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Detecting beats in the photoplethysmogram:
benchmarking open-source algorithms

Peter H. Charlton, Kevin Kotzen, Elisa Mejı́a-Mejı́a, Philip J. Aston, Karthik Budidha, Jonathan Mant,
Callum Pettit, Joachim Behar, Member, IEEE , Panicos A. Kyriacou, Senior Member, IEEE

Abstract

The photoplethysmogram (PPG) signal is widely used in pulse oximeters and smartwatches. A fundamental step in
analysing the PPG is the detection of heartbeats. Several PPG beat detection algorithms have been proposed, although
it is not clear which performs best. Objective: This study aimed to: (i) develop a framework with which to design and test
PPG beat detectors; (ii) assess the performance of PPG beat detectors in different use cases; and (iii) investigate how
their performance is affected by patient demographics and physiology. Approach: Fifteen beat detectors were assessed
against electrocardiogram-derived heartbeats using data from eight datasets. Performance was assessed using the
F1 score, which combines sensitivity and positive predictive value. Main results: Eight beat detectors performed well in the
absence of movement with F1 scores of ≥ 90% on hospital data and wearable data collected at rest. Their performance
was poorer during exercise with F1 scores of 55-91%; poorer in neonates than adults with F1 scores of 84-96% in
neonates compared to 98-99% in adults; and poorer in atrial fibrillation (AF) with F1 scores of 92-97% in AF compared
to 99-100% in normal sinus rhythm. Significance: Two PPG beat detectors denoted ‘MSPTD’ and ‘qppg’ performed best,
with complementary performance characteristics. This evidence can be used to inform the choice of PPG beat detector
algorithm. The algorithms, datasets, and assessment framework are freely available.

Index Terms

atrial fibrillation, beat detection, electrocardiogram, heartbeat, photoplethysmography, pulse wave
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FOR SUBMISSION TO PHYSIOLOGICAL MEASUREMENT 2

I. INTRODUCTION

THE photoplethysmogram (PPG) signal is acquired by a range of clinical and consumer devices, from pulse oximeters
to smartwatches [1], [2]. It exhibits a pulse wave for each heartbeat, caused by the ejection of blood from the heart

into the circulation. A wealth of physiological information can be deduced from the timing and shape of PPG pulse waves
[3]. Consequently, a fundamental step in analysing the PPG is to detect individual pulse waves, corresponding to individual
heartbeats. Indeed, several beat detection algorithms have been developed for the PPG, although it is not yet known how their
performance compares.

It is important to assess the performance of beat detectors in different use cases where PPG signals can have different
morphologies and levels of artifact [3]. Specifically, pulse oximeters acquire PPG signals at the finger close to major arteries,
often with little motion artifact. In contrast, smart wearables such as smartwatches and fitness bands acquire the PPG at the
wrist further from major arteries, often in challenging conditions such as during exercise. Assessing the performance of beat
detectors across different use cases would allow one to select the best beat detector for a particular use case, and to understand
its expected performance.

It is also important to investigate the impact of patient demographics and physiology on performance. First, it is important
to assess performance during arrhythmias, since the PPG is now being used to identify atrial fibrillation (AF) [4]. Second,
performance should be compared between ethnicities, as the performance of pulse oximeters has been found to be related
to ethnicity [5]. Third, it is important to assess whether performance differs in babies, who have higher heart rates (HRs)
than adults [6]. Assessing the impact of patient demographics and physiology on performance could highlight areas for future
algorithm development.

This study aimed to: (i) develop an assessment framework with which to design and test PPG beat detectors; (ii) assess the
performance of several beat detectors in different use cases; and (iii) investigate how their performance is affected by patient
demographics and physiology. Fifteen open-source beat detectors were assessed against reference beats from electrocardiogram
(ECG) signals in eight freely available datasets. This study builds on previous work which assessed the performance of four
beat detectors on a single dataset [7], whereas this study assessed fifteen beat detectors across five datasets.

II. MATERIALS AND METHODS

Ethical approval was not required for this study as it used pre-existing, anonymised data.

A. Datasets
The datasets used in this study are summarised in Table I, and are now described. For each dataset, the table indicates the

duration of recordings and the total number of beats used in the analysis (shown for the MPSTD beat detector).
1) Hospital monitoring: A total of six datasets were used to assess performance during hospital monitoring: the CapnoBase

and BIDMC datasets (which contain high-quality data), and four novel datasets extracted from the MIMIC Database (which
contain real-world data).

The CapnoBase and BIDMC datasets were originally designed for developing and assessing PPG signal processing algorithms.
They contain high-quality ECG and PPG signals with little artifact. Therefore, the performance of beat detectors on these datasets
represents the best possible performance that could be expected in hospital monitoring. CapnoBase [8] contains data from 42
paediatric and adult subjects undergoing elective surgery and anaesthesia. BIDMC [9] contains data from 53 adults receiving
critical care on a Medical Intensive Care Unit (46 subjects), Coronary Care Unit (6), or Surgical Intensive Care Unit (1). The
BIDMC dataset was originally derived from the MIMIC-II Database [14], [15].

