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Abstract
Motivation is key for performance in domains such as work, sport, and learning. Research has established that motivation 
and the willingness to invest effort generally increase as a function of reward. However, this view struggles to explain some 
empirical observations—for example, in the domain of sport, athletes sometimes appear to lose motivation when playing 
against weak opponents—this despite objective rewards being high. This and similar evidence highlight the role of subjective 
value in motivation and effort allocation. To capture this, here, we advance a novel theory and computational model where 
motivation and effort allocation arise from reference-based evaluation processes. Our proposal argues that motivation (and 
the ensuing willingness to exert effort) stems from subjective value, which in turns depends on one’s standards about per-
formance and on the confidence about these standards. In a series of simulations, we show that the model explains puzzling 
motivational dynamics and associated feelings. Crucially, the model identifies realistic standards (i.e., those matching one’s 
own actual ability) as those more beneficial for motivation and performance. On this basis, the model establishes a norma-
tive solution to the problem of optimal allocation of effort, analogous to the optimal allocation of neural and computational 
resources as in efficient coding.

Keywords Motivation · Effort · Reference-based model · Subjective value

Motivation is a key psychological dimension that influences 
our choices and achievements in every daily activity, such 
as work, sport, learning, and education. In these and other 
domains, it is not just skill that matters: Highly motivated 
employees, sportsmen, and learners invest more effort and 
achieve better results in their respective domains. There is 
an emerging consensus that the main role of the motivational 
system is setting up an optimal level of (physical or cogni-
tive) effort investment, by balancing the costs and benefits 
of effort—that is, by answering the question: “Is it worth 
investing effort in this activity, and how much?” (Botvinick 

& Braver, 2015; Kool & Botvinick, 2014, 2018; Pezzulo 
et al., 2018b; Shenhav et al., 2013; Shenhav et al., 2017). 
However, what exactly determines motivation levels—and 
the decision of whether or not to invest (physical or cogni-
tive) effort—remains far from clear.

A large body of research in experimental psychology and 
neuroscience has established that objective incentives (e.g., 
monetary rewards or prestigious achievements) are key factors 
underlying the motivation to exert effort. This research has 
shown that motivation to invest physical (Summerside et al., 
2018; Yoon et al., 2018) and mental effort (Frömer et al., 2020; 
Shenhav et al., 2021) increases when the expected reward is 
greater. Yet, in real-life situations, objective incentives do 
not often appear sufficient to explain motivational dynamics. 
This is particularly apparent in fields where measuring effort 
and performance is simpler, such as skill learning and sport 
competitions (but could generalize across other domains). For 
example, it is difficult to remain motivated for the prolonged 
periods of time necessary to achieve mastery in a skill or to 
win a championship, despite the incentives being higher near 
the end of training (Ericsson et al., 1993). Similarly, athletes 
sometimes lose motivation when they are close to victory 
(despite the apparent prospect of earning a high reward), or 
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when they are competing with poor opponents—but they could 
suddenly regain motivation when they are under pressure of 
losing unexpectedly (Jones & Hardy, 1990). Altogether, this 
and similar evidence highlights the role of subjective value 
(SV) in motivational dynamics and effort allocation.

To capture this role, here we advance a novel theory of 
reference-based motivation. In a nutshell, the theory pro-
poses that the value of effort investment corresponds to the 
difference in SV between the outcome a person expects to 
achieve with effort minus the outcome expected without 
effort. As an example, consider an athlete participating in a 
race expecting that the first place can be achieved by invest-
ing effort, whereas the third place is expected to be obtained 
even without effort. In this example, the value of investing 
effort will correspond to the difference in SV between the 
first and the third place, with effort being exerted only if 
this value surpasses effort costs. Distinguishing our proposal 
from previous accounts (Botvinick & Braver, 2015; Kool 
& Botvinick, 2014, 2018; Pezzulo et al., 2018b; Shenhav 
et al., 2013; Shenhav et al., 2017), we propose that SV is 
reference based (Bhui et al., 2021; Kőszegi & Rabin, 2006; 
Louie et al., 2013; Rigoli, 2019; Rigoli et al., 2016; Stewart 
et al., 2006; Woodford, 2012), as it depends on one’s own 
performance standard (corresponding to prior expectations 
about one’s accomplishments). As a first approximation, this 
reflects the performance history: Considering sport as an 
example, the standard of a novice who has never reached 
the “top ten” will be significantly lower than the standard of 
an elite athlete who has won all recent competitions. Fur-
thermore, the theory assumes that it is not just the perfor-
mance standard, but also the uncertainty about the standard, 
that determines motivation levels. As we shall see below, 
by emphasizing the importance of reference-dependent 
processes (subjective standards and their uncertainty), the 
theory emphasizes the role of SV in motivational dynam-
ics and effort allocation. In the remainder of the article, we 
formalize the theory in a computational model and elucidate 
its functioning.

The reference‑based motivation model

The reference-based motivation model (RBM) aims at offer-
ing a general framework to explain how the brain trades off 
effort in exchange of reward (or for avoiding punishment). 
For illustrative purposes, the paper examines the RBM in 
the context of scenarios such as races, championships, or 
tournaments. However, as emphasized further in the discus-
sion, the model aims at offering a general account that can be 
applied to any scenario involving trade-offs between effort 
and incentives.

