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Abstract

This paper proposes two significant developments of the Wittrick-Williams (W-W)

algorithm for an exact wave propagation analysis of lattice structures based on analyti-

cal dynamic stiffness (DS) model for each unit cell of the structures. Based on Bloch’s

theorem, the combination of both the DS and the W-W algorithm makes the wave prop-

agation analysis exact and efficient in contrast to existing methods such as the finite

element method (FEM). Any number or order of natural frequencies can be computed

within any desired accuracy from a very small-size DS matrix; and the W-W algorithm

ensures that no natural frequency of the structure is missed in the computation. The pro-

posed method is then applied to analyze the band gap characteristics and mode shapes

of hexagonal honeycomb lattice structures and the results are validated and contrasted

against the FE results. The effects of different primitive unit cell configurations on band

diagrams and iso-frequency contours are throughly investigated. It is demonstrated that

the proposed method gives exact eigenvalues and eigenmodes with the advantage of at

least two orders of magnitude in computational efficiency over other methods. This re-

search provides a powerful, reliable analysis and design tool for the wave propagations of

lattice structures.
Keywords: Wave propagation; Band gap; Dynamic stiffness method; Wittrick-Williams
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algorithm; Dispersion relations

1. Introduction

Lattice structures can be constructed in the form of honeycomb structures obtained

by tessellating unit cells in a certain predetermined shape [1]，and each unit cell may

comprise of a number of beam elements [2]. Common lattice structures include hexagonal

and re-entrant [3–5], triangular [6, 7], star-shaped [8, 9], square and re-entrant [10, 11],

chiral lattices [12, 13], and the one which is composed of two types of lattices [14, 15] and

there are several others.

Lattice structures have a number of distinguishing features and properties, such as

good sound absorption, high strength or toughness, heat insulation, negative Poisson’s

ratio and flexible designability [16–21]. These attributes of lattice structures have inspired

many investigations on wave propagation, especially on the dispersion relations such as

the bandgap characteristics [22–24]. It is well-known that the frequency interval in which

the wave motion cannot occur is called ‘bandgap’or ’stop band’. Interestingly, the

earliest research on wave propagation in periodic structures can be traced back to Rayleigh

[25] who first analyzed the wave propagation of periodic structure in 1887. Much later,

Brillouin [26] proposed the theory of wave propagation in periodic structures in 1946.

This was followed up by, Mead who [27] pointed out that the wave can pass through

the periodic structure only within a specific frequency range and the wave propagation

constant of an undamped periodic structure is essentially an eigenvalue problem [28, 29].

The finite element method (FEM) is probably the most common numerical mod-

elling method used for the wave propagation analysis of lattice structures. For example,

Gonella and Ruzzene [30] established finite element models for unit cells of hexagonal

and re-entrant lattices. By applying Bloch’s theorem, they converted the wave propa-

gation analysis into a generalized eigenvalue problem with the natural frequencies being
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the eigenvalues. Martinsson and Movchan [31] derived dispersion equations for several

two-dimensional lattice structures based on FE models and solved the transcendental

equation numerically. Several modifications of the model were made by them to create

complete band gaps at prescribed frequencies of the wave propagation problem. However,

in their method, different dispersion equations were needed for different cells, making it

rather tedious and less systematic. Casadei and Rimoli [32] used FEM to establish the

models for unit cell of skew periodic lattice and they analyzed the effect of the geometri-

cal parameters on anisotropy based on the Bloch’s theorem. The effect of the anisotropy

on wave propagation was also investegated by them. Phani et al. [33] used finite ele-

ment beam formulations and Bloch’s theorem to derive the dispersion equations for four

representative planar lattice topologies and the influence of the beam slenderness ratio

on the propagation of lattice waves was studied. Recently, Zhou et al. [34] applied the

so-called numerical condensed wave finite element method to analyze the unit cell of two-

dimensional lattice structures. In this method, the finite element formulation of the unit

cell and the internal degrees of freedom are condensed based on matrix inversion. The

complex wave-numbers are finally determined solving a polynomial eigenvalue problem.

Nobrega el al. [35] applied the wave finite element method to investigate the bandgaps

in periodic rods with periodically attached local resonators. Mencik and Duhamel [36]

applied the wave finite element method to describe the dynamic behaviour of periodic

structures with arbitrary-shaped substructures connected along a straight direction. A

symplectic transformation to improve the numerical stability in the computation of wave

modes and model reduction techniques were applied to describe the dynamic behaviour of

the periodic structures in a specified direction. The literature shows that wave propaga-

tion can be widely investigated based on the above FE models. However, the conventional

finite element method (CFEM) needs considerable mesh refinement during the modelling

process to achieve sufficiently accurate results. This inevitably increases the computation

time significantly, especially in the wave propagation analysis within the mid- to high-

frequency ranges. To reduce the DoFs of the model, Chin et al. [37] proposed the spectral
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extended finite element method (X-FEM) where the shape functions used are high-order

approximate polynomials. However, the formulation may lead to matrices that are not

well-conditioned which may cause numerical singularities.

To avoid the above diffculties, researchers often apply analytical methods to model the

unit cells. The transfer matrix method has been some times used to analyze 1D periodic

structures. For instance, Chen and Wang [38] studied the wave propagation in periodic

beams based on the transfer matrix method and Bloch’s theorem, and the relationship

between the propagation constant and wave amplitudes was investigated by them. On

the other hand, Yu et al. [11] applied the plane wave expansion method (PWEM) for

the wave propagation analysis of membrane-like lattice structures and formulated the

corresponding dispersion relations. Based on the PWEM and Bloch’s theorem, Miranda

and Santos [10] investigated the complex band structure of the magnetoelectroelastic

square lattice structure. Kutsenko et al. [39] applied the semi-analytical method (SAM)

and Bloch’s theorem for the wave propagation analysis of two- and three-dimensional

lattice structures. Leamy [40] presented an exact method for analyzing wave propagation

in two-dimensional periodic structures, which combined the wave-based vibration analysis

technique and Bloch’s theorem.