In addition, four novel datasets were extracted from the MIMIC-III Database [15], [16] for this study. These are named the
‘MIMIC PERform’ Datasets, as they contain (P) PPG, (E) ECG and (R) Respiration signals. These datasets were designed to be
representative of real-world critical care data: their signals contain motion artifact and some low-quality periods. The MIMIC
PERform Training and Testing Datasets each contain data 10 minutes of data from 200 patients, consisting of 100 adults and
100 neonates. The MIMIC PERform Testing Dataset was used to compare performance between adults and neonates in this
study. The MIMIC PERform AF Dataset contains 20 minutes of data from 19 patients in AF, and 16 patients in normal sinus
rhythm (non-AF). It was used to compare performance between AF and normal sinus rhythm. Labels of AF were obtained from
manual annotations by cardiologists [10], [11]. The MIMIC PERform Ethnicity Dataset contains 10 minutes of data from 100
Black and 100 White subjects. It was used to compare performance between Black and White subjects, in keeping with [5]. All
MIMIC PERform Datasets were extracted from the MIMIC-III Waveform Database, except for the Ethnicity Dataset, which
was extracted from the MIMIC-III Matched Waveform Database [17]. Data were extracted by searching for MIMIC records
which met the following criteria: (i) contain the required signals (PPG, ECG, and for all except the AF Dataset, respiration);
(ii) are of sufficient duration (≥ 10 minutes in the case of the Training, Testing and Ethnicity Datasets, and ≥ 20 minutes in
the case of the AF Dataset); and (iii) contain minimal flat line segments (indicating sensor disconnection or saturation). The
MIMIC Perform Datasets are available in [18].
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FOR SUBMISSION TO PHYSIOLOGICAL MEASUREMENT 3

TABLE I
DATASETS USED TO ASSESS THE PERFORMANCE OF PPG BEAT DETECTORS

Dataset Subjects PPG equipment Reference beats Duration (mins):
med (quartiles)

Total beats

Hospital monitoring (high-quality data)
CapnoBase 42 patients undergoing elective

surgery and routine anaesthesia
[8].

Pulse oximeter at 300 Hz (upsam-
pled from 100 Hz during acquisi-
tion)

Manual
annotations
of ECG (300 Hz)

7.7 (7.0 - 7.8) 24,945

BIDMC 53 critically-ill adult patients, a
subset of the MIMIC II dataset
[9].

Bedside monitor at 125 Hz (mostly
finger PPG recordings)

ECG-derived
QRS detections
(125 Hz)

7.4 (6.9 - 7.7) 32,484

Hospital monitoring (real-world data)
MIMIC PERform
Training Dataset

200 critically-ill patients during
routine clinical care (100 adults,
100 neonates).

Bedside monitor at 125 Hz (mostly
finger PPG recordings)

ECG-derived
QRS detections
(125 Hz)

5.7 (3.6 - 7.8) 115,941

MIMIC PERform
Testing Dataset

200 critically-ill patients during
routine clinical care (100 adults,
100 neonates).

Bedside monitor at 125 Hz (mostly
finger PPG recordings)

ECG-derived
QRS detections
(125 Hz)

All:
5.2 (3.4 - 7.9)

Adults:
7.7 (5.1 - 8.7)

Neonates:
4.0 (2.6 - 5.3)

All:
116,585
Adults:
57,013

Neonates:
59,572

MIMIC PERform
AF Dataset

35 critically-ill adults during rou-
tine clinical care (19 in AF, 16
not in AF), using AF labels pro-
vided by cardiologists [10], [11].

Bedside monitor at 125 Hz (mostly
finger PPG recordings)

ECG-derived
QRS detections
(125 Hz)

AF:
17.8 (15.2 - 19.6)

non-AF:
18.6 (17.3 - 19.4)

AF:
29,592

non-AF:
22,477

MIMIC PERform
Ethnicity Dataset

200 critically-ill adults during
routine clinical care (100 of
Black ethnicity, 100 of White).

Bedside monitor at 125 Hz (mostly
finger PPG recordings)

ECG-derived
QRS detections
(125 Hz)

Black:
8.0 (5.6 - 9.3)

White:
7.0 (3.4 - 8.8)

Black:
61,756
White:
51,230

Wearable data during different emotions
WESAD 15 subjects during a laboratory-

based protocol designed to in-
duce different emotions [12].

Wristband (Empatica E4) at 64 Hz
(with corresponding tri-axial ac-
celerometry signals).

ECG-derived
QRS detections
(700 Hz)

Baseline:
19.1 (18.9 - 19.3)

Amusement:
5.8 (5.8 - 5.8)

Meditation:
6.3 (6.1 - 6.3)

Stress:
10.3 (10.1 - 10.8)

Baseline:
20,519

Amusement:
6,213

Meditation:
6,395
Stress:
15,282

Wearable data during activities of daily living
PPG-DaLiA 15 subjects during a protocol of

activities of daily living [13].
Wristband (Empatica E4) at 64 Hz
(with corresponding tri-axial ac-
celerometry signals).

