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The paper addresses the problem of evaluating the Implicit McMillan degree δm of W−1(s), where
W−1(s) denotes the transfer function of a passive RLC electrical network 1. The Implicit McMillan degree
δm specifies the minimum number of dynamic elements needed to completely characterize the passive
RLC network, i.e. an electrical network that contains only passive elements (capacitors, inductors and
resistors), and associates it with the rank properties of the passive element matrices. A fact that in the
circuit literature is intuitively accepted but not rigorously proved is that this degree must be equal to the
minimum number of independent dynamical elements in the network (Livada 2017), (Leventides et al.
2014). In this paper, we investigate this finding, showing that the maximum possible Implicit McMillan
degree δm of such networks is given by rankL+ rankC, and that this value is reached when certain nec-
essary and sufficient conditions are satisfied a.

Keywords: systems theory, McMillan degree, passive RLC networks, network theory, matrix pencils

aWe should note that throughout this paper we consider only passive RLC networks that contain all three types of
passive elements, i.e. inductors, capacitors and resistors. The results established do not apply in the case of networks
containing only capacitors and inductors. This is a generic case and the results obtained are valid under certain
conditions.

1. Introduction

Classical network theory (E. A. Guillemin 1957), (Shearer et al. 1971), (Seshu & Reed 1961), (Vlach
& Singhal 1994) introduces for a large family of systems an integral- differential description, in terms
of the impedance and admittance models, which in turn provide an implicit system description. In
this description the natural topology of the network introduced by the R, L, and C structural matrices
is explicitly described. These type of networks may be considered within the systems theory setting
(Karcanias 2008), modelled as a set of integro-differential equations relating the basic variables of the
network i.e. the vectors of currents and voltage sources (Seshu & Reed 1961), (Vlach & Singhal 1994).
In the frequency domain these equations are transformed to the so called loop or impedance model where
a rational matrix of the form W (s) = sL+R+s−1C plays the role of a generalised transfer function. The
properties of W (s) are central to the study of the network from the system theory point of view. In this
work we address the problem of associating the McMillan degree of W−1(s) with the matrices R,L,C
of the network elements. The McMillan degree defines the minimum number of dynamic elements
needed to describe the network fully. A result which is intuitively known but not rigorously proven in
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the circuit literature (E. A. Guillemin 1957), (Van Valkenburg 1960), (Seshu & Reed 1961) is that this
degree has to be equal to the minimum independent number of capacitors and inductors in the circuit.
The main theoretic tools which were used for the derivation of the following results are given in the
framework of compound matrices and exterior algebra (Marcus 1973). Here we examine rigorously this
question proving that the maximum possible McMillan degree of such networks is given by rank(L)+
rank(C) and this value is attained provided some regularity (or independence) conditions are valid for
the network. These conditions are necessary and sufficient, i.e. optimal, and they are expressed in
various forms that are all testable. The first set of conditions are of determinantal type and relate the
highest and lowest order coefficients of s in the expansion of the determinant det(s2L+ sR+C) to
the matrices L,R,C. The second set of conditions relates the property of these coefficients to be non-
zero with some rank properties of matrices related to the three fundamental matrices R,L,C. These
conditions imply some regularity properties for the network similar to the ones considered intuitively in
the literature. This result and analysis may be used as a starting point for a more general study of this
type of networks in terms of its algebraic properties such as the study of the McMillan form of W (s)
the nature of zero elementary divisors or the structure of the pole divisors. Such considerations will
make possible the use of system and control theoretic tools in RLC network theory and will facilitate
the definition and solution of new analysis and design problems.

1.1 Problem Statement

In this paper we consider the dynamic properties of a passive RLC network, i.e. an electrical network
that contains only passive elements (capacitors, inductors and resistors), as described by its impedance
model (E. A. Guillemin 1957), (Shearer et al. 1971).
RLC networks are of great importance both from a theoretical and applied perspective. Although, these
type of networks have wide applicability, i.e. in filters, oscillators circuits or variable tuned circuits, the
paper performs a theoretical analysis related to the system aspects of certain descriptions used within
RLC topologies. This work has been motivated by the ”System Re-Engineering problem”, aspects of
which have been addressed in (Karcanias 2008), (Livada 2017).
In the impedance model model the variables are selected such that the vertex law is automatically sat-
isfied. Solving these equations involves the selection of internal independent loops, the definition of
loop currents and the transformation of current sources to equivalent voltage sources. If we denote
by (Is1, I2s, ..., Isq) the set of the Laplace transforms of the loop currents and by (us1, ...,usq) the set of
Laplace transforms of equivalent voltage sources, then the impedance model (Shearer et al. 1971) is
defined by: Z(s), where zii(s) is the sum of impedances in loop and zi j(s) is the sum of impedances
common between loops i and j. These equations can be written in short as:

Z(s)Is(s) = us(s) (1.1)

This is referred to as the impedance model and the symmetric matrix Z(s) is referred to as the network
impedance matrix. Equivalently, the admittance model is described in short as:

Y (s)v(s) = Is(s) (1.2)

and the symmetric matrix Y (s) is referred to as the network admittance matrix. This general mod-
elling approach for passive network provides a description of networks in terms of symmetric integral-
differential operators, the impedance and admittance models which are described in a general way by
the unified operator W (s) (Livada 2017):

W (s) = sL+ s−1C+R (1.3)
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where for the case of impedance we have that L is the matrix whose entries are functions of the in-
ductances, C is the matrix of capacitances whose entries are functions of the capacitances and finally
R is the matrix whose entries are functions of the network’s resistances. The operator W (s) is thus a
unifying description of the Y (s) and Z(s) matrices and its properties will be considered next 1. The W (s)
matrix is symmetric and the structure of L,C,R matrices characterizes the associated network topology
(Shearer et al. 1971), (Livada 2017). Such matrices have a structure and properties that underpin the
development of system theoretic framework based on network models. The operator W (s) describes the
dynamics of the network and of special interest are the properties of its zeros (Livada 2017), (Leventides
& Karcanias 2009). Furthermore, this integral - differential operator, defined by W (s), introduces a new
implicit, i.e. no inputs system description:

(pL+ p−1C+R)ξ = 0

where ξ can be seen as an internal vector. Such a description has no inputs and no outputs but as a
rational matrix, W (s), has a McMillan degree which is linked to a notion of minimality of the implicit
description. The McMillan degree (Antsaklis & Michel 1997) of the system may be computed via vari-
ous methods, i.e. by determining the Smith-McMillan form or via exterior algebra and a determinantal
treatment of the problem. The main purpose of the paper is, for an RLC network that is described by the
general operator:

W (s) = Z(s) = sL+ s−1C+R

find a relationship between the McMillan degree of the network and the rank of the matrices of the
dynamical elements. The McMillan degree of the system may be computed in terms of the transfer
function of the network, which is described by the W−1(s) operator. The main purpose of this paper
is to compute an upper bound of this degree in terms of the elements of the network, to derive testable
conditions and to interpret the results.
We should note that throughout this paper we consider only passive RLC networks that contain all three
types of passive elements, i.e. inductors, capacitors and resistors. The results established do not apply
in the case of networks containing only capacitors and inductors. This is a generic case and the results
obtained are valid under certain conditions.These conditions are related with the matrices L,R,C, i.e.
we assume that:

• L is a random matrix of prespecified rank p with no specific structure,

• C is a random matrix of prespecified rank q with no specific structure, and

• R is a random matrix

Hence one can select specific examples where the Implicit McMillan degree and the McMillan degree
are not equal.

2. Implicit McMillan Degree and its Calculation

In this section we establish a relationship between the W (s) operator that describes a general RLC net-
work, i.e. an electrical network that contains only passive elements (capacitors, inductors and resistors)
and the Implicit McMillan degree of this network. By considering a generic case of such a network, i.e.

1it should be noted here that this unifying description cannot be used as a description for the driving-point impedance of
one-port networks containing multiple inductors and capacitors (Hughes 2018)
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consisting of all three types of passive elements, we calculate an upper bound for this degree and we
establish links between the Implicit McMillan Degree and the ranks of the matrices of the dynamical
elements (i.e. inductors and capacitors) (Leventides et al. 2014), (Livada 2017).

The Implicit McMillan degree δm calculated below may be a lower bound of the McMillan degree
of W−1(s). In the generic case where the matrices L,R,C are those defined above and the fraction in
equation (2.1), i.e. ε1(s)···εn(s)

ψ1(s)···ψn(s)
, is coprime, these two degrees are equal. Although, there are some special

cases of electrical circuits where δm is less than the McMillan degree.
The following Theorem establishes a link between the McMillan degree 2 of a general RLC network and
its general operator W (s). Furthermore, a formula for the computation of the Implicit McMillan degree
is stated (Leventides et al. 2014), (Livada 2017).

DEFINITION 2.1 Let a passive electrical RLC network consisting only of inductors, capacitors and
resistors. The network’s cardinality is denoted by n and is equal to the number of independent loops
of the network (Alexander & Sadiku 1989). A loop is said to be independent if it contains at least
one branch which is not a part of any other independent loop. Independent loops or paths result in
independent sets of equations.

THEOREM 2.1 Let W−1(s) be the transfer function of an RLC network (Livada 2017), where W (s) =
sL+ s−1C+R and W (s) non-singular. Then, the Implicit McMillan degree of W−1(s) is given by:

δm = nmax−min(nmin,n)

where nmax and nmin are the maximum and minimum degrees of s in the expansion of the determinant:

det(s2L+ sR+C)

and n denotes the cardinality of the network.

Proof.
The Smith-McMillan form (Berger et al. 2019, Schrader & Sain 1988, Karcanias 2009) of W−1(s)

is described by the following equation:

W−1(s) =V1(s)


ε1(s)
ψ1(s)

. . .
εn(s)
ψn(s)

V2(s) (2.1)

where: V1(s),V2(s) unimodular, εi/εi+1,ψi/ψi−1 and εi,ψi coprime polynomials. Computing the deter-
minants at both sides of (2.1) we get:

sn

det(s2L+ sR+C)
=

ε1(s) · · ·εn(s)
ψ1(s) · · ·ψn(s)

(2.2)

The Implicit McMillan degree of W−1(s) is given by the degree of the polynomial:

p(s) = ψ1(s) · · ·ψn(s)

2The McMillan degree of a transfer-function matrix is the total number of poles in the diagonal elements of the matrix in its
McMillan form. This number determines the order of any minimal state-space realization of the transfer-function matrix or the
minimal order of coprime matrix-fraction models.
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The polynomial p(s) can be taken from the left hand part of (2.2) as the polynomial remaining from
det(s2L+ sR+C) after the maximum possible cancellations of the powers of s in the corresponding
left hand part ratio of (2.2). If we let:

det(s2L+ sR+C) = αnmax snmax +αnmax−1snmax−1 + · · ·+αnminsnmin

then the maximum possible term of s that can be canceled is smin(nmin,n), therefore:

p(s) = ψ1(s) ·ψ2(s) . . .ψn(s) = αnmaxsnmax−min(nmin,n)+ · · ·+αnminsnmin−min(nmin,n)

and hence the degree of p(s) is nmax−min(nmin,n), which is the Implicit McMillan degree of W−1(s).
�
The next theorem establishes an upper bound for the degree of the determinant of the polynomial
Za(s) = s2L+ sR+C relatively to the ranks of the matrices of the dynamical elements, i.e. L,C (Lev-
entides et al. 2014), (Livada 2017).

THEOREM 2.2 Let Za(s) = s2L+ sR+C with rank(L) = p, rank(C) = q, let n denote the cardinality
of network and let the polynomial det[Za(s)] = αsn2 + · · ·+β sn1 with the powers in descending order.
Then: n2−min(n,n1) 6 p+ q, when n > n1 and n2−min(n,n1) 6 p, when n < n1. Additionally, the
maximum value for n2−min(n,n1), which is p+q is obtained when n2 = n+ p and n1 = n−q.