The dynamic stiffness method (DSM), or sometimes called the spectral element method

(SEM) is another analytical modelling method which can use very few DoFs to represent

the exact deformation of the structure in the entire frequency range [41–47]. The dynamic

stiffness (or spectral element) formulation is essentially exact [48–50] which can generate

the exact solution because the shape functions used are the exact solution of the governing

differential equations instead of higher order approximate polynomials like the X-FEM

[37]. Table 1 compares main differences among DSM, X-FEM and CFEM [51]. Moreover,

DSM can also handle the complex structures comprising individual element DS matrices

[52]. Based on the DSM (SEM), Zuo et al. [53] studied the wave propagation and response

analysis of one-dimensional periodic truss structures. Wu et al. [54, 55] used the dynamic

stiffness (spectral element) model to analyze the wave propagation of one-dimensional
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periodic structures such as rod systems. They studied the vibration bandgap by estab-

lishing the spectral equation of the entire structure. The methods described above have

also been applied to study the two and three-dimensional honeycomb lattices [56, 57].

Table 1 Comparison of the dynamic stiffness method (DSM), the spectral extended finite element method
(X-FEM) [37] and the conventional finite element method (CFEM) [51]. ε1 and ε2 are the phase constants.

DSM (present) CFEM [51] X-FEM [37]

Shape function exact
low-order

approximate
polynomials

high-order
approximate
polynomials

Nos. of DoFs small large medium

Nos. of accurate
eigenvalue infinite ≪ DoFs ≤ DoFs

Accuracy in
higher modes exact low accuracy highly accuracy

Eigenvalue
problem under

Bloch boundary
condition

single analytical
DS matrix separate numerical Kn and Mn matrices

K (ω; ε1, ε2) Kn (ε1, ε2)− ω2Mn (ε1, ε2)

None the less, the determinant technique is normally used in the above methods

to extract eigen-solutions from the analytical formulations, e.g., see [55, 58]. Also, the

solution process can sometimes be cumbersome, and inefficient, and more importantly,

such methods likely to miss some natural frequencies. Therefore, it is necessary to apply

an effective, reliable and accurate solution technique to compute eigen-solutions from

analytical formulations.

It is well-known that Wittrick-Williams (W-W) algorithm [59] is an efficient, reli-

able and accurate eigen-solution technique, which ensures that no natural frequency of

a vibrating structure is missed. Moreover, the Wittrick-Williams algorithm can pinpoint

eigenvalues exactly (within any desired accuracy, even up to machine accuracy) by using,

for example the bisection method [60, 61]. As long as the formulation of the eigenvalue

problem is exact, exact eigen-solutions can be achieved. Zhong et al. [62] first applied

the W-W algorithm to analyze the wave propagation of chain-like periodic structures and
5



obtained the band diagram. In these methods [62, 63], the internal nodes of the struc-

tures were condensed by using a substructuring technique which made the formulation

complex but made the computation more efficient. However, these studies on the appli-

cation of Bloch’s theorem are generally confined to one-dimensional (chain-type) periodic

structures [64, 65]. By taking the analogy between structural mechanics and optimal

control, the above methods were later improved by Zhong and Williams [63] by recasting

the dynamic stiffness formulation into skew-symmetric matrices. The problem order was

reduced by using a cell triangular decomposition and then the problem solved by the sym-

plectic Householder transformation method. Hou et al. [66] developed a FE model for

two-dimensional cellular structures and applied the symplectic analysis method for elastic

wave propagation analysis. However, this method involves many sophisticated techniques

such as the symplectic matrix algebra, the weighted adjoint symplectic orthonormality

relationship, and the eigenvector expansion. All these complexities make the method in-

convenient to use. Subsequently, the idea of the symplectic method was generalized to the

continuous system and named as the structure-preserving method. This method also has

been used to investigate the wave propagation problems in conservative system [67] and in

non-conservative system [68–73]. In addition, Meng et al. [74] established the eigenvalue

problem of hexagonal honeycomb lattice structures with cell walls of non-uniform thick-

ness through finite element analysis and then they investigated the effect of the internal

angle on the band gap characteristics. Side by side to the conventional finite element

method [51], Hou and Meng used the substructure elimination method to simplify the

FE matrix and they used W-W algorithm to obtain the eigenvalues indirectly. Although

the W-W algorithm was applied in the above studies [66, 74], the analysis was primarily

based on the FE models which reduced the computation efficiency drastically, especially

when more accurate results were required especially within mid- to high-frequency ranges.

Against this background, this paper proposes an exact, efficient and reliable analytical

method to analyze the wave propagation in lattice structures. This new method combi-

nates the dynamic stiffness (DS) method [75] and the Wittrick-Williams (W-W) algorithm
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in an effective, efficient and exact way. The proposed method has the following advan-

tages: i) The shape functions of DSM used are essentially the exact general solutions of

the governing differential equations, and therefore, the procedure leads to exact dynamic

stiffness formulation; ii) Only a few degrees of freedom are used to represent the wave

propagation problem, leading to exact solutions with high computational efficiency; iii)

A small size dynamic stiffness matrix can be used to extract any number of eigenvalues

without compromising the accuracy of the results. This is in sharp contrast to conven-

tional FEM in which the number of eigenvalues depends on the dimensions of the stiffness

and mass matrices; iv) The usefulness of the dynamic stiffness method becomes apparent

in solving the problem in the high frequency range; v) The W-W algorithm ensures that

no natural frequency is missed in the computation enabling computation of any required

number of natural frequencies to any desired accuracy. The research described in this pa-

per is especially relevant to wave propagation analysis in the high frequency range which

is an essential requirement in the wave propagation control. The proposed method can

be used to analyze the wave propagation problems for any lattice structure, including the

production of the dispersion curves and surfaces.

The paper is organized as follows. After this Introduction section, Section 2 reviews

the fundamentals of wave propagation in lattice structures and the dynamic stiffness for-

mulation of unit cells. Section 3 proposes two enhanced versions of the W-W algorithm

to extract eigenvalues and the mode shape computation algorithm. Section 4 demon-

strates the efficiency and exactness of the proposed method using some carefully selected

illustrative examples. Finally, Section 5 summarizes the paper.

