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Plate I

Virus blocker viewed from the vertex perspective of a regular icosahedron [26].
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Abstract

A convenient rectangular cartesian coordinate system is constructed for the 

regular icosahedron. This allows us to write down the coordinates of every vertex, 

so enabling the direction-ratios of all the symmetry axes to be obtained. Our results 

afford a fresh approach to various geometrical features of the icosahedron and of the 

icosahedral group.

The circumsphere of a regular icosahedron may be converted into possible 

models for the spherical carbon molecule Ceo (the buckyball), by expanding the 12 

vertex points into 12 regular spherical pentagons of equal size. We examine quan-

titatively the changing pentagonal-hexagonal pattern as the pentagon size expands 

up to the possible maximum, at which stage the circumsphere is entirely covered 

with pentagons i.e. is the circumsphere of a regular dodecahedron. Arguments are 

given for a unique choice model which conforms to the chemical data.

Prolate spheroid models for CVo and Cgo are also considered.
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Introduction

The regular icosahedron is one of the five Platonic solids known to the early Greeks. 

However it attracted little attention until the nineteenth century, when 5-fold 

symmetry axes were found to be inadmissible in mathematical crystallography. 

Despite this the icosahedral point-group is sometimes listed as a supplement to the 

classical crystallographic point-groups since it forms a natural extension of these 

point-groups. It may be mentioned that the German mathematician Felix Klein [21] 

wrote a monograph on the icosahedron, but its orientation appears to be algebraic 

rather than geometrical.

The icosahedron was introduced into crystal physics in 1952, when F.C. Frank 

[22] pointed out that this configuration provides an efficient method of close-packing 

for atoms which would be favoured on energetic grounds. More than thirty years 

later [23], the existence of icosahedral configurations in an aluminium-manganese 

alloy was inferred from the appearance of X-ray diffraction patterns exhibiting 5- 

fold symmetry features. These could not be produced by a crystalline medium, but 

one might envisage icosahedral clusters having a short-range order (~  104 — 105 A) 

which does not build up into any long-range order, so forming a quasi-crystalline 

medium intermediate between a crystal and an amorphous solid. Quasicrystals 

of various composition have been fabricated since then, but no generally accepted 

theory of their structure has yet emerged [24]—[25]. It is of course well known that 

some virus structures adopt the icosahedral configuration, e.g. as appears in 

Plate I (following Table of Contents).

This thesis divides naturally into two main parts. Part I treats icosahedral 

symmetry (covering also the dodecahedron) by methods of algebraic geometry. Part 

II uses the methods and results of Part I essentially to examine the buckyball model 

of Ceo, be. the spherical carbon molecule now known as fullerene, discovered by

xii



Kroto and Smalley [27]—[28] in 1985. The buckyball is often depicted as a truncated 

icosahedron, with the vertices replaced by regular pentagons. An equivalent, but 

mathematically more convenient picture, is to regard it as the circumsphere of the 

icosahedron, with the 12 vertices expanded into 12 spherical pentagons. These 

automatically carve out 20 spherical hexagons from the 20 spherical triangles on 

the original circumsphere, so yielding the familiar football pattern. This point of 

view enables us to determine the coordinates of any pentagonal vertex (i.e. of any 

carbon atom) referred to rectangular cartesian axes embedded in the icosahedron. 

Two independent parameters enter into the coordinates: the circumsphere radius R 

and the pentagon shallowness / .  A computer program then calculates the 

ratio ¿ (6:6) /  ¿(6:5) of the two characteristic C-C bond lengths as a function of / ,  

running from /  ~  0 (vanishingly small pentagons) to /  =  0.141 (vanishingly small 

hexagons), keeping R fixed. Our results are used to examine various features of 

the buckyball model, in particular how its radius varies with bond length yielding 

excellent agreement with the experimental data.

If we input the graphite data ¿(6:5) =  ¿ (6:6) =  1.420 A into the model, it 

provides a pattern of 20 perfectly regular hexagons on the circumsphere accomodated 

by 12 perfectly regular pentagons yielding a surprisingly close approximation to the 

observed buckyball radius. It appears that the first stage of buckyball formation 

involves a graphite pattern for the hexagons, which are then distorted from regularity 

by physical factors [29] dependent upon the curvature of the 7r-orbitals in Ceo as 

compared with graphite. Models of CVo and C8o may be constructed building upon 

that for Ceo- These are prolate spheroids for which the axial ratios can be readily 

calculated. A useful schematic method for exhibiting the pentagon-hexagon patterns 

in these fullerenes is presented.

The main original contribution of this thesis is in Part II. This part provides a fresh 

mathematical analysis of the buckyball so that we are able to predict the observed 

dimensions of the buckyball in terms of operative C-C bond lengths. Building 

upon this, we construct models for CVo and C8o using a new method of pattern 

representation. Much of Part I may be regarded as preparatory for the work of Part 

II. In the first place, it includes a general review of the field. Also we introduce a 

convenient rectangular coordinate system into the icosahedron, which allows us to

xiii



assign direction-ratios to various symmetry axes operative in the buckyball. The 

regular dodecahedron is discussed from a similar point of view to that of the regular 

icosahedron, which provides a model for the hypothetical molecule Cho-

To summarise, this thesis places the buckyball model of C$o on a rigorous 

mathematical foundation by relating it more closely to the underlying regular 

icosahedron.

xiv
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Chapter 1

The Five Regular Solids

V V .V V

1.1 Introduction

For many decades the five regular solids have been prominent aesthetic figures in 

pure and applied mathematical research as well as the subjects of interest to artists, 

architects, chemists and crystallographers. Playing a key role in Plato's cosmology, 

the five regular solids comprise the regular tetrahedron, the cube and octahedron, 

the regular icosahedron and dodecahedron; they are also conventionally known as 

the five Platonic solids.

Physical features corresponding to these solids are displayed in Table 1.1. Note 

that the cube and octahedron are complementary to each other since the number 

of vertices is interchangeable with the number of faces. By the same reasoning, 

the regular icosahedron and dodecahedron are also complementary to each other. 

Furthermore, the centroid, O, for these four solids is in fact the centre of symmetry 

of the solid since any vertex can be inverted into the symmetrically opposite vertex 

through O. However, the tetrahedron is self-complementary and its centroid is not a 

centre of symmetry. We observe that its centroid joins any vertex into the centroid 

of the opposite face, which makes it special as a foundation for further development 

in the analysis of fullerene C28-chemical name for the carbon molecule having 28

1



Regular Solids V F E p ( number of 

sides in 

a face )

q ( number of 

edges meeting 

in a vertex )

{ v a }

Tetrahedron 4 4 6 3 3 {3,3}

Cube 8 6 12 4 3 {4,3}

Octahedron 6 8 12 3 4 {3.4}

Icosahedron 12 20 30 3 5 {3,5}

Dodecahedron 20 12 30 5 3 {5,3}

Table 1.1: {p,q} signifies a regular solid with {p}-gon faces and q edges meeting in 

a vertex. Note that p, q are interchanged for the cube and octahedron i.e. they are 

complementary solids. The same property holds for the icosahedron and dodeca-

hedron. Here V  denotes the number of vertices, F  the number of faces and E the 

number of edges of a regular solid.
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atoms. More important, the regular icosahedron deserves special mention as it 

effectively provides a basis for further studies of fullerene C60-known to be the most 

stable carbon molecule among the fullerides.

1.2 Spheres Related To The Regular Solids

Within each regular polyhedron the centroid. O, is the common centre of three 

spheres:

1. The circumsphere which passes through all the vertices. This has a radius

R =  l esc (j) (1.2.1)

where 2 / =  edge length of polyhedron 

and 2 <f> =  angle subtended at O by an edge.

2. The midsphere which touches all the edges at their midpoints. This has a radius

Rmd, — R cos <z> =  / cot 0 ( 1.2.2)

3. The insphere which touches all the faces at their centres. For the {p,q} solid this 

has a radius given by

R2in — l2 ^csc2 0 — esc2 — j  =  l2 ^cot2 0 — cot2 —j  . (1.2.3)

To prove these formulae we imagine the solid as built up from F  equal pyramids, 

each based upon a face of the solid and sharing a common apex at O. Any {p,q} 

face is a regular polygon C\ . . .  Cp, centre C , with j CiC2 | =  2 / and C\CC2 =  y  as 

depicted in Figure 1.1. Also, associated with the edge CiC2 there exists a triangular- 

side face C\OC2 of the pyramid with | OCi \ = I OC2 | — R and CxOC2 =  2 0  

as depicted in Figure 1.2 which immediately yields formulae (1.2.1), (1.2.2) above. 

A useful figure associated with the pyramid is the Schlafli tetrahedron OCxM C

3



depicted in Figure 1.3, where OC marks the normal from O onto C\ . . .  Cp being 

therefore at right angles to both CM  and CC i, i.e.

R i  =  I OC I2 =  I 0 C 1 CCl

R2 -  l2 esc2

I2 ( CSC2 (j) — esc2

from Figure 1.1 (a) or equivalently

(1.2.4)

Rl OC I2 -  I OM CM

R2md -  l2 cot2 -  
p

Ï2 { cot2 è  — cot2 —

as noted above.

We now prove the Coxeter formula [l]

: 1.2.5)

, 7T 7Tcos (p =  cos — CSC —
p  q

( 1.2 .6 )

and its complementary formula

cos ip
7r

cos — CSC 
<7

7T

P
(1.2.7)

where 7r — 2 tp is the dihedral angle of {p,q}. Choosing any vertex P  as pole vertex 

we observe that OP  defines a g-fold symmetry axis for {p:q}. This means that P  has 

q neighbouring vertices A\ . . .  Aq { Figure 1.4 ) forming a {c/} polygon intersected 

at its centre A by OP.

If so

7
( 1.2.8)

4



/

(a) Note that

\CCX\ =  \\ CtC2 I esc |

i.e. c — l esc E.
p

C

(b) Note

| CM  | =  | CXM  | cot f  =  / cot f  

==> area of A  C\CC2 =  l2 cot

Figure 1.1: Base plane of pyramid Ci, C2, . . .  Cv.

5

•ti 
m



(a) | 0C\ | =  / esc (p i.e. R =  / esc <j>,

(b) | OM  | =  | C\M | cot <f> i.e. Rmd

Figure 1.2: Side-face of pyramid OC1C2 ■.. Cp.

Note that

(a) | OC |2 =  | OCj I1 | CCX |2 

i.e. R l  = R2 -  l2 esc2 2Lin p

from Figure 1.1 (a),

O

OR (b) | OC |2 =  | OM  |2 -  | C M  |2 

see equation (1.2.5).

Figure 1.3: Schlafli tetrahedron of {p.q}.

6



(a) q symmetry axis OP  generates 

a {<?}-gon A x . . .  Aq,

/
/

/
/

Note that

(b) | AAi | =  | | AxA2 | esc f  

as indicated in Figure 1.1 (a) 

with p replaced by q.

Figure 1.4: {g}-gon associated with vertex P of

7



from Figure 1.4 (b) where

7T
A\Ai 1= 4 / cos — 

V
(1.2.9)

bearing in mind that P A i , P A 2 are two neighbouring edges of a face i.e. of a {p } 

polygon ( Figure 1.5 ). Reference to Figure 1.6 shows that

sin 2 (f)
,1,1,
OA1

5 * 4 / cos  ̂ sjn (j)
sin

(1.2.10)

since I OA\ | =  R

=$■ cos (j) -  —— £- (1.2.11)
sin -1

as stated earlier in (1.2.6). Formula (1.2.7) follows from the complementary nature 

of (f>, if> so that utilising formula (1.2.11) provides

sin2 <j> =  1
cos2
sin2

7T
P_7T
<7

sin2 -  — cos2 -?_________p_
sin2 -9

. ~2 ;A:2 =  sin2 — — cos2 —,
sin2 f  g p'

( 1.2.12)

i.e.

If so,

sin (f (1.2.13)

sin <f>
/ 7T _  /

I
sin — . 

<7
1 R m d  —  COS

7r 
P

(1.2.14)

8



p

Note that

A\PA2 =  7r — —■ from Figure 1.1 (a), 

= >  | AXA2 | =  2 PA\ | sin ( f  -  

=  2 * 2 /  cos ^ =  4 l cos | showing 

that I AA\ 1 =  5 • 4 l cos -  esc - .1 1 1 2 p <j

Figure 1.5: Face of {p,q} defined p edges PAi, PA2.

P
/ s

R

Figure 1.6: Elevation of PA\A showing A\OM = <j> which is half of the angle 

subtended by an edge at the centre, O, so that sin 2(f> =  1444.
\UA\\
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Also.

=  /2 ( 1 1 _
^sin2 <f) sin2 f j

12 I( ■ 2 sm -
V (l

■ 2  ̂sin —
P" k2 sin2 1  '

p

/2 I( 2 * cos —
V p

2  ̂cos —
9,

11

sin2 * ’P

P

~  ÏP
cot2 — 

p
cos2 -  

<7

which implies

(1.2.15)

Rin
l 7T

— c o t  — COS
k p

1\

<I
(1.2.16)

Finally, from Figure 1.3

/ -R'ln I 7T 7T kcos ip =  ——- =  — cot — cos — • -------- -
-ftmd A; p q / cos -

cos £_ ____ £_
sin £

V

(1.2.17)

showing that d>, 0 , /?, Rmd, Rin for {p ,?} are all known in terms of p and q.

The value of k for each {/?,</} is given in Table 1.2 since it will be needed in the 

following section.

1.3 Surface Area And Volume Of {p,q}

A {/?}-gon is made up of p isosceles triangles each of area /2 cot  ̂ ( Figure 1.1 ), so 

that a {p}-gon has t he surface area pi2 cot T

10



{ p , q } sin2 * -  cos2 2:q p

{3,3} sin2 | — cos2 |

{4,3} sin2 \ — cos2 73 4

{3,4} sin2 7 — cos2 ~4 3

{3,5} sin2 7 — cos2 f5 3

{5,3} sin2 | — cos2 |

sin2 *  -  cos2 zP 7
k2 ~  k

3 1
4 4

1
2 0.707107

3 1
4 2

1
4 0.500000

1 1 
2 4

1
4 0.500000

( s - v A )  i  
8 4

( 3 - V 5 )
8 0.309017

3 (3  + V 5 )
4 8

1 
00

CO

0.309017

Table 1.2: Approximate value of k for each {p,q}. Note that k2{p,q} =  &2{g,p}.
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Therefore

from which

S — surface area of {p,q}

= F • pi2 cot —
P

(1.3.1)

V =  volume of {p,q}

n RinS • -----.
3

(1.3.2)

Formula (1.3.2) may be rewritten in the useful form

5
V Ri

(1.3.3)

which compares with the value

4 tht3-
4 ri
5 ™ 3

(1.3.4)

for a sphere of radius cr.

There exists a surface-equivalent sphere to {p,q} with radius a defined by

4 7To =  S i.e. a = (1.3.5)

Now

| 7T(T3 l^rcr3 S a 3
V  4 7T ci2 V 3 Rin

a
R in

(1.3.6)

where a/Rin is computed in Appendix A. We find a/Rin > 1 for each {p,g}, 

showing that the surface-equivalent sphere always has a greater volume than that 

of the corresponding {p,q}.
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Similarly there exists a volume-equivalent sphere to {p,q}, with radius p defined

by

Now

V, i.e. P
/3V \ 1/3 
V 47T /

47T p2 47T p2 V 3 R,n
S 17T p3 S p 3

_ Rrn 
P

(1.3.7)

(1.3.8)

where this ratio is also computed in Appendix A. We find Rxnj p < 1 for each {p,q} 

showing that volume-equivalent sphere has a smaller surface area than that of the 

corresponding {p.q}-

Our two conclusions can be summarized as follows:

• for a given surface area, the sphere has a greater volume than any {p,q}\

• for a given volume, the sphere has a smaller surface area than any {p,q}.

