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ABSTRACT

ABSTR ACT

Computer analysis of static images imposes a significant computational 
burden on the processing hardware. In dynamic vision, the problem 
is manifold, and the requirement is also to reduce the latency of the 
processing, in order to allow realistic reaction times to events in the 
scene. Flexible, massively parallel architectures hold the promise of 
fulfilling these requirements for low, medium and high level vision tasks, 
provided that robust algorithms can be implemented in an efficient 
manner.

In this thesis the role of the transputer as an intelligent processing 
element for multi-processor parallel architectures will be examined to 
determine its suitability across the spectrum of vision processing levels. 
To explore such possibilities, two fields within computer vision will be 
investigated.

Initially, low and medium level vision tasks will be explored to ap-
ply the transputer to the field of label inspection. This investigation 
will include the introduction and analysis of a data-routing mechanism 
which will then be compared with one already popular in the world 
of transputers. Both techniques are suitable for geometric parallelism. 
In the course of these inquiries, a highly parallelised approach to the 
solution of the normal parameterisation of the Hough transform will be 
presented.

Next, to investigate the more demanding aspects of computer vision, 
bordering around medium to high level vision, the ideas of temporal 
continuity and motion correspondence of image features in time-varying 
sequence of images will be examined. A parallel model is described 
which is designed for use as a basis for implementation of image-feature 
tracking algorithms on general parallel architectures. The model is in-
dependent of feature tracking algorithms. An implementation of the 
model is outlined using a tracking algorithm founded on features such 
as the mid-point, orientation and the length of edge segments, and us-
ing a modified form of the Kalman filter. The implementation consists 
of three independent units each of which has been applied in a stud-
ied transputer configuration. For example, the tracking unit is based 
on a tree configuration and displays MIMD characteristics. The edge 
extraction unit borrows from earlier work in the thesis and further in-
vestigates that approach.

Overall, this thesis spans the fields of image processing and parallel 
processing in the investigation for the applicability of the transputer.
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Chapter 1

Introduction

1.1 Background

The original publicity and the subsequent arrival of the INMOS trans-
puter helped mark the 1980’s as the decade of parallel processing. Par-
allel processing may have its roots in the very early days of computing, 
but it has only been in the last few years, and partly because of the 
transputer, that it has begun to enjoy popular, widespread recognition 
and use as a feasible approach to tackling sequential computation. The 
availability of the INMOS T414 and T800 processors has meant that the 
averagely funded research department can afford to practice the theo-
retical concepts of parallel processing in real multi-processor hardware 
platforms rather than in simulation on an already heavily used, shared, 
single processor multi-tasking, departmental machine. The transputer’s 
effectiveness and popularity is further corroborated by the impressive 
ease in which it may be used as a basic building block in constructing 
different multi-processor configurations.

The building of parallel multi-processor configurations is itself today 
a requisite in many different fields where the need for more powerful 
processing is becoming ever more vital as the gap between increasingly 
complex algorithms and hardware constraints widens. Knowledge-based 
Expert systems, Artificial Intelligence, and Computer Vision are three 
major fields which could reap benefits from the fruits of parallel pro-
cessing.
But these are still early days for parallel processing. For example, for 
a parallel processing computer vision system to have the diversity and 
capability of the human visual system in scene recognition and un-
derstanding, it must come up with a pair of ” eyes” with 250 million

1



CHAPTER 1. INTRODUCTION

receptors and a ” brain” with processing cells numbering around 1012 
(1 million million) with an average of many thousands of interconnec-
tions. The closest machine to this is the Connection Machine from 
Thinking Machines Corporation containing 65536 processors, dealing 
with a paltry (e.g. 256x256) image resolution, and costing $3 million.

1.2 Objectives of Thesis

A multi-processor system using a common memory and a shared bus is 
very efficient when a small number of processors are involved. As the 
numbers increase, shared memory contention arises as bus bandwidth is 
reduced and overheads increase. In this research work, the use of trans-
puters for building distributed memory multi-processor configurations 
are investigated with application to two areas in computer vision,

• low-level and medium-level image processing is examined using 
SIMD parallel processing on linear chain and array/mesh trans-
puter configurations, with operations such as edge detection and 
edge segmentation parallelised using specially developed task di-
vision techniques and the increasingly popular farming technique. 
All these are applied collectively but briefly to the field of label 
inspection,

• the vaguely defined borders of medium-level and high-level image 
processing are crossed to explore both SIMD and MIMD process-
ing through the stages of edge segmentation, filtering, matching 
and upkeep of the temporal continuity of scene features, in appli-
cation to a detailed study of motion correspondence in dynamic 
scene analysis.

Computer vision is not only concerned with algorithms, but it is also 
concerned with architectures. Furthermore, it normally requires per-
formance in real-time. Thus, transputer-based parallel processing con-
figurations are evaluated in this thesis with respect to real-time perfor-
mance in the aforementioned areas of vision.

SIMD processors match well to low-level image processing techniques 
where the spatial domain may be decomposed for distribution across 
the available processors. Such matters are investigated with application 
to transputers and it will be shown how the transputer can serve as a 
coarse-grain size computer with respect to communication and perfor-
mance issues. This is a very valid analysis where there is intense com-

2



1.2. OBJECTIVES OF THESIS

petition in the low-level image processing field from single-chip man-
ufactures, and real-time hardware based convolution processors, with 
one example coming from INMOS itself, the A100 signal processor.

Being a coarse-grain processor, the transputer is a more suitable candi-
date for MIMD processing where the communicational load is expected 
to be much less than the computation load. In these circumstances, 
computation is usually centred on a non-regular pattern or region of 
interest with some concern in the surrounding or distant regions. How-
ever, sometimes algorithms require MIMD processing where the com-
munication load may still be high. Therefore, the really major issue 
investigated here is whether the transputer can cope with communi-
cational requirements involved in parallelising vision problems across 
the board. Nevertheless, it must be stated that due to the relatively 
little work that has been carried out to date on the parallelisation of 
higher-level vision algorithms, relatively little is also known about the 
supporting architectures required [DEH89].

Given the resources made to techniques and approaches in computer 
vision, it is hoped that some of the work will help to further advance 
the cause in some related vision fields which may benefit from the par-
allel algorithms, schemes and implementations presented here. For ex-
ample, a novel approach to the solution of the Hough transform has 
been implemented which lends itself very favourably to SIMD paral-
lelism. The solution encompasses the introduction and detailed study 
of a routing mechanism which is compared in performance with the 
farming approach when implementing the Sobel filter and the parallel 
sub-image Hough transform. The routing mechanism loses this battle. 
The work will be applied to the field of label inspection, but will also 
be of importance to other work described.

Later in the thesis, the problem of correspondence in motion analysis 
is examined; this is depicted by the middle, shaded box in the 3D scene 
interpretation cycle depicted in Figure 1.1. A shift of position and ve-
locity can be associated, in each frame sequence, to each of the tokens 
in an image when a camera is moving relative to a scene. Knowing the 
physical nature of these tokens, allows the determination of their dis-
tance from the camera. By forming groups and structures from these 
tokens, they can subsequently be employed to aid a unified understand-
ing of a scene and help the navigation of a vehicle about that scene. To 
achieve that elemental correspondence analysis, a scene flow model is 
constructed consisting of observed edge tokens, and edge tokens whose 
spatial positions are optimally estimated using Kalman filtering tech-
niques. These are brought together for every new frame to build an

3



CHAPTER 1. INTRODUCTION

Monocular Images 
from Motion

Figure 1.1: An overview of a simplified 3D scene interpretation 
cycle

up-to-date scene flow model as shown in Figure 1.2.

To establish token correspondence, tokens must be available in the first 
place (the first shaded box of Figure 1.1). An efficient implementa-
tion of this feature extraction stage is attempted in conjunction with, 
and using, some of the earlier work in SIMD transputing in this the-
sis. The routing mechanism introduced earlier wins this battle against 
farm processing. However, this is not really a battle to see who wins 
and loses, rather it is an investigation of techniques that have been 
applied for a fair implementation, where suggestions will be provided 
when there is room for growth and advancement of the approaches 
introduced or used. All of these will be summarised in the last chap-
ter. In establishing the correspondence between image tokens, a mal-
leable parallel computational model will be introduced as a design basis 
for a parallel approach, be it distributed memory or shared memory. 
The parallel model will be independent of particular architectures and 
token-tracking algorithms. This parallel model will then be used for

4
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Figure 1.2: Prediction of the state of the flow model

implementing a multi-transputer distributed system, MATCH, which 
will be studied from many parallel processing points of view, such as 
processor configuration, load balancing, communications, control, etc. 
A tree configuration will be used for this implementation. Earlier, the 
Kalman filtering techniques used in MATCH for filtering and estimat-
ing the state of the image tokens will have been derived and discussed.

Overall, this thesis encompasses both parallel processing issues, mainly 
with respect to the transputer, and many image processing issues which 
are parallelised, again with respect to implementation on the trans-
puter. The discussion above has been only a brief overview. The aims 
of the thesis are elaborated further in the next chapter where also some 
foundations and principles in image processing and parallel processing 
are laid out. The chapter is followed with four more which together 
review and discuss the topics mentioned above, and the whole thesis 
ends with a chapter which assesses the complete work of all the chapters 
and draws conclusions from them. The conclusions will be at first more 
immediately related to the actual work presented in the early chapters, 
followed with overall conclusions on the suitability of the transputer 
as a powerful tool for computer vision. The possible role of the next 
generation transputer, the T9000, will also be examined to see what 
benefits, if any, may be derived from that processor in areas of vision 
where currently transputers are being investigated, as in the work in 
this thesis.

5



CHAPTER 1. INTRODUCTION

1.3 Review of the Chapters

Except for Chapter 2 which is a general review of the foundations 
necessary for the whole thesis, the work in this thesis is divided such 
that each chapter is supplemented either by an elementary or extensive 
review of the associated field depending on the relevance of a topic,

• Chapter 2 is divided into three primary parts. The first part is 
further divided into three sections covering those aspects of image pro-
cessing which are of particular interest in later chapters, such as the 
Canny edge detection process and the normal parameterisation of the 
Hough transform. The second part briefly discusses some of the multi-
farious aspects of the field of parallel processing drawing specifically on 
examples and architectures for computer vision. The topic of parallel 
processing is continued into the third part via a compact review of only 
those aspects of the transputer and OCCAM which are of fundamental 
importance to this work. This was in preference to a reproduction of 
available literature on the hardware construction of the transputer and 
the complete syntax of OCCAM.

Some aims of the thesis are also further elaborated in this chapter.

• Chapter 3 introduces a communications mechanism for mapping 
image data across mesh arrays of transputers. The approach is anal-
ysed to provide mathematical means of evaluating the distribution and 
collection costs for differently sized images on differently sized, rectan-
gular transputer arrays. The scheme is then applied and tested within 
the framework of the communicational requirements of a real-time in-
spection problem and compared in performance to a more customised 
and dedicated scheme.

The work in this chapter has been summarised in [Mir90] or [Mir91].

• Chapter 4 reviews an alternative data distribution and collection 
mechanism popular in transputer SIMD processing called farm paral-
lelism. The performance of this is compared to the generalised rout-
ing mechanism introduced earlier in Chapter 3 by way of introducing 
and implementing the pOsHT sub-image Hough transform. The whole 
process is then also applied to a more sophisticated approach to the 
problem of label inspection.

The work in this chapter has been summarised in [MWD91].

Please note that the transputer equipment available to the author up 
to this stage of the work was of a rather mixed nature, and limited in 
number, as it will become clear when the above chapters are studied. 
However, more transputers became available prior to the commence-
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ment of the work outlined in the next few chapters.
• Chapter 5 provides both a review of some major features of the field 
of motion and dynamic scene analysis, and a derivation and step by 
step study of the correspondence and matching algorithms used for the 
work later in Chapter 6. These encompass accumulative differencing, 
Kalman filtering applied to the equations of motion, followed by the 
a, f3 filter, and the Mahalanobis distance matching technique.

• Chapter 6 presents a parallel approach to the problem of motion cor-
respondence by token tracking. Initially, an elementary investigation 
into the tracking of objects is demonstrated to aid the understanding of 
general motion issues at hand, and help to prepare for a better and more 
modular design of a feature tracking system. This work is indirectly 
used in drawing up a parallel computational model for the establish-
ment of inter-frame correspondence by feature tracking. The model 
is intended as a guide-line rather than a manual. It is then used for 
the implementation of a feature tracking system where the features are 
edge tokens. The mixed SIMD and MIMD system is named MATCH, 
and consists of three independent sub-units which reflect the general 
pipeline processing nature of the vision processing cycle. The three 
sub-units are each associated with a separate transputer configuration, 
with one unit, the feature extraction engine, drawing heavily from the 
work presented in Chapter 4. The tracking engine sub-unit implements 
the filtering and matching algorithms described in Chapter 5. Both 
sub-units have very modular designs allowing alternative implementa-
tions. The full implementation is studied with respect to many image 
processing and parallel processing issues discussed in earlier chapters.

The work in this chapter has been summarised in [ME91].

• Chapter 7 provides a final summary of the thesis coupled with con-
clusions on the particular aspects of the work presented, followed with 
some more general and overall observations regarding the use of the 
transputer in the world of vision.

The chapters are followed by an annotated bibliography.

1.4 TIPS: Transputer-based Image Pro-
cessing System

A breakdown of the hardware and software items used for this work is 
provided in Appendix A. From very early on in the course of this work, 
a modular, general, menu-interface system was designed to allow the
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integration and connection of the various components used under one 
controller. This encompasses the following,

• Services provided by the PC, e.g. keyboard, screen, and ports 
for external devices. These are handled by a server program in C 
running on the PC,

• User interface and menu system, running in OCCAM on the host 
transputer and communicating with the PC services when neces-
sary.

The original server program was supplied in basic format as part of the 
transputer development system [Inm88b]. However, this was exten-
sively expanded by the author to allow the generation of colour graph-
ics, and access to PC ports. The access to the PC ports was necessary 
for communications with the frame-grabber board (a Data Translation 
DT2853). Also, since low-level access to the DT2853 is not a standard 
feature of the board, a set of assembly routines were developed to allow 
direct input/output of images to and from the board’s frame-buffer. 
This was a non-trivial task, since it involved low-level manipulation of 
the 80286 descriptor tables to be able to access the memory addresses 
spanned by the DT2853 board.

The menu-based interface is of extremely modular and adaptable de-
sign, and with some easy editing, new menus can be generated very 
elegantly. A sample menu of the system is shown in Plate 1.1. The sys-
tem is called T IP S  (Transputer-based Image Processing System) and 
was developed and used exclusively for all the work presented in this 
thesis. A typical early version of TIPS running on a T414 Host with a 
four-node transputer network is capable of standard image processing 
operations such as various edge detection operations, smoothing opera-
tions, sharpening operations, arithmetic operations, logical operations, 
histogramming, histogram equalisation, chain-coding and more. Sub-
sequent versions of TIPS have also been endowed with those functions 
and capabilities discussed by the work in this thesis.

Furthermore, TIPS is independent of the network configurations used 
since it is a user-interface, and not a communications harness. It will 
however readily allow the nesting of communications and procedure 
calls within its structure. This is the means, whereby different config-
urations and routing mechanisms are investigated in this thesis.

TIPS has also been used a number of times for various under-graduate 
research projects over the last three years.
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Plate 1.1: A  typical high-level menu of the TIPS system
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Chapter 2

Parallelism and Vision: 
Some Foundations

2.1 Introduction and Overview

For computer vision to approach a high level of understanding even 
remotely close to the capabilities of human perception, it must,

• develop better and more efficient algorithms,

• exploit the faster information processing speed of today’s most 
powerful computers.

Many computer vision scientists are engaged in research to ameliorate 
existing vision algorithms, but the most obvious path lies in a combi-
nation of the two principles listed above. Research should be directed 
towards the creation, refinement and application of vision perception 
algorithms with respect to parallel processing hardware1. This implies 
any combination of the following,

1. The vision algorithms may be implemented, almost unchanged, 
on parallel processors, with each processor working on a subset of 
the data, i.e. geometric or data parallelism (to be defined later). 
This is applicable to less elaborate, low-level vision tasks, with 
cheap, local access to suitably-partitioned data.

xNote that use of the words Research should be directed... is not intended to 
imply that the solution to computer vision necessarily lies around the corner by 
using ” parallel vision” .
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Figure 2.1: Mapping vision algorithms to parallel processing 
hardware

2. The vision algorithms may first be parallelised and then imple-
mented on parallel processors, with each processor having opera-
tional autonomy, and access to any data , e.g. algorithmic or task 
parallelism, (also defined later). This is applicable to more com-
plex, high-level vision tasks, and is still a relatively young area 
of research. Most achievements in this area are rather specific 
to the proposed problem and not at all general purpose. (The 
solution of the problem presented in Chapter 6 also falls under 
this category, despite its concern for generality and flexibility in 
its own area of application.)
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2.1. INTRODUCTION AND OVERVIEW

3. All, or at least most, computer vision algorithms may be applied, 
preferably with little change, on parallel processors, and remain 
completely transparent to the user. Thus, it would be the task 
of another programming level, e.g. the operating system, to su-
pervise and exploit any possible parallelism. This would involve 
automatic mapping of the image data structure and the particu-
lar flow of data across the interconnected architecture to achieve 
the required computation. This would be the ideal case, only it is 
very difficult to achieve. If implemented efficiently, vision tasks, 
from low-level to high-level, could be executed without the need 
for user involvement. But the present naivety regarding the state 
of high-level vision, and the parallelisation of complex, high-level 
tasks, automatically eradicates the possibility of having such a 
general-purpose, intelligent computation system. This is not to 
mention, the complexities, cost, performance issues, and limits of 
MIMD programming.

