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ARTICLE INFO ABSTRACT
Artidf? history: Objective: Pulse Rate Variability (PRV) has been widely used as a surrogate of Heart Rate Variability
Received 27 September 2021 (HRV). However, there are several technical aspects that may affect the extraction of PRV information
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from pulse wave signals such as the photoplethysmogram (PPG). The aim of this study was to evaluate
Accepted 28 February 2022

the effects of changing the algorithm and fiducial points used for determining inter-beat intervals (IBIs),
as well as the PPG sampling rate, from simulated PPG signals with known PRV content.

Igﬁﬁﬁogf:{hysmogmphy Methods: PPG signals were simulated using a proposed model, in which PRV information can be mod-
Pulse rate variability elled. Two independent experiments were performed. First, 5 IBIs detection algorithms and 8 fiducial
Fiducial points points were used for assessing PRV information from the simulated PPG signals, and time-domain and
Inter-beat intervals Poincaré plot indices were extracted and compared to the expected values according to the simulated
Simulation PRV. The best combination of algorithms and fiducial points were determined for each index, using fac-

torial designs. Then, using one of the best combinations, PPG signals were simulated with varying sam-
pling rates. PRV indices were extracted and compared to the expected values using Student t-tests or
Mann-Whitney U-tests.

Results: From the first experiment, it was observed that AVNN and SD2 indices behaved similarly, and
there was no significant influence of the fiducial points used. For other indices, there were several combi-
nations that behaved similarly well, mostly based on the detection of the valleys of the PPG signal. There
were differences according to the quality of the PPG signal. From the second experiment, it was observed
that, for all indices but SDNN, the higher the sampling rate the better. AVNN and SD2 showed no statis-
tical differences even at the lowest evaluated sampling rate (32 Hz), while RMSSD, pNN50, S, SD1 and
SD1/SD2 showed good performance at sampling rates as low as 128 Hz.

Conclusion: The best combination of IBIs detection algorithms and fiducial points differs according to
the application, but those based on the detection of the valleys of the PPG signal tend to show a better
performance. The sampling rate of PPG signals for PRV analysis could be lowered to around 128 Hz,
although it could be further lowered according to the application.

Significance: The standardisation of PRV analysis could increase the reliability of this signal and allow for
the comparison of results obtained from different studies. The obtained results allow for a first approach
to establish guidelines for two important aspects in PRV analysis from PPG signals, i.e. the way the IBIs
are segmented from PPG signals, and the sampling rate that should be used for these analyses. More-
over, a model for simulating PPG signals with PRV information has been proposed, which allows for the
establishing of these guidelines while controlling for other variables, such as the quality of the PPG signal.

© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Pulse rate variability (PRV) refers to the changes in pulse rate
(PR) overtime, when measured from pulse waves such as the

* Corresponding author. photoplethysmogram (PPG), and has been widely used in recent
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decades as an alternative to heart rate variability (HRV) [1]. HRV
assesses the changes of heart rate (HR) measured from the elec-
trocardiogram (ECG) and has been used in different scenarios for
evaluating the cardiac autonomic nervous system (ANS) and its
regulation [2-4]. The assessment of PRV from PPG signals is in-
creasingly gaining attention due to the widespread use of PPG sen-
sors and their capability for obtaining cardiovascular information
in a non-invasive, non-intrusive manner, in addition to the cost-
effectiveness of the PPG devices [5].

Although HRV and PRV originate from similar processes, and
pulse rate (PR) have been found to be a good surrogate of heart
rate (HR) [6], the relationship between HRV and PRV is not
straightforward, and there is still no consensus regarding the va-
lidity of using PRV as a surrogate of HRV [1]. Some researchers
argue that the differences between HRV and PRV are mainly due
to physiological aspects, such as changes of haemodynamics due
to stress or disease [7-10], the different nature of PPG and ECG
signals [1], and the effects on PRV of pulse transit time and other
factors, e.g. external forces on the arterial vessels [11-13]. More-
over, PRV has been found to be present in the absence of HRV, as
shown by Constant et al. [14] and Pellegrino et al. [15], and there
are reports of differences in PRV due to measurement site [16,17].
All of these suggest there are different processes affecting PRV that
are not related to HRV.

Besides physiological differences, other studies have concluded
that the agreement between PRV and HRV may be affected by
technical aspects in the extraction of PRV from pulse waves, such
as the selection of fiducial points for the measurement of pulse-
to-pulse intervals [18-20] and the sampling rate used for the ac-
quisition of the pulse wave signals [21-23]. Moreover, there are no
published guidelines for the extraction of PRV from pulse waves
and the standardisation of the related analyses. Therefore, most
methodologies for PRV studies are based on the guidelines for HRV
assessment from ECG signals, published in 1996 [24].

The studies that have aimed to understand the effects of tech-
nical aspects on PRV results have been performed by comparing
PRV to HRV, which might not be entirely correct due to the intrin-
sic differences between these two variables. The aim of this study
was to establish guidelines for the selection of fiducial points and
detection algorithms, as well as to study the effects of lowering
sampling rate, on PRV indices extracted from simulated PPG sig-
nals, with known PRV values used as gold standards, instead of
HRV extracted from ECG.

2. Materials and methods
2.1. Signal simulation

PPG signals were simulated applying a modified version of the
model proposed by Tang et al. [25,26], which is based on mod-
elling single PPG pulses as the combination of two Gaussian func-
tions with specific parameters (a;, b; and w;) according to the qual-
ity of the PPG waveform. In the model proposed in this study, in-
stead of altering the quality of the PPG waveform, it is possible to
determine the ratio of the a parameters, r, from the two Gaussian
functions, which alters the amplitude of the function and, there-
fore the quality of the PPG cycle. The b and 1 parameters were se-
lected according to what has been suggested in the original model
[26]. The resulting model for the PPG cycle is shown in (1), where
6 corresponds to the four quadrant inverse tangent of the cosine
and sine functions of the duration of the cycle. In this study, both
excellent and acceptable quality PPG signals were simulated, with
ratios of r = 2 and r = 4, respectively.

