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a b s t r a c t 

Objective: Pulse Rate Variability (PRV) has been widely used as a surrogate of Heart Rate Variability 

(HRV). However, there are several technical aspects that may affect the extraction of PRV information 

from pulse wave signals such as the photoplethysmogram (PPG). The aim of this study was to evaluate 

the effects of changing the algorithm and fiducial points used for determining inter-beat intervals (IBIs), 

as well as the PPG sampling rate, from simulated PPG signals with known PRV content. 

Methods: PPG signals were simulated using a proposed model, in which PRV information can be mod- 

elled. Two independent experiments were performed. First, 5 IBIs detection algorithms and 8 fiducial 

points were used for assessing PRV information from the simulated PPG signals, and time-domain and 

Poincaré plot indices were extracted and compared to the expected values according to the simulated 

PRV. The best combination of algorithms and fiducial points were determined for each index, using fac- 

torial designs. Then, using one of the best combinations, PPG signals were simulated with varying sam- 

pling rates. PRV indices were extracted and compared to the expected values using Student t-tests or 

Mann-Whitney U-tests. 

Results: From the first experiment, it was observed that AVNN and SD2 indices behaved similarly, and 

there was no significant influence of the fiducial points used. For other indices, there were several combi- 

nations that behaved similarly well, mostly based on the detection of the valleys of the PPG signal. There 

were differences according to the quality of the PPG signal. From the second experiment, it was observed 

that, for all indices but SDNN, the higher the sampling rate the better. AVNN and SD2 showed no statis- 

tical differences even at the lowest evaluated sampling rate (32 Hz), while RMSSD, pNN50, S, SD1 and 

SD1/SD2 showed good performance at sampling rates as low as 128 Hz. 

Conclusion: The best combination of IBIs detection algorithms and fiducial points differs according to 

the application, but those based on the detection of the valleys of the PPG signal tend to show a better 

performance. The sampling rate of PPG signals for PRV analysis could be lowered to around 128 Hz, 

although it could be further lowered according to the application. 

Significance: The standardisation of PRV analysis could increase the reliability of this signal and allow for 

the comparison of results obtained from different studies. The obtained results allow for a first approach 

to establish guidelines for two important aspects in PRV analysis from PPG signals, i.e. the way the IBIs 

are segmented from PPG signals, and the sampling rate that should be used for these analyses. More- 

over, a model for simulating PPG signals with PRV information has been proposed, which allows for the 

establishing of these guidelines while controlling for other variables, such as the quality of the PPG signal. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Pulse rate variability (PRV) refers to the changes in pulse rate 

PR) overtime, when measured from pulse waves such as the 

hotoplethysmogram (PPG), and has been widely used in recent 
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ecades as an alternative to heart rate variability (HRV) [1] . HRV 

ssesses the changes of heart rate (HR) measured from the elec- 

rocardiogram (ECG) and has been used in different scenarios for 

valuating the cardiac autonomic nervous system (ANS) and its 

egulation [2–4] . The assessment of PRV from PPG signals is in- 

reasingly gaining attention due to the widespread use of PPG sen- 

ors and their capability for obtaining cardiovascular information 

n a non-invasive, non-intrusive manner, in addition to the cost- 

ffectiveness of the PPG devices [5] . 

Although HRV and PRV originate from similar processes, and 

ulse rate (PR) have been found to be a good surrogate of heart 

ate (HR) [6] , the relationship between HRV and PRV is not 

traightforward, and there is still no consensus regarding the va- 

idity of using PRV as a surrogate of HRV [1] . Some researchers 

rgue that the differences between HRV and PRV are mainly due 

o physiological aspects, such as changes of haemodynamics due 

o stress or disease [7–10] , the different nature of PPG and ECG 

ignals [1] , and the effects on PRV of pulse transit time and other 

actors, e.g. external forces on the arterial vessels [11–13] . More- 

ver, PRV has been found to be present in the absence of HRV, as 

hown by Constant et al. [14] and Pellegrino et al. [15] , and there

re reports of differences in PRV due to measurement site [16,17] . 

ll of these suggest there are different processes affecting PRV that 

re not related to HRV. 

Besides physiological differences, other studies have concluded 

hat the agreement between PRV and HRV may be affected by 

echnical aspects in the extraction of PRV from pulse waves, such 

s the selection of fiducial points for the measurement of pulse- 

o-pulse intervals [18–20] and the sampling rate used for the ac- 

uisition of the pulse wave signals [21–23] . Moreover, there are no 

ublished guidelines for the extraction of PRV from pulse waves 

nd the standardisation of the related analyses. Therefore, most 

ethodologies for PRV studies are based on the guidelines for HRV 

ssessment from ECG signals, published in 1996 [24] . 

The studies that have aimed to understand the effects of tech- 

ical aspects on PRV results have been performed by comparing 

RV to HRV, which might not be entirely correct due to the intrin- 

ic differences between these two variables. The aim of this study 

as to establish guidelines for the selection of fiducial points and 

etection algorithms, as well as to study the effects of lowering 

ampling rate, on PRV indices extracted from simulated PPG sig- 

als, with known PRV values used as gold standards, instead of 

RV extracted from ECG. 

. Materials and methods 

.1. Signal simulation 

PPG signals were simulated applying a modified version of the 

odel proposed by Tang et al. [25,26] , which is based on mod- 

lling single PPG pulses as the combination of two Gaussian func- 

ions with specific parameters ( a i , b i and μi ) according to the qual-

ty of the PPG waveform. In the model proposed in this study, in- 

tead of altering the quality of the PPG waveform, it is possible to 

etermine the ratio of the a parameters, r, from the two Gaussian 

unctions, which alters the amplitude of the function and, there- 

ore the quality of the PPG cycle. The b and μ parameters were se- 

ected according to what has been suggested in the original model 

26] . The resulting model for the PPG cycle is shown in (1) , where

corresponds to the four quadrant inverse tangent of the cosine 

nd sine functions of the duration of the cycle. In this study, both 

xcellent and acceptable quality PPG signals were simulated, with 

atios of r = 2 and r = 4 , respectively. 

 = a 

(
e 

− (θ−μ1 ) 
2 

2 b 2 
1 

)
+ 

1 

r 
a 

(
e 

− (θ−μ2 ) 
2 

2 b 2 
2 

)
(1) 
2 
Fig. 1 illustrates the cardiac cycles generated using this model 

ith the corresponding ratios for excellent and acceptable quality. 

he main difference between excellent and acceptable quality sig- 

als can be observed in the presence or absence of the dicrotic 

otch, and its amplitude when compared to the amplitude of the 

ystolic peak. 

An entire PPG signal with any duration can then be simu- 

ated by appending simulated pulses, each of them with a deter- 

ined duration in order to generate the PRV information. The du- 

ation of each cardiac cycle was simulated using a sum of sinu- 

oidal waves with randomly generated parameters that fall inside 

lausible physiological values. The ranges for these parameters are 

hown in Table 1 . The resulting function for the randomly gener- 

ted PRV information is shown in (2) . 

 RV = P R + SD 

2 ∑ 

i =1 

( sin (2 πLF (i ) t) + sin (2 πHF (i ) t) ) (2) 

Each of the cardiac cycles simulated using (1) , were concate- 

ated to create the PPG signal and had a varying duration accord- 

ng to the sinusoidal wave generated using (2) . As can be seen, the 

esulting PRV information contains two frequency components in 

he LF and HF bands. This was done to increase the variability of 

he frequency spectrum and to alter the area of each of the fre- 

uency bands. Further studies should aim to better simulate these 

omponents, but this was out of the scope of this study. 

Using this model, PPG signals with varying qualities and with 

pecific PRV content can be simulated. Fig. 2 depicts excellent and 

cceptable PPG signals simulated using the model with the spec- 

fied r values, and with known PRV information, which was ran- 

omly generated as sinusoidal signals with varying frequency and 

mplitude parameters. The randomly generated PRV information 

as considered as gold standard for this study. All simulated PPG 

ignals had 1200 minutes cycles, which is longer than what is usu- 

lly used for short-term PRV analysis and was considered sufficient 

o observe changes, especially in time-domain and Poincaré plot 

ndices. 

.2. Experiment 1: Selection of the cardiac cycle detection algorithm 

nd the fiducial point 

.2.1. Inter-beat intervals detection algorithms and fiducial point 

xtraction 

A first experiment was conducted in order to assess changes in 

RV extracted using different inter-beat intervals (IBIs) detection 

lgorithms and fiducial points. In this experiment, 20-min PPG sig- 

als were simulated using a 2048 Hz sampling rate, in order to 

iminish the effects of a low sampling rate in the detection of the 

ducial points. All data simulation and signal processing was per- 

ormed in MATLAB (version 2020b). 