This classification is illustrated with corresponding enumeration in Fig-
ure 2.1. The aim of this chapter is to consider and review some of the 
various areas shown in the diagram, and explain and discuss some of 
the terminology and some of the points raised within the accompany-
ing text. Furthermore, it is intended to examine if a position within 
the diagram may be established for the transputer, leading towards the 
general intention of considering transputer configurations for computer 
vision. Some conclusions for this will be presented at later stages.

To continue for now in satisfying the aims of this chapter, it has been 
divided into three distinct parts. The initial part provides a review 
of some important image processing issues, encompassing principles 
and techniques which will be of direct relevance to and in support 
of the work presented later in this thesis. Also, by presenting this 
review first, the flavour of discussion for the rest of this chapter in 
Parts 2 and 3 may then be purposely tinged with the topic of image 
processing and computer vision. In Part 2, a general outline of the 
techniques and domain of parallel processing will be presented. Finally, 
a compact outline of some fundamental features of the transputer and 
its companion-language OCCAM will be discussed in Part 3. In the 
summary and conclusion section, Figure 2.1 will be returned to, to 
examine and discuss the three parts of this chapter.
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2.2 Part 1: Image Processing for Com-
puter Vision

2.2.1 Background

The field of image processing is concerned with the improvement of fea-
tures in an image. The input would be an image, which following some 
processing would result in an enhanced output image almost always dis-
playing some salient features. This, in general, completes the processing 
ready for human interpretation. In image recognition or more recently, 
computer vision, the aim is to produce a qualitative and descriptive 
breakdown of the features in the input image, to aid the analysis and 
understanding of the scene for autonomous machine perception. Image 
processing is therefore a pre-requisite stage for computer vision.

Some of the first images ever to undergo image processing techniques 
were those of digitised newspaper pictures sent by submarine cable 
between London and New York in 1921. These were coded prior to 
transmission and decoded by special printing devices at the receiving 
end. Computer analysis of images became more widespread after the 
success in correcting the distortion of images sent by a space probe to 
the Jet Propulsion Laboratory in 1964 [GW87].

Today, the field of image processing and understanding encompasses a 
plethora of applications, such as medicine, industrial inspection, auto-
matic vehicle guidance, security and surveillance, and TV image cod-
ing. Many authors have published the various techniques applied in 
computer vision for the processing and analysis of images; some of 
these are books by [Mar80, Nib85, GW87, Sch89, Dav90], and oth-
ers are numerous conference and journal publications on the subject. 
The techniques span from low-level pixel-based computation to high- 
level model-based interpretation through medium-level segmentation 
and symbolic representation. These will be examined in more detail, 
exemplified by a breakdown and description of some of the techniques 
applicable to the work in this thesis. For this, a basic knowledge of the 
nature of digital images will be assumed. However, as introductory, 
yet comprehensive texts, much can be gained from [Nib85, GW87], 
and for more detailed analysis and applications, the reader is referred 
to [Mar80, GW87, Sch89, Dav90]. Although the topic of image analysis 
will be outlined separately under the aforementioned levels of complex-
ity, there are techniques that float around the borders of each division, 
as left undefined in Figure 2.1. Therefore the classification is not always 
as definitive as sometimes presented.

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS
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2.2. PART 1: IMAGE PROCESSING FOR COMPUTER VISION

In general, the following scenario is applied when processing an im-
age. The input image is pre-processed, for example to remove noise, 
to smooth, or to binarise for a two-tone output image. The resulting 
image may then be segmented into distinct regions, which are analysed 
and distinguished. This is sometimes referred to as feature extraction 
or segmentation. The next stage involves the structural grouping of the 
features into classes which may then be matched against models with 
the same properties, thus enabling the identification of the features in 
the scene. A very simplistic example would be as such: In a road-traffic 
analysis project, any object segmented as consisting of a rectangular 
box approximately equal in width and length to pre-determined val-
ues, with two circles with centres along the same epipolar line and at 
pre-determined distances apart from each other, may be regarded as a 
London Bus viewed from the side.

In a general review of the field, Rosenfeld [Ros88] provides a break-
down of the 2-D image analysis paradigm, and the 3-D scene analysis 
paradigm (according to Marr [Mar80]).

2.2.2 Low-Level Image Analysis

In low-level image processing schemes, the concern is with the manip-
ulation of images at pixel level to produce an enhanced image, with 
the image represented as pixels held in a 2D array data structure of 
usually square dimensions, and refered to as the function F(x ,y )  for 
[x, y] e { 0 ,..., n — 1 } where n usually takes a value formed by a power 
of 2. The pixels usually take values in the range {0, ...,255}, and are 
referred to as gray or intensity values. These are internally represented 
as 8-bit byte values. The techniques employed are referred to as those 
operating in the spatial domain. Some operations performed on pixels 
are arithmetic and logic operations such as addition or negation, and 
geometric operations such as translation, scaling and rotation. One 
popular operation as a pre-processing stage for many image processing 
applications is thresholding as means of transforming a gray-level im-
age, F ( x , y ), into lower gray-level bands. This is most likely to be a 
reduction to two-tonal ’’ binary” image, say B(x,y) ,  consisting of black 
and white pixels only,

B(x ,y )  =  *
0

255

if F(x ,y )  <  THRESHOLD 

otherwise
(2.1)

where THRESHOLD is a pre-determined value. It is the determination
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of a suitable THRESHOLD which is of paramount importance for appli-
cations. More elaborate and optimal thresholding techniques such as 
those adaptable to localised area characteristics have been given cover-
age in many publications, amongst them, [Nib85, GW87, Sch89].

Next, operations combining a pixel and its neighbourhood pixels are 
used to change or classify the representation of the pixels in the image. 
These may be for adaptive thresholding, sharpening, blurring, edge 
detection, histogram equalisation, image restoration, and many other 
techniques. When in a 2D array structure, each pixel has 8 surrounding 
neighbours (namely 8-connectivity), except for the outer border of the 
array, whose pixel points are usually ignored. Except where stated in 
this thesis, the operations described will not be applicable to the border 
pixels. The concept of edge detection will now be concentrated on by 
describing two relevant techniques.

Edge Detection

Edge enhancement and detection, along with thresholding, is a sub-
class of general image segmentation techniques. These aid significantly 
in the determination of features in an image, and later it will be seen 
how motion can serve as a cue for efficient segmentation. Edge tech-
niques use the discontinuity and similarity of neighbouring gray values 
to operate. Thus, a sharp transition in intensity between two neigh-
bouring pixels may be regarded as a step change representing an edge. 
Figure 2.2(a) shows a step edge in ID.

The magnitude and direction of intensity change at each pixel address 
(xi,yi) in image F ( x , y ) is obtainable in terms of the directionally ori-
ented spatial derivatives,

V F ( x , y ) ( Vx Ì
/ dF(x,y)  \ 

dx
/

V V y > \ dy / V

F ( x + A x ,y ) - F ( x , y ) > 
Ax

F ( x , y + A y ) - F ( x , y )
Ay /

(2.2)

where V F ( i ,  y) is the gradient vector pointing in the direction of max-
imum rate of change, with magnitude,

|V F (* .v ) l=  \ M  + v ;  (2.3)

and with direction measured with respect to the x axis of,
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e =  tan~ \ = * )
V X

Note, that for A x  and Ay  equal to one, then the operators above cor-
respond with operators of the form ( — 1  1 ) and ( 1  — 1 )T [Sch89].

These operators are quite sensitive to noise and require high contrast 
neighbouring edges for efficient detection. Instead, they can be ex-
panded into 3 x 3  masks which provide a higher level of detection at 
the expense of extra computation. Two popular 3 x 3  edge detection 
mask are,

(2.4)

Sobel
/  - 1 0 1 \

-2 0 2

l - l 0 1 ) \

1  2

0 0

- 1  - 2

1  \ 
0

- 1  /

(  - 1  0 1  >1 (  1 1 1  \
Prewitt — 1  0 1

0
0 0

1  - 1  0 1  ) l - l - 1 - 1  /

(2.5)

( 2 .6)

For example, the gradient component vectors for the Sobel operator at 
pixel position (45,7) would be,

V x  — (-^44» 2/8 T  2 a?45, 3/8 -f- X 4 6 ,2/8 ) (2^44? 2/6 T  2x45,3/6  T  2-465 2/6 ) ( 2 .7 )

V y  — (2^44,3/6 T  2 x 4 4 ,3 /7  T  X 4 4 , 3/8 ) (2^465 2/6 T  2 x 4 6 , 2/7 %46i Vs)  ( 2 -8 )

Lee [Lee83] presented some techniques which help improve the per-
formance of a Sobel operator by eliminating some redundancy at the 
expense of marginally increased storage capacity. For example, Lee 
proposes the retainment of the values used for the operations on the 
neighbours of the current pixel which will also be the neighbours of the 
next, when the mask window is shifted across the image. (This will be 
used as a good example for outlining efficient on-chip memory manipu-
lation for the transputer in Part 3). Using these techniques, a tailored 
version of the Sobel algorithm will be used in the implementation of 
the label inspection application as presented in Chapter 4.

Another operator which responds to neighbourhood intensity changes 
is the Laplacian mask. However, this is not usually used on its own
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for edge detection due to its high sensitivity to noise. Notice that no 
separate x and y gradients can be computed,

( °
l 0 \

Laplacian 1 - 4 1
V o 1 0 /

(2.9)

The Laplacian is the sum of the second-order spatial derivatives, such 
that,

It has been used in combined-operation edge detection techniques based 
on Gaussian smoothing (explained below), such as that proposed by 
Marr and Hildreth [Mar80]. The Laplacian of the Gaussian (V 2 3G) of 
an image results in a set of zero-crossings (a zero-crossing being the 
spatial location corresponding to the mid-point of an intensity change).

Another increasingly popular technique which uses the Gaussian is the 
Canny [Can86] edge operation. In developing his edge detector, Canny 
specified three major performance criteria,

1 . Good detection: by maximising signal-to-noise ratio, more real 
edge points and less non-edge points are marked,

2. Good localisation: a selected edge point should be as close as 
possible to the centre of the real edge,

3. Singular response: only one response per edge point is desired.

The "Mexican Hat” shaped normal distribution is also referred to as 
the Gaussian distribution. The basic idea for the Canny edge detector 
is to smooth the image (Figure 2.2(b)) with a 2D Gaussian shaped fil-
ter, improving edge connectivity and reducing noise. The 2D Gaussian 
mask has circular symmetry, so it can be decorrelated and applied as 
two ID masks, one in the x direction, and one in the y , thus reducing 
spatial and computational requirement. The resulting smoothed image 
can then be searched for local maxima of gradient magnitudes which 
are subsequently marked as edges. This is conducted by comparing 
the magnitude of the gradient at each point in the image with those 
on either side of it in the direction of the original gradient in the cen-
tre. This is followed by a hysteresis process, which initially sets an 
upper and lower threshold limit. Then, any edge points pertaining to
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Figure 2.2: (a) A  step edge in ID , (b) After Gaussian smooth-
ing, (c) First derivative of the Gaussian giving the edge max-
ima

a line segment, with a value above the upper threshold, are immedi-
ately accepted, followed with any edges above the lower threshold if 
they form the remainder of an already established line segment. Thus, 
broken edge segments may be ’’ grown” . The output edge-image is then 
available.

The value of the standard deviation (a) for the Gaussian mask de-
termines the size of the mask; this must be selected such that over-
smoothing would not lead to the loss of maximum gradients. Davies 
[Dav87] studies the design and accuracy of optimal Gaussian opera-
tors testing for the fidelity of the mask to the Gaussian shape and the 
isotropy (directionally invariant) nature of the mask. Two optimised 
masks are then proposed. Also, new techniques for a more efficient 
application of the Canny edge detector are under way at the Machine 
Vision Laboratory of the City University with special application to 
colour images. The Canny edge detector will be used as a more effi-
cient and appropriate edge detection tool than the Sobel operator for 
establishing spatio-temporal correspondence in Chapter 6 , where a per-
formance comparison of the two edge detectors on two different parallel 
computational models will be presented.

Finally, for other edge detection templates and methods, and the theory 
of their application and their detection, the reader is referred to more 
detailed analysis in [Mar80, Sch89, Dav90].
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2.2.3 Medium-Level Image Analysis

With medium or intermediate-level image processing techniques, the 
results are no longer just an output image, and they begin to take dif-
ferent shape and form, where features are segmented and described in 
usually quite simple representations. Consider edges enhanced through 
the convolution of an image with the Sobel filter. Except that they 
exist, nothing is known about them. Their magnitude and gradient 
could have been recorded along with their spatial position, reducing 
image-information space requirements. Yet, this would still only be a 
list of salient pixels. As a continuation of the low-level stage of im-
age processing, there are a number of methods for segmenting and 
producing feature descriptions with differing complexity and memory 
requirements. Two of these will be considered now.

Figure 2.3: (a) 8-connectivity directions chain-code, (b)
Chain-code for a closed-curve boundary

Chain-coding [Fre61] is one technique for segmenting edges into open or 
closed-form curves which in turn will represent edge fragments or distin-
guishable (areas of image pixels as) objects. Chain-coding, preceded al-
most always by thresholding, is formed by storing the first pixel address 
of the start of an edge curve, followed by the position of each subsequent 
edge point along the edge with respect to the previous point. This is 
achieved by considering the 4-connectivity or 8-connectivity neighbour-
hood of each pixel, and assigning a direction value for connectivity 
to each possible neighbour. The chain-code terminates either by the 
non-existence of further neighbours, or by the ultimate arrival at the 
starting pixel co-ordinates. These ideas are illustrated in Figure 2.3 by 
tracing the pixels of the closed-form boundary of an arbitrary object.
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Chain-coding can be exploited to yield other information such as the 
area, perimeter and the centroid of an object. For example, the area 
A, and the object centroid (x0,y0) for an object of C chain points (i.e. 
the length of the code) are given by,

c- 1 

»'=o

Xi

- X i

0

if Cìc { 0 ,1 ,7} 
if (7,6(3,4,5} 
otherwise

X 0 c
C - 1

2  x*' » 
¿=0

1  c - i
y» =  Vi

^ i= 0

(2.11)

(2.12)

More about chain-coding and other representation schemas can be 
found in [Fre61, GW87]. Chain-coding will be used as an effective 
object segmentation tool in Section 6.3.

The Hough transform [Hou62] is another technique which may be used 
for the detection of straight edges and lines in digitised images. Origi-
nally, Hough proposed the use of the straight-line formulation,

yi =  mxi +  c (2-13)

for transforming all feature points in feature space, (x,y) ,  to the pa-
rameter space (m ,c), where m and c define the gradient and intercept 
of the line respectively (Figure 2.4(a)). Since both m and c are un-
bounded, and can assume a value of infinity, it is better to transform 
the edge points into sinusoidal curves in the p, 6 plane defined by,

p =  X{CosQ -f yisinO (2-14)

This is more commonly referred to as the normal parameterisation of a 
straight line as proposed by Duda and Hart [DH72], and is illustrated 
in Figure 2.4(c).

Initially, a 2D array space can be assigned to represent the parameter 
space for p, 6. Then, for each edge point, the value of 9 is incremented 
and the corresponding p is solved for. This yields a corresponding 
number of entries in the 2D parameter space accumulator. Thus, for 
each line in the image there will be a cluster of points that indicate 
the parameters of the line, as shown in Figure 2.4(b) and (d). (These 
are idealised diagrams and the non-point sized clusters are there to 
signify that there is some error). The quantisation of the parameter 
space for p, 0 is selected depending on the expected accuracy of the 
edge detection process.
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Figure 2.4: (a) m ,c  formulation of the Hough transform, (b) 
Clusters for the two lines in m ,c space, (c) p, 0 formulation 
of the Hough transform, (d) Clusters for the two lines in />, 6 

space

Notice that for edges of non-single pixel width, such as those obtained 
from Sobel edge detection, unnecessary feature point transformation 
would result. Thus, a single-width representation of a line segment 
would be preferred, for example through a thinning operation. Also, 
it is easy to observe that the general computational load of a Hough 
transformation is dependent on the number of feature-space points.

The idea of the Hough transform may be expanded to apply to other 
shapes that can be associated with a parametric equation, such as

{x  -  x c)2 +  (y -  yc)2 =  c2 (2.15)

for a circle centred on (xc,yc) [DH72, BB82, GW87]. This would ne-
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cessitate a 3-dimensional parameter space, substantially increasing the 
computational requirements. Davies [Dav90] presents a comprehen-
sive analysis for an accurate centre location algorithm with reduced 
computational load. Davies also presents a new formulation of the 
Hough transform for line segments which eliminates the use of trigono-
metric functions. This is the foot-of-normal method, which consists 
of a parameter space congruent with the image space. Ballard and 
Brown [BB82] generalise the Hough transform for application to arbi-
trary shapes with no simple analytical form.