_0-yq )2 -1 _ (9*#2)2
z=a(e 2 )+ra<e 23 ) (1)
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Fig. 1 illustrates the cardiac cycles generated using this model
with the corresponding ratios for excellent and acceptable quality.
The main difference between excellent and acceptable quality sig-
nals can be observed in the presence or absence of the dicrotic
notch, and its amplitude when compared to the amplitude of the
systolic peak.

An entire PPG signal with any duration can then be simu-
lated by appending simulated pulses, each of them with a deter-
mined duration in order to generate the PRV information. The du-
ration of each cardiac cycle was simulated using a sum of sinu-
soidal waves with randomly generated parameters that fall inside
plausible physiological values. The ranges for these parameters are
shown in Table 1. The resulting function for the randomly gener-
ated PRV information is shown in (2).

2
PRV = PR+ SD Z(sin (2w LF (i)t) + sin (2w HF (i)t)) (2)
i=1

Each of the cardiac cycles simulated using (1), were concate-
nated to create the PPG signal and had a varying duration accord-
ing to the sinusoidal wave generated using (2). As can be seen, the
resulting PRV information contains two frequency components in
the LF and HF bands. This was done to increase the variability of
the frequency spectrum and to alter the area of each of the fre-
quency bands. Further studies should aim to better simulate these
components, but this was out of the scope of this study.

Using this model, PPG signals with varying qualities and with
specific PRV content can be simulated. Fig. 2 depicts excellent and
acceptable PPG signals simulated using the model with the spec-
ified r values, and with known PRV information, which was ran-
domly generated as sinusoidal signals with varying frequency and
amplitude parameters. The randomly generated PRV information
was considered as gold standard for this study. All simulated PPG
signals had 1200 minutes cycles, which is longer than what is usu-
ally used for short-term PRV analysis and was considered sufficient
to observe changes, especially in time-domain and Poincaré plot
indices.

2.2. Experiment 1: Selection of the cardiac cycle detection algorithm
and the fiducial point

2.2.1. Inter-beat intervals detection algorithms and fiducial point
extraction

A first experiment was conducted in order to assess changes in
PRV extracted using different inter-beat intervals (IBIs) detection
algorithms and fiducial points. In this experiment, 20-min PPG sig-
nals were simulated using a 2048 Hz sampling rate, in order to
diminish the effects of a low sampling rate in the detection of the
fiducial points. All data simulation and signal processing was per-
formed in MATLAB (version 2020b).

Five algorithms available in the literature have been imple-
mented for the extraction of inter-beat intervals from the simu-
lated PPG signals, both with excellent and acceptable quality. The
first of these algorithms, HeartPy, was proposed by van Gent et al.
[27]. In this algorithm systolic peaks are detected using an adap-
tive threshold based on a moving average and the determination
of regions of interest (ROIs). The threshold is adapted according to
the instantaneous heart rate and the standard deviation of peak-to-
peak intervals. At the end, detected peaks are corrected based on
outlier detection and rejection using the +30% of the mean dura-
tion of peak-to-peak intervals. The algorithm is robust against sig-
nal clipping and has low-computational load.

The second implemented algorithm was called D2max [28]. The
first steps of this algorithm involve filtering, clipping and squaring
the signal, before generating blocks of interest based on two mov-
ing averages, which are designed based on the expected duration
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Fig. 1. Photoplethysmographic cardiac cycles generated using the proposed mode, using ratios of value (a)
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blue and orange dotted lines illustrate the two Gaussian functions generated, while the black continuous line shows the result of summing these two Gaussian functions,
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Table 1
Ranges for the Pulse Rate Variability (PRV) parameters and the generation of PRV gold standard
values.
Parameter Range Units
Low frequency peak location (LF) 0.04 - 0.15 Hz
High frequency peak location (HF) 0.15 - 0.40 Hz
Average pulse rate (PR) 40 - 200 Beats per minute (bpm)
Standard deviation of pulse rate (SD) 0.05 - 0.08 s

of cardiac cycles and the a point in the second derivative of the
PPG signal. The location of the systolic peak from the PPG signal
is determined as the location of the maximum point in each block
of interest. This algorithm has been shown to be robust against
movement artifacts.

The algorithm proposed by Argiiello Prada and Serna Maldon-
ado has also been implemented in this study [29]. This algorithm,
referred to as Upslopes, detects systolic upslopes instead of systolic
peaks, since this is a constant feature of the PPG morphology re-
gardless of the subject from which the signal is acquired or the
body-site. The approach consists in identifying when there is an
upslope in the signal, which is easily determined by checking if the
amplitude of i-th sample of the signal is higher than the amplitude
of the previous sample, i — 1. A counter is updated until the con-
dition is not met, and the value of the counter determines if the
portion of the signal corresponds to a new pulse or not, depend-
ing on a comparison threshold. If the counter is smaller than the
threshold, the algorithm determines that the current upslope does
not occur due to a new cardiac cycle and starts counting again
from zero. This is a simple algorithm which could be applied in
real-time embedded applications.

Another of the applied algorithms is based on the work pro-
posed by Conn and Borkholder [30], which aims to identify the
onset of the cardiac cycles using Wavelet transform. This method
applies a fifth-scale quadratic spline Wavelet to the PPG, in which
distinct peaks appear at the start of each beat. Using these peaks,
a threshold is generated for identifying the valid range for the PPG
onset, instead of the systolic peaks. Then, the third derivative of
the PPG is obtained, and the first zero-crossing of this signal within
the valid range is assigned as the onset of each pulse. Since it ap-

plies a Wavelet transform, this algorithm is robust to noise and
shows high performance for the identification of PPG onsets.