Proof. Developing the determinant det[Za(s)] we can get it as sums of determinants taking f1 rows
from s2L, f2 rows from sR and the remaining rows from C. In this case, the polynomial part of this
term will be: s2 f1+ f2 . Furthermore, we have the following constraints for f1, f2:

(i) f1, f2 > 0

(ii) f1 + f2 6 n

(iii) f1 6 p (if we select more rows of L than its rank, the coefficient of s2 f1+ f2 will be zero).

(iv) n− f1− f2 6 q (for similar reasons as in (iii)).

Now as: f1 6 p, f1 + f2 6 n we get 2 f1 + f2 6 n+ p, with the equality achieved when both f1 = p and
f1 + f2 = n i.e. when: f1 = p and f2 = n+ p (we can also see that all constraints are satisfied). Hence,

max(2 f1 + f2) = n+ p (2.3)

This maximum value is attained exactly when f1 = p and f2 = n− p. Additionally, selecting f3 rows
from sR and f4 rows from C, the degree for n1 is: 2(n− f3− f4)+ f3 and we have to minimize:

min2(n− f3− f4)+ f3 (2.4)

subject to the following constraints for f3 and f4:

(i) f3, f4 > 0

(ii) f3 + f4 6 n

(iii) f4 6 q.
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The solution to this problem is: f3+ f4 = n, f4 = q, thus f3 = n−q and the minimum degree is (min2(n−
f3− f4)+ f3): n− q. Hence, for the McMillan degree δm = nmax−min(nmin,n) = n2−min(n1,n) we
distinguish the following two cases:

Case 1: When n1 6 n, then δm = n2−n1. To maximize δm we have to maximize n2 and minimize n1.
Thus, δmmax = n+ p− (n−q) = p+q.

Case 2: When n1 > n, then δm = n2−n. To maximize δm we have to maximize n2, which is n2 = n+ p
and δmmax = n+ p−n = p.

Hence, taking into account the two cases, the maximum possible Implicit McMillan degree is:

δmmax = p+q

when n2 = n+ p and n1 = n−q. �

3. Necessary and Sufficient Conditions satisfied by the Implicit McMillan Degree

In this section we investigate the necessary and sufficient conditions for determining the Implicit McMil-
lan degree of an RLC network (Livada 2017), (Leventides et al. 2014).

The first Theorem provides a formula for the maximum and minimum coefficients of the determinant
of the matrix representation of the circuit (i.e. Za(s) = s2L+ sR+C).

THEOREM 3.1 Let Za(s)= s2L+sR+C the matrix representation of a RLC circuit. Let kmax, kmin, nmax, nmin
be the maximum and minimum coefficients and degrees of the determinant det[Za(s)] respectively. Let
us also define as rank(L) = p, rank(C) = q which implies that

Cp(L) = α1 ·αT
2 , α1,α2 ∈ R(n

p)×1

and that
Cq(C) = β1 ·β T

2 , β1,β2 ∈ R(n
q)×1

where Cp(L) and Cq(C) denote the p-th and q-th compound matrices of L and C respectively (Gant-
macher & Krein 2002). Then the following hold true:

(i) When p < n then: nmax 6 n+ p and nmax takes the maximum possible value n+ p if and only if

kmax = tr(Cp(L) ·Ad jp(R)) = α
T
2 ·Ad jp(R) ·α1 6= 0.

where Ad jp denotes the p-th adjugate of R (Gantmacher & Krein 2002). In the case where
n = p then:

kmax = det(L) 6= 0.

(ii) When q < n then: nmin > n−q and nmin takes the minimum possible value n−q if and only if

kmin = tr(Cq(C) ·Ad jq(R)) = β
T
2 ·Ad jq(R) ·β1 6= 0.

where Ad jq denotes the q-th adjugate of R (Gantmacher & Krein 2002). Particularly, when
n = q then:

kmin = det(C) 6= 0.
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Proof. We denote by li, ri, ci the columns of the matrices L, R, C respectively. The det[Za(s)] is the
sum of the terms:

(−1)σ · li1 ∧ li2 ∧·· ·∧ li f1︸ ︷︷ ︸
f1 from L

∧r j1 ∧ r j2 ∧·· ·∧ r j f2︸ ︷︷ ︸
f2 from R

∧cm1 ∧ cm2 ∧·· ·∧ cmn− f1− f2︸ ︷︷ ︸
n− f1− f2 from C

·s2 f1+ f2 (3.1)

where ”∧” denotes the wedge (or exterior) product (Bourbaki 1989).

(a) To determine the maximum possible degree of the polynomial det[Za(s)] we have to solve the
integer-programming problem:

max n = 2 f1 + f2
s.t.

f1, f2 > 0, f1 + f2 6 n, f1 6 p, n− f1− f2 6 q

This has the obvious solution: f1 = p, f2 = n− p and nmax = 2p+ n− p = n+ p i.e. take p
columns from L and n− p columns from R. In this case:

kmax = ∑
ω∈Qp

n

Aω

where Aω are all n×n determinants of matrices formed by p rows from L and n− p complemen-
tary rows from R. For a given selection of columns of L: ω = (i1, i2, · · · , ip) ∈ Qp

n the Laplace
Expansion Theorem (Meyer 2000) gives:

Aω = ∑
β∈Qp

n

Cp(L)ω,β ·Ad jp(R)β ,ω

Therefore,

kmax = ∑Aω = ∑
ω∈Qp

n

∑
β∈Qp

n

Cp(L)ω,β ·Ad jp(R)
β ,ω = tr(Cp(L) ·Ad jp(R))

Since, L has rank p we have: Cp(L) = α1 ·αT
2 . Thus,

kmax = tr(Cp(L) ·Ad jp(R)) = α
T
2 ·Ad jp(R)) ·α1

(b) The minimum degree can be determined by solving the following integer-programming problem:

min2(n− f3− f4)+ f3
s.t.

f3 + f4 6 n, f3, f4 > 0, f4 6 q

which has the obvious solution: f3 + f4 = n, f4 = q and thus, f3 = n−q. In this case:

min2(n− f3− f4)+ f3 = 2(n−n+q−q)+n−q = n−q

Then,
kmin = ∑

ω∈Qq
n

Bω
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where Bω are all the n×n determinants of matrices formed by q rows of C and n−q rows of R.
For ω = (i1, i2, ..., iq) ∈ Qq

n using the Laplace Expansion Theorem (Meyer 2000) we have:

Bω = ∑
β∈Qq

n

Cq(C)
ω,β ·Ad jq(R)β ,ω

Therefore,

kmin = ∑Bω = ∑
ω∈Qq

n

∑
β∈Qq

n

Cq(C)
ω,β ·Ad jq(R)

β ,ω = tr(Cq(C) ·Ad jq(R))

Since, C has rank q we have: Cq(C) = β1 ·β T
2 , proving that:

kmin = tr(Cq(C) ·Ad jq(R)) = β
t
2 ·Ad jq(R)) ·β1

�
The necessary conditions for the maximum and minimum coefficients kn+p and kn−q respectively to be
non zero are given in the following proposition (Livada 2017), (Leventides et al. 2014).