The normal and the foot-of-normal parameterisations of the Hough 
transform will be returned to for further examination in Chapter 4, 
where an efficient parallel implementation of the (p, 9) Hough transform 
will be presented with application to label inspection. The main idea 
for parallelisation will be shown to arise through the splitting of the 
image into smaller sub-images. Other parallel implementations of the 
Hough transform will also be discussed.

For a general survey of the Hough transform it is worth studying the 
paper by Illingworth and Kittler [IK88]. This paper discusses recent ad-
vances for more efficient application and computation of the transform 
covering a wide range of topics, from algorithms to hardware imple-
mentations.

2.2.4 High-Level Image Analysis

High-level image analysis generally refers to the interpretation of seg-
mented image data, as attained from lower-level stages. Regions of 
segmented pixels may be labelled and described by their external char-
acteristics, e.g. their boundary, or by their internal characteristics, i.e. 
through the pixels comprising the regions [GW87]. Labelled scenes may 
then be used for matching against model data in order to identify and 
interpret regions and objects in the scene. Rule-based and predicate 
logic schemes are examples of techniques used in scene labelling and 
manipulation [Sch89]. Non-image related knowledge, such as knowl-
edge about world physical constraints influencing imaged entities and 
their environments may also be used. Some of the techniques employed 
are multilevel image analysis, 3D modeling and volumetric represen-
tations, and image-based knowledge manipulation, including relational 
graph, and statistical classification schemes.

The area of high-level scene understanding is a wide and varied field 
with many facets, requiring dedicated analysis and review. For this 
thesis, the issue of label inspection, to be yet reviewed and discussed,
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falls essentially in the domain of low to medium level image process-
ing applications for which edge detection and Hough transformation 
techniques will be employed. However, the application of image token 
correspondence described in Chapters 5 and 6 , can be used as a cue for 
high-level image interpretation for understanding motion. The token 
correspondence scheme provides token descriptions that may be applied 
to the description of a scene. A higher level system must subsequently 
use these new tokens, provided for each new frame, for matching against 
the scene model to formulate an interpretation and complete descrip-
tion of the scene. (The last processing stage of Figure 1.1). The work 
in this thesis pertaining to the problem of correspondence concentrates 
on upholding the temporal continuity of token feature sets. Hence, a 
more detailed review of higher-level scene understanding with particu-
lar emphasis on dynamic scene analysis will be presented in Section 5.7, 
as only a brief outline of some steps to be considered for future use of 
the correspondence work.

For general coverage of higher-level and 3D analysis of images much may 
be gained, once again from [BB82, Nib85, GW87, Sch89, Dav90]. These 
cover topics such as statistical image classification, region and scene 
labelling, shape from shading, shape from texture, texture, relational 
descriptors, tree and string grammers (and languages), graph matching 
(maximal cliques), levels and types of models, and many more.

2.3 Part 2: Parallel Processing (for Com-
puter Vision)

2.3.1 Background

Parallel processing as means of improving computing performance has 
been firmly established as a major concern across the computing re-
search community for many years. Hockney and Jesshope [HJ88] sug-
gest that this dates back to the days of Charles Babbage’s Analytical 
Engine, when the desire to produce several results at the same time, 
for identical but independent computations, was stated. Many parallel 
computers have already been offered to the world, and some of these 
will be mentioned in the forthcoming discussions. Given the high costs 
normally associated with parallel processing, for the average user the 
only choice for increased computing performance has usually been in 
the purchase of a more powerful processor. This is until now, with 
the impact of VLSI technology advancing the case for parallel technol-
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ogy. Chips are becoming faster due to more integrated designs of a 
system’s functional units such as memory, the floating-point or maths 
co-processors and the communications hardware. Prime examples are 
the INMOS transputer family of processors, and the 80486 Intel chip. 
They avoid the delays propagated in accessing devices external to the 
actual processor.

In today’s computing world, mainstream computer usage is becoming 
more sophisticated moving from the lower level of data and informa-
tion processing to knowledge processing and finally to intelligence pro-
cessing [HB84]. For each stage of these progressions, the processing 
requirements reach unprecedented levels. Certainly the need for faster 
vision processing via any available technique can hardly need to be em-
phasised any more than it was mentioned in the introduction to this 
chapter. For a P  x Q image, a simple edge detector such as a Sobel with 
a 3x3 kernel, would require millions of operations, given P — Q — 512. 
A Canny operation would necessitate thousands of millions! Thus, the 
search for more powerful computers has led towards the paths of par-
allel processing and neural networks. However, for parallel processing, 
these are early days yet. For example, for a parallel processing com-
puter vision system to have the diversity and capability of the human 
visual system in scene recognition and understanding, it must come up 
with a pair of ’’ eyes” with 250 million receptors2 and a ”brain” with 
processing cells numbering around IO12 (1 million million) with an av-
erage of many thousands of interconnections. The closest machine to 
this is the Connection Machine from Thinking Machines Corporation 
containing 65536 processors and costing $3 million.

Concurrency3 is achievable both at hardware level and at algorithm 
level. The related issues will be reviewed next with leaning towards 
the world of computer vision. Rather than dedicating a section to 
parallel computers per se, the presentation here will cover parallel pro-
cessing principles, and where known or applicable, will cite machines 
which have applied the techniques and theories. Initially, attempts at 
improving uni-processor machines will be outlined. The discussion on 
parallel processing will start by considering the most common classifi-
cation scheme for computing architectures. This will be followed by an 
examination of some of the issues involved and how they relate to the 
architectures categorised earlier. (Please note that the machine names

2Each human eye contains 125 million receptors, called rods and cones, which 
are nerve cells specialised to emit electrical signals when light hits them [Hub88].

3Arguments rage between computer scientists in their attempt to distinguish or 
claim complete similarity between concurrency and parallelism. For the purpose of 
this thesis, they will remain to convey the same general ideas.
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mentioned are for general information only, except when as a matter of 
interest further details are provided. Details of most of the machines 
may be found in [HB84, Qui87, HJ88 ].)

2.3.2 Higher Performance in Uni-Processor Sys-
tems

Uni-processor machines are based on the von Neumann model which 
defines a processor and a memory unit connected by a bus. Hwang 
and Briggs [HB84], Hockney and Jesshope [HJ88], and Quinn [Qui87] 
provide an excellent outline of various approaches adopted so far for 
achieving higher performance in uni-processor machines, most of which 
apply still today with the latest of processors. These may be sum-
marised as,

• multiple functional units, e.g the IBM 360/91 with 2 parallel ex-
ecution units, one for fixed point and one for floating point oper-
ations,

• parallelism and pipelining within the CPU, consisting of parallel 
adders, carry-lookahead, and instruction pipelining, e.g. Amdahl 
470 V /6  where instruction pipelining allows for more than one 
instruction to be in some stage of execution at the same time, for 
example during the cycle of fetch, decode, operand fetch, execute, 
and store,

• balancing of bandwidth between system units, for example by the 
use of interleaved and cache memory between the CPU and main 
memory, with the first ever computer to have this being the IBM 
STRETCH,

• multiprogramming and timesharing, where the system allows for 
more than one program to be in some state of execution, and 
the (uni-)processor shares its time between the multitude of user 
processes,

• plus bit-parallel operations, data pipelining, pipelined functional 
units, etc.

Pipelined processing is therefore a major technique for achieving higher 
performance.
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Pipelined Computers

The idea of pipelining is to split the tasks involved into a number of 
independent stages, whereby the output of one stage can be the input 
of the next. Then, overlapped processing may be achieved while each 
stage of the pipeline operates on sub-tasks. In a uniform pipeline, each 
stage of the processing takes similar processing time to execute, given 
a fair sub-division of tasks. When a fair division is not possible, the 
slowest stage of the pipeline becomes the bottleneck of the system and 
processors will remain idle at various stages waiting for communication 
to and from neighbouring stages.

The ideas of instruction pipelining and functional pipelining in uni-
processor machines have already been mentioned. These ideas have 
been used in the architecture of most single unit processors, with the 
processors also being part of larger systems, thus allowing multiple 
levels of parallelism.

One class of pipelined computers is that of vector computers which 
contain instructions to handle both the data processing and the control 
sequencing of blocks of data. The CRAY-1 has been described as the 
most powerful computer of the seventies with supercomputing abili-
ties [HJ88]. The scalar/vector processor part of the machine contains 
13 independent pipelined functional units, each performing different 
tasks such as arithmetic and logical operations.

In multiple processor pipelining (Figure 2.5(a)), cascade of processors 
handle different partitions of a whole task. Thus, algorithms must be 
split in an efficient way across processors.

Reeves [Ree84] describes the basic organisation of a pipeline processor 
for image processing. Each processing stage performs the same oper-
ation on every element of data, with a result generated at each clock 
cycle. An N  x N  image would therefore require N 2 clock cycles not 
including the set-up time. This machine, the Cytocomputer, can also 
implement near-neighbour operations by means of two shift registers.
It has been used for cytology analysis and biomedical image processing, 
and is suitable for very low-level image processing tasks.

2.3.3 General Structures for Parallel Computers

State-of-the-art parallel processing architectures may be categorised 
quintessential^ into pipelined computers, array processors, and multi-
processor systems. The most popular classification for typical archi-
tecture configurations for parallel processing is that of Flynn [Fly66],
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whose taxonomy is based on the multiplicity in the instruction and 
data streams of a computer system. An instruction stream is defined 
as a sequence of instructions performed by the processor, and the data 
stream is a sequence of data including input and output results, called 
for by the instruction stream. Flynn’s classes are described as follows.

SISD - Single Instruction stream-Single Data stream: This is typical 
for most sequential computers. The von Neumann computer model 
forms the main characteristic of SISD machines such as the CDC 6600, 
IBM 360/91, Amdahl 470 V /6 , and CRAY 1. Some SISD machines 
may be pipelined and they may have more than one functional unit 
(which may be pipelined too). The discussion in the previous section 
applies very much to SISD processors.

SIM D  - Single Instruction stream-Multiple Data stream: In this class 
of architectures, the processors are arranged in an array or mesh for-
mat and each processor holds or receives the same set of instructions, 
but operates on different data sets. There is a control unit, and there 
may be shared memory or memory only local to each processor. Ex-
amples of SIMD machines are the ILLIAC IV, DAP, CLIP7A and the 
MPP. Variations on the SIMD model are the MSIMD (multiple SIMD), 
systolic arrays with VLSI processing cells for addition and multiplica-
tion, and associative array processors such as the Goodyear STARAN, 
and the PEPE machines. Systolic arrays are regular arrays of identi-
cal finite state machines where each element has a small set of inputs 
and outputs with simultaneous activity4. Associative arrays are built 
around associative memory which is content addressable, allowing par-
allel access of memory words, as opposed to conventional RAM which 
is addressed sequentially. For high processing rates, SIMD machines 
must be able to maintain a remarkable flow of instructions and data 
throughout the system. The most popular SIMD format remains the 
array processor which consists of multiple rows of processors with 4- 
connectivity to their north, south, east and west processors, and usually 
wrap-around connections from /to border processors, as shown in Fig-
ure 2.5(e). This renders the machine suitable as a parallel processing 
platform for performing neighbourhood-based image processing algo-
rithms, where regular processing is carried out on highly structured 
data. However, all of the machines in Figure 2.5 could be programmed 
for SIMD performance.

M ISD  - Multiple Instruction stream-Single Data stream: No real em-
bodiment of this class of processors has yet been realised due to its

4 Systolic machines are named after the process of contraction of the heart that 
rhythmically forces the blood forward.
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impractical nature [HB84, Qui87]. It connotes that several instructions 
are operating on the same data stream simultaneously.

M IM D - Multiple Instruction stream-Multiple Data stream: This 
specifies a multi-processor system with multiple processing units exe-
cuting in parallel with multiple instructions on multiple data. Examples 
of this class of machines may be found in the Connection Machine, the 
C.MMP (a collection of PD P-lls), CRAY-X MP, and the PC WARP. 
MIMD machines may be operated via centralised or distributed control. 
Memory may be a large common reserve, or distributed localised mem-
ory. In general, MIMD machines perform more complex tasks, but need 
less communications than SIMD machines. Thus, the MIMD architec-
ture can be regarded as a suitable platform for the higher-level end of 
the image processing spectrum of algorithms. All of the machines in 
Figure 2.5 could also be programmed for MIMD performance.

Shore [Sho84] classified computer architectures depending on the organ-
isation of the computer’s constituent parts. Six schemes were specified 
ranging from the conventional von Neumann architecture through to as-
sociative memory processors which distribute processor logic through-
out the memory. In between, word-serial, bit-parallel machines, repli-
cated von Neumann machines, and shared-memory multiple processing 
element machines are covered. They are mostly sub-divisions of Flynn’s 
SISD and SIMD classes. Hwang and Briggs [HB84] cover other classi-
fications such as Handler’s.

Flynn’s classification will be adopted in this thesis as it is the most 
widespread terminology for the specification of parallel processing sys-
tems, with the main areas of interest being SIMD and MIMD configu-
rations.

2.3.4 Issues in Multiple Processor Computing

In multiple processor computing some form of arrangement is required 
for connecting the processors, and co-ordinating their activities. This 
raises a number of issues which are now discussed briefly; some will be 
picked up on in more detail in later chapters.

Granularity

The first stage of parallelism is to consider the subdivision of compu-
tations into independent tasks. The size of a computation, or grain, 
is determined by the quantity of communication needed between the 
different computations. It is preferable to keep this to a minimum.
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(b) All-Connected

(a) Linear Pipeline

(f) Binary Tree

(c) 3-Connected Cube

(e) 4-connected mesh with 
wrap-around connections

Figure 2.5: Static topologies for pipeline, SIMD, and M IM D  
computers
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In SIMD and MIMD systems the grain size depends on the complex-
ity of the processing nodes. For example, a system with large scale 
simple processing elements(PEs), such as the CLIP4 image proces-
sor [FMM88], is a classic SIMD processor with fine-grain parallelism, 
where each simple PE operates on single-bit data. In contrast, a trans-
puter system, such as the FPS T-Series, can be considered as a coarse- 
grain system, where computation load is expected to be heavier than 
the communicational requirements.

The performance of all multiple processing systems of all granularities 
suffers when high rates of communications are involved. Fine-grain ma-
chines also have high overheads and administration, and are generally 
more difficult to formulate software for, which in turn pushes up the 
costs of parallel processing.

Figure 2.6: (a) (An all-connected) Distributed memory com-
puter, (b) Multi-processor shared-memory computer

Communication and Synchronisation

Parallel processors may be classified into two divisions on the basis 
of data communications between processors. These are shown in Fig-
ure 2.6. In tightly-coupled systems, processors share a common main 
memory, with the whole configuration usually controlled by one op-
erating system. Processors may use a switching mechanism to reach 
the shared memory. The switching mechanism may take the form of a 
common bus, a crossbar switch, or a packet-switched network [Qui87]. 
Examples of tightly-coupled systems are the HEP, C.MMP, and Se-
quent Balance 8000 multi-processor systems. In loosely-coupled sys-
tems, rather than a shared memory, each processor has local memory 
with local control, and communication between processors is necessary
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to exchange information. Loosely-coupled systems are also referred to 
as distributed systems, due to the independence and modularity of the 
individual processors. Communication between distributed processing 
elements is said to take place via message-passing. Example of loosely- 
coupled systems are the Cm*, the BBN Butterfly, and the FPS-T series 
(which is based on transputers).

Two common techniques used in ” communicating” in shared-memory 
systems are mutual exclusion and condition synchronisation. Mutual 
exclusion refers to the mutually exclusive execution of a sequence of 
statements that must appear to be executed as an atomic operation. 
For example, consider the sum A :=  A +  B. If the process operating on 
the sum did not store the result before another process read the value 
of A, then the outcome of the entire computation may be erroneous. 
Condition synchronisation refers to the delaying of the execution of a 
process until some data object it shares with another process is in an 
appropriate state.

In distributed systems, communications may be synchronous or asyn-
chronous, with given instances in controlled communications and dy-
namic communications respectively. Synchronous communication in-
volves the exchange of messages through the mutual agreement of a 
sender and a receiver process. Both have to be ready to communicate, 
and each has to wait if the other is not yet ready. Thus, process synchro-
nisation is implicit in the controlled access to local and global memory 
by multiple processors through message-passing. Later in Chapter 6 , 
it will be seen how synchronisation is achieved on local processors be-
tween multiple local processes. Asynchronous communication, requires 
that communication can take place at any time between two processes, 
with the sending process dispatching its message and continuing its 
work, and the receiving process buffering all received messages and 
attending to them at a later stage. It is easy to deduce why Ben- 
Ari [BA90] compares synchronous and asynchronous communication 
to the telephone system and the postal service respectively. In send, 
no wait asynchronous communications, processing is bounded by the 
buffer size and the computation load of the destination process, whereas 
in synchronous communication everything may ground to a halt for ei-
ther the sender or the receiver, until both are ready to communicate. 
Otherwise, deadlock will have occurred. An interesting asynchronous 
message-passing software environment is PISCES [Pra85]. PISCES al-
lows the creation of tasks or processes, and each process is endowed 
with a queue to which messages are passed via a handler process which 
in turn will receive all senders’ messages. Thus, message passing is al-
ways through the handler process. Also, since a task has independent
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control on when to pass and when to receive messages, then message 
passing is entirely asynchronous. PISCES will be encountered again 
when its use for motion detection will be of interest.