Manual
annotations
of ECG (700 Hz)

Sitting:
9.8 (9.7 - 10.0)

Working:
19.9 (19.7 - 20.5)

Cycling:
7.8 (6.7 - 8.2)

Walking:
10.8 (9.5 - 11.5)

Lunch break:
32.4 (28.7 - 37.2)

Car driving:
15.0 (14.1 - 15.8)

Stair climbing:
7.5 (6.8 - 7.7)
Table soccer:
4.8 (4.5 - 5.2)

Sitting:
9,022

Working:
21,272

Cycling:
13,956

Walking:
15,062

Lunch break:
37,247

Car driving:
18,883

Stair climbing:
12,466

Table soccer:
6,625

2) Wearable data: Two datasets were used, containing wrist PPG signals acquired using a wearable Empatica E4 device.
The WESAD dataset was acquired during a protocol designed to induce different emotions: baseline, meditation, amusement,
and stress. It contains data from 15 subjects, including 3 females, with a median age (lower - upper quartiles) of 27 (26 - 28)
years, and BMI of 23 (22 - 25) kgm−2. The PPG-DaLiA dataset was acquired during a protocol of activities of daily living,
including: sitting, working, cycling, and running. It contains data from 15 subjects, including 3 females aged 28 (24 - 36)
years, with a BMI of 22 (21 - 23) kgm−2, and skin types on the Fitzpatrick scale of: 2 (1 subject), 3 (11 subjects), and 4 (3
subjects).

B. PPG Beat Detection
First, any PPG signals sampled at over 100 Hz were resampled at this frequency to reduce the time for computational

analysis. For signals sampled at multiples of 100 Hz, this was performed using downsampling, and for other signals it was
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FOR SUBMISSION TO PHYSIOLOGICAL MEASUREMENT 4
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Fig. 1. Detecting beats in the photoplethysmogram (PPG): PPG pulse peaks detected by two beat detectors. (a) shows a high quality segment
in which beats were accurately detected by both beat detectors; (b) includes a period of low quality between 1 and 7 s in which the two beat
detectors disagreed. au - arbitrary units

performed using resampling with an antialiasing lowpass filter. Second, signals were band-pass filtered between 0.67 and 8.0
Hz to eliminate non-cardiac frequencies. Third, beats were detected using fifteen open-source PPG beat detectors in turn, as
demonstrated for two beat detectors in Fig. 1. The beat detectors are described in Table II. Beat detection was performed on
20 s windows of PPG signal, overlapping by 5 s. Repeated beat detections due to overlapping windows were eliminated. This
approach ensured that beat detectors were not penalised for missing beats at the start or end of a window. Fourth, windows were
excluded if they contained a flat line lasting more than 0.2 s (typically caused by sensor disconnection or signal ‘clipping’).
The beat detectors are available in [19].

For consistency, each beat detector’s annotations were used to obtain the corresponding middle-amplitude point of the
systolic upslope on each detected PPG pulse wave [39], which was used for analysis. This point has been found to provide
more accurate timings than peaks or onsets [39].

C. Reference ECG Beat Detection
The CapnoBase and PPG-DaLiA datasets contain manual beat annotations which were used as reference beats. In the

remaining datasets reference beats were obtained from simultaneous ECG signals by: (i) detecting beats using two separate
ECG beat detectors; (ii) identifying ‘correct’ beats as those which both beat detectors detected within 150 ms of each other;
and (iii) excluding from the analysis any 20 s windows in which the two beat detectors did not agree. The two beat detectors
were: the ‘jqrs’ ECG beat detector, which is based on the Pan and Tompkins method [40], [41] and the ‘rpeakdetect’ ECG
beat detector [42].

D. Aligning PPG Beats with Reference ECG Beats
PPG and ECG signals were not necessarily precisely aligned, so the timings of PPG-derived beats and reference ECG-

derived beats were aligned as follows. The time difference between each ECG-derived beat and its closest PPG-derived beat
was calculated. Those ECG-derived beats for which the absolute time difference was <150 ms were determined to be correctly
identified. This process was repeated when offsetting the beats by lags of -10 to 10 s, in increments of 20 ms. The lag which
resulted in the highest proportion of correctly identified beats was accepted as the true lag and used to synchronise the timings
of beats. Fig. 2(a) shows an example of this time-alignment.

E. Statistical Analysis
The ability of beat detectors to detect beats was assessed by comparing PPG-derived beats with reference beats. Reference

beats were determined to be correctly identified if the closest PPG-derived beat was within ±150 ms of a reference beat,
as shown in Fig. 2(b). For each recording, the numbers of reference beats (nref ), PPG-derived beats (nPPG), and correctly
identified beats (ncorrect) were used to calculate the following:

sensitivity (%), Se =
ncorrect
nref

× 100 (1)
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FOR SUBMISSION TO PHYSIOLOGICAL MEASUREMENT 5

TABLE II
PPG BEAT DETECTORS

Beat Detector Implementing
Author

Original Author Description

ABD: Automatic
Beat Detection
[20]

P. Charlton M. Aboy et al. The PPG is strongly filtered to retain frequencies around an initial heart rate estimate,
differentiated, and peaks are detected above the 75th percentile. Beats are identified
as peaks in a weakly filtered PPG immediately following each peak identified in the
differentiated signal.

AMPD: Automatic
Multiscale Peak
Detection [21]

P. Charlton F. Scholkmann et
al.

The PPG is detrended and segmented into 6s windows. A local maxima scalogram
(LMS) is calculated: a matrix of random numbers, where the rows correspond to
different scales (ranging from one sample to half the window duration), and the columns
indicate PPG samples. The LMS values are set to zero when a PPG sample is higher
than its neighbours at that particular scale. The LMS is truncated to only include
scales smaller than the scale at which the most local maxima were identified. Beats
are identified as samples which are deemed to be local maxima at all remaining scales.