Let us consider a race or championship where, at any 
time point t (e.g., at any match in a championship), an 
agent (e.g., a team or player) occupies a specific position 
Pt. The model proposes that, at each time point, the agent 
makes predictions about which positions will be occu-
pied at the end of the game by exerting different levels 
of effort. This is indicated by P�

T
(E) , reflecting the posi-

tion at the final time point T predicted by exerting effort 
level E, the latter being described by a number between 
0 and 1 (note that E captures the total effort exerted over 
a period of time extending from the present time t to the 
final time point T). For example, an agent might currently 
occupy the eighth position (Pt = 8) and predict that the 
10th, 8th, 5th, and 3rd position will be occupied by exerting 
0, 0.1, 0.2, and 0.3 units of effort, respectively (implying 
that  P�

T
(0) = 10,P�

T
(0.1) = 8,P�

T
(0.2) = 5,P�

T
(0.3) = 3)) . 

The model is agnostic about how these predictions arise, 
although some simple rules will be proposed below.

Moreover, the model proposes that each position P is 
associated with an SV calculated based on a logistic func-
tion and equal to (Rigoli, 2019; Woodford, 2012):

This implies that 0 < V(P) < 1 (note that V is higher for 
better positions). The parameter μ reflects the standard about 
the position occupied at the end. This will normally depend 
on past experience: For example, an agent accustomed to 
arriving second in previous games will have μ = 2. The 
notion of standard is based on previous proposals arguing 
that outcomes are compared against expectations (Kőszegi 
& Rabin, 2006). Note that this is different from classical 
formulations of prospect theory where the standard reflects 
the status quo (Kahneman & Tversky, 1979; note that more 
recent work in prospect theory does not necessarily interpret 
the reference point as status quo; Kőszegi & Rabin, 2006). 
The parameter σ reflects the uncertainty about the standard. 
Based on which final position is expected by exerting differ-
ent effort levels, and based on the ensuing cost, the model 
proposes that an agent establishes the optimal effort level to 
be exerted (EOPT):

In other words, the optimal effort level corresponds to the 
best option in terms of a trade-off between effort cost and the 
SV expected to be achieved with that effort level (associated 
with the final time point T).

Note that, to the aim of highlighting its specificity, the 
model we have just described relies on various simplifica-
tions. First, it assumes that one single time point (the final 
time point T) matters. Second, it assumes that a single 

(1)V(P) =
1

1 + e
P−�

�

(2)EOPT = argmax
j

(

V
(

P�
T

(

Ej

))

− Ej

)
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outcome, and not a set of probabilistic outcomes, is pre-
dicted for each effort level. Third, it proposes that an agent 
does not parcel out the future in sequential effort choices, 
but that it represents the effort assessed during the current 
choice as encompassing the whole future temporal horizon. 
Although, as we shall see below, these assumptions facili-
tate clarity of exposition, it is important to stress that they 
are appropriate only for a restricted set of conditions. More 
complex scenarios (not analyzed here) require relaxing these 
assumptions by considering a transition function that links 
each combination of effort level and position at time t to a set 
of probabilistic positions at time t + 1. This transition func-
tion can then be integrated with the value function (whereby, 
according to Eq. 1, each position is imbued with subjective 
value) and examined by standard methods such as dynamic 
programming to identify the optimal effort level at time t 
(Bellman, 1956). We do not pursue this more complex and 
more general formulation here; this is because focusing on a 
simpler formulation allows us to better highlight the specific 
contribution offered by the RBM.

Below, we will illustrate how different parameterizations 
of the model, such as different standards (captured by the 
parameter μ) and uncertainties about the standard (captured 
by the parameter σ), determine motivation and appropriate 
effort levels in different conditions.

Model predictions

We illustrate the functioning of the model by focusing on 
four aspects, concerning the role of the standard parameter 
μ (Subsection 1 and 2), the role of the uncertainty param-
eter σ (Subsection 3), the implications of having realistic or 
unrealistic beliefs about performance (Subsection 4), and the 
role of learning (Subsection 5).

How the standard affects motivation and effort

First, we examined the effort level (here, among two effort 
levels only: effort versus no effort) estimated by each of four 
car racers who, during a race, occupy various positions (rang-
ing from the 20th to the first) at various time points. Regard-
ing outcome predictions, here all racers predict that two posi-
tions will be gained by investing effort and two positions will 
be lost without effort (e.g., when occupying the 10th position, 
the outcomes predicted with and without effort will be the 
12th and eighth position, respectively). However, the agents 
have different standards, captured by setting the parameter 
μ to 15, 10, 5 and 1 for each agent, respectively. We will 
refer to these agents as to Agentμ = 15, Agentμ = 10, Agentμ = 5, 
and Agentμ = 1, respectively. Finally, all agents have the same 
uncertainty about standards (i.e., σ = 2).

The scenario is described in Fig. 1. The top panels of 
Fig. 1 illustrate the SV of the positions that agents expect 
to occupy by exerting effort (VE;red solid lines) and by not 
exerting effort (VNOE;green dashed lines), both estimated 
based on Eq. 1. In the model, the greater the difference 
between the two SVs, the higher the motivation (and the 
willingness to exert effort) (Rigoli, 2021):

For scenarios where more than two effort levels are avail-
able, motivation can be defined as follows:

where VEMAX corresponds to the SV associated with maximal 
level of effort available, calculated based on Eq. 1.