Programming of Parallel Computers

For pipeline computers, the application algorithm is split into N  sub-
tasks and distributed across the available processors (of which there are 
N), with each node working on the data set passed to it by its prede-
cessor, which may or may not be a complete image. This is referred 
to as task or algorithmic parallelism, and implies that the design and 
breakdown of the sub-tasks is strongly linked to the number of proces-
sors in the pipeline, rendering the portability of the implementation to 
a longer (or shorter) length pipeline impractical.

In SIMD computers, data or geometric parallelism partitions the data 
into N  subsets, over the N  processors, with each processor perform-
ing the whole algorithm on its own data subset. The granularity of 
the processor nodes will determine the size of the local data partition. 
This may vary from l-bit on the DAP, to large array sizes on a SIMD 
transputer system. Geometric parallelism can be further sub-divided 
into control-driven and demand-driven data parallelism. These are both 
other objectives for analysis in this thesis and will be examined later.

In MIMD computers, the situation varies greatly. For fixed implemen-
tations, each processor may be booted with a dedicated program which 
will continue with its own independent data set, however it may be 
communicated to it. The programmer remains aware of the nature of 
this communication and has to design his or her tasks accordingly. In 
general purpose systems, task allocation and load balancing techniques 
may determine the computation load of each processor, but the task 
and data allocation of such parallel systems remain to a large extent 
transparent to the user. These machines are much more likely to be 
shared-memory systems, where the difficulty of data partitioning and 
communications need not arise. MIMD computers can effectively be 
programmed using data and task parallelism, with the latter being the 
more applicable. The implementation of MATCH in Chapter 6 is an 
approach for a problem-dedicated MIMD system.

Major Considerations

The major considerations in acquiring a parallel processing system are 
cost, performance, and reliability. These issues are orthogonal and the
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variation in one will severely affect the others. The main issues per-
taining to both SIMD and MIMD systems may be further categorised 
as,

• cost, for cost per unit processor, and for cost in programming,

• performance, for throughput and response time,

• bandwidth, for a high communication rate per unit of time,

• partitioning, for the division of the network into independent sub-
networks,

• accessibility, for the shortest path connection or route as the most 
desirable means of inter-processor communication,

• reconfigurability, for dynamic reconfiguration as opposed to static 
configuration,

• reliability, for reliable system performance. Two major areas of 
parallel processing research are fault diagnosis, and fault toler-
ance [HB84] for graceful handling of interconnection and proces-
sor failures.

Other related factors

There is much that could be covered under the topic of parallel pro-
cessing! Some issues have been discussed so far, and some others will 
be discussed throughout the thesis. This will start immediately from 
Part 3, where some fundamental parallel processing issues with respect 
to the design and principles of the transputer and the OCCAM pro-
gramming language will be reviewed, and it will continue throughout 
Chapters 3, 4, and 6 , if not a little in 5. The topics and issues that 
will be reported on are load balancing and task scheduling, prioritised 
process scheduling, data routing, deadlock, cross-bar switches, and pro-
gramming language issues, amongst others. The only parallel language 
that will be considered is OCCAM. Other languages used for paral-
lel programming are LINDA-C, MODULA 2, Parallel C, and ADA. 
A comparison of communicating sequential processes in OCCAM and 
ADA is available in [Mir88].

32



2.3. PART 2: PARALLEL PROCESSING (FOR COMPUTER VISION)

2 .3 .5  P erform an ce M easu res

It is perpetually desirable to measure, accurately or approximately, the 
performance of any system. For parallel processing systems this is not 
always easy.

Hockney and Jesshope [HJ88] introduce two parameters for use in ap-
proximate descriptions of the performance of computers. The param-
eters are more appropriately used in the context of serial and vector 
computers to describe the performance of computers during a single 
arithmetic operation on a vector of length n. The parameters are rrM 
and m , describing the maximum rate of computation in floating-point 
operations performed per second, and the vector length at which the 
performance degrades to half of its maximum. Thus, the faster the 
machine the higher r^. Hockney and Jesshope complement these pa-
rameters by others on grain size, communication, and scheduling, for 
use throughout their book to describe the performance of various ma-
chines.

Two general performance parameters usually considered by workers in 
the field are as follows. The most common is the term speed-up which 
may be defined as the ratio between the time taken to execute an 
optimised sequential algorithm on a SISD machine, and the execution 
of the equivalent algorithm as mapped onto a parallel architecture. This 
conveys a general definition. Thus, given that a SISD processor requires 
time Tsi3d to execute an optimised sequential algorithm, and that the 
time to execute a parallel version of the algorithm on N  processors is 
T||, then speed-up is,

S = -L s is d (2.16)

Others define this ratio differently, for example, Quinn [Qui87] defines 
speed-up as the ratio between a parallel computer executing the fastest 
serial algorithm and the time taken by the same parallel machine to 
execute the parallel algorithm using a number of processors.

Another measure is efficiency given as a ratio between the speed-up 
and the number of parallel processors used,

B  =  |  (2'17>

For example, on a pipeline, with the algorithm split across N  stages or 
processors, with time for each stage being (Tnadu Tsiad2 , ..., TsisdN), the 
time to process the full algorithm should be,
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Tpipe =  M A X (T sia<n ,T aiad2, ..., Ts,4dn ) 4- V  (2.18)

where V  stands for some minimal overhead. Thus the speed-up and 
efficiency for a pipeline processor is given by,

S ,i,' =  ^  (2.19)
pipe

E ^ ,  =  (2 .2 0 )

For all parallel systems the approximate linear speed-up is given by 
Equation 2.16. However, there are arguments against research towards 
large scale parallelism based on laws founded on speed-up analysis. 
Some of these are Grosch’s law and Amdahl’s law which have been re-
viewed in [Qui87]. For example, Amdahl’s law suggests that a small 
number of sequential operations can effectively dominate the perfor-
mance of a parallel machine regardless of the parallel nature of the 
system and the part of the code that remains parallel. For example, 
given that A is a fraction stating the amount of sequential operations 
from the whole, 0 <  A <  1, then the maximum speed-up, SAmdahl, 
achievable by a parallel computer with N  processors would be,

SAmdahl C: A + X-A
N

(2.21)

Thus for an algorithm which contains 20% sequential operations, then 
MAX(SAmdahl) =  5, no matter what the value of N  may be. As 
Quinn [Qui87] suggests, there are algorithms with no sequential op-
erations, and therefore Amdahl’s law can serve as a way of categorising 
good candidate algorithms which are suitable for parallelisation.

Hwang and Briggs [HB84] formulate expressions to measure speed-
up and efficiency in a SIMD system. Browne and Hodgson [BH89] 
also present the same for a SIMD transputer array. Speed-up will be 
used throughout this thesis to indicate performance improvement of the 
transputer-based systems presented for both the label inspection work 
and the motion work. Earlier in Chapter 3, the issue will be examined 
in more detail with respect to SIMD transputer arrays, where previous 
work on speed-up measurement (i.e. that of Browne and Hodgson) will 
be reviewed and complemented with new work on data communication 
strategies and measurements.
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2 .3 .6  A lte rn a tiv e  C o n cep ts

A recent parallel processing methodology is the data-flow architecture, 
which embodies a model far different from the von Neumann model, 
the control-flow computer. A data-flow machine enables the execution 
of an instruction only when its required data is available. Instructions 
from any part of the program can execute next and therefore there is 
no program counter. Data flow architectures reflect the graph of the 
problem where data is passed along the arcs of the graph from one 
instruction execution point to another. For further analysis of data-
flow computers the reader is referred to a detailed description of these 
architectures in [HB84],

Another major advance in recent years is the development of artificial 
neural networks, aimed at emulating the way neurons in the human 
brain are connected. The potential of such networks would be of great 
value to both fields of artificial intelligence and vision (from low-level to 
high-level image understanding). Neural networks are based on neural 
models or connectionist models. In the former, a neuron becomes a 
’’ thresholding” unit, which collects signals from its inputs (synapses), 
and places a signal at the outputs (axons). This leads to massively 
parallel networks, with special-purpose analog or digital threshold de-
vices as nodes. In the latter, the model is based on self-learning al-
gorithms, thus resulting in nodes which are primitive, programmable 
processors [Tre88]. Either way, the fine granularity of these networks 
dictates a high rate of communication and even today’s VLSI and WSI 
technology can still not offer a practical solution. However, simula-
tions of neural networks abound, with hardware platforms such as the 
Connection Machine [Tre8 8 , HJ88], and the transputer [OHRS90].

2.3.7 Architectures for Vision

The Cytocomputer [Ree84] as a pipelined low-level image processor has 
already been briefly mentioned. This section will present a compact 
review of tightly-coupled and loosely-coupled multi-processor architec-
tures which have been applied to, or specifically built for computer 
vision.

• DAP The Distributed Array Processor was first installed at Queen 
Mary College, London after its development by ICL. Now with AMT 
Ltd., the DAP510 SIMD computer is the latest version with 1024 pro-
cessing elements (PEs) all working under the supervision of a master 
control unit. Each PE is a simple bit-serial processor and may have
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access to the rest of the data store by local routing or via an MCU 
fetch and broadcast scheme [Pag8 8 , HJ88]. The DAP’s SIMD architec-
ture is suitable for most low-level image processing problems. Sleigh 
et. al. [Pag88] report the implementation on DAP of a number of low- 
level algorithms, such as 3x3 to 9x9 neighbourhood operations, labelling 
of binary image regions, Marr-Hildreth and zero-crossings operations, 
and production of image histogramms. They followed their individually 
successful experiments with an equally successful application for X-ray 
baggage classification, using thresholding, labelling of distinct binary 
objects, and finally classifying each object by area size, and rotation 
and scale invariant moments.

• CLIP7A Specifically designed for image processing, this is one of 
the latest in the CLIP cellular logic image processor family of comput-
ers. Whereas the earlier CLIP4 consisted of 96x96xl-bit array of simple 
PEs, the CLIP7A is proposed as a linear array of 256 elements, with 
two 16-bit CLIP7 chips at each element, one concerned with data ma-
nipulation, the other with local generation of data memory [FMM88]. 
CLIP7A instructions would be 256x1 vector operations, thus, process-
ing of 256x256 (or larger) images must be emulated transparently to 
the user, and under the scrutiny of the host. In addition, each proces-
sor would have access to 64Kbytes of RAM, and edge storage elements 
that allow access to all surrounding pixels for 3x3 neighbourhood op-
erations. This is in contrast to the DAP (or the MPP), which can only 
manage direct access to its 4-connected mesh neighbours.

This machine is proposed [FMM88] as a prototype for introducing a 
greater degree of autonomy per processor in a SIMD array, and for 
studying the possibility of performing high-level image processing by 
implementing rapid data transfer between distant processors. This 
would be achieved via left or right data exchange from source PE to 
destination PE across the linear array.

• The Connection Machine: CM -2 The Connection Machine con-
sists of 65536 bit-serial processors, each with 8K bytes RAM, and 2048 
floating-point processors [DEH89]. The machine displays fine-grain par-
allelism, with each processor capable of accessing data held by any other 
processor using complex switching networks, hence the name. Compris-
ing of 16 PE chips, each chip contains processors that are connected in 
nearest-neighbour grid, and due to its n-cube connectivity, the machine 
can be viewed as a 12-dimensional hypercube with 4x4 single-bit PEs 
at each node [HJ88]. Used in the main for AI applications, it has also 
been applied to image synthesis (where the input data is a model to 
be drawn and the output is a 2D image) applications. However, given
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its interconnection map, it surely provides a suitable platform for both 
SIMD and MIMD vision applications.

Notice that all the machines above have array-like structures, which 
are most immediately useful for SIMD, low-level, image processing, 
but are yet programmable as MIMD processors given that irregular PE 
mapping is possible (but at varying degrees of complexity). However, 
in massively parallel computers such as the DAP or the CM-2, the 
difficulty in programming massive numbers of processors to work in 
coordination, as well the high cost of communication given their grain- 
size, added to the high cost of execution control, dampens the feasibility 
of MIMD processing on such large-scale parallel processors. Therefore, 
due to the relatively complex nature of high-level vision, and general 
unavailability of MIMD machines, experiences in this area are still very 
limited. The solution for higher-level computer vision then clearly lies 
in somewhat more intelligent, unit processors with more local memory, 
which are capable of both SIMD and MIMD type operations. The IUA 
and the PC WARP will be reviewed as two such machines. Also, in the 
summary of this chapter, it will be seen how the transputer, described 
in Part 3, is envisaged to cater for low-level to high-level vision through 
SIMD and MIMD architectures.

• IUA The Image Understanding Architecture is a multi-layer system 
of processors with 4096 1-bit processors at the lowest level, 64 16-bit 
microprocessors at the intermediate level, and a single symbolic proces-
sor at the highest level [WRHR91]. Each level of the IUA corresponds 
with the three levels of abstraction in image analysis as described in 
Part 1, with the three levels executing segmentation, symbolic represen-
tation, and scene interpretation respectively. There is inter-processor 
communication at each level, but shared-memory between the different 
levels, giving a tightly-coupled overall system with dual-ported memory. 
There is also parallel associative communication and control between 
the low and intermediate levels. In the DARPA Image Understanding 
Benchmark tests [WRHR91], containing such tasks as the Sobel edge 
detector, the median filter, the Hough transform, labeling of connected 
components, and graph matching, the IUA performed its tasks in the 
order of milliseconds! Weems et. al. [WRHR91] give a detailed analy-
sis and performance evaluation of the IUA and other machines such as 
the Connection Machine, and the Sequent Symmetry 81, but also em-
phasise the differences in the number of processors, clock rates, memory 
configurations, etc. However, the catch is that the IUA is still under 
construction, and is only available under simulation on a Sequent Sym-
metry multiprocessor. Unfortunately little more detail of this machine 
is available, but when it is completed it would serve as a good candidate
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for service under group 3 of the classifications in Figure 2.1.

• The PC W AR P The PC WARP developed at Carnegie Mellon 
University (CMU) and constructed by General Electric, consists of a 
systolic linear array of 10  cells with local memory and each cell capable 
of lOMFlops. The data transfer rate between the cells is 80Mbytes/s. 
All cells execute the same program, but each performs on different 
data, and at any given time will be at a different stage of program 
execution [DEH89]. A classic systolic array is a pipeline, with each cell 
performing one step of the algorithm.

The PC WARP machine is also a prime example as a candidate for 
group 3 of the classifications in Figure 2.1, but for different reasons to 
the IUA. This is due to its input partitioning and output partitioning 
schemes. In the former, the image is divided into columns for each cell, 
such that for a 512x512 image, cell 0 would take columns 0-51, cell 1 
would take columns 52-103, etc., and thus each cell has a tenth of the 
image. This allows neighbourhood operations for low-level image pro-
cessing. In the latter, the scheme is used for operations requiring access 
to global image data, and yet can be computed independently. Each 
cell would have access to the whole image, but would produce output 
for part of the image only. This is stored locally until all cells have com-
pleted processing. At CMU, this approach has been used to implement 
the Hough transform, chain-coding, graph matching, and connected 
components labelling algorithms. For example, chain-coding, although 
quite simple in SISD operation, would create horrendous problems in 
a SIMD environment with data partitioned across processors. How-
ever, in the output partitioning mode of PC WARP, the problem would 
become less complex with the benefit of more arbitrary localised com-
putation.

The next generation machine (iWARP) proposed in [DEH89] is ex-
pected to have 72 cells performing at 16MFlops each.

Although no mention of multi-resolution array architectures for image 
processing will be made in this thesis, the idea of multi-resolution im-
agery will be examined quite closely at a later stage. As far as the 
transputer is concerned, perhaps the most well known of the general- 
purpose, transputer-based, image processing architectures is MARVIN, 
running the TINA vision software [RPBK90]. This machine will be con-
sidered in a little more detail in Chapter 6 , with others being mentioned 
along the way.
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2.4 Part 3: The Transputer and OCCAM

The transputer family of processors from INMOS are many in num-
ber. The typical transputer is a VLSI device with a processor, local 
memory, and communication links for connection to other transputers. 
For example, the T805-25Hz is a 32-bit processor with 33 ns internal 
cycle time with a peak instruction rate of 30 Mips, a 64-bit floating-
point unit (FPU) with peak instruction rate of 4.3 Mflops, 4 Kbytes 
of on-chip RAM with 1 processor-cycle access time, and bi-directional 
peak data rate of 2.35 Mbytes/sec per channel on four communication 
link channels. The CPU and FPU can execute concurrently. It has a 
micro-coded scheduler for fast context-switching and time-sharing be-
tween processes. Transputer board modules typically come with 1 or 2 
Mbytes of external RAM. Now programmable in most high level lan-
guages, the transputer is most appropriately programmed in OCCAM5 

which was conceived to provide the best mapping of a concurrent sys-
tem’s process architecture on a single or multiple number of processors. 
The transputer was designed to implement OCCAM’S concepts of con-
currency and distributed communication.