ATM: Adaptive
Threshold Method
[22], [23]

D. Han H. Shin et al. The PPG is bandpass filtered between 0.5 and 20 Hz. Troughs are identified as local
minima which are below an adaptive threshold. The adaptive threshold increases from
the value of the previous trough, at a rate related to the PPG amplitude. Any troughs
occuring within a period of 0.6 times the previous inter-beat-interval are excluded. The
‘Vmin’ implementation of this beat detector was used, as it performed slightly better
than the ‘Vmax’ implementation in initial testing.

COppg: Percentile
Peak Detector [24]

P. Charlton, C.
Orphanidou,
A. Darrell

C. Orphanidou et
al.

In each 10 s PPG segment, beats are identified as peaks which are sufficiently close to
(or above) the 90th percentile of the PPG signal, using adaptive filtering.

ERMA: Event-
Related Moving
Averages [25]

E. Mejı́a-
Mejı́a

M. Elgendi et al. The PPG is bandpass filtered between 0.5 and 8 Hz, rectified to eliminate values below
zero, and squared. Two moving averages are calculated: (i) MApeak, a moving average
of period 111 ms, emphasising systolic peaks; and (ii) MAbeat, a moving average of
period 667 ms, emphasising individual beats. Beats are identified as maxima within
periods lasting ≥ 111 ms where MApeak >MAbeat + α (where α is a threshold).

HeartPy [26], [27] P. Charlton P. van Gent et al. The PPG is squared and normalised. Peaks are detected as maxima above a moving
average (of period 0.75s). This is repeated for moving averages of different amplitudes,
producing a set of peaks for each amplitude. The set of peaks which produces a plausible
HR and the lowest variability in inter-beat intervals (IBIs) is selected as the set of beats.
Beats which result in outlying IBIs are eliminated.

IMS: Incremental
Merge Segmenta-
tion [28]

M. Pimentel W. Karlen et al. Beats are detected at the end of continuous positive gradient segments (systolic
upslopes) with an acceptable amplitude and duration, where the amplitude thresholds
are adaptively calculated.

MSPTD: Multi-
Scale Peak &
Trough Detection
[29]

S. Bishop S. Bishop & A.
Ercole

A modification of AMPD in which LMS matrices are calculated for both local maxima
and local minima, so the algorithm detects both peaks and onsets. MSPTD also contains
some optimisations to improve computational efficiency.

PDA: Peak
Detection
Algorithm [30]

E. Mejı́a-
Mejı́a

E.J. Argüello
Prada & R.D.
Serna Maldonado

Systolic peaks are identified as peaks which follow an upslope (i.e. period of positive
gradient) lasting ≥ 60% of the duration of the upslope leading to the previously detected
systolic peak.

PWD: Pulse Wave
Delineator [31]

B.N. Li B.N. Li et al. Pulse onsets and pulse peaks are identified from zero-crossing points in the first
derivative of the PPG: onsets are identified as zero-crossing points before a maximal
deflection, and peaks are identified as zero-crossing points immediately following
maximal deflections.

Pulses: PPG Pulses
Detector [32]

J. Lazaro, M.
Llamedo Soria

J. Lazaro et al. Peaks are identified in the differentiated PPG using an adaptive filter set to the amplitude
of the previous peak, and decreases for a period after that peak at a rate dependent on
previous inter-beat intervals. Beats are identified as maxima in the PPG within 300ms
of each peak in the differentiated PPG.

qppg: Adapted
Onset Detector
[33]

W. Zong, G.
Moody, Q. Li

W. Zong Systolic upslopes are detected from a signal generated with a slope sum function, which
sums the magnitudes of the PPG upslopes in the previous 0.17 s. Adaptive thresholding
is used to identify systolic upslopes in this signal. The ’qppgfast’ implementation of
this beat detector was used, after testing showed it performed similarly to the original
’qppg’ implementation.

SPAR: Symmetric
Projection Attrac-
tor Reconstruction
[34]

C. Pettit & P.J.
Aston

C. Pettit et al. The PPG is segmented into 20 s windows and time delay coordinates are used to
represent it in 7-dimensional phase space with the time delay set to one seventh of the
average inter-beat interval. The Symmetric Projection Attractor Reconstruction method
is then used to construct an appropriate 2-dimensional projection of the phase space
[35], [36]. Beats are identified as times at which the orbit crosses the x-axis. This
implementation uses information from previous windows to inform beat detections in
the current window.

SWT: Stationary
Wavelet Transform
[37]

D. Han S. Vadrevu &
M. Sabarimalai
Manikandan

The PPG is decomposed using the Stationary Wavelet Transform. Multi-scale sum and
products of selected detail subbands are calculated to emphasise systolic upslopes. An
envelope is then extracted by: adaptive thresholding to reduce the influence of noise;
calculating the Shannon entropy; and smoothing the result. Finally, beats are identified
in the envelope using a Gaussian derivative filter.