2. Dynamic Stiffness formulation for 2D lattice structures

Since a two-dimensional periodic lattice structure can be regarded as the primitive unit

cell tessellated along a set of basis vectors (e1,e2) in direct lattice space, wave propagation

in lattice structure can be investigated by using unit cell method based on Bloch’s theorem.

In this section, the concept of Bloch’s theorem and the first Brillouin zone are introduced

in Section 2.1, and the dynamic stiffness formulation for the unit cell is presented in
7



Section 2.2.

2.1. Unit cell method of lattice structures based on Bloch’s theorem

According to the Bloch’s theorem, the wave motion of the lattice point jth in the

(m,n) unit cell can be expressed as

q (r) = q (rj) e
k(r−rj) = q (rj) e

(mk1+nk2) (1)

where q (rj) represents the displacement of the jth point of the primitive unit cell.

ki (i = 1, 2) are the propagation constants [76] which can be written as ki = ξi + iεi,

where i =
√
−1, ξi is the attenuation constant and εi is the phase constant [33]. It is

generally considered that there is no attenuation during wave propagation, i.e., ξi = 0.

2.1.1. Periodic boundary conditions based on Bloch’s theorem

A general unit cell with two-dimensional periodic structure is selected to illustrate

the relationship between the lattice point displacement and force of two adjacent cells, as

shown in Fig. 1. If the dynamic stiffness formulation for the unit cell is expressed as

K (ω) q = f (2)

where K (ω) is the dynamic stiffness matrix, q and f are respectively the generalized

displacement and the generalized force in the frequency domain. According to Bloch’s

theorem of Eq.(1), the Bloch boundary condition related to the lattice points displacement

are as follows

qR = e−iε1qL, qT = e−iε2qB, qRB = e−iε1qLB, qLT = e−iε2qLB, qRT = e−i(ε1+ε2)qLB (3)

Therefore, the generalized displacement q can be simplified in the following form

q = TB (ε1, ε2) q̃ (4)

where q̃ =

[
qL qB qLB qi

]T
, TB is the transformation matrix under the Bloch bound-
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Fig. 1. Analysis of the degree of freedom of the general unit cell of periodic structure in two-dimensional
space.

ary conditions and expressed as

TB (ε1, ε2) =



I 0 0 0

Ie−iε1 0 0 0

0 I 0 0

0 Ie−iε2 0 0

0 0 I 0

0 0 Ie−iε1 0

0 0 Ie−iε2 0

0 0 Ie−i(ε1+ε2) 0

0 0 0 I



(5)

Substituting Eq.(4) into Eq.(2), one has

K (ω)TB (ε1, ε2) q̃ = f (6)

In order to realize force equilibrium, it is necessary to multiply the conjugate transpose

of matrix TB on both sides of Eq.(6). Then Eq.(6) can be written as

TH
B (ε1, ε2)K (ω)TB (ε1, ε2) q̃ = K̃ (ω; ε1, ε2) q̃ = f̃ (7)

where f̃ = TH
B f . For the free propagation of wave, the external force is considered to be

zero (i.e., f̃ = 0).

The matrix K̃ (ω; ε1, ε2) is the global dynamic stiffness matrix of the lattice structure
9



contains three unknown elements, including the frequency ω, phase constants ε1 and ε2.

An infinite number of natural frequencies can be obtained by varying ε1 and ε2 within

the first Brillouin zone which is explained below.

2.1.2. The first Brillouin zone

In general, wave propagation analysis of periodic structures is performed along the

boundary of the so-called first Brillouin zone [77]. However, the concept of the first

Brillouin zone is introduced by reciprocal lattice. Given the basis vectors of the direct

lattice, the reciprocal lattice can be obtained based on the following relation

ei · ej
∗ = 2π i = j

ei · ej
∗ = 0 i ̸= j

(i, j = 1, 2)

 (8)

where e∗
j is the basis vector of the reciprocal lattice. The primitive unit cell of the

reciprocal lattice is defined as the first Brillouin zone and it restrict the value of the

wave vector. By limiting the phase constants to the contour of first Brillouin zone or

the irreducible Brillouin zone, the behavior of the wave in the whole structure can be

described.

In this paper, four lattice structures (hexagonal lattice, hexagonal re-entrant lattice,

triangular lattice and Zigzag lattice) are considered. In general, the selection of the

primitive unit cell for lattice structures is not unique and the corresponding first Brillouin

zone is also different. In order to illustrate the unit cell method of the lattice structures

based on Bloch’s theorem, the hexagonal lattice structure is taken as an example. Three

different kinds of representative primitive unit cells and the corresponding direct lattice

vectors, the reciprocal lattice vector, the irreducible Brillouin zone and the high symmetric

points are illustrated in Table 2. It can be seen from Table 2 that Model I is based on

the orthogonal basis whereas Model II and Model III are based on the non-orthogonal

basis vector, which leads to the corresponding but distinguishing first Brillouin zone and

high symmetric points. Finally, the bandgap properties can be computed by varying the

phase constants in Eq.(7) along O − A − B − O or O − A − B − C − O contour of the

10



Table 2 Three typical primitive unit cell configurations of a hexagonal honeycomb structure and the
corresponding direct lattice vector, reciprocal lattice vector, irreducible Brillouin zone and the high
symmetric points.

Model I Model II Model III

Primitive unit cell
configurations

Direct lattice vec-
tor

e1 = (Lcosθ) i
e2 =

(3L
2
)

j
e1 = (Lcosθ) i + (L + Lsinθ) j

e2 = (−Lcosθ) i + (L + Lsinθ) j

Reciprocal lattice
vector

e1∗ =
( 2π

Lcosθ
)

i
e2∗ =

( 4π
3L
)

j
e1∗ =

(
π

Lcosθ
)

i +
(

π
L+Lsinθ

)
j

e2∗ =
(
− π

Lcosθ
)

i +
(

π
L+Lsinθ

)
j

Irreducible Bril-
louin zone

O (0, 0) O (0, 0)
A (0, π) A 2π

(
1/

(
4sin2I

)
,−1/

(
4sin2I

))
The high symmet-
ric points B 2π

(
1 − 1/

(
4sin2I

)
, 1/

(
4sin2I

))
B (π, π) C (π, π)

1 I = π
4 + θ

2
2 When θ = 30

◦ , the irreducible Brillouin zoon of Models II and III are the triangular OAB region
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corresponding first Brillouin zones respectively.