[2. Polya and Szego]

Tables of 5, V, Rtn, a, p, a, Rin are given in Appendix A for further verification 

P P l l l Rin p

of these corresponding results.
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Chapter 2

The Regular Icosahedron

2.1 Rectangular Coordinate System

As already mentioned, the centroid 0  of every regular solid (except the tetrahedron) 

serves as a centre of symmetry for the solid i.e. it inverts any vertex P  into the 

symmetrically opposite vertex P' (Figure 2.1). In the case of a regular icosahedron 

this suggests that a convenient rectangular coordinate system may be constructed 

with 0  as origin and OP  as the z-axis (Figure 2.2). As regard the x, y-axes, we 

note that P  has five nearest neighbouring vertices forming a regular pentagon Ai, 

A2, . . . ,  A .5 with centre A as depicted in Figure 2.3. Clearly PP' is normal to the 

pentagon and passes through its centre A. If so the x-axis can be chosen to pass 

through O parallel to AAi (Figure 2.4), and the y-axis then passes through O at 

right angles to OX.

Since LA\AA2 =  it follows from the isosceles triangle A j AA2 (Figure 2.5)

that

I A\A2 | =  2 | AAi | sin—, i.e. 21 =  2a sin — (2.1.1)
5 5

where

| Ai A2 | =  edge length of icosahedron =  2/ — | PA\ |, etc,

| AA\ | =  circumradius of pentagon =  a (2.1.2)

14



Figure 2.1: Photoprint of a regular icosahedron showing the inversion of pole vertex 

P into opposite P'.
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p

z
/ N

Figure 2.2: Choice of OP  as the 2-axis for the rect angular coordinate system of the 

regular icosahedron, alongside its ‘wire’ model [3],

16



Aa

Figure 2.3: Icosahedral pentagon with centre A viewed along PP'

IT



p

Figure 2.4: Choice of z-axis and x-axis in relation to OP, AA\ respectively.

A.t

Figure 2.5: Isosceles triangle A\AA2 in the A-pentagon with centre A, formed by 5 

edges emanating from P.
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which implies

/  7T
a =  —— — = l esc — 

sin f  5 (2.1.3)

Within the A-plane, all vertices may be conveniently represented by 

the complex vectors

AAi =  a ez0, AA2 =  a e2z?r/ 5, . . .  (2.1.4)

which may be readily broken down into x, y components. However, it remains to 

compute their z-coordinates. By reference to Figure 2.6

| AP  |2 -  | A XP |2 -  | A] .4 |2 

= 4/2 -  a2

. 1f . 7TY 2=  4 a sin —'v 5 /

=  a2 fdsin2
7T

V 5
(2.1.5)

We prove (see Appendix B) that

7T 1/2 27
4sinz — — 1 ) = 2  cos —  =  r 1 > 0

5 J 5
( 2 -1 .6)

where r is the golden mean and r satisfies the quadratic equation

t 2 — r — 1 =  0. (2.1.7)

Now all the vertices lie on a circumsphere, as mentioned earlier, with centre O, 

radius R so that (Figure 2.7)

R2 =  | OP  |2 = (| OA | +  | AP  |)2

= | OA I2 + 2 | OA I | AP \ +  I AP  I2

( 2 . 1 .8 )
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and also

R2 =  \OA1 \ =  \ OA I2 +  I AAi I2 = I OA I2 +  a2 (2.1.9)

Equating (2.1.8) and (2.1.9) for R2 and utilising | AP  |2, | AP \ gives

OA
(1 —2 sin2 |) a

(4sin2 § -  l )1/2 =  2
( 2 . 1 . 1 0 )

i.e. z-coordinate of A\, A2, . . . ,  A5. An alternative expression of | OA | is

a sm
7T \ ' / 2

Toy
a
■) ( 2 . 1 . 1 1 )

as also may be readily verified in Appendix B.

Using (2.1.4), (2.1.10) we obtain the x, y, z coordinates of each vertex as listed in 

Table 2.1. Since x, y, z inverts into -x, -y, -z we immediately obtain the coordinates 

of A ), A'2i • • •, Ag, centre A'. These vertices form a regular pentagon rotated by an 

angle | to the A-pentagon (Figure 2.7), and separated from it by the distance

AA' I =  2 I OA I =  a =  \ AAi 2 . 1 . 1 2 )

as illustrated in Figure 2.8. Now

R = I O A I +  I AP

— a
(l -  2 sin2 f ) /  7T \ 1/2
------ —------------ rrr +  d 4 silU — — 1
4 sin2 f  -  l '' 7  ̂ 05

2 sin2 -
=  a

(4 sin2 f  -  l)
1/2

Substituting (2.1.3) into R . we have

(2.1.13)

ß  =  /
2 sin Ô

(4 sin2 f  -  l)
1/2

20



P

I* igure 2.6: The orthogonal projection of P  on its pentagonal plane is associated 

with the relation | A XP  |2 -  | A UA |2 =  | AP  |2, . . .  such that 4 l2 -  a2 =  | AP  |2,

P

Figure 2.7: Transformation of the vertex .4i into its corresponding inverse A\.

21



Figure 2.8: The vertices A\ ...m ark the orthogonal projection of A\ ...on to  the 

vl-pentagonal plane. Note that the pentagon A\ . . . ,  A'h is rotated through j  relative 

to A\ . . . ,  As, showing that the inverse pentagon A\ . . . ,  A '5 is rotated by relative 

to A\ . . . ,  A5.
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Vert,ices X ,Y ,Z Inverse Vertices

P (0, 0, R) P'

“ (0, 0, f )

A t (a, 0, | OA |) 

a ( l , 0,

A\

a 2 (« cos a sin | OA | j 

a (cos y-, sin
¿2

a 3 (a cos Y-,asin \ OA |) 

a ( -  cos f , sin f , §)
¿3

A4 (a cos ^,<2 sin | OA 

a ( -  cos f , -  sin f ,| )

A^

a 5 (a cos sin ^ ,  | OA |) 

a (cos -  sin ?f,

A's

Table 2.1: Coordinates Of The Vertices. Note that a =  l esc | while | OA |, R are 

effectively provided by formulae (2.1.10), (2.1.13).
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which gives the Coxeter formula

l . 7T
R = — sin — 

k 5
(2.1.14)

on noting from Table 1.2 that

k =

Since

• 2 7T 2sm — — cos —
p

sin2
7T l \ 1/2— —5 4 )

1/2
2 7T 2 7r\1/2= I sm — — cos —

3 y

T /2

(2-1.15)

7T 5 — v/5
sm — 

5

we deduce from (2.1.15) that

k =
'3 -

1/2

from which

i? =  l
\ 3 — a/5

= /
10 +  2v5

¡0 +  v/5

2.2 Symmetry Elements

h i.16)

Table 2.2 lists the direction-ratios (drs) of the six 5-fold symmetry axes (P P ')5, 

(A\A\)s, . . . ,  (/Is.dgJs utilising an obvious symbolism. Since each axis joins x, y, z

24



to -x, -y, -z, these drs are immediately obtained from the coordinates of P, Aj, .. 

As and multiplying (if necessary) by an appropriate factor. In particular, the axis 

(P P r)5 is derived as follows:

(P P 'h  = ( x ( P )  - x ( P ' ) , y ( P )  — y ( P' ), z ( P ) - z ( P ' ) )

= 2 (  x ( P ) , y ( P ) , z ( P )  )  (2.2.1)

Similarly Tables 2.3, 2.4 and 2.5 lists the drs of the fifteen 2-fold axes (P A i )2, 

. . . ,  (A i A2)2, ■ ■ • i (A\A(j)2, ■ ■ ■ which pass through the midpoints of the edges PAi, 

■.. A i A2, ■ ■ ■ A\A'a, . . .

Finally Table 2.6, 2.7 lists the drs of the ten 3-fold axes ( PA i A2)3, . . .  (AiA2A4)3, 

. . .  which pass through the centroids of the faces PAi A2, . . . ,  A1A2A4, . . .

Rotations through (P , (=  27r) about (P P ')5 transform the

icosahedron into equivalent orientations keeping O fixed, and similarly for all the 

5-fold axes. Accordingly these contribute 6 x 4  =  24 operations to the icosahedral 

group {532}. Here {532} is the crystallographic point group symbolism for the group 

of symmetry rotations of the icosahedron. Also a rotation through (=  7r) about 

each 2-fold axis contributes 15 x 1 =  15 operations to {532}. Finally, rotations 

through about each 3-fold axis contributes 10 x 2 =  20 operations to {532}.

Supplementing these by the unit operations ( ^  ) for each axis yields

24 +  15 +  20 +  1 =  60 operations included in the icosahedral group.

It is interesting to look at the subgroups of {532} utilising drs of the symmetry 

axes so providing fresh interplay between geometrical and algebraic aspects. We 

may readily verify from the Tables that {P P ') .5 is orthogonal to ( A i A ^ ,  {A 2A'4)2. 

(A2A/5)2, (A3A5)2 and {A^A\ ) 2 which demonstrates the existence of a dihedral 

subgroup {52} within {532}. Similarly we may verify that ( PA i A2)3 is orthogonal 

to (A3A4)2, (A4A5)2 and (A3A'5)2 thus demonstrating the existence of a dihedral 

subgroup {32} within {532}. Furthermore, the three 2-fold axes (A2A3)2, (.PA5)2 

and {A\A'a)2 form an orthogonal triad so demonstrating the existence of a dihedral 

subgroup { 22} i.e. the R-group, within {532}. We find that (PAi A2)3 is equally



The 5-fold, 

symmetry axes

X  : Y : Z

(P P 'h 0 : 0 : 2 R 

0 : 0 : 1

(AlA'ijs 2a : 0 : 2 \OA\ 

2 : 0 : 1

( ^ 2̂ 2)5 2a cos y 1 : 2a sin ^  : 2 | OA \ 

2 cos ^  : 2 sin ^  : 1

( ^3^ 3)5 2a cos ^  : 2a sin ^  : 2 1 OA \5 5 1 1
—2 cos f  : 2 sin f  : 10 5

(A jA4)5 2a cos ^  : 2a sin ^  : 2 1 OA 15 o i l
—2 cos f  : —2 sin f  : 15 5

(^ 5̂ 5)5 2a cos ^  : 2a sin ^  : 2 1 0.4 15 5 l l
2 cos ^  : - 2  sin ^  : 10 5

Table 2.2: Direction-ratios of the 5-fold symmetry axes. A simplified form of drs is 

given in the second row of each corresponding 5-fold axes respectively. Again | OA \ 

and a are as illustrated in Table 2.1.
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2 - fold

symmetry axes

X  : Y : Z

( P A i )  2 a : 0  : R  +  | O A  | 

1 : 0 : 2  c o s  f5

( P A 2)2 a  c o s  — : a s i n  ^  : R  +  | OA \ 

c o s  "A- ; s i n  A- : 2  c o s  f5  5  5

( P A 3) 2 a c o s  A  : a s i n  A- : R  +  OA5 5 ' l l

—  c o s  £  : s i n  £  : 2  c o s  £

( P A 4)2 a c o s  ~  : a s i n  ^  : R  +  | O A  \ 

—  c o s  |  : — s i n  |  : 2 c o s  |

( p a 5)2 a c o s  : a s i n  — ■ : R  +  1 OA  15 5 ' l l

c o s  £ £  : — s i n  £ £  : 2  c o s  £5 5  5

T a b l e  2 . 3 :  D i r e c t i o n - r a t i o s  o f  P  t y p e  2 - f o l d  s y m m e t r y  a x e s  e . g .  ( P A 1)2 s i g n i f i e s  t h e  

2 - f o l d  a x i s  j o i n i n g  t h e  m i d - p o i n t  o f  P A X t o  t h e  m i d - p o i n t  o f  t h e  i n v e r s e  e d g e s  P 'A [ .
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2 -fold

symmetry axes

X  : Y : Z

{A\A2) 2 a +  a cos r̂- : a sin : 2 OAD O 1 1
1 +  cos ^  : sin ^  : 10 0

( A 2 Aa)2 a cos ^  +  a cos ^  : a sin ^  + a sin ff- : 2 1 OA5 5 5 5 ' l

cos ~  — cos ~ : sin ^  + sin £ : 15 5 5 5

(A3 i4.4) 2 a cos - -  +  a cos : a sin y 1 +  a sin ^  : 2 | OA \ 

- 2  cos f  : 0 : 1

(A4A5)2 a cos ~  +  a cos ^  : a sin — +  a sin ^  : 2 1 OA \

— cos \ +  cos ^  — sin 7 — sin : 1
5 5 5 5

(A5A1)2 a cos ^  +  a : a sin ^  : 2 OA 1
5 5 1 1

cos —■ +  1 : — sin ~  : 1

Table 2.4: Direction-ratios of A type 2-fold symmetry axes e.g. (A\A2)2 signifies 

the 2-fold axis joining the mid-point of A\A2 to the mid-point of the inverse edge

a ; a ' .



2-fold

symmetry axes

X  : Y : Z

( A \. f 4) 2 a — a cos ^  : —a sin ^  : 0 

1 + cos f  ; sin f  : 00 5

(^ 2̂ 4)2 a cos — a cos ^  : a sin — a sin : 0
0 5 5  5

cos Yl  cos £ ; sin _|_ sin £ : 05 5 5 5

(^.2̂ 5)2 a cos — — n cos ^  : a sin 4? — a sin ^  : 05 5 5 5 
0 : 1 :0

(A3A ' ) 2 a cos ^  — a cos ^  : a sin ^  — a sin ^  : 05 5 5 5
— cos f  — cos —■ : sin 7 + sin ^  : 05 5 5 5

(AzA'f) 2 a cos nf — a : a sin : 05 5
— cos f  — 1 : sin 7 : 05 5

Table 2.5: Direction-ratios of A! type 2-fold symmetry axes e.g. {A\A'a)2 signifies 

the 2-fold axis joining the mid-point of A\A'a to the mid-point of the inverse edge 

A [A 4.
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3-fold

symmetry axes

X  : Y : Z

(P A j .42)3 a +  a cos ff- : a sin ff- : R +  2 | OA \ 

1 + cos ~  : sin ^  : 4 cos3 f

{P  A2A3)3 a cos ^  +  a cos ff- : a sin 4̂ +  a sin ^  ; R -(-2 1 0.4 15 5 o '  5 ' l l
cos ^  — cos f  '■ sin 41 +  sin £ : 4 cos3 £

(P  A3A [)3 a cos y- +  a cos y- : a sin y- +  a sin y  : R +  2 | OA \ 

—2 cos £ : 0 : 4 cos3 £5 5

(.P A 4A 5)3 a cos y  +  a cos —1 : a sin y  +  a sin y  : i? + 2 | 0.4 | 

— cos 4 +  cos r? : — sin £ — sin ^  : 4 cos3 £

(■p 44.5̂ 1)3 a cos y  + a : a s i n y : i ?  +  2 | 0.4 | 

cos y  +  1 : — sin y  : 4 cos3 |

Table 2.6: Direction-ratios of P  type 3-fold symmetry axes e.g. {PA\A2)3 signifies 

the 3-fold axis joining the centroid of the face PA\ A2 into the centroid of the inverse 

face P'A\A'2.
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3-fold

symmetry axes

X : Y : Z

{AxA2A'a) 3 a A a cos f̂ +  a cos £ : a sin f̂ +  a sin £ : 1 OA 1 

1 +  cos y  + cos £ : sin y  +  sin £ : |

(.42^ 3^ 5)3 —a cos | : 2a sin y  +  a sin £ : | OA | 

— cos £ : 2 sin y  +  sin £ : |

{AzAaA\)z —2a cos £ — a : 0 : | OA | 

—2 cos £ - 1 : 0 : 1

{Â Â A'f)^ —a cos £ : —a sin £ — 2a sin y  : | OA \ 

— cos £ : — sin £ — 2 sin f̂ : 1

(^ 5^ 1 4̂3)3 a cos If +  a +  a cos £ : —a sin ^  — a sin £ : 1 OA 15 5 5 0 1 1

cos y  +  1 +  cos £ : — sin y  — sin £ : 1

Table 2.7: Direction-ratios of A type 3-fold symmetry axes e.g. (A\A2^ 4)3 signifies 

the 3-fold axis joining the centroid of the face A^A^A'  ̂ into the centroid of the 

inverse face A'XA'2A4.
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oriented to these 2-fold axes, which implies the existence of three additional 3-fold 

axes equally oriented (allowing for negative direction) to them. This configuration 

is realised by the four diagonals of a cube plus the three axes passing through the 

cube centre parallel to the cube edges ( Figure 2.9 a) ). These three axes serve 

as 4-fold symmetry axes for the cube, so generating the octahedral group {432}. 