The motivation estimated in this scenario is illustrated by 
the middle panels of Fig. 1. Regarding how such motivation 
translates into the decision of whether or not to exert effort, 
we simply assume that exerting effort is chosen when the 
motivation is higher than a threshold (e.g., > .15).

The figure shows that the motivation curves for the four 
agents peak around their respective standards; for example, it 
is higher around position 15 for Agentμ = 15 and around posi-
tion 10 for Agentμ = 10. This is because the reference-based 
aspect introduces a nonlinearity in motivational computa-
tions, rendering the model more sensitive to differences in 
SV in proximity to the standard (see Fig. 1, top panels).

This scenario predicts that motivation follows an inverted 
U-shape, namely that it is low far from the standard and 
high close to the standard. For example, Agentμ = 10 is less 
motivated in positions much lower than the standard (rang-
ing from 20 to 13) and much higher than the standard (posi-
tions 7 to 1), while being highly motivated in proximity of 
the standard (positions 12 to 8). This prediction is novel and 
requires being assessed empirically.

The model implies substantial differences in motivation 
when comparing an elite athlete used to occupy the 5th 
position (Agentμ = 5) and a novice accustomed to the 15th 
place (Agentμ = 15). The elite athlete appears very sensitive 
to differences in position between (for example) the fifth 
and eighth place, thus being highly motivated when around 
these places. However, the same athlete assigns almost the 
same SV to the thirteenth and fourteenth place, those losing 
motivation when around these positions. The converse is 
true for the novice.

The scenario reveals that the best athlete (Agentμ = 1) will 
be most motivated when occupying the third position and 
not the first. This is banally due to a “boundary effect”: 
once the first position has been reached, it is not possible to 
improve it further; therefore, motivation is predicted to be 
higher in the third position, when further improvement is 

(3)motivation = VE − VNOE.

(4)motivation = VEMAX − VNOE,
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still possible. The prediction that, for athletes accustomed 
to victory, the motivation is stronger in proximity of the first 
place rather than when occupying the first place itself, is 
novel and requires being tested empirically. Note however 
that, in real life scenarios, an athlete may set goals which are 
even higher than just arriving first, for example aiming at 
beating the world record. Boundary effects would be erased 
in this example, with the athlete showing strong motivation 
despite occupying the first place.

The bottom panels of Fig. 1 show that, during a race, 
an athlete can experience positive or negative motivational 
valence, defined as:

where VCUR  corresponds to the SV associated with the cur-
rently occupied position, calculated based on Eq. 1. For 
scenarios where more than two effort levels are available, 
motivational valence can be defined as follows:

(5)

Motivational valence =
(

V
E
− V

CUR

)

−
(

V
CUR

− V
NOE

)

= V
E
+ V

NOE
− 2V

CUR
,

(6)

Motivational valence =
(

V
EMAX

− V
CUR

)

−
(

V
CUR

− V
NOE

)

= V
EMAX

+ V
NOE

− 2V
CUR

,

where VEMAX corresponds to the SV associated with maximal 
level of effort available, calculated based on Eq. 1. The moti-
vational valence estimates whether the gain of SV afforded 
with effort is greater than the loss of SV experienced with-
out effort. A positive motivational valence (values above 
zero) implies that an athlete is particularly motivated by the 
prospect of gaining positions, while a negative motivational 
valence (values below zero) implies that the motivation is 
more driven by the fear of losing positions. The plot shows 
that motivational valence is zero when the standard position 
is occupied (e.g., position 10 for Agentμ = 10), positive for a 
few positions below the standard (e.g., peaking at position 
13 for Agentμ = 10), and negative for a few positions above the 
standard (e.g., with a minimum at position 7 for Agentμ = 10).

How contextual factors affect motivation and effort

In the scenario above, we made three simplifying assump-
tions. First, we assumed that both elite athletes and nov-
ices could gain (or lose) the same number of positions by 
investing (or not investing) effort. However, in most realistic 
scenarios, better athletes can potentially gain more positions 
than novices by investing effort (and lose less by not invest-
ing effort). Second, we assumed that athletes could gain or 
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Fig. 1  Role of the standard parameter μ. This shows the motiva-
tional dynamics of four agents with different standard (15, 10, 5, 1, 
respectively) but equal uncertainty parameter (i.e., σ = 2). Each col-
umn describes a different agent and includes three panels. The top 
panel shows the subjective value (SV) associated with the outcome 

expected by exerting effort (red solid line) and expected without 
effort (green dashed line). The middle panel shows the motivation. 
The bottom panel shows the motivational valence. Data are shown for 
different positions (on the x-axis). (Colour figure online)
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lose the same number of positions throughout the race. How-
ever, in many sports, athletes can realistically expect to gain 
more positions at the bottom of the rank (as moving from 
the fourteenth to the thirteenth position in a race is far easier 
than moving from the second to the first place) and lose 
more positions at the top. Finally, we assumed that variations 
in position are equally likely throughout the race. However, 
in many sports, athletes can change positions more easily at 
the beginning of the race (when more time is available) than 
near the end (when time is running out).