WFD: Wavelet
Foot Delineation
[38]

E. Mejı́a-
Mejı́a

N. Conn & D.
Borkholder

The PPG is bandpass filtered between 0.5 and 8 Hz, and interpolated to 250 Hz. It is
decomposed using a wavelet transform, retaining the fifth wavelet scale for analysis.
This signal is rectified and squared to eliminate values below zero. Regions containing
beats are identified as those where the signal exceeds a low-pass filtered version of the
signal. The timing of the beat within each region is identified as the first zero-crossing
of the third derivative, or failing that, the maximum in the second derivative.
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(a)
-1 0 1 2 3 4 5 6 7

Time (s)
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ECG
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0.68s

(b)
-1 0 1 2 3 4 5 6 7

Time (s)

PPG

ECG

time-

aligned

Tol.
150ms

Fig. 2. Comparing PPG-derived beats with reference beats: (a) Time-alignment of electrocardiogram (ECG) and photoplethysmogram (PPG)
signals. The time lag between ECG and PPG signals (0.6s in this case) was automatically identified from ECG and PPG beat timings. (b) Assessing
the ability of a beat detector to detect beats in the PPG. Those beats detected in the PPG (red circles) which occured within ±150ms of time-aligned
reference ECG beats were deemed to be correct.

positive predictive value (%), PPV =
ncorrect
nPPG

× 100 (2)

F1 Score (%), F1 =
2× PPV × Se

PPV + Se
× 100 (3)

Beat detectors were ranked according to the F1 score, which is the harmonic mean of sensitivity and PPV.
The accuracy of PPG-derived heart rates (HRs) was assessed by comparing PPG-derived HRs to reference ECG-derived

HRs. A HR (in beats per minute, bpm) was calculated at the time of each PPG-derived beat, from the number of PPG-derived
beats in the preceding 8 s window (nbeats), as

HR = 60× nbeats − 1

t(nbeats)− t(1)
(4)

where t denotes the times of PPG-derived beats. Each HR signal was interpolated using sample-and-hold interpolation at 50
Hz. Performance was assessed as the mean absolute percentage error (MAPE) between time series. A median MAPE of <10%
was deemed to be acceptable for HR monitoring. This was based on the acceptable limits of ±10% stated in the AAMI
standard [43] and implemented using the MAPE statistic in [44], although we note that the true threshold of acceptability is
likely to vary between applications [45].

Performance statistics are reported as median (25th - 75th percentiles). The Wilcoxon rank sum test was used to compare
performances between groups, at a significance level of α = 0.05. A Holm-Sidak correction was made to correct for multiple
comparisons.

III. RESULTS

The main results are summarised in Table III. This table reports the performance of beat detectors (F1 score) and their
performance for HR monitoring (HR MAPE). Results are provided for the best-performing beat detectors (found to be MSPTD
and qppg, as detailed in Section III-B), and all beat detectors (reported as the range in performance metrics from the worst to
the best performance).
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Fig. 3. Box plots showing the performance of beat detectors, expressed as the F1 score. Each graph shows the results for each of the beat
detectors on a particular dataset. Performance is shown as the median (circles), inter-quartile range (boxes), and 10th and 90th percentiles
(whiskers) across subjects. See Table II for definitions of beat detectors.
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Fig. 4. Box plots showing the performance of beat detectors, expressed as the heart rate mean absolute percentage error (MAPE). Each graph
shows the results for each of the beat detectors on a particular dataset. Performance is shown as the median (circles), inter-quartile range (boxes),
and 10th and 90th percentiles (whiskers) across subjects. Dashed red lines indicate the acceptable performance of 10% MAPE. See Table II for
definitions of beat detectors.
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TABLE III
THE PERFORMANCE OF BEAT DETECTORS IN DIFFERENT USE CASES

Dataset median F1 score (%) median HR MAPE (%)
MSPTD qppg All (min - max) MSPTD qppg All (min - max)

Hospital Monitoring (high-quality data)
CapnoBase 99.9 99.9 97.1 - 99.9 0.2 0.2 0.2 - 3.7
BIDMC 99.7 99.6 93.4 - 99.7 0.5 0.7 0.5 - 6.5

Hospital Monitoring (real-world data)
MIMIC PERform Training Dataset 97.2 96.5 58.4 - 97.2 2.1 3.7 2.1 - 48.6
MIMIC PERform Testing Dataset 97.5 96.9 59.0 - 97.5 2.4 3.5 2.4 - 51.0
MIMIC PERform Testing Dataset (adults) 98.5 98.0 91.9 - 98.5 1.1 2.2 1.1 - 13.5
MIMIC PERform Testing Dataset (neonates) 95.9 95.2 50.7 - 95.9 4.9 5.5 4.8 - 59.7
MIMIC PERform AF Dataset (AF) 96.7 97.1 75.3 - 97.1 4.3 3.3 3.3 - 34.9
MIMIC PERform AF Dataset (non-AF) 99.7 99.6 91.3 - 99.7 0.4 0.6 0.4 - 6.9
MIMIC PERform Ethnicity Dataset (Black) 98.5 98.2 91.2 - 98.5 1.4 2.3 1.4 - 9.9
MIMIC PERform Ethnicity Dataset (White) 97.5 97.3 86.6 - 97.5 2.1 3.5 2.1 - 14.6

Wearable data during different emotions
WESAD (meditation) 98.2 98.3 71.5 - 98.3 0.6 1.5 0.6 - 27.8
WESAD (amusement) 95.6 92.8 43.6 - 95.6 2.0 4.4 2.0 - 44.8
WESAD (baseline) 80.1 74.2 37.0 - 80.1 3.8 8.6 3.8 - 41.8
WESAD (stress) 70.1 68.7 17.9 - 70.1 13.2 15.5 13.2 - 67.7