However, alternate corners of the cube delineate a regidar tetrahedron (Figure 2.9 

b) ) for which these axes function only as 2-fold symmetry axes so generating the 

tetrahedral group {23}. It will be shown below thai {23} is a subgroup of {532} i.e. 

a regular tetrahedron may be embedded within the regular icosahedron.

2.3 The Icosahedral Group

The icosahedral group {532} is isomorphic with the alternating group A5, which 

comprises 60 (=  | 5!) permutation operators. This representation allows us to write 

down immediately the cyclic subgroups of {532} corresponding with the various 

symmetry axes listed below.

1. Six cyclic groups of order 5:

{  (12345) , (12345)2 , (12345)3 , (12345)4 , I } ;  (12345)2 =  (13524), (2.3.1)

( 12345 )3 =  (14253),

( 12345 )4 =  (15432),

(12345)5 =  I.

{  (12354) , (12354)2 , (12354)3 , (12354)4 . I }  ; (12354)2 =  (13425), (2.3.2)

( 12354 )3 =  (15243),

(12354)4 =  (14532),

(12354)5 =  /.



| (12534) , (12534)2 , (12534)3 , (12534)4 , I j

| (15234) , (15234)2 , (15234)3 , (15234)4 , /  J

| (12435) , (12435)2 , (12435)3 , (12435)4 , /  J

| (14235) , (14235)2 , (14235)3 , (14235)4 , /  }

2. Ten cyclic groups of order 3:

i 7 , (1)(2)(345) }  

| , (1)(2)(354)

i 7 , (1)(4)(235) ' 

1 , (1)(4)(253)

i 7 , (2)(3)(145)

1 - (2)(3)(154)

i 7, (2)(5)(134)

| , (2)(5)( 143)

(12534)2 =  (15423), 

(12534)3 =  (13245), 

(12534)4 =  (14352), 

(12534)5 =  I.

(15234)2 =  (12453), 

(15234)3 =  (13542), 

(15234 )4 =  (14325), 

(15234)5 =  /.

(12435)2 =  (14523), 

(12435)3 =  (13254), 

(12435)4 =  (15342), 

(12435)5 =  I.

(14235 )2 =  (12543), 

(14235 )3 =  (13452), 

(14235)4 =  (15324), 

(14235)5 =  /.

/  / ,  (1)(3)(245) 1 

, (1)(3)(254) J ’

i / ,  (1)(5)(234) 1 

j , (1)(5)(243) J ’
| i 7 , (2)(4)(135) 1

J ' | , (2)(4)(153) J ’

1 i / ,  (3)(4)( 125) 1

j ' 1 , (3)(4)(152) J

(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)



/ ,  (3)(5)(124), 1 i / ,  (4)(5)(123), '

(3)(5)(142) J 1 (4)(5)(132)

3. Fifteen cyclic groups of order 2:

{ / ,  (12)(34)(5) } , { / ,  (13)(24)(5) } , { / ,  (14)(23)(5) },

{ / ,  (12)(35)(4) } , { / ,  (13)(25)(4) } , { / ,  (15)(23)(4) },

{ I , (12)(45)(3) } , { / ,  (14)(25)(3) } , { /  , (15)(24)(3) },

{ /  , (13)(45)(2) } , { /  , (14)(35)(2) } , { /  , (15)(34)(2) },

{ /  , (23)(45)(1) } , { /  , (24)(35)(1) } , { /  , (25)(34)(1) }, (2.3.8)

From these cyclic groups we may build up dihedral subgroups of three distinct 

types as already anticipated on geometrical grounds:

i) {52} type generated by (12345) and (14)(23)(5) subject to relations

(12345)5 =  [ (14)(23)(5) ]2 =  [(12345) • (14)(23)(5) ]2 =  l (2.3.9)

corresponding with a 5-fold principal axis and five secondary 2-fold axes.

ii) {32} type generated by (123)(4)(5) and (23)(45)(1) with the relations

[ (123)(4)(5) ]3 =  [ (23)(45)(1) ]2 =  [ (123)(4)(5) .  (23)(45)(1) ]2 =  I (2.3.10)

corresponding with a 3-fold principal axis and three secondary 2-fold axes.
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iii) {22} type generated by (12)(34)(5) and (13)(24)(5) subject to relations

[ (12)(34)(5) ]2 -  [ (13)(24)(5) ]2 =  [ (12)(34)(5) • (13)(24)(5) ]2

= [ (14)(23)(5)]2 =  /
(2.3.11)

as exhibited below by the first row of (2.3.12)

By contrast with {32} there exists a tetrahedral group {23} (=  T) within {532} 

having the following multiplication Table:

'
I (12)(34)(5) (13)(24)(5) (14)(23)(5)

T = < (123)(4) (5) (134)(2) (5) (243) (1 )(5) (142)(3)(5)

(132)(4)(5) (234)(1) (5) (124)(3)(5) (143)(2)(5)

generated by (123)(4)(5) and (12)(34)(5) with relations [3]

[ (123)(4)(5) ]3 =  [ (12)(34)(5) ]2 =  [ (123)(4)(5)] • (12)(34)(5) ]3

(2.3.13)
=  [ (134)(2)(5) ]3 =  / .

By virtue of the 5-fold symmetry of the icosahedron there exists five such tetrahedral 

groups within {532} i.e. replacing (5) by (1), (2), (3), (4) in turns into formula 

(2.3.12).

We are now in a position to write out the coset decomposition of {532} with 

respect to T:

{532} =  T +  (12345) T +  (12345)2 T + (12345)3 T +  (12345)4 T,

(2.3.14)
{532} =  T +  T (12345) +  T (12345)2 +  T(12345)3 +  T(12345)4 

so providing the group multiplication Tables 2.8 and 2.9. Note that
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(P ̂ 5)2

Figure 2.9: a) Delineation of a cube showing three 2-fold axis of symmetry plus four 

3-fold axis of symmetry [4],

Figure 2.9 b) Four atoms lying at the corners of a cube can be transformed into 

each other by operations of the tetrahedral group. Note that the solid atom marked 

[PA\A-i)i has an inverse marked by the shaded atom along the opposite diagonal.
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(12345) T ±  T (12345)

showing that T is not an invariant subgroup of {532} (consistent with the fact that 

{532} is a simple group). In fact A5 is a subgroup of the symmetry group S5 as 

discussed in Appendix C.

2.4 Angles Associated With The Icosahedron

In this section we utilise our drs to explore two primary angles characteristic of the 

icosahedron

1. angle subtended by an edge: 2 <j>

2. dihedral angle: tt — 2

The edge PA\ subtends an angle 2 <j> at O given by

cos 2 <j>
OP  • OAt 

OP  | • | OAx
[P P %  .  ( /M ' i ), 

(p p %  \ .  | (A ,/i ;)s

—> see Table 2.2 <—>

. (0,0,1) > (2,0,1) J _
y/5 y/5

This verifies the Coxeter formula

cos
cos | ^  cos f  
sin -  sin fq 5

1
2

7T
5

since

cos 2 (j) — 2 cos2 <j) — 1 =
4 sin2 4

1
7 5

(2.4.1)

(2.4.2)

(2.4.3)
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on noting

• 2sin —
5

5 -  V5
8

The two neighbouring faces PA\A2, A\A2A'a have normals dehned by the 3-fold 

axes (PA\ A 2)3? (A1A2A4) 3-see Table 2.6 and Table 2.7.

These meet at an angle 2 ip given by

cos 2 ip = (P  A\A2)3 • (̂ 4.î4.2̂44)3 
(P A i A 2)3 I I {A\A2A 'a)3

( l  +  cos f Y + sin2 f  +  (■ 5 )

!  (v ^  + 2) =  V5
I (2V5 + 5) 3

This verihes the Coxeter formula

cos f  cos f  
cos iP =  — f

sm 3

(2.4.4)

(2.4.5)

since

cos 2 ip =  2 cos2 ip — 1 4 cos2 £2 • ---------- 5.
3

L
S ( 1 -  sin2 |) 

3
-  3

(2.4.6)

From this observation, we infer that (2.4.4) provides cos <p for the dodecahedron and 

simultaneously (2.4.1) provides cos ip for the dodecahedron as will be exploited on 

geometrical ground in the next chapter.
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• I (12)(34)(5) (13)(24)(5) (14)(23)(5) (123)(4)(5) (134)(2)(5)

/ I (12)(34)(5) (13)(24)(5) (14)(23)(5) (123)(4)(5) (134)(2)(5)

(12345) (12345) (135)(2)(4) (14325) (15)(24)(3) (13245) (14235)

(13524) (13524) (14523) (152)(3)(4) (25)(34)(1) (14)(25)(3) (15243)

(14253) (14253) (15324) (345)(1)(2) (12)(35)(4) (15342) (253)(1)(4)

(15432) (15432) (254)(1)(3) (12354) (13)(45)(2) (354)(1)(2) (12)(45)(3)

Table 2.8: The left coset decomposition of {532} with respect to T.
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(243)(1)(5) (142)(3)(5) (132)(4)(5) (234)(1)(5) (124)(3)(5) (143)(2)(5)

(243)(1)(5) (142)(3)(5) (132)(4)(5) (234) ( 1 ) (S) (124)(3)(5) (143)(2)(5)

(125)(3)(4) (15)(34)(2) (145)(2)(3) (12435) (13425) (15)(23)(4)

(13452) (235)(1)(4) (15234) (13)(25)(4) (14352) (245)(1) (3)

(14)(35)(2) (12453) (24)(35)(1) (14532) (153)(2)(4) (12534)

(15423) (13254) (12543) (154)(2)(3) (23)(45)(1) (13542)

Continuation of Table 2.8 along the row direction.
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• / (12345) (13524) (14253) (15432)

/ / (12345) (13524) (14253) (15432)

(12)(34)(5) (12)(34)(5) (245)(1) (3) (14235) (13254) (153)(2)(4)

(13)(24)(5) (13)(24)(5) (14532) (354)(1)(2) (125)(3)(4) (15234)

(14)(23)(5) (14)(23)(5) (13)(45)(2) (12)(35)(4) (25)(34)(1) (15)(24)(3)

(123)(4)(5) (123)(4)(5) (13452) (24)(35)(1) (14325) (154)(2)(3)

(134)(2)(5) ( 134)(2)(5) (12453) (14352) (254)(1)(3) (15)(23)(4)

(243) (1)(5) (243)(1) (5) (145)(2)(3) (12354) (13)(25)(4) (15342)

(142)(3)(5) (142)(3)(5) (23)(45)(1) (135)(2)(4) (12534) (15243)

(132)(4)(5) (132)(4)(5) (345)(1) (2) (12435) (14)(25)(3) (15423)

(234)(1)(5) (234) (1)(5) (13245) (14)(35)(2) (12543) (152)(3)(4)

(124)(3)(5) ( 124)(3)(5) (14523) (13542) (253)(1)(4) (15)(34)(2)

(143)(2)(5) (143)(2)(5) (12)(45)(3) (235)(1)(4) (13425) (15324)

Table 2.9: The right coset decomposition of {532} with respect to T.
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Chapter 3

The Regular Dodecahedron

X X ------------------------------------------------- ♦ ♦

3.1 Introduction

In this chapter we study the underlying structure of the regular dodecahedron from 

the face perspective as this method of representation correlates with the vertex 

perspective of the regular icosahedron, which has been discussed with great clarity 

in the previous chapter. This study focuses on how the face perspective catered for 

the conclusive evidence of its icosahedral symmetry. To prove this, we implement 

a similar coordinate system for the regular dodecahedron as we did for the regular 

icosahedron.

3.2 Face Perspective

The regular dodecahedron is a complementary figure to the regular icosahedron, 

and it therefore has the same symmetry axes with the role of the vertices and faces 

interchanged. Accordingly there are six 5-fold axes joining the centres of opposite 

faces, ten 3-fold axes joining opposite vertices, and fifteen 2-fold symmetry axes
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joining the mid-points of opposite edges. Also it has an inversion centre, 0 , which 

is the common point of intersection of all the axes.

We now introduce a rectangular coordinate system for the regular dodecahedron 

of edge length 2 /, starting with any face. This is a regular pentagon A\, . . . ,  As, 

centre A with circumradius a, as already illustrated in Figure 2.5, where we find 

that

7T
2a sin — =  21 

5 sin f (3.2.1)

as in (2.1.3). Also we note from the isosceles triangle A 1A2A3 (Figure 3.1) that

Ax A3 I — 2 I A\Ai
3 ir 3 x

sm —  =  4/ sin —  =  2 a. 
1 0 10

(3.2.2)

The edge AxA2 is shared with the pentagonal face AxA25 x 5 25 4 where 5 45 2 

lies parallel to AxA2 (Figure 3.2) with | 5 45 2 | given by (3.2.2). Accordingly there 

exists a second pentagon Bi, 5 2, 5 .3, 5 4, 5 5, centre 5 , of circumradius b which 

is similar and similarly situated to the A-pentagon as depicted by the orthogonal 

projection of the A-pentagon upon the 5-plane in Figure 3.3 (a).

Note from similar triangles that

1 5 5 i 1 A* A* j 1 AAi 1 a
I 5 i 5 2 a ï a 2 1Ai A2 | ~  21

(3.2.3)

5 5 j  J =  I 5 x5 2 I .  —

Since I 5 45 2 | is a diagonal of the face A i A25 i 5 25^ we conclude that

b 2d
a , .

—- =  4 / sin 
2 /

37T
TÔ

a
2Â

— 2 a sin
37T
TÏÏ

=  2 , S- ^ i
sm j

(3.2.4)

Finally, the vertical separation between the pentagons may be calculated by 

reference to Figure 3.3 (b):



ByA\ I'2 =  4 /2 -  (b -  a)2| AB  |2 =  | AyA* |2 =  | AyBy |2

Substituting for / in terms of a from (3.2.1) and for b in terms of a from (3.2.4) gives 

rise to

(  • 9 7T\2 (  . 3ir \
1 AB  I2 =  4 a sm — — 2 a sm —  — a)

V 5 J \ 10 J
9 . 9 7T 9 . o 3  X  9 t 3  7T 9

=  4 a s i n ------4 a sm —  + 4 a sm —  — a
5 10 10 (3.2.5)

=  4 a"
'5 -  \/5n

4 a2 3 +  \/b'S +  4 a2 1 + V5

=  a2 (see Appendix D).

The pentagon By, . . . ,  B5, centre B , inverts into the parallel pentagon B [, . . . ,  

B'-. centre B ', where B\ has already been met as a corner of the face AyA2ByB2B'4 

(see Figure 3.4). Since O is equidistant from each vertex, we see (Figure 3.3 (b)) 

that

R2 =  I OAy I2 =  I OA I2 +  I AAy I2 =  I OA I2 +  a2, (3.2.6)

and also

R 2 =\O B y\2 =  \ OB |2 +  | BBy |2 =  | OB \2 +  b2, (3.2.7)

where R denotes the circumradius of the dodecahedron. Equating (3.2.6), (3.2.7) 

for R2 and bearing in mind | OA \ =  | OB \ +  | BA \ where a, b, | AB \ are known 

from (3.2.1), (3.2.4) and (3.2.5) provides

OB |2 = | OA |2 + a2 -  b2 = (| OB \ + | BA |)2 + a2 -  b2
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= | O S |2 +  | BA  |2 + 2  \0B\ \ BA \ + a2 -  b2

= | OB |2 +  a2 A 2 a \ OB \ + a2 -  b2

= | OB |2 +  2 a | OB | +  2 a2 -  62

so that

OS
b2 — 2 a2 4 a2 sin2 
2 I A S  I ~  2a~~

2 r  37r
------ - 2 a  sin —

10

Now

3 +  a/ 5 \  ( —1 +  a/ 5 )-----------  — a =  ———  -----—
8 )  4

( 3 . 2 . 8 )

0.4 I =  I OB I +  I BA
— 1 +  a/ 5
-------------- a A a

4
3 + ^ 5  
----------- a.