Finally, the algorithm proposed by Li and Dong [31] for the de-
tection of cardiac cycles from arterial blood pressure waveforms
has been applied. The first stage of this algorithm applies a low
pass filter and obtains the derivative of the signal. Thresholds are
also estimated from the filtered signal. Using the first derivative
of the signal, zero-crossings are detected, and beats are evalu-
ated according to the estimated thresholds and the detected zero-
crossings. Then, peaks and onsets are detected from each beat, and
dicrotic notches are also detected using inflection detection. In this
study, the resulting onsets from this algorithm were used to seg-
ment the interbeat intervals.

IBIs longer than 1.25 times the median duration of all the IBIs
were corrected by looking for additional cardiac cycles in each of
these longer windows. IBIs shorter than 0.75 times the median du-
ration of IBIs were also detected and discarded. Then, eight fiducial
points were obtained from each segmented cycle. The extracted
fiducial points were the systolic peak (PKS); the onset, consid-
ered as the minimum point before the systolic peak (ONS); the
onset determined as the intersection point between the tangent
line crossing the onset and the tangent line crossing the maximum
slope point (TI); the location of the maximum point in the first
derivative of the PPG cycle (M1D); the a and b points from the
second derivative of the PPG cycle (A and B, respectively); and the
p1 and p, points obtained from the third derivative of the PPG cy-
cle (P1 and P2, respectively). These fiducial points have been pre-
viously described in the literature [32]. Fig. 3 illustrates the iden-
tification of these fiducial points in a segmented PPG cycle and its
second and third derivatives.
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Fig. 2. Example of photoplethysmographic (PPG) signals simulated using the proposed model and randomly generated pulse rate variability (PRV) information. (a) PPG signal
with excellent quality (r = 2). (b) PPG signal with acceptable quality (r = 4). (c) PRV information used for the generation of these signals.

@

Fig. 3. Fiducial points extracted from each inter-beat interval detected from the photoplethysmographic signals (continuous line), its second derivative (dashed line) and
third derivative (dotted line). Red circle: Systolic peak (PKS); blue circle: Onset (ONS); yellow circle: Tangent intersection point (TI); orange circle: Maximum slope point
(M1D); purple diamond: a point from the second derivative (A); green diamond: b point from the second derivative (B); white star: p; point from the third derivative (P1);

black star: p, point from the third derivative (P2).
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2.2.2. Extraction of pulse rate variability

PRV trends were obtained as the duration of IBIs extracted from
each of the fiducial points, which were in turn obtained from the
cycles segmented using each of the IBI detection algorithms.

Both time-domain and Poincaré plot indices were obtained
from each of the trends. Extracted time-domain indices were the
average value of the normal-to-normal IBIs (AVNN), the standard
deviation of the normal-to-normal IBIs (SDNN), the root mean
square value of the successive difference of normal-to-normal
IBIs (RMSSD), and the proportion of the successive differences of
normal-to-normal IBIs that were longer than 50 ms (pNN50). The
1-lag Poincaré plot was obtained and the ellipse-fitting technique
[33] was applied for the extraction of the area of the ellipse (S),
the short- and long-term variability of the plot (SD1 and SD2, re-
spectively), and the ratio between SD1 and SD2 (SD1/SD2).

2.2.3. Sample size determination

A pilot test was performed to determine the sample size needed
to observe enough differences in the results, this was done as rec-
ommended in the literature [34]. A total of 384 PRV trends were
generated randomly. Time-domain and Poincaré plot indices were
extracted from the generated PRV information, considered as gold
standard. Then, the sample size needed for the identification of dif-
ferences as low as 2% of the mean value obtained for each of the
indices was calculated applying (3) for differences of means, and
used for AVNN, SDNN, RMSSD, S, SD1 and SD2, or (4) for differ-
ences of proportions and used for pNN50 and SD1/SD2 [35]. In this
study, a sample size was obtained for each index with type I and II
errors of &« = 0.05 and B = 0.2, respectively, and with S estimated
as the standard deviation of each index extracted from the PRV
gold standard; p; as the mean value of each index extracted from
the PRV gold standard; u, as 1.02 times 141; p; as the mean value
of the proportions obtained from the PRV gold standard; and p, as
1.02 times p;.

22 ~2p)S
"= (11 — u2)? ®)
o (Zs/2p2(1 = p2) = Zg/P1(1 = p1) + p2(1 — p2))? )

(p1 — p2)?

A final resulting sample size of 125 signals was determined by
selecting a value near the minimum of the resulting sample sizes
obtained for the different indices, since a larger sample size can
also lead to unreliable results in the statistical analyses [36,37].

2.2.4. Identification of the best combination of factors

PRV trends (n = 125) were randomly generated, and excel-
lent and acceptable PPG signals were simulated considering these
trends. These PRV trends are considered as the gold standard for
the subsequent statistical analysis. IBIs were extracted from the
simulated PPG signals using the five algorithms for the detection of
IBIs, and PRV was assessed from each of the eight fiducial points.
Both excellent and acceptable PPG signals were simulated. Since
the aim of this experiment was to determine which algorithms
and fiducial points allowed a more reliable estimation of PRV in-
dices, compared to the indices extracted from the randomly gen-
erated PRV information, the differences between the indices ex-
tracted from the obtained PRV trends and the gold standard PRV
were calculated, and Minitab (version 19.1) was then used to per-
form a factorial analysis to determine which differences were min-
imal. Since the data did not follow a normal distribution, a Box-
Cox transformation [38] was applied before the analysis of vari-
ance (ANOVA) for each extracted index. In the cases in which the
ANOVA showed a difference among factors, post-hoc analyses were
performed using Bonferroni pairwise comparisons.

Computer Methods and Programs in Biomedicine 218 (2022) 106724

Lastly, to determine which combination of algorithms and fidu-
cial points gave the lower differences between measured and gold
standard PRV, the combinations of factors that delivered minimal
differences were obtained for each index after determining which
indices showed a significant interaction between algorithms and
fiducial points.