PROPOSITION 3.1 (1) A necessary condition for kn+p 6= 0, is that both matrices
[

L R
]
,[

L
R

]
have full rank.

(2) A necessary condition for kn−q 6= 0, is that both matrices
[

R C
]
,

[
R
C

]
have full rank.

Proof.

(1) As the coefficient of kn+p is the sum of certain n×n minors of
[

L R
]

or
[

L
R

]
, if these matrices

are not full rank all these minors have to be zero and therefore kn+p must be zero.

(2) Similar to (1).

We should note here that if
[

L R
]

has full rank then
[

L
R

]
will have full rank as well. Similar

results apply for the matrices
[

R C
]

and
[

R
C

]
. �

PROPOSITION 3.2 Let L = L′ ·L′′ , L′ ∈ Rn×p, L′′ ∈ Rp×n and p < n. Then:

Cp(L
′′
) ·Ad jp(R) ·Cp(L

′
) = (−1)p ·

∣∣∣∣ R L′

L′′ 0

∣∣∣∣
where |·| stands for determinant.

Proof. Developing A =

∣∣∣∣ R L′

L′′ 0

∣∣∣∣ with respect to the last p rows we get:

A = ∑
ω

(−1)n+1+n+2+...+n+p+ j1+ j2+...+ jp ·
∣∣L′′ω ∣∣ · ∣∣Rω L′

∣∣ (3.2)
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where ω = ( j1, j2, ..., jp) ∈ Qp
n , L′′ω are the entries of Cp(L′′) and Rω is the part of R with j1, j2, . . . , jp

columns excluded, then expanding ∣∣ Rω L′
∣∣

with respect to its last p columns (i.e. L′) we get:∣∣Rω L′
∣∣= ∑

β

(−1)n−p+1+n−p+2+...+n+ f1+ f2+...+ fp · |Rω | ·
∣∣∣L′β ∣∣∣ (3.3)

where β = ( f1, f2, ..., fp) ∈Qp
n , L′

β
are the entries of Cp(L′) and Rω is the part of R with the ω rows and

β columns excluded. Substituting (5.8) into (5.7) we get:∣∣∣∣ R L′
L′′ 0

∣∣∣∣= (−1)n+1+...+np+n−p+1+...+n · ∑
ω,β∈Qp

n

(−1) j1+ j2+...+ jp+ f1+ f2+...+ fp · |Lω |
∣∣Rω,β

∣∣ ∣∣∣L′β ∣∣∣=
= (−1)p ·Cp(L′) ·Ad jp(R) ·Cp(L′′)

�
Equivalently, the following Corollary is established:

COROLLARY 3.1 Let C = C′ ·C′′, C′ ∈ Rn×q, C′′ ∈ Rq×n and q < n. Then:

Cq(C′′) ·Ad jq(R) ·Cq(C′) = (−1)q ·
∣∣∣∣ R C′

C′′ 0

∣∣∣∣
The next Theorem provides a description for the maximum coefficient of the determinant with re-

spect to the rank properties of the matrices L,R,C of an RLC network (Livada 2017), (Leventides et al.
2014).

THEOREM 3.2 (i) If p < n then:

kn+p =Cp(L′′) ·Ad jp(R) ·Cp(L′) 6= 0 (where Ad jn(R) = 1)

if and only if rank
([

R L
L 0

])
= n+ rank(L)

(ii) If p = n then: det(L) 6= 0 if and only if rank
([

R L
L 0

])
= n+ rank(L)

Proof. Let p = rank(L). Moreover,

rank
([

R L
L 0

])
6 rank(L)+ rank

([
R L

])
= n+ p

Therefore, for

rank
([

R L
L 0

])
= n+ p

there must be

Cn+p

([
R L
L 0

])
6= 0.
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Taking into account the identity:[
R L
L 0

]
=

[
In 0
0 L′

]
·
[

R L′
L′′ 0

]
·
[

I 0
0 L′′

]
by the Binet-Cauchy theorem (Marcus & Minc 1964) we have:

Cn+p

([
R L
L 0

])
= det

([
R L′
L′′ 0

])
·Cn+p

([
In 0
0 L′

])
·Cn+p

([
I 0
0 L′′

])
.

Hence,

Cn+p =

([
R L
L 0

])
6= 0 if and only if det

([
R L′
L′′ 0

])
6= 0.

Since kn+p = (−1)p · det
([

R L′
L′′ 0

])
(Proposition 3.2), we have that:

kn+p 6= 0 if and only if rank
([

R L
L 0

])
= n+ p. �

The next Corollary expresses a similar result as Theorem 3.2 for the minimum coefficient of the
determinant with respect to the rank properties of the matrices L,R,C of an RLC network (Livada
2017), (Leventides et al. 2014).

COROLLARY 3.2 (i) If q < n then: kn−q 6= 0 if and only if rank
([

R C
C 0

])
= n+ rank (C) .

(ii) If q = n then: det(C) 6= 0 if and only if rank
([

R C
C 0

])
= n+ rank(C)

COROLLARY 3.3 Let δm be the Implicit McMillan degree of W−1 (s) =
(

sL+R+1/
sC
)−1

. Then the
following are equivalent:

(a) δm = rank (L)+ rank (C).

(b) rank
([

R L
L 0

])
= n+ rank (L) and rank

([
R C
C 0

])
= n+ rank (C).