4
(3.2.9)

Utilising the expression (3.2.6) for R2 now gives

i.e.

R2 = ■ 2 | 2 * 2 (  • 2 37T\ ' 2a sin —  +  a = 4  a sin —  +  a
10) V 10)

4 a2 3 +  v/5\2 , o /14  + 6y/E\ ,
+ a2 =  4 a2 ............ +  a2

8 J  ̂ 64

(30 +  6a/ 5) a2 (30 +  6\/5) l2
16 16 sin2 7T

/P  =  ^  =  (^ 3  / 1 (3.2.10)

on solving a2 in terms of l2. The resulting R is equal to that classically aviiilable as 

displayed in Appendix A.
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Â

Figure 3.1: The aerial view of the dodecahedral pentagonal face showing A1A3 as 

diagonal of the face A 1A 2 . . .  A5.

Figure 3.2: ‘Wire’ model of the regular dodecahedron. Note that the edge A\Ai 

lies parallel to B\B2 with A\A2 as the join of 2 adjacent faces A\A2 . . .  A5 and 

A\A2B\B2 B\.
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b 3

(a) Plan view

(b) Elevation view

a
/I

B = A*

o

Figure 3.3: Orthogonal projection of the A-dodecahedral pentagon onto the B- 

pentagonal plane.
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B4

Figure 3.4: The points B^, ...m ark the inverses B[ , ...upon  the 5-pentagonal 

plane. The corresponding diagram for the A-plane has been given in Figure 2.8.
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3.3 Rectangular Coordinate System

A suitable coordinate system may now be constructed with O as origin and OA as 

the positive z-axis. If so z =  | OA \ for all points in the A-plane and 2 =  | OB \ 

for all points in the 5-plane. Vertices within the .4-plane may be conveniently 

represented by the complex vectors

A M ¿0 _  a ~a ia e =  a, AA2 =  a e •>
(  2tt . . 2t t\ 

a cos —  +  ̂ sm —
V 5 5 J (3.3.1)

following (2.1.4), and within the 5-plane by

'A j 21r /  27r 27T\ . .
BBi =  b eM =  6, 5 5 2 =  b e 5 =  b (cos —  +  1 sin —  J , . . / (3.3.2)

Breaking down the complex numbers (3.3.1), (3.3.2) into their x, y 

components, we obtain the x , y, z coordinates of Aj, A2, . . . ,  5 t, 5 2, . . .  as listed 

in Tables 3.1 and 3.2.

Since x, y, z inverts into —x, — y, — z we immediately have the coordinates of 

A\, . . . ,  5 ( . Of course

A =  (0,0,| OA |), A' =  (0 ,0 ,-  | OA |) (3.3.3)

Tables 3.3 and 3.4 list the direction-ratios (drs) of the ten 3-fold symmetry axes 

(A i A )̂3 . . .  ( 5 j5 ()3 . . .  which join the inverse pairs of vertices.

Similarly Tables 3.5, 3.6 and 3.7 list the drs of the fifteen 2-fold axes (A iA 2)2 . . .  

(A i 5 i )2 . . . (5 i54)2 . . . which join the inverse pairs of mid-point of the edges. 

Finally Table 3.8 lists the drs of the six 5-fold axes (AA ')5, (FiF[)s, . . .  (FAF 'A)5 

which pass through the six face-centres A, 7), 52, . . .  F4 and the the inverses A', F{, 

F2', . . .  F'x where Fi, F2 and F3 are the centres of three faces which adjoin the face 

A1A2A3A4A5 as shown (Figure 3.5).

A regular icosahedron may be embedded within the dodecahedron by joining 

adjacent face-centres. Thus | AFi | becomes the edge length of the icosahedron. We 

may verify that
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as expected where Rlc denotes the circumradius of the regular icosahedron, so 

providing a fresh confirmation of the embedding property.

3.4 Angles Associated With The Dodecahedron

The two neighbouring faces A1A2A3A4A5, A 1A2B1B2B4 have normals defined by 

the 5-fold axes (AA')s, (F[F [)5— see Table 3.8. These meet at an angle given by

OA • OFx (AAMs • (FFDscos 2 ib — ------------------——  — ----- ---------------------------
| OA I • \OF1 \ I {AA%  I • I (F F [)b I

(0,0,1) • (2 (5  +  2x/5),2(5 +  3^5) sin f ,5 +  3^5)

0 1 0  +  4x/5)2 +  ( (10 + 6^5) sin f )2 + (5 +  3V5)2 (3-4.1)

5 +  3\/5 _  1
15 +  5\/5 \/b

This verifies the Coxeter formula

cosj- =  \
sin j  sin 7

5 5

since that

cos ip =
cos -____<i_
sin £

p

The edge A 1A2 subtends an angle 2 <j> at O given by



cos 2 è  =
0A\ 9 OA2 _  (A1A/1)3 • (^ 2̂ 2)3

0~A\ I • I OA2 I ! (^îA-Ds I • I (.42A'2)3 I

c—* see Table 3.3 <—1

(4\/5,0 ,5  +  3^5) • (5 -  \/E, (10 +  2 y/E) sin f  ,5 +  3 ^ )  

\j(30\/5 +  150) • yj{30>/5 +  150)

50 +  50x/5 _
150 +  30^5 _  3

Again, this verifies the Coxeter formula

cos -  cos 7 cos 7
cos <p =  —— — =  — — § -  =  - -- - - - -

sm -  sin I  \/3/2

(3.4.2)

since that

cos 2 <f> =  2 cos2 <p — 1 =  2
4 cos2 7_______O -  1

-  3

3

Of course, this equals the value of cos 2ip given by (2.4.6). Therefore the observation 

that (2.4.4) provides cos <p for the dodecahedron whilst (2.4.1) provides cos ip for 

the dodecahedron are hereby verified. In the light of this result, we confer that the 

icosahedral symmetry found in these two complementary solids paved a way to the 

configuration of C20 of the buckyball, as will be exploited in Part II.
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Figure 3.5: Photoprint of the regular dodecahedron which displays three of the five 

adjoining face-centres ,4, Fi, F2, . . F\. The tesselation of this model is based upon 

Escher’s drawing in [5].
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Vertices x ,  y , z Inverse Vertices

M (a, 0,| OA |) 

a ( 1, 0, ^ )

A[

A -2 (a cos a sin \ OA 

a (cos 2" , sin 25’r, 3+4%/̂ )

A '2

A3 (a cos a sin \ OA |) 

a ( -  cos sin f ,

A’s

a 4 (a cos a sin | OA 

a ( -  cos f , -  sin §,

A4

a 5 (a cos a sin , | OA |) A's

a (cos sin 3+4v^)

Table 3.1: Coordinates Of The Vertices In The A-plane. Note that a =  t esc 

| OA | is effectively provided by formula (3.2.9).
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Table 3.2: Coordinates Of The Vertices In The B-plane. Note that 6, | OB | are 

provided by formulae (3.2.4), (3.2.8) in terms of a.
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3-fold

symmetry axes

X  : Y : Z

(A iA i)3 2a : 0 : 2 | OA | 

2 : 0 :

(^.2̂ 2)3 2a cos y  : 2a sin y  : 2 | OA | 

2 cos 2f  : 2 sin 2f  :

(A3A '3)3 2a cos ~  : 2a sin y  : 2 | OA | 

2 cos g : 2 sin £ :

(^.4̂ 4)3 2a cos y  : 2a sin y- : 2 | OA | 

2cos g : 2 sin '  : 3+/ E

(^ 5̂ 5)3 2a cos ^  : 2a sin ^  : 2 1 OA 1 

2 cos 2l  : 2 sin 2f  :

Table 3.3: Direction-ratios of A type 3-fold symmetry axes e.g. (A iA j)3 signifies 

the 3-fold symmetry axis joining the vertex Ai into its inverse A'v
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3-fold

symmetry axes

X  : Y : Z

{B i B [)3 4a sin f f  : 0 : 2 | OB \ 

4 sin jo : 0 : + ^

(B 2B '2)3 4a sin cos ^  : 4a sin sin y- : 2 | OB | 

4 sin 't  cos 25 : 4 sin sin 2f  :1U 5 1U 5 2
(& >% ), —4a cos2 | : 4a sin sin | : 2 | OB \ 

4 cos2 l : 4 sin % sin '  : ~x + ^

(B4B ’4)3 —4a cos2 | : —4a sin sin f  : 2 | OB \ 

—4 cos2 | : —4 sin sin | : ~x + ^

(BSB'S) 3 4a sin 777 cos ~  : —4a sin 777 sin nr : 2 1 OB 11U D 1U 5 1 '
4sin g  cos f  : -4sin  g  sin f  :

Table 3.4: Direction-ratios of B  type 3-fold symmetry axes e.g. (B\B[)3 signifies 

the 3-fold axis joining the vertex Bi into the inverse vertex B[.
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Table 3.5: Direction-ratios of A type 2-fold symmetry axes e.g. (Ai A2)2 signifies

the 2-fold symmetry axis joining the mid-point of the edge AXA2 into the mid-point

of inverse edge A[A'2.
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2-fold

symmetry axes

X : Y : Z

(A i £ i )2 (3+2̂  a : 0 : | OA \ +  \ OB \
3 + 75 . n . (2 + Vs)

2 ‘ u ‘ 4

(^ 2 ^ 2 ) 2 a:  (2 +  x/5) a sin § : \OA\ +  \OB\ 

: (2 +  x/5) sin '  :

{A^Bf)2 ^ A V I l  a . i i i v J i a sin 1  ; | OA | +  | OB |

-(2 + 75) . (3+V5) .  ̂ . (2 + 7s)
2 • 2 0 11 1 5 • 4

(^ 4 ^ 4 )2 ~(2-+ v/g) a : zil±ZIl  a sin £ ; | OA | +  | OB \2 2 o i l ' l l
-(2 + V5) . -(3 + 75) „jn » . (2 + 75)

2 2 5 * 4

( ^ 5 ^ 5 ) 2 i i± r^ 1 a : - ( 2  +  v/5) asin f  : | OA | +  | OB \ 

U -iy a  : (2 +  v^ ) sin f  : 2 + ^

Table 3.6: Direction-ratios of AB  type ‘2-fold symmetry axes e.g. (A i B i )2 signifies

the 2-fold symmetry axis joining the mid-point of the edge AXBX into the mid-point,

of inverse edge A\ B[.
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2-fold X  : Y : Z

symmetry axes

(B 1B f4)2 5 + a :  1 + 'A  a sin Z : 04 2 5

5 + : 1 V ®  sin l  : 04 2 5

(B2B'5) 2 0 : (3 +  \/5) a sin | : 0

0 : 1 :0

(B3B [)2 -(S + 3>/5l i + y i asin * ; 0
4 2 5

-(s + Ws) : 1 sin Z : 0
4  2 5

(B4B'2)2 -(5 + y/h) a . _^2 _|_ a gjn | • 0

: (2 +  x/5) sin \ : 0

(B5B'3)2 5 a : —(2 +  \/5) a sin | : 0

: - ( 2  +  Vo) sin f  : 0

Table 3.7: Direction-ratios of B' type 2-fold symmetry axes e.g. (T?L )2 signifies

the 2-fold symmetry axis joining the mid-point of the edge BxB4 into the mid-point

of inverse edge B[B4.
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Part II

FULLERENES
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Chapter 4

C q q : Buckminsterfullerene

<F> $ <F> $

4.1 Introduction

With the advanced role of science in today's world we gain more knowledge of carbon, 

its existence and properties than we could ever imagine. Though we cannot detect 

it directly, its atoms are in every cell of our bodies, which makes carbon at the heart 

of all that sustains life on earth. In 1985 Kroto, Smalley et al. [6], on the basis of 

spectroscopic evidence, deduced the existence of a new carbon molecule C60 difFused 

through interstellar space. They also proposed that the molecule had an essentially 

spherical shape, the “buckybaU” , previously unknown to carbon chemistry. A few 

years later Kratschmer, Huffman et al. [7] produced C60 crystals in the laboratory, 

which opened the way to an explosion of experimental and theoretical research which 

still continues. Some mathematical features of buckyballs will be explored in this 

thesis, building upon the work of Part I.

The carbon atom has four valence electrons, which are available to form 

directed pair-bonds with neighbouring carbon atoms in symmetrical configurations. 

In diamond, for instance, each carbon atom lies at the centroid of a regular 

tetrahedron defined by its four nearest neighbours (Figure 4.1), and this pattern is



repeated in space to produce the diamond crystal. The C-C bond arises from two 

paired electrons, one from each atom, which oscillate between them to produce an 

attractive force according to the rules of quantum mechanics. This is the covalent 

bond of theoretical chemistry.

For some structures, only three of the valence electrons are utilised to form 

directed pair-bonds e.g. graphite. Here each carbon atom lies at the centroid of an 

equilateral triangle defined by its three nearest neighbours, so providing

OA =  OB =  OC =  1.420(4) A (4.1.1)

showing an intermediate bond strength between d(6:5) and d(6:6). This pattern is 

repeated to produce the two-dimensional hexagonal layers as depicted in Figure 4.2 

(a). The fourth valence electron (7r - electron) breaks free from its atom and moves 

parallel to the layers so helping to

(i) maintain the layers as planes and

(ii)  stabilise them into an equilibrium stacking characteristic of the graphite

crystal.

Diamond and graphite were the only structures for pure carbon known before 1985. 

In that year, as already mentioned, the buckyball configuration was envisaged. This 

has 60 carbon atoms arranged symmetrically on the surface of a sphere of radius 

R ~  3.550(10) A [7,8], as depicted by the vertex points of a black-and-white football 

model covered by 12 regular spherical pentagons and 20 (slightly distorted) regular 

hexagons in Figure 4.3 (a). Equivalently we may imagine a regular icosahedron 

truncated at the the vertices, so providing a pentagonal-hexagonal framework as 

depicted in Figure 4.3 (b). Now two fundamental questions which arise from this 

model remain to be considered.

1. Must there be only 12 regular pentagons and 20 regular hexagons?

2. Is there a unique symmetrical arrangement of 60 equivalent carbon atoms on the 

surface of a sphere?
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The first question is intimately connected with Euler's formula. Let the faces of a 

polyhedron comprise p pentagons and h hexagons only. Then

F  =  p +  h. (4.1.2)

Since the pentagons contribute 5p edges, whilst the hexagons contribute 6/1 edges, 

therefore

(5 p +  6h)
E  =  -------2-------

due to each edge being counted twice. Likewise, since each vertex is common to 

three edges it follows that

V =
( 5p +  6h ) 

3
(4.1.4)

Euler's formula now gives

F + V - E  =  (p  +  h ) +
'5p +  6 h\ f  5p +  6h'

6 ( p +  h ) +  2 ( 5p +  6h ) — 3 ( 5p +  6h ) p
6 = 6

so that p =  12.

This result imposes no mathematical constraint on h. However, as will be shown 

later, we must choose h =  20 or h — 0 to ensure a spherical configuration.

4.2 Geometrical Construction of Cqo

Because the structural principle underlying C6o is in line with the geodesic dome 

created by the American architect Buckminster Fuller, who based it upon a 

hexagonal and pentagonal framework, this spherical configuration has been termed
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Figure 4.1: The carbon-bonding structure of a diamond. Each cluster of carbon 

depicted at four vertices of the regular tetrahedron.