2.2. Dynamic Stiffness formulation for unit cell

Now we are in position to the formulation of dynamic stiffness matrix K (ω) of a

unit cell in Eq.(2) based on the dynamic stiffness method. Upon selecting a suitable

primitive unit cell, the corresponding dynamic stiffness formulation can be formed. The

unit cell under consideration is composed of beams and each node of a beam has three

degrees of freedom (DoFs) which takes into account the effects of axial, flexure and shear

deformation as shown in Fig. 2. In this paper, the classical theory for axial vibration and

the Timoshenko theory for bending vibration are applied to develop the DS formulation

for the unit cell.

Fig. 2. A beam element with three degrees of freedom at each nodes. The degrees of freedom in each
node correspond to the axial, transverse and rotational deformation.

The governing equation in axial free vibration of a beam is

EA
d2U(x)

∂x2
+ ρAω2U(x) = 0 (9)

in which, EA is the stiffness for axial deformation, ρA is mass per unit length and ω is

the circular frequency in rad/s. The exact shape function of Eq.(9) can be derived as

U(x) = C1 cos (kax) + C2 sin (kax) (10)

with k2
a =

ρAω2

EA
and C1, C2 are the constant. Through the relationship between force and

displacement and the corresponding boundary conditions [78], one arrives at the dynamic

stiffness formulation for the axial vibration of a beam elementN1

N2

 =

 a1 a2

a2 a1


U1

U2

 (11)

where

a1 = EAka cot(kaL), a2 = −EAka csc(kaL) . (12)
12



where L is the length of the beam.

The governing differential equations for free bending vibration based on the Timo-

shenko beam theory are given as follows

kAG
d
dx

(
dW
dx − θ

)
+ ω2ρAW = 0

EI
d2θ

dx2
+ kAG

(
dW
dx − θ

)
+ ρIω2θ = 0

(13)

where kAG and EI are the shear and bending stiffnesses of the beam, I is the second

moment area of the beam cross section and ω is the circular frequency in rad/s. The

shape functions can be obtained by solving Eq.(13) and can be expressed as

W (ξ) = A1 cosλ1ξ + A2 sinλ1ξ + A3 coshλ2ξ + A4 sinhλ2ξ

Θ(ξ) = B1 cosλ1ξ +B2 sinλ1ξ +B3 coshλ2ξ +B4 sinhλ2ξ
(14)

where ξ = x/L and A1 −A4 and B1 −B4 are two sets of constant. It can be shown that

λ1

λ2

 = b̄
{
±∆/2 +

[
∆2/4 +

(
1− b̄2r2s2

)
/b̄2

]1/2}1/2

(15)

with

∆ = r2 + s2 , b̄2 =
ρAω2L4

E
, r2 =

I

AL2
, s2 =

EI

kAGL2
(16)

Combine the relationship between force and displacement and the corresponding boundary

conditions [79], we have the dynamic stiffness matrix for a Timoshenko beam element as

follows. 

V1

M1

V2

M2


=



d1 d2 d4 d5

d3 −d5 d6

d1 −d2

sym d3





W1

Θ1

W2

Θ2


(17)
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where
d1 = R3b̄

2 (λ2 + ηλ1) (cS + ηsC) /(λ1λ2δ)

d2 = R2k1 [(λ1 + ηλ2) sS − (λ2 − ηλ1) (1− cC)] /δ

d3 = R1 (λ2 + ηλ1) (sC − ηcS) /δ

d4 = −R3b̄
2 (λ2 + ηλ1) (S + ηs) /(λ1λ2δ)

d5 = R2k1 (λ2 + ηλ1) (C − c)/δ

d6 = R1 (λ2 + ηλ1) (ηS − s) /δ

(18)

with
Rj = EI/Lj, j = 1, 2, 3

s = sinλ1, c = cosλ1, S = sinhλ2, C = coshλ2

η = k1/k2, δ = 2η(1− cC) + (1− η2) sS

k1 = (λ2
1 − b̄2s2)/λ1, k2 = (λ2

2 + b̄2s2)/λ2

(19)

By integrating the axial vibration and bending vibration, the element DS matrix of a

beam member can be written as

Ke (ω) =



a1 0 0 a2 0 0

0 d1 d2 0 d4 d5

0 d2 d3 0 −d5 d6

a2 0 0 a1 0 0

0 d4 −d5 0 d1 −d2

0 d5 d6 0 −d2 d3


(20)

and it needs to be transformed into global or datum coordinates. Subsequently, the

global dynamic stiffness matrix of the unit cell K (ω) can be obtained by assembling the

matrix of each beam member. The coordinate transformation procedure and the assembly

procedure in the DSM are similar to that of the FEM [74]. Finally, the periodic boundary

conditions will be applied to the dynamic stiffness matrix of the unit cell based on the

Bloch’s theorem following the procedure described in Section 2.1.1.

