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We revisit the classic database of weighted-P4s which admit Calabi-Yau 3-fold hypersurfaces equipped
with a diverse set of tools from the machine-learning toolbox. Unsupervised techniques identify an
unanticipated almost linear dependence of the topological data on the weights. This then allows us to
identify a previously unnoticed clustering in the Calabi-Yau data. Supervised techniques are successful in
predicting the topological parameters of the hypersurface from its weights with an accuracy of R2 > 95%.
Supervised learning also allows us to identify weighted-P4s which admit Calabi-Yau hypersurfaces to
100% accuracy by making use of partitioning supported by the clustering behavior.

DOI: 10.1103/PhysRevD.105.066002

I. INTRODUCTION

Artificial intelligence has now permeated through all
disciplines of human enterprise. Machine-learning (ML)
has become, in this age driven by big data, as indispensable
a tool as calculus was to the Age of Enlightenment [1].
Perhaps surprisingly, noiseless, pure mathematical data can
often be learned at high precision, indicating underlying
formulas which have not yet been uncovered from tradi-
tional analyses. Examples of this data driven approach to
mathematics may be seen in applications of ML to: the
string theory landscape [2–6]; abstract algebra [7]; modern
number theory [8,9]; and graph theory [10]. It is hoped that
ML might reveal structures in the very nature of math-
ematics [11] and mathematical intuition [12], deeply
embedded in the mathematical data. Apart from ML itself,
the tools that have been developed to enable ML have
provided significant new capabilities for old problems. This
is exemplified by the use of the autodifferentiation capa-
bilities of Tensorflow to explore the possible vacua of
various gauged supergravities, see for example [13–18].

Among its various virtues, string theory pioneered the
data-mining of such mathematical data. One should be
mindful that this was done shortly after the beginnings of
string phenomenology in the late 1980s, long before the
dawn of the modern era of “big data” and modern readily
available ultrafast computing power. Indeed, when Calabi-
Yau manifolds were realized to be [19] the standard
solution to vacuum configurations (see [20] for a brief,
and [21] a longer, pedagogical review), and hence low-
energy particle physics, a program was introduced by the
physics community to compile one of the first databases in
algebraic geometry.
These were some of the earliest appearances of “big

data” in mathematics, beyond compiling digits of π or large
primes. The first dataset was the so-called CICYs, which
stands for “complete intersection Calabi-Yau manifolds” in
products of complex projective spaces [22,23]; which can be
thought of as a generalization of the famous quintic 3-fold
in P4. Appropriately, one of the first ML experiments in
geometrywas performed on this dataset [2]. Over the last few
years, the initial success has been vastly improved by using
more and more sophisticated neural network (NN) archi-
tectures and machine learning techniques [24–44].
Yet, the CICY dataset has a peculiarity: it is skewed

toward negative Euler number. This would have occurred to
Candelas et al. since they knew about mirror symmetry.
Since the exchange of the two Hodge numbers ðh1;1; h2;1Þ
would reverse the sign of the Euler number χ; the con-
jecture that to every Calabi-Yau 3-fold with ðh1;1; h2;1Þ
there is a mirror with these exchanged would imply the
negation of χ.
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Therefore, as the second database of geometries in
string theory, another generalization of the quintic was
undertaken by placing weights on the ambient P4 and
considering a single, generic Calabi-Yau hypersurface
therein [45]. This produced a much more balanced set of
Calabi-Yau 3-folds with � Euler numbers, and the rough
outline of the famous “mirror plot” of the distributions of
2ðh1;1 − h2;1Þ vs ðh1;1 þ h2;1Þ could already be seen to
emerge.
All these datasets were subsequently subsumed into the

dataset created through the extraordinary work of Kreuzer
and Skarke [46,47]. This set contains the Calabi-Yau
hypersurfaces in toric varieties. (Since weighted projective
spaces are special types of toric varieties, the set described
in [45] is a subset of the Kreuzer-Sharke set.)
However, the Kreuzer-Sharke dataset is of astronomical

size, containing some half-billion members. While ML of
this set is in progress [48], the much more manageable list
of hypersurfaces in weighted P4, numbering around 8000
(comparable to the CICYs) is natural choice of geometries
to study and apply the latest methods from data science.
Thus our motivation is clear. We shall revisit the classic

database of [45] with a modern perspective, continuing the
paradigm of machine-learning the string theory landscape
and the resulting emergent mathematical structures, using
tools from the sci-kit learn library [49] implemented
in PYTHON. The paper is organized as follows. In Sec. II we
begin with a rapid review of the mathematics of our Calabi-
Yau hypersurfaces, emphasizing on the data structure.
In Sec. III, we proceed with analyses of the data, using
methods which were unavailable at the time of their
creation, such as principle component analysis and topo-
logical data analysis. We then use neural-networks to
machine learn the dataset in Sec. IV. We conclude with
a summary and outlook in Sec. V.

II. CHARACTERIZING THE CALABI-YAU
HYPERSURFACES

The dataset of focus in this study is that of weighted
projective spaces P4

CðwiÞ, which admit Calabi-Yau (CY)
three-fold hypersurfaces within them.
This dataset was constructed in the early 1990s along-

side other efforts to expand the CY landscape for use in
Landau-Ginzburg models and superstring compactification
[45,46,50–52].
A generic weighted projective space generalizes the

concept of a projective space, defined by taking some
Cnþ1 with coordinates fz1; z2;…; znþ1g and performing an
identification with weights wi such that