Five algorithms available in the literature have been imple- 

ented for the extraction of inter-beat intervals from the simu- 

ated PPG signals, both with excellent and acceptable quality. The 

rst of these algorithms, HeartPy, was proposed by van Gent et al. 

27] . In this algorithm systolic peaks are detected using an adap- 

ive threshold based on a moving average and the determination 

f regions of interest (ROIs). The threshold is adapted according to 

he instantaneous heart rate and the standard deviation of peak-to- 

eak intervals. At the end, detected peaks are corrected based on 

utlier detection and rejection using the ±30% of the mean dura- 

ion of peak-to-peak intervals. The algorithm is robust against sig- 

al clipping and has low-computational load. 

The second implemented algorithm was called D2max [28] . The 

rst steps of this algorithm involve filtering, clipping and squaring 

he signal, before generating blocks of interest based on two mov- 

ng averages, which are designed based on the expected duration 
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Fig. 1. Photoplethysmographic cardiac cycles generated using the proposed mode, using ratios of value (a) r = 2 (excellent quality), and (b) r = 4 (acceptable quality). The 

blue and orange dotted lines illustrate the two Gaussian functions generated, while the black continuous line shows the result of summing these two Gaussian functions, 

i.e., z. 

Table 1 

Ranges for the Pulse Rate Variability (PRV) parameters and the generation of PRV gold standard 

values. 

Parameter Range Units 

Low frequency peak location (LF) 0.04 - 0.15 Hz 

High frequency peak location (HF) 0.15 - 0.40 Hz 

Average pulse rate (PR) 40 - 200 Beats per minute (bpm) 

Standard deviation of pulse rate (SD) 0.05 - 0.08 s 
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f cardiac cycles and the a point in the second derivative of the 

PG signal. The location of the systolic peak from the PPG signal 

s determined as the location of the maximum point in each block 

f interest. This algorithm has been shown to be robust against 

ovement artifacts. 

The algorithm proposed by Argüello Prada and Serna Maldon- 

do has also been implemented in this study [29] . This algorithm, 

eferred to as Upslopes, detects systolic upslopes instead of systolic 

eaks, since this is a constant feature of the PPG morphology re- 

ardless of the subject from which the signal is acquired or the 

ody-site. The approach consists in identifying when there is an 

pslope in the signal, which is easily determined by checking if the 

mplitude of i -th sample of the signal is higher than the amplitude 

f the previous sample, i − 1 . A counter is updated until the con- 

ition is not met, and the value of the counter determines if the 

ortion of the signal corresponds to a new pulse or not, depend- 

ng on a comparison threshold. If the counter is smaller than the 

hreshold, the algorithm determines that the current upslope does 

ot occur due to a new cardiac cycle and starts counting again 

rom zero. This is a simple algorithm which could be applied in 

eal-time embedded applications. 

Another of the applied algorithms is based on the work pro- 

osed by Conn and Borkholder [30] , which aims to identify the 

nset of the cardiac cycles using Wavelet transform. This method 

pplies a fifth-scale quadratic spline Wavelet to the PPG, in which 

istinct peaks appear at the start of each beat. Using these peaks, 

 threshold is generated for identifying the valid range for the PPG 

nset, instead of the systolic peaks. Then, the third derivative of 

he PPG is obtained, and the first zero-crossing of this signal within 

he valid range is assigned as the onset of each pulse. Since it ap-
3 
lies a Wavelet transform, this algorithm is robust to noise and 

hows high performance for the identification of PPG onsets. 

Finally, the algorithm proposed by Li and Dong [31] for the de- 

ection of cardiac cycles from arterial blood pressure waveforms 

as been applied. The first stage of this algorithm applies a low 

ass filter and obtains the derivative of the signal. Thresholds are 

lso estimated from the filtered signal. Using the first derivative 

f the signal, zero-crossings are detected, and beats are evalu- 

ted according to the estimated thresholds and the detected zero- 

rossings. Then, peaks and onsets are detected from each beat, and 

icrotic notches are also detected using inflection detection. In this 

tudy, the resulting onsets from this algorithm were used to seg- 

ent the interbeat intervals. 

IBIs longer than 1.25 times the median duration of all the IBIs 

ere corrected by looking for additional cardiac cycles in each of 

hese longer windows. IBIs shorter than 0.75 times the median du- 

ation of IBIs were also detected and discarded. Then, eight fiducial 

oints were obtained from each segmented cycle. The extracted 

ducial points were the systolic peak (PKS); the onset, consid- 

red as the minimum point before the systolic peak (ONS); the 

nset determined as the intersection point between the tangent 

ine crossing the onset and the tangent line crossing the maximum 

lope point (TI); the location of the maximum point in the first 

erivative of the PPG cycle (M1D); the a and b points from the 

econd derivative of the PPG cycle (A and B, respectively); and the 

p 1 and p 2 points obtained from the third derivative of the PPG cy- 

le (P1 and P2, respectively). These fiducial points have been pre- 

iously described in the literature [32] . Fig. 3 illustrates the iden- 

ification of these fiducial points in a segmented PPG cycle and its 

econd and third derivatives. 
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Fig. 2. Example of photoplethysmographic (PPG) signals simulated using the proposed model and randomly generated pulse rate variability (PRV) information. (a) PPG signal 

with excellent quality ( r = 2 ). (b) PPG signal with acceptable quality ( r = 4 ). (c) PRV information used for the generation of these signals. 

Fig. 3. Fiducial points extracted from each inter-beat interval detected from the photoplethysmographic signals (continuous line), its second derivative (dashed line) and 

third derivative (dotted line). Red circle: Systolic peak (PKS); blue circle: Onset (ONS); yellow circle: Tangent intersection point (TI); orange circle: Maximum slope point 

(M1D); purple diamond: a point from the second derivative (A); green diamond: b point from the second derivative (B); white star: p 1 point from the third derivative (P1); 

black star: p 2 point from the third derivative (P2). 

4 
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.2.2. Extraction of pulse rate variability 

PRV trends were obtained as the duration of IBIs extracted from 

ach of the fiducial points, which were in turn obtained from the 

ycles segmented using each of the IBI detection algorithms. 

Both time-domain and Poincaré plot indices were obtained 

rom each of the trends. Extracted time-domain indices were the 

verage value of the normal-to-normal IBIs (AVNN), the standard 

eviation of the normal-to-normal IBIs (SDNN), the root mean 

quare value of the successive difference of normal-to-normal 

BIs (RMSSD), and the proportion of the successive differences of 

ormal-to-normal IBIs that were longer than 50 ms (pNN50). The 

-lag Poincaré plot was obtained and the ellipse-fitting technique 

33] was applied for the extraction of the area of the ellipse (S), 

he short- and long-term variability of the plot (SD1 and SD2, re- 

pectively), and the ratio between SD1 and SD2 (SD1/SD2). 

.2.3. Sample size determination 

A pilot test was performed to determine the sample size needed 

o observe enough differences in the results, this was done as rec- 

mmended in the literature [34] . A total of 384 PRV trends were 

enerated randomly. Time-domain and Poincaré plot indices were 

xtracted from the generated PRV information, considered as gold 

tandard. Then, the sample size needed for the identification of dif- 

erences as low as 2% of the mean value obtained for each of the 

ndices was calculated applying (3) for differences of means, and 

sed for AVNN, SDNN, RMSSD, S, SD1 and SD2, or (4) for differ- 

nces of proportions and used for pNN50 and SD1/SD2 [35] . In this 

tudy, a sample size was obtained for each index with type I and II

rrors of α = 0 . 05 and β = 0 . 2 , respectively, and with S estimated

s the standard deviation of each index extracted from the PRV 

old standard; μ1 as the mean value of each index extracted from 

he PRV gold standard; μ2 as 1.02 times μ1 ; p 1 as the mean value 

f the proportions obtained from the PRV gold standard; and p 2 as 

.02 times p 1 . 

 = 

2(Z α
2 

− Z β ) S 

(μ1 − μ2 ) 2 
(3) 

 = 

(Z α
2 

√ 

2 p 2 (1 − p 2 ) − Z β
√ 

p 1 ( 1 − p 1 ) + p 2 (1 − p 2 ) ) 
2 

(p 1 − p 2 ) 2 
(4) 

A final resulting sample size of 125 signals was determined by 

electing a value near the minimum of the resulting sample sizes 

btained for the different indices, since a larger sample size can 

lso lead to unreliable results in the statistical analyses [36,37] . 