COROLLARY 3.4 Necessary conditions for δm = rank (L)+ rank (C) are:

(a) rank
([

R L
])

= n.

(b) rank
([

R C
])

= n.

(c) rank (R)> n−min(rank (L) , rank(C)).

4. A Graph Theoretic Interpretation of the Necessary and Sufficient Conditions

In this section we analyze a graph systematic approach of the necessary and sufficient conditions that
were established in Section 3. We emphasize mostly in implementing this conditions in terms of the
graph incidence matrices of the L,R,C matrices of the network. Such an approach will provide a more
clear result on the link between the Implicit McMillan degree δm and the topology of the RLC network.
Firstly, we will introduce the notion of an incidence matrix of a graph or a network, which is crucial for
the development of this graph approach.
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DEFINITION 4.1 An incidence matrix GT ∈Rm×n is a matrix with i,i = 1, . . . ,m rows and j, j = 1, . . . ,n
columns. Each row of the matrix corresponds to an element of the network, i.e. capacitor, inductance,
resistor and each column corresponds to a loop or node of the given RLC network. Hence, an entry Gi j
in the matrix is:

a. 1 if element i is present in loop / node j and thecurrent Ii j flows through the element i in the clockwise
direction.

b. -1 if element i is present in loop / node j and thecurrent Ii j flows through the element i in the counter
clockwise direction.

c. 0 if element i is not present in loop j.

The following remark provides a description of the L,R,C matrices of an RLC network in terms of
the associated incidence matrices defined in Definition 4.1.

REMARK 4.1 Each one of the matrices L,R,C can be decomposed into corresponding dyads as:

0
1
...
0
−1
0


Ri
[

0 1 · · · 0 −1 0
]
,



0
1
...
0
−1
0


Li
[

0 1 · · · 0 −1 0
]

and 

0
1
...
0
−1
0


1
Ci

[
0 1 · · · 0 −1 0

]

with entries: 1 if element i is present in loop / node j and the current Ii j flows through the element i
in the clockwise direction, −1 if element i is present in loop / node j and thecurrent Ii j flows through
the element i in the counter clockwise direction, or 0 if element i is not present in loop j. If all ele-
ments Ri,Li,

1
Ci

are gathered and the matrices R,L,C are formed accordingly then we have the following
representation.

If GT denotes the incidence matrix (Gross et al. 2013) for the matrices R,L,C then these matrices
can be represented by:

R = GR ·DR ·GT
R

L = GL ·DL ·GT
L

C = GC ·DC ·GT
C

(4.1)

where DC,DR,DL represent the diagonal matrices with entries the capacitances, resistances and induc-
tances respectively in a given network and GT

C ,G
T
R ,G

T
L denote the incidence matrices of C, R and L

matrices respectively.

The next two theorems provide equivalent expressions for the maximum and minimum coefficients
kmax and kmin (as were developed in Section 3) respectively not to be zero.
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THEOREM 4.1 Let L = L′ ·L′′, L′ ∈ Rn×p and L′′ ∈ Rp×n. If L′′ is decomposed as L′′ = DL ·GT
L and

L′ = GL then by Theorem 3.1, Proposition 3.2 and equation (4.1) we have that:
If GT

L and GT
R are non square incidence matrices (Gross et al. 2013) then an equivalent expression

for kmax 6= 0 is:
Cp(GT

L ) · Jn,p ·Cn−p(GR) 6= 0

where Jn,p appropriate matrix (Price 1947),(Nambiar & Sreevalsan 2001): with entries 1 and -1 such
that (4.4) holds true.

Proof. We know from Theorem 3.1 that kmax 6= 0 if and only if

Cp(L′′) ·Ad jp(R) ·Cp(L′) 6= 0 (4.2)

Let’s denote by L′′ = DL ·GT
L and by L′ = GL then using that L = L′ ·L′′ and developing equation (4.2)

we will have that:

detDL ·Cp(GT
L ) ·Ad jp(

n×n︷ ︸︸ ︷
GRDRGT

R) ·Cp(GL) =
detDL ·Cp(GT

L )
[
Jn,p ·Cn−p(GRDRGT

R) · Jn,p
T
]
·Cp(GL) =

detDL ·Cp(GT
L )
[
Jn,p ·Cn−p(GRDRGT

R) · Jn,p
T
]
·Cp(GL)

(4.3)

Note: In equation (4.3) the p-th adjugate Ad jp(B) of an n× n matrix B can be decomposed as (Price
1947),(Nambiar & Sreevalsan 2001):

Ad jp(B) =
(
Jn,p ·Cn−p(B) · JT

n,p
)

(4.4)

Using for equation (4.3) the Binet-Cauchy theorem (Marcus & Minc 1964) we have that:

detDL ·Cp(GL)
T
[
Jn,p ·Cn−p(GRDRGT

R) · Jn,p
T
]
·Cp(GL) =

detDL ·Cp(GL)
T · Jn,p ·Cn−p(GR) ·Cn−p(DR) ·Cn−p(GR)

T · JT
n,p ·Cp(GL)

Thus, for non-square matrices GT
R ,G

T
L the equivalent expression for kmax 6= 0 is:

Cp(GL)
T · Jn,p ·Cn−p(GR) 6= 0

�

REMARK 4.2 If GT
R ,G

T
L are square matrices, then the equivalent expression for kmax 6= 0 is:

Cp(GL)
T ·Ad jp(GT

R) 6= 0

THEOREM 4.2 Let C = C′ ·C′′ C′ ∈ Rn×q,C′′ ∈ Rq×n. If C′′ is decomposed as C′′ = DC ·GT
C and

C′ = GC then by Theorems 4.1 and 3.1 and Proposition 3.2 we have that:
If GT

C and GT
R are non square incidence matrices (Gross et al. 2013), then an equivalent expression

for kmin 6= 0 is:
Cq(GT

C) · Jn,q ·Cn−q(GR) 6= 0

where Jn,p appropriate matrix (Price 1947),(Nambiar & Sreevalsan 2001): with entries 1 and -1 such
that (4.4) holds true.
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Proof. We know from Theorem 3.1 that kmin 6= 0 if and only if

Cq(C′′) ·Ad jq(R) ·Cq(C′) 6= 0 (4.5)