ðz1; z2;…; znþ1Þ ∼ ðλw1z1; λw2z2;…; λwnþ1znþ1Þ; ð2:1Þ

∀ λ ∈ C, hence defining the projective space Pn with these
nþ 1 homogeneous coordinates. For the projective spaces
in consideration n takes the value of 4, and the space is

hence defined with 5 weights. These weights are coprime as
a set, such that the projective space definition is free from
redundancy from different weight combinations.
Within these weighted projective spaces one can embed

hypersurfaces defined by polynomials in these homo-
geneous coordinates. Of particular interest to physicists
are those hypersurfaces which are CY in nature. A defining
property of CY manifolds is the vanishing of the first Chern
class, and for this to hold within the projective space the
hypersurface’s polynomial has to have degree d ¼ P

iðwiÞ.
It should be noted that the identifications that are used in

constructing the projective space lead to singular sets,
which the hypersurfaces can intersect with suitable reso-
lution. To be consistently defined over these singular sets
another property of the polynomial is required: transversity.
The transversity property implies that the polynomial
equation and its derivative share no common solutions,
and this condition translates into a condition on the
projective space weights:

∀wi ∃wjs:t:

P
kðwkÞ − wj

wi
∈ Zþ: ð2:2Þ

However as exemplified in [45], this condition is necessary
but not sufficient for the surface to be CY. It is therefore of
interest to consider the extent towhich each of these 5-vector
weights properties contribute to determine the very special
CYproperty; and it is this questionwe look to probewith new
tools from data analysis, and machine-learning.
It has been shown that only a finite number of possible

weights permit these CY hypersurfaces. In fact, the dataset
of weights consists of just 7555 5-vectors of transverse
coprime integers.
Beyond learning the CY property explicitly, we are also

interested in exploring if the topological features of the
Calabi-Yau can be learnt from the weights. Of specific
importance are the nontrivial Hodge numbers, h1;1 and h2;1,
which describe the manifolds cohomology, and the Euler
number, χ. These all have a variety of uses in determining
physical phenomena. The formula for Hodge numbers
comes from expansion of the Poincaré polynomial
Qðu; vÞ ≔ P

p;q h
p;qupvq, the generating function of the

Hodge numbers hp;q; while the formula for Euler number
has a direct form [50,53–55]. Specifically these are

Qðu;vÞ¼ 1

uv

X
P

i
ðwiÞ

l¼0

" Y
θ̃iðlÞ∈Z

ðuvÞqi−uv
1−ðuvÞqi

#

int

�
vsizeðlÞ

�
u
v

�
ageðlÞ�

;

χ¼ 1P
iðwiÞ

X
P
i

ðwiÞ−1

l;r¼0

� Y
ijlqi&rqi∈Z

�
1−

1

qi

��
; ð2:3Þ

for weights wi, normalized weights qi ¼ wi=
P

iðwiÞ, and
u, v are the dummy variables of the Poincaré polynomial.
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For Qðu; vÞ, θ̃iðlÞ is the canonical representative of lqi
in ðR=ZÞ5, ageðlÞ ¼ P

4
i¼0 θ̃iðlÞ and sizeðlÞ ¼ ageðlÞþ

ageðPiðwiÞ − lÞ. Note also for χ, where ∀ilqiorrqi∉Z
then the product takes value 1 [55].
Both formulas require significant computation, involving

many nontrivial steps. Even if we realize this dataset in the
language of the toric geometry of [46,56], the formulas
involve nontrivial sums over faces of various dimension.
It is consequently interesting to examine the performance
of machine-learning methods in learning the Euler number/
Hodge numbers from the weights, and perhaps predicting
the results through the use of possible hidden structures
which we hope to uncover in the weights and weight
distributions.

III. DATA ANALYSIS

Before we apply the supervised machine-learning meth-
ods described in Sec. IV, let us provide some analysis of the
fundamentals of the dataset through the use of principal
component analysis (PCA), topological data analysis
(TDA), and other unsupervised machine-learning methods.

A. Datasets

In addition to the CY dataset which forms the central
focus of this study, we will construct some auxiliary
datasets that will help in assessing the learning of the
Calabi-Yau property. These are equivalent datasets of 5-
vectors that possess fewer of the necessary properties
required to meet the Calabi-Yau property.
The 4 datasets (including the original CY dataset) are

composed of:
(a) 7555 5-vectors of positive random integers,
(b) 7555 5-vectors of positive random coprime integers,
(c) 7555 transverse 5-vectors of positive random coprime

integers,
(d) 7555 Calabi-Yau 5-vectors.

These datasets were specifically constructed so as not to
form a filtration, therefore at each stage the dataset
generated was ensured to not include data which satisfies
the additional conditions at the next level. To clarify, each
5-vector in set (a) had weights which shared a common
factor, in set (b) all 5-vectors did not satisfy condition 2,
and those in set (c) where not in the CY list of (d).
To introduce a consistency across the datasets, all the

5-vectors entries are sorted in increasing order. Initially
the weights for each of the datasets (a–c) were sampled
using a discretized uniform distribution, Uð1; 2000Þ,
bound above by 2000 to mimic the highest value in
the CY dataset of 1743. However as shown in Fig. 1(a)
the weights follow a distribution far from that of a
uniform distribution. Therefore to make the generated
data more representative, an exponential distribution
was fitted to the histogram of all weights in the CY
dataset, as shown in Fig. 2. Fitting was performed using
the SCIPY library.
This exponential distribution was instead then used to

sample weights, and as can be seen in Fig. 3, the frequency
distributions of the weights for each of the datasets align
much closer to that of the CY data. For reference the weight
histograms are shown for the uniform distribution sampling
in Appendix A 1.
Aside: Coprimality It is interesting to note that the

probability of k randomly chosen integers being coprime
is: 1=ζðkÞ; via the Riemann zeta function. Hence the
probability of a random 5-vector of integers being coprime
is ∼0.964, and therefore the dataset (b) is relatively more
common than the dataset (a). Effectively it is easy to
randomly produce weighted projective spaces.