(a) Note that the three neighbouring vertices to 

2)  form an equilateral triangle [9]

(b) Here OA =  OB  =  OC =  ¿(6:6), i.e. a hexagonal-hexagonal boundary. 

Corresponding chemical data yields ¿(6:6) =  1.420 A; with AOB  =  BOC  =  

CÔA =  120°.

Figure 4.2: Planar configuration of graphite layer.
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Figure 4.3: Idealized structures of C60 displayed by (a) a black-and-white football 

model (b) lattice model showing a pentagonal-hexagonal pattern on the surface of 

a sphere.
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“'buckminsterfullerene" or buckyball for short. By the same token we refer to the 

chemical compound composed of Cg0 molecules as fullerene.

A useful starting point for buckyball analysis is the regular icosahedron of edge 

length 2/ to be determined. This has a circumsphere of radius R— which passes 

through all the vertices. Any vertex P  is chosen as the pole vertex i.e. has coor-

dinates (0. 0, R) relative to the rectangular cartesian system introduced in Part I. 

Now replace P  by a shallow spherical cap of depth

h — f  R (4.2.1)

where /  is a non-dimensional parameter approximately within the interval 

0.01 <  /  <  0.142. A regular pentagon pi, , . . . ,  ps, centre Po, is then inscribed in 

the latitude circle of radius p =  \ P0p\ | where Po marks the projection of P upon 

the latitude plane. If so

i oPl i2= i op0 i2 + 1 p0pi r

i.e.

R2 =  {R -  h)2 +  p2

so giving

p — R \ fp f (4.2.2)

on neglecting O  ( / 2) in comparison with O  (/)• See Figure 4.4 for details.

We may choose pi so that it is located in the .AOZ-plane i.e. plane of great, 

circle passing through P and the neighbouring icosahedral vertex A\ (Figure 4.5). 

By analogy with the pentagon A\, A2, . . . .  A$ (Chap. 2), vertices of the latitude 

pentagon (Figure 4.6) may be conveniently represented by the complex vectors

P0 P1 =  pe ' ° ,  P0 P2 =  pe l ~ , . . .  (4.2.3)
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Figure 4.4: Spherical pentagon with latitude circle of radius p

\

A/

Figure 4.5: A convenient location of pt on the great circle, which pass through pole 

vertex P  into the neighbouring icosahedral vertex Aj.

(19



(a) Plane view

(b) Elevation view Po

A e P o*

Figure 4.6: Orthogonal projection of parallel latitude pentagons.
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which provide the x, y coordinates of pi, p2, . . . ,  ps respectively as listed in Appendix 

E. If so. then the x, y coordinates of p2, . . . ,  ps are the same as Ai, A 2, . . . ,  

.45 (see Table 2.1) with a replaced by p. Of course all the vertices have the same 

z-coordinate given by

\OP0 \ =  \OP\ -  | PP0 | =  R -  h ~  R ( 1 -  / ) .  (4.2.4)

The pentagon has a side of length

d{6 : 5) =  | pi -  p2 | =  2 | To -  Pi | sin 5̂

which brings out the dependence of d(6:5) upon R and / .  Note that the football 

model of course depicts a spherical pentagon, with \ Pi — p2 \ replaced by | px — p2 \ 

i.e. arc length of great circle joining p\ and p2. A rough calculation of the ratio 

\ P\  — P 2 \ / \ Ih — P 2 I is given in Appendix F showing it to be ~  1.02 for the 

natural buckyball.

The remaining 11 spherical pentagons may be constructed by symmetry oper-

ations upon the pole pentagon as explained in Chap. 5. An immediate consequence 

is the automatic appearance of 20 spherical hexagons carved out from the 20 

spherical triangles of the original icosahedral circumsphere. Hence we have deduced 

the football model by imposing spherical symmetry upon a hexagon-pentagon frame-

work. This model provides a useful visual supplement to the truncated icosahedron 

model often pictured by (see Figure 4.3). Of course the latter model is more realistic 

since C-C bonds appear as straight lines rather than as arc of circles.

4.3 Preliminary Perspective of 0

Clearly the buckyball is a spherical variant of the graphite layer in which hexagonal 

distortion arises consequent upon the necessary presence of pentagons. To examine



this in detail, refer to Figure 4.7 which exhibits a vertex 0  and its three neighbouring 

vertices A, B , C. Note that we write

OA =  OB =  d{6 : 5), 0(7 =  d(6 : 6) (4.3.1)

since OA, OB  form hexagonal-pentagonal boundaries whilst 0 0  forms a hexagonal- 

hexagonal boundary. Chemical data [16] yield

d(6 : 5) =  1.455(12) A, d(6 : 6) =  1.391(18) A (4.3.2)

showing that the pure hexagonal bond is stronger than its neighbours. A further 

effect is the slight distortion of the hexagon from regularity due to sides of alternating 

length.

Note that the pentagon remains perfectly regular since all its sides have d(6:5) 

character, with AOB  =  108.0(1)°. Finally, as in graphite, each buckyball atom 

donates a valence electron to the molecule as a whole (7r-electron), which becomes 

available for electrical conduction when the molecules crystallise into a lattice. See 

Figure 4.8 for details.

In Chap.5 we compute the coordinates of neighbouring vertices in a buckyball. This 

enables us to determine d(6:6) as a function of the shallowness parameter /  for a 

given R. Utilising (4.2.5), we obtain the ratio 8 =  d(6:6) /  d(6:5) as a function of 

/  without reference to R. Some choice of 8 will be considered in relation to possible 

buckyball configurations.
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Figure 4.7: Two distinct carbon bonds d (6:6) and d(6:5) 
in bucky ball. Carbon atom at 0 has three directed bonds 
linking it with nearest neighbours A,B,C. Here hexagons 
cannot be perfectly regular, since d(6:5)^ d(6:6) by 
virtue of the following chemical data: d (6:5)=1.455(12) *A, 
d(6:6) = l.391(18) “A. We also note Ai)B=108.0(1)“ A0C=B0C= 
1 2 0 .0 (1 )° .
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Figure 4.8: The iourth valence electron of the carbon atom is utilised as the double

bond, which enhances the strength of the pure hexagonal bond [17]. The arrow ---->

corresponds to double bond emanating from a pentagon, five from each pentagon.
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Chapter 5

Bonding Structure of Cgg, C20 and 

Graphite

5.1 Determination of Pentagon Coordinates

The P-pentagon (pi, p2, . . . ,  ps) has five nearest neighbouring pentagons centred 

respectively upon the five icosahedral vertices A\, A2, . . . ,  A5 (see Figure 4.6), in 

particular the Ai-pentagon with vertices an, ai2, . . . ,  a\5. The vertex an lies upon 

the great circle joining P and A\ (Figure 5.1), being located approximately as close 

as to pi as its home neighbours p2, ps i.e. the an-atom is available to provide a 

third pair-bond for the pi-atom chemically required. Accordingly we write

d(6 : 6) =  | Pi -  an | (5.1.1)

where the coordinates of pi have already been determined as a function of the 

shallowness parameter / .  However, it remains to compute those of an.

Note that a rotation through n about the axis (P A i )2, see Table 2.3 for its 

direction-ratios (drs), transforms P  into Ai (Figure 5.2). The same rotation trans-
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Figure 5.1: Note that an  is the nearest vertex to in Aj-pentagon, joining two 

neighbouring icosahedral vertices P  and A\.
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Figure 5.2: Transformation of icosahedral vertex P  into icosahedral vertex Ai by 

rotation through 7r about (P A i )2 generates a 2-fold symmetry axis passing through 

O and the mid-point of PA\.
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transforms p\ into an, and more generally

P \ i  P 2, ■ ■ ■ i Ph  -------- * f t U ,  a l2i  • • • i « 1 5

This transformation may be implemented mathematically by a rotation operator 

symbolised M  (h k /; 9) where h, k, I are the drs of the axis and 9 is the angle of 

rotation [9].

To construct M  (hkl; 9) we transform from the original rectangular coordinates 

x, y, 2 to new rectangular cartesian coordinates X , Y, Z defined by

OZ  || h : k : l , OX  || / : 0  : h , OY || hk : h2 +  l2 : kl (5.1.2)

which we may describe by the axis transformation matrix

X Y Z  | xyz) =
NS

1  IN 0 hN ^

hk S2 kl, 

hS kS IS

\S =  (/2 +  h2)
1/2

N =  [h2 +  k2 +  /2) 1/2 (5.1.3)

Note that (X Y Z  \ xyz) is an orthogonal matrix, so that (X Y Z  \ xyz)~l =

{xyz | X Y Z ) =  transpose of ( X Y Z  \ xyz).  If so, M  provides a rotation through 

9 about OZ,  i.e. it takes the simple form

Now

Mz  (0 0 l;0)

cos 9 sin 9 0

sin 9 cos 9 0

v 0 0 ! /

(5-1.4)

(  \
X

(  \x

M( h  k /; 9) y = (xyz | X Y Z )  Mz (0 0 1; 0) ( X Y Z  \ xyz) y

\ z J \ '  /
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showing that

M  ( hk  1,9) =  (x y z  I X Y Z )  Mz  (0 0 1; 0) (X Y Z  \ x y z )  (5.1.5)

00

f o l k ) (  h2 hk hi \
sin 0 1 — cos 0

0 1 0 +  N l 0 h N 2 hk k2 kl

T—HOO

 ̂ k h 0 y hi ki i2 J

Substituting h 

expression

1, k — 0, / =  2 cos I  and 9 =  7r into (5.1.5) gives the matrix

/  -x /5  2\/5 \

M  =  cos 9
5
0 -1

5
0

2\/5 y/Z
~  0 T  ’

(5.1.6)

Note as expected that

(a) M  (h k /; 0) =  1 for any A:, l

(b) M  (0 0 1; 0) =  Mz  (0 0 1; 0).

It may readily verified that

M  (x , y , z ) p  =  (x , y , z ) ^ (5.1.7)

where

{x , y , z ) p  =  ( 0 , 0  , R) ,

ix ,y, z)a x = (a’ °’ 5) • (5-L8)
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If so, then

M ( x  , y , z)pi =  (x , y , z) a 11

since

(* » V > ’ 0 > 1 “  / )  •

Proceeding in a similar way with p2, pz, Pa and p5, we then arriv 

coordinates of the corresponding vertices ai2, ais, ai4 and a15, for 0.01 < 

Therefore

d(6 : 6) =  | pi -  an |

so providing

 ̂ _  d(6 : 6) _  1 Pi -  an [ 
d(6 : 5) | pi -  p2 |

| (=f5  + 2#(1 -  /)  -  v 'V)2 + ( ^  + 4 ^ ( 1  -  / ) ) ’
~  2 V^7 sin |

This formula enables <$ to be readily calculated for any choice of / .

(5.1.9)

(5.1.10)

at all the 

f < 0.142.

(5.1.11)

(5.1.12)
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5.2 Relation of d(6:5) and R for a given /

Table A, accompanied by FORTRAN program, in Appendix G lists 6 as a function of 

/ ,  starting with / 0 =  0.010, and increasing in units of A  /  =  0.001 until f max =  

0.141. Note that 60 =  4.814 showing, as may be seen directly from Figure 5.3, that 

the pentagons become vanishingly small compared with the hexagons in the limit 

of a shallow cap. We start with /o = 0.010 since 6 =  oo when /  =  0.

At the other extreme, <5 =  0 at which point the hexagons become vanishingly 

small compared with the pentagons, i.e. the dodecahedron circumsphere may be 

produced from a buckyball by a continuous expansion of the buckyball pentagons- 

see Figure 5.4 for details. This will be further discussed below as a possible model 

for C2o- Two intermediate values of 6 are of interest:

(i) Sg =  1.00 at f g =  0.059 i.e. the case of undistorted hexagons since now

d(6:5) = d(6:6), so to speak mimicking the graphite configuration.

To examine this further, we rewrite (4.2.5) as

=  2^2 J g  sin | =  0.404 (5.2.1)

which provides a relation between d(6:5) and R corresponding with f g (Figure 5.5). 

A suitable choice for d(6:5) would be the graphite bond length d(6:5) =  1.420(4) A, 
which gives Rg =  3.520(4) A. This approximates tolerably to the observed radius, 
R ~  3.550(10) A-see reference [7,8], suggesting that a minimization of hexagonal 
distortion is the essential factor in producing the buckyball dimensions.

(ii) 6n -  0.956 corresponding with f n = 0.061 as obtained from (4.3.2), i.e. the natural

buckyball configuration.

As before, we note

d(6 : 5) 
R n

2V/2Tn si
7T

sin — =  0.411.
5

(5.2.2)
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Choosing d(6:5) =  1.455(12) A as in (4.3.2) now yields R =  3.540(8) A which 

approximates closely to the observed radius. This encouraging result demonstrates 

the essential soundness of our mathematical model.

As regards the choice 8 =  0 mentioned earlier (f max =  0.141 from Figure 5.6), we 

have the relation

=  2 /2  f max sin ^ =  0.624. (5.2.3)

Accordingly as with (i), we choose d(6:5) =  1.420(5) A which yields Rmax =  2.276(16) 

A for the C20 molecule.
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PLOT of

Figure 5.3: Profile of 6 exhibiting its decrease as /  reaches its limiting value. This 

is the stage when the sphere is fully covered by regular pentagons.
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p

Figure 5.4: Three essential phases of the geometrical formulation which give rise 

to the dodecahedron circumsphere, arising from (a) buckyball pentagon, then (b) 

expansion of the pentagons accompanied by a reduction of hexagons, and finally (c) 

the circumsphere consists entirely of regular pentagons (schematic picture).
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Here

d(6 : 5)
~  R

PLOT O f
f  ** \

Figure 5.5: Profile of A as given in (4.2.5) showing changing pentagonal pattern as 

/  varies up to the possible maximum.
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Here

cr =
d( 6 : 6)

R

P LO T o f

Figure 5.6: Profile of a (as indicated above) showing changing hexagonal pattern as 

/  varies up to the possible maximum.
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Chapter 6

Possibility Of Inserting More 

Hexagons

6 . 1  Construction Of C$o and C70

We now show how to construct models for the molecules C$o and CVo starting with 

the buckyball model for C&o- First choose an equatorial plane for the buckyball as 

that plane bisects the axis PP' joining the centre P  of any spherical pentagon with 

centre P 1 of its inverse pentagon. If so the equatorial circle lies mid-way between the 

five pentagons surrounding P  and those surrounding P ', being therefore straddled 

by an equatorial belt of ten hexagons as depicted in Figure 6.1 (a). Figure 6.1 (b) 

shows a schematic picture of the equatorial belt, from which we find that

(i) each P is surrounded by 5 Id s,

(ii) each H is surrounded by 3 P s and 3 H s.

Imagine this belt cut out from the buckyball, duplicated into a similar belt of 

twenty hexagons, and re-introduced as shown in Figure 6.2 (a). Now each P is once 

again surrounded by 5 H’s whilst each H is surrounded either by
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(i) 1 P and 4 H’s or

(ii) 2 P’s and 3 Hs or

(iii) 5 H s.

as may be readily verified by a schematic picture in Figure 6.2 (b). Clearly the 

original buckyball has now been converted into a prolate spheroid of axial ratio 

(2R +  d) /  2R where d signifies the distance between two parallel edges of a hexagon. 

Note the insertion of 20 additional hexagonal vertices along the equatorial belt i.e. 

20 carbon atoms have been added to the buckyball so providing a model for Cso, 

though the existence of Cgo as a chemical has not been confirmed yet.

The construction of CVo is slightly more difficult. We imagine the equatorial 

belt cut out as before, but now only alternate hexagons are duplicated to form a 

serrated belt of 15 hexagons as depicted in Figure 6.3 (b). This is re-introduced as 

shown in Figure 6.3 (a), giving rise to 10 additional hexagonal vertices along the 

equatorial belt, i.e. 10 carbon atoms have been added to the buckyball yielding a 

model for C70. As before each P is surrounded by 5 H s. However, each H is now 

surrounded either by

(i) 1 P and 4 H s or

(ii) 2 P and 3 H's.