Wearable data during activities of daily living
PPG-DaLiA (sitting) 95.1 95.1 63.1 - 95.5 2.5 4.1 2.5 - 29.9
PPG-DaLiA (working) 81.2 80.0 40.3 - 81.4 4.3 8.0 4.3 - 48.6
PPG-DaLiA (cycling) 87.1 90.6 33.6 - 90.6 13.0 7.0 7.0 - 69.0
PPG-DaLiA (walking) 72.1 76.9 31.2 - 76.9 19.1 13.7 13.7 - 63.2
PPG-DaLiA (lunch break) 66.0 66.8 22.8 - 66.8 6.7 8.2 6.7 - 59.7
PPG-DaLiA (car driving) 83.1 80.2 30.5 - 83.1 5.7 7.8 5.7 - 61.0
PPG-DaLiA (stair climbing) 71.3 71.9 27.9 - 71.9 20.1 15.1 15.1 - 71.9
PPG-DaLiA (table soccer) 65.3 61.0 19.8 - 65.3 13.9 19.1 13.3 - 65.7

A. Performance of beat detectors in different use cases
The performance of beat detectors is presented in Fig. 3 using the F1 score, and in Fig. 4 using the HR MAPE. Additional

results are provided in Appendix I for sensitivity and PPV (Figs. A1 and A2 respectively). The key findings are as follows.
First, eight beat detectors performed very well across all datasets with low levels of movement: AMPD, MSPTD, qppg, PWD,

ERMA, SPAR, ABD, and HeartPy. These had median F1 scores of: ≥ 99% on the hospital monitoring datasets containing high-
quality data (CapnoBase and BIDMC); ≥ 90% on the hospital monitoring datasets containing real-world data (MIMIC PERform
Training and Testing Datasets); and ≥ 90% on the wearable datasets with low levels of movement (WESAD (meditation) and
PPG-DaLiA (sitting)). The remainder of the Results will focus on these eight beat detectors. Fig. 5 (a) shows an example of
(mostly) accurate beat detection during low levels of movement. Of note, the Pulses beat detector performed less well on the
PPG-DaLiA (sitting) dataset because its assumed duration of the systolic upslope was no longer valid in these wrist signals
acquired at rest.

Second, performance decreased during activities associated with more movement. The eight beat detectors which performed
well on data with low levels of movement had median F1 scores of 93-96% on PPG-DaLiA (sitting). This performance
decreased to 70-91% on PPG-DaLiA (cycling), 60-77% on PPG-DaLiA (walking), and 55-72% on PPG-DaLiA (stair climbing).
Performance was also poorer during stress, as shown by median F1 scores of 59-70% on WESAD (stress) compared to 71-80%
on WESAD (baseline). This was primarily due to beat detectors missing beats, rather than falsely detecting beats, as shown
by the generally lower sensitivities than positive predictive values on PPG-DaLiA (walking) and WESAD (stress) datasets (see
Appendix I, Figs. A1 and A2). Fig. 5 (b-d) show examples of beat detection during movement.

Third, the variability in performance between subjects was low during activities associated with low levels of movement, as
shown by the relatively low inter-quartile ranges of F1 scores (indicated by the heights of boxes) on WESAD (meditation) and
PPG-DaLiA (sitting). However, performance varied much more between subjects in more challenging datasets, e.g. WESAD
(stress) and PPG-DaLiA (walking).

B. Best-performing beat detectors
To identify the best-performing beat detectors, we focused on results from the MIMIC PERform Testing and PPG-DaLiA

(working) datasets, since these are representative of real-world performance in critical care and daily life respectively. On the
MIMIC PERform Testing Dataset, the top scoring beat detectors were MSPTD, AMPD, gppq, ABD, and Pulses (all with
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(a) Sitting
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(e) Lunch break

(f) Car driving

(g) Stair climbing

(h) Table soccer

Fig. 5. PPG beat detection during different activities: PPG signals are shown for different activities of daily living from the PPG-DaLiA dataset.
Beats detected by two PPG beat detectors are shown alongside reference ECG beats. au - arbitrary units

F1 scores of 96.6-97.5 %, whereas the remainder scored ≤ 95.6 %). On PPG-DaLiA (working), the top scorers were PWD,
MPSTD, AMPD, ABD, gppq, and WFD (all with F1 scores of 80.0-81.4 %, whereas the remainder scored <79.0 %). In
addition, MSPTD was the best performing beat detector on 5 out of the 12 WESAD and PPG-DaLiA datasets, and qppg was
the best performing beat detector on 4 of these datasets. Therefore, we suggest that MSPTD and qppg performed best, although
we note that this is subjective, and that some other beat detectors also performed well (notably ABD and AMPD).

The best-performing beat detectors have complementary performance characteristics: MSPTD tended to have a higher positive
predictive value, whereas qppg tended to have higher sensitivity (see Appendix I, Figs. A1 and A2). Fig. 5 shows examples of
this: qppg sometimes detected additional beats during noise (see Fig. 5(a) at 0.5 s), whereas MSPTD sometimes missed beats
(see Fig. 5(c) at 7.5-9 s).