B. Principal component analysis

Datasets of vectors can be analysed for hidden structures
through the use of principal component analysis (PCA). This
method, generally considered to be the simplest form of
unsupervised machine-learning, diagonalizes the data’s

(a) (b)

FIG. 1. Frequency distribution of each of the CY 5-vector weights, wi (labeled by i∶1–5). Figure (b) shows the same data as (a), but
restricted to lower entries so as to highlight the low value behavior, due to the entry sorting.
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covariance matrix and sorts the respective eigenvalues and
eigenvectors.
The covariance matrix of a dataset, computes the

covariance between each pairing of the constituent vector
elements, defined as:

Kij ¼ Eðwi − EðwiÞÞ · Eðwj − EðwjÞÞ: ð3:1Þ

Since our weight entries are within the field of integers the
covariance matrix is symmetric. Diagonalizing this matrix
finds the orthogonal linear combinations of the vector
entries which dictate the directions of largest variance.
Therefore the result of this diagonalization is to identify the
data’s principal components, which are then sorted in
decreasing order according to their respective eigenvalues.
The first component then gives the direction where the data
has the most alignment and hence the highest variance, with
successive decreasing variance until the final entry gives
the direction along which the data has the lowest variance.
The structure of the dataset can then be most easily

observed through consideration of these principal compo-
nents. In this study PCAwas applied to each of the datasets
under consideration independently.
In each case the variance eigenvalues were at least 5

times larger for the first principal component compared to
the others. In particular for the CY dataset the first principal
component was 2 orders of magnitude larger than the
others. This indicates that much of the variation, and hence
data structure, is dominated by a single dimension.

FIG. 2. Frequency distribution for all weights occurring
across all 5-vectors in the CY dataset. Plot also shows the
fitted exponential distribution, with scale parameter 49.536
(to 3 decimal places).

(a) (b)

(c)

FIG. 3. Frequency distributions for 5-vector weights, wi (labeled by i∶1 − 5), for each of the generated datasets. The weights
were generated using an exponential distribution fitted to the CY weight data; and hence distributions show similar behavior
across all datasets, and to the CY dataset. (a) Random integers (b) Random coprime integers (c) Random transverse coprime
integers.
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Usually a scaling is applied to the data prior to the PCA.
The “scaling” process both centres and scales the data such
that each entry (i.e., weight) has mean value 0 and standard
deviation 1 across the dataset; hence replacing each weight
by its respective standardised score. However for this
analysis scaling was not used since the data’s general
structure is based on the relative sizes between the weights
(which are sorted according to their size). These relative
sizes between weights across each vector are lost through
the scaling process, which scales each weight independent
of the rest of the vector.
As the data is not scaled one may think that the latter

weights of each vector would dominate the behavior (since
the weights are ordered). This would lead the covariance
matrix to be near-diagonal, and the principal components
would align closely to the original vector entries. However,
as shown by the covariance matrix for the CY dataset in
Eq. (3.2), the matrix is not diagonal and the eigenvectors
have significant contribution from multiple components.

KCY ¼

0
BBBBBB@

41 43 109 250 404

43 119 278 642 1017

109 278 1795 3626 5562

250 642 3626 8588 12941

404 1017 5562 12941 20018

1
CCCCCCA
;

εCY ¼

0
BBBBBB@

0.016 0.041 0.229 0.531 0.815

0.021 0.036 −0.973 0.100 0.205

0.120 0.206 0.034 −0.823 0.514

0.417 0.875 0.023 0.173 −0.172
0.900 −0.435 0.003 0.018 −0.008

1
CCCCCCA
;

λCY ¼

0
BBBBBB@

30071

233

161

74

21

1
CCCCCCA
; ð3:2Þ

for eigenvectors as rows of εCY with respective eigenvalues
in λCY; where covariance and eigenvalue entries are given
to the nearest integer, and eigenvector entries to 3 decimal
places. This implies that the PCA structure is more subtle
than a trivial projection. The covariance matrices, eigen-
vectors and eigenvalues for the other datasets are provided
for comparison in Appendix A 2.
To relatively compare the datasets’ PCAs, the normal-

ized vectors of eigenvalues are given in Eq. (3.3), for the
random “R,” coprime “C,” transverse “T,” and Calabi-Yau
“CY” datasets respectively. They show that the first
component significantly dominates, and hence lower
dimensional representation of the data through PCA will
usefully depict the data’s underlying linear structure.

λR ¼

0
BBBBBB@

0.75534

0.16297

0.05274

0.02059

0.00837

1
CCCCCCA
; λC ¼

0
BBBBBB@

0.74845

0.16856

0.05417

0.01997

0.00885

1
CCCCCCA
;

λT ¼

0
BBBBBB@

0.91388

0.04211

0.02578

0.01334

0.00489

1
CCCCCCA
; λCY ¼

0
BBBBBB@

0.98399

0.00764

0.00525

0.00242

0.00070

1
CCCCCCA
: ð3:3Þ

Hence for the sake of visualization, the first 2 components
of each datapoint’s principal component projection are
plotted as a 2-dimensional scatter diagram for each dataset.
These components show the directions with the most
variation, and hence display the underlying structure most
clearly. The 2d PCA plots are given in Fig. 4, for each of the
4 datasets considered.
The conelike bounding structure of all plots shows the

effects of the weight ordering. This is simply that as the first
component’s value increases (most correlated to the largest,
and hence last, weight in the 5-vector) the range of values
the second component (roughly correlated to the second-
largest/second-last weight) can take increases. Or put
more simply, the second-last weight takes values up to
the size of the last weight and so this places conelike
bounds on the plots. All plots also show higher densities at
lower values of the principal components which is also
related to this effect.
The PCA plots show that as more of the necessary

conditions are added to the datasets, more structure is
apparent in the projected outputs. First note, the coprime
condition causes a negligible change to the distribution of
weights. The transverse condition however has a significant
effect. The second components become much more limited
and the data begins to separate into approximately two
forks. Most exciting, is the jump to the full Calabi-Yau data.
Now the PCA shows a clear clustering of the 5-vectors at
higher values of the first principal component. This distinct
separation into clear lines of datapoints shows a rich
structure to the weights of Calabi-Yau projective spaces,
which is not present for spaces with just the transverse
condition. The reasons for this separation are unclear,
however we make conjectural statements about a potential
relation to the spaces’ Hodge numbers due to a similar
structural separation in Sec. III D.
A final note is that the PCA used here was explicitly

linear, and hence probes the simplest kind of implicit
structure. More technically involved methods of principal
component analysis involve kernel methods, called
“kernel-PCA.” Kernel methods were also used to analyse
these datasets, for a variety of traditional kernels (including
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Gaussian, sigmoid, and an array of polynomial kernels),
and functionality for this is provided in the respective code
scripts. However, none of these methods produced as
distinct a clustering separation as that for the linear kernel.
Indicating, that surprisingly, the most prominent implicit
structure of the Calabi-Yau weights takes a linear form.