Accordingly, this duplication transformed the original buckyball into a prolate 

spheroid of axial ratio (2R +  |) /  2R. Traces of CVo exist according to spectroscopic 

evidence. This is believed to adopt the structure of a rugby-ball illustrated in Figure 

6.4. Note that the equatorial plane appears as a symmetry plane (mirror reflection) 

for (P70, replacing the inversion centre apparents in C'eo and C$o-

Our construction for Cgo may be extended to cover carbon molecules of the 

form C'eo+ 20«; n =  1,2, . . .

Similarly the mechanism which we implement for C70 may be extended to cover 

carbon molecules of the form CVo + 20m; in =  0,1,2, . . .

These are all prolate spheroids of increasing axial ratio, eventually becoming cigar-

shaped cages of possible chemical importance [19]. Accordingly this suggests that it
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\  r  /
h /— \  * /  V

y  h  ' x
/*

'  H

Figure 6.1: (a) Profile of C’6o exhibiting part of the tessellation of hexagons (H s) 

and pentagons (P s) on the equatorial belt, (b) Schematic picture exhibiting a 

projective global view of pentagon-hexagon configuration. HereC/i), CP7) indicates 

the pole pentagons. Note that these are inverses with respect to the centre O (not 

shown).
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Figure 6.2: (a) Profile of C'go exhibiting part of the tessellation of hexagons and 

pentagons on the equatorial belt, (b) Schematic picture exhibiting a projective 

global view of pentagon-hexagon configuration. Here H+ denotes an additional 

hexagon. For the symbolisms excluding H+, see Figure 6.1 (b).

90



/ 1 \ \
14 H H-

Figure 6.3: (a) Profile of C70 exhibiting part of the tessellation of hexagons and 

pentagons on the equatorial belt, (b) Schematic picture exhibiting a projective 

global view of pentagon-hexagon configuration. For the symbolisms, see Figure 6.2.
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Figure 6.4: Proposed structure of C70 resembling a rugby-ball. The lattice model 

depicted below [18] shows the atomic pattern on the molecular cages.
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it is best to regard the growth to concentric tubular cages as an essential mechanism 

for giant fullerenes.

6.2 Axial Ratio Of Prolate Spheroids

To determine the axial ratio of Cso, we observe that

d =  2 d(6 : 6) sin — = V3 d(6 : 6) =  2.460 A (6.2.1)
O

bearing in mind the chemical bond-length in (4.1.1) which applies to a regular 

hexagon. If so,

¿ 8 0  —

2R +  d 2Rn +  V 3d {6 : 6)
2 R 2 Rn

1.347 A ( 6 .2.2)

where Rn has been mentioned earlier in (5.2.2). This enables us to compute the 

obvious changes in the ¿-coordinate of the pole pentagons for Cso since the x, y- 

coordinates are restored as in Cqq. Thus the ¿-coordinate is given by

R — h +  — =  R — f  R +  d(6 : 6) sin — (6.2.3)

where R, h and /  are touched in Chap. 4 respectively.

For CVo, we proceed in a similar way so that

+ j rf(6;6) =  1.174
2 R 2 R n

(6.2.4)

by virtue of (6.2.1). As a result this yields the ¿-coordinate as

R — h +  — =  R — /  R +  — c/(6 : 6) sin —. (6.2.5)
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6.3 Point Group Features Of Cqq, Cso and C70

It has already been noted that the regular icosahedron conforms to the point-group 

symmetry 532. However this must be expanded into 5 3^- since its centre 0  is an 

inversion centre. Note that 5 signifies a 5-fold inversion axis, 3 signifies a 3-fold 

inversion axis, and A signifies a 2-fold axis accompanied by a transverse symmetry 

plane.

To understand this further, we start with

{5} +  J {  5} =  {5} (6.3.1)

since this group corresponds with the symmetry 5 on utilising (16) of [page 29, 4]. 

Then combine this decomposition with

{23} +  J {23} =  {3 — } (6.3.2)
m

as follows from the fact that the tetrahedral group {23} is a subgroup of {52}, 

introduced in Chap. 2.

Also {532} contains a subgroup of {32} which expands into

{32} +  J {32} =  {.3m} + , / {3 m }  =  { 3 ^ }  (6.3.3)

in line with (42) of [page 34, 4]. A combination of (6.3.1) with (6.3.3) yields

{532} +  J {532} = ( 5 3 — 1
l m  J

(6.3.4)

which may be realised bv a stereogram depicted in Figure 6.5.

Clearly the buckyball model for C'eo conforms to the same symmetry arising from its 

method of construction, touched in Chap. 5. Five symmetry planes pass through 

PP'. and one of these is displayed in Figure 6.6.

( 'so retains PP' as a 5-fold symmetry axis, but it has no others. Reference to 

Figure 6.2 shows that it also retains the five symmetry planes passing through PP'
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so providing the dihedral group

{5} +  D {5} =  {5 m } ; (6.3.5)

i.e. more explicitly

I , C , C \ . . . C 4 } ,
l >; C 5 =  D2 =  (DC)2 =  I. (6.3.6)
. D, DC, D C 2, . . .  DC4 J

consistent with the demarcation implemented in (33) of [page 32, 4]. Since 0  still 

functions as an inversion centre, its presence expands 5 m into 5 (Figure 6.7) so 

that

{5 2 } + J {5 2 }  =  {5m } +  , /{5 m } = { 5 — } (6.3.7)
m

may be generated and therefore confirming the existence of five 2-fold axes located 

in the equatorial plane-a feature not so easy to see directly.

C70 also retains PP' as a 5-fold symmetry axis, together with the five 

symmetry planes passing through PP' (Figure 6.3). However, 0  is no longer an 

inversion centre. Instead, the equatorial plane becomes a symmetry plane, so that 

5 t o  now expands into ~2m  i.e. each symmetry plane through PP' intersects the 

equatorial plane in a 2-fold axis. Reference to Figure 6.8 shows the construction of 

the crystallographic point group

{5 2} +  M  {5 2} =  {5?n} +  M  { 5m}  =  { — 2m}
TO

corresponding with the symmetry — 2t o .



Figure 6.5: The symmetry 5 3^- may be realised by the atomic pattern on the regular 

icosahedron and its derivation from the stereogram of symmetry 532.
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Figure 6.6: Note that the dotted line marks a symmetry plane passing through PP' 

and intersecting the equatorial plane.
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52

Figure 6.7: The symmetry 5 ^  is generated either by combining 52 or 5 m with 

an inversion centre, thereby automatically introducing each horizontal axis lying 

perpendicular to a vertical mirror.
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Figure 6.8: The symmetry ~ 2m  is obtained either by combining 52 or 5 m with a 

transverse mirror plane, thereby introducing the presence of both vertical mirrors 

and horizontal 2-fold axes.
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Appendix A

The facts that

• for a given surface area, the sphere has a greater volume than any {p,q}',

• for a given volume, the sphere has a smaller surface area than any {p,q},

there being no other possibilities, may be readily confirmed by evaluating the fol-

lowing numerical value for each {p,q}-

Regular

Solid

{P>?}

symbolism

s  _
¡2 ~

F » p  cot -
r  p

V  _  

p ~
F  • p  cos — 

q
3  tan2 — V

Tetrahedron {3,3} 6.928 0.667

Cube {4,3} 24.00 4.00

Octahedron {3,4} 13.856 1.886

Icosahedron {3,5} 34.641 5.393

Dodecahedron {5,3} 82.583 18.944

Table showing the value of and jj for each {p,q}.

100



Appendix A

Regular

Solid

{p,q}

symbolism

R , n  _
l

\ cot -  cos -
k  p q

<7 _
l ~

(  F »p cot

V 4,r )

Tetrahedron {3,3} 0.408 0.743

Cube {4.3} 1.00 1.382

Octahedron {3,4} 0.816 1.050

Icosahedron {3,5} 0.144 1.660

Dodecahedron {5,3} 0.213 2.564

Table showing the value of ^  and f  for each {p,q}.
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Appendix A

Regular

Solid

{p ,Q}

symbolism

P _
l

( ~ T ~ ~  C O t2 -  COS - )  ^

Tetrahedron {3,3} 2.828

Cube {4,3} 2.884

Octahedron {3,4} 2.792

Icosahedron {3,5} 3.741

Dodecahedron {5,3} 5.687

Table showing the value of f  for each {p,q}.
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Appendix A

Regular

Solids

{p,q}

Symbolism

<7 _
Rin

k ( F ' p X i ) 1/2y 4tt cos  ̂ — J

Era. _

i f  J  c°s2 n 1/3
k2/3 • p tan — y

Tetrahedron {3,3} 1.819 0.671

Cube {4,3} 1.382 0.806

Octahedron {3,U 1.286 0.846

Icosahedron {3,5} 1.098 0.196

Dodecahedron {5,3} 1.151 0.190

Table showing the value of and for each {p,q}.
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Appendix B

It appears that formulae (2.1.6), (2.1.10) and (2.1.11) can be achieved directly by 

utilising a fundamental but essential lemma as exhibited below:

Lem m a 1 The mathematical expression tq — v2 is obeyed by a regular icosahedron 

and not for every regular solids, where

. 2
(l — 2 sin2 0̂ Q

v' =  Ù H k ?  « -  1 ; =  sm2 6 -  si" 2 §

P roof: Suppose v =  sin2 9, then

V l

( l - 2  sin2 9 )2 (1 _  2 u)2
4 sin2 0 -  1 4u — 1

( 1 )

Now utilising 2 sin2 0 =  1 — cos 29 so that sin2 | =  —— 1 , we have

9 1 1
v2 =  sin2 9 — sin2 -  =  v — -  (1 — cos 9) =  v — -  +  -  cos 9. (2)

2 2

Writing cos 0 =  1 — gives

1 1
v2 =  v -  -  +  - ( 1  -  u) 1 / 2 (3)

on substituting once again v =  sin2 0. Equating formula (1) with (3) now yields

1 — 4 u  +  4'i.’2 

4 v  — 1

1 1
=  v 5 +  5 (> -
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thus enabling us to write

so that

1 — 4u +  4w2 =  (4u — 1)
5 +  \ (1

1 -  4u +  4u2 =  4n2 -  2v +  2v (1 -  n)1/2 -  n +  vf ! 2 . (4)

Eliminating v2, v from (4) gives

\ -  iv  +  iv 2 =  4n2 -  3v +  2u(l -  v)x/2 -  - ( 1  -  u)1/2,
 ̂ 2

1 -  8v +  8v2 =  8v2 -  6v +  4v( l  -  v )1/2 -  (1 -  u)1/2, ^

1 — 2v =  (4n — 1) (1 — v )1//2

on multiplying across by 2 to both sides. As a consequence, we arrive at

v (l6u2 — 20u +  5̂  =  0 = >  16n2 — 20n +  5 =  0 (6)

From formula (6) b'2 > 4ac i.e. ( -2 0 )2 > 4 (16) (5), we deduce

2 0 ± v/ ( -2 0 )2 -  4 (16) (5) _  20 +  ^400 -  320 
2(16) ~~ 32

/- (7)20 +  4^5 5 +  \/5
32 “  8

Bearing in mind v — sin2 9, two special cases arise:

( i )

sin2 9 5 — y/E 
8
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(ii)

sin2 6
5 +  \/5 

8

Substituting v into (1) we obtain

=
1
4

which implies 6 =  j ,  . . .

We ruled out case (ii) since v1 ^  v2.
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Appendix C

Though the representation of S$, the symmetry group of order 5, has been explored 

extensively in many group theory books, it is necessary to include the remaining 60 

permutational operators since the other 60 elements have been enumerated while 

generating the icosaheral group {532} in Chapter 2. This is essential for the validity 

of the statement embodied in the text. So we write down the faithful representation 

of S5 by means of cosets decomposition of the alternating group A5 as follows:

S5 =  A5 +  (12)(3)(4)(5) A5 =  A5 +  A5 (12)(3)(4)(5). (1)

However, the faithful representations of (a) are not in the same order as the repre-

sentation of (b).

It may be readily verified that A5 is the invariant subgroup of S5 where 10 of the 

elements are best regarded as 2-fold symmetry axes, 20 of the elements as 3-fold 

symmetry axes, and 30 of the elements as 4-fold symmetry axes. For brevity, we 

list down all the 60 elements in chains of tables as shown in the next pages.
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• / (12)(34)(5) (13)(24)(5) (14)(23)(5)

(12)(3)(4)(5) (12)(3)(4)(5) (34)(1)(2)(5) (1324) (5) (1423) (5)

• (123)(4)(5) (243)(1)(5) (142)(3)(5) (132)(4)(5)

(12)(3)(4)(5) (23)(1)(4)(5) (1342)(5) (14)(2)(3)(5) (13)(2)(4)(3)

• (234)(1)(5) (124)(3)(5) (143)(2)(5) (12345)

(12)(3)(4)(5) (1234)(5) (24)(1)(3)(5) (1432) (5) (2345)(1)

• (135)(2)(4) (14325) (15)(24)(3) (13245)

(12)(3)(4)(5) (1352)(4) (143)(25) (1524)(3) (13)(245)

• (14235) (125)(3)(4) ( 15 ) ( 34 ) ( 2 ) (145)(2)(3)

(12)(3)(4)(5) (14)(235) (25)(3)(4)(1) (152)(34) (1452)(3)
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• (12435) (13425) (15)(23)(4) (13524)

(12)(3)(4)(5) (2435)(1) (134)(25) (1523)(4) (135)(24)

• (14523) (152)(3)(4) (25)(34)(1) (14)(25)(3)

(12)(3)(4)(5) (145)(23) (15)(2)(3)(4) (125) (34) (1425)(3)

• (15243) (13452) (235)(1)(4) (15234)

(12)(3)(4)(5) (243)(15) (1345)(2) (1235)(4) (15)(234)

• (235)(1)(4) (15234) (13)(25)(4) (14352)

(12)(3)(4)(5) (1235)(4) (15)(234) ( 1325)(4) (1435) (2)

• (245)(1)(3) (14253) (15324) (345)(1)(2)

(12)(3)(4)(5) (1245)(3) (14)(253) (153)(24) (12) (345)
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(12)(35)(4) (15342) (253)(1)(4) (14)(35)(2)

(12)(3)(4)(5) (1)(2)(4)(35) (1534)(2) (1253)(4) (142)(35)

• (12453) (24)(35)(1) (14532) (153)(2)(4)

(12)(3)(4)(5) (2453)(1) (124)(35) (1453)(2) (1532)(4)

• (12534) (15432) (254)(1)(3) (12354)

(12)(3)(4)(5) (25341(1) (1543)(2) (1254)(3) (2354)(1)

• (13)(45)(2) (354)(1)(2) (12)(45)(3) (15423)

(12)(3)(4)(5) (132)(45) (12)(354) (1)(2)(3)(45) (154)(23)

• (13254) (12543) (154)(2)(3) (23)(45)(1)

(12)(3)(4)(5) (13)(254) (2543)(1) (Î542)(3) (123)(45)
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Appendix D

In Appendix D we illustrate the irrational values of each mathematical expressions 

that has significant role in Chapters 2 and 3. These expressions not only simplify the 

calculation but effectively display that they are applicable to the physical features 

of the regular icosahedron and the regular dodecaheron and no others.