.2.4. Identification of the best combination of factors 

PRV trends ( n = 125 ) were randomly generated, and excel- 

ent and acceptable PPG signals were simulated considering these 

rends. These PRV trends are considered as the gold standard for 

he subsequent statistical analysis. IBIs were extracted from the 

imulated PPG signals using the five algorithms for the detection of 

BIs, and PRV was assessed from each of the eight fiducial points. 

oth excellent and acceptable PPG signals were simulated. Since 

he aim of this experiment was to determine which algorithms 

nd fiducial points allowed a more reliable estimation of PRV in- 

ices, compared to the indices extracted from the randomly gen- 

rated PRV information, the differences between the indices ex- 

racted from the obtained PRV trends and the gold standard PRV 

ere calculated, and Minitab (version 19.1) was then used to per- 

orm a factorial analysis to determine which differences were min- 

mal. Since the data did not follow a normal distribution, a Box- 

ox transformation [38] was applied before the analysis of vari- 

nce (ANOVA) for each extracted index. In the cases in which the 

NOVA showed a difference among factors, post-hoc analyses were 

erformed using Bonferroni pairwise comparisons. 
5 
Lastly, to determine which combination of algorithms and fidu- 

ial points gave the lower differences between measured and gold 

tandard PRV, the combinations of factors that delivered minimal 

ifferences were obtained for each index after determining which 

ndices showed a significant interaction between algorithms and 

ducial points. 

.3. Experiment 2: Effects of lowering sampling rate for the 

xtraction of pulse rate variability 

.3.1. Extraction of pulse rate variability 

A second experiment was conducted to evaluate the effects of 

owering sampling rate changes in PRV extracted using the best 

ombination of IBIs detection algorithms and fiducial points. PPG 

ignals with duration of 20 minutes were simulated using sam- 

ling rates of 32 Hz, 64 Hz, 128 Hz, 256 Hz, 512 Hz, 1024 Hz and

048 Hz. Then, the combination of IBIs detection algorithm and 

ducial point that performed the best in the previous experiment 

or excellent and acceptable PPG signals, was used for extracting 

RV trends and, similarly as in the first experiment, time domain 

nd Poincaré plot indices were calculated from these trends, and 

rom the gold standard PRV. 

.3.2. Sample size determination 

As performed in the previous experiment, the sample size 

eeded for the identification of differences as low as 2% of the 

esults obtained from the gold standard PRV was determined us- 

ng (3) and (4) . This was done after simulating 384 PRV trends for 

ach sampling rate. Then, the time domain and Poincaré plot in- 

ices were extracted from this PRV data, and the sample size for 

ach of the indices and each of the sampling rates was determined. 

gain, the resulting sample size for this experiment was 125 sig- 

als. 

.3.3. Evaluation of the effects of sampling rate on PRV assessment 

PRV trends ( n = 125 ), which are considered as gold standard for 

his experiment, were randomly generated for each of the sam- 

ling rates considered in this study, and excellent and acceptable 

PG signals were simulated using this information. Therefore, PPG 

ignals were generated independently for each sampling rate, in- 

tead of resampling a single set of PPG signals simulated with a 

arge sampling rate. From these simulated signals, PRV trends were 

xtracted and time domain and Poincaré plot indices were mea- 

ured. RStudio (version 1.1463) was used to compute the follow- 

ng statystical analyses; Student t-tests and Mann-Whitney tests 

ere used for comparing the indices measured from the extracted 

nd gold standard PRVs, for normally and non-normally distributed 

ata, respectively, and normality was assessed using Lilliefors tests. 

. Results 

.1. Experiment 1: Selection of the best combination of cardiac cycles 

etection algorithm and fiducial point 

After simulating the data, IBIs were extracted from each of 

hese signals using the algorithms described above, and PRV trends 

ere measured using each of the fiducial points shown in Fig. 3 . 

rom these trends and the gold standard PRV data, all the pro- 

osed indices were extracted and the difference between measure- 

ents was assessed. A summary of these differences is presented 

n Figs. 4 and 5 , for excellent and acceptable PPG signals, respec- 

ively. Some of the extracted indices behave differently due to the 

lgorithms used. For instance, there are differences in pNN50 and 

 among algorithms and signal quality. This needs to be considered 

hen deciding what kind of algorithm to use for a specific analysis 

nvolving these two indices. On the other hand, differences among 
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Fig. 4. Summary of the absolute differences between indices measured from gold standard and extracted pulse rate variability from excellent quality PPG signals. 

Fig. 5. Summary of the absolute differences between indices measured from gold standard and extracted pulse rate variability from acceptable quality PPG signals. 
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ducial points within the same algorithm are not very significant 

or AVNN and SD2. 

For each index, a factorial analysis was performed, to identify if 

here were differences among algorithms and fiducial points, and 

o assess whether the interaction between algorithm and fiducial 

oint showed any statistical significance. Fig. 6 summarises the re- 

ults obtained from these factorial analyses. It can be observed that 

VNN and SD2 are the only indices in which the fiducial points 

r the interaction between algorithms and fiducial points are not 

tatistically significant, while all indices have similar behaviour re- 

ardless of the quality of the signal, which could be due to the fact 

hat all the fiducial points extracted in this study belong to the 

ystolic phase of the cardiac cycle, and this is not highly affected 

y the difference in quality in the proposed model. Only fiducial 

oints from the systolic phase were considered in this study due 

o the smooth changes and varying morphologies of the diastolic 

hase of the cardiac cycle obtained from PPG signals, and because 

he absence of a very distinct point in this phase could introduce 

dditional errors in the analysis. Moreover, most of the PRV-related 
6 
tudies reported in the literature make use of the fiducial points 

ncluded in the present study. 

Since the aim of this experiment was to determine the best 

ombination of fiducial points and algorithms used for PRV assess- 

ent, the differences between indices measured from gold stan- 

ard and extracted PRV that did show significant interactions were 

etermined and organised in ascending order ( Figs. 7 , 8 , 9 , 10 , 11

nd 12 ). In all cases, the minimum difference between indices ob- 

ained from gold standard and extracted PRV were obtained us- 

ng D2Max, Upslopes or Wavelet algorithms, and using A and ONS 

ducial points. It is also noticeable that there are differences in 

he best combination between excellent and acceptable PPG sig- 

als, with differences being lower in the acceptable quality signals 

nly for SDNN analysis. Therefore, it is important to determine the 

lgorithm and fiducial points to use in a given analysis considering 

lso the quality of the signals used. 

Then, post-hoc comparisons were performed among the 5 

ombinations that showed the lowest differences, to determine 

hether there was a significant difference among them (p-value 
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Fig. 6. Results obtained from the factorial analyses both with (a) excellent quality PPG signals and (b) acceptable quality PPG signals. Blue bars: Standardised effects of the 

algorithm. Orange bars: Standardised effects of the fiducial points. Grey bars: Standardised effects of the interaction between the two factors. Yellow line: Reference value; 

higher standardised effects imply significance of the factor or the interaction. 

Fig. 7. Mean value of the absolute differences between SDNN measured from gold standard and extracted pulse rate variability (PRV), measured from excellent (top) and 

acceptable (bottom) quality photoplethysmographic signals. Left axis (black, continuous line): Difference to gold standard before Box-Cox transformations. Right axis (orange, 

dashed line): Difference to gold standard after Box-Cox transformation. 
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ower than 5%). These results are shown in Tables 2 and 3 . For

ll indices, except for pNN50 obtained from acceptable PPG sig- 

als, the first three combinations with lowest differences do not 

how any statistical difference. For both excellent and acceptable 

PG, D2max was the more frequent algorithm (15 out of 18 com- 

inations), while Delineator for SDNN, and Wavelet and HeartPy 

or pNN50 also showed good performance. The only case in which 

2max was not considered the best algorithm was for pNN50, in 

hich Wavelet and HeartPy showed the best performance and did 

ot have any statistically significant differences. When the fidu- 

ial points are considered, it can be seen that the A, ONS and TI 

oints showed the best behaviour in all cases. There were statis- 

ically significant differences among these fiducial points only for 

NN50 measured from acceptable PPG signals. However, the most 

requency combination of algorithm and fiducial point that gave 

he lowest difference between gold standard and extracted PRV 

as D2max - A (8 out of 12 cases). 

In summary, the algorithm with the best behaviour when com- 

ared to gold standard PRV was D2Max, while better results were 

btained using the A point from the second derivative as fidu- 

ial point for extraction of interbeat intervals. In most applica- 
7 
ions, however, the TI and ONS points should give similarly good 

esults. 

.2. Experiment 2: Effects of lowering sampling rate for the 

xtraction of pulse rate variability 

Fig. 13 summarises the time-domain and Poincaré plot indices 

xtracted from the simulated data using different sam pling rates. 

he red stars on top of the bars indicate statistically significant dif- 

erences with the gold standard. In most cases, indices extracted 

rom both acceptable and excellent quality simulated PPG signals 

howed lower values than those obtained from gold standard PRV. 

he standard deviation is similar among the groups and compara- 

le in most cases as well. Importantly, the difference between gold 

tandard and extracted PRV indices seem to remain stable for most 

f the sampling rates analysed, although differences become more 

oticeable for sampling rates below 128 Hz. 

