. The AB-KdV equation can be formulated in

different versions. For the most natural symmetric version, referred to here as type I, we

identified a Hamiltonian, but showed that all solutions to these equations are unstable with

regard to the perturbations analysed. In contrast, the type II AB-KdV equation possess

solutions that are stable in a certain parameter regime, but become unstable when a critical

value is passed. The AB-Boussinesq is also shown to possess stable solutions.
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Figure 4: AB-Boussinesq solutions (4.7) for different values of ν. Panel (a) For t = 0, α = 1/2,

δ = 2 with a(x, t) (solid) and b(x, t) (dotted). Panel (b) For t = 2, α = 1/10, δ = −5 with Re[a(x, t)]

(solid) and Im[b(x, t)] (dotted).

There are a number of interesting open questions left for further investigation. All

investigated models allow for different versions of nonlocality. As discussed in [4], the

nonlocal Hirota equation allows for variants that besides q(x, t) also contains the fields

q∗(−x, t), presented here, or q∗(x,−t), q∗(−x,−t), q(−x, t), q(x,−t), q(−x,−t). The last

five possibilities have not been treated here, but given that these models exhibit quite

distinct types of behaviour, it would be very interesting to settle as well the stability

status of their solutions. Another open, and challenging issue is to clarify whether the

multi-soliton solutions are stable or unstable.

Acknowledgments: JC is supported by the U.S. Department of Energy through the

LANL/LDRD Program and the Center for Nonlinear Studies. FC was partially supported

by Fondecyt grant 1211356. TT is supported by EPSRC grant EP/W522351/1.

References

[1] A. Aspect, J. Dalibard, and G. Roger, Experimental test of Bell’s inequalities using

time-varying analyzers, Phys. Rev. Lett. 49, 1804 (1982).

[2] M. J. Ablowitz and Z. H. Musslimani, Integrable nonlocal nonlinear Schrödinger equation,

Phys. Rev. Lett. 110, 064105 (2013).

[3] D. Sinha and P. K. Ghosh, Symmetries and exact solutions of a class of nonlocal nonlinear

Schrödinger equations with self-induced parity-time-symmetric potential, Phys. Rev. E 91,

042908 (2015).

[4] J. Cen, F. Correa, and A. Fring, Integrable nonlocal Hirota equations, J. Math. Phys. 60,

081508 (2019).

[5] Y. Li and S.-F. Tian, Inverse scattering transform and soliton solutions of an integrable

nonlocal Hirota equation, (10.3934/cpaa.2021178) Commun. Pure Appl. Anal. (2021).

[6] S. Y. Lou, Alice-Bob systems, Ps-Td-C principles and multi-soliton solutions, arXiv preprint

arXiv:1603.03975 (2016).

[7] S. Y. Lou and F. Huang, Alice-Bob physics: coherent solutions of nonlocal KdV systems,

Sci. Rep. 7, 869 (2017).

– 13 –



Stability in integrable nonlocal nonlinear equations
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