Let’s denote by C′′ = DC ·GT
C and by C′ = GC then using that C = C′ ·C′′ and developing equation (4.5)

we will have that:

detDC ·Cq(GT
C) ·Ad jq(

n×n︷ ︸︸ ︷
GRDRGT

R) ·Cq(GC) =

= detDC ·Cq(GT
C)
[
Jn,q ·Cn−q(GRDRGT

R) · Jn,q
T
]T ·Cq(GC) =

= detDC ·Cq(GT
C)
[
Jn,q ·Cn−q(GRDRGT

R) · Jn,q
T
]
·Cq(GC)

(4.6)

Using for equation (4.6) the Binet-Cauchy theorem (Marcus & Minc 1964) we have that:

= detDC ·Cq(GC)
T
[
Jn,q ·Cn−q(GRDRGT

R) · Jn,q
T
]
·Cq(GC)

= detDC ·Cq(GC)
T · Jn,q ·Cn−q(GR) ·Cn−q(DR) ·Cn−q(GR)

T · JT
n−q ·Cq(GC)

Hence, for non-square matrices GT
R ,G

T
C the equivalent expression for kmin 6= 0 is:

Cq(GC)
T · Jn,q ·Cn−q(GR) 6= 0

�

REMARK 4.3 For square matrices GT
R ,G

T
C the equivalent expression for kmin 6= 0 is:

Cq(GC)
T ·Ad jq(GT

R) 6= 0

The next Theorem shows under which conditions the maximum and minimum coefficients kmax and
kmin are non zero.

THEOREM 4.3 For a given network represented by the matrices R,L,C and the associated incidence
matrices (Gross et al. 2013) GT

L ,G
T
R ,G

T
C then:

1. The minimum coefficient of the Implicit McMillan degree is non-zero, i.e. kmin 6= 0, if and only if

Cq(GT
C) ·Ad jq(GT

R) 6= 0

where GT
C and GT

R are square incidence matrices (Gross et al. 2013) or

Cq(GC)
T · Jn,q ·Cn−q(GR) 6= 0

where GT
R ,G

T
C are non square matrices. Equivalently, at least one determinant formed by q rows

of GT
C and (n−q) rows from GT

R is non-zero.

2. The maximum coefficient of the Implicit McMillan degree is non-zero, i.e. kmax 6= 0, if and only
if

Cp(GT
L ) ·Ad jp(GT

R) 6= 0

where GT
R ,G

T
L are square incidence matrices (Gross et al. 2013) or

Cp(GL)
T · Jn,p ·Cn−p(GR) 6= 0

where GT
R ,G

T
L non square matrices. Equivalently, at least one determinant formed by p rows of

GT
L and (n− p) rows from GT

R is non-zero.
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Finally, the following corollary expresses the necessary conditions for the Implicit McMillan degree
δm to achieve the upper bound. The necessary and sufficient conditions for this are presented in Remark
4.4.

COROLLARY 4.1 For a given network represented by the matrices R,L,C necessary conditions for
δm = rank (L)+ rank (C) are:

• rank
[

GT
C

GT
R

]
= n

• rank
[

GT
L

GT
R

]
= n

REMARK 4.4 The implicit McMillan degree of a network satisfies δm = rank (L)+rank (C) if and only
if both of the following two conditions hold:

1. If there is a set of linearly independent rows formed by (n−q) rows of the incidence matrix of R
and q rows of the incidence matrix of C.

2. If there is a set of linearly independent rows formed by (n− p) rows of the incidence matrix of R
and p rows of the incidence matrix of L.

5. Network Pencil P(s) and its Link to the Implicit McMillan degree of the Network

In this section we try to establish an expression for the maximum possible Implicit McMillan degree δm
of an RLC network using the associated loop network pencil P(s) (Livada 2017):

P(s) = s
[

L 0
0 I

]
+

[
R C
−I 0

]
=

[
sL+R C
−I sI

]
= sF+G (5.1)

As mentioned in the previous sections the maximum possible Implicit McMillan degree of an RLC
network is given by:

δm = nmax−min(nmin,n)

where n is the cardinality of the network and nmax, nmin are the maximum and minimum powers of s in
the expansion of the determinant det(s2L+ sR+C).

We can reformulate the above determinantal expression in terms of matrix pencils as:

det(s2L+ sR+C) = det
[

sL+R C
−I sI

]
= det

(
s
[

L 0
0 I

]
+

[
R C
−I 0

])
(5.2)

To determine the maximum value of s in this determinantal expression, i.e. snmax , which is sn+p (The-

orem 3.1), we need to select all the last n rows from s
[

L 0
0 I

]
, p rows from s

[
L 0

]
and n− p

complementary rows from
[

R C
]
.
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Hence,

Aω =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l1 0
l2 0
...

...
lp 0

rp+1 cp+1
...

...
rn cn
0 I

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l1
l2
...

rp+1
...

rn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.3)

and the coefficient of sn+p, i.e kmax is kn+p =∑
ω

Aω , where ω stands for different selections of l1, l2, . . . lp,

and |·| stands for determinant. To continue, we can use the same procedure as in Section 3.

Equivalently, to determine the minimum power of s in the expansion of the determinant (5.2), we
need to consider the following (Livada 2017):

det
[

R C
−I sI

]
= det(sR+C) (5.4)

Then, we will select q rows from C and n−q complementary rows from R. Now, the minimum coeffi-
cient kmin of sn−q will be given by kmin = ∑

ω

Bω , where ω stands for q different selections of the rows of

C. To continue, we can use the same procedure as in Section 3.

6. Examples

In this section we will demonstrate the use of previous theorems and test the necessary and sufficient
conditions in the following examples (Livada 2017), (Leventides et al. 2014).