C. Topological data analysis

Principal component analysis allows for a 2d visualiza-
tion of the 5d CY data. Through the PCAwith linear kernel,
a linear clustering structure was uncovered in the data. To
visualise the extension of this behavior to the full 5d space
we turn to tools from topological data analysis; specifically
persistent homology.
The persistent homology of a dataset is constructed

through a filtration of Vietoris-Rips complexes. The full
CY dataset is first plotted in R5 with each weight a
coordinate, such that each weighted-P4 is now represented
by a point (0-simplex) in the R5 space due to its respective
5-vector.
5-sphere’s of radius d are then drawn around each point,

and the range of d values are taken from 0 ⟼ ∞. Initially
all the spheres will be independent with no overlap, but as d

increases the spheres will begin to overlap more frequently.
The complex is then constructed by drawing an n-simplex
between n points where all their spheres overlap.
Therefore as d increases more simplices are added to the

complex, and at each d-value where there is a change to
the complex we have a stage in the complex’s filtration. The
complex hence grows up until a point where all possible
simplices lie in the complex. This is where the filtration
terminates (no further changes as d ⟼ ∞).
The role of persistent homology in the analysis of this

filtration is to examine how long cycles of n-simplices last
throughout the filtration before they become filled by the
(nþ 1)-simplices they bound. Specifically Hn examines
how long cycles of n-simplices exist until becoming filled
by (nþ 1)-simplices.
This persistent homology for the CY data was computed

for H0 and H1 (higher Hn up to n ¼ 4 can be computed in
5d space but are incredibly computationally expensive in
terms of memory for n ≥ 2). The persistence diagram for
this analysis is shown in Fig. 5, where the diagram plots all
members of H0 and H1 as points with their respective d
values of birth (cycle creation) and death (cycle filling). For
specific computation of the persistent homology the python
package “ripser” was used [57]; while to review previous

(a) (b)

(c) (d)

(a) (b)

(c) (d)

FIG. 4. 2d PCA plots for the 4 considered datasets. As more of the conditions are added, more structure appears, in particular there is
some form of distinct class separation for the CY weights. (a) Random integers (b) Random coprime integers (c) Random transverse
coprime integers (d) CY weights.
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application of these techniques to the string landscape
please see [58,59].
As can be seen from the diagram all the members of H0

are blue points born at d ¼ 0, these are each of the 0-cycles
(i.e., 0-simplices / datapoints) that exist until they are
connected by an edge (1-simplex) to any other datapoint.
The behavior shows that there are some datapoints that are
significantly far away from the rest of the data and hence
join/die much later in the filtration. These points are those
with large weight values such that they are far from the
origin in the R5 embedding.
Conversely all members of H1 are points in orange, and

as expected all these 1-cycles (i.e., cycles of 1-simplices/
edges which are not boundaries of 2-simplices/triangles) lie
close to the diagonal line in the persistence diagram. This
behavior indicates a short life of each cycle, a behavior
typical of noise in the dataset. Since traditionally it is only
points far from the diagonal that indicate significant
persistent structure, there is hence not higher dimensional

structure formation or nontrivial topology in the data which
would deter from the linear clustering behavior seen
through the PCA.

D. Analysis of CY topological properties

In addition to the weights used to represent these Calabi-
Yau weighted projective spaces, the nontrivial Hodge
numbers, fh1;1; h2;1g, for the surfaces are also provided
with the KS databases [46], and repeated with this study’s
GitHub.
This provides more information for analysis the spectrum

of CYweights. Simple plotting of theseweights produces an
astonishingly familiar structure, one which is exemplified
best when the CY’s Hodge numbers are plotted against the
final (and hence largest) weight, as shown in Fig. 6.
The behavior in Fig. 6(a) shows a similar form of

forklike splitting of the datapoints as in the PCA of
Fig. 4(d), even with a central fork particularly more
dominant than the others. This seemingly linear behavior
between final weight and h1;1 is quite surprising, and here
again the CY hypersurfaces appear to be separating them-
selves into classes, according to the ratio of h1;1 to the final
weight,w5. On the contrary, the behavior in Fig. 6(b), follows
the familiar mirror symmetry plot [45], complimenting the
linear behavior with h1;1 such that their combination will
preserve this structure.
Similar behavior also occurs for the other weights in the

5-vectors, despite less obvious clustering. Plots of these
relations are given in Appendix A 3.
To further examine this clustering phenomena we plot a

histogram of the ratio h1;1=w5 in Fig. 7. Note for this plot
only data points with w5 > 250 were used since this was
where the class separation was more prominent such that
the cluster identification would be improved. As can be
seen from the peaks in the figure, there is a clear clustering
behavior. Therefore we reexamine this data of ratios with
the use of K-means clustering.

FIG. 5. Persistent diagram for the H0 and H1 homology groups
of the CY data’s Vietoris-Rips complex filtration.