3. The Wittrick-Williams algorithm for wave propagation analysis based on
DS models

14



For the wave propagation analysis, the dispersion relations can be computed from

the dynamic stiffness (DS) matrix of the unit cell of the lattice structure. Unlike the

FEM, the natural frequencies cannot be suitably extracted directly from the DS matrix

because the elements of the DS matrix are transcendental functions of the frequency. To

address this issue, the Wittrick-Williams (W-W) algorithm [59] based on the Rayleigh

theorem and Sturm sequence is exploited. By combining the Sturm sequence property

with the bisection method, one can find the upper and lower bounds of the eigenvalues

of a dynamic stiffness matrix, which makes the Wittrick-Williams algorithm robust and

it ensures that no root is missed in the computation. The basic equation of the Wittrick-

Williams algorithm can be expressed as

J
(
ω#) = J0

(
ω#)+ s

{
K

(
ω#)} (21)

where ω# is the trial frequency, J0 count represents the number of natural frequencies

below ω# when the end nodes of the element are completly fixed. s
{

K
(
ω#)} represents

the number of negative diagonal elements after upper triangular transformation of K (ω)

evaluated at ω# when applying Gass elimination to K
(
ω#). The expression of J0 count

can be written as

J0
(
ω#) = m∑

1

Ji
(
ω#) (22)

where, Ji
(
ω#) represents the number of natural frequencies lower than the trial frequency

for the ith element when its end nodal displacements are zeroes. It is necessary to obtain

J0 count when using the Wittrick-Williams algorithm to ensure the certainly and high

precision for the results especially analyzing vibration of complex structures at high fre-

quency range. In view of this, we first summarize the Ji count for a beam member based

on the classical theory and the Timoshenko theory which are given below.

For the classial theory(axial vibration):

Ji = highest integer < ϕc

π
(23)

where ϕc = ωl
√

ρ
E

.
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For the Timoshenko theory(bending vibration):

Ji = jc −
[
2− sgn (d3)− sgn

(
d3 −

d26
d3

)]
/2 (24)

where d3, d6 are already given in Eq.(18) and jc is given by:

jc = jd for b2r2s2 < 1

jc = jd + je for b2r2s2 ≥ 1

 (25)

with
jd = highest interger < λ1

π

jc = highest interger < λ2
π
+ 1

 (26)

where λ1, λ2 have already been defined in Eq.(15).

Once J count of Eq.(21) is determined, the bisection method is generally used to

pinpoint the natural frequencies for each order, and the natural frequency of the jth

eigenvalue ωj can be determined within the frequency interval (ω#
jl ,ω

#
ju) where l and u

indicate the lower and upper bound of the frequency. In order to achieve higher precision,

the following criterion is set ∣∣∣ω#
ju − ω#

jl

∣∣∣ < ω#
jl × Tol. (27)

where Tol is the error tolerance required for the final result. The natural frequency of the

jth order can then be expressed as

ωj =
ω#
ju + ω#

jl

2 (1 + Tol) (28)

Indeed, the combination of dynamic stiffness method and the W-W algorithm greatly

improves the efficiency of calculation and ensures the exactness of the results. This paper

provides two enhancements of the W-W algorithms for computing the eigenvalues. Model

I is used to illustrate the principles of these two developments in sections 3.1 and 3.2

respectively. The procedures for mode shape computation are given in section 3.3.
3.1. The Direct Wittrick-Williams algorithm

The Direct Wittrick-Williams (DWW) algorithm can be used to solve for the eigen-

values in a straightforward manner. In this work, the nodal displacements of Model I in

Table 2 can be divided into internal nodal displacements qi and external nodal displace-

16



ments qe =

[
q1 q2 q3 q4 q5 q6

]T
, as shown in Fig. 3.

Fig. 3. Node displacements for Model I of hexagonal honeycomb lattice shown in Table 2: q1 ∼ q6 are
the displacements of external nodes，qi denotes the internal node displacements.

Based on the Bloch’s theorem and imposing the correspongding Bloch boundary con-

ditions on the nodal displacements give

q4 = e−iε1q1, q5 = e−iε1q2, q6 = e−iε2q3 (29)

Using the above displacement relationships, the transformation matrix TD and general-

ized displacement vector q̃D can be obtained as

TD (ε1, ε2) =



I 0 0 0

0 I 0 0

0 0 I 0

Ie−iε1 0 0 0

0 Ie−iε1 0 0

0 0 Ie−iε2 0

0 0 0 I



(30)

q̃D =

[
q1 q2 q3 qi

]T
, q = TD (ε1, ε2) q̃D (31)

After applying the Bloch boundary condition TD upon the global DS matrix of the unit

cell K, we can arrive at the overall DS matrix of the unit cell to give

KD (ω; ε1, ε2) = TH
D (ε1, ε2)K (ω)TD (ε1, ε2) (32)

Then, the DWW algorithm can be used to calculate the natural frequency for free wave

17



propagation problem, and the corresponding W-W algorithm equation can be written as

J
(
ω#) = J0

(
ω#)+ s

{
KD

(
ω#)} (33)

3.2. Extended Wittrick-Williams algorithm

Compared with DWW algorithm, the extended Wittrick-Williams algorithm (EWW)

requires the usual substructuring condensation method to condense the internal displace-

ments in the eigenvalue computation.

For the free wave propagation, Eq.(2) can be written as

K (ω) q =

 K ii K ie

Kei Kee


 qi

qe

 = f = 0 (34)

where, K ii, K ie, Kei and Kee are the block matrices of the dynamic stiffness matrix

K. Using the usual substructuring condensation method, the external dynamic stiffness

matrix K can be expressed as

K (ω) = Kee − KeiK ii
−1K ie (35)

Subsequently, the unit cell’s equation of motion for free wave propagation related to the

external component can be expressed as

K (ω) qe = 0 (36)

Using the displacement relationships in Eq.(29), we can formulate the transformation

matrix TE and generalized displacement vector q̃E as

TE (ε1, ε2) =



I 0 0

0 I 0

0 0 I

Ie−iε1 0 0

0 Ie−iε1 0

0 0 Ie−iε2


(37)

q̃E =

[
q1 q2 q3

]T
, qe = TE (ε1, ε2) q̃E (38)

After applying the Bloch boundary conditions TE upon the global DS matrix of the unit
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cell K, we can arrive at the overall DS matrix of the unit cell as

KE (ω; ε1, ε2) = TH
E (ε1, ε2)K (ω)TE (ε1, ε2) (39)

Once the dynamic stiffness matrix KE of the unit cell is obtained, the EWW algorithm

can be used to calculate the natural frequencies. In order to compensate for the conden-

sion of the internal displacements, an extra term s {K ii} is necessary to be considered.