Figure 2 illustrates the effects of considering these con-
textual factors. We simulated four athletes having the same 
standard (μ = 10) and uncertainty about standard (σ = 2) but 
dwelling in different situations. The agent simulated first 
in Fig. 2 (the one on the far left) corresponds to Agentμ = 10 
examined in Fig. 1. While this agent can gain or lose two 
positions with or without effort, respectively, the second 
agent of Fig. 2 can gain or lose four positions with or with-
out effort, respectively. Here, the differences in SV between 
the outcomes predicted with or without effort are greater, 
implying higher motivation. The third agent of Fig. 2 follows 
slightly more sophisticated rules, as the positions expected 
to be gained or lost with or without effort are not fixed but 
depend on the current position. Specifically, for this agent 
the position predicted by exerting effort is equal to:

while the position predicted without effort is:

In this way, when the athlete occupies the 10th posi-
tion (the standard), the same number of positions can be 
gained or lost. However, when the current position is bet-
ter than the standard (i.e., between the ninth and the first 
positions) the athlete can lose more positions than those 
that can be gained. Conversely, when the current position 
is worse than the standard (i.e., between the 11th and the 
20th positions), the athlete can gain more positions than 
those that can be lost. In this case, the motivation curve 
increases and decreases more sharply. Finally, while 
agents from one to three change positions throughout the 
race, the fourth agent of Fig. 2 always occupies the same 
position (position 10). In addition, now the outcome pre-
dicted by exerting effort becomes closer to the outcome 
predicted without effort as the competition approaches 
the end (simply because there is less time to change one’s 
rank). The result of this is that, for this agent, motivation 
decreases over time.

(7)P
�
T
(E) = P

t
− 2 −

(

P
t
− �

)

∕5

(8)P
�
T
(NOE) = P

t
+ 2 −
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P
t
− �
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Fig. 2  Role of contextual factors. Each column describes an agent 
under different contextual situations (see main text for explanation). 
All agents have standard μ = 10 and uncertainty parameter σ = 2. The 
top panel shows the subjective value (SV) associated with the out-

come expected by exerting effort (red solid line) and expected with-
out effort (green dashed line). The middle panel shows the motiva-
tion. The bottom panel shows the motivational valence. Data are 
shown for different positions (on the x-axis). (Colour figure online)
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This scenario shows that contextual factors (e.g., skill 
level, self-efficacy and game dynamics) can influence 
motivation in various ways. For example, an athlete who 
believes to be able to earn more (less) positions will be on 
average more (less) motivated, everything else being equal. 
As explained by prominent theories of motivation in social 
and sport psychology, a “self-efficacy” belief is fundamental 
for performance (Bandura, 1977; Moritz et al., 2000); for 
example, motivation will be poor when an athlete expects 
effort to be uninfluential. Furthermore, time is also critical: 
motivation diminishes as time runs out, but it might also 
rebound when an athlete is informed that some extra time 
is allowed. Of course, these and other contextual factors are 
not mutually exclusive, but can be at play concomitantly, 
thus shaping the complex motivational dynamics observed 
in sport and other contexts.

How the uncertainty about standards affects 
motivation and effort

In the previous scenarios, the uncertainty parameter was fixed 
(σ = 2) for all agents. Here, by varying the uncertainty param-
eter, we illustrate the implications of having different degrees 
of uncertainty about one’s own standard. Figure 3 describes 

a scenario where four agents have the same standard (μ = 10) 
but various levels of uncertainty: σ = 1, 2, 4 and 8 in the four 
columns, from left to right. The figure shows that the curve of 
motivation flattens when the uncertainty parameter increases.

From a psychological perspective, the parameter σ cap-
tures the level of uncertainty about one’s own performance. 
This impacts dramatically on motivation in as much as 
higher uncertainty leads to distributing motivation more 
evenly across different positions; in other words, to being 
somewhat motivated in many circumstances, but never 
highly motivated. Conversely, low uncertainty boosts moti-
vation in proximity of the standard position (in this example, 
the 10th), while inhibiting motivation elsewhere.

In principle, the uncertainty parameter can be estimated 
from the history of previous performance. Athletes who 
find themselves occupying the same position most of the 
time, will tend to develop low uncertainty, thus being par-
ticularly motivated around the typical position and poorly 
motivated elsewhere. Conversely, athletes used to occupy 
a wider range of positions will exhibit higher uncertainty, 
leading to a more widespread motivation across positions, 
with no extremes. This prediction that variability in past 
performance shapes the uncertainty parameter and in turn 
leads to the motivational pattern described in fig. 3 is 
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Fig. 3  Role of the uncertainty parameter σ. This shows the motiva-
tional dynamics of four agents with equal standard (μ = 10) but dif-
ferent uncertainty parameter (1, 2, 4, 8, respectively). Each col-
umn describes a different agent and includes three panels. The top 
panel shows the subjective value (SV) associated with the outcome 

expected by exerting effort (red solid line) and expected without 
effort (green dashed line). The middle panel shows the motivation. 
The bottom panel shows the motivational valence. Data are shown for 
different positions (on the x-axis). (Colour figure online)
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novel and requires being assessed empirically. Although 
previous performance is likely to be critical in shaping 
parameters, other factors might be influential too, such 
as general psychological traits (e.g., derived from genetic 
factors or from experience in other contexts).