2.3. Experiment 2: Effects of lowering sampling rate for the
extraction of pulse rate variability

2.3.1. Extraction of pulse rate variability

A second experiment was conducted to evaluate the effects of
lowering sampling rate changes in PRV extracted using the best
combination of IBIs detection algorithms and fiducial points. PPG
signals with duration of 20 minutes were simulated using sam-
pling rates of 32 Hz, 64 Hz, 128 Hz, 256 Hz, 512 Hz, 1024 Hz and
2048 Hz. Then, the combination of IBIs detection algorithm and
fiducial point that performed the best in the previous experiment
for excellent and acceptable PPG signals, was used for extracting
PRV trends and, similarly as in the first experiment, time domain
and Poincaré plot indices were calculated from these trends, and
from the gold standard PRV.

2.3.2. Sample size determination

As performed in the previous experiment, the sample size
needed for the identification of differences as low as 2% of the
results obtained from the gold standard PRV was determined us-
ing (3) and (4). This was done after simulating 384 PRV trends for
each sampling rate. Then, the time domain and Poincaré plot in-
dices were extracted from this PRV data, and the sample size for
each of the indices and each of the sampling rates was determined.
Again, the resulting sample size for this experiment was 125 sig-
nals.

2.3.3. Evaluation of the effects of sampling rate on PRV assessment
PRV trends (n = 125), which are considered as gold standard for
this experiment, were randomly generated for each of the sam-
pling rates considered in this study, and excellent and acceptable
PPG signals were simulated using this information. Therefore, PPG
signals were generated independently for each sampling rate, in-
stead of resampling a single set of PPG signals simulated with a
large sampling rate. From these simulated signals, PRV trends were
extracted and time domain and Poincaré plot indices were mea-
sured. RStudio (version 1.1463) was used to compute the follow-
ing statystical analyses; Student t-tests and Mann-Whitney tests
were used for comparing the indices measured from the extracted
and gold standard PRVs, for normally and non-normally distributed
data, respectively, and normality was assessed using Lilliefors tests.

3. Results

3.1. Experiment 1: Selection of the best combination of cardiac cycles
detection algorithm and fiducial point

After simulating the data, IBIs were extracted from each of
these signals using the algorithms described above, and PRV trends
were measured using each of the fiducial points shown in Fig. 3.
From these trends and the gold standard PRV data, all the pro-
posed indices were extracted and the difference between measure-
ments was assessed. A summary of these differences is presented
in Figs. 4 and 5, for excellent and acceptable PPG signals, respec-
tively. Some of the extracted indices behave differently due to the
algorithms used. For instance, there are differences in pNN50 and
S among algorithms and signal quality. This needs to be considered
when deciding what kind of algorithm to use for a specific analysis
involving these two indices. On the other hand, differences among
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Fig. 5. Summary of the absolute differences between indices measured from gold standard and extracted pulse rate variability from acceptable quality PPG signals.

fiducial points within the same algorithm are not very significant
for AVNN and SD2.

For each index, a factorial analysis was performed, to identify if
there were differences among algorithms and fiducial points, and
to assess whether the interaction between algorithm and fiducial
point showed any statistical significance. Fig. 6 summarises the re-
sults obtained from these factorial analyses. It can be observed that
AVNN and SD2 are the only indices in which the fiducial points
or the interaction between algorithms and fiducial points are not
statistically significant, while all indices have similar behaviour re-
gardless of the quality of the signal, which could be due to the fact
that all the fiducial points extracted in this study belong to the
systolic phase of the cardiac cycle, and this is not highly affected
by the difference in quality in the proposed model. Only fiducial
points from the systolic phase were considered in this study due
to the smooth changes and varying morphologies of the diastolic
phase of the cardiac cycle obtained from PPG signals, and because
the absence of a very distinct point in this phase could introduce
additional errors in the analysis. Moreover, most of the PRV-related

studies reported in the literature make use of the fiducial points
included in the present study.

Since the aim of this experiment was to determine the best
combination of fiducial points and algorithms used for PRV assess-
ment, the differences between indices measured from gold stan-
dard and extracted PRV that did show significant interactions were
determined and organised in ascending order (Figs. 7, 8, 9, 10, 11
and 12). In all cases, the minimum difference between indices ob-
tained from gold standard and extracted PRV were obtained us-
ing D2Max, Upslopes or Wavelet algorithms, and using A and ONS
fiducial points. It is also noticeable that there are differences in
the best combination between excellent and acceptable PPG sig-
nals, with differences being lower in the acceptable quality signals
only for SDNN analysis. Therefore, it is important to determine the
algorithm and fiducial points to use in a given analysis considering
also the quality of the signals used.

Then, post-hoc comparisons were performed among the 5
combinations that showed the lowest differences, to determine
whether there was a significant difference among them (p-value
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Fig. 6. Results obtained from the factorial analyses both with (a) excellent quality PPG signals and (b) acceptable quality PPG signals. Blue bars: Standardised effects of the
algorithm. Orange bars: Standardised effects of the fiducial points. Grey bars: Standardised effects of the interaction between the two factors. Yellow line: Reference value;

higher standardised effects imply significance of the factor or the interaction.
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Fig. 7. Mean value of the absolute differences between SDNN measured from gold standard and extracted pulse rate variability (PRV), measured from excellent (top) and
acceptable (bottom) quality photoplethysmographic signals. Left axis (black, continuous line): Difference to gold standard before Box-Cox transformations. Right axis (orange,

dashed line): Difference to gold standard after Box-Cox transformation.

lower than 5%). These results are shown in Tables 2 and 3. For
all indices, except for pNN50 obtained from acceptable PPG sig-
nals, the first three combinations with lowest differences do not
show any statistical difference. For both excellent and acceptable
PPG, D2max was the more frequent algorithm (15 out of 18 com-
binations), while Delineator for SDNN, and Wavelet and HeartPy
for pNN50 also showed good performance. The only case in which
D2max was not considered the best algorithm was for pNN50, in
which Wavelet and HeartPy showed the best performance and did
not have any statistically significant differences. When the fidu-
cial points are considered, it can be seen that the A, ONS and TI
points showed the best behaviour in all cases. There were statis-
tically significant differences among these fiducial points only for
pNN50 measured from acceptable PPG signals. However, the most
frequency combination of algorithm and fiducial point that gave
the lowest difference between gold standard and extracted PRV
was D2max - A (8 out of 12 cases).