(a) (b)

FIG. 6. Distribution of Calabi-Yau weighted projective spaces, according to their final (and largest) weight and (a) h1;1 or (b) h2;1

respectively.
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1. Clustering for h1;1 classes

As motivated by the formation of a set of linear relation-
ships between w5 and h1;1 shown in Fig. 6(a), and the peak
occurrence in the histogram of ratios in Fig. 7, unsupervised
clustering methods were used to examine this behavior.
The “outer” ratio data used to produce the histogram

plot, where clustering was more prominent, provides a very
suitable database for 1-dimensional clustering. The method
used was K-means clustering, which takes an input
predefined number of clusters, initializes mean values for
each cluster, and iteratively updates these means such that
the final sum of squared distances from each datapoint to its
nearest cluster’s mean is minimized. This measure is known
as the K-means inertia,

I ¼
X
C

X
i∈C

ðμC − riÞ2 ð3:4Þ

for clusters, C , with respective means, μC , and all data
points, i, exclusively in their nearest cluster with ratios, ri.
Determining the optimal number of clusters to use is a

standard problem in K-Means clustering, to motivate this
choice we use a novel measure we call “scaled-max-inertia.”
This measure identifies the maximum squared-distance any
point is from its closest cluster center, normalizes it according
to that maximum squared-distance from using only one
cluster, and adds a weight factor to penalize using an
excessive number of clusters. We define this to be

Imax ¼
MaxiðμC − riÞ2
Maxiðμ1 − riÞ2

þ ðk − 1Þ
100

; ð3:5Þ

where Maxi determines the maximum over all ratios, ri,
examining the squared distance to either the closest cluster’s
mean, μC or the single cluster’s mean, μ1; then weighting by
the number of clusters,k.Aplot of scaled-max-inertia against
number of clusters identifies an optimum of 10 clusters, as
shown in Fig. 8.

Using the optimal number of 10 clusters, the separation
matches up exceptionally for the outer data, as shown by
plots of the cluster bounds in Fig. 9. The clusters sizes
for the clusters moving anticlockwise about the plot, for
increasing ratio, are ½103; 354; 454; 734; 626; 623; 643;
895; 1419; 1704�, highlighting that there is a greater density
of points at low w5 as expected, since this was why outer
data was focused on for clustering.
Tomeasure the clustering performancewe use the standard

Inertia measure over the full dataset, however normalized by
the number of ratios across the dataset, Î , and an equivalent
measure also normalized by the range of the ratios:

Î ¼ 0.0266;
Î

maxðriÞ −minðriÞ
¼ 0.00084; ð3:6Þ

These values show that clustering performed exceptionally
well, as each ratio in the full CY dataset was less than 0.1%of
the ratio-range away from its nearest cluster. Therefore
confirming the distinct linear behavior observed, as well
as the class separation. The distinct classes of CY 5-vectors
are also provided in the GitHub.

FIG. 7. Frequency of the ratio between h1;1 and the largest
weight, w5, for the CY data with w5 > 250 (where structure more
prominent). Peaks indicate a natural clustering.

FIG. 8. Plot of scaled max-inertia as the number of clusters
used for K-means clustering varies. The minimum identifies an
optimum number of clusters: 10.

FIG. 9. Plot of the bounds of the 10 clusters produced on the
outer data (w5 > 250) via K-means clustering.
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IV. MACHINE LEARNING

After use of unsupervised ML methods in Sec. III, we
now turn to use of supervised ML methods for learning of
the topological properties, as well as the CY property.

A. Architectures

The problems addressed by supervised ML in this study
fit into both of the field’s typical styles: regression, and
classification.
The first set of problems learnt in Sec. IV B learn the

topological Hodge numbers (and related Euler number)
from the CY 5-vectors of weights. Since the output Hodge
numbers can take a large range of integer values the
problem was formulated as a regression problem. For this
a multilayer perceptron regressor was used to learn each
output from the input weights. This regressor is a type of
neural network, and the one used specifically had layer
sizes of [32, 64, 32], with ReLU activation, and used the
Adam [60] optimizer method to minimize a mean-squared
error loss. The fitting used a batch size of 200, and ran up to
200 epochs until the tolerance of 0.0001 was reached for
loss updating.
The second set of problems considered in Sec. IV C sort

to determine which dataset a 5-vector belonged to, either by
binary classification between each dataset and the CY
dataset, or a multiclassification among all 4 datasets. Since
these were classification problems an array of different
classifiers were used to perform the learning.
The first classifier was a logistic regressor, as perhaps the

simplest form of classifier. This logistic regressor had a
tolerance of 1 for learning the weight behavior, a C-value of
100 such that there was a low amount of regularization, and
used Newton’s method for solving, such that multiclassi-
fication could also be performed. The second classifier was
a support vector machine with a simple linear kernel, and
here a higher regularization due to a C-value 1. The third
and final classifier used was a neural network classifier
(multilayer perceptron also), this time with the same
hyperparameters as the regressor except now with a
cross-entropy loss function.

1. Measures

To assess learning performance consistent measures are
required. For this, dependent on the problem being a

regression or classification, different measures were selected
as follows.
Regressors: The most standard regressor measure is

mean-squared error,MSE, which was used for the regressor
loss function.HoweverMSE shouldbe considered in relation
to the square of the range of output values to be useful, hence
a preferable measure also used was mean-absolute-percent-
age error,MAPE. Although it should be noted MAPE has its
own drawbacks where it is incalculable when ytrue ¼ 0 for
any of the date inputs. Both these measures are unbounded
above and take optimal value of 0 which indicates perfect
prediction.
The final regressor measure used was R2, this evaluates

how well a regressor is performing by comparing the
proximity of the predicted output to the proximity of the
mean (which would be the prediction for a null model
regressor). For this measure 1 is optimal, 0 means that
prediction is not better than just predicting the true mean
each time, and < 0 means worse than just predicting the
mean. The equations and output bounds for these measures
are given in Eq. (4.1).

MSE ¼ 1

n

X
ðypred − ytrueÞ2 ∈ ½0;∞Þ;

MAPE ¼ 1

n

X����
ypred − ytrue

ytrue

���� ∈ ½0;∞Þ;

R2 ¼ 1 −
Pðytrue − ypredÞ2Pðytrue − ytruemeanÞ2

∈ ð−∞; 1�; ð4:1Þ

summing over all predicted, ypred, and true, ytrue, outputs in
the test data. In addition for R2 the mean of the true values
over the test data outputs, ytruemean, was also used.
Classifiers: Trained classifiers predict on input test data by

assigning them to classes, this leads to a natural sortingof true
(row) vs predicted (column) class frequencies over all the
test data, arranged into a confusion matrix, CM. From the
confusionmatrix the normalized sumover the diagonal gives
the Accuracy which is the proportion of test data correctly
classified. However simple accuracy has problems associ-
ated to bias data, therefore a better measure of learning is
Matthew’s correlation coefficient, MCC. Both these mea-
sures have optimum learning with values of 1, where all test
data inputs are allocated to their true class. Equations for
these two measures used are given in Eq. (4.2).