The symbolism which is used in the next table is written as follows:

a. Argand diagram describing the root of the quintic equation

• Sm f  =  -----2 -*-

c. cos2 | +  sin2 f  =  1

d. sin2 f  — sin2 A  =  v

e. cos2 =  1 — sin2 —

f. cos2 Y5 +  sin2 Y3 =  1

g. sin2 =  4 sin2 ~ cos2 \°  5  5 5

i l l



Appendix D

Trigonometric Equivalent Irrational Method Of

Identities Identities Value Derivation

cos f Vb -  1 
4 a

cos f 1 +  V 5  
4 a

sin2 | cos2 g 5 — i /5  
8 b

cos2 | sin2 g 3 +  %/5 
8 c

sin2 £ cos2 g 3 — Vb 
8 d , e

cos2 ^ sin2 ^ b 4* V*5 
8 f , g

Table of trigonometric identities for comparable 

angular measurement f ,  I f  and
5 7 5 1 0
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Appendix E

As already been invoked earlier in the text, the derivation of the x ,y , z  coordinates of 

the vertices p4, p2, P3, P a  and p 5 associated with the pole pentagon of the buckyball 

are displayed below for some /  between the interval 0.01 <  /  <  0.142. The 

corresponding values are listed in double precision to ensure exact accuracy. For 

instance when /  =  0.1000000D-01 (meaning 0.01 to 7 decimal places) p1? p2, p3, p4 

and p 5 are read in the following sequence:

1st row i— » px 

2nd row i— > p2 

3rd row i— > p 3 

4th row i— > p4 

5th row i— ► p 5 .

The algorithms that we utilised are based on [10]—[15]
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X Zf
0 . 1000000D-01  
0 . 1000000D-01  
0 . 1000000D-01  
0 . 1000000D-01  
0 . 1000000D-01  
0 . 1010000D-01  
0 . 1010000D-01  
0 . 1010000D-01  
0 . 1010000D-01  
0 . 1010000D-01  
0 .1 0 2 00 0 0D -0 1  
0 . 1020000D-01  
0 . 1020000D-01  
0 . 1020000D—01 
0 .1 0 2 00 0 0D -0 1  
0 . 1030000D-01  
0 . 1030000D-01  
0 . 1030000D-01  
0 . 1030000D-01  
0 . 103 00 0 0D -0 1 
0 . 1040000D—01 
0 .1 0 4 0 0 0 0 D -0 1  
0 . 1040000D-01  
O. 1040000D—01 
0 . 1040000D—01 
0 . 1050000D-01  
0 . 1050000D-01  
O. 1050000D-01  
0 . 1050000D-01  
O. 1050000D-01  
O. 1060000D-01  
0 . 1060000D-01  
0 .1 0 6 0 0 0 0 D -0 1  
0 . 1060000D-01  
0 . 1060000D-01  
0 . 1070000D-01  
0 . 1 0 7  0000D—01 
0 . 1 0 7  0000D-01  
0 . 1 0 7  0000D-01  
0 . 1 0 7  OOOOD—01 
0 . 1080000D-01  
0 . 1080000D-01  
0 . 1080000D-01  
0 . 1080000D-01  
0 . 1080000D-01  
0 . 1 0  90000D-01  
0 . 1090000D-01  
0 . 1090000D-01  
0 . 1090000D-01  
0 . 1090000D-01  
0 . 1100000D-01  
0 . 1100000D-01  
0 . 1100000D-01  
0 . 1100000D-01  
0 .1 1 0 00 0 0D -0 1  
0 . 1110000D-01  
0 . 1110000D-01  
0 . 1110000D-01  
0 . 1110000D-01  
0 . 1110000D-01  
0 .1 1 2 00 0 0D -0 1  
0 . 1120000D-01  
0 . 1120000D-01  
0 . 1120000D-01  
0 . 1120000D-01

0 . 1 4 1 4 2 14D+00 
0 . 4370160D-01  

- 0 . 1 1 4 4 123D+00 
- 0 .1 1 44 1 23 D +0 0  

0 .43 7 01 6 0D -0 1  
0 . 1421267D+00  
0 . 4391957D-01  

- 0 . 1149829D+00  
- 0 . 1 1 4  982 9D+00 

0 . 4391957D-01  
0 . 1428286D+00  
0 . 4413645D-01  

- 0 . 1155507D+00  
- 0 . 1155507D+00  

0 . 4413645D-01  
0 . 1435270D+00  
0 . 4435228D-01  

- 0 . 1161158D+00  
- 0 . 1161158D+00  

0 . 4435228D-01  
0 . 1442221D+00  
0 . 4456706D-01  

- 0 . 1166781D+00  
- 0 . 1166781D+00  

0 .4 4 5 67 0 6D -0 1  
0 .1 4 4  9138D+00 
0 .4 4 7  8082D-01  

- 0 . 1172377D+00  
- 0 . 1172377D+00  

0 . 4478082D-01  
0 . 1456022D+00  
0 .4  4 99355D-01  

- 0 . 1177947D+00  
- 0 . 1177947D+00  

0 .4 4  99355D-01  
0 . 1462874D+00  
0 . 4 5 2 0 5 2 9 0 - 0 1  

- 0 . 1 1 8 3 4  90D+00 
- 0 . 1183490D+00  

0 . 4520529D-01  
0 .1 4  69694D+00 
0 .454 16 0 4D -0 1  

- 0 . 1189007D+00  
- 0 . 1189007D+00  

0 . 4541604D-01  
0 .1 4 7  6482D+00 
0 . 4562581D-01  

- 0 . 1 1 9 4 4  99D+00 
- 0 . 1 1 9 4 4 9 9D+00 

0 . 4562581D-01  
0 . 1483240D+00  
0 .45 8 34  63D-01  

- 0 . 1199966D+00  
- 0 . 1199966D+00  

0 -4583463D-01  
0 . 1489966D+00  
0 . 4604250D-01  

- 0 . 1205408D+00  
- 0 . 1205408D+00  

0 .4  604250D-01  
0 .1 4  96663D+00 
O.4624943D-01  

- 0 . 1210826D+00  
- 0 . 1210826D+00  

0 .4  624 943D-01

y
O.OOOOOOOD+OO 
0 .1 3 4 4  997D+00 
0 . 8312539D-01  

- 0 . 8312539D-01  
- 0 . 1 3 4 4  997D+00 

O.OOOOOOOD+OO 
0 . 1351705D+00  
0 . 8353998D-01  

- 0 . 8353998D-01  
- 0 . 1 3 5 1 7 Û5D+00 

0 . OOOOOOOD+OO 
0 . 1358380D+00  
0 . 8395253D-01  

- 0 . 8395253D-01  
- 0 . 1358380D+00  

O.OOOOOOOD+OO 
0 .13  65023D+00 
0 .8436305D -0 1  

- 0 . 8436305D-01  
- 0 . 1365023D+00  

O.OOOOOOOD+OO 
0 . 1371633D+00  
0 . 8477159D-01  

- 0 .8 4 7 7 1 5 9 D - 0 1  
- 0 . 1371633D+00  

G.OOOOOOOD+OO 
0 . 137 8212D+00 
0 . 8517818D-01  

- 0 . 8 5 1 7  818D-01  
- 0 . 1378212D+00  

0 . OOOOOOOD+OO 
0 . 1384759D+00  
0 . 8558282D-01  

- 0 . 8 5 5 8 2 82D-01  
- 0 . 1384759D+00  

O.OOOOOOOD+OO 
0 . 1 3 9 1 2 7 6D+00 
0 . 8598557D-01  

- 0 . 8598557D-01  
- 0 . 1391276D+00  

O.OOOOOOOD+OO 
0 . 1397762D+00  
0 . 8638644D-01  

- 0 .8 6 3 8 6 4 4 D - 0 1  
- 0 . 1 3 9 7 7 62D+00 

O.OOOOOOOD+OO 
0 .14  0 42 18D+00 
0 . 8678545D-01  

- 0 . 8678545D-01  
- 0 . 1404218D+00  

O.OOOOOOOD+OO 
0 . 1410645D+00  
0 .8718264D -01  

- 0 . 8718264D-01  
- 0 . 1410645D+00  

O.OOOOOOOD+OO 
0 .1 4 1 7  042D+00 
0 . 8757803D-01  

- 0 .8 7 5 7 8 0 3 D - 0 1  
- 0 . 1 4 1 7  042D+00 

O.OOOOOOOD+OO 
0 . 1 4 2 3 4 11D+00 
0 . 8 7 9 7 1 64D-01 

- 0 . 8 7  9 71 64D-01 
- 0 . 1 4 2 3 4 11D+0Q

0 . 9900000D+00  
0 . 9900000D+00  
0 . 9900000D+00  
O. 9900000D+00  
; ) .9900000D+00  
0 . 9899000D+00  
■ ). 9899000D+00 
0 . 9899000D+00  
0 . 9 8 99000D+00 
0 . 9899000D+00  
t. 9898000D+00  

O . 9898000D+00  
0 . 9898000D+00  
0 . 9898000D+00  
0 . 9898000D+00  
(J. 9897000D+00  
0 . 9897000D+00 
0 . 9897000D+00  
0 . 9897000D+00  
0 . 9897000D+00  
0 . 9896000D+00  
3 .98960000+00  
0 . 9896000D+00  
0 . 9896000D+00 
0 . 9896000D+00 
0 . 9895000D+00 
0 . 9895000D+00 
0 . 9895000D+00 
0 . 9895000D+00  
0 . 9895000D+00  
(1. 9894000D+00  
0 . 9894000D+00 
0 . 9894000D+00  
(I.9894000D+00  
0 . 9894000D+00 
0 . 9893000D+00  
(I.9893000D+00  
0 . 9893000D+00 
0 . 989300ÜD+00 
O . 9893000D+00  
0 . 9892000D+00  
0 . 9892000D+00  
(I.9892000D+00  
O. 9892000D+00 
(i. 9892000D+00 
0 . 9891000D+00 
('. 9891000D+00 
0 . 9891000D+00  
0 . 9891000D+00  
(I.9891000D+00  
O . 9890000D+00 
0 . 9890000D+00 
0 . 9890000D+00 
0.9890000D+00  
n . 9890000D+00 
O. 9889000D+00 
(1. 9889000D+00 
0 . 9889000D+00 
0 . 9889000D+00 
0 . 9889000D+00 
0 . 9888000D + 00 
0 . 9888000D+00 
0 . 9888000D+00 
0 . 9888000D+00 
0 . 9886000D+00
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0 . 1419000D+00 -  
0 . 1419000D+00  
0 . 1420000D+00  
0 . 1420000D+00  
0 . 1420000D+00 -  
0 . 1420000D+00 -  
0 . 1420000D+00

0 . 4309867D+00  
0 . 1646223D+00  
0 .5 3 2  9 1 65D+00 
0 .1 6 4  6803D+00 
0 . 4311385D+00  
0 . 4311385D+00  
0 . 1646803D+00

- 0 . 3131301D+00  
- 0 .5 066552D+0 0  

0 . 0000000D+00  
0 . 5068337D+00  
0 . 3132405D+00 

- 0 . 3132405D+00  
- 0 . 5068337D+00

0 . 8581000D+00  
0 . 8581000D+00  
0 . 8580000D+00  
0 . 8580000D+00  
0 . 8580000D+00  
0 . 8580000D+0C 
0 . 8580000D+00

Appendix E.2
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Appendix F

For comparison of efficiency in regards to calculating the bond-length, we generate 

the following formula embodied earlier in Chap. 4

P  — p i  | =  9  R ( 1)

where

9 =  tan 1 P
fi(l -  / )

tan 1
Ry/2j

m  -  / )

and for sufficiently small 8

———....- —  j. .

~J~ + f) + 0  (/2) ■
Also

( 2 )

P ~ Pi I =  y/h2 +  p2 =  yj.R2 P  +  2 /  B? =  ^  (/2  +  2/ )

= lV-2/ (l + f)'/2 ~ Rfif (l + {) , (3)

such that /  that generates

P  -  P i  

P  ~  P i

1 + /
1 + i

1 + 3/
4 +  o  ( / 2) (4)

is 0.0519826. From this result, we deduce that spherical symmetry is as significant 

as the straight line nature of the bond-length since the difference between them is 

relatively small.
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Appendix G

The algorithm of the Fortran program which we utilise in calculating the ratio 

6 =  of the two characteristics C-C bond lengths as a function of shallownesss

parameter /  is illustrated in the next three pages. To start with

1. Fix the circumsphere radius R.

2. For 0.01 <  /  < 0.142, calculate radius p  as in (4.2.2) of the latitude circle 

since each of x ,  y  coordinates of the pole pentagon may be expressed in terms 

of p  where p .

3. Iterate the case for k=0 and k= l since k enters into the angle of rotation about 

the pole pentagon.

If k=0 then

(a) calculate x, y  and z coordinates for p i  of the pole pentagons, defined in 

terms of column vector v (l ,l) , v(2,l) and v(3,l).

(b) perform a matrix multiplication of 3 X 3 matrix M (constitute of the 

direction ratios H:K:L) with the column vector in (a). This provides 

coordinates of aH.

(c) substract the x ,  y  and z coordinates of p i ,  thereby giving rise to the bond 

length d(6:6). For brevity, a variable name sigma is assigned to ¿(6:6).

(d ) proceed to the case k= l.

If k = l then

(a) same statements as in (a) for k=0.
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(b) compute the distance | pi — p? | as depicted in (4.2.5) which provides the 

bond length d(6:5). Again for brevity, a variable name lambda is assigned 

to d(6:5). Then ratio of interest 8 i.e sigma/lambda (corresponding with 

the Fortran variable name) is derived.

4. Repeat the same process until arriving at the limiting value of /  i.e. /  =  0.142.

Finally, Table A displays the numerical results which have significant role in 

analysing some models of the buckyball configuration.
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c 
c
c i n p u t :
c f
c 
c
c p i
c
c o u t p u t :
c p
c 
c
c sigma
c 
c 
c
c lambda
c 
c 
c
c d e l t a
c
c sub rout ine  re q u ir ed :  v e c t o r , m a t v e c , d i f v e c  
c
c fu n c t ion  used:  d i s t l
c
c This program determines the value o f  f  as a function parameter R 
c in  which d e l t a = 0 . 9 5 6 ,  d e l t a  fo r  natura l  buckybal l ;  
c d e l t a = 1 . 0 0 0 ,  d e l t a  f o r  graph ite  la y e r ;
c d e l t a = 0 . 0 0 0 ,  d e l t a  f o r  dodecahedron,
c
c----------------------------------------------------------------------------------------------------------------------72
c

double p r e c i s i o n  p , p i , x ,  y , z , b l , b 2 , b 3 , b ( 3 , l ) , m ( 3 , 3 ) , v ( 3 , l ) , l ( 3 , l ) ,
+ t h e t a ,  d c o s , d s i n , d a t a n , d i s t l , s i g m a , l a m b d a , d e l t a

common b l , b 2 , b 3  
r e a l  f  
i n t e g e r  k 

c
p i = 4 . OdO*datan( 1 . OdO)
w rit e  ( * , '  ( l l x , " f " , 1 3 x , " d " , l l x , " d ( 6 : 6 ) " ,  8x, " d ( 6 : 5 ) " ) ' )  
w r i t e ( * , ' ( 3 7 x , " w / o  R " , 9 x , " w / o  R " ) ' )  

c
do 20 f = 0 . 010, 0 . 1 4 2 ,  0 .0 0 1  

p = s q r t ( 2 . 0 d 0 * d b l e ( f )) 
do 30 k = 0 , 1
t h e t a = ( ( p i * d b l e ( k ) ) * 2 , 0 d 0 ) / 5 . 0 d 0  
i f ( t h e t a . e q . 0 . OdO)then 

x = p * d c o s ( 0 . OdO) 
y = p * d s i n ( 0 . OdO) 
z = l . O d O -d b le ( f ) 
c a l l  v e c t o r ( x , y ,  z,  v) 
c a l l  matvec(m, v,  1) 
c a l l  d i f v e c ( 1 , v ,b )  
s i g m a = d i s t l ( b l ,  b2,  b3) 

e l s e
x =p*d cos( the ta )  
y = p * d s in ( t h e ta )  
z = l . OdO-dble(f )
lambda=( 2 . 0 d 0 * s q r t ( 2 . 0 d 0 * d b l e ( f ) ) ) * d s i n ( p i / 5 . OdO) 

delta=sigma/lambda  
end i f

30 continue
w r i t e ( 6 , 3 3 ) f , de lta ,s igm a,lambd a  

33 fo r m a t ( 4 (F14 .3 ) )
20 continue

PROGRAM c ar b o n . f

-  non-dimensional  parameter between the i n t e r v a l  
0 .0 1 0  and 0 .1 4 2