EXAMPLE 6.1 First, let us investigate an RLC network with n = 4 loops, 2 inductors and 1 capacitor
arranged as shown in Figure 6.1. The operator Za(s) = s ·W (s) = s2L+sR+C is given by the following
matrices:
The autonomous network of the figure can be represented by the following symmetric matrices L,R,C:

L =


L1 0 −L1 0
0 L2 −L2 0
−L1 −L2 L1 +L2 0

0 0 0 0

 (6.1)

R =


R1 0 0 −R1
0 R2 0 −R2
0 0 R3 0
−R1 −R2 0 R1 +R2 +R4

 (6.2)

C =


C1
−1 −C1

−1 0 0
−C1

−1 C1
−1 0 0

0 0 0 0
0 0 0 0

 (6.3)
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FIG. 1. RLC autonomous network with n = 4, p = 2, q = 1

By inspection:

rank(L) = p = 2

and

rank(C) = q = 1

.
Using the formulas derived from Theorems 2.1, 2.2, 3.1 we may find the minimum and maximum

coefficients of the determinant of the Za operator. For these coefficients we need to compute:

(I) Cp(L) =C2(L), because p = 2.

(II) Cq(C) =C1(C) =C, because q = 1.

(III) Ad jq(R) = Ad j1(R) and Ad jp(R) = Ad j2(R).
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Thus, we have:

C2(L) =


L1L2 −L1L2 0 L1L2 0 0
−L1L2 L1L2 0 −L1L2 0 0

0 0 0 0 0 0
L1L2 −L1L2 0 L1L2 0 0

0 0 0 0 0 0
0 0 0 0 0 0

=

=


1
−1
0
1
0
0


︸ ︷︷ ︸

α1

·
[

L1L2 −L1L2 0 L1L2 0 0
]︸ ︷︷ ︸

αT
2

(6.4)

C1(C) = C =


C1
−1 −C1

−1 0 0
−C1

−1 C1
−1 0 0

0 0 0 0
0 0 0 0

=


1
−1
0
0


︸ ︷︷ ︸

β1

·
[

C1
−1 −C1

−1 0 0
]︸ ︷︷ ︸

β T
2

(6.5)

Finally, for the compound adjugates of R we have that:

Ad j1(R) =


R2R3(R1 +R4) R1R2R3 0 R1R2R3

R1R2R3 R1R3(R2 +R4) 0 R1R2R3
0 0 R1R2R4 0

R1R2R3 R1R2R3 0 R1R2R3



Ad j2(R) =


R3(R1 +R2 +R4) 0 R2R3 0 −R1R3 0

0 R2(R1 +R4) 0 R1R2 0 −R1R2
R2R3 0 R2R3 0 0 0

0 R1R2 0 R1(R2 +R4) 0 −R1R2
−R1R3 0 0 0 R1R3 0

0 −R1R2 0 −R1R2 0 R1R2


(6.6)

Hence, for the maximum and minimum coefficients using the following formulas:

kmax = α
T
2 ·Ad jp(R) ·α1

and
kmin = β

T
2 ·Ad jq(R) ·β1

we finally find that:

kmin =C1
−1(R1 +R2)R3R4

kmax = L1L2(R3R4 +R1(R3 +R4)+R2(R3 +R4))

= L1L2R3R4 +L1L2R1R3 +L1L2R1R4 +L1L2R2R3 +L1L2R2R4



18 of 23 Maria Livada and John Leventides

and by subtracting their corresponding degrees nmax, nmin we get the Implicit McMillan degree: δm = 3.

Alternatively, we may use the composite matrices as denoted in Proposition 3.2 and Corollary 3.1:

(−1)q
∣∣∣∣ R C′

C′′ 0

∣∣∣∣ (6.7)

(−1)p
∣∣∣∣ R L′

L′′ 0

∣∣∣∣ (6.8)

Firstly, we need to decompose matrix C from 6.3 to its corresponding dyads, C=C′ ·C′′, as indicated
below, where C′ ∈ R4×1 and C′′ ∈ R1×4. Then, C can be written as:

C =


1
−1
0
0

[ C1
−1 −C1

−1 0 0
]

Hence, the composite matrix which used to calculate the minimum coefficient of the det(Za) operator,
kmin, is expressed as:

(−1)q
∣∣∣∣ R C′

C′′ 0

∣∣∣∣= (−1) ·

∣∣∣∣∣∣∣∣∣∣
R1 0 0 −R1 1
0 R2 0 −R2 −1
0 0 R3 0 0
−R1 −R2 0 R1 +R2 +R4 0
C1
−1 −C1

−1 0 0 0

∣∣∣∣∣∣∣∣∣∣
(6.9)

Similarly, we need to decompose matrix L from 6.1 to its corresponding dyads, L = L′ ·L′′, where
L′ ∈ R4×2 and L′′ ∈ R2×4. Then, L can be written as:

L =


1 0
0 1
−1 −1
0 0

[ L1 0 −L1 0
0 L2 −L2 0

]
(6.10)

and the composite matrix which is used to calculate the highest coefficient kmax is expressed as:

(−1)p
∣∣∣∣ R L′

L′′ 0

∣∣∣∣= (−1)2 ·

∣∣∣∣∣∣∣∣∣∣∣∣

R1 0 0 −R1 1 0
0 R2 0 −R2 0 1
0 0 R3 0 −1 −1
−R1 −R2 0 R1 +R2 +R4 0 0
L1 0 −L1 0 0 0
0 L2 −L2 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
(6.11)

Therefore, by computing the determinants of the composite matrices above we derive the minimum
coefficient as:

kmin =C1
−1(R1 +R2)R3R4 (6.12)

and the maximum coefficient:
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kmax = L1L2R3R4 +L1L2R1R3 +L1L2R1R4 +L1L2R2R3 +L1L2R2R4 (6.13)

exactly same as before. Thus, it is verified that both computational methods produces the same results,
i.e. Implicit McMillan degree δm = 3.