C. Acceptability for heart rate monitoring
The performance of beat detectors was deemed to be acceptable for HR monioring in some use cases but not others (see Fig.

4). All eight beat detectors which had been found to perform well on data with low levels of movement also had acceptable
HR MAPEs of <10% on datasets associated with low and moderate levels of movement (the hospital monitoring datasets,
and WESAD (meditation, amusement, baseline) and PPG-DaLiA (sitting, working)). At least some of these beat detectors
did not perform acceptably on each of the remaining datasets. None of the eight beat detectors produced acceptable HR
errors during stress (see WESAD (stress)). Five of the eight beat detectors (MSPTD, qppg, ABD, AMPD, and ERMA) also
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produced acceptable errors during less intensive activities (PPG-DaLiA (lunch break), and PPG-DaLiA (car driving)). Only
qppg performed acceptably on PPG-DaLiA (cycling). None of the beat detectors performed acceptably during more intensive
exercise (PPG-DaLiA (walking), PPG-DaLiA (stair climbing), and PPG-DaLiA (table soccer)).

D. Association between performance and patient physiology and demographics
The associations between beat detector performance and the assessed factors are shown in Fig. 6.
The performance of beat detectors was poorer in AF (Fig. 6(a)). The eight beat detectors which performed well at rest

achieved F1 scores between 99.4-99.7% in sinus rhythm (non-AF), compared to 91.8-97.1% in AF. This was primarily because
beat detectors missed beats during AF (see Appendix II, Figs. A3(a) and A4(a)), similarly to performance in movement.
Performance was worse in AF subjects than non-AF subjects for all eight beat detectors at the 5% significance level, and four
of these differences remained significant after accounting for multiple comparisons (0.2% significance level).

All eight beat detectors performed worse on neonates than adults, as shown in (Fig. 6(b)). Seven of these differences remained
significant after accounting for multiple comparisons. These beat detectors missed beats, as shown by their lower sensitivities
(see Appendix II, Fig. A3(b)). The lower performance in neonates may be because the neonatal PPG signals were of lower
quality, as shown by them having lower SNRs (-10.9 (-12.2 - -8.8) dBc in neonates compared to -5.9 (-9.6 - -1.6) dBc in
adults). In addition, some beat detectors may have been designed for use with adult data, who typically have HRs between 60
and 100 bpm, compared to neonatal HRs of 110-160 bpm [6].

Five beat detectors had lower F1 scores on White subjects than Black subjects, as shown in (Fig. 6(c)), although none of
these differences were significant after accounting for multiple comparisons.

E. Assessment framework
Table IV presents the proposed assessment framework. The MIMIC PERform datasets are recommended for developing and

testing algorithms, and for comparing performance between adults and neonates. Out of the wearable datasets, WESAD is
recommended for training and PPG-DaLiA for testing, as the latter allows performance to be assessed during several activities
of daily living. The MIMIC PERform AF Dataset is recommended for assessing performance in AF, although it would benefit
from inclusion of additional subjects in the future. The CapnoBase and BIDMC datasets were designated as ‘preliminary
design’ datasets as all beat detectors achieved F1 scores of >93% on these datasets, so it is unlikely they could be used to
substantially improve beat detector design.

IV. DISCUSSION

This study assessed the performance of several open-source PPG beat detectors across a range of datasets. Most beat detectors
performed well on hospital data and at rest, but performed worse during movement, stress, and AF, and in neonates. The study
provides a standardised framework with which to develop and test beat detectors.

The findings could inform PPG-based monitoring strategies and directions for algorithm development. The poorer perfor-
mance of beat detectors during movement is reflected in current monitoring strategies. For instance, smartwatches which use
the PPG to check for an irregular pulse often only do so whilst the subject is stationary [4] - a strategy which is supported by
this study. Future work should investigate how best to use a simultaneous accelerometry signal to identify periods in which
the subject is stationary and therefore beats can be accurately detected. The poorer performance in neonates and during AF
indicates areas for development [23]. Future work could also assess performance in other situations which impact the pulse
wave, such as during ectopic beats, hypoperfusion, and vascular disease. This study also provides motivation for strategies
to improve beat detection and exclude unreliable data from analyses, such as motion artifact cancellation and signal quality
assessment.

The beat detectors used in this study are indicative of the range of approaches proposed in the literature to detect beats in
the PPG. As detailed in Table II, approaches included: (i) identifying peaks in the original PPG signal (HeartPy and COppg);
(ii) identifying systolic upslopes using the original signal (IMS) or first derivative (qppg, ABD, PWD and Pulses); (iii) using
the local maxima scalogram to identify peaks across several scales (MSPTD and AMPD); and (iv) representing the PPG in
phase space (SPAR). The MSPTD and qppg beat detectors performed best in this study. MSPTD searches for peaks without
using any prior knowledge of the characteristics of PPG pulse waves. In contrast, qppg searches for systolic upslopes based
on their expected characteristics. In the future, different approaches could be combined to improve performance.