It was decided for the sake of brevity, that Part 3 would be dedicated 
to the fundamental issues associated with the transputer, and its pro-
gramming techniques using OCCAM, since they are the main tools in 
this thesis. Thus, this section is not about an exposition of the physics 
of the T414, T800, or T805 transputers, or the syntax of OCCAM. Such 
material is already in plentiful supply [Inm87, PM87, Inm88a, Inm89]. 
However, much about the nature of programming transputer configu-
rations in OCCAM will be given coverage throughout this thesis6.

2.4.1 Building Transputer Networks

Given the four communication links of the transputer, there are a mul-
titude of physical configurations that may be built by the use of pro-
cessors as standard hardware building blocks. Parallel architectures 
such as n-cubes, n-linear pipes, stars, arrays, trees, and others (Fig-
ure 2.5) can be physically connected via (cumbersome) hardwiring,

5The name is derived from the 13th century philosopher/scientist Wilhelm Ock-
ham, (or William of Occam), whose famous OCCAM RAZOR principle states: 
Pluraliias non est ponenda sine necessitate (One must not multiply entities without 
necessity). This was meant to reflect the original OCCAM design principle of a 
minimalist approach to avoid unnecessary duplication of language mechanisms.

6Please note that when producing sample code, - - represents a comment, and 
... represents a fold containing OCCAM processes achieving the task described.
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or through easy software configuration using the programmable C004 
cross-bar switch. This is a 32 way link switch which may be used for 
static and dynamic configuration of small or large transputer networks 
to provide the connectivity required by certain applications. Despite 
the ease of programming, it may be wiser to use hardwiring in critical 
real-time systems, since the C004 has been observed by Koontz [K00 88 ] 
to reduce data transfer rates by up to 25% when tested in connecting 
T800 processors.

Multi-transputer networks are independent of buses, yet they can be 
connected to different buses, e.g. as in [RPBK90, Bux91] with the 
help of some standard hardware expertise. Transputer-based super-
computers include the Meiko Computing Surface, with user facilities 
for personal-use network configurations and space for large-scale pro-
cessor scalability depending on requirements. The Meiko machine at 
the Edinburgh Computing Centre currently contains over 400 transput-
ers, and is a multi-user machine where every user is assigned a number 
of processors as their own domain. Another supercomputer is the FPS 
T-Series which is theoretically expandable to 214 =  16384 nodes, with a 
32-node machine capable of 16Mflops at each node. All nodes contain 
a transputer and two 64-bit WEITEK floating-point chips for multipli-
cation and addition respectively [HJ88].

2.4.2 Communicating Sequential Processes: CSP

Hoare’s CSP [Hoa85] was the inspiration for the design of OCCAM. 
CSP gives a mathematically-based notation for specifying the behaviour 
of multiple, sequential, processes communicating synchronously. Traces 
(symbols defining the behaviour of the process), both deterministic and 
nondeterministic processes (i.e. when processes have or have not a 
limited range of behaviour, given the influences of their environment), 
buffered asynchronous communication, deadlock and livelock and many 
other issues are dealt with in a formal mathematical language to allow 
the description, design, implementation, and verification of complex 
computer systems.

2.4.3 Designing O CCAM  Programs

OCCAM is based on the CSP model of computation with issues such 
as parallel process execution, communication, and synchronisation in 
its very structure, with the same model of concurrency applicable to 
processes resident on one transputer as on many. This enhances the
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prospects for design, portability, and re-assignment on transputer plat-
forms. In comparison with other programming languages, e.g. MOD- 
ULA 2 or ADA [Mir88] which assume execution of pseudo-independent 
processes on a shared-memory computer, OCCAM supports a full model 
of message-passing process concurrency. Data permeates through the 
system of processes via channels, hiding the details of each process and 
its data structures from other processes. Thus, each process can be 
defined in terms of sub-processes similar in structure.

The idea of process design modularity creates a perfect specification 
mechanism in achieving geometric and algorithmic parallelism, by map-
ping data and tasks onto pipeline, SIMD, and MIMD transputer archi-
tectures. Various interesting program design issues which will also have 
an impact on the performance of a system will be discussed next.

2.4.4 Communication Issues

Communications is the essence of distributed parallel programming. 
Communication channels between processor-local processes are imple-
mented via memory locations, and between processes on different pro-
cessors via physical, point to point, standard INMOS links. The trans-
puter is capable of initiating communications which are then handled 
via autonomous link DMA engines, thus freeing the central processor 
unit to continue processing. Channel communications and processor 
computation must therefore be always decoupled.

This may be achieved through the use of a simple buffering mechanism 
such as,

PAR —  Three parallel processes
... Receive data from in.channel and buffer in a FIFO in.queue 
... Process data from top of in.queue, put results on out.queue 
... Take data from out.queue buffer and place on out.channel

Thus computation can always continue, with the buffers smoothing out 
the flow of data. The code below shows each queue buffer may be im-
plemented as a series of channels created by the use of a replicated 
PAR statement thus showing how higher level processes may in turn 
be broken down into a smaller set of processes. For local processors, 
rather than moving huge data chunks, the data can be stored in global 
shared memory and only the index to the data passed between chan-
nels to reduce the communication bandwidth. Notice that the use of
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buffering allows asynchronous communication.

[queue.length+1]CHAN OF INT buffer.queue :
PAR

buffer.queue[0] ! image.data.in 
PAR i = 0 FOR queue.length 

SEQ
buffer.queue[i] ? image.in.transit 
buffer.queue[i+1] ! image.in.transit 

buffer.queue[queue.length] ? image.data.out

Having separated the communication from the computation, it is also 
helpful to reduce the number of link transfers by communicating larger 
chunks of data [Atk87]. Each link takes about a microsecond or 20 
processor cycles to set up. Once initiated, the transfer is almost au-
tonomous, consuming 4 processor cycles every 4 microseconds. Thus, 
the piece of code on the right is much more efficient than the code on 
the left,

SEQ i = 0 FOR 256 
SEQ j = 0 FOR 256

image.chan ! image[i][j]

SEq i = 0 FOR 256
image.chan ! image[i]

where each row of the image is transfered (256 link activations) rather 
than a pixel at a time (65536 link activations). Of course, for larger 
link transfers the latency increases.

Variant protocols can be used to pass many different data types between 
processes. During link transfers, the data is broken down into bytes and 
communicated as such. Each byte must be acknowledged individually. 
Faster transfers are achieved by overlapping the data and acknowledge 
messages.

Multiple channel I/O  across links, or within a local processor, can be 
established using multiplexing. A multiplexor is a process which col-
lects inputs from a number of channels, and outputs on one. The mirror 
image of this is a demultiplexor process which receives data on one chan-
nel and outputs data on several outgoing channels. Thus, connection 
can be established between multiple processes on neighbouring proces-
sors. The use of identity tags in the communication message ensures 
correct addressing and communication between source and destination 
processes in (de)multiplexed communications.
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2.4.5 Process Scheduling and Priorities

Processes on the transputer run at two priority levels, high priority 
(H) and low priority (L). For each of these there is a process queue, 
represented by a linked list in the transputer. The lists contain the 
workspaces of processes that are ready to execute. New processes are 
added to the end of the appropriate list, which is also where newly 
descheduled processes are placed. The transputer always executes an 
H  process if there is one, and only when the H  process has to wait for 
communication, a timer input, or when it simply terminates, can the 
next H  process proceed. Also, only when there are no H  processes that 
can proceed, is an L process allowed to execute. Then, all L processes 
are time-sliced, unless they are descheduled earlier due to the specific 
reasons also associated with H  processes as given above. They may 
also be at any time preempted by a ready-to-execute H  process.

Two important computation/communication implementation tips are 
derivable from the explanation above. Firstly, the posit as regards 
communications, is to run all routing processes at high priority, while 
the computing-intensive tasks are run at low priority. This ensures 
the immediate availability of data for computation to go ahead. Sec-
ondly, the less the number of processes in the two queues, the less the 
context-switching overheads, and the quicker the other processes will 
be attended to. Thus, the right-hand image initialisation task below 
will execute faster than that on the left.

PAR i = 0 FOR 256 | SEq i = 0 FOR 256
PAR i = 0 FOR 256 | SEq j = 0 FOR 256

image[i][j] := (BYTE 0) | image [i] [j] := (BYTE 0)

A recently developed operating system for the transputer, based on 
preemptive scheduling, and providing multiple priority levels, is the 
TRANS-RTXc[VTL90]. This would by-pass the FIFO scheduler scheme 
where there is no guarantee of the scheduling of a process within a 
known time-interval. Thus, the TRANS-RTXc introduces the prospect 
of more efficient real-time systems on the transputer.

2.4.6 Deadlock and Livelock

A common source of deadlock in transputer programming occurs when 
one channel wishes to communicate with another, whilst the other will 
never reach a stage to be prepared to communicate. This can then prop-
agate throughout the system’s set of concurrent processes and cause a
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stand-still. Research at Oxford University on deadlock avoidance has 
proved the possibility of implementing completely deadlock free pro-
grams [RD86]. Although the work is based on CSP, it can readily 
translate into OCCAM.

When concurrent processes communicate with each other continuously 
without ever communicating with their external world, livelock is said to 
have occurred. Deadlock and livelock can seem identical to the unaware 
user. One method for detecting them can be the employment of a 
supervisor or monitor process, running at low priority and completely 
independently of normal data flow channels, to determine cpu and link 
usage.

2.4.7 Fair Attendance

The OCCAM language features a powerful alternation construct for 
achieving concurrency and communication between processes. The ex-
tent of this property of OCCAM is not always fully understood, and it is 
the aim of this section to describe the usefulness of this feature through 
a simple example. The facility has been a major tool in designing the 
programs written throughout the course of this work.

An ALT process in OCCAM is one which is prepared to communicate 
with one of a number of processes simultaneously. It will only select 
one process which is ready to communicate with it. There are two al-
ternation constructs in OCCAM. The symmetric construct provided by 
the keyword ALT, which guarantees the selection of one of its branches, 
namely a guard from its list of guards, and the asymmetric construct 
provided by the keyword PRI ALT which gives a guarantee on the selec-
tion of one certain guard over the others. The ALT construct is similar 
to the SELECT statement in ADA, which has ACCEPT statements as 
alternatives [Mir88].

To illustrate this powerful facility, a simple implementation of the basic 
functioning of a lift is described. Consider a university with a 5 storey 
building, plus a basement, where the floors are served by a simple 
lift which may hold only one person at any one time. The lift will 
serve its clients on a first-come-first-served basis. It will not accept 
any further calls for service until it has served its current request. The 
Vice-Chancellor’s office is on the 5th floor, and requests for transport 
to and from the 5th floor will receive priority service from the lift over 
any other requests.

If the lift becomes inoperational, then it is assumed that this action
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will be concomittant with the depression of the EMERGENCY button. 
This takes precedence over all lift functions.

The lift services the floors unfairly. It accepts the very first request 
after it has finished serving the last person. Thus, once the lift is free, 
the client must be quick on the request button if the lift is to go to that 
floor next. Notice that this is a very basic implementation and in the 
real world many extra functions have to be taken into account.
Considering the following definitions,

—  Important declarations 
[6]CHAN OF BYTE floor : 
CHAN OF BOOL emergency : 
BOOL operational :
BYTE service, signal :

the code would be as shown in Figure 2.7.

The comments in the figure describe the actions taken once the lift 
arrives at a floor. These are not shown for all floors.

PRI ALT introduces an element of prioritisation in order of textual en-
counter. In this example, the emergency channel is always monitored 
first while the lift remains operational. Next, it is the fifth floor fol-
lowed by floors 0 to 4. Since the action taken for all floors from the 
basement to 4th are similar, a replicated ALT may be used.

ALT i = 0 FOR 5
floor[i] ? service.request

This example illustrates the unfairness of the implementation of the 
ALT construct, since it always selects from top down. If service is 
required on all the floors from the basement to 4th, at all times, then 
the basement request only would ever be serviced.

To introduce some fairness into the scheme, a number of approaches 
could be adopted; two simple possibilities are shown in Figure 2.8.

Notes in [Jon89] provide a detailed analysis of the fair ALT.

All the issues discussed in Part 3 are of extreme importance when de-
signing OCCAM programs. Some of these will be re-visited later in 
this thesis. INMOS has released a series of technical notes to aid bet-
ter design of OCCAM programs by transputer users. Some of these,
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operational :=  TRUE  
WHILE operational 

PRI ALT
emergency ? signal

SEQ
operational :=  FALSE 

floor[5] ? service.request 
SEQ

- -  Travel to floor 5.
- -  Accept signal to identify destination.
- -  Travel to destination requested.

ALT
floor[0] ? service.request 

SEQ
- -  Travel to floor 0, the basement.
- -  Accept signal to identify destination.
- -  Travel to destination requested. 

floor[l] ? service.request

floor[2] ? service.request

floor[3] ? service.request

floor[4] ? service.request 
SEQ

- -  Travel to floor 4.
- -  Accept signal to identify destination.
- -  Travel to destination requested.

Figure 2.7: An ALT example for servicing a simple lift

and specially [Atk87] in particular, are essential reading for anyone at-
tempting to produce efficient OCCAM programs requiring maximised 
performance at low-down code level. Issues such as the manipulation 
of the compiler’s range-checking option, and block moves for vector as-
signments (which is distinctly useful for shifting image data about the 
memory), are amongst the many pourboires offered.

The issue of more efficient OCCAM programs will be laid to rest after 
considering one final point, the use of on-chip RAM. The OCCAM pro-
grammer can initiate the placement of variables local to a process, on 
local on-chip memory of the transputer. This will allow a fast memory 
access, at 1 processor cycle, to the most frequently addressed variables 
by the CPU, resulting in a much faster execution of the code. For ex-
ample, when performing the Sobel filter, the neighbourhood gray values
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—  1 - Rotate the priority of the floors, after each PRI ALT 
favourite :=  0 
WHILE operational

... attend to other channels 
PRI ALT i =  favourite FOR 5

VAL shifted IS i MOD 5 -  MOD gives remainder
floor[shifted] ? service.request 

... processing for floor[shifted] 
favourite :=  (favourite +  1) \  5

—  2 - Give lowest priority next time around to floor selected now, 
favourite :=  0 
WHILE operational

... attend to other channels 
PRI ALT i =  favourite FOR 5

VAL shifted IS i MOD 5 -  MOD gives remainder
SEQ

floorfshifted] ? service.request 
... processing for floor[shifted] 

favourite :=  (shifted +  1) \  5

Figure 2.8: Two approaches for a fairer servicing of floors.

of a pixel can be read into temporary variables and placed in on-chip 
RAM. When the operation window is shifted next, those neighbour-
hood points which are also the neighbours of the next pixel, can be 
passed to other temporary variables in on-chip RAM. This reduces ac-
cess to external memory, and speeds Sobel execution by manipulating 
local memory.

2.5 Summary and Conclusions

The topics discussed in this chapter were intended to serve as a foun-
dation in, and be a general review of, subjects that are of direct impor-
tance to the work presented in the rest of this thesis.
In the first part, image processing techniques such as edge detection and 
edge segmentation were discussed. Emphasis was layed on the levels 
of complexity in analysing and understanding images. A major tool to 
aid in symbolic representation of features in digital images is the Hough 
transform. This was reviewed and will be returned to in Chapter 4.

The discussion in Part 1 was centred on techniques in the spatial do-
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main; for those in the frequency domain, such as the Fourier transform, 
the reader is referred to [Nib85, GW87, Sch89]. Further image process-
ing techniques and reviews will be presented when the topics of label 
inspection and motion are presented.

Part 2 reviewed some different aspects of parallel processing, spanning 
architecture classifications, qualitative issues, programming and perfor-
mance issues, and parallel vision architectures from different categories. 
In continuation, the topic extended to Part 3, where the transputer and 
OCCAM were introduced, and some fundamental aspects like commu-
nications, buffering, and more efficient programming issues were exam-
ined. OCCAM is chosen as the main programming language in this 
work not only because it is the only language on the transputer to offer 
true parallel segmentation of communicating sequential processes, but 
also because it offers the fastest route to designing parallel programs 
for the transputer. Its model of concurrency and sequential logic is sim-
ple, mathematically consistent, and is built into the logic of producing 
multi-process networks of processors. Therefore, despite its lack of fa-
cilities, such as dynamic memory allocation (which is merely compiler 
dependent), OCCAM is preferred for use on the transputer as opposed 
to a selection of other sequential languages which have non-standard 
and unportable parallel features. Only a little search of the transputer 
products market is enough to confuse anyone with numerous ’’ Parallel 
C” compilers.