Therefore, the basic equation of EWW algorithm can be written as

J
(
ω#) = J0

(
ω#)+ s

{
KE

(
ω#)}+ s

{
K ii

(
ω#)} (40)

3.3. Mode shape computation

Once the natural frequency at a certain combination of wave numbers is obtained, we

can compute the corresponding eigenvector (displacement vector) to determine the modes

of the unit cell of the lattice structure. The procedures for the modal shape computation

method based on DSM-DWW are given as follows.

i) Find the corresponding row h of the smallest diagonal element in the diagonal matrix

triangulated from the dynamic stiffness matrix K∆
D;

ii) Set the corresponding element in displacement vector as 1, and then calculate the

values of other elements in terms of the chosen displacement to obtain the generalized

displacement vector q̃D under the simplified Bloch coordinates;

iii) Use Eq.(4) to compute the global generalized displacement vector for the unit cell;

iv) Transform the global generalized displacement q from global to local coordinate

through ql = Tq, where ql is the global generalized displacement at local coordinate;

v) Substitute ql into the shape functions Eq.(10) and Eq.(14) to recovery the mode

shape.

The process for the model shape computation method based on DSM-EWW is similar

to the one whose based on DSM-DWW, and the difference is that we can not obtain the

global generalized displacement vector directly as in the case with DWW. The specific

steps for the EWW case are given below.

i) Find the row h of the smallest element of the diagonal of dynamic stiffness matrix

K∆
E ;
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ii) Let the corresponding element in displacement vector q̃E as 1, and then calculate

the values;

iii) Use Eq.(38) to compute the external generalized displacement vector qe for the

unit cell;

iv) Compute the elements of the inner generalized displacement vector by Eq.(34) and

formulate the global generalized displacement vector;

v) The global generalized displacement vector ql in local coordinate can be obtained

from T × q;

vi) Substitute ql into the shape functions Eq.(10) and Eq.(14) to recovery the mode

shape.

By comparing two versions of the modal shape computation method, it is obvious that

the modal shape computation based on DSM-DWW is more efficient than DSM-EWW

because the dynamic stiffness matrix KD is direct. Therefore, the DSM-DWW method

is chosen to compute the mode shape of the lattice structures in this paper.

4. Results and discussions

In this section, the proposed method is applied to analyze the wave propagation prop-

erties of the lattice structures. First, in order to highlight the reliability of the proposed

method, Section 4.1 compares the proposed efficient method with other method in term

of the results and the computational efficiency. Section 4.2 investigates the effect of the

primitive unit cell configurations on the dispersion relations. Section 4.3 uses the pro-

posed mode shape computation algorithm to investigate the mode shapes of the hexagonal

lattice.

4.1. Validation and comparison of different computation algorithms

To verify the efficiency and reliability of the proposed method, a comparative study is

performed based on the dispersion relations of the hexagonal lattice structure. The primi-

tive unit cell selected in this subsection is Model I. The unit cell is modelled by Timoshenko

beams with the rectangular cross-section and each beam has the length L=0.1m, the cross-

sectional height h= 0.001m and the cross-sectional width t = 0.002
√
3m. The unit cell
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angle θ = 30
◦ and the material parameters include Young’s modulus E = 72GPa, density

ρ = 2700kg/m3, and Poisson’s ratio µ = 0.3. Five methods are used in the analysis.

These are dynamic stiffness method combined with the direct Wittrick-Williams (DWW)

algorithm (DSM-DWW), dynamic stiffness method combined with extended Wittrick-

Williams (EWW) algorithm (DSM-EWW), finite element method combined with the

extended Wittrick-Williams algorithm (FEM-EWW), finite element method combined

with Choleshy algorithm (FEM-Choleshy), commercial software COMSOL, respectively.

The results are performed on the same computer which the CPU and RAM is 3.00 GHz

and 8.00 GB respectively, and the band diagrams are presented in Fig. 4.

Fig. 4 essentially shows that the band diagrams obtained from the DSM-DWW and

DSM-EWW analysis are completely coincide, meanwhile, the band diagrams obtained

from the FEM-EWW and FEM-Cholesky analysis match exactly with each other (Note

that the results of DSM-EWW, DSM-DWW, FEM-EWW and FEM-Cholesky are based

on the same beam theory). Also, it is clear that the FEM results (FEM-EWW and

FEM-Cholesky) are always larger than the DSM results (DSM-EWW, DSM-DWW) when

the model modelled by beam elements, this is expected due to the discretization errors

involved in the FEM analysis. Furthermore, some parts of the curves calculated by

COMSOL are above the DSM results while others are below. This might be because

the finite element solid model is used in COMSOL analysis so that the discrepancies are

caused by the joint influences of both the FE discretization errors and the differences

between solid and beam models.

Within the first one hundred order of natural frequencies for point B in Fig. 4, some

selected frequencies computed by the above five methods are compared in Table 3. By

comparing the results computed by using the dynamic stiffness (DS) model and the finite

element (FE) model, it can be concluded that the convergence state is not reached when

the FE model is meshed into 138 DoFs and the results converge when the FE model is

meshed into 813 DoFs, which also can be summarized as FEM results converge toward

DSM results. Furthermore, it can be seen that the COMSOL results are similar to DSM
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Fig. 4. The first fifteen dispersion curves calculated by DSM-DWW, DSM-EWW, FEM-EWW, FEM-
Choleshy and COMSOL.

results (DSM-DWW, DSM-EWW) as the solid model is meshed into 15094 DoFs. The

relative errors of FEM results (with coarse and fine meshes) and COMSOL results (with

coarse and fine meshes) with respect to the results computed by the proposed DS model

for some representative eigenmodes are shown in Fig. 5. It can be seen that for higher-

order eigenvalues (ω30, ω50), the relative errors of FEM and COMSOL results based on

coarse meshes with respect to the DSM results are significantly large, but those with finer

meshes with a large number of DoFs (with 813 and 15094 DoFs respectively) match very

well with the DSM results.