Applying the Graph Systematic Approach discussed in section 5 and using the formulation derived
in remark 4.1 we can express each one of the matrices L,R,C of the network as:

Matrix of capacitors C:

C=


C1
−1 −C1

−1 0 0
−C1

−1 C1
−1 0 0

0 0 0 0
0 0 0 0

=C1
−1 ·


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

=


1
−1
0
0


︸ ︷︷ ︸

GC

·C1
−1 ·
[

1 −1 0 0
]︸ ︷︷ ︸

GT
C

Matrix of inductances L:

L =


L1 0 −L1 0
0 L2 −L2 0
−L1 −L2 L1 +L2 0

0 0 0 0

= L1 ·


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

+L2 ·


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

=

=


1
0
−1
0

 ·L1 ·
[

1 0 −1 0
]
+


0
1
−1
0

 ·L2 ·
[

0 1 −1 0
]
=

=


1 0
0 1
−1 −1
0 0


︸ ︷︷ ︸

GL

·

DL︷ ︸︸ ︷[
L1 0
0 L2

]
·
[

1 0 −1 0
0 1 −1 0

]
︸ ︷︷ ︸

GT
L

Matrix of resistors R:

R =


R1 0 0 −R1
0 R2 0 −R2
0 0 R3 0
−R1 −R2 0 R1 +R2 +R4

= R1 ·


1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

+

+R2 ·


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

+R3 ·


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

+R4 ·


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

=

=


1 0 0 0
0 1 0 0
0 0 1 0
−1 0 0 1


︸ ︷︷ ︸

GR

·

DR︷ ︸︸ ︷
R1 0 0 0
0 R2 0 0
0 0 R3 0
0 0 0 R4

 ·


1 0 0 −1
0 1 0 −1
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

GT
R
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Next, we will test whether the necessary and sufficient conditions derived in Corollary 4.1 and
Remark 4.4 for the Implicit McMillan degree of the network are met. Hence, the following composite
matrices need to be formulated:

a.
[

GT
C

GT
R

]
=


1 −1 0 0
1 0 0 −1
0 1 0 −1
0 0 1 0
0 0 0 1

=


1 −1 0 0
1 0 0 −1
0 1 0 −1
0 0 1 0
0 0 0 1



b.
[

GT
L

GT
R

]
=


1 0 −1 0
0 1 −1 0
1 0 0 −1
0 1 0 −1
0 0 1 0
0 0 0 1

=


1 0 −1 0
0 1 −1 0
1 0 0 −1
0 1 0 −1
0 0 1 0
0 0 0 1


From the first matrix we can choose q = 1 lines from GT

C and (n− q) = (4− 1) = 3 lines from GT
R

(these lines are demonstrated above in bold letters) that are linearly independent. Similarly, from the
last composite matrix we can choose p = 2 lines from GT

L and (n− p) = (4−2) = 2 lines from GT
R (in

bold) that are linearly independent with each other.
Thus, we conclude that the necessary and sufficient conditions for the Implicit McMillan degree are

satisfied in this particular example.

FIG. 2. RLC autonomous network with n = 2, p = 2, q = 1

EXAMPLE 6.2 Now, lets examine a peculiar RLC network with n = 2 loops, 2 inductors, 1 capacitor and
1 resistance arranged as shown in Figure 6. The operator Za(s) = s2L+ sR+C for the RLC network is:

Za(s) = s2
[

L1 0
0 L2

]
+ s
[

R −R
−R R

]
+

[
C−1 −C−1

−C−1 C−1

]
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In this example, if we use the previous results, we expect the Implicit McMillan degree of the system
to be equal with the number of dynamical elements (i.e. inductors and capacitors). So, δm = 3. Then,
we compute as previously the maximum and minimum coefficients and their corresponding degrees

kmax = L1L2 · s4

and kmin =C−1(L1 +L2) · s2. As we can see, δµ = kmax− kmin = 4−2 = 2 6= 3 as we expected.
This is because the the necessary and sufficient conditions are not valid in this case.
Applying the Graph Systematic Approach discussed in Section 5 and using the formulation derived

in Remark 4.1 we can express each one of the matrices L,R,C of the network as:

Matrix of capacitors C:

[
C−1 −C−1

−C−1 C−1

]
=C−1 ·

[
1 −1
−1 1

]
=

[
1
−1

]
︸ ︷︷ ︸

GC

·

DC︷︸︸︷
C−1 ·

[
1 −1

]︸ ︷︷ ︸
GT

C

Matrix of inductances L:[
L1 0
0 L2

]
= L1 ·

[
1 0
0 0

]
+L2 ·

[
0 0
0 1

]
=

[
1
0

]
·L1 ·

[
1 0

]
+

+

[
0
1

]
·L2 ·

[
0 1

]
=

[
1 0
0 1

]
︸ ︷︷ ︸

GL

·

DL︷ ︸︸ ︷[
L1 0
0 L2

]
·
[

1 0
0 1

]
︸ ︷︷ ︸

GT
L

Matrix of resistors R: [
R −R
−R R

]
= R ·

[
1 −1
−1 1

]
=

[
1
−1

]
︸ ︷︷ ︸

GR

·
DR︷︸︸︷
R ·

[
1 −1

]︸ ︷︷ ︸
GT

R

To determine whether the necessary and sufficient conditions derived in Corollary 4.1 and Remark 4.4
for the Implicit McMillan degree of the network are met, we need to formulate the following composite
matrices:

a.
[

GT
L

GT
R

]
=

 1 0
0 1
1 −1


b.
[

GT
C

GT
R

]
=

[
1 −1
−1 1

]
From the first matrix we can choose p = 2 lines from GT

L and (n− p) = (2−2) = 0 lines from GT
R (these

lines are demonstrated above in bold letters) that are linearly independent. In contrast, from the last
composite matrix we cannot choose q = 1 lines from GT

C and (n−q) = (2−1) = 1 lines from GT
R that

are linearly independent with each other.
Thus, we conclude that the necessary and sufficient conditions for the Implicit McMillan degree are

not met in this particular example.
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7. Concluding remarks

The purpose of this paper was to develop a framework with which RLC networks could be treated as
control systems with a generalised transfer function W−1(s). For a general RLC network described by
the Implicit network operator W (s) the Implicit McMillan degree δm was calculated, which expresses
the maximum number of independent dynamical elements of the system. We established an upper bound
for this degree, which is δm = rank(L)+ rank(C) and this is attained when certain regularity conditions
for RLC networks are met (Livada 2017), (Leventides et al. 2014). Three different types of regularity
conditions were established, i.e. determinantal, rank and graph theoretic. Furthermore, this framework
was reformulated by introducing matrix pencils theory and some results were established, using the
associated loop pencil of the network P(s). Finally, two applications demonstrating these regularity
conditions were developed.
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