CM ¼
�
TP FN

FP TN

�
;

Accuracy ¼ TPþ TN
TPþ TN þ FPþ FN

∈ ½0; 1�;

MCC ¼ TP · TN − FP · FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞ · ðTPþ FNÞ · ðTN þ FPÞ · ðTN þ FNÞp ∈ ½−1; 1�; ð4:2Þ
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for the binary classification case, where generalizations exist
for the multiclassification case.
For all problems 5-fold cross-validation was used,

whereby 5 independent versions of each architecture were
trained and tested on 5 different train:test partitions of the
data, and the learning measures then averaged and standard
error computed.

B. ML topological parameters

Topological parameters provide key information about a
Calabi-Yau manifold which are essential in the computa-
tion of physical phenomena when these manifolds are used
for superstring compactifications.
This CY subset from weighted P4s provides a simple

scenario whereby the Hodge numbers (and hence Euler
number) can be computed directly from the weights of
the toric space that the Calabi-Yau is a hypersurface of.
Although it should be noted these formulas are quite
nontrivial, as discussed in Sec. II.
Both of these formulas, given in Eq. (2), require greatest

common divisor computations throughout their evaluation.
Machine-learning methods famously perform badly when
approximating these styles of equations and so one would
expect the simple neural network architecture used here to
not be particularly successful.
The results for the machine-learning of the nontrivial

Hodge numbers, and the Euler number are given in Table I.
The Hodge number data, provided by [46], is also made

available on the GitHub with the Calabi-Yau weight data,
and from here the Euler numbers can be calculated
using χ ¼ 2ðh1;1 − h2;1Þ.
The results show a surprisingly successful predictive

ability for the Hodge numbers and Euler number, particu-
larly with R2 values exceeding 0.9. The MAPE values show
the Hodge numbers are consistently predicted to be only
around 20% off from their true values, while the MSE
values provide a less physical measure of learning but
are included for reference since they were used as the
regressor loss.
Considering the complexity of the equation forms in

Eq. (2), it is impressive the neural network can learn any
correlating behavior for computation of Hodge numbers or
Euler number from the weights alone. In addition, the
relatively better performance in learning h1;1 may be due to
the apparent linear relationship to the weights as exempli-
fied in Sec. III D.

C. ML CY property

The conditions for a 5-vector of weights to represent a
weighted projective space which can admit a Calabi-Yau
hypersurface are highlynontrivial.As discussed inSec. III A,
the necessary conditions of coprimality and transversity are
probed through generation of equivalent datasets,withwhich
the CY dataset can be compared.
Due to the exponential generation techniques making

these weights more representative, differentiating which

TABLE I. Learning each of the topological parameters from the Calabi-Yau 5-vectors of weights. Note the final
column is Euler number χ ¼ 2ðh1;1 − h2;1Þ, and since it can evaluate to 0 its MAPE value is not defined.
Measurement of learning performance uses 5-fold cross-validation to provide an average and standard error on each
measure’s value.

Property

Measure h1;1 h2;1 ½h1;1; h2;1� χ

R2 0.9630� 0.0015 0.9450� 0.0133 0.9470� 0.0041 0.9510� 0.0023
MAPE 0.1493� 0.0027 0.2519� 0.0152 0.2375� 0.018 …
MSE 166.9� 10.0 147.0� 35.6 186.9� 13.9 1746.1� 82.4

TABLE II. Machine-learning results for three different architectures performing binary classification between the
CY data and each specified dataset; and in addition multiclassification across all 4 datasets (labeled “All”). Learning
is measured using Accuracy and MCC with 5-fold cross-validation to provide an average and standard error on each
measure’s value.

Dataset

Architecture Measure Random Coprime Transverse All

Logistic regressor Accuracy 0.7152� 0.0035 0.7199� 0.0037 0.7430� 0.0065 0.4825� 0.0035
MCC 0.4352� 0.0065 0.4467� 0.0073 0.5003� 0.0121 0.3141� 0.0043

Support vector machine Accuracy 0.7253� 0.0029 0.7116� 0.0029 0.7464� 0.0014 0.4732� 0.0070
MCC 0.4605� 0.0054 0.4374� 0.0054 0.5174� 0.0029 0.3060� 0.0078

Neural network Accuracy 0.9189� 0.0037 0.9178� 0.0030 0.7575� 0.0024 0.5881� 0.0048
MCC 0.8380� 0.0073 0.8377� 0.0056 0.5306� 0.0059 0.4615� 0.0072
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dataset a 5-vector belongs to is not possible by eye.
Therefore it is natural to wish to consider the effectiveness
of machine-learning to this classification problem: learning
the Calabi-Yau nature.
Introduced in Sec. IVA, three architectures were used

to learn to differentiate the Calabi-Yau weights from each
of the other datasets: random integers, coprime random
integers, and transverse coprime random integers in binary
classification problems. Furthermore they were also used to
differentiate all 4 datasets in a multiclassification problem.
Results for this learning are given in Table II. Measures

show that neural networks can well differentiate the Calabi-
Yau weights from each of the other datasets. As expected
there is minimal difference due to introduction of copri-
mality, since this is a common behavior for 5-vectors as
mentioned in Sec. III A. Once transversity was included
into the dataset, the binary classification performance
dropped. However performance was still surprisingly good.
A further surprise was the equally good performance

of the logistic regressor and support vector machine. These
simple architectures could accurately classify approximately

three-quarters of the data even without using transversity
(where this conditionwas in both CYand compared dataset).
Multiclassification of all datasets was not as strong.