Most indices showed statistically significant differences to the 

old standard when the sampling rate was 64 Hz, while above 256 

z only SDNN showed statistically significant differences. The anal- 

ses performed in this experiment were based on the extraction 
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Fig. 8. Mean value of the absolute differences between RMSSD measured from gold standard and extracted pulse rate variability (PRV), measured from excellent (top) and 

acceptable (bottom) quality photoplethysmographic signals. Left axis (black, continuous line): Difference to gold standard before Box-Cox transformations. Right axis (orange, 

dashed line): Difference to gold standard after Box-Cox transformation. 

Fig. 9. Mean value of the absolute differences between pNN50 measured from gold standard and extracted pulse rate variability (PRV), measured from excellent (top) and 

acceptable (bottom) quality photoplethysmographic signals. Left axis (black, continuous line): Difference to gold standard before Box-Cox transformations. Right axis (orange, 

dashed line): Difference to gold standard after Box-Cox transformation. 
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f PRV information using inter-beat intervals detected with the 

2Max algorithm, and the a point from the second derivative of 

PG as fiducial point. 

. Discussion 

PPG-based PRV has been proposed as an alternative to evaluate 

ardiovascular autonomic activity, instead of HRV acquired from 

CG signals. However, the relationship between these two variables 

s not entirely understood, and there is evidence of both physiolog- 

cal and technical aspects that may affect PRV differently to HRV 
8 
1,6] . Moreover, although guidelines have been proposed for the 

xtraction and analysis of HRV information from ECG signals [24] , 

here is not a standard procedure for the analysis of PRV informa- 

ion from pulse wave signals, specifically from PPG. In this study, 

he aim was to evaluate how certain technical aspects, i.e. the ex- 

raction of inter-beat intervals from PPG signals and the sampling 

ate used for the acquisition of these signals, affect the assess- 

ent of time-domain and Poincaré plot indices from PRV. For this, 

 model for simulating PPG signals with varying PRV information 

as proposed, and two independent experiments were performed 

or evaluating the effects of these technical aspects on PRV assess- 

ent. 
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Fig. 10. Mean value of the absolute differences between S measured from gold standard and extracted pulse rate variability (PRV), measured from excellent (top) and 

acceptable (bottom) quality photoplethysmographic signals. Left axis (black, continuous line): Difference to gold standard before Box-Cox transformations. Right axis (orange, 

dashed line): Difference to gold standard after Box-Cox transformation. 

Fig. 11. Mean value of the absolute differences between SD1 measured from gold standard and extracted pulse rate variability (PRV), measured from excellent (top) and 

acceptable (bottom) quality photoplethysmographic signals. Left axis (black, continuous line): Difference to gold standard before Box-Cox transformations. Right axis (orange, 

dashed line): Difference to gold standard after Box-Cox transformation. 
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.1. Simulation of PPG signals with known PRV information 

Simulation of PPG signals opens the door for the development 

nd assessment of novel algorithms and techniques that aid in a 

ore efficient and reliable analysis of the PPG [25,26] . This is due 

o the capability of simulating a large number of signals with vary- 

ng features, such as sampling rate, mean heart rate or the quality 

f the signal. Moreover, it allows for the analysis of signals in a 

ontrolled environment, in which no physiological or environmen- 

al factors can affect the information obtained from PPG signals. 
9 
Different mathematical models have been proposed in the liter- 

ture for the simulation of PPG signals. As in the model used for 

his study, Tang et al. [25,26] and Martín-Martínez et al. [39] pro- 

osed simulating PPG signals based on the summation of two in- 

ependent Gaussian functions, whereas other models have used 

ore Gaussian functions for the simulation and parameter estima- 

ion of PPG signals [40–42] . The selection of the 2 Gaussian models 

or this study was based on the simplicity for modelling a single 

ulse with a given duration. Moreover, the quality of the simulated 

ignal in the proposed model can be varied by changing the ratio 
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Fig. 12. Mean value of the absolute differences between SD1/SD2 measured from gold standard and extracted pulse rate variability (PRV), measured from excellent (top) and 

acceptable (bottom) quality photoplethysmographic signals. Left axis (black, continuous line): Difference to gold standard before Box-Cox transformations. Right axis (orange, 

dashed line): Difference to gold standard after Box-Cox transformation. 

Fig. 13. Mean and standard deviation values of time-domain and Poincaré plot indices extracted from pulse rate variability (PRV), both from excellent and acceptable quality 

simulated photoplethysmographic (PPG) signals, with varying sampling rates. Blue bars: values obtained from gold-standard PRV; orange bars: values obtained from PRV 

extracted from excellent quality PPG signals; yellow bars: values obtained from PRV extracted from acceptable quality PPG signals. Red stars indicate statistically significant 

difference to gold standard. 

10 
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Table 2 

Results of the post-hoc comparisons between the combination of algorithms and fiducial points with the five lowest differences to the gold standard for each time-domain index extracted from excellent and acceptable quality 

photoplethysmographic (PPG) signals. (-): Non-significant difference. (+): Significant differences. 

Index Excellent PPG Acceptable PPG 

SDNN d2max - a d2max - ons delineator - ons d2max - ti delineator - a d2max - a d2max - ons delineator - ons d2max - ti delineator - a 

d2max - a - - - - + d2max - a - - - - - 

d2max - ons - - - - - d2max - ons - - - - - 

delineator - ons - - - - - delineator - ons - - - - - 

d2max - ti - - - - - d2max - ti - - - - - 

delineator - a + - - - - delineator - a - - - - - 

RMSSD d2max - a d2max - ons d2max - ti d2max - m1d delineator - ons d2max - a d2max - ons d2max - ti d2max - m1d delineator - ons 

d2max - a - - - + + d2max - a - - - + + 

d2max - ons - - - + + d2max - ons - - - + + 

d2max - ti - - - + + d2max - ti - - - + - 

d2max - m1d + + + - - d2max - m1d + + + - - 

delineator - ons + + + - - delineator - ons + + - - - 

pNN50 wavelet - ons d2max - a heartpy - ti wavelet - ti heartpy - ons wavelet - ons d2max - a heartpy - ti wavelet - ti heartpy - ons 

wavelet - ons - - - - - wavelet - ons - + - + + 

d2max - a - - - - - d2max - a + - + + - 

heartpy - ti - - - - - heartpy - ti - + - + + 

wavelet - ti - - - - - wavelet - ti + + + - + 

heartpy - ons - - - - - heartpy - ons + - + + - 

Table 3 

Results of the post-hoc comparisons between the combination of algorithms and fiducial points with the five lowest differences to the gold standard for each Poincaré-plot index extracted from excellent and acceptable quality 

photoplethysmographic (PPG) signals. (-): Non-significant difference. (+): Significant differences. 

Index Excellent PPG Acceptable PPG 

S d2max - ons d2max - ti d2max - a d2max - m1d d2max - b d2max - ons d2max - ti d2max - a d2max - m1d d2max - b 

d2max - ons - - - + + d2max - ons - - - + + 

d2max - ti - - - + + d2max - ti - - - - + 

d2max - a - - - - + d2max - a - - - + + 

d2max - m1d + + - - - d2max - m1d + - + - + 

d2max - b + + + - - d2max - b + + + + - 

SD1 d2max - a d2max - ons d2max - ti d2max - m1d delineator - ons d2max - a d2max - ons d2max - ti d2max - m1d delineator - ons 

d2max - a - - - + + d2max - a - - - + + 

d2max - ons - - - + + d2max - ons - - - + + 

d2max - ti - - - + + d2max - ti - - - + - 

d2max - m1d + + + - - d2max - m1d + + + - - 

delineator - ons + + + - - delineator - ons + + - - - 

SD1/SD2 d2max - a d2max - ons d2max - ti delineator - ons delineator - ti d2max - a d2max - ons d2max - ti delineator - ons delineator - ti 

d2max - a - - - + + d2max - a - - - + + 

d2max - ons - - - - - d2max - ons - - - - + 

d2max - ti - - - - - d2max - ti - - - - - 

delineator - ons + - - - - delineator - ons + - - - - 

delineator - ti + - - - - delineator - ti + + - - - 

11
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a

1

f amplitudes of the Gaussian functions, which allow for the sim- 

lation of PPG signals with varying morphology, which could more 

eliably simulate signals acquired from different body sites, such as 

he earlobe or the neck [43] , or with varying vascular conditions, 

uch as ageing [44] . Being able to simulate PPG signals with vary- 

ng morphology could also allow for other studies, such as the de- 

elopment of signal quality indices for PPG signals measured from 

ifferent body sites [45] . 