In summary, the algorithm with the best behaviour when com-
pared to gold standard PRV was D2Max, while better results were
obtained using the A point from the second derivative as fidu-
cial point for extraction of interbeat intervals. In most applica-

tions, however, the TI and ONS points should give similarly good
results.

3.2. Experiment 2: Effects of lowering sampling rate for the
extraction of pulse rate variability

Fig. 13 summarises the time-domain and Poincaré plot indices
extracted from the simulated data using different sampling rates.
The red stars on top of the bars indicate statistically significant dif-
ferences with the gold standard. In most cases, indices extracted
from both acceptable and excellent quality simulated PPG signals
showed lower values than those obtained from gold standard PRV.
The standard deviation is similar among the groups and compara-
ble in most cases as well. Importantly, the difference between gold
standard and extracted PRV indices seem to remain stable for most
of the sampling rates analysed, although differences become more
noticeable for sampling rates below 128 Hz.

Most indices showed statistically significant differences to the
gold standard when the sampling rate was 64 Hz, while above 256
Hz only SDNN showed statistically significant differences. The anal-
yses performed in this experiment were based on the extraction
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Fig. 8. Mean value of the absolute differences between RMSSD measured from gold standard and extracted pulse rate variability (PRV), measured from

acceptable (bottom) quality photoplethysmographic signals. Left axis (black, continuous line): Difference to gold standard before Box-Cox transformations.

dashed line): Difference to gold standard after Box-Cox transformation.
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Fig. 9. Mean value of the absolute differences between pNN50 measured from gold standard and extracted pulse rate variability (PRV), measured from

acceptable (bottom) quality photoplethysmographic signals. Left axis (black, continuous line): Difference to gold standard before Box-Cox transformations.

dashed line): Difference to gold standard after Box-Cox transformation.

of PRV information using inter-beat intervals detected with the
D2Max algorithm, and the a point from the second derivative of
PPG as fiducial point.

4. Discussion

PPG-based PRV has been proposed as an alternative to evaluate
cardiovascular autonomic activity, instead of HRV acquired from
ECG signals. However, the relationship between these two variables
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[1,6]. Moreover, although guidelines have been proposed for the
extraction and analysis of HRV information from ECG signals [24],
there is not a standard procedure for the analysis of PRV informa-

tion from pulse wave signals, specifically from PPG. In this study,
the aim was to evaluate how certain technical aspects, i.e. the ex-
traction of inter-beat intervals from PPG signals and the sampling
rate used for the acquisition of these signals, affect the assess-

is not entirely understood, and there is evidence of both physiolog- for evaluating the effects of these technical aspects
ical and technical aspects that may affect PRV differently to HRV ment.

ment of time-domain and Poincaré plot indices from PRV. For this,
a model for simulating PPG signals with varying PRV information
was proposed, and two independent experiments were performed

on PRV assess-
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Fig. 10. Mean value of the absolute differences between S measured from gold standard and extracted pulse rate variability (PRV), measured from excellent (top) and

acceptable (bottom) quality photoplethysmographic signals. Left axis (black, continuous line): Difference to gold standard before Box-Cox transformations.

dashed line): Difference to gold standard after Box-Cox transformation.
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Fig. 11. Mean value of the absolute differences between SD1 measured from gold standard and extracted pulse rate variability (PRV), measured from excellent (top) and
acceptable (bottom) quality photoplethysmographic signals. Left axis (black, continuous line): Difference to gold standard before Box-Cox transformations. Right axis (orange,

dashed line): Difference to gold standard after Box-Cox transformation.

4.1. Simulation of PPG signals with known PRV information

Simulation of PPG signals opens the door for the development
and assessment of novel algorithms and techniques that aid in a
more efficient and reliable analysis of the PPG [25,26]. This is due
to the capability of simulating a large number of signals with vary-
ing features, such as sampling rate, mean heart rate or the quality
of the signal. Moreover, it allows for the analysis of signals in a
controlled environment, in which no physiological or environmen-
tal factors can affect the information obtained from PPG signals.

Different mathematical models have been proposed in the liter-
ature for the simulation of PPG signals. As in the model used for
this study, Tang et al. [25,26] and Martin-Martinez et al. [39] pro-
posed simulating PPG signals based on the summation of two in-
dependent Gaussian functions, whereas other models have used
more Gaussian functions for the simulation and parameter estima-
tion of PPG signals [40-42]. The selection of the 2 Gaussian models
for this study was based on the simplicity for modelling a single
pulse with a given duration. Moreover, the quality of the simulated
signal in the proposed model can be varied by changing the ratio
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Fig. 12. Mean value of the absolute differences between SD1/SD2 measured from gold standard and extracted pulse rate variability (PRV), measured from excellent (top) and
acceptable (bottom) quality photoplethysmographic signals. Left axis (black, continuous line): Difference to gold standard before Box-Cox transformations. Right axis (orange,
dashed line): Difference to gold standard after Box-Cox transformation.
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Fig. 13. Mean and standard deviation values of time-domain and Poincaré plot indices extracted from pulse rate variability (PRV), both from excellent and acceptable quality
simulated photoplethysmographic (PPG) signals, with varying sampling rates. Blue bars: values obtained from gold-standard PRV; orange bars: values obtained from PRV
extracted from excellent quality PPG signals; yellow bars: values obtained from PRV extracted from acceptable quality PPG signals. Red stars indicate statistically significant
difference to gold standard.
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Table 2

Results of the post-hoc comparisons between the combination of algorithms and fiducial points with the five lowest differences to the gold standard for each time-domain index extracted from excellent and acceptable quality

photoplethysmographic (PPG) signals. (-): Non-significant difference. (+): Significant differences.