However within these measures the identification of the
Calabi-Yau data was considerably better, with most of the
performance reduction due to misclassifying between ran-
dom, coprimality, and transversity. To exemplify this we give
a sample confusionmatrix for themulticlassificationwith the
logistic regressor:

CMLR ¼

0
BBB@

0.116 0.013 0.029 0.091

0.076 0.083 0.074 0.020

0.074 0.078 0.062 0.019

0.026 0.004 0.008 0.228

1
CCCA; ð4:3Þ

where row indicates true class and column predicted class for
each of: random, coprime, transverse, CY respectively. The
final entry shows nearly all the Calabi-Yau data is correctly
classified (0.25 indicates the full quarter of the accumulated
datasets). Therefore measures will indicate lower

(a) (b)

(c)

FIG. 10. A logistic regressor, trained on 50 CY 5-vectors and 50 non-CY 5-vectors, predicts whether all of the CY 5-vectors are CYor
not. The plot shows the distribution of the CY surfaces according to their Hodge numbers. Those in blue are misclassified as non-CY,
those in orange are correctly classified to be CY. The non-CY vectors come from datasets of random, coprime, or transverse 5-vectors
respectively. (a) Random integers (1899 misclassied) (b) Random coprime integers (1847 misclassied) (c) Random transverse coprime
integers (2739 misclassied).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 11. Relevant plots for logistic regressor learning of the 5-vectors being CYor non-CY. Where the non-CY data was the random
data then binning was according to h2;1, where it was transverse data then according to h1;1. The CY data was binned according to either
h1;1 or h2;1. Figures (a) and (b) show the number of CYs in each Hodge partition bin (half the dataset used in each case as non-CYs
cannot be plotted without known Hodge numbers). Figures (c) and (d) show the average accuracies for the LR learning in each case, with
(e) and (f) the respective variances (very small comparatively). Finally, figures (g) and (h) show the averaged trained LR weights, plotted
with their variances as bands about the average values.

BERMAN, HE, and HIRST PHYS. REV. D 105, 066002 (2022)

066002-12



performance where the other conditions cannot be differ-
entiated, and it is likely that these conditions are not the most
prominent conditions to indicate the Calabi-Yau property.
To further examine the learning performance we next

look explicitly at the misclassifications of the Calabi-Yau
data, using again links to the Hodge numbers to identify
areas of difficulty.

1. Misclassification analysis with Hodge numbers

Since the logistic regressor performed comparably to the
other architectures, and is a significantly simpler architec-
ture than the neural network, its use for misclassification
analysis seemed the most appropriate.
Due to the simple structure, only 50 5-vectors in each

non-CY dataset were used to train the regressor with
another 50 CY 5-vectors. The regressor was then used
to predict the class of all the CY data, producing accuracies
of: 78%, 81%, 61% when trained with each of the random,
coprime and transverse datasets respectively.
Perhaps more curious is the distribution of these CY

misclassifications with respect to their Hodge numbers,
plotted in Fig. 10. Training random and coprime datasets in
both cases leads to perfect classification of CY spaces with
high h2;1, whereas training with transverse data leads to
perfect classification with high h1;1.
For reference both other architectures had similar per-

formance with respect to Hodge numbers, as documented
in Appendix A 4.
To examine further this relationship, we bin the CY data

according to each of the Hodge numbers and only train and
test on 5-vectors in each bin’s range. This is detailed in
Sec. IV C 2.

2. Hodge partitioning

To investigate the dependence of the learning perfor-
mance on the Hodge numbers, the CY dataset was binned
in two independent ways. The first was according to h2;1,
and the second according to h1;1. The bin bounds were
optimized such that an approximately consistent number of
CYs had Hodge numbers within each bin’s bounds, with a
preset number of 50 bins used (selected to have a suitable
bin size >100). Plots of these bin frequencies are given in
Figs. 11(a) and 11(b).
This produced a CY dataset associated to each bin, with

which a non-CY 5-vector dataset was randomly sampled.
For the h2;1 partition the random dataset was used to sample
as many non-CY 5-vectors for each bin, such that the
datasets were balanced. As training-behavior for the ran-
dom and coprime datasets was so similar, only the random
dataset was used in this investigation. Conversely, for the
h1;1 partition the transverse dataset was used. These choices
of non-CY datasets used for training were selected such
that they aligned with the predicted behavior of Sec. IV C 1,

where random-training improves high-h2;1 performance,
and transverse-training improves high-h1;1 performance.
For each bin’s now balanced dataset an independent

logistic regressor (with architecture as before) was initial-
ized, trained, and tested. A random 80% sample of the data
was used for training, with testing on the remaining 20%
complement. For each bin, the initialization, training, and
testing was repeated 20 times, such that variances on the
measures could be calculated. Accuracies were recorded for
each bin regressor, as well as the final 5 weights used to
define the LR.
Accuracies across the bins for both partitions are given in

Figs. 11(c) and 11(d), with their respective accuracy var-
iances in Figs. 11(e) and 11(f). There are near perfect
predictions at the upper ends of these partitions, with
relatively very small variances. Determination of the CY
property is hence considerably easier for surfaces whose
Hodge numbers take extreme values, and pretraining against
data with or without the transverse condition can signifi-
cantly aid learning depending on what values the Hodge
numbers take.
Finally, the 5 averaged LRweights are plotted for each bin

(with respective variances surrounding them) in Figs. 11(g)
and 11(h). As can be seen by comparing the relative weight
sizes, in both cases at the higher ends of the partitions the first
twoweights particularly dominate the regression. Since each
LR weight aligns with the projective space weight, this
indicates at these extremes where learning is particular
strong, only the first two (i.e., lowest) weights are needed
to identify whether the weighted projective space admits a
Calabi-Yau hypersurface.Where only the CY dataset has the
transversity property (i.e., training against Random) the first
weight is the most significant, while where transversity is in
both datasets (i.e., training against transverse) the second
weight is the most significant.