Now that the case for using OCCAM is laid to rest, the question that 
has to be asked is, but why use the transputer in the first place? This 
is simple, and is not an issue of ” chip A is better than chip B but 
chip C has a faster clock cycle than both” . Disregarding all advantages 
and disadvantages of the transputer, most of which will have been ex-
amined by the end of this thesis, the transputer remains as the only 
cheap source of parallel computing, allowing the simple configuration of 
multi-processor, distributed networks. Whereas most research labora-
tories can experiment with at least a handful of their own transputers, 
very few others can probably afford to buy a little time on a general, su-
percomputer. The cost of programming is therefore the major deciding 
factor in such matters (Section 2.3.4).

So, what role can the transputer and OCCAM play in the image pro-
jected in Figure 2.1? This is examined next.

Certain issues were raised in the introduction to this chapter which need 
further exploration now in the light of what has been discussed in be-
tween. The main focus of reference is Figure 2.1. During the course of 
this chapter, it was seen that point operations and local neighbourhood
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operations in image analysis, can be and have been mapped across sim-
ple 1-bit processing elements or higher degree intelligent nodes arranged 
as regular mesh or array of processors. The arrangement is referred to 
as SIMD processing. Some machines associated with this approach to 
low/medium level image processing were examined. The intention of 
some of the work that follows in this thesis is to show that this can 
be implemented equally well on a SIMD array of transputer proces-
sors. Furthermore, two major approaches in geometric parallelism will 
be employed to aid in the task. This is partly covered in Chapters 3 
and 6, and fully projected in Chapter 4.

Global data operations were reviewed as best suitable for MIMD im-
plementation with different processes working on different data. Two 
fundamentally different machines, yet both capable of general purpose 
SIMD and MIMD operations were presented. These were the IUA and 
the PC WARP. In the work in Chapter 6 the application of the trans-
puter as a MIMD tool will be presented. The nature of the system 
will be partly similar to the IUA, and partly similar to the PC WARP, 
in that it will have both SIMD and MIMD sub-units, but it will be a 
system dedicated to tracking motion by correspondence.
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Figure 2.9: SIMD, M IM D , or both?

Finally, it remains to examine route 3 of the enumerations in Figure 2.1. 
Although this issue will be returned to in Chapter 7, it can be said now 
that not even a close implementation of such a system stands. Ar-
chitecturally (i.e. for hardware that can map to the bottom section of 
Figure 2.1), the resources exist; simply consider fantastic supercomput-
ers such as the IUA (which actually lives in simulation only) and the 
PC WARP. On the vision side, the algorithms in the range of low to 
high-level vision prevail to a certain extent, with much that still remains 
to be developed, and a lot more that are still not suitably developed 
enough from a parallelisation point of view. The only tools that have 
brought these together are application-specific interfaces, or simple op-
timising compilers which are just not intelligent enough to extract more
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than some simple SIMD parallelism. Although, no particular solution 
to this issue can be provided in this thesis, the matter is of interest, and 
will be re-examined from a transputer/OCCAM perspective in Chap-
ter 7.

In summary, the rest of this thesis is dedicated to the examination 
of the transputer’s role and capability in typical SIMD and MIMD 
situations. Where will the transputer best fit into in Figure 2.1? Will 
it be applicable across the board? The idea is illustrated in Figure 2.9. 
The conclusions for its suitability will be drawn in the final chapter 
with some brief comments provided in the chapters in between.
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Chapter 3

Analysis and Application of 
a Data-Routing Scheme

3.1 Introduction and Overview

Having considered a SIMD arrangement of hardware as an important 
platform for low-level image processing, and the necessity of data- 
partitioning for the implementation of such an idea, these issues will be 
extended and examined in this chapter with application to transputers.

Geometric parallelism, introduced in the last chapter, may be accom-
plished via two mechanisms, control-driven and demand-driven. The 
demand-driven strategy will be expounded in Chapter 4, whilst the 
control-driven technique will be closely attended to here through the 
specification, analysis, and application of a message-routing strategy 
for an M  x N  transputer array network, given a P  x Q image,

• the specification will be the presentation of a controlled data dis-
tribution and collection scheme,

• the analysis will encompass the derivation of equations for the ap-
proximate projection of the timings required for the distribution 
and collection of any regular-sized window on the image data,

• the application will be to the field of label inspection, including 
a short review of the field.

The label inspection application started life as an investigation into 
proving the possibility of feist, successful image inspection on trans-
puters, which would then grow into a full inspection system, in joint
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collaboration with Trivector Systems Ltd., part of the Vinten Group 
PLC. However, some way through the project, the sponsors withdrew 
due to financial and take-over problems. Nevertheless, being past the 
midway post, the evaluation study was conducted to its conclusion. 
Thus, what will be presented later will be an ad hoc approach to a suit-
ably defined label inspection problem, in order to be able to infer the 
performance of a multi-transputer system for an industrial inspection 
system.

3.2 Mapping and Communication Costs

The idea of geometric, or data parallelism was introduced in the last 
chapter as a method of programming SIMD arrays of processors where 
each processor performs the same tasks on different data. In low-level 
image processing the data would preferably be composed of uniform, 
equal-sized partitions of the image, as depicted in Figure 3.1.

Figure 3.1: Mapping equal-size partitions of an image across 
a transputer array. Sample mappings are shown with dotted 
projections.

The granularity of the SIMD processing nodes would determine the 
granularity of the data. For transputers, in splitting a 512x512 image 
across a 2x2 array of processors, each of the 4 sub-images would consist 
of a 256x256 image. Yet, split across an array of 128x128 processors, 
each sub-image would be 4x4 only. Thus, the data may range across 
the fine-medium-coarse grain spectrum, depending on the application. 
Its size is determined in length /, and width w by,
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(3.1)

given that there are M  x N  transputers, and the image size is P  x Q. 
Also let it be assumed that the following conditions stand,

4 <  P, Q <  512, 2 < A f < j ,  2 <  N  <  &, and ^  yield integers.

The process of assignment, distribution, and collection of data takes 
place under the supervision of a controller processor, and this would 
usually be a separate transputer to the array. At all other times, the 
processors exhibit distributed control, i.e. they perform their tasks in-
dependently of any external supervision, and they only rely on the flow 
of data as controlled by the supervisor processor. Thus, implicitly, this 
method of mapping data to processors is referred to as control-driven. 
It may have been noted that inter-processor communication has not 
been included in the above explanation. This is due to the fact that it 
will not be necessary, and this is examined now.

Some of the major algorithms in low-level vision need to operate on 
neighbourhood pixels, and the partitioning shown in Figure 3.1 does 
not satisfy this requirement at the pixels along the border of each par-
tition. Morrow et. al. [MCK+88] have proposed a method for passing 
image data which is as follows: the controller communicates with the 
top-left transputer in the array only, passing the complete image to 
that processor a row at a time. Each transputer in the north row of 
transputers then retains its own part, and passes the rest of the row to 
the east until no more data is left. When their own quota is satisfied, 
each transputer in the north row continues along the same scheme by 
sending the next segments that it receives partly southwards and partly 
eastwards until all processors are fed. Following this, an edge swapping 
operation is initiated, whereby each processor swaps the border infor-
mation along its four sides with corresponding neighbouring processors. 
They do not specify their exact handling of the edge transputers, al-
though their predicament is acknowledged. Also no mention of access 
to pixels from diagonally un-connected neighbours is made. The data is 
then recalled in a similar but reverse manner. The authors continue by 
performing the averaging operation, and introducing a more high-level 
language as a harness for OCCAM in performing image operations.

Clearly, not only is the extra edge-swapping of their distribution phase 
unnecessary, it is also conducted rather inefficiently at one pixel at a 
time. Assuming that all processors will swap edges exactly in parallel, 
there will elapse a time while a total of at least 2(1 +  w) extra link set-
ups and communications take place before computation can go ahead.
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This does not include the time for communicating to diagonal neigh-
bours via other processors. Also, since processes are descheduled at 
communication points, the context-switching overheads must also be 
taken into account.
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Figure 3.2: For a P x Q image, (a) shows a sub-image and its 
extra border area, (b) shows the same for the entire image

A more efficient method is illustrated in Figure 3.2. By including the 
edge information in the data segments of each original sub-image, the 
whole edge-swapping phase can be scrapped to reduce the communica-
tion stages, with the side-benefit of reducing the overall code size by 
losing the code for interprocessor control and communication. The seg-
ments corresponding to edge transputers may be complemented by data 
determined in some standard way by the controller and prior to com-
munication. For example, this may be achieved via the use of slightly 
smaller images, e.g. a 510x510 image allowing borders of width 1. Fur-
thermore, little latency in communications will occur since the increase 
in row segment sizes routed will be relatively small.

Other efficient routing methods exist (and will be mentioned later), 
but this work is concerned with the analysis of the above method as a 
typical message routing strategy. This analysis begins here.

Flatt and Kennedy [FK89] present a timing model for parallel process-
ing, with the initial finding that given a program containing serial and 
parallel parts, and running on K  processors, then the parallel compu-
tation time is,

T( K)  =  Tserial +  +  T0(K)  (3.2)

with serial execution time of Tseriai, parallel execution time of 
if the program may be partitioned into K  parallel components of equal 
running time, and communication and synchronisation overhead of 
T0(K).  They continue by examining the communication and synchro-
nisation overheads on parallel processors, establishing upper bounds on
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the power of parallel processing under ideal conditions (cf. Amdahl’s 
law). They also provide cost, efficiency, and speed-up equations for 
very generalised measurements. Equation 3.2 is only valid, at least 
in the case of a SIMD transputer array, if each of the three stages in 
the equation can be regarded separately. When communications and 
computations are overlapped, and the transputer is certainly capable of 
autonomous link transfers while the CPU computes, then Pa™l,el and 
some of T0( K ) will be happening concurrently.

Much more relevant is the work of Browne and Hodgson [BH89] who 
provide an investigation of the performance of image processing algo-
rithms when executing on data partitioned across transputer arrays. 
They analyse point, neighbourhood, and global image processing oper-
ations, in terms of speed-up and efficiency, by way of simple simulation 
of communications in terms of memory access cycles, using quoted av-
erages from [lnm89]. In fact, they divide all memory accesses and link 
communications in terms of a number of different memory reference 
types of count u, with elapsed time per word of t,-, i’e {0 ,...,u — 1}, with-
out differentiating between reading and writing. Then, assuming K  
processors in total, they use the following general equations for T ( K ), 
the time to perform on K  transputers, S ( K ), the speed-up, and E(K) ,  
the efficiency, to calculate their estimations,

T ( K ) = ^  +  j E p m i )  (3.3)

S(K)  =  r ( l )  -  T ( K )  =  Tr( 1 +  g p ( i ) t ( i )  (3 .4 )

m n  _  _  Tp +  Vt i to
( } K T ( K )  Tp +  V Z p ( i ) t ( i ) ( ' j

where, Tp is the total processing time for an image processing algorithm, 
ti is the time for a local memory access, i.e. ¿(0), V  is the total volume 
of data (i.e. by the earlier definition in this section, V =  P  X Q), and,

x ) = i M
fou g(x)dx

where, x is assumed as an address variable that can address the full 
assumed memory space (including simulated links), and g(x)  is the 
frequency of accessing memory at x, resulting in p(x) as the probability
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density of accessing memory at x, with the shape of g(x)  determined 
by the nature of the image processing application.

3.2.1 Evaluating Communication Costs

Given the general difficulty of measuring parallel distributed processors 
performance, Browne and Hodgson present a very efficient simulation, 
reporting a maximum difference between estimated and actual perfor-
mance measurements of ~  14%. However, some essential factors that 
they ignore in their work are, traffic load across the links, which will af-
fect the rate of memory access as defined in their terms, and the whole 
fundamental issue of image distribution and collection pre and post-
processing respectively. No timing for these are assumed or derived, 
and in fact they assume that the image is already distributed. It is the 
intention of the work presented here to consider the distribution and 
collection operation, since it forms an integral and necessary part of the 
measurement of the total computation time. Thus, Equation 3.3 will 
be re-stated where Tdc is the total communication time for distribution 
and collection of data, before and after processing, and will be found 
presently.

r W  =  ^  +  §  +  L | > ( > ' « 0  (3.7)

with K  =  M  x N.  Note that by way of the communications method 
described earlier, the components of Tdc are equal, that is Td =  Tc. For 
the moment, consider Td only. Initially, let length /, and width w be 
redefined to encompass the extra border data, 6, determined by the 
image processing operation at hand, (more commonly 6 =  2),

i =  ¥  +  il ’ w = N + h  (3'8)

Let the total time for distributing a P  x Q image across a M  x N  array 
of transputers, using the row-segment method described above, be,

Td =  Tt +  Tj (3.9)

where Tt is the time it takes the host controller to send the the whole 
image, row by row, to the top-left (NW) transputer, and Tj is the time 
it takes for the final package to filter through from the NW transputer 
to its destination in the bottom-right (SE) transputer in the M  x N  
array, since that is the furtherest node away. Notice that although Tj
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may be significant for large packets in large arrays, nevertheless more 
usually, Tt >• Tj and Tj, ~  Tt. Therefore, for small transputer arrays 
almost no marked improvement can be observed if the reverse process 
to the above were to be implemented. That is, start by sending the 
data for the SE transputer first, such that T/ will be (almost) non-
existent. This will be termed the reverse-feed distribution scheme and 
is the preferred method. For the study here, the first approach, the 
forward-feed distribution will be used as it will help build a simpler 
picture of what happens.

It is important to notice that computation and communication can be 
overlapped. However, the concern here is to measure the distribution 
and collection of data as a separate procedure which can be followed by 
the separate processing time defined by Browne and Hodgson [BH89]. 
Also, the overlapping of communications and computation may lead to 
poorer performance due to the extra code and buffer processes, espe-
cially when the ratio of computation to communication is small. Still, 
the computation on each processor commences once it has its own com-
plement of data, while it may continue to route data through for other 
processors.

Equation 3.9 describes a time which assumes that during the operation 
all the other transputers will have received their data packets. This is 
next shown graphically for a small image on a small array, and can be 
proved by induction to be true for all cases of M  and N.
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Figure 3.3: (a) Distribution of case data on 3x3 array, (b) 
Actions of 3 consecutive processors in the data path as the 
data passes through.

For the sake of clarity, take a simple example including no neighbour-
hood pixels. Figure 3.3(a) shows the distribution of data on an array
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of K  =  M  x N  processors numbered K 1 to K 9, and M  =  N  =  3, 
and P =  6,Q — 3. Using Equation 3.8 with 6 =  0, then / =  2 and 
tv =  1. For the general case, there would be IM N  packages of data 
(i.e. row segments) numbered from {0 ,..., ( IMN  — 1)}, thus for this 
example these are {0 ,..., 17}, as shown.

Next, define Ta as the period of a link data-transfer which depends on 
the length of the data-block to be transfered (see Section 2.4), and T0 
as the time spent on overheads such as the initiation and set-up of the 
link transfer. Thus,

Ts =  Ta +  T0 (3.10)

giving the total transfer time over a single communication, with Ta 
T0 and Ts ct Ta. (T0 is said to take about 1 nsec [Atk87], but is largely 
dependent on how busy the processor is and can be much greater). Now 
consider a snapshot of a short period during the distribution stage for 
any three processors who lie orthogonal to the path of the data flow. 
Given 0  for output on any link, and I  for corresponding input on 
receiving link, this snapshot in envisaged for transputers K 2 ,K 3 , and 
K6 in Figure 3.3(b) as a data segment passes through, assuming that 
the period of output for one transputer is equal to the period of input 
of the transputer it is communicating with. Hence, measurements can 
be made with respect to the average value of Ts, and thus Figure 3.4 
shows the path and number of T, time-slices necessary for each packet 
to arrive at its destination.

Note that Wait to Received Wait to send, with the latter being the 
period of another link set-up to send the data packet on.

A program was written to simulate this pattern of data flow, and by 
analysing the results for varying values of M , N, P, and Q, the following 
formula was deduced to give the exact count, C , of time slices, Ta, of link 
activity required to distribute any P  x Q image on a mesh-connected 
array o f M x i V  transputer, assuming the conditions mentioned earlier 
are satisfied,

C ,m n  =  (M  +  N  -  3) +  l (2MN -  1) (3.11)

Hence, since Td — Tc, the total data distribution and collection is given 
by Equation 3.12,

Tdc =  2TsCimn  (3.12)

The time Ts was measured for the transfer of varying packet sizes. Ta-
ble 3.1 shows these, along with the measured distribution and collection
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Figure 3.4: The temporal association of the arrival into the 
system, and travel to final destination, of each data packet for 
each transputer.
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network of processors are available, e.g. all T414s or all T800s. Let p, 
for ¿e{0, ( I M N  — 1)}, represent each packet of data in the system, 
which are also in the order they are sent to the network. The packet’s 
row and column destination transputer is given by, m, =  n, =  
Pi mod N ior 0 <  m <  M  — 1 and 0 <  n <  N  — 1. Then, for each 
packet pi, it is possible to find, APi, as the time for packet p,- to enter 
the system, and TPi, as the time for packet p, to reach its destination 
transputer,

if (pi < IN) and (rii =  0) then ......................(data on NW transputer)

Ap, =  T,((21V -  1 ) |  +  1) (3.13)

else if (pi < IN) and (n,- < >  0) then ........................(data on first row)

Ap, =  r.((2A r- + 2 m) (3.14)

else if (pi >  IN) th en ............................................... (data on other rows)

APi =  Ta(2Pi — / +  1) (3.15)

and having found APi,

TPi =  APi +  T,(mt +  rii) (3.16)

Tj can now be calculated using Equation 3.16 where /  =  p, =  (IMN — 
1 ). Another statistic is Tg;mn which gives the time elapsed before any 
transputer in position (m, n) has received its own full complement of 
data,

TEmn =  r , ( / ( 2 M ( m + l ) - l ) + m + 3 n - 2 M - l )  (0 < m < M , o < n < N ) (3.17)

TEoo =  T,{l(2M  -  1 ) +  2 ( 1  -  M )) (m=o,n=o) (3.18)

More measurements that can also be derived are, Volumennks, and 
Volumedata, which provide a count of the total number of times all 
links are set-up for transfer, and the total amount of data moved about 
the system respectively,

VolumeLinks =  21MN(M + N -  1) (3.19)

Volumedata =  2lw(M N ) ( M  + N -  1) (3.20)
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Many of the above operations occur concurrently and therefore these 
parameters are cited only for the sake of completeness. They could 
perhaps best be used for comparison with similar features in other 
routing strategies.