Finally, while here we focus on the uncertainty about 
the standard, the model could be extended also to consider 
the uncertainty about outcome predictions (i.e., about how 
many places are gained or lost by investing or not investing 
effort). In this extended model, a higher (lower) uncertainty 
about outcome predictions would determine lower (higher) 
motivation, similar to what happens with uncertainty about 
standards. Furthermore, under the assumption that predict-
ing performance is easier when a race is about to end, the 
extended model would predict a “burst” of motivation near 
the end of the race—all other factors being equal.

How one’s own standards affect performance

This scenario explores which parameter sets are most benefi-
cial in terms of promoting effort. Consider an athlete occupy-
ing different positions over time, with the 10th position being 
the average (and with three positions as SD) and each time 

predicting that a certain number of positions will be gained 
or lost with effort or without effort, respectively (note that, 
for the sake of simplicity, here the focus is specifically on 
scenarios where effort is binarized and where the number of 
positions that can be gained with effort is equal to the number 
of positions that can be lost without effort). Here we simu-
lated the athlete’s choice in terms of exerting effort or not 
(effort was chosen when the motivation exceeded a threshold 
of 0.15). By simulating different standard (μ) and uncertainty 
(σ) parameters, we assessed which parameter set promotes 
maximal effort, thus potentially maximizing performance.

Figure 4 describes the proportion of effort choices across 
time for different parameter sets. Different panels show this 
when varying the distance between the outcome predicted 
with effort and the outcome predicted without effort, with this 
distance being referred to as range. The range values exam-
ined are 1.5, 2, 2.5 and 3; for example, with a range of 2, 
the athlete predicts to gain one position with effort and lose 
one position without exerting effort. Results of this simula-
tion show that, independent of the range, a realistic standard 
parameter (in this example, μ = 10) leads to maximal effort. 
Regarding the uncertainty parameter σ, results indicate that 
maximal effort ensues when the parameter corresponds to the 

Fig. 4  Relationship between parameters and performance. This sim-
ulation shows the proportion of effort choices across trials during a 
race. For each trial, the agent’s position is randomly selected from a 
normal distribution having the 10th position as mean and three posi-
tions as SD. Four conditions are simulated, each shown on a different 

panel (10,000 trials are simulated for each panel) and characterized 
by a different range (i.e., the difference between the position expected 
with effort and the position expected without effort): 1.5, 2, 2.5 or 
3, respectively. An effort choice occurs when motivation exceeds a 
threshold of 0.15. (Colour figure online)
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value of the range, namely to 1.5, 2, 2.5, and 3 in panels 1, 2, 
3, and 4, respectively. Intuitively, this occurs because, when 
σ is higher than the range, the outcome predicted by exerting 
effort and the outcome predicted without effort will tend to be 
close in SV, thus diminishing the proportion of effort choices. 
This is most evident in panel 1, where effort is never exerted 
when σ > 2.5. Conversely, when σ is lower than the range, the 
outcome predicted by exerting effort and the outcome pre-
dicted without effort will be either very close to one another 
(resulting in no effort choices) or very far (resulting in effort 
choices). Thus, the overall proportion of effort choices will 
tend towards 0.5, which is not as high.

This simulation shows that maintaining accurate beliefs 
about one’s own standard permits to maximize effort invest-
ment, hence potentially maximizing performance. At the 
same time, this simulation indicates that unrealistic standards 
impair motivation and thus performance. For example, con-
sider an overconfident novice who could realistically achieve 
the 10th position, but instead expects to win the race (i.e., 
μ = 1). When occupying the 10th position, as in most cases, 
the novice will be poorly motivated, thus avoiding effort 
and exhibiting poor performance (a high standard might 
be beneficial for the novice when close to the first position; 
however, this prospect will rarely occur). Excessively low 
standards impair performance, too: an underconfident athlete 
with excessively low standards (e.g., μ = 10) despite being 
able to achieve the third place, will be poorly motivated when 
occupying the third place, thus preventing the full potential 
to be realized. The prediction that realistic standards benefit 
performance is novel and requires being assessed empirically.

The notion that maintaining accurate beliefs about one’s 
own standard affords an optimal solution to effort invest-
ment can be assessed within a normative perspective. Invest-
ing effort has benefits in terms or positions gained, but it 
has also costs; thus, effort can be interpreted as a limited 
resource to be invested only when useful. The RBM implies 
that, if one is correctly tuned to the “natural statistics” of 
performance, effort should be invested to a larger degree in 
proximity of the average position. This is because, in natural 
settings, it is around the average position where effort can 
earn the most (this occurs under the assumption that the out-
comes obtained with or without effort differ the most around 
the average position). This argument links to the notion of 
efficient coding, maintaining that the brain faces the problem 
of allocating limited computational resources for encoding 
sensory stimuli. A solution to this problem consists in adapt-
ing sensory systems to the statistical properties of their sig-
nals and hence allocating more resources to process stimuli 
that are typical in an environment (Barlow, 1961; Simoncelli 
& Olshausen, 2001; Wei & Stocker, 2015). Accordingly, 
previous research has established that sensory neurons in 
visual (Laughlin, 1981), auditory (Smith & Lewicki, 2006) 

and olfactory (Kostal et al., 2008) systems best encode those 
signals that occur most frequently.