V. SUMMARY AND OUTLOOK

Through the use of unsupervised machine-learning meth-
odswewere able to identify a linear clustering structureof the
weighted projective spaces that admit Calabi-Yau hyper-
surfaces. This structure was first observed through PCA,
corroborated with TDA, and then observed again due to
relations with the hypersurface’s Hodge numbers.
Supervised machine-learning methods then learnt to

predict Hodge numbers from the weights directly to a
surprisingly exceptional accuracy, perhaps making use of
this simple structure. In addition, simple classifier archi-
tecture could detect whether a generic weighted-P4 admit-
ted a Calabi-Yau hypersurface from the weights alone, and
with specific pretraining could reach perfect performance at
certain extremes of Hodge numbers.
Further analysis into this Calabi-Yau clustering behavior

for weighted-P4s would hope to uncover its source,
simultaneously explaining the success of machine-learning
techniques on this dataset.
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All of the data and code are freely available on GitHub
at: [61]. The dataset is readily available at: [62], while
another copy is given with this study’s scripts on the
corresponding GitHub repository.
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APPENDIX A

1. Uniformly sampled weight distributions

For reference, the weight frequency distributions for two
of the three generated datasets: (a) Random integers,
(b) Random coprime integers; as discussed in Sec. III A,
are shown below Fig. 12, where the weights were sampled
uniformly using a discretization of Uð1; 2000Þ.

Note the dataset of transverse random coprime integers
could not be generated using a uniform distribution. Since
the probability of five random integers in this range each
dividing another weight negated from the sum is so
improbable, no examples were generated running the code
for a multiple days on a supercomputing cluster. However
generation with an exponential distribution took the order
of minutes. Hence the transverse property most likely is has
a significant contribution to the exponential weight dis-
tribution behavior of the CY data.

2. Additional PCA information

Further to the PCA information provided for the CY
dataset in Sec. III B, the covariance matrices, eigenvectors,
and eigenvalues are given for the other three datasets here.
They are respectively labeled “R” for the random dataset,
“C” for coprime dataset, and “T” for transverse dataset. The
covariance matrices, K, and eigenvalues, λ, are given to
the nearest integer, while eigenvectors, rows of ε, are given
to 3 decimal places.

KR¼

0
BBBBBB@

97 98 98 96 107

98 251 250 245 255

98 250 530 514 542

96 245 514 1122 1157

107 255 542 1157 3614

1
CCCCCCA
; εR¼

0
BBBBBB@

0.039 0.094 0.191 0.375 0.902

−0.121 −0.298 −0.519 −0.669 0.424

−0.253 −0.517 −0.520 0.626 −0.085
−0.469 −0.591 0.640 −0.145 0.006

−0.837 0.535 −0.117 0.006 0.003

1
CCCCCCA
; λR¼

0
BBBBBB@

4241

915

296

116

47

1
CCCCCCA
; ðA1Þ

KC¼

0
BBBBBB@

100 100 101 91 89

100 254 255 254 249

101 255 527 534 527

91 254 534 1166 1163

89 249 527 1163 3418

1
CCCCCCA
; εC¼

0
BBBBBB@

0.036 0.098 0.199 0.400 0.889

−0.124 −0.297 −0.514 −0.657 0.448

−0.284 −0.532 −0.497 0.617 −0.095
−0.457 −0.570 0.662 −0.168 0.009

−0.833 0.543 −0.109 −0.003 0.000

1
CCCCCCA
; λC¼

0
BBBBBB@

4091

921

296

109

48

1
CCCCCCA
; ðA2Þ

(a) (b)

FIG. 12. Frequency distributions for 5-vector weights,wi (labeled by i∶1 − 5), for the generated datasets of random integers and random
coprime integers.Weightswere generated using a discretized uniformdistribution,Uð1; 2000Þ. Distributions showa spread across the range
(accounting for the sorting), and hence do not well mimic the CY dataset. (a) Random integers (b) Random coprime integers.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 13. Plots of the nontrivial Hodge numbers fh1;1; h2;1g against each of the first 4 weights in the CY 5-vectors. Behavior is similar
to that with the final weight, showing a linear relationship to h1;1 and a relationship preserving the mirror symmetry structure for h2;1.
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KT ¼

0
BBBBBB@

6 7 8 12 19

7 20 25 35 55

8 25 62 85 125

12 35 85 173 246

19 55 125 246 417

1
CCCCCCA
; εT ¼

0
BBBBBB@

0.040 0.114 0.264 0.507 0.812

0.102 0.332 0.712 0.349 −0.501
0.198 0.467 0.321 −0.746 0.286

−0.428 −0.660 0.556 −0.253 0.091

−0.875 0.473 −0.105 0.018 −0.001

1
CCCCCCA
; λT ¼

0
BBBBBB@

620

29

17

9

3

1
CCCCCCA
: ðA3Þ

(a) (b)

(c) (d)

(e) (f)

FIG. 14. Classified and misclassified CY 5-vectors plotted with respect to Hodge numbers, where prediction was performed by either
of the architectures: support vector machine (SVM), or neural network (NN); trained with each of the non-CY datasets respectively.
(a) SVM trained with random (b) NN trained with random (c) SVM trained with coprime (d) NN trained with coprime (e) SVM trained
with Transverse (f) NN trained with transverse.

BERMAN, HE, and HIRST PHYS. REV. D 105, 066002 (2022)

066002-16



3. Additional Hodge plots

Further to the plots of the two nontrivial Hodge numbers
of the CY surfaces, fh1;1; h2;1g, against the final 5-vector
weights in Sec. III D, additional plots of these Hodge
numbers against the other weights are given here in Fig. 13
for reference.

4. Additional misclassification analysis

Distributions of correctly and incorrectly classified CY
5-vectors for each of the other architectures (support vector

machine and neural network), trained on 50 CYand 50 non-
CY5-vectors, are given in Fig. 14. Note the architectures had
the same hyperparameters as in previous investigation of
Sec. IV C.
The behavior is similar to that for the logistic regressor,

where training with random 5-vectors improves determi-
nation for high h2;1, while training with transverse
5-vectors improves determination for high h1;1.
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