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Abstract— Autonomous vehicles (AV) are about to appear on 
our roads within the next few years. However, to achieve the 
final breakthrough, not only functional progress is required, but 
also fundamental safety questions must be solved. Among those, 
a question demanding special attention is the need to assess the 
overall safety of an AV and quantify that it is safe enough to take 
part in normal traffic despite its inherent imperfections. 
Therefore, this paper describes a probabilistic model, which 
allows to study how imperfections of an AV perception system 
and of mechanisms responsible for AV safety (e.g., Safety 
Monitors), can impact AV safety in the presence of road hazards. 
We also demonstrate how the model can be used to validate if 
the AV is safe enough, to understand the criticality of 
(perception) errors, and to identify areas/parameters that have 
more influence on safety than others. 

I. INTRODUCTION 

Assessing safety of autonomous vehicles (AV) poses new 
challenges. The known approaches to AV safety assessment, 
e.g., functional safety [1], have been tried in the past, but 
dealing with components based on machine learning remains 
problematic. Consequently, new alternatives are evolving, 
among them is the standard on “Safety of the Intended 
Functionality (SOTIF)” [2] (ISO 21448), or the upcoming 
standard on safety of AV decision making components [3]. In 
addition, governmental authorities are currently setting up the 
required legislative boundaries for the public use of AVs. For 
example, the German government announced that an AV has 
to operate at least as safely as a human driver to receive 
certification [4]. However, while these standards define 
guardrails in which manufacturers must operate, an important 
question remains: How to prove that an AV is safe enough to 
receive certification to participate in regular traffic?  

To demonstrate that an AV is safe enough, manufacturers 
need to validate that the rate of catastrophic failures (i.e., 
accident) is below the required threshold. Targeting the 
performance of a human driver, this means that the accident 
rate must be below 10-5 (1 severe accident every 105 hours of 
driving). One solution to this problem is to derive safety 
arguments from the large number of miles driven by AVs [5]. 
This, however, seems impractical for future mass deployment 
with frequent software updates. Instead, formal approaches 
are required, that can be either mathematically verified or 
validated on a smaller amount of data. 

As illustrated in Figure 1, a catastrophic failure (i.e., an 
accident caused by the AV) is the consequence of two events 
that happen “simultaneously”. First, a road hazard is required 
(dangerous driving situation), and second, a system failure 
(e.g., a failure of the AV’s perception system to detect a 
leading vehicle) has to occur as well. Thus, it is important that 
formal safety assessment approaches consider the situational 
awareness together with the failure rates of the AV 
subsystems (e.g. perception, planning, safety monitors, etc.). 
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In this regard, it is worth noting that for example even the best 
state-of-the-art perception systems have only a modest 
accuracy. As indicated by some, e.g., [6], detection accuracy 
of objects (lights, pedestrian, etc.) by a good machine-
learning (ML)-based perception device is in the range of 80% 
- 99% per object. Although these numbers can be improved 
by combining several perception approaches and using multi-
modal sensor technologies, one question remains [1]: What is 
the required failure rate of a perception system, to achieve the 
necessary level of vehicle safety (given the situational-
awareness mentioned before)? 

In this work we address the key questions raised before by 
a formal approach to safety assessment. We propose a 
comprehensive model to estimate the probability of a 
catastrophic failure of an AV over a period of time (thousands 
of hours of driving), that connects road hazards to the 
aforementioned failures in the AV processing pipeline (e.g., 
perception or planning). For this purpose, we model the 
failures and their occurrences as non-homogeneous stochastic 
processes. As we demonstrate, the model can be fed with 
naturalistic driving data on the distribution of road hazards 
(their rate of occurrence and durations as recommended by 
ISO 26262) and yield important insight on acceptable failure 
rates of AV components. Our evaluations reveal that 
perception stack and safety monitors must meet stringent 
reliability requirements. Yet it is not required that their failure 
rates are on par or below the target catastrophic failure rate, 
as non-hazardous traffic situations act as masking factors. We 
also report that some of the parameters used in our analysis 
have negligible impact on system safety, thus they need not 
be estimated with high confidence. In summary, our proposed 
model captures SOTIF performance limitations with 
situational awareness and their impact at system level 
(catastrophic failures), which can be used early in the design 
process to make appropriate design decisions.  

In the rest of this paper, Section II defines essential 
concepts used in our proposed model. The model itself is 
presented in Section III. Section IV covers our evaluations, 
followed by a discussion in Section V and conclusions in 
Section VII. 