Our proposal suggests that the optimal allocation of 
effort might parallel the optimal allocation of computational 
resources as in efficient coding, and hence ensure that effort-
investment decisions adapt to environmental statistics. This 
proposal links well with other recent research advancements 
in the fields of behavioural economics and neuroeconomics. 
A strong parallel can be drawn with the notion of efficacy 
of control in the expected value of control model (Shenhav 
et al., 2021). The rationale is that control is a limited (and 
costly) resource and hence one should invest it when it mat-
ters the most. For an athlete that most often occupies the 10th 
position, this average position is where investing control is 
most efficacious in making a difference—and hence where 
more effort should be invested. Another manifestation of the 
capability of the brain to adapt to environmental statistics is 
adaptive gain control, or the adaptation (e.g., normalization) 
of the gain of neural firing of sensory systems to background 
levels of stimulation (Carandini & Heeger, 2012). Previous 
research has shown that sensory gain can adapt on a fast time 
scale during decision-making, coming to reflect the average 
of the available evidence (Cheadle et al., 2014). Furthermore, 
sensory gain can be modulated to improve sensory infor-
mation processing when both high choice accuracy and fast 
responses are desirable—but this comes at a cost, akin to the 
costs of investing effort or control. Hence, it is optimal to 
invest more effort in enhancing sensory gain when there is 
more reward to earn (Manohar et al., 2015).

Taken together, these diverse lines of research suggest that 
similar optimality principles might underlie the allocation of 
limited and costly resources like effort, control, and sensory 
gain—and that all the brain systems that regulate cost-based 
computations benefit from a good fit to environmental statis-
tics, akin to what emerges from our simulation in Fig. 4.

How standards are shaped by experience

Where do the parameters of the RBM come from? Expe-
rience arguably plays a key role. Here we explore how 
experience might shape the standard parameter μ. A 
possibility is that standards can be updated even within 
a single race, implying that the very same position can 
be assessed very differently at the start or at the end of 
a race. Let assume that μt corresponds to the standard 
parameter for time t. The following delta-rule can be pro-
posed to calculate μt + 1, corresponding to the standard 
parameter for time t + 1:

where the parameter α is a learning rate bounded between 
zero and one (remember that  Pt indicates the position 

(9)�t+1 = �t + �

(

Pt − �t

)

,
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occupied at time t). Let us examine the impact of having 
different values for the learning rate parameter. Figure 5 
describes four agents all occupying the 15th position dur-
ing the initial four time points, reaching the fifth position 
from Time Point 5 to 13, and moving back to the 15th posi-
tion from time 14 to 20. Agents start with the same standard 
μ1 = 15 but have different learning rates, ranging from zero 
to one (from the left to the right of the figure). Figure 5 
shows that agents completely lose motivation when jump-
ing to the fifth position (see middle panels), as now all out-
comes look great independent of whether effort is exerted 
or not. However, after some trials, all agents except the first 
one (the agent with null learning rate) adjust their standards 
and acquire motivation again. How many trials are needed 
for this to occur depends on the learning rate: when this is 
equal to one (as for agent four), one single trial is enough. A 
similar effect occurs later in the sequence when agents jump 
back to the 15th position. Now, all outcomes look grim inde-
pendent of whether effort is exerted or not, and motivation 
is lost. Yet again, all agents except the first one (the agent 
with null learning rate) adjust their standards and reacquire 
motivation.

This scenario captures phenomena in sports and other 
contexts where events might change dramatically someone’s 

perspective over time. Our example indicates that a novice 
starting with low standards (μ = 15) who unexpectedly occu-
pies the fifth place might update standards accordingly (with 
μ = 5 now). The novice might end up being disappointed by a 
final placement (say, the sixth place) that would have appeared 
as remarkable at the start. This can be referred to as the “Cin-
derella effect”: At the beginning of the tale, Cinderella is not 
excessively concerned about not joining the ball. Later, she is 
allowed to join, but shortly afterwards she is denied again this 
possibility. Now, the prospect of not joining the ball comes 
with extreme disappointment, although this prospect was not 
even imagined at the beginning of the tale. These examples 
stress how experience influences one’s standards and the ensu-
ing motivation, and how this influence might act in a remark-
ably short time frame (e.g., even within the same race).

Discussion

Excellence in domains such as sport, business, and teaching, 
requires not just skill but also high motivation, and thus high 
willingness to exert effort. What determines motivation, and 
how this can be enhanced, is therefore a key question in all 
the above, and many other, domains. We advance a novel 
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Fig. 5  How the standard is learnt from experience. This shows the 
motivational dynamics of four agents with different learning rate 
(0, 0.3, 0,7, 1, respectively). All agents occupy the 15th position 
during the initial four time points, reaching the fifth position from 
Time Point 5 to 13, and moving back to the 15th position from Time 
14 to 20 (agents start with the same standard μ1 = 15). Each col-

umn describes a different agent and includes three panels. The top 
panel shows the subjective value (SV) associated with the outcome 
expected by exerting effort (red solid line) and expected without 
effort (green dashed line). The middle panel shows the motivation. 
The bottom panel shows the motivational valence. Data are shown for 
different time points (on the x-axis). (Colour figure online)
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theory and computational model of motivation and effort 
allocation, arguing that a reference-based SV is attributed 
to predictions of what can be achieved by exerting different 
levels of effort. Within this framework, the standard about 
performance and the uncertainty about this standard emerge 
as key in determining how valuable effort is in different cir-
cumstances. In keeping with the ancient Greek aphorism 
γνῶϑι σεαυτόν (“know thyself”), the theory predicts that 
setting up realistic standards, and holding them with appro-
priate confidence, is conducive of optimal motivation and 
effort allocation.