For efficiency, the DSM-WW is at least three orders of magnitude higher than the

FEM-EWW [9] when the results satisfy the accuracy requirements, especially the DSM-

EWW which only takes 6.88 second while the FEM-EWW takes as long as 110020.55

seconds. Meanwhile, the FEM-Cholesky method takes as long as 190.31 seconds to com-
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Table 3 Natural frequencies in rad/s and computational time (Comp. Time) of the band diagram on Point
B of Fig. 4 by using five different methods, namely, i) DSM-DWW；ii) DSM-EWW; iii) FEM-Choleshy;
iv) FEM-EWW; v) COMSOL software. Different numbers of degrees of freedom (DoFs) are adopted for
different methods, in which‘in’means the number of internal DoFs whereas‘ex’means the number
of external DoFs. ‘\’ means the natural frequency or the computational time cannot be calculated.

Model DSM
FEM-EWW [9]

FEM
COMSOLSolu.Tech. DWW EWW Choleshy

DOFs 30 12(in)+18(ex) 120(in)+18(ex) 795(in)+18(ex) 138 813 466 15094

ω1 1378.25 1378.25 1387.80 1378.37 1387.80 1378.37 1414.99 1389.63
ω2 1378.25 1378.25 1390.18 1378.43 1390.18 1378.43 1415.24 1389.63
ω3 8334.97 8334.97 8642.21 8340.78 8642.21 8340.78 8784.91 8317.76
ω4 8334.97 8334.97 8822.67 8345.59 8822.67 8345.59 8821.92 8317.76
ω5 9280.71 9280.71 9812.92 9285.58 9812.92 9285.58 10223.28 9403.32
ω10 24729.32 24729.32 29296.79 24833.01 29296.79 24833.01 30129.77 24588.21
ω20 59168.27 59168.27 85728.42 59325.73 85728.42 59325.73 72624.64 60464.07
ω30 107050.32 107050.32 186067.67 108887.49 186067.67 108887.49 179854.84 107593.93
ω40 195340.45 195340.45 305568.46 198808.41 305568.46 198808.41 286071.54 193972.32
ω50 254960.84 254960.84 465582.85 258627.26 465582.85 258627.26 448948.07 264102.41
ω100 712508.71 712508.71 \ 740697.06 \ 740697.06 1553852.85 718221.93

Comp.Time(s) 24.75s 6.88s \ 11002.55s \ 190.31s 54s 467s

pute the natural frequencies while the proposed DSM-EWW takes only 6.88 seconds.

Moreover, it can be ascertained from Table 3 that the efficiency for DSM-EWW is about

4 times higher than DSM-DWW, which is the consequence of using the usual substruc-

turing condensation method to reduce the size of the dynamic stiffness matrix. The

comparison of DSM-DWW and DSM-EWW is shown in Table 4.

Table 4 Comparison of the two types of the Wittrick-Williams algorithms based on dynamic stiffness
method.

DSM-DWW DSM-EWW
Model difficulty Low Comparatively low

Numerical stability Stable(no matrix inversion) Less stable (matrix inversion)
Efficiency Efficient Highly efficient

Mode shape computation Reliable for local modes Less reliable for local modes

In order to demonstrate the wide application scope, the proposed method is also

applied for the wave propagation analysis of other three types of lattice structures, namely,

hexagonal re-entrant lattice, triangular lattice and Zigzag lattice, see Figs. 6 to 8. The

dimensional parameters and material parameters of each beam element are the same as

those used in the wave propagation analysis of the hexagonal lattice structure previously.

The corresponding primitive unit cells are shown in red, and the band diagrams computed

by the proposed method are compared with FEM results with fine meshes (each beam

member is modelled by 30 FE elements), which shows great consistency.
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Fig. 5. The relative error between the results with coarse and fine meshes of FEM and with coarse and
fine meshes of COMSOL and the results of DSM given in Table 3.

4.2. The effect of the primitive unit cell configurations on dispersion relations

In this subsection, the effect of the primitive unit cell configurations of the hexagonal

lattice structure on the band diagrams and Iso-frequency contours are investigated. The

primitive unit cells are shown in Table 2 and modelled by Timoshenko beams with the

rectangular cross-section and each beam has a length of L=0.1m, cross-sectional height

of h= 0.001m and the cross-sectional width t = 0.004
√
3m. The unit cell angle θ =

30
◦ and the material parameters include Young’s modulus E = 72GPa, density ρ =

2700kg/m3,and Poisson’s ratio µ = 0.3. The first fifteen branches of dispersion curves are

considered and the results are made dimensionless using the following expressions

ω0 =
π2

L2

√
EIz

ρA
,Ω =

ω

ω0

(41)

where A and IZ are the cross-sectional area and the axial moment of inertia of the Tim-

oshenko beam respectively.

The corresponding computation time, band gap position and the band gap size are
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Fig. 6. The primitive unit cell of hexagonal re-entrant lattice and the band diagram with the unit cell
angle θ = 10

◦ .
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Fig. 7. The primitive unit cell of triangular lattice and the band diagram with the unit cell angle θ = 60
◦ .
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Fig. 8. The primitive unit cell of Zigzag lattice and the band diagram with the unit cell angle θ = 60
◦ .
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Table 5 Comparison of the computation time, the bandgap position, and bandgap size of the first fifteen
dispersion curves by using the Bloch wave analysis on different primitive unit cells of the hexagonal lattice
structure.

Hexagonal honeycomb lattice
Primitive unit cell DSM-EWW DSM-DWW Bandgap position Bandgap size

Model I 7.4s 26.3s 12th-13th 4.608-5.529
Model II 5.3s 7.2s 6th-7th 4.608-5.529
Model III 3.4s 3.4s 6th-7th 4.608-5.529

shown in Table 5. Obviously, it can be seen that the simpler primitive unit cell configu-

ration leads to the higher computational efficiency. At the same time, it can be noticed

that the superiority of DSM-EWW algorithm is evident when the primitive unit cell is

more complex. The band diagram obtained by using the Bloch wave analysis for Model

I is shown in Fig. 9(b). It can be seen that there exists a complete bandgap between the

12th branch and 13th branch, which does not occur in the case of the slenderness ratio of

100. The above procedure is applied to analyze Model II and Model III of Table 2. It is

interesting that the corresponding band diagrams are the same. This is because the two

models based on the same basis vectors. The corresponding band diagrams are shown in

Fig. 10(b). A complete bandgap can be detected between the 6th branch and 7th branch.