Index Excellent PPG Acceptable PPG

SDNN d2max - a d2max - ons delineator - ons d2max - ti delineator - a d2max - a d2max - ons delineator - ons d2max - ti delineator - a
d2max - a - - - - + d2max - a - - - - -
d2max - ons - - - - - d2max - ons - - - - -
delineator - ons - - - - - delineator - ons - - - - -
d2max - ti - - - - - d2max - ti - - - - -
delineator - a + - - - - delineator - a - - - - -

RMSSD d2max - a d2max - ons d2max - ti d2max - m1d delineator - ons d2max - a d2max - ons d2max - ti d2max - m1d delineator - ons
d2max - a - - - + + d2max - a - - - + +
d2max - ons - - - + + d2max - ons - - - + +
d2max - ti - - - + + d2max - ti - - - + -
d2max - m1d + + + - - d2max - m1d + + + - -
delineator - ons  + + + - - delineator - ons  + + - - -

pNN50 wavelet - ons d2max - a heartpy - ti wavelet - ti heartpy - ons wavelet - ons d2max - a heartpy - ti wavelet - ti heartpy - ons
wavelet - ons - - - - - wavelet - ons - + - + +
d2max - a - - - - - d2max - a + - + + -
heartpy - ti - - - - - heartpy - ti - + - + +
wavelet - ti - - - - - wavelet - ti + + + - +
heartpy - ons - - - - - heartpy - ons + - + + -

Table 3

Results of the post-hoc comparisons between the combination of algorithms and fiducial points with the five lowest differences to the gold standard for each Poincaré-plot index extracted from excellent and acceptable quality

photoplethysmographic (PPG) signals. (-): Non-significant difference. (+): Significant differences.

Index Excellent PPG Acceptable PPG
S d2max - ons  d2max - ti d2max -a  d2max - m1d d2max - b d2max - ons  d2max - ti d2max -a  d2max - m1d d2max - b
d2max - ons - - - + + d2max - ons - - - + +
d2max - ti - - - + + d2max - ti - - - - +
d2max - a - - - - + d2max - a - - - + +
d2max - m1d + + - - - d2max - m1d + - + - +
d2max - b + + + - - d2max - b + + + + -
SD1 d2max - a d2max - ons d2max - ti d2max - m1d delineator - ons d2max - a d2max - ons d2max - ti d2max - m1d delineator - ons
d2max - a - - - + + d2max - a - - - + +
d2max - ons - - - + + d2max - ons - - - + +
d2max - ti - - - + + d2max - ti - - - + -
d2max - m1d + + + - - d2max - m1d + + + - -
delineator - ons  + + + - - delineator - ons  + + - - -
SD1/SD2 d2max - a d2max - ons d2max - ti  delineator - ons  delineator - ti d2max - a d2max - ons d2max - ti  delineator - ons  delineator - ti
d2max - a - - - + + d2max - a - - - + +
d2max - ons - - - - - d2max - ons - - - - +
d2max - ti - - - - - d2max - ti - - - - -
delineator - ons  + - - - - delineator - ons  + - - - -
delineator - ti —+ - - - - delineator - ti + + - - -

nodvuAy ‘yd puo Aoy W ‘DUON-DION T
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of amplitudes of the Gaussian functions, which allow for the sim-
ulation of PPG signals with varying morphology, which could more
reliably simulate signals acquired from different body sites, such as
the earlobe or the neck [43], or with varying vascular conditions,
such as ageing [44]. Being able to simulate PPG signals with vary-
ing morphology could also allow for other studies, such as the de-
velopment of signal quality indices for PPG signals measured from
different body sites [45].

Since the main aim of this study was to evaluate the effects
of some technical aspects on PRV information extracted from PPG,
the duration of the pulses for the simulated PPG signals were de-
termined using a sinusoidal wave with randomly selected features,
i.e.,, random amplitude, frequency content and offset. Each of these
features were related to specific PRV indices: The amplitude re-
lates to the standard deviation of the inter-beat intervals, SDNN;
the frequency content was determined to belong in the frequency
bands of interest for short-term PRV analysis (i.e. low- and high-
frequency bands, LF and HF); and the offset relates to the average
duration of the inter-beat intervals, AVNN. Therefore, these param-
eters were generated in specific ranges that could be observed in
human beings.

By comparing the results obtained after processing the simu-
lated signals to known features from the simulated PRV informa-
tion, it was possible to evaluate the effects of some of these techni-
cal aspects on PRV, specifically the algorithms and fiducial points
used to detect cardiac cycles and the sampling rate used to ac-
quire PPG signals, in the absence of other confounding factors, such
as movement or respiration. Although these aspects may alter the
technical aspects of PRV analysis, they also have a physiological ef-
fect that may confound results of similar studies when PRV is ob-
tained from real PPG signals and compared to ECG-derived HRV.
Hence, although similar studies can be found in the literature, the
validation of these factors in these studies is based on the compar-
ison between PRV- and HRV-related indices, with HRV extracted
from ECG signals considered as the gold standard. As has been
mentioned, although PRV and HRV have a similar origin and HR
and PR can be used as surrogates [1], HRV and PRV are not al-
ways the same, and by comparing indices extracted from these two
techniques, a bias could be introduced in the results. Hence, using
simulated PPG signals with known PRV information allows for an
unbiased assessment of technical aspects related to the acquisition
and processing of PPG signals for the analysis of PRV information.

4.2. Experiment 1: Selection of the best combination of cardiac cycles
detection algorithm and fiducial point

The first experiment performed in this study aimed to deter-
mine the effects of changing the inter-beat intervals detection al-
gorithm and the fiducial points used for the extraction of PRV from
PPG signals.

In general, it was observed that D2Max outperformed the other
evaluated algorithms, especially when onset-related fiducial points
were used, i.e., the A point from the second derivative of the PPG,
the valley (ONS), and the intersection point of the tangent lines
(TI) of the PPG. On the other hand, the combination of HeartPy and
A points, for excellent PPG quality, and Delineator and P2 points,
for acceptable PPG quality, were the algorithms and fiducial points
that showed the worst performance for extracting PRV indices. In
line with previous studies that have shown that PPG can be used
to reliably estimate HR [6], AVNN and SD2, which has been shown
to reflect the same processes from the PRV [33], did not show a
significant effect when the fiducial points were modified. There-
fore, these indices could be extracted reliably from PRV traces de-
rived using any of these fiducial points.

Although the combination of algorithms and fiducial points se-
lected could affect the extracted indices, it is important to notice
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that most of the best performing combinations did not show sta-
tistically significant differences among them, opening a variety of
options for the extraction of PRV from PPG signals, which could
depend on several factors for the selection of the best combina-
tion for a given application, such as the computing power avail-
able, the indices of interest and the expected signal quality. Other
algorithms and fiducial points have been proposed in the literature,
and could give different results. However, it is evident that fiducial
points related to the onset of the pulse tend to perform better, as
do algorithms that are based on the identification for these points
for the segmentation of inter-beat intervals from the PPG signal.

Similar studies can be found in the literature, in which authors
compared PRV indices extracted from PPG using different fiducial
points for the estimation of inter-beat intervals. Posada-Quintero
et al. [18] and Hemon and Phillips [19] found a better perfor-
mance when PRV was extracted from TI points, while Pinheiro
et al. [46] concluded that using the time instants corresponding
to 50%, 80% and the maximum peak amplitude of the PPG wave-
form resulted in less errors for measuring PRV. Although the re-
sults obtained by Pinheiro et al. do not correspond to those ob-
tained in this experiment, they also concluded that the selection
of the best fiducial point to use depended on the context, which is
in line with the differences observed between PRV extracted from
excellent and acceptable quality PPG signals. This same conclusion
has been achieved by Peralta et al. [47], who found that there are
differences in the performance of PRV extracted from several fidu-
cial points when signals are obtained from the finger and the fore-
head, and they concluded that there is a need to define the fidu-
cial points with best performance under different circumstances.
In their results, they found that the middle amplitude point of
the PPG signal, M1D and TI points have the best accuracy for PRV
analysis. In these studies, however, the comparison was made be-
tween HRV and PRV indices, and the number of signals used in
each study were limited.

Regarding the analysis of the best performing algorithms for
PRV analysis, studies reported in the literature are much more
scarce. In 2020, Argiiello Prada and Paredes Higinio analysed the
differences between a modified version of Upslopes and detecting
cardiac cycles by identifying the maximum of the first derivative
of the PPG signal, to determine PRV from PPG signals with sud-
den decreases in the signal amplitude [48]. They found that the
modified version of their algorithm, which they called MMPD, had
better performance for detecting the sudden amplitude changes in
PPG signals, while also gave better results in terms of PRV, al-
though the differences were relatively small except for pNN50. In a
similar analysis, Koch et al. evaluated the performance of their al-
gorithm for PRV analysis [49]. They applied their algorithm, which
is based on the detection of systolic peaks from the PPG using
artificial neural networks, for the extraction of PRV indices from
PPG signals included in two publicly available databases, and found
that it performed better when compared to two reference algo-
rithms, i.e., an automatic multiscale-based peak detection (AMPD)
and a decision tree-based peak detection (DTPD), especially when
noisy PPG signals were involved. However, in both cases, the de-
tails about how the reference algorithms were applied is not in-
cluded.

In the case of the algorithms used in the present study,
their performance has been evaluated according to their sensi-
tivity (Sen), positive predictivity (P+) and root-mean-square er-
ror (RMSE) for the detection of cardiac cycles. Li et al. found
a Sen of 99.43%, a P+ of 99.45% and an average error rate of
1.14% for Delineator when applied to arterial blood pressure wave-
forms [31]; Conn and Borkholder reported Sen = 99.29% and P+ =
99.23%, with a temporal accuracy of 3.8 + 2.6 ms when their
algorithm, Wavelet, was applied to PPG signals acquired from
13 subjects while exercising on a bike [30]; van Gent et al. re-
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ported RMSE for HeartPy when comparing the developed algo-
rithm against the annotations from a PPG dataset with 20.7 h of
recordings, and found that, when compared against other algo-
rithms available in the literature (i.e., the Pan-Tompkins and HRVAS
ECGViewer algorithms), HeartPy had lower errors for peak location
(0.89 ms), RMSE for peak-to-peak intervals (29.64), RMSE for beats
per minute (3.77) and RMSE for SDSD (167.77) [27]; Elgendi et al.
reported Sen = 99.84% and P+ = 99.89% for D2max, when signals
obtained from 40 healthy subjects under challenging conditions,
and claim that D2max have comparable performance to other algo-
rithms even if it showed lower accuracy [28]; while Argiiello Prada
and Serna Maldonado reported Se = 99.75%, P+ =98.02% and a
Failure Detection Rate (FDR) of 0.02% for Upslopes, concluding that
their algorithm performed better than a benchmark algorithm and
two previous versions of their own algorithm, when tested using
two pediatric PPG recordings [29]. The only case in which an in-
dex from PRV was assessed for any of these algorithms was for
HeartPy, and all of these algorithms were evaluated under differ-
ent circumstances and databases. To the best of the knowledge of
the authors, there have not been any studies that aimed to find the
best combination of algorithms and fiducial points for the extrac-
tion of PRV information from PPG signals.

4.3. Experiment 2: Effects of lowering sampling rate for the
extraction of pulse rate variability

Using lower sampling rates for the extraction of PRV from PPG
signals is highly desirable, especially for the continuous measure-
ment of PRV indices in real-time scenarios using wearable de-
vices or video-based PPG signals. From the second experiment per-
formed in this study, it can be observed that, in most cases, the
higher the sampling rate, the better performance for the extrac-
tion of PRV information. However, for most indices, the sampling
frequency can be lowered to around 128 Hz, compared to the sam-
pling rate suggested for HRV analysis (above 1 kHz [24]). Moreover,
for applications in which obtaining the instant heart rate is the
aim, having sampling rates as low as 32 Hz does not significantly
affect the results. Hence, the selection of sampling rate depends
on the intended application, but can be around 8 times lower than
that suggested for HRV analysis from ECG, which could save re-
sources especially in real-time scenarios.

The results obtained for SDNN show an unexpected behaviour,
in which increasing sampling rate affects the results obtained,
showing a significant difference between the gold standard and
the extracted PRV. More studies should aim to understand this be-
haviour, but it could be related to the way PRV information is be-
ing simulated in the model applied in this study.

Previous studies have aimed to understand how using lower
sampling rates may affect PRV-related indices. Choi and Shin
[21] found that a sampling rate as low as 25 Hz was appropri-
ate for the extraction of several PRV indices, while Ahn and Kim
[50] suggested that the sampling rate of PPG signals should not be
lowered than 500 Hz for PRV analysis, after they compared HRV
and PRV tachograms using cross-correlation. Also, Béres and Hej-
jel [51] found that, as has been observed in this study, the sam-
pling rate needed depends on the indices of interest, with a sam-
pling rate as low as 5 Hz for the estimation of AVNN, and a sam-
pling interval of at least 20 ms for the estimation of SDNN and
RMSSD without interpolation of the PPG signal. In line with this
study, the results obtained suggest that the sampling rate should
be higher than 64 Hz for obtaining reliable results. As before, these
previous studies were performed comparing HRV and PRV indices
from smaller databases, unlike the results obtained in this exper-
iment, in which PRV was compared to a known value and from
a larger database, where the sample size was statistically deter-
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mined. Therefore, there might be differences among the results
and the conclusions that can relate to these two factors.

It is important to mention that reducing the sampling rate be-
low the suggested values does not imply that PRV analysis cannot
be performed. If PPG is acquired using low sampling rates, inter-
polation can be used to increase the performance for PRV mea-
surement, as suggested by Béres, Holczer and Hejjel [51,52], while
other alternatives have been suggested, such as the parabola ap-
proximation method [23,51], curve fitting [53], or other interval
compensation methods [54].

4.4. Limitations of the study

There are some limitations in this study. First of all, regardless
of the benefits of using simulated signals, there are also possible
limitations that can relate to this fact. Specifically, using simulated
PPG signals may not represent the entire variation of the PPG mor-
phology. However, the model used in this study is based on param-
eters obtained from PPG signals obtained from real patients, as ex-
plained in [25,26]. The simulation of PRV information may also af-
fect the results obtained. However, PRV was simulated using physi-
ologically feasible values, which may introduce larger variability of
the PRV but also simulate PRV information that could be obtained
from most of the healthy population. Also, it is important to no-
tice that the simulated PPG signals were almost ideal, without any
noise or additional physiological aspects, such as respiration or ar-
terial stiffness, that could modify the quality of the PPG. These re-
sults, therefore, should later be validated with real data or with
simulated signals which take into account these kind of artefacts
that are usually expected in PPG signals. In addition, the PRV anal-
ysis performed in these studies was limited to time domain and
Poincaré plot indices. While frequency-domain indices are proba-
bly the most common indices used in the literature, it was decided
not to use them in these experiments due to additional parameters
that are needed for performing spectral analysis of PRV informa-
tion, which should also be validated, such as the algorithm used
for spectral analysis; the interpolation used before obtaining the
spectra, if needed; and the number of points used for the assess-
ment of frequency spectra. Further studies should aim to evaluate
and assess the effects of modifying these parameters for frequency-
domain analysis of PRV. Finally, the analysis performed with the
different algorithms did not include any measurement of sensitiv-
ity and specificity for detecting cardiac cycles. This was mainly due
to the fact that there were no annotations regarding cardiac cycle
locations for this analysis, which could be used as reference. More-
over, the aim of the analysis was to obtain the best combination of
algorithms and fiducial points to use specifically for PRV analysis.
The sensitivity and specificity analysis for these algorithms should
be performed in future studies.

5. Conclusion

Pulse rate variability has been largely used for the assessment
of HRV information, although their relationship is not yet clear.
Moreover, the ever-increasing application of PPG sensors and anal-
ysis from wearable and low-cost devices in real life scenarios,
make PRV a valuable variable that could be used for assessing
health and life quality in a continuous manner. However, there has
not been a standardisation of methodologies for the acquisition
and processing of PPG signals for the analysis of PRV. In this study,
simulated PPG signals with known PRV values were used for eval-
uating the performance of inter-beat intervals detection algorithms
and fiducial points, as well as the effects of lowering PPG sampling
rate, for the assessment of PRV indices. It was found that algo-
rithms and fiducial points based on the valley point from the PPG
signal performed better for the extraction of most indices, while
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lowering sampling rates to around 128 Hz allowed for a good es-
timation of all indices except SDNN. Further studies should aim to
evaluate this results in real PPG signals and with PPG signals with
different artefacts. Moreover, frequency-domain indices should be
included after assessing which is the best way to extract frequency
spectra from PRV information.
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