Previous research has established that motivation is influ-
enced by incentives in such a way that the willingness to 
exert effort is greater when effort can achieve higher reward 
(Botvinick & Braver, 2015; Kool & Botvinick, 2014, 2018; 
Pezzulo et al., 2018b; Shenhav et al., 2013; Shenhav et al., 
2017). Our theory highlights subjective factors that influ-
ence motivational dynamics and effort investment. It pro-
poses that motivation arises from estimating the SV that 
can be afforded with effort minus the SV expected without 
effort. Crucially, SV is constructed in a reference-based 
manner, thus rendering the value of external incentives fun-
damentally dependent on subjective factors. In this way, the 
theory explains scenarios where extrinsic factors appear as 
insufficient for explaining effort investment, such as condi-
tions when motivation is lost or gained although the objec-
tive rewards at stake remain the same. By the same token, 
our proposal links well to other theories that highlight the 
importance of intrinsic factors, such as self-efficacy (Ban-
dura, 1977; Moritz et al., 2000), self-determination, and 
the desire to demonstrate competence (Nicholls, 1984), in 
determining motivation—and it provides a formal ground to 
express these intrinsic factors.

Furthermore, the theory helps making sense of the sub-
jective feelings associated with different outcomes. Consid-
ering again the example of sport, the proposal is that the SV 
associated with a given position in a race (e.g., the third) 
depends on one’s own standard, implying that reaching this 
position will be evaluated very differently by different indi-
viduals (e.g., athletes expecting the tenth and first position, 
respectively). The same holds for supporters of a sports-
man or team who unexpectedly exceeds or fails to meet 
their expectations. The theory fits with common reports of 
athletes who consistently maintain high standards—namely, 
reports that for these athletes the negative feelings associated 
with (unexpected) failures are much greater than the posi-
tive feelings associated with (expected) successes. As the 
famous tennis player Andre Agassi wrote: “A win doesn’t 
feel as good as a loss feels bad, and the good feeling doesn’t 
last long as the bad. Not even close” (Agassi, 2011). To 
avoid such negative feelings, a strategy is maintaining very 
low standards, and some athletes may be tempted to adopt 
this strategy even at the expense of performance. According 

to the theory, a similar deterioration of performance arises 
when standards are too high. Altogether, realistic stand-
ards—namely, those that match the actual athlete’s ability, 
are identified by the theory as those more beneficial for moti-
vation and performance.

Although we have so far assumed that the higher the 
motivation and the better the performance, this assump-
tion might need to be nuanced. This is because the theory 
distinguishes between a positive and negative motivational 
valence, the former at play when one is driven by gaining 
positions, the latter when one is driven by avoiding los-
ing positions. A possibility is that, when the motivational 
valence is negative, stress or Pavlovian aversive reactions 
such as fight/flight or freezing might arise, with a detrimen-
tal impact upon performance (Jones & Hardy, 1990). This 
possibility is supported by empirical evidence showing that, 
in some aversive circumstances, people often “choke under 
pressure” (Baumeister, 1984) and display poor performance 
despite being highly motivated.

A key assumption of the RBM is that SV depends on a 
logistic function (Rigoli, 2019; Woodford, 2012). This for-
mulation has several advantages over alternatives such as 
standard expected utility (e.g., based on an exponential value 
function) or prospect theory (Kahneman & Tversky, 1979). 
Expected utility theory is unsuitable to capture reference 
effects, which are the focus of the RBM; thus, an exponential 
value function (or analogous functions proposed by standard 
expected utility) appears as being inappropriate in this con-
text. On the contrary, by proposing that outcomes are com-
pared against the status quo, prospect theory offers an influ-
ential framework for describing reference effects (Kahneman 
& Tversky, 1979). However, at least three shortcomings of 
prospect theory are worth emphasizing. First, the concept of 
status quo appears as inappropriate to explain why the cur-
rent position influences motivation: If the status quo was the 
critical factor, then motivation would not vary as a function 
of the current position (because the current position can be 
arguably regarded as the status quo). On the contrary, treat-
ing the reference point as an expectation (as captured by 
the standard parameter of the logistic function) allows the 
RBM to predict that motivation varies as a function of the 
current position (Kőszegi & Rabin, 2006). Second, the value 
function proposed by prospect theory does not formally fit 
with the notion of efficient coding, while a logistic func-
tion does (Rigoli, 2019; Woodford, 2012). This is important 
because, by relying on a logistic function, the RBM proposes 
a principled way to interpret effort allocation as analogous 
to efficient coding. Third, in prospect theory the reference 
point alone is responsible for reference effects; there is no 
parameter analogous to the uncertainty σ. This precludes 
prospect theory to capture reference effects observed empiri-
cally (Rigoli, 2019; Rigoli et al., 2016) ensuing from the 
variability of a distribution, and not only from its average 
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(and examined here when assessing the role of the uncer-
tainty parameter σ). For all these reasons, we argue that a 
logistic function, more than the function proposed by pros-
pect theory, offers valuable insight on reference effects at 
play during motivational dynamics.