-  angle c a l c u l a t e d  in radian

Appendix G

-  circumradius o f  the l a t i t u d e  c i r c l e  forming the  
base o f  the s p h e r ic a l  pole  pentagon

-  carbon bond j o i n i n g  two neighbouring sp h e r ic a l
regular  pentagon------" d ( 6 : 6 )  without
re fe re n c e  to  R(radius o f  the b u c k y b a l l ) "

-  carbon bond j o i n i n g  two neigbouring atoms within
s p h e r i c a l  regular  pentagon------" d ( 6 : 5 )  without
re fe re n c e  to  R(radius o f  the b u c k y b a l l ) "

-  r a t i o  o f  d ( 6 : 6 )  to  d (6 :5 )
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c
c-
c

Stop
end

Appendix G

subrout ine  v e c t o r ( x , y , z , v )  
double p r e c i s i o n  x , y , z , v ( 3 , l )  
i n t e g e r  n 

c
c This subprogram s t o r e s  the x , y , z  coordinate  o f  p i  and e t c  as 
c one dimensional  array v ( n , l )
c

do 50 n = l , 3
i f ( n . e q . 1 ) then  

v (n ,  1 ) =x
e l s e  i f ( n . e q . 2 ) t h e n  

v (n ,  1 ) =y 
e l s e

v (n ,  1 ) =z 
end i f  

50 continue  
return  
end 

c
c--------------------------------------------------------------------------------------------------------------------------------------------
c

sub rout ine  m a t v e c ( m ,v ,1) 
double p r e c i s i o n  m(3, 3) , v (3, 1 ) ,  1 ( 3 ,  1) 
i n t e g e r  i  

c
c This subprogram computes the matrix m u l t i p l i c a t i o n : l=m*v by
c in c o r p o r a t in g  the d i r e c t i o n - r a t i o s  H: K: L as matrix  m, so 
c p r ov id in g  e . g .  the coord inate  tr ansfo rmation o f  p i  in t o  a l l  
c

do 50 i = l , 2  
m ( i , i + 1 ) = 0 . OdO 
m ( i + l , i ) = 0 . OdO 

50 continue
m ( 2 , 2 ) = - l . OdO
m ( l , l ) = ( - ( 5 . 0 d 0 ) * * 0 . 5 ) / 5 . 0 d 0  
m( 1 ,3 )  = ( 2 . OdO*( ( 5 . OdO)* * 0 . 5 ) )  / 5 .  OdO 
m ( 3 , 1 ) = ( 2 , 0 d 0 * ( ( 5 . OdO)**0. 5 ) ) / 5 . OdO 
m(3,  3) = ( ( 5 . OdO)* * 0 . 5 ) /5.OdO
1 (1, l ) = m ( l ,  1) * v ( l ,  l ) + m ( l , 2 )  *v ( 2 ,  l ) + m ( l ,  3) * v ( 3 , 1)
1 ( 2 , 1 )  =m (2, 1) * v ( l ,  1) +m (2, 2) *v (2, 1) +m (2 ,3 )  * v  (3 ,1 )
1 ( 3 ,1 )  = m ( 3 , 1) *v ( 1 ,1 )  +m(3, 2) *v ( 2 ,1 )  +m(3, 3) *v (3 ,1 )  
return  
end 

c
----------------------------------------------------------------------------------------------------------------
c

sub rout ine  d i f v e c (1, v ,b )
double p r e c i s i o n  v ( 3 , 1 ) , 1 ( 3 , 1 ) , b ( 3 , 1 ) , b l , b 2 , b 3  
common b l , b 2 , b 3  

c
c Here we c a l c u l a t e s  the d i f f e r e n c e  between the x , y , z  
c coord in ate s  o f  pi  and the corresponding x , y , z  
c coord in ate s  o f  a l l  
c

b ( 1 , 1 ) = 1 ( 1 , 1) v (1 ,1 )  
b ( 2 , l )  = 1 ( 2 , 1 )  —v (2 ,1 )  
b ( 3 ,1 )  =1 (3, 1) - v  (3 ,1 )  

b l = b ( 1 ,1 )  
b 2 = b (2 ,1 )  
b 3 = b ( 3 ,1 )  

return
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c
c-
c

e n d

Appendix G

double p r e c i s i o n  fu n c t ion  d i s t l ( b l , b 2 , b 3 )  
double p r e c i s i o n  b l , b 2 , b 3  

c
c Here we c a l c u l a t e s  the bond length d ( 6 :6 )  
c

d i s t l = s q r t ( ( b l ) * * 2 + ( b 2 ) * * 2 + ( b 3 ) * * 2 )
return
end
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f b d (6 : 6) d (6 :5 )
w/o R w/o R

0 .0 1 0 4 .8 1 4 0 .8 0 0 0 .1 6 6
0 . Oil 4 .5 1 7 0 .7 8 8 0 .174
0 .0 1 2 4 .2 5 7 0 .7 7 5 0 .1 8 2
0 .0 1 3 4 .0 2 8 0 .7 6 3 0 .1 9 0
0 .0 1 4 3 .8 2 3 0 .7 5 2 0 .1 9 7
0 .0 1 5 3 . 6 3 9 0 .7 4 1 0 .2 0 4
0 .0 1 6 3 .4 7 3 0 .7 3 0 0 .2 1 0
0 .0 1 7 3 .3 2 1 0 .7 2 0 0 .217
0 .0 1 8 3 .1 8 2 0 .7 1 0 0 .2 2 3
0 . 0 1 9 3 .0 5 4 0 .7 0 0 0 .2 2 9
0 .0 2 0 2 . 9 3 5 0 .6 9 0 0 .2 3 5
0 .0 2 1 2 . 8 2 5 0 .6 8 1 0 .2 4 1
0 .0 2 2 2 . 7 2 3 0 .6 7 1 0 .247
0 .0 2 3 2 . 6 2 7 0 .6 6 2 0 .2 5 2
0 .0 2 4 2 . 5 3 7 0 .6 5 3 0 .2 5 8
0 .0 2 5 2 . 4 5 3 0 .6 4 5 0 .2 6 3
0 . 0 2 6 2 . 3 7 3 0 .6 3 6 0 .2 6 8
0 .0 2 7 2 . 2 9 8 0 .6 2 8 0 .2 7 3
0 .0 2 8 2 .2 2 7 0 .6 1 9 0 .2 7 8
0 .0 2 9 2 . 1 5 9 0 .6 1 1 0 .2 8 3
0 .0 3 0 2 . 0 9 5 0 .6 0 3 0 .2 8 8
0 .0 3 1 2 .0 3 4 0 .5 9 5 0 .2 9 3
0 .0 3 2 1 .9 7 5 0 .587 0 .2 9 7
0 .0 3 3 1 .9 1 9 0 .5 8 0 0 .3 0 2
0 .0 3 4 1 . 8 6 6 0 .572 0 .3 0 7
0 .0 3 5 1 .8 1 5 0 .5 6 5 0 .3 1 1
0 .0 3 6 1 .7 6 6 0 .557 0 .3 1 5
0 .0 3 7 1 .7 1 9 0 .5 5 0 0 .3 2 0
0 .0 3 8 1 .674 0 .542 0 .324
0 .0 3 9 1 .6 3 0 0 .5 3 5 0 .3 2 8
0 .0 4 0 1 .5 8 9 0 .5 2 8 0 .3 3 3
0 .0 4 1 1 .5 4 8 0 .5 2 1 0 .3 3 7
0 .0 4 2 1 .5 0 9 0 .514 0 .3 4 1
0 .0 4 3 1 .4 7 2 0 .507 0 .3 4 5
0 .0 4 4 1 .4 3 5 0 .5 0 1 0 .3 4 9
0 .0 4 5 1 .4 0 0 0 .494 0 .3 5 3
0 . 0 4 6 1 .3 6 6 0 .487 0 .3 5 7
0 .0 4 7 1 .3 3 3 0 .4 8 0 0 .3 6 0
0 .0 4 8 1 .3 0 1 0 .474 0 .364
0 .0 4 9 1 .2 7 0 0 .467 0 .3 6 8
0 .0 5 0 1 .2 4 0 0 .4 6 1 0 .372
0 .0 5 1 1 .2 1 1 0 .4 5 4 0 .3 7 5
0 .0 5 2 1 .1 8 2 0 .4 4 8 0 .3 7 9
0 .0 5 3 1 .1 5 4 0 .4 4 2 0 .3 8 3
0 .0 5 4 1 .1 2 7 0 .4 3 6 0 .3 8 6
0 .0 5 5 1 .1 0 1 0 .4 2 9 0 .3 9 0
0 . 0 5 6 1 .0 7 6 0 .4 2 3 0 .3 9 3
0 .0 5 7 1 .0 5 1 0 .417 0 .3 9 7
0 .0 5 8 1 .027 0 .4 1 1 0 .4 0 0
0 . 0 5 9 1 .0 0 3 0 .4 0 5 0 .404
0 .0 6 0 0 .9 8 0 0 .3 9 9 0 .407
0 .0 6 1 0 .9 5 7 0 .3 9 3 0 .4 1 1
0 .0 6 2 0 .9 3 5 0 .387 0 .414
0 .0 6 3 0 .914 0 .3 8 1 0 .417
0 .0 6 4 0 .8 9 3 0 .3 7 5 0 .4 2 1
0 .0 6 5 0 .8 7 2 0 .3 7 0 0 .424
0 . 0 6 6 0 .8 5 2 0 .364 0 .427
0 .0 6 7 0 .8 3 2 0 .3 5 8 0 .4 3 0
0 .0 6 8 0 .8 1 3 0 .3 5 3 0 .434
0 . 0 6 9 0 .7 9 4 0 .347 0 .4 3 7
0 .0 7 0 0 .7 7 6 0 .3 4 1 0 .4 4 0
0 .0 7 1 0 .7 5 8 0 .3 3 6 0 .4 4 3
0 .0 7 2 0 .7 4 0 0 .3 3 0 0 .4 4 6
0 .0 7 3 0 .7 2 3 0 .3 2 5 0 .4 4 9

Table A

1 22



Table A

0 .0 7 4 0 .7 0 6 0 .3 1 9 0 .4 5 2
0 .0 7 5 0 .6 8 9 0 .314 0 .4 5 5
0 .0 7 6 0 .6 7 3 0 .3 0 8 0 .4 5 8
0 .0 7 7 0 .6 5 6 0 .3 0 3 0 .4 6 1
0 .0 7 8 0 .6 4 1 0 .297 0 .464
0 .0 7 9 0 .6 2 5 0 .2  92 0 .4 6 7
0 .0 8 0 0 .6 1 0 0 .287 0 .4 7 0
0 .0 8 1 0 .5 9 5 0 .282 0 .4 7 3
0 .0 8 2 0 .5 8 0 0 .2 7 6 0 .4 7 6
0 .0 8 3 0 .5 6 6 0 .2 7 1 0 .4 7 9
0 .0 8 4 0 .5 5 2 0 .2 6 6 0 .4 8 2
0 .0 8 5 0 .5 3 8 0 .2 6 1 0 .4 8 5
0 .0 8 6 0 .5 2 4 0 .2 5 5 0 .4 8 8
0 .0 8 7 0 .5 1 0 0 .2 5 0 0 .4 9 0
0 . 0 8 8 0 .4 9 7 0 .2 4 5 0 .4 9 3
0 . 0 8 9 0 .4 8 4 0 .2 4 0 0 .4 9 6
0 . 0 9 0 0 .4 7 1 0 .2 3 5 0 .4 9 9
0 . 0 9 1 0 .4 5 9 0 .2 3 0 0 .5 0 2
0 .0 9 2 0 .4 4 6 0 .2 2 5 0 .5 0 4
0 .0 9 3 0 .4 3 4 0 .2 2 0 0 .5 0 7
0 .0 9 4 0 .4 2 2 0 .2 1 5 0 .5 1 0
0 .0 9 5 0 .4 1 0 0 .2 1 0 0 .5 1 2
0 .0 9 6 0 .3 9 8 0 .2 0 5 0 .5 1 5
0 .0 9 7 0 .3 8 7 0 .2 0 0 0 .5 1 8
0 .0 9 8 0 .3 7 5 0 .1 9 5 0 .5 2 0
0 . 0 9 9 0 .3 6 4 0 .1 9 0 0 .5 2 3
0 .1 0 0 0 .3 5 3 0 .1 8 5 0 .5 2 6
0 .1 0 1 0 .3 4 2 0 .1 8 1 0 .5 2 8
0 .1 0 2 0 .3 3 1 0 .1 7 6 0 .531
0 .1 0 3 0 .3 2 0 0 .1 7 1 0 .534
0 .1 0 4 0 .3 1 0 0 .1 6 6 0 .5 3 6
0 .1 0 5 0 .3 0 0 0 .1 6 1 0 .5 3 9
0 . 1 0 6 0 .2 8 9 0 .157 0 .5 4 1
0 .1 0 7 0 .2 7 9 0 .1 5 2 0 .544
0 .1 0 8 0 .2 6 9 0 .147 0 .5 4 6
0 .1 0 9 0 .2 6 0 0 .1 4 3 0 .5 4 9
0 .1 1 0 0 .2 5 0 0 .1 3 8 0 .5 5 1
0.111 0 .2 4 0 0 .1 3 3 0 .554
0 .1 1 2 0 .2 3 1 0 .1 2 8 0 .5 5 6
0 .1 1 3 0 .2 2 2 0 .124 0 .5 5 9
0 .1 1 4 0 .2 1 2 0 .1 1 9 0 .561
0 .1 1 5 0 .2 0 3 0 .1 1 5 0 .564
0 . 1 1 6 0 .1 9 4 0 .1 1 0 0 .5 6 6
0 .1 1 7 0 .1 8 5 0 .1 0 5 0 .5 6 9
0 .1 1 8 0 .1 7 7 0 .1 0 1 0 .5 7 1
0 .1 1 9 0 .1 6 8 0 .0 9 6 0 .574
0 .1 2 0 0 .1 5 9 0 .0 9 2 0 .5 7 6
0 .1 2 1 0 .1 5 1 0 .0 8 7 0 .5 7 8
0 .1 2 2 0 .1 4 3 0 .0 8 3 0 .5 8 1
0 .1 2 3 0 .1 3 4 0 .0 7 8 0 .5 8 3
0 .1 2 4 0 .1 2 6 0 .074 0 .5 8 5
0 .1 2 5 0 .1 1 8 0 .0 6 9 0 .5 8 8
0 . 1 2 6 0 .1 1 0 0 .0 6 5 0 .5 9 0
0 .1 2 7 0 .1 0 2 0 .0 6 0 0 .5 9 2
0 . 1 2 8 0 .0 9 4 0 .0 5 6 0 .5 9 5
0 . 1 2 9 0 .0 8 7 0 .052 0 .5 9 7
0 .1 3 0 0 .0 7 9 0 .0 4 7 0 .5 9 9
0 .1 3 1 0 .0 7 1 0 .0 4 3 0 .602
0 .1 3 2 0 .0 6 4 0 .0 3 9 0 .604
0 .1 3 3 0 .0 5 6 0 .034 0 .6 0 6
0 .1 3 4 0 .0 4 9 0 .0 3 0 0 .6 0 9
0 .1 3 5 0 .0 4 2 0 .0 2 5 0 .6 1 1
0 . 1 3 6 0 .0 3 5 0 .0 2 1 0 .6 1 3
0 .1 3 7 0 .0 2 7 0 .017 0 .6 1 5
0 .1 3 8 0 .0 2 0 0 .0 1 3 0 .6 1 8
0 . 1 3 9 0 .0 1 3 0 .0 0 8
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0 .1 4 0  0 . 0 0 6  0 .0 0 4  0 .6 2 2
0 -1 4 1  0 .0 0 0  0 .0 0 0  0 .624

Table A
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