Comparing the above band diagrams, it is clear that both the bandgaps occur in the

non-dimensional frequency range [4.687-5.529]. It can be concluded that for any lattice

structure, the bandgap will not change due to the differences in the primitive unit cell

configurations. In addition, the dispersion relations generated by analyzing the primitive

unit cell which is based on the same basic vectors show no difference at all.

The iso-frequency contour is another important form to describe the dispersion re-

lations. The effects of the primitive unit cell configurations on the iso-frequency are

studied by using the Bloch wave analysis and the corresponding iso-frequency contours

are given in Figs.11 and 12. The first eight surfaces in Fig. 12 are similar to those in

[80], and the small difference is due to the additional mass added to the lattice points

in [80]. Meanwhile, there is a sharp contrast between Figs.11 and 12 that Model I leads

to iso-frequency contours being symmetric to an axis parallel to x and y axis while the

26



(a) Configuration of Model I

O A B O

k-space position

0

1

2

3

4

5

6

7

8
Band diagram

X: 0
Y: 5.529

X: 1.119
Y: 4.608

(b) Band diagram

Fig. 9. The first fifteen dispersion curves obtain by using the Bloch wave analysis on Model I.
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Fig. 10. The first fifteen dispersion curves obtain by using the Bloch wave analysis on Models II or III.

27



iso-frequency contours of Model II and Model III have the symmetry with respect to the

diagonal axis. The above contrast stems from the basis vectors are different and it has no

effect on investigating the behaviors of the hexagonal lattice structure. For example, the

comparison between Fig. 11(a) and Fig. 12(a) both shows that the isotropic characteristic

is presented in the low-frequency range. The curves change rapidly in the high-frequency

range of the vertical direction for Fig. 11(e) and the corresponding behavior occurs in

directions inclined at 135° for Fig. 12(e), which can be explained by the relevant basis

vectors.

(a) 1st mode (b) 2nd mode (c) 3rd mode (d) 4th mode

(e) 5th mode (f) 6th mode (g) 7th mode (h) 8th mode

Fig. 11. The first eight iso-frequency contours obtain by using the Bloch wave analysis on Model I.

4.3. Modal shape analysis

It is well recognized that mode shape describes wave propagation in lattice structures.

Each point on the dispersion curve represents the eigenvalue under a certain wavenumber.

After the eigenvalues are calculated, the modal shape computation method which is based

on DSM-DWW can be used to compute the local displacement for each node (Local mode).

Model II is selected to analyze due to the required lattice points are included. Considering

the wave passes through the lattice structure along the vertical direction (OA direction).

We choose three states of the wave number on that direction to analyze, which are k1 = 0,

k2 = 0 (point O); k1 = π
2
, k2 = π

2
; k1 = π, k1 = π (point A).
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(a) 1st mode (b) 2nd mode (c) 3rd mode (d) 4th mode

(e) 5th mode (f) 6th mode (g) 7th mode (h) 8th mode

Fig. 12. The first eight iso-frequency contours obtain by using the Bloch wave analysis on Model II or
Model III.

The first five mode shapes of each state are are shown in Table 6, and they are

compared with COMSOL’s result. Combining the above results with the band diagram

of Fig. 10(b) for discussion, it can be concluded that the first two branches at point O are

close to zero which leads the corresponding modes being the rigid body modes. It may

be noticed that as the frequencies increase gradually in the OA direction for the second

branch and the fifth branch of the dispersion curves, and the corresponding mode shapes

transform from simple to complex.

5. Conclusions

The contributions made in this paper are as follows. First, based on Bloch’s theo-

rem, two versions of the Wittrick-Williams algorithm based on dynamic stiffness models

for analyzing the wave propagation of lattice structures are proposed which reduce the

computational load dramatically and can obtain the exact solutions. Secondly, two types

of modal shape computation method are developed based on the new proposed method-

ologies. Next, the proposed methodologies are applied to investigate the effect of the

primitive unit cell configurations on dispersion relations, such as the band diagrams and

the corresponding iso-frequency contours.

Three kind of the primitive unit cell configurations based on the dynamic stiffness
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Table 6 The first five modes of the hexagonal lattice in three wavenumeral states for the vertical direction
(OA direction).

DSM COMSOL DSM COMSOL DSM COMSOL
Mode k1 = 0, k2 = 0 k1 =

π
2
, k2 =

π
2

k1 = π, k2 = π

1

2

3

4

5

method and Bloch wave analysis of the hexagonal honeycomb lattice structure have been

given, namely, Model I, Model II and Model III. Using the Bloch wave analysis on Model

I, the reliability of the proposed methodologies has been verified by comparing the band

diagrams obtained by the proposed methods with FEM-EWW, FEM-Choleshy and COM-

SOL. It is observed that the proposed methods can ensure the exactness of the results by

using only a few DoFs, especially in mid-to high-frequency ranges. Moreover, the compu-

tational efficiency is more than two orders of magnitude higher than other methods such

as FEM.

Comparison of the computational time for dispersion curves obtained by using the

Bloch wave analysis on the above three kinds of the primitive unit cells shows the com-

bination of the extended Wittrick-Williams algorithm and dynamic stiffness model has

much higher efficiency, especially when considering the complex primitive unit cell. The

dispersion relations may differ due to changes in the primitive unit cell configuration but

the correspongding bandgaps are occur in the same frequency interval. The mode shapes

of the hexagonal lattice structure have been studied by using the proposed modal shape
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computation method. The mode shape have also been compared with the results obtained

in COMSOL and show satisfactory agreement.

In conclusion, the proposed method can improve the computation efficiency for com-

puting the dispersion relations of lattice structures dramatically and it ensures no natural

frequency is missed in the whole frequency range. The method presented can be applied

for the wave propagation analysis and design of complex lattice structures.
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