Note that all the above equations have been also derived for the reverse- 
feed distribution mechanism which was stated earlier to be a more effi-
cient distribution mechanism, but will be omitted to preserve space.

The presentation in this section encompassed both an improved ver-
sion of the data distribution and collection algorithm for a transputer 
network as proposed originally by Morrow et. al. [MCK+88 ], and an 
analysis and breakdown of the algorithm to determine various charac-
teristics. Furthermore, the results may be used to complement the per-
formance measures introduced by Browne and Hodgson [BH89]. Since 
the method described here is completely general for any image sizes 
and transputer array sizes, be they square or rectangular, the routing 
method will hereafter be referred to with the prefix of general, or flex-
ible. This method will now be applied to a simple real-time task in 
label inspection, as a static image processing application, to determine 
its suitability in a practical situation compared with a more customised 
routing method. Hence, the emphasis will be on the application of the 
message-passing schemes for evaluation for a real-time environment, 
rather than a precise approach to label inspection as an industrial in-
spection task. In the following application, little in the classification of 
faults and defects will be presented. Instead, the concentration will be 
on the passing of labels that satisfy some simple tests. Nevertheless, a 
short review of the field of label inspection will be furnished next.

Please note that the discussions that follow, all the way to the end of 
this chapter, are kept to a minimum, and are detailed enough to provide 
an overall view of the work carried out only. This has been dictated by 
lack of space.

3.3 Brief Overview of Label Inspection

The issue of label inspection may be regarded as a sub-problem in 
the domain of industrial and commercial inspection, where the gen-
eral idea is to simply perform rigorous checks on the outward quality 
of a product before its presentation to the consumer. Figure 3.5 illus-
trates the type of faults that are of major concern in label inspection. 
The field of industrial inspection has a wide application area, for exam-
ple printed circuit-board inspection [CH82], food inspection [Dav90],
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specialised packaging inspection [Sha89], or general manufactured-item 
defect measurement [Bat79, Oka84]. A general review of automated vi-
sual inspection techniques and systems can be found in [CH82, CD86]. 
The application subject of this chapter and the next will be on label 
inspection only.

Figure 3.5: Typical defects found through label inspection

Most typical defect detection and inspection techniques are mainly con-
cerned with the extraction of a number of particular features from the 
image, which are used in the verification of the quality of the product 
by matching those features against a pre-defined model. Many such 
techniques are reviewed in [CD86]. This approach is also applicable to 
label inspection and is adopted for this work. Moreover, in this work 
a crude approach will be adopted where the matching criteria will pro-
duce a simple accept/reject decision. However, prior to analysing the 
ad hoc procedures implemented here, some past, related work in the 
field is reviewed.

Unfortunately, few industrial sources reveal the nature of their label 
inspection techniques, and they number amongst the major researchers 
in the field. One major aspect of label inspection is the process of 
inspecting the quality of the print on the label. For example, correct-
ness of labels on medicinal containers is an application area where the 
aesthetics is not as important as integrity.

Commercial systems have been reported in [H0I86 , Dic88] with special 
routines which check for label placement, correct label, and container 
fill height, with success rates of about 5 to 6 products every second.
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Dillman [Dil82], from Object Recognition Systems Inc., uses the sum 
of row and column pixels of the image of a container as feature values 
to perform overall label inspection against a prototype. For want of a 
more robust approach, Dillman applies the following scheme. A feature 
grid using the features already described is constructed and overlayed 
onto the prototype. This grid is then shifted in all directions for a 
pre-determined number of pixels, and a one to one match against the 
prototype is applied. The first match within pre-determined thresholds 
is accepted, otherwise the container is rejected. The author achieves an 
inspection rate of two containers/second using 64x64 images in a fully 
implemented working system.

Fang et. al. [FKS83] describe their experiment in label inspection 
consisting of thresholding, registration, and template-matching stages. 
Each image is converted to a binary image using locally adaptive thresh-
olding. A circular scanning technique is applied (label scale must be 
known) to points on the label boundary located by a raster scan. Very 
briefly, this consists of the registration of all points lying on the edge 
of the label at a certain distance away from the central point located 
earlier. It is possible that this pattern of points may yield the location 
and orientation of the label. This can be verified by comparing against 
stored patterns from a model label. In fact, rather than matching the 
point patterns, a set of run-coded arc lengths along the circular mask 
connecting the point patterns is used. Several circular scans of the la-
bel are taken to reliably deduce a registration transformation. Using 
the most acceptable registration, the object is aligned with the model. 
Using dilation and erosion techniques, local point sets in the object 
are grown or shrunk respectively, and tested against the model as su-
perset or subset of the model label. If these tests are not satisfied, a 
’1’ is recorded in a "difference” image. When the complete image is 
processed, it is divided into overlapping 20x20 pixel bins. Should any 
bin contain more than three error points, defined by pixels with 7 of 
their neighbouring pixels set to T ’ , then the label is rejected as defec-
tive. No results for this proposed scheme are given, although sample 
experiments are illustrated.

Shabushnig [Sha89] presents a simple method for testing the presence 
of a label by finding the distance from the top of a bottle to a region 
where the pixels representing a label are expected to be found. No 
attention is paid to the rest of the label, so defects in the lower regions 
of the label can go un-noticed.

Yamamura of Fuji Electric. Co. describes an automated label inspec-
tion system based on direct scanning methods of the image to search
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for particular labels in 64x48 binary images [Yam83]. The algorithms 
scan the image to detect starting and finishing pixels, and they mea-
sure width and height of the expected label. Again, a model is used 
for implementing feature comparison tests. When applied to a whisky 
bottling line, a processing speed of 5 bottles/second was achieved. The 
methods used by Yamamura are very straight-forward and ad hoc, tech-
niques based on similar principles are used for the work to be described 
in the next section. Furthermore, the algorithms presented here will be 
operating on much larger images, which will allow a higher degree of 
accuracy. Implemented for concurrent performance, they will allow a 
faster and higher rate of inspection.

Of interest, but out of the scope of this coverage, are also the work of 
Casasent and Richards [CR88] who inspect health warning messages on 
cigarette packets using an optical architecture for a Hough transform 
and 1-D correlation functions.

The points common to all the works described above are the controlled 
environmental conditions that are either assumed or especially set up 
to ease the task of inspection. Hence for similar reasons, this research 
work will also assume constant and controllable illumination, little or 
no vibration, good contrast between labels and their background, well 
determined size, and appropriate positioning relative to packaging.

3.4 Ad-Hoc Solutions

The following is a report to show the performance of a multi-transputer 
imaging system applied to a real-time inspection problem, where some 
simple tests are conducted on the position of labels on products as 
well as a crude look at their overall quality. In Section 3.2, a data 
distribution method was presented which was generalised, flexible, and 
universally applicable to transputer arrays of any sizes. However, the 
timings presented for the distribution and collection of data show some 
limitations for the applicability of that scheme for a real-time situation, 
for example when a number of labels are to be inspected every second. 
A label inspection system was initially devised and implemented on 
the generalised network; this resulted in the design of algorithms that 
would be general enough to be able to cope with an increase in the size 
of the system, since flexibility and increase of processing power were 
regarded as major goals. This meant the standard distribution of the 
label across any M  x N  array, with each transputer ending with any 
part of the label in the image. Therefore, the algorithms needed to be 
very thorough to be able to detect a part of a label in each transputer.
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Naturally, although very flexible, this proved to be an expensive ap-
proach. These issues will be returned to later in this section. Since 
the work was an industrial assignment and an evaluation study for the 
implementation of a label inspection system (largely for examining the 
correct positioning of the label) using a cheap, affordable set-up, then 
a more dedicated, customised system was designed which used only 5 
transputers, including the host, to obtain a better inspection rate.
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A-A Camera
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Figure 3.6: (a) A  simple depiction of the configuration used 
for label inspection, (b) A  direct mapping of the image to the 
customised network transputers

The hardware available at the time was configured for the customised 
network as shown in Figure 3.6 (Please also see Appendix A). The 
method of distribution and collection of the data across the 4 transputer 
array is as follows. The 2D image array is spread out into a single 
ID vector which is subsequently squirted, in whole, from the main 
transputer to T1 (Figure 3.6(a)). Transputer T1 extracts II, 12, 13 and 
14 from the vector, retains 11, and passes the rest to T2, T3 and T4 (as 
vectors) respectively. At this stage, each transputer has its own image 
section and will be working on the data. Using the OCCAM RETYPE 
facility, there is no need for actual hard-coded translation of 2D to ID 
to 2D vectors, and therefore no time is wasted on those operations. The 
mapping of the image to the network is also shown in Figure 3.6(b)).

The post-processing resultant image can then be gathered similarly in 
the opposite direction. Table 3.2 shows the timings for the distribution 
and collection of image data using both the customised and flexible
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Image Size Flexible Method Customised Method
bytes seconds

512x512 1.034 0.757
256x256 0.297 0.192
128x128 0.072 0.049

64x64 0.021 0.013

Table 3.2: Distribution and collection timings for the two rout-
ing approaches used

methods, when applied to various image sizes on similar number of 
transputers. The differences may seem insignificant, but when intend-
ing to inspect several labels per second, every microsecond counts. The 
results shown in Table 3.2 will be less for the label inspection exercise 
since post-processing results will occupy a few bytes only and there is 
no necessity for gathering the resultant image.

3.4.1 The Label Inspection Methods

Some approaches for tackling the label inspection problem were re-
viewed before. However, methods such as template matching [FKS83] 
and Hough transforms [CR88] are either not fast enough for a real-time 
environment, unless the bottlenecks involved are hardwired (e.g. co- 
sine/sine evaluation by look-up table) or they require expensive, can-
tankerous hardware. Here, some simple and efficient algorithms are 
proposed that will detect some very common defects such as those 
classified in Figure 3.5. The main principle involved in the follow-
ing algorithms is the detection of corner points. Again, many ex-
pensive corner detection techniques exist such as those to be found 
in [KR82, ZH83, HS88, Dav90], but here the label is known to be in 
sharp contrast against its background with the corners expected to ex-
ist within certain areas of the image since the magnification can be 
pre-determined. Their presence is checked for, essential measurements 
are made and compared with a known perfect model, and if the results 
are within an acceptable threshold, the label is passed. The system 
can be setup initially using the menu-system of TIPS to determine the 
desired thresholds and tolerances.
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3.4.2 Rectangular Labels

Initially, some features of a perfect model of a label are specified by 
the user, such as expected height and width, tolerances on variation 
in position and orientation of the label etc. This set of measurements, 
including a histogram of the gray level image of the label, are stored 
and used in the process of inspection.

On the Dedicated Transputer System

To detect a rectangular label, the master transputer distributes the cur-
rent image frame over the four transputers in the network, as discussed 
earlier. Each transputer would then have a part of the image which 
it will threshold into a binary representation prior to scanning it pixel 
by pixel. The method and direction of scanning for each transputer is 
different and is shown in Figure 3.7.

Figure 3.7: (a) Rectangular label scan, (b) Oval label scan, (c) 
A single scan line on T3 for a rectangular label

The direction of scanning is always perpendicular to the expected corner 
point, and the first scanned line found to satisfy the following conditions 
is accepted as the line touching a corner point:

• the start pixel value must be the same as the final pixel value,

• the pixels scanned must show a change of state at least once,

• the number of label pixels (np) must satisfy 0 < np < =  L, where 
L is dependent on the general quality of image. (Figure 3.7(c)), •

• the above conditions must also be satisfied by the next two (user 
adjustable) scan lines (this condition will help deal with noise).

6 8



3.4. AD-HOC SOLUTIONS

Essentially similar, but nevertheless different programs run on T l, T2, 
T3 and T4, allowing the system to be loosely termed as MIMD. Each 
transputer then returns either the address of the pixel which it has 
found to be the corner point, or a "not found” flag if no corner point 
was encountered.

On the Flexible Transputer System

In a truly flexible implementation, the system’s processing power must 
be able to grow without resulting in further costs. In the system imple-
mented here, the inspection algorithms are designed to be able to cope 
with increasing array size, regardless of the number of transputers used. 
Each transputer will receive a part of the image which may be any one 
of the possibilities illustrated in Figure 3.8. Since edge information is 
also passed at the distribution stage, there are no complications if the 
label falls exactly on the border of two transputers.

Figure 3.8: (a) Label image across M  x N  transputer array, (b) 
Possible distribution of label segments per transputer

The search strategy is more complex. Each transputer has to scan the 
whole of its own image section from all directions, stopping only when 
a possible corner or the end of scan is reached. Hence, as well as the 
extra distribution time, this method is considerably more costly. Also, 
the results of only a few of the transputers will be at all significant, 
and the use of too many transputers would be a waste of resources. (In 
fact, this spells out why a straight-forward customised approach is a 
much cheaper, and more appropriate solution).

While the transputers in either method are returning the corner pixel 
addresses to the master transputer, they are ready and receiving the 
next image. In turn, once the master transputer has dispatched the next 
image, it sorts the information returned for the last frame and decides 
if the inspected label (il) is perfect or faulty. This is determined by 
using a user-defined label (ul) as a template and checking the following
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against it for each corner:

ABS(ul Corner Address - il Corner Address) <  Allowance Threshold

This condition will indicate if the label is shifted, tilted, missing, folded, 
or torn at the corners, with the Allowance Threshold allowing for po-
sitional changes within the tolerance of the manufacturers. To detect 
the presence and legibility of the print on the label, the following is 
computed,

M A X {  (3.21)
Hi

where Hi is the linear histogram of the user-defined label and Ht- is the 
linear histogram of the label under inspection, and both are functions of 
intensity i, (ie{0...255}) [Bat79]. The computed value is then compared 
to a predefined tolerance parameter, which is re-set heuristically by 
the system as labels are checked during a run. These calculations are 
performed only on a predefined area of the label called the print check 
area. Constant illumination is very important for this stage to perform 
accurately.

Notice that the whole verification process is performed sequentially on 
a single transputer, but in parallel to the work of the network on the 
next label image.

3.4.3 Oval Labels

For Oval labels, two ” corner points” are searched for. These are the 
peak point and the base point of the label, and are found by tracing 
downwards on transputers T1 and T2, and tracing upwards on trans-
puters T3 and T4 (Figure 3.7(b)). Similar comparisons to those used 
for a rectangular label are used to pass or fail oval labels. This ap-
proach does not map very well on the flexible multi-processor array 
due to the less regular distribution across the different processors; too 
many noise points are accepted as corner points in each transputer. 
(This was simulated in software for varying M  x N  values on a single 
transputer). A more sophisticated (and hence more expensive) method 
will be necessary for a successful implementation, and thus no results 
for Oval labels on the flexible network will be produced.
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3.4.4 Acute-angled Labels

These are treated similarly to rectangular labels, and four distinctive 
corner points are searched for. The search involves a normal raster 
scan for transputers T1 and T2 and a vertical left to right scan for 
transputers T3 and T4. Once the points are returned to the master 
processor, the defects, if any, are detected using the same comparison 
methods as those used for a rectangular label.

3.4.5 Other Labels

The same approach may be employed to develop the software to detect 
most other types of labels.

3.5 Results for the Experiments

The algorithms were tested using 128x128 and 256x256 images of 256 
gray levels, with print check areas of various sizes. The average image 
distribution, results collection, and processing times, in seconds, are 
shown in Tables 3.3, 3.4, and 3.5 for various configurations. Process-
ing efficiency percentages against single transputer implementations are 
shown in brackets for both flexible and customised systems. Table 3.5 
indicates a fast rate of inspection using the customised network con-
figuration. When comparing the average processing times per label 
against the single transputer implementation, the average efficiency is 
72% for 128x128 images and 59% for 256x256 images. In contrast, the 
flexible 2x2 array of transputers using the general distribution method, 
and the generalised inspection algorithms, achieves only correspond-
ing efficiency percentages of 40% and 33%. Pictorial results are not 
shown here, instead they are produced following the work described in 
Chapter 4.