The algorithms, datasets, and assessment framework used in this study are all publicly available. This has several benefits.
Firstly, it ensures that the study is reproducible. Secondly, it allows others to assess the performance of their own beat detection
or quality assessment algorithms. Thirdly, the framework provides a basis with which to design (using the training datasets) and
test such algorithms. Since the training datasets contain a variety of challenges, such as different use cases and populations, we
expect that developers will benefit from using this framework for algorithm development. The framework cannot be considered
to be exhaustive, and datasets recorded in additional settings, from further patient populations, could be added in the future.
These resources and corresponding documentation are archived at [18], [19], whilst information on the most up to date version
can be obtained at: https://github.com/peterhcharlton/ppg-beats.
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(a) (b)

(c)

Fig. 6. Box plots showing the associations between beat detector performance and patient physiology and demographics. (a) comparison of
subjects without and with atrial fibrillation (non-AF and AF); (b) adults compared to neonates; (c) Black compared to White subjects. Performance
is shown as the median (circles), inter-quartile range (boxes), and 10th and 90th percentiles (whiskers) across subjects. See Table II for definitions
of beat detectors.

TABLE IV
THE PROPOSED ASSESSMENT FRAMEWORK

Purpose Dataset Data access
Algorithm Development

Preliminary design CapnoBase Available in Matlab format after completing an agreement.
Preliminary design BIDMC Available in CSV, WaveForm DataBase, and Matlab format, under

an ODbL licence.
Design with critical care data, and compare
performance in adults and neonates

MIMIC PERform Training Dataset Available in Matlab format, under an ODbL licence.

Design with wearable data WESAD Available in Python’s PKL format, for non-commercial purposes.
Investigate impact of atrial fibrillation MIMIC PERform AF Dataset Available in Matlab format, under an ODbL licence.

Algorithm Testing
Testing with critical care data MIMIC PERform Testing Dataset Available in Matlab format, under an ODC-By licence.
Testing in activities of daily living PPG-DaLiA Available in Python’s PKL format, for non-commercial purposes.
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The key limitations are as follows. First, the study is limited to open-source beat detectors, rather than all those reported in
the literature (see [3] for a description of additional beat detectors). Second, no attempt was made to improve the algorithms,
but rather this study established the performance of existing algorithms. Third, some datasets were relatively small: WESAD
and PPG-DaLiA contain data from 15 subjects, and the MIMIC PERform AF Dataset contains data from 35 patients. Fourth,
the framework assumes that pulse arrival time (PAT) is constant within a subject’s recording, which is reasonable for the short
recordings in this study, but changes in PAT should be accounted for if using longer recordings [7].

V. CONCLUSIONS

This study demonstrated the high performance of the MSPTD and qppg beat detectors across a range of use cases. Most
beat detectors performed well in the absence of movement, whereas performance was poorer during stress, activities of daily
living, in neonates, and during AF. The results inform key directions for future work: (i) improving performance in neonates
and during AF; (ii) investigating whether motion artifact cancellation improves performance; and (iii) investigating whether
algorithms to assess signal quality can distinguish between periods in which beats can or cannot be accurately detected. The
algorithms, datasets, and assessment framework used in this study are all publicly available in [18], [19].
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APPENDIX I
PERFORMANCE OF PPG BEAT DETECTORS IN DIFFERENT USE CASES

The performance of photoplethysmogram (PPG) beat detectors in different use cases was presented in Fig. 3 in the main
text, using the F1 score to describe performance. Additional results are shown in: Fig. A1, which shows the sensitivity of beat
detectors; and Fig. A2, which shows their positive predictive value.
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Fig. A1. Box plots showing the performance of beat detectors, expressed as the sensitivity. Each graph shows the results for each of the beat
detectors on a particular dataset. Performance is shown as the median (circles), inter-quartile range (boxes), and 10th and 90th percentiles
(whiskers) across subjects. See Table 2in the main text for definitions of beat detectors.
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Fig. A2. Box plots showing the performance of beat detectors, expressed as the positive predictive value. Each graph shows the results for
each of the beat detectors on a particular dataset. Performance is shown as the median (circles), inter-quartile range (boxes), and 10th and 90th

percentiles (whiskers) across subjects. See Table 2in the main text for definitions of beat detectors.

Page 16 of 20AUTHOR SUBMITTED MANUSCRIPT - PMEA-104662.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



FOR SUBMISSION TO PHYSIOLOGICAL MEASUREMENT 17

APPENDIX II
ASSOCIATION BETWEEN PPG BEAT DETECTOR PERFORMANCE AND PATIENT DEMOGRAPHICS AND PHYSIOLOGY

Associations between PPG beat detector performance and patient demographics and physiology were presented in Fig. 5 in
the main text, using the F1 score to describe performance. Additional results are shown in: Fig. A3, which shows the sensitivity
of beat detectors; and Fig. A4, which shows their positive predictive value.

(a) (b)

(c)

Fig. A3. Box plots showing the associations between beat detector performance and patient physiology and demographics, expressed as the
sensitivity. Each graph shows the results for each of the beat detectors on a particular dataset. Performance is shown as the median (circles),
inter-quartile range (boxes), and 10th and 90th percentiles (whiskers) across subjects. See Table 2 in the main text for definitions of beat detectors.
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(a) (b)

(c)

Fig. A4. Box plots showing the associations between beat detector performance and patient physiology and demographics, expressed as the
positive predictive value. Each graph shows the results for each of the beat detectors on a particular dataset. Performance is shown as the median
(circles), inter-quartile range (boxes), and 10th and 90th percentiles (whiskers) across subjects. See Table 2 in the main text for definitions of beat
detectors.
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