Since the main aim of this study was to evaluate the effects 

f some technical aspects on PRV information extracted from PPG, 

he duration of the pulses for the simulated PPG signals were de- 

ermined using a sinusoidal wave with randomly selected features, 

.e., random amplitude, frequency content and offset. Each of these 

eatures were related to specific PRV indices: The amplitude re- 

ates to the standard deviation of the inter-beat intervals, SDNN; 

he frequency content was determined to belong in the frequency 

ands of interest for short-term PRV analysis (i.e. low- and high- 

requency bands, LF and HF); and the offset relates to the average 

uration of the inter-beat intervals, AVNN. Therefore, these param- 

ters were generated in specific ranges that could be observed in 

uman beings. 

By comparing the results obtained after processing the simu- 

ated signals to known features from the simulated PRV informa- 

ion, it was possible to evaluate the effects of some of these techni- 

al aspects on PRV, specifically the algorithms and fiducial points 

sed to detect cardiac cycles and the sampling rate used to ac- 

uire PPG signals, in the absence of other confounding factors, such 

s movement or respiration. Although these aspects may alter the 

echnical aspects of PRV analysis, they also have a physiological ef- 

ect that may confound results of similar studies when PRV is ob- 

ained from real PPG signals and compared to ECG-derived HRV. 

ence, although similar studies can be found in the literature, the 

alidation of these factors in these studies is based on the compar- 

son between PRV- and HRV-related indices, with HRV extracted 

rom ECG signals considered as the gold standard. As has been 

entioned, although PRV and HRV have a similar origin and HR 

nd PR can be used as surrogates [1] , HRV and PRV are not al-

ays the same, and by comparing indices extracted from these two 

echniques, a bias could be introduced in the results. Hence, using 

imulated PPG signals with known PRV information allows for an 

nbiased assessment of technical aspects related to the acquisition 

nd processing of PPG signals for the analysis of PRV information. 

.2. Experiment 1: Selection of the best combination of cardiac cycles 

etection algorithm and fiducial point 

The first experiment performed in this study aimed to deter- 

ine the effects of changing the inter-beat intervals detection al- 

orithm and the fiducial points used for the extraction of PRV from 

PG signals. 

In general, it was observed that D2Max outperformed the other 

valuated algorithms, especially when onset-related fiducial points 

ere used, i.e., the A point from the second derivative of the PPG, 

he valley (ONS), and the intersection point of the tangent lines 

TI) of the PPG. On the other hand, the combination of HeartPy and 

 points, for excellent PPG quality, and Delineator and P2 points, 

or acceptable PPG quality, were the algorithms and fiducial points 

hat showed the worst performance for extracting PRV indices. In 

ine with previous studies that have shown that PPG can be used 

o reliably estimate HR [6] , AVNN and SD2, which has been shown 

o reflect the same processes from the PRV [33] , did not show a

ignificant effect when the fiducial points were modified. There- 

ore, these indices could be extracted reliably from PRV traces de- 

ived using any of these fiducial points. 

Although the combination of algorithms and fiducial points se- 

ected could affect the extracted indices, it is important to notice 
12 
hat most of the best performing combinations did not show sta- 

istically significant differences among them, opening a variety of 

ptions for the extraction of PRV from PPG signals, which could 

epend on several factors for the selection of the best combina- 

ion for a given application, such as the computing power avail- 

ble, the indices of interest and the expected signal quality. Other 

lgorithms and fiducial points have been proposed in the literature, 

nd could give different results. However, it is evident that fiducial 

oints related to the onset of the pulse tend to perform better, as 

o algorithms that are based on the identification for these points 

or the segmentation of inter-beat intervals from the PPG signal. 

Similar studies can be found in the literature, in which authors 

ompared PRV indices extracted from PPG using different fiducial 

oints for the estimation of inter-beat intervals. Posada-Quintero 

t al. [18] and Hemon and Phillips [19] found a better perfor- 

ance when PRV was extracted from TI points, while Pinheiro 

t al. [46] concluded that using the time instants corresponding 

o 50%, 80% and the maximum peak amplitude of the PPG wave- 

orm resulted in less errors for measuring PRV. Although the re- 

ults obtained by Pinheiro et al. do not correspond to those ob- 

ained in this experiment, they also concluded that the selection 

f the best fiducial point to use depended on the context, which is 

n line with the differences observed between PRV extracted from 

xcellent and acceptable quality PPG signals. This same conclusion 

as been achieved by Peralta et al. [47] , who found that there are

ifferences in the performance of PRV extracted from several fidu- 

ial points when signals are obtained from the finger and the fore- 

ead, and they concluded that there is a need to define the fidu- 

ial points with best performance under different circumstances. 

n their results, they found that the middle amplitude point of 

he PPG signal, M1D and TI points have the best accuracy for PRV 

nalysis. In these studies, however, the comparison was made be- 

ween HRV and PRV indices, and the number of signals used in 

ach study were limited. 

Regarding the analysis of the best performing algorithms for 

RV analysis, studies reported in the literature are much more 

carce. In 2020, Argüello Prada and Paredes Higinio analysed the 

ifferences between a modified version of Upslopes and detecting 

ardiac cycles by identifying the maximum of the first derivative 

f the PPG signal, to determine PRV from PPG signals with sud- 

en decreases in the signal amplitude [48] . They found that the 

odified version of their algorithm, which they called MMPD, had 

etter performance for detecting the sudden amplitude changes in 

PG signals, while also gave better results in terms of PRV, al- 

hough the differences were relatively small except for pNN50. In a 

imilar analysis, Koch et al. evaluated the performance of their al- 

orithm for PRV analysis [49] . They applied their algorithm, which 

s based on the detection of systolic peaks from the PPG using 

rtificial neural networks, for the extraction of PRV indices from 

PG signals included in two publicly available databases, and found 

hat it performed better when compared to two reference algo- 

ithms, i.e., an automatic multiscale-based peak detection (AMPD) 

nd a decision tree-based peak detection (DTPD), especially when 

oisy PPG signals were involved. However, in both cases, the de- 

ails about how the reference algorithms were applied is not in- 

luded. 

In the case of the algorithms used in the present study, 

heir performance has been evaluated according to their sensi- 

ivity ( Sen ), positive predictivity ( P + ) and root-mean-square er- 

or (RMSE) for the detection of cardiac cycles. Li et al. found 

 Sen of 99.43%, a P + of 99.45% and an average error rate of

.14% for Delineator when applied to arterial blood pressure wave- 

orms [31] ; Conn and Borkholder reported Sen = 99 . 29% and P + =
9 . 23% , with a temporal accuracy of 3.8 ± 2.6 ms when their 

lgorithm, Wavelet, was applied to PPG signals acquired from 

3 subjects while exercising on a bike [30] ; van Gent et al. re- 
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orted RMSE for HeartPy when comparing the developed algo- 

ithm against the annotations from a PPG dataset with 20.7 h of 

ecordings, and found that, when compared against other algo- 

ithms available in the literature (i.e., the Pan-Tompkins and HRVAS 

CGViewer algorithms), HeartPy had lower errors for peak location 

0.89 ms), RMSE for peak-to-peak intervals (29.64), RMSE for beats 

er minute (3.77) and RMSE for SDSD (167.77) [27] ; Elgendi et al. 

eported Sen = 99 . 84% and P + = 99 . 89% for D2max, when signals

btained from 40 healthy subjects under challenging conditions, 

nd claim that D2max have comparable performance to other algo- 

ithms even if it showed lower accuracy [28] ; while Argüello Prada 

nd Serna Maldonado reported Se = 99 . 75% , P + = 98 . 02% and a

ailure Detection Rate (FDR) of 0.02% for Upslopes, concluding that 

heir algorithm performed better than a benchmark algorithm and 

wo previous versions of their own algorithm, when tested using 

wo pediatric PPG recordings [29] . The only case in which an in- 

ex from PRV was assessed for any of these algorithms was for 

eartPy, and all of these algorithms were evaluated under differ- 

nt circumstances and databases. To the best of the knowledge of 

he authors, there have not been any studies that aimed to find the 

est combination of algorithms and fiducial points for the extrac- 

ion of PRV information from PPG signals. 