Prospect theory offers a compelling explanation of the 
empirical phenomenon of loss aversion (Kahneman & Tver-
sky, 1979). A classical experiment in this domain asks par-
ticipants to choose between a safe outcome of zero and a 
50–50 gamble associated with either winning a monetary 
amount or losing the same amount (Tom et al., 2007). Here, 
participants manifest a preference for the safe option. In 
prospect theory, this phenomenon is captured by an asym-
metry in the value function when comparing gains versus 
losses. Is the RBM at all compatible with loss aversion? 
Although an exhaustive answer to this question goes beyond 
the scope of the present paper, we argue that the RBM is 
not necessarily incompatible with loss aversion, for the fol-
lowing reason. A common assumption (shared by prospect 
theory) is that, for participants, the reference point corre-
sponds to an outcome of zero. However, this assumption 
might turn out to be misleading, and participants’ reference 
point might actually correspond to something different. 
Assuming, instead, that participants usually have a refer-
ence point smaller than a zero outcome (captured, in the 
RBM, by a standard parameter smaller than zero), the RBM 
produces loss aversion (e.g., a preference for a safe outcome 
of zero over a 50–50 gamble associated with either winning 
a monetary amount or losing the same amount). Based on 
this consideration, an interesting research avenue is to fully 
explore the RBM in the domain of loss aversion.

The RBM might offer insight about impaired motivational 
processes as observed in mental illness (Rigoli & Martinelli, 
2021; Rigoli et al., 2021). These impairments can be inter-
preted as arising from alterations in the model parameters. 
For example, an excessively high uncertainty about stand-
ards may produce a general loss of motivation, thus failing to 
incentivize (cognitively or physically) effortful behaviour—
as evident for example in apathy and Parkinson’s disease 
(McGuigan et al., 2019). In the brain, an increased uncer-
tainty parameter might be the result of dysfunctions affecting 
neuromodulators such as dopamine, as often observed in 
these disorders (Salamone & Correa, 2012).

To give an idea of how the RBM can be applied to real-
life conditions, the paper has focused on scenarios such as 
races or championships. However, the model aims at offering 
a general explanation of how motivation and the willingness 
to exert effort arise. Formally, it is straightforward to extend 
the model to any context where effort needs to be traded 
off with other incentives (rewards or punishments): Sim-
ply, in the equations above position P needs to be replaced 
with incentive I, where the latter is now a real number (with 
positive and negative numbers corresponding to reward 

and punishment, respectively). Everything else remains the 
same. This more general formulation can be applied to a 
variety of problems in the literature such as foraging or work 
performance.

Finally, we highlight limitations of the RBM in its current 
version. First, the RBM assumes that one single time point 
(the final time point T) matters, while several real-life sce-
narios require integrating outcomes at multiple time points. 
Second, the current version of the RBM assumes that, for 
each effort level, a single outcome is predicted; more real-
istically, the brain might consider a set of outcomes, each 
associated with a specific probability. Third, this model is 
agnostic about the neural processes that underly motivation 
and effort allocation. Evidence indicates that an important 
role in these processes is played by neuromodulators such as 
dopamine, serotonin, and noradrenaline (Basten et al., 2010; 
Meyniel et al., 2013; Niv et al., 2007; Shenhav et al., 2021; 
Silvetti et al., 2018; Skvortsova et al., 2014). Fourth, the 
RBM assumes that the brain explicitly predicts the outcomes 
associated with different effort levels. In the context of a 
race, this requires complex representations such as about 
one’s own ability and the ability of other players; in fact, 
the brain might not rely on such complex representations, 
but rather on simpler heuristics. Many effort allocation set-
tings are social (cooperative or competitive) and require 
predicting the performance of other people (e.g., of com-
petitors) and not just of oneself. Previous research has estab-
lished that, during social tasks, humans infer other people’s 
intentions and, on this basis, predict other people’s actions 
(Knoblich & Flach, 2001; Pezzulo et al., 2018a; Tomasello 
et al., 2005; Yoshida et al., 2008). The question of how pre-
cisely the brain constructs representations of other people’s 
motives and abilities remains outside the scope of the RBM. 
For example, the brain might simply rely on “group-level” 
models, without examining each single agent individually 
(Khalvati et al., 2019; Pezzulo et al., 2013).

In summary, we introduce a theory and computational 
model where motivation and effort allocation arise from 
reference-dependent evaluation processes. The theory sheds 
light on apparently puzzling phenomena in sports and other 
contexts where, unexpectedly, the will to exert effort raises 
or declines despite no apparent change in objective incen-
tives. The theory argues that these phenomena arise because 
of entertaining specific standards about performance and 
specific levels of confidence about these standards. The 
RBM could be potentially applied to a variety of more spe-
cific scenarios, for example for predicting motivation, emo-
tions, and performance of athletes and players—and more 
generally, to study motivational dynamics in a broad variety 
of contexts such as sports, work, learning, and education.
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