There are a number of ways for improving the system performance. 
Firstly, the scanning could be conducted at every other scan-line reduc-
ing the search by a factor of two. This will naturally affect the degree 
of accuracy, and can only be attempted in the "installed” situation by 
observing the resulting acceptance and rejection rates. Secondly, given 
a conveyor belt system, the host transputer’s accept or reject decision 
may not be immediately required, and the transputers could be em-
ployed to perform more stringent checks on the labels, such as those 
that will be described in Chapter 4. Thirdly, should the production-
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Label Type Image Size Check Area Average/Label Labels/Sec
Rectangular 256x256 60x110 0.514 1.9

128x128 30x60 0.160 6.3
Oval 256x256 95x155 0.487 2.1

128x128 40x80 0.144 6.9
Acute-angled 256x256 30x125 0.535 1.9

128x128 30x60 0.170 5.9

Table 3.3: Results for label inspection performed on a single 
transputer

Label Type Image Size Check Area Average/Label Labels/Sec
Rectangular 256x256 60x110 0.432 (30%) 2.3

128x128 30x60 0.111 (36%) 9.0
Oval n/a n/a n/a n/a
Acute-angled 256x256 30x125 0.382 (35%) 2.6

128x128 30x60 0.097 (44%) 10.3

Table 3.4: Results for the fle x ib le  2 x 2  array of transputers

Label Type Image Size Check Area Average/Label Labels/Sec
Rectangular 256x256 60x110 0.214 (60%) 4.7

128x128 30x60 0.054 (74%) 18.5
Oval 256x256 95x155 0.199 (61%) 5.0

128x128 40x80 0.049 (73%) 20.4
Acute-angled 256x256 30x125 0.239 (56%) 4.2

128x128 30x60 0.061 (70%) 16.4

Table 3.5: Results for the cu stom ised  configuration of transput-
ers
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line speed be able to supply larger numbers of labels past the system 
than what it is currently able to detect, then a number of customised 
systems could be implemented in parallel.

3.6 Summary and Conclusions

In this chapter, a message-passing scheme, namely the forward-feed 
distribution scheme, suitable for data distribution and collection in a 
regular SIMD array of transputers was presented. Furthermore, the dis-
tribution and collection mechanism was analysed to provide equations 
for determining vital performance-related statistics. The reverse-feed 
distribution scheme was also introduced as the favoured method.

Naturally, alternative methods of controlled message-routing exist. This 
may vary in the manner the data is packaged or passed between source 
and destination. For example, the data may be passed in alternative 
formats, e.g. as complete sub-image blocks, which would reduce the 
number of link communications, but increase the latency. This method 
has been implemented and used during this research work, for exam-
ple for MIMD processing of the object detection investigation in Sec-
tion 6.3. In fact it has also been used for the customised network in 
this chapter. When using small numbers of transputers, little differ-
ence with other efficient methods can be observed. The type of anal-
ysis presented in this chapter could simply have been reproduced for 
this method too. However, the point that the control-driven method is 
completely analysable, is already made, and a repetition of similar work 
would have been an unnecessary step and a waste of precious space.

The data may also be routed differently. Two mechanisms of faster 
source to destination addressing are as follows. Firstly, shortest path 
addressing methods can be used for routing data across the transputer 
arrays (by establishing wrap-around communications). This is most 
efficient when using large numbers of processors, and is also of ben-
efit to complement a system where inter-processor communication is 
necessary. As such, it is not quite as important (for low-level image 
processing) on a SIMD array as it is for a MIMD system, where it 
might even prove obligatory. Secondly, to increase the bandwidth of 
the message-routing algorithm, it may be possible to use the extra 
links on the controller to connect to more distribution and collection 
points on the network. (This could be viewed as a very simple but 
alternative version of a shortest path method.) The scheme will at best 
be limited to three connections to the network for a transputer system, 
and reduce the communication costs by approximately a factor of 3.
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The implementation would require special code at the gateway proces-
sors in the network. However, an example of where the use of the extra 
links will not be possible is demonstrated in the MATCH system in 
Chapter 6, where there simply are not any free links available on the 
controller processor. Nevertheless, this option will be returned to later 
as a useful scheme in other configurations.

The routing method presented in this chapter will be used as a com-
munication tool for all control-driven investigations in all future work 
in this thesis. The use of the scheme was demonstrated and compared 
against a customised routing method with application to label inspec-
tion. It will be employed again in Chapter 4 for the implementation of 
the Sobel operator and the Hough transform, and in Chapter 6 for the 
implementation of the Canny operator.

Also presented in this chapter were a brief review of the field of label 
inspection and a study into the feasibility of the use of a cheap, afford-
able system with a high processing rate of inspection. Although the 
customised system described has room for improvement, for example 
by using more stringent inspection tests, it also has verified that under 
assumed conditions it can deliver a realistic real-time inspection rate 
using significantly larger label images than, say, [Dil82, Yam83].

Unfortunately, the investigation has also shown that the communica-
tions rate can prove to be a major bottleneck. This is specially so in 
the generalised network because of its flexible distribution and collec-
tion strategy which nevertheless is necessary when the system array size 
is expected to increase, and software and communications alterations 
are to be avoided. The issue of communication as a principal problem 
in the use of transputers will be returned to at a later stage.

In general summary of the latter sections of this chapter, to illustrate 
the ideas on mapping and communications for low-level image process-
ing operations, a real problem in automatic inspection was considered 
to allow the evaluation of real-time problems in mapping and commu-
nication. The solutions were trivial and crude, and they showed that 
they limit the expansion of the system since they are not easily di-
visible across multiple processors. Therefore, more isotropic solutions 
where every processor would run the same code (geometric parallelism) 
would be preferable, unless a very dedicated, customised MIMD ap-
proach more aggressive than that presented here can be employed. A 
more extensive solution, with a high potential for performing in real-
time in inspecting labels, is presented in Chapter 4 where geometric 
parallelism is fully exercised.
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Chapter 4

Parallel Realisations of the 
Hough Transform

4.1 Introduction

This chapter continues the work from Chapter 3 by considering an al-
together different approach to g e o m e tric  p a ra lle lis m , namely d e m a n d -  

d r iv e n  task  f a r m  or f a r m  p a ra lle lis m . Following a short discussion of the 
characteristics of this scheme, the method will be compared against the 
c o n tro l-d r iv e n  approach in terms of efficiency. The Sobel operation and 
the sub-image Hough transform will be used as benchmarks. In fact, 
a section dedicated to the sub-image Hough transform will portray its 
significance as an important tool for a parallelised edge segmentation 
technique, and as a demonstration of this, the sub-image Hough trans-
form will be used for a more sophisticated approach to the problem of 
label inspection. Ways of improving the performance of the farm will 
be suggested.

4.2 The Task Farm

The demand-driven processor farm model was originally proposed by 
May and Shepherd [MS87] for a graphical representation of the Man-
delbrot set, based on the general theory of the task queue model. The 
demand-driven model of parallelism is identical to the control-driven 
model in so far as each processor performs the same sequence of al-
gorithms on the data, and that the (image) data is again sub-divided 
into equal-sized data segments. However, the data is partitioned into a 
significantly larger number of (small) data segments than the number
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of processors in the network would suggest. This implies that a higher 
degree of communications is involved in the distribution and allocation 
of the task data. Described simply, the processor farm model consists of 
a farmer (master) processor which conducts the proceedings by making 
available the aforementioned task-data segments to a number of worker 
(slave) processors which then actually do the work. The farmer proces-
sor communicates tasks to the farm as and when necessary and collects 
results data as and when they are produced. This can happen in many 
ways, three of which are described here in increasing order of efficiency:

• Each slave processor sends a request to the master processor for a 
new task, which it returns upon completion of the computation, 
and follows it with a request for the next task,

• Each slave processor sends a request to the master processor for 
a new task, but uses a cache mechanism to buffer an extra work 
packet. When it finishes work on the first work packet, it sends 
a new request for more work and continues by working on the 
buffered data packet. This allows an overlap of computation with 
communication,

• Communications are reduced by scrapping the request access of 
the slave processors. Instead, each slave processor functions by 
simply accepting work when its own buffer is empty. Thus, as 
in the previous case, it always works on one task while it holds 
another ready in its buffer. While it is busy as such, it passes any 
incoming data packets to its neighbouring processor via a routing 
mechanism. The system is kept tightly balanced by the master 
processor by only supplying enough work to have every processor 
busy and fully buffered with work. Thus, as soon as it receives 
some results, it sends another work packet to the network which 
will be automatically passed around until it reaches an empty 
buffer.

The Mandelbrot example in [MS87] is CPU intensive and requires lim-
ited communications, thus no buffers are used in the implementation. 
For the tasks considered in this work, the latter of the three methods 
was found the most efficient, and its actions are depicted in Figure 4.1. 
The linear topology is the most popular configuration used for farm 
parallelism, and is suitable for algorithms with a relatively small com-
munications overhead. Suggestions for improvements on this are pro-
vided later in this chapter. Figure 4.1 shows a simplified breakdown 
of the tasks within the master and the nodes. The master processor,
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Figure 4.1: A  linear processor farm and some of its major 
processes.

which is both the fountain-head of data packets and the reservoir of 
processed results, runs three major processes operating in parallel,

• a process which breaks up the data space into the desired parti-
tions and sends them to the farm load-balancer process,

• the load-balancer process which hands out the image-data par-
titions to fill up the network, and then continues to supply the 
network with more data partitions when results are returned to 
it. These results are passed on to the "gatherer” process as they 
arrive,

• a "gatherer” process which receives results data from the network 
via the load-balancer, and gathers them into the appropriate for-
mat defined by the application. For example if each result packet 
is an image partition, this process would map it into its spatial 
position.

Data routing takes place as tasks enter the farm network. The router on 
each node checks the local buffer to see if it will be able to accept further 
work. If so, the work packet is buffered and used by the processor when 
the CPU becomes free, otherwise the router passes the data to the 
next processor along in the chain. Therefore, a number of concurrent 
activities take place on a farm processor, •

• forward to local buffer or to next processer in the chain, the next 
work packet depending on the status of the local buffer (feed
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router),

• perform user application using the next available data packet. 
When finished, read the next packet of work from the buffer,

• accept results from the local computation process, and also receive 
results from processors further down the chain (bleed router). 
These are input using the PRI ALT construct, which monitors 
the incoming link channel and the local processor channel with 
decreasing priority. The results are directed up the chain towards 
the master processor.

All inter-processor routing is performed at high priority to avoid proces-
sor idleness across the farm. Note that all the tasks may be processed 
and returned from the farm in any order, and that there is no inter-task 
communication.

The above approach is that used for all the relevant work in this the-
sis. The nature of the approach, its performance, and the possibilities 
regarding its improvement will be discussed later in this chapter. For 
a mathematical modelling of the processor farm the reader is referred 
to [TD90]. In the next section, the sub-image Hough transform will 
be discussed. It will then be implemented in Section 4.4 on both the 
processor farm and the generalised array of transputers from Chapter 3.

4.3 The Sub-Image Hough Transform

The (p, 6) Hough transform which was introduced in Section 2.2.3 was 
said to be better than the (m ,c) (gradient, intercept) method because 
it is bounded: the angle 6 can only vary from 0 to 2ir and p can only 
vary from 0 to half the diagonal width of the image (assuming the ori-
gin is positioned at the centre of the image). The (m ,c) transform is 
unbounded because the gradient can vary from 0 to oo and the inter-
cept can be indeterminate. The (p, 0) Hough transform is most often 
implemented using the following sequence of operations,

1. Detect edges using an edge detector such as the Sobel or Canny 
which provides edge direction data,

2. Threshold edges from the background,

3. For each edge pixel compute the normal and angle, and increment 
accumulator space at this location,
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4. Search accumulator space for all peaks,

5. Back project for each peak into the image and keep portions of 
straight line segments that correspond to edge pixels.

In most cases, the Hough transform is used to determine all candidate 
straight lines over the whole image, i.e. all the edge pixels in the im-
age contribute to one accumulator space. Candidate straight lines are 
detected as peaks in the accumulator space that specify the (p, 9) pa-
rameters. Back projection is then used to determine the parts of the 
lines supported by edge pixels in close proximity to the lines in the im-
age. A straight line will be hypothesised as occurring across the whole 
image as it will be unbounded by end points. However, only part or 
parts of this line will occur in the image. It is relatively easy to detect 
long straight lines. Short lines are detected with more difficulty because 
these produce low amplitude peaks in the accumulator space which can 
be masked by long lines with similar parameters (and therefore close by 
in the image). Furthermore, the accumulator space can be large. For 
example, assuming a 1° resolution for angle and a 1 pixel resolution 
for the normal, for an image size of 256x256 the accumulator would 
be 181x360. Whilst this is not a significant amount of memory, it re-
quires much searching to find the peaks as there may be many straight 
lines in an image. In addition, the Hough transform will not work if 
the image predominantly contains curved edges, as each curved edge 
will not generate a dominant peak in accumulator space. The normal 
solution to this is to use a different formulation for each type of curve, 
for example, the circle and the ellipse. However these require increased 
dimensionality of the Hough space, novel parameterisations or multiple 
stage accumulation.

An alternative formulation of the Hough transform is now described to 
overcome some of the problems mentioned above. It will be referred to 
as the pQsHT transform, where the s signifies sub-images. Let the im-
age be divided up into sub-images, as suggested by [Dav90], e.g. 16x16 
pixels. The standard (p, 9) Hough transform is then performed on each 
sub-image and straight lines are detected. The accumulator resolution 
and size is chosen so as to detect curved edges as small straight line seg-
ments. The straight line segments are then processed at a later stage to 
detect long lines or circular arcs by linking them together. Using sub-
images, the processing is simplified and has the following advantages,

• only a small accumulator space is required,

• searching is simplified since only a small number of lines can be 
present in a sub-image,
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• curved edges are detected as approximations to straight lines,

• segmentation occurs between edges at large angles,

• sub-images with very few edge points can be ignored,

• processing on sub-images can be performed in parallel.

A small accumulator is feasible, since the number of possible orienta-
tions and positions of a line in each sub-image is restricted. Considering 
orientation, the best case resolution will be 1 pixel over the width (or 
length) of the sub-image. Therefore, the minimum resolvable angle, <j>, 
will be:

< t>
— tan *(

length1
(4.1)

Hence, for a sub-image of 16x16 pixels, the minimum resolvable angle 
will be 3.58°, which results in ||| intervals. The minimum resolvable 
radius, g, will be 1 pixel and the longest value of g will be from the 
centre of the sub-image to any one of the corners. For a 16x16 pixel 
sub-image this will be 11.31. The accumulator will then be, to the 
nearest integer, 101x12 bins in size.

Searching the accumulator is simplified since there are few lines present 
in each sub-image and hence few distinct peaks in the accumulator. The 
algorithm to find the peaks is shown below:

1. Scan the accumulator for the largest value.

2. Store away parameters.

3. Delete peak point and surrounding area.

4. Repeat until number of peaks detected =  Max-Peaks

The algorithm repeatedly looks for the largest peak in the accumulator. 
When this is found, the parameters are stored and the peak is deleted. 
The surrounding region in the accumulator is also deleted as a peak will 
normally be part of a small region, so accumulator values nearby are 
part of the peak (please also see Figure 2.4). Max-Peaks is normally 
empirically set to the expected number of lines per sub-image plus an 
offset, for example 3 + 7  where 3 is the expected number of lines and 
7 is the offset that allows for false peaks (in case the third stage of the 
algorithm fails to remove the peak completely).
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Figure 4.2: Edge region obtained from an image after Sobel 
edge detection and thresholding. The straight line approxi-
mation obtained from the Hough transform is shown in bold.

For the implementation of this algorithm a simple edge detector can be 
used, for instance the Sobel edge detector from which the orientation 
and magnitude information for each edge pixel can be determined, and 
it remains a reasonably inexpensive method. In addition, after thresh-
olding, edges are normally represented by regions more than one pixel 
thick. This information allows curved edges to be detected more easily, 
as a straight line can be contained in the region generated by a curved 
edge as shown in Figure 4.2. These thick edges are often seen as a dis-
advantage of using the Sobel operator, but this is turned to advantage 
in this case, and will be seen as an important factor for inspecting oval 
and circular labels.

The output of the pQsHT formulation for an image is a set of straight 
line approximations (represented by their end points), which are exam-
ined and grouped for further analysis. Typical groupings are collinear, 
vertex, curved edge and proximity. Thus higher level features can be 
extracted from the data.

4.4 Implementation of the Parallel p Q s H T

The pOsHT was implemented using both the control-driven model of 
computation on an array of transputers, and the demand-driven model 
on a linear chain of transputers. Principally in both, the processes 
of edge detection, Hough transformation, and peak detection are per-
formed on each sub-image, and a list of lines local to the sub-image is 
formed. The master transputer in both computational models analyses 
all partial lists to form a more unified representation of the image. The 
determination of the number and size of sub-images will be discussed
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shortly.

4.4.1 Control-Driven Model

The image data is the image of the whole label and it is distributed in 
equal segment sizes, including the border information for each segment, 
amongst the available processors. This used the reverse-feed distribu-
tion mechanism of Chapter 3. Each processor