.3. Experiment 2: Effects of lowering sampling rate for the 

xtraction of pulse rate variability 

Using lower sampling rates for the extraction of PRV from PPG 

ignals is highly desirable, especially for the continuous measure- 

ent of PRV indices in real-time scenarios using wearable de- 

ices or video-based PPG signals. From the second experiment per- 

ormed in this study, it can be observed that, in most cases, the 

igher the sampling rate, the better performance for the extrac- 

ion of PRV information. However, for most indices, the sampling 

requency can be lowered to around 128 Hz, compared to the sam- 

ling rate suggested for HRV analysis (above 1 kHz [24] ). Moreover, 

or applications in which obtaining the instant heart rate is the 

im, having sampling rates as low as 32 Hz does not significantly 

ffect the results. Hence, the selection of sampling rate depends 

n the intended application, but can be around 8 times lower than 

hat suggested for HRV analysis from ECG, which could save re- 

ources especially in real-time scenarios. 

The results obtained for SDNN show an unexpected behaviour, 

n which increasing sampling rate affects the results obtained, 

howing a significant difference between the gold standard and 

he extracted PRV. More studies should aim to understand this be- 

aviour, but it could be related to the way PRV information is be- 

ng simulated in the model applied in this study. 

Previous studies have aimed to understand how using lower 

ampling rates may affect PRV-related indices. Choi and Shin 

21] found that a sampling rate as low as 25 Hz was appropri- 

te for the extraction of several PRV indices, while Ahn and Kim 

50] suggested that the sampling rate of PPG signals should not be 

owered than 500 Hz for PRV analysis, after they compared HRV 

nd PRV tachograms using cross-correlation. Also, Béres and Hej- 

el [51] found that, as has been observed in this study, the sam- 

ling rate needed depends on the indices of interest, with a sam- 

ling rate as low as 5 Hz for the estimation of AVNN, and a sam-

ling interval of at least 20 ms for the estimation of SDNN and 

MSSD without interpolation of the PPG signal. In line with this 

tudy, the results obtained suggest that the sampling rate should 

e higher than 64 Hz for obtaining reliable results. As before, these 

revious studies were performed comparing HRV and PRV indices 

rom smaller databases, unlike the results obtained in this exper- 

ment, in which PRV was compared to a known value and from 

 larger database, where the sample size was statistically deter- 
13 
ined. Therefore, there might be differences among the results 

nd the conclusions that can relate to these two factors. 

It is important to mention that reducing the sampling rate be- 

ow the suggested values does not imply that PRV analysis cannot 

e performed. If PPG is acquired using low sampling rates, inter- 

olation can be used to increase the performance for PRV mea- 

urement, as suggested by Béres, Holczer and Hejjel [51,52] , while 

ther alternatives have been suggested, such as the parabola ap- 

roximation method [23,51] , curve fitting [53] , or other interval 

ompensation methods [54] . 

.4. Limitations of the study 

There are some limitations in this study. First of all, regardless 

f the benefits of using simulated signals, there are also possible 

imitations that can relate to this fact. Specifically, using simulated 

PG signals may not represent the entire variation of the PPG mor- 

hology. However, the model used in this study is based on param- 

ters obtained from PPG signals obtained from real patients, as ex- 

lained in [25,26] . The simulation of PRV information may also af- 

ect the results obtained. However, PRV was simulated using physi- 

logically feasible values, which may introduce larger variability of 

he PRV but also simulate PRV information that could be obtained 

rom most of the healthy population. Also, it is important to no- 

ice that the simulated PPG signals were almost ideal, without any 

oise or additional physiological aspects, such as respiration or ar- 

erial stiffness, that could modify the quality of the PPG. These re- 

ults, therefore, should later be validated with real data or with 

imulated signals which take into account these kind of artefacts 

hat are usually expected in PPG signals. In addition, the PRV anal- 

sis performed in these studies was limited to time domain and 

oincaré plot indices. While frequency-domain indices are proba- 

ly the most common indices used in the literature, it was decided 

ot to use them in these experiments due to additional parameters 

hat are needed for performing spectral analysis of PRV informa- 

ion, which should also be validated, such as the algorithm used 

or spectral analysis; the interpolation used before obtaining the 

pectra, if needed; and the number of points used for the assess- 

ent of frequency spectra. Further studies should aim to evaluate 

nd assess the effects of modifying these parameters for frequency- 

omain analysis of PRV. Finally, the analysis performed with the 

ifferent algorithms did not include any measurement of sensitiv- 

ty and specificity for detecting cardiac cycles. This was mainly due 

o the fact that there were no annotations regarding cardiac cycle 

ocations for this analysis, which could be used as reference. More- 

ver, the aim of the analysis was to obtain the best combination of 

lgorithms and fiducial points to use specifically for PRV analysis. 

he sensitivity and specificity analysis for these algorithms should 

e performed in future studies. 

. Conclusion 

Pulse rate variability has been largely used for the assessment 

f HRV information, although their relationship is not yet clear. 

oreover, the ever-increasing application of PPG sensors and anal- 

sis from wearable and low-cost devices in real life scenarios, 

ake PRV a valuable variable that could be used for assessing 

ealth and life quality in a continuous manner. However, there has 

ot been a standardisation of methodologies for the acquisition 

nd processing of PPG signals for the analysis of PRV. In this study, 

imulated PPG signals with known PRV values were used for eval- 

ating the performance of inter-beat intervals detection algorithms 

nd fiducial points, as well as the effects of lowering PPG sampling 

ate, for the assessment of PRV indices. It was found that algo- 

ithms and fiducial points based on the valley point from the PPG 

ignal performed better for the extraction of most indices, while 
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owering sampling rates to around 128 Hz allowed for a good es- 

imation of all indices except SDNN. Further studies should aim to 

valuate this results in real PPG signals and with PPG signals with 

ifferent artefacts. Moreover, frequency-domain indices should be 

ncluded after assessing which is the best way to extract frequency 

pectra from PRV information. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

eferences 

[1] E. Mejía-Mejía, J. May, R. Torres, P. Kyriacou, Pulse rate variability in cardio- 
vascular health: a review on its applications and relationship with heart rate 

variability, Physiol. Meas. 41 (2020) 07TR01, doi: 10.1088/1361-6579/ab998c . 

[2] H. Huikuri, T. Mäkikallio, K. Airaksinen, R. Mitrani, A. Castellanos, R. Myer- 
burg, Measurement of Heart Rate Variability: A Clinical Tool or a Research 

Toy? J. Am. Coll. Cardiol. 34 (7) (1999) 1878–1883, doi: 10.1016/s0735-1097(99) 
00468-4 . 

[3] D. Quintana, Statistical considerations for reporting and planning heart rate 
variability case-control studies, Psychophysiology 54 (3) (2017) 344–349, 

doi: 10.1111/psyp.12798 . 

[4] M. Malik, H. Huikuri, F. Lombardi, G. Schmidt, The purpose of heart rate 
variability measurements, Clin. Aut. Res. 27 (2017) 139–140, doi: 10.1007/ 

s10286- 017- 0416- 8 . 
[5] J. Allen, Photoplethysmography and its application in clinical physiological 

measurement, Physiol. Meas. 28 (2007) R1–R39, doi: 10.1088/0967-3334/28/3/ 
R01 . 

[6] A. Schäfer, J. Vagedes, How accurate is pulse rate variability as an estimate of 
heart rate variability? A review on studies comparing photoplethysmographic 

technology with an electrocardiogram, Int. J. Cardiol. 166 (2013) 15–29, doi: 10. 

1016/j.ijcard.2012.03.119 . 
[7] N.D. Giardino, P.M. Lehrer, R. Edelberg, Comparison of finger plethysmograph 

to ECG in the measurement of heart rate variability, Psychophysiology 39 
(2002) 246–253, doi: 10.1017/S0048577202990049 . 

[8] K. Charlot, J. Cornolo, J.V. Brugniaux, J.P. Richalet, A. Pichon, Interchange- 
ability between heart rate and photoplethysmography variabilities during 

sympathetic stimulations, Physiol. Meas. 30 (2009) 1357–1369, doi: 10.1088/ 

0967-3334/30/12/005 . 
[9] A.H. Khandoker, C.K. Karmakar, M. Palaniswami, Comparison of pulse rate vari- 

ability with heart rate variability during obstructive sleep apnea, Med. Eng. 
Phys. 33 (2011) 204–209, doi: 10.1016/j.medengphy.2010.09.020 . 

[10] E. Mejía-Mejía, J.M. May, M. Elgendi, P.A. Kyriacou, Differential effects of the 
blood pressure state on pulse rate variability and heart rate variability in criti- 

cally ill patients, npj Digit. Med. 4 (2021) 82, doi: 10.1038/s41746- 021- 00447- y .

[11] X. Chen, Y.-Y. Huang, F. Yun, T.-J. Chen, J. Li, Effect of changes in sym pathovagal
balance on the accuracy of heart rate variability obtained from photoplethys- 

mography, Exp. Ther. Med. 10 (2015) 2311–2318, doi: 10.3892/etm.2015.2784 . 
[12] E. Gil, M. Orini, R. Bailón, J.M. Vergara, L. Mainardi, P. Laguna, Photoplethys- 

mography pulse rate variability as a surrogate measurement of heart rate vari- 
ability during non-stationary conditions, Physiol. Meas. 31 (9) (2010) 1271–

1290, doi: 10.1088/0967-3334/31/9/015 . 

[13] I. Trajkovic, F. Scholkmann, M. Wolf, Estimating and validating the interbeat 
intervals of the heart using near-infrared spectroscopy on the human forehead, 

J. Biomed. Opt. 16 (2011) 087002, doi: 10.1117/1.3606560 . 
[14] I. Constant , D. Laude , I. Murat , J.-L. Elghozi , Pulse rate variability is not a sur-

rogate for heart rate variability, Clin. Sci. 97 (1999) 391–397 . 
[15] P.R. Pellegrino, A.M. Schiller, I.H. Zucker, Validation of pulse rate variability as 

a surrogate for heart rate variability in chronically instrumented rabbits, Am. J. 

Physiol. Heart Circ. Physiol. 307 (2014) H97–H109, doi: 10.1152/ajpheart.00898. 
2013 . 

[16] E. Yuda, K. Yamamoto, Y. Yoshida, J. Hayano, Differences in pulse rate vari- 
ability with measurement site, J. Physiol. Anthropol. 39 (2020) 4, doi: 10.1186/ 

s40101- 020- 0214- 1 . 
[17] E. Mejía-Mejía, K. Budidha, T. Abay, J. May, P. Kyriacou, Heart Rate Variabil- 

ity (HRV) and Pulse Rate Variability (PRV) for the Assessment of Autonomic 

Responses, Front. Physiol. 11 (2020) 779, doi: 10.3389/fphys.2020.00779 . 
[18] H.F. Posada-Quintero, D. Delisle-Rodríguez, M.B. Cuadra-Sanz, R.R.F. de la Vara- 

Prieto, Evaluation of pulse rate variability obtained by the pulse onsets of the 
photoplethysmographic signal, Physiol. Meas. 34 (2) (2013) 179–187, doi: 10. 

1088/0967-3334/34/2/179 . 
[19] M.C. Hemon, J.P. Phillips, Comparison of foot finding methods for deriving in- 

stantaneous pulse rates from photoplethysmographic signals, J. Clin. Monit. 
Comput. 30 (2) (2016) 157–168, doi: 10.1007/s10877-015-9695-6 . 

20] A . Alqaraawi, A . Alwosheel, A . Alasaad, Heart rate variability estimation in pho-

toplethysmography signals using Bayesian learning approach, Healthcare Tech- 
nol. Lett. 3 (2) (2016) 136–142, doi: 10.1049/htl.2016.0 0 06 . 

[21] A. Choi, H. Shin, Photoplethysmography sampling frequency: pilot assessment 
ofhow low can we go to analyze pulse rate variability with reliability? Physiol. 

Meas. 38 (3) (2017) 586–600, doi: 10.1088/1361-6579/aa5efa . 
14 
22] L. Hejjel, Comment on ‘Photoplethysmography sampling frequency: pilot as- 
sessment ofhow low can we go to analyze pulse rate variability with reliabil- 

ity?’, Physiol. Meas. 38 (12) (2017) 2249–2251, doi: 10.1088/1361-6579/aa9303 . 
23] H.J. Baek, J. Shin, G. Jin, J. Cho, Reliability of the parabola approx- 

imation method in heart rate variability analysis using low-sampling- 
rate photoplethysmography, J. Med. Syst. 41 (12) (2017) 189, doi: 10.1007/ 

s10916- 017- 0842- 0 . 
24] Task Force of the European Society of Cardiology and The North American So- 

ciety of Pacing and Electrophysiology, Heart rate variability: Standards of mea- 

surement, physiological interpretation, and clinical use, Circulation 93 (1996) 
1043–1065, doi: 10.1161/01.CIR.93.5.1043 . 

25] Q. Tang, Z. Chen, R. Ward, M. Elgendi, Synthetic photoplethysmogram gener- 
ation using two Gaussian functions, Sci. Rep. 10 (2020) 13883, doi: 10.1038/ 

s41598- 020- 69076- x . 
26] Q. Tang, Z. Chen, J. Allen, A. Alian, C. Menon, R. Ward, M. Elgendi, PPGSynth:

An Innovative Toolbox for Synthesizing Regular and Irregular Photoplethys- 

mography Waveforms, Front Med (Lausanne) 7 (2020) 597774, doi: 10.3389/ 
fmed.2020.597774 . 

27] P. van Gent, H. Farah, N. van Nesb, B. Arem, HeartPy: A novel heart rate algo-
rithm for the analysis of noisy signals, Transp. Res. F: Traffic Psychol. Behav. 

66 (2019) 368–378, doi: 10.1016/j.trf.2019.09.015 . 
28] M. Elgendi, I. Norton, M. Brearley, D. Abbott, D. Schuurmans, Systolic peak de- 

tection in acceleration photoplethysmograms measured from emergency re- 

sponders in tropical conditions, PLoS One 8 (10) (2013) e76585, doi: 10.1371/ 
journal.pone.0076585 . 

29] E.A. Prada, R.S. Maldonado, A novel and low-complexity peak detection algo- 
rithm for heart rate estimation from low-amplitude photoplethysmographic 

(PPG) signals, J. Med. Eng. Technol. 42 (8) (2018) 569–577, doi: 10.1080/ 
03091902.2019.1572237 . 

30] N. Conn, D. Borkholder, Wavelet based photoplethysmogram foot delineation 

for heart rate variability applications, in: 2013 IEEE Signal Processing in 
Medicine and Biology Symposium (SPMB), 2013, pp. 1–5, doi: 10.1109/SPMB. 

2013.6736782 . 
[31] B. Li, M. Dong, M. Vai, On an automatic delineator for arterial blood pressure 

waveforms, Biomed. Signal Process. Control 5 (2010) 76–81, doi: 10.1016/j.bspc. 
20 09.06.0 02 . 

32] E. Mejía-Mejía , J. Allen , K. Budidha , C. El-Hajja , P. Kyriacou , P. Charlton , Pho-

toplethysmography signal processing and synthesis, in: P. Kyriacou, J. Allen 
(Eds.), Photoplethysmography: Technology, Signal Analysis, and Applications, 

Elsevier, London, UK, 2021, pp. 69–145 . 
33] A. Khandoker, C. Karmakar, M. Brennan, A. Voss, M. Palaniswami, Poincaré

Plot Methods for Heart Rate Variability Analysis, Springer, New York, NY, 2013, 
doi: 10.1007/978- 1- 4614- 7375- 6 . 

34] S. Alvarado Orellana , Aportes metodológicos en la estimación de tamaños de 

muestra en estudios poblacionales de prevalencia, Universitat Autònoma de 
Barcelona, Cerdanyola del Vallès, Barcelona, 2014 Ph.D. thesis . 

35] K.-M. Colimon , Fundamentos de Epidemiología, 3, ECOE Ediciones, Bogotá, 
Colombia, 2018 . 

36] J. Khalilzadeh, A. Tasci, Large sample size, significance level, and the effect size: 
Solutions to perils of using big data for academic research, Tour. Manag. 62 

(2017) 89–96, doi: 10.1016/j.tourman.2017.03.026 . 
37] R. Kaplan, D. Chambers, R. Glasgow, Big data and large sample size: a cau- 

tionary note on the potential for bias, Clin. Transl. Sci. 7 (4) (2014) 342–346, 

doi: 10.1111/cts.12178 . 
38] G. Box , D. Cox , An analysis of transformations, J. R. Stat. Soc. Series B Stat.

Methodol. (1964) 211–252 . 
39] D. Martín-Martínez, P. Casaseca-de-la Higuera, M. Martín-Fernández, 

C. Alberola-López, “stochastic modeling of the ppg signal: A synthesis- 
by-analysis approach with applications”, IEEE Trans. Biomed. Eng. 60 (9) 

(2013) 2432–2441, doi: 10.1109/TBME.2013.2257770 . 

40] U. Rubins, Finger and ear photoplethysmogram waveform analysis by fitting 
with gaussians, Med. Biol. Eng. Comput 46 (2008) 1271–1276, doi: 10.1007/ 

s11517- 008- 0406- z . 
[41] L. Wang, L. Xu, S. Feng, M.Q.-H. Meng, K. Wang, Multi-gaussian fitting for 

pulse waveform using weighted least squares and multi-criteria decision mak- 
ing method, Comput. Biol. Med. 43 (11) (2013) 1661–1672, doi: 10.1016/j. 

compbiomed.2013.08.004 . 

42] A . Sološenko, A . Petr ̇enasa, V. Marozasa, L. Sörnmo, Modeling of the photo-
plethysmogram during atrial fibrillation, Comput. Biol. Med. 81 (2017) 130–

138, doi: 10.1016/j.compbiomed.2016.12.016 . 
43] P.H. Charlton, J. Mariscal Harana, S. Vennin, Y. Li, P. Chowienczyk, J. Alastruey, 

Modeling arterial pulse waves in healthy aging: a database for in silico eval- 
uation of hemodynamics and pulse wave indexes, Am. J. Physiol. Heart Circ. 

Physiol. 317 (5) (2019) H1062–H1085, doi: 10.1152/ajpheart.00218.201 . 

44] J. Allen, A. Murray, Age-related changes in the characteristics of the pho- 
toplethysmographic pulse shape at various body sites, Physiol. Meas. 21 (2) 

(2003) 297–307, doi: 10.1088/0967-3334/24/2/306 . 
45] M. Nardelli, N. Vanello, G. Galperti, A. Greco, E. Scilingo, Assessing the quality 

of heart rate variability estimated from wrist and finger ppg: A novel approach 
based on cross-mapping method, Sensors (Basel) 20 (2020) 3156, doi: 10.3390/ 

s20113156 . 

46] N. Pinheiro, R. Couceiro, J. Henriques, J. Muehlsteff, I. Quintal, L. Gonçalves, 
P. Carvalho, Can ppg be used for hrv analysis? in: Annu. Int. Conf. IEEE Eng.

Med. Biol. Soc., 2016, pp. 2945–2949, doi: 10.1109/EMBC.2016.7591347 . 
[47] E. Peralta, J. Lazaro, R. Bailon, V. Marozas, E. Gil, Optimal fiducial points 

for pulse rate variability analysis from forehead and finger photoplethys- 

https://doi.org/10.1088/1361-6579/ab998c
https://doi.org/10.1016/s0735-1097(99)00468-4
https://doi.org/10.1111/psyp.12798
https://doi.org/10.1007/s10286-017-0416-8
https://doi.org/10.1088/0967-3334/28/3/R01
https://doi.org/10.1016/j.ijcard.2012.03.119
https://doi.org/10.1017/S0048577202990049
https://doi.org/10.1088/0967-3334/30/12/005
https://doi.org/10.1016/j.medengphy.2010.09.020
https://doi.org/10.1038/s41746-021-00447-y
https://doi.org/10.3892/etm.2015.2784
https://doi.org/10.1088/0967-3334/31/9/015
https://doi.org/10.1117/1.3606560
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0014
https://doi.org/10.1152/ajpheart.00898.2013
https://doi.org/10.1186/s40101-020-0214-1
https://doi.org/10.3389/fphys.2020.00779
https://doi.org/10.1088/0967-3334/34/2/179
https://doi.org/10.1007/s10877-015-9695-6
https://doi.org/10.1049/htl.2016.0006
https://doi.org/10.1088/1361-6579/aa5efa
https://doi.org/10.1088/1361-6579/aa9303
https://doi.org/10.1007/s10916-017-0842-0
https://doi.org/10.1161/01.CIR.93.5.1043
https://doi.org/10.1038/s41598-020-69076-x
https://doi.org/10.3389/fmed.2020.597774
https://doi.org/10.1016/j.trf.2019.09.015
https://doi.org/10.1371/journal.pone.0076585
https://doi.org/10.1080/03091902.2019.1572237
https://doi.org/10.1109/SPMB.2013.6736782
https://doi.org/10.1016/j.bspc.2009.06.002
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0032
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0032
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0032
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0032
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0032
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0032
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0032
https://doi.org/10.1007/978-1-4614-7375-6
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0034
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0034
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0035
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0035
https://doi.org/10.1016/j.tourman.2017.03.026
https://doi.org/10.1111/cts.12178
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0038
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0038
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0038
https://doi.org/10.1109/TBME.2013.2257770
https://doi.org/10.1007/s11517-008-0406-z
https://doi.org/10.1016/j.compbiomed.2013.08.004
https://doi.org/10.1016/j.compbiomed.2016.12.016
https://doi.org/10.1152/ajpheart.00218.201
https://doi.org/10.1088/0967-3334/24/2/306
https://doi.org/10.3390/s20113156
https://doi.org/10.1109/EMBC.2016.7591347


E. Mejía-Mejía, J.M. May and P.A. Kyriacou Computer Methods and Programs in Biomedicine 218 (2022) 106724 

[

[  

[  

[

[

[

mographic signals, Physiol. Meas. 40 (2019) 025007, doi: 10.1088/1361-6579/ 
ab009b . 

48] E. Argüello Prada, A. Paredes Higinio, A low-complexity ppg pulse detec- 
tion method for accurate estimation of the pulse rate variability (prv) dur- 

ing sudden decreases in the signal amplitude, Physiol Meas 41 (2020) 035001, 
doi: 10.1088/1361-6579/ab7878 . 

49] R. Koch, N. Pfeiffer, N. Lang, B. Eskofier, O. Amft, M. Struck, T. Wittenberg, Eval-
uation of hrv estimation algorithms from ppg data using neural networks, Curr 

Dir Biomed Eng 6 (2020) 505–509, doi: 10.1515/cdbme- 2020- 3130 . 

50] J.M. Ahn , J.K. Kim , Effect of the ppg sampling frequency of an iir filter on heart
rate variability parameters, Int. J. Sci. Technol. Res. 9 (3) (2020) 1933–1937 . 

[51] S. Béres, L. Hejjel, The minimal sampling frequency of the photoplethysmo- 
gram for accurate pulse rate variability parameters in healthy volunteers, 

Biomed. Signal Process. Control 68 (2021) 102589, doi: 10.1016/j.bspc.2021. 
102589 . 
15 
52] S. Béres, L. Holczer, L. Hejjel, On the minimal adequate sampling frequency of 
the photoplethysmogram for pulse rate monitoring and heart rate variability 

analysis in mobile and wearable technology, Meas Sci Rev 19 (2019) 232–240, 
doi: 10.2478/msr- 2019- 0030 . 

53] F. Panganiban, F. de Leon, Reducing pulse rate variability computational error 
from a 30 hz photoplethysmography recording, in: 2019 International Sympo- 

sium on Multimedia and Communication Technology (ISMAC), 2019, pp. 1–6, 
doi: 10.1109/ISMAC.2019.8836186 . 

54] K. Watanabe, S. Izumi, Y. Yano, H. Kawaguchi, M. Yoshimoto, Heartbeat inter- 

val error compensation method for low sampling rates photoplethysmography 
sensors, IEICE Trans. Commun. E103-B (2020) 645–652, doi: 10.1587/transcom. 

2019HMP0 0 02 . 

https://doi.org/10.1088/1361-6579/ab009b
https://doi.org/10.1088/1361-6579/ab7878
https://doi.org/10.1515/cdbme-2020-3130
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0050
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0050
http://refhub.elsevier.com/S0169-2607(22)00110-9/sbref0050
https://doi.org/10.1016/j.bspc.2021.102589
https://doi.org/10.2478/msr-2019-0030
https://doi.org/10.1109/ISMAC.2019.8836186
https://doi.org/10.1587/transcom.2019HMP0002

	Effects of using different algorithms and fiducial points for the detection of interbeat intervals, and different sampling rates on the assessment of pulse rate variability from photoplethysmography
	1 Introduction
	2 Materials and methods
	2.1 Signal simulation
	2.2 Experiment 1: Selection of the cardiac cycle detection algorithm and the fiducial point
	2.2.1 Inter-beat intervals detection algorithms and fiducial point extraction
	2.2.2 Extraction of pulse rate variability
	2.2.3 Sample size determination
	2.2.4 Identification of the best combination of factors

	2.3 Experiment 2: Effects of lowering sampling rate for the extraction of pulse rate variability
	2.3.1 Extraction of pulse rate variability
	2.3.2 Sample size determination
	2.3.3 Evaluation of the effects of sampling rate on PRV assessment


	3 Results
	3.1 Experiment 1: Selection of the best combination of cardiac cycles detection algorithm and fiducial point
	3.2 Experiment 2: Effects of lowering sampling rate for the extraction of pulse rate variability

	4 Discussion
	4.1 Simulation of PPG signals with known PRV information
	4.2 Experiment 1: Selection of the best combination of cardiac cycles detection algorithm and fiducial point
	4.3 Experiment 2: Effects of lowering sampling rate for the extraction of pulse rate variability
	4.4 Limitations of the study

	5 Conclusion
	Declaration of Competing Interest
	References