II. PRELIMINARIES 

In our formal model, failures are seen as “random” with 
occurrence rates likely to vary with the variation of road 
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Figure 1 Illustration of road hazards. 
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conditions, i.e., their occurrence can be modelled as a non-
homogeneous stochastic process. In this paper we 
discriminate between two states of the operational 
environment on the road:   

• “normal conditions”: an AV is operating in the 
presence of no road hazards. In this mode of 
operation, failures are very unlikely to occur, a view 
which is clearly extreme. A more realistic view would 
be to assume that catastrophic failures occur in 
“normal conditions”, too, with lower intensity. 

• “hazardous conditions”: the AV is faced with 
hazardous road conditions, e.g. high traffic density 
(i.e. close proximity of surrounding vehicles), poor 
weather conditions or rare traffic situations limiting 
the space for maneuvering on the road, etc. In these 
circumstances, the likelihood of a catastrophic AV 
failure is different, typically significantly higher, than 
the (very low) likelihood of catastrophic failure in 
“normal conditions”. 

A hazard on the road is a “temporary” state of the 
environment [1]. Once it occurs, it will have a duration (e.g., 
a few seconds, possibly longer) after which it will cease to 
exist. Hazard duration is modelled as a random variable with 
a specified probability distribution. The hazard duration, of 
course, is not affected by whether the hazard is recognized 
correctly by the perception system or not.  

A catastrophic failure may or may not occur while the 
vehicle is in “hazardous condition” or indeed in “normal 
condition”. When a hazard occurs, it seems plausible to 
assume that the likelihood of catastrophic failure is no better 
than the likelihood in “normal conditions”. In this work, we 
interpret “catastrophic failures” as “severe accidents caused 
by the AV”. 

An AV should be able to detect a road hazard and adapt 
its control accordingly (e.g., if an obstacle is seen on the road, 
then the AV speed may need to be reduced [13, 14]. Hazard 
recognition is part of the AV perception system and as such 
may be subject to failures. We consider the following 
possibilities for the hazard perception system: 

• Correctly perceived hazard (CPH), given the hazard 
has occurred. 

• Overlooked hazard (OLH) – failure by the AV 
perception system to recognize a road hazard. In this 
situation the AV will continue to operate as if the 
hazard did not exist. Clearly, in this situation, the 
vehicle becomes more likely to fail catastrophically 
than if the hazard has been correctly recognized and 
the control duly adapted to the hazard (e.g., to either 
stop the AV or undertake a suitable maneuver). This 
event is also often called a “false negative” or 
“perception miss” in the literature. 

• Falsely perceived hazard (FH) (or false alarm, “false 
positive”) occurs when the AV perception system 
incorrectly perceives the situation as hazardous. This, 
in turn, may trigger actions, which are strictly not 
necessary (e.g., reduce the AV speed). The response 

to FH may not affect safety at all, or may indirectly 
improve it (for instance, reducing velocity due to a 
false alarm may actually make catastrophic failures 
less likely than in “normal conditions”). But also, 
could lead to a hazard, as, e.g., sudden unnecessary 
braking may surprise the vehicles behind (see also 
case 4 in IV.B). 

We explore different situations about the relationship 
between the likelihood (rate) of catastrophic failure in the 
different situation (conditions) listed above: 

• The likelihood (rate) of a catastrophic failure in 
“normal conditions” may be set to 0, i.e., the AV 
cannot possibly fail catastrophically in “normal 
conditions”. Clearly, this is an extreme scenario, 
which rules out a failure due to equipment failure or 
due to rare circumstances where the rules used by AV 
safety monitors turn out to be insufficient to avoid an 
accident [7]. However, the scenario can be seen as a 
“best case” scenario as in reality AV safety will be no 
better. 

• Rate of catastrophic failure in CPH is greater (or at 
least no lower) than the rate of failure in “normal 
conditions”. In the absence of empirical data to 
suggest otherwise, this assumption seems quite 
plausible, since even though the AV can maneuver to 
evade escalation of hazards to accidents, this does not 
nullify the added risk. E.g., braking hard to avoid a 
vehicle intruding in one’s lane may avoid collision but 
is still a more dangerous condition than if the intrusion 
(hazard) had not occurred.  

• Rate of catastrophic failure in OLH should be greater 
than both the rate of failure in “normal conditions” and 
the rate of failure in CPH. 

III. THE MODEL 

Our envisioned stochastic model to assess AV safety and 
estimate the rate of catastrophic failures, based on the 
formalism of stochastic activity networks (SAN) [7] is shown 
in Figure 2.  

This model can be in one of the following 5 states 
(modelled as places in Figure 2): 

• OK, which models “normal conditions” 

• FalselyPerceivedHazard, models “normal condition” 
perceived incorrectly by the AV perception system as 
hazardous (“false alarms” state). 

• CorrectlyPerceivedHazard (CPH), a “hazardous 
condition” perceived correctly as hazardous by the 
AV perception system. 

• OLH (OverlookedHazard) is a “hazardous condition”, 
which the AV perception system failed to classify as 
hazardous. The AV is unaware that it is in a 
“hazardous situation”. 

• CPH_Late, a hazardous condition is eventually 
correctly perceived as hazardous, but only after 
overlooking it for a while, i.e., after AV has spent some 
time in the OLH state. This state is usually different 



 

   
 

 

from CPH, as the vehicle is already in an unsafe state 
and may not avoid an accident even if it applies 
countermeasures (e.g., braking). 

• Accident – this is an “absorbing state”, which models 
the occurrence of a catastrophic failure. If the system 
reaches this state, further changes of the state in the 
model are impossible. 

 
Figure 2.  The model of an AV with road hazards and imperfect hazard 

perception system: hazards may or may not be recognised correctly. 

Transitions between these states are governed by timed 
“activities”, which are parameterized accordingly. Each timed 
activity will have a parameter characterizing its duration and, 
optionally, 2 or more transition probabilities which define the 
new state in which the model will be at the end of the activity. 
For instance, activity OK2Hazard on Figure 2. is 
parameterised as shown in Table 1 below. Its duration is 
assumed an exponentially distributed random variable with a 
parameter HazardRate. The ”case distribution” defines the 
probabilities associated with the two “cases” attached to the 
timed activity, which in turn define the probabilities of 
transitions to either the state CorrectlyPerceivedHazard or to 
the state OLH upon completion of the timed activity duration. 
The two case probabilities define a distribution (their sum 
should equal 1) and in this example rely on another parameter, 
missHazardProb, a constant which allow the modeler to 
define the probability of perception to overlook a hazard, 
should the hazard occur.    

The “global” variables HazardRate and missHazardProb 
can be assigned different values to conduct “sensitive 
analysis”, i.e., how sensitive AV safety is to the particular 
parameter(s). 

Table 1. Parameters of timed activity OK2Hazard 

Distribution type Exponential 

Duration return(HazardRate); 

Case Distribution 
case 1: return(1.0 - missHazardProb); 
case 2: return(missHazardProb); 

 

All transitions in Figure 2.  are defined in a similar 
manner; their parameters are discussed next. It is clear from 

the model that a hazard can either escalate to an accident or 
not. The transition from a hazardous state – either correctly 
recognized or not – to an accident is governed by the 
parameters of the respective timed activity leading to the state 
Accident. 

A failure of the perception system to perceive a hazard is 
modelled by a transition to state “OLH”, from which a 
transition to “Accident” may occur after a delay captured by 
the duration of the timed activity sojournTime and with 
probability defined in the case distribution of this timed 
activity. Another possible transition from OLH is to state 
CPH_Late with probability defined for case 2 of 
sojournTime. Finally, the overlooked hazard may simply 
disappear without any visible consequences and the model 
may return to OK state with probability defined for case 3 of 
sojournTime. Should the model enter state CPH_Late, it will 
stay in this state for the duration of the timed activity 
HDLateAcc, from which the model can move to either state 
Accident of to state OK. The transitions take place according 
to the case distribution defined for HDLateAcc.  

Similarly, a transition to either state “Accident” or state 
OK from state “CorrectlyPercievedHazard” according to case 
distribution defined for timed activity CorHaz2Acc following 
a delay defined by the Duration of CorHaz2Acc. It may be 
worth noting that safety concept for AV planning, like RSS 
[8], aim to ensure that, if implemented in all vehicles, a 
transition from “CorrectlyPerceivedHazard” to “Accident” is 
impossible. In practice, this ideal condition may not always 
hold as described in [15]. Therefore, we have presented model 
results for both the idealized case (the transition probability is 
1 to state OK and 0 to “Accident”) and for non-zero transition 
rates to “Accident” (cases 4 and 6 in Section IV.B) . 

Finally, in this model the possibility of falsely perceived 
hazards is modelled via the timed activity OK2FH leading to 
FalslyPercievedHazard state. This state triggers the time 
activity FalHaz2Acc, which models the time the AV may  
remain in the state before it moves to either state Acc or to 
OK according to the case distribution of FalHaz2Acc.  

The model is built on a set of assumptions about the 
stochastic relationships between the various random variables 
used in the model: i) the duration of OK2Hazard is assumed 
stochastically longer (i.e., more likely to exceed a threshold, 
for any threshold duration one wishes to consider) than the 
duration of sojournTime. The rationale for this is that 
sojournTime represents only a part of the time the model is 
in hazard – the time the hazard is overlooked – followed by 
the time the hazard is correctly recognized. If the hazards – 
recognized from their occurrence and those which are initially 
overlooked but later recognized – are stochastically similar, 
this assumption is quite plausible. We acknowledge, however, 
that the hazards which are initially overlooked may be a 
“different” category of hazards, which apart from being more 
difficult for the perception system to recognize may have 
different temporal characteristics, i.e., the distribution of 
their duration may be very different from the distribution of 
the duration of the other, “easy to detect” hazards. In this 
paper we do not explore this possibility.  



 

   
 

 

The initial marking of the places (states) assigns a token to 
OK state and 0 tokens to all other states. Thus, the model 
always starts in a state without hazards in the environment, a 
modelling choice which seems quite plausible.  All timed 
activities used in the model are assumed exponentially2 
distributed with parameters as defined below.  

The model is solved to compute the probability 
distribution of the TimeToAccident, i.e., the time until the 
model enters the absorbing state Accident. This distribution is 
captured via the values the cumulative distribution function 
(cdf) takes on a set of predefined points of time: 100 hours, 
1100 hours, 2100 hours, …, 9100 hours of operation. The 
largest value, 9100, represents a “mission of observation” 
longer than a year.  

IV. EVALUATION 

In this section we address two concerns: i) value 
estimation for the parameters used in the model shown in 
Figure 2.  and demonstrate that some of them are estimable 
using naturalistic driving datasets; ii) for those model 
parameters that cannot be estimated using existing data sets, 
we applied sensitivity analysis, allowing the parameter values 
to vary to establish ranges of parameter values, which will 
lead to acceptable AV safety. 

A. Parameter Estimation 
As described earlier, some model parameters are related 

to traffic conditions, some others to the quality of the 
perception system, or the safety monitors used in the vehicle. 
Even if suitable datasets were available for all parameters, it 
seems that applying sensitivity analysis is still useful, e.g., to 
establish how robust the AV safety assessment results are 
with respect to the different values used in the model. 
Parameters that affect AV safety significantly should be 
subjected to further scrutiny to ensure that despite some 
fluctuations of model parameters, system safety will remain 
within reasonable bounds.  

To estimate the parameter values, we used two different 
data sources. HighD dataset [9] was used to obtain the 
parameter values related to road hazards (duration intervals 
between adjacent hazards). We also used the classical 
perception dataset Lyft [16] to obtain statistical information 
related to perception errors: duration of perception errors. 

The HighD dataset is a drone-recorded dataset for 
naturalistic human driving behavior on German highways, 
containing more than 100 hours of driving data. The HighD 
dataset covers various vehicle speeds from almost standing 
still to more than 200km/h. To get coherent driving situations, 
we restricted the dataset to the speed range of 100km/h - 
130km/h, for all evaluations in this paper, as this was the 
speed range for which most datapoints are available and 
provided reasonable vehicle-to-vehicle road hazards (no 
trucks, no pedestrians, etc. were involved). Of course, the 

 
2 The choice of distribution is motivated by convenience. Assuming 

exponentially distributed activity durations allows us to use numeric solvers 
for CTMC (continuous-time Markov chains), which are fast and give exact 
solutions. Using other distribution types would rule out the use of these 

model can be fed with additional speed ranges as well. For 
simplicity this is omitted for the scope of this paper.   

To obtain the distribution duration of hazardous situations 
and the distribution of intervals between them, we assume that 
an AV will behave similarly to human drivers, and thus will 
be exposed to similar situations, with similar probability 
distributions. Further, we assume that a hazardous situation 
can be expressed through a time-to-collision (TTC) of less 
than 5 seconds, considering that the front vehicle may 
decelerate with its current deceleration or – 2m/s², and that the 
rear vehicle may accelerate with 2m/s². Based on these 
assumptions, we parsed the restricted HighD dataset to obtain 
all hazardous situations from the dataset, and the distributions 
used in the model: i) of the intervals between adjacent 
hazards, and ii) the of durations of the individual hazards. An 
excerpt of the resulting data is shown in Table 2. 

Table 2. Excerpt from the data derived from HighD 
Duration [frames] Start frame id Interval between Hazards 

[frames] 
195 1053 2501 
73 3749 837 
18 4659 1667 

261 6344 36 
… … … 

  

The first column represents the duration of the hazardous 
situation, measured in frames. The cameras used to collect 
HighD uses scanning frequency of 25 frames per sec, which 
allows for an easy transformation of data shown in Table 2 
into seconds (and hours, as required in the model). The full 
dataset with hazards contains 16,000+ records, which allowed 
us to check how well the dataset fits some of the popular 
analytic probability distribution. The results of fitting can be 
seen in Figure 3. Visual inspection reveals that neither of the 
distribution curves fits very well (a formal goodness-of-fit test 
would fail for all candidate distributions). The fitness, 
however, is not too bad and we use the parameters from fitting 
an exponential distribution to parameterize the duration of the 
timed activity CorHaz2Acc. After obvious transformations 
(from frames to hours) the parameter value of the exponential 
distribution timed activity was estimated ~856.3 hour-1.  

With the rationale summarized above that the duration of 
the HDLateAcc timed activity under plausible assumptions is 
likely to be shorter than the duration of CorHaz2Acc, and thus 
the parameter of the exponential distribution associated with 
HDLateAcc was set to 1000, e.g., the mean duration of this 
timed activity is 1/1000 hours = 10-3 hours against 1/856.3 = 
1.16×10-3 hours for the mean duration of CorHaz2Acc.  

Using the second column of Table 2 we can compute the 
intervals between adjacent hazards. These are shown in the 3rd 
column of Table 2 and are used to estimate the duration 
parameter of the timed activity OK2Hazard which is assumed 

solvers: instead, Monte Carlo simulation will be the only option as a solver. 
Monte Carlo simulation with high accuracy of the solutions will require very 
long simulation campaigns (days, vs. seconds with the numeric solvers).  

 



 

   
 

 

to be exponentially distributed. After obvious transformations 
(from frames to hours), this parameter was estimated as 197.4 
hour-1, i.e. the average interval between hazards is 1/197.4 
~0.005 hours, i.e., about 18 sec. 

  
Figure 3.  Fitting the dataset with hazard duration (plot on the left) and 
intervals between hazards (plot on the right), derived from HighD using 

several standard analytic probability distributions. The histograms 
represents the raw data.from Table 2.   

The model parameter related to the length of perception 
failures (i.e., how long a hazard may be overlooked) were 
estimated using the Lyft dataset, which is a public perception 
dataset. We used this dataset together with a standard object 
detector for LiDAR sensors, PointPillars [7] is an AI-based 
3D object detection solution, which we trained on a subset of 
the Lyft dataset. We used the remaining part of the dataset to 
measure the number of perception errors (i.e., not detected 
objects), and the duration of these perception errors. The two 
model parameters thus estimated were: i) the case probability 
leading to state OLH of the timed activity OK2Hazard, which 
captures the conditional probability of hazard omission given 
a hazard occurred, and ii) the duration of time activity 
sojournTime, which, as the name suggests represents the 
distribution of how long a hazard remains overlooked. The 
values of the first parameter was subjected to “sensitivity 
analysis” in the range [0, 0.01] with intermediate various of 
10-4, 5×10-4, 0.001 and 0.002, which represent a significantly 
better detection rates than the empirically estimated value of 
0.01 reported in [6]. The mean duration of the overlooked 
hazard was estimated to lay in the range of a handful of frames 
up to ~50 frames. We assumed that the length is exponentially 
distributed and applied sensitivity analysis to the parameter of 
this distribution assuming a mean duration of [20, 40 and 80] 
frames. After applying the necessary transformations (from 
frames to hours as required in the model) the parameter of the 
assumed exponentially distributed duration of the 
sojournTime timed activity was estimated to be 4500, 2250 
and 1125, respectively. These values were used in our studies. 

The other parameters used in the model are defined in 
Table 33. A number of parameters are set to 0 in the first 3 
cases reported in section B (cases 1 - 3): the case probabilities 
CH2Acc_prob FH2Acc_prob of timed activities FalHaz2Acc 
and CorHaz2Acc, respectively, both leading to Accident. 
falseHazardProb defines the probability of detecting 
incorrectly a false hazard and for cases 1 – 3 was assumed 
equal to 0. Later, in cases 4 - 6 these assumptions are relaxed.  

 

 
3 The full SAN model is available from the authors on request.  

Table 3. Excerpt from the data derived from HighD 

Parameter Values Description 
CH2Acc_prob 0 Case probability 2 of 

FalHaz2Acc timed activity. 
CorHaz_sojournTime 
FH_sojournTime 

856.3 Rate of timed activities 
CorHaz2Acc and 
FalHaz2Acc 

FH2Acc_prob 0 Case probability of 
CorHaz2Acc timed 
activity. 

HDLateAcc_prob [10-4, 2×10-4] Case probability of timed 
activity HDLateAcc 
leading to Accident.  

HDLate_sojournTime 1000.0 Rate of timed activity 
HDLateAcc. 

HazardRate 197.4 Rate of timed activity 
OK2Hazard (intervals 
between hazards).  

OH_sojournTime [1125, 2250, 
4500] 

Rate of timed activity 
sojournTime (duration of 
overlooked hazard)  

OLH2Acc_prob [10-5, 2×10-5, 
5×10-5] 

Case probability of timed 
activity sojournTime 
leading to Accident 

OLH2CHLate_prob [0.99, 0.991, 
0.995] 

Case probability of timed 
activity sojournTime 
leading to CPH_Late.  

falseHazardProb 0.0 Probability of false hazard 
detection.  

missHazardProb [0, 10-4, 5×10-4] Probability of omitting a 
hazard given hazard 
occurred 

B. Results 
Below we provide some evaluations of AV safety for 

different model parameterizations. The first 3 cases illustrate 
the model’s behavior under the parameterization shown in 
Table 3 whereby: i) accidents are assumed impossible if a 
hazard is recognized correctly immediately upon its 
occurrence, and ii) no false detection of hazards occurs. In 
other words, these three cases are limited to a single failure 
mode – failure of the perception system to recognize a hazard 
correctly immediately upon its occurrence.  

Case 1: Probability of overlooking a hazard varies 
With this case we demonstrate the impact of the probability 
of overlooking hazards on system safety, which is illustrated 
for different values of this probability in Figure 4.  
 

 
Figure 4.  Effect of probability of overlooked hazards on system safety. 

The effect is quite significant. Perfect perception system 
(i.e., when the probability of overlooking a hazard is 0) would 



 

   
 

 

make the system “perfect” – the probability of catastrophic 
failure will remain 0 for any number of hours driven. Even 
tiny values of the probability of overlooking a hazard (10-4 
and 5×10-4), however, lead to a visible deterioration of safety. 
The probability of AV experiencing a catastrophic failure for 
9,100 hours of driving (more than 1 calendar year and more 
than 1,000,000 km, at the chosen speed of 100+ km/h,) will 
increase the probability of accident to almost 2% and 8%, 
respectively. Note that the chosen values of 10-4 and 5×10-4 
are two orders of magnitude better than the estimated value of 
0.01 suggested by [6]. Using 0.001 would lead to a probability 
of an accident at the end of 9,100 hours in excess of 0.3.  

Case 2: Duration of overlooked hazard varies 
Now we demonstrate the effect of the duration for which 

a hazard is overlooked on AV safety: we vary this duration as 
described above using for it an exponentially distributed 
random variable with a parameter 1125, 2250 and 4500, 
which represents mean duration of 3.2, 1 and 0.8 seconds, 
respectively. Note that all these values represent very short 
periods for which the hazard is overlooked.  

 
Figure 5.  Effect of length of hazard on system safety. 

It is clear from Figure 5. that the effect of the chosen 
variation is negligible: the three curves overlap and are 
indistinguishable in the plot. We checked also how perception 
delays that are longer by an order of magnitude will impact 
safety and did not register any visible impact.  

Case 3: Effect of the probability of accident following an 
overlooked hazard 
The results from this study are illustrated in Figure 6.   

 
Figure 6.  Effect of length of hazard on system safety. 

It seems clear that this parameter (one of the case 
probabilities associated with the timed activity HDLateAcc in 
Figure 2. ) has a visible impact on AV safety: even a small 
increase of the probability OLH2Acc_prob from 10-5 to 5×10-

5 - impacts noticeably AV safety. In absolute terms, however, 
the impact is quite limited: after 9,100 hours of operation, it 
remains within the range just below 3% to 3.5%.  

The next 3 cases illustrate the impact on safety of the 
parameters that so far have been set to 0. These are 
CH2Acc_prob, which defines the probability of accident 
given a hazard has been recognized correctly upon its 
occurrence, falseHazardProb, the parameter dealing with 
falsely perceived hazards, and FH2Acc_prob, the parameter 
which specifies the probability of an accident given a false 
hazard. The values of these parameters used in Case 4 and 6 
are defined in Table 4. Case 4 illustrates the impact on system 
safety of failures of the safety monitors only, i.e., failures 
which may occur even when the perception system does 
recognize hazards immediately upon their occurrence. Case 5 
demonstrates the effect of “false alarms” only raised by the 
perception system (i.e., recognizing non-existing hazards). 
Finally, Case 6 illustrates the combined effect of false alarms 
and imperfection of safety monitors. 

Table 4. Values of CH2Acc_prob and falseHazardProb 
parameters used in Case 4 – Case 6. The values of the other 
parameters used in these 3 cases are as in Table 3 above. 

Parameter Values 
CH2Acc_prob [0, 10-6, 2×10-6] 
falseHazardProb [0, 10-4, 5×10-4] 
FH2Acc_prob [0, 10-6, 10-5] 

 
Case 4: Effect on AV safety of imperfect safety monitors. 

It is clear from Figure 7. that imperfection of safety 
monitors has a very significant impact on AV safety. Even 
very small values of the probability of imperfect response (of 
order of 10-6) lead to a visible increase of the probability of 
accident: for 9100 hours this probability reaches values 
greater than 0.8 and almost 1.0, suggesting that an accident is 
very likely to imminent within 9100 hours. Even for much 
shorter periods (e.g., 2000 – 3000 hours) the probability of an 
accident reached values of 0.4 – 0.5. These values of the 
probability of accident are significantly greater compared 
with the cases assuming that safety monitor is perfect 
(CH2Acc_prob = 0). This observation makes it very clear that 
safety monitors must be very reliable (better that 10-6).  

 
Figure 7.  Effect of monitors imperfection on system safety. 



 

   
 

 

Case 5: Effect of false alarms on system safety 

 
Figure 8.  Effect of false alarms on system safety. 

This case looks at the impact of falsely perceived hazards 
(a new failure mode of the perception system) on AV safety. 
We outlined earlier how this may affect safety. In the studies 
under this case, we assume that false alarms are hazardous and 
in rare cases may escalate to an accident. The plots on Figure 
8.  indicate that such additional hazards may reduce system 
safety (the probability of accident increases), but the 
reduction is barely noticeable for the chosen parameters. We 
note that similar lack of impact applies also to a much larger 
values of the probability of false alarm of up to 0.1% and 1% 
and conditional probability of accident given false hazard of 
10-6. In all cases that we have studied, the AV safety is 
practically indistinguishable from the safety estimated under 
the assumption that false alarms are not hazardous.  

Case 6: Combined effect of false alarms and imperfect safety 
monitors. 

While in case 4 and 5 we assumed a single failure mode 
(either imperfect safety monitor or false alarms in hazard 
perception) in this case we studied the combined effect of 
false hazards and imperfect safety monitors. The plot in 
Figure 9. is similar to Figure 7. – imperfections of safety 
monitors significantly affect AV safety, while the impact of 
false alarms is barely visible – we now include in the plots in 
Figure 9.  all values of FH2Acc_prob listed in Table 4. In 
other words, the effect of safety monitor imperfection on AV 
safety is much stronger than that of false hazards.  

 
Figure 9.  Combined effect of false alarms and imperfect safety monitors 

on system safety. 

V. DISCUSSION 

We have proposed a model-based approach to safety 
assessment of AV, based on probabilistic modelling. The 
model allows one to spell out the phenomena which affect AV 
safety and then explore in quantitative fashion the impact of 
model parameters on AV safety.  

We demonstrated that some of the model parameters can 
be estimated using public datasets. For some other model 
parameters, no suitable datasets existed, and we had to apply 
sensitivity analysis varying their values within plausible 
ranges. It turned out that, with these ranges of parameter 
values, some of the model parameters had little to no impact 
on AV safety, e.g., the delay in perceiving initially overlooked 
hazards, and duration of false hazards. Other parameters, 
however, e.g., the probability of overlooking a hazard, given 
that the hazard exists, affect AV safety very significantly. The 
results obtained with the model suggest that even with a very 
good perception system (probability of overlooking a hazard 
of 0.01%), the AV safety is modest – the probability of an 
accident of over a year (9100 hours non-interrupted driving) 
is non-negligible. While 9100 hours of driving at 100 – 130 
km/h means over 1 million km of driving, these figures still 
compare unfavorably with human drivers’ accident rates (of 
the order of hundreds of millions kilometers between fatalities 
and several millions between injuries [10]). If this safety level 
is unacceptable, developers need to improve some of the 
parameters under their control, by improving: i) the AV 
perception, which affects the critical model parameter, the 
probability of overlooking a hazard, which we already 
assumed very good; and/or ii) the safety mechanisms, which 
affect the probabilities of transition to Accident state.  

The role of the sensitivity analysis in the study is 
noteworthy. It allows one to identify those parameters that 
affect AV safety significantly and concentrate on estimating 
them accurately or even conservatively. Parameters that have 
little/no impact on model behavior (e.g., in our case, the delay 
in perceiving hazards that are not identified immediately) 
require less estimation precision. Demonstrating that these 
parameters lie within a “ballpark” range for which models 
show adequate safety will be sufficient, saving the effort and 
resources that would be needed for more accurate estimates.   

Another aspect worth mentioning is that the values of the 
various parameters are usually not constant over time. 
However, in this work we assumed that the distributions of 
the various intervals captured in the model by timed activities, 
do not change over time. This is clearly a simplification: the 
distributions typically will vary over time. The impact of this 
variation will pose no technical problems – the theory of non-
homogeneous Markov processes is well developed and should 
be easy to apply in our proposed model.  

A related problem concerns variation of driving conditions 
in operation.  Operational Design Domain (ODD) captures the 
idea well but focuses on ways of capturing the differences 
between operation conditions (“modes of the environment”) 
within a given ODD. The dynamic aspects of how these 
operating conditions manifest themselves in operation, e.g., 



 

   
 

 

the rate of change of these operating conditions is paid little 
attention but can be easily integrated by a) using the dynamic 
approach explained above and b) sub-models capturing 
different parameter values for different ODDs. 

Finally, the influence of hardware errors vs. software 
errors should be noted. The hardware failure rate impact on 
perception is low as the hardware impact is typically managed 
by hardware development and production process, which are 
captured in safety standards like ISO26262 [1]. Additionally, 
mechanisms for modern perception machine learning 
architectures are available that can limit the hardware impact 
on system level perception failures (like false positives and 
false negatives) like activation range supervision [11], which 
may lead to hazards. Also, typically machine learning models 
are quite robust to hardware failures [12]. As a result, 
hardware errors, which are to be expected in the ballpark of 
10-7 to 10-8 are less important than all other error sources (e.g., 
mal-trained perception network). 

 

VI. CONCLUSION 

Assessing and proving safety of an AV quantitatively is 
an open research challenge. The trends in standardization and 
legal regulation highlight a goal that the probability of an AV 
causing an accident needs to be significantly lower compared 
to a human driver. Therefore, it is of uttermost importance to 
be able to quantitatively estimate the probability of a 
catastrophic failure. 

The challenge is that this failure probability is impacted 
by different factors. On the one hand, there are imperfections 
in the AV processing stack, e.g., errors in the perception or 
planning system, that can cause an accident. On the other 
hand, there are hazards imposed by the environment in which 
the vehicle operates. In addition, the two factors might 
influence each other, as e.g., a hazardous environment might 
be especially challenging for the AV perception system.   

In this work we proposed a formal model that allows to 
estimate the final system failure probability (i.e., of 
catastrophic failures) based on the aforementioned influential 
factors. In other words, our model quantifies SOTIF 
performance limitations of the AV with situational awareness. 
We acknowledge that it is still an open question how the 
required parameters can be estimated in a reliable manner. 
Nevertheless, we showed that initial estimates are possible for 
some of the parameters from publicly available data. We are 
confident that some other parameters can be accurately 
estimated via tailored data acquisition, e.g. using fleet 
information of OEMs. At that point, the model[s] will help to 
show whether any parameters remain hard to estimate 
empirically because they relate to very rare, or hard to 
observe, events. 

Besides the actual estimation of the failure rate, we also 
showed the usefulness of the model for sensitivity analysis. 
This allows one to quantify the impact of certain failures on 
the overall system, to identify critical parameters and adapt 

data collection, analysis, and potentially the AV design, 
accordingly.  

Our evaluation shows that some of the parameters used in 
our analysis have only minor effects. Perception and planning 
errors have, as expected, an important influence on the 
accident rate. This information can be used by AV 
manufactures that employ such models early in their design 
process to adapt their architectures accordingly to achieve the 
desired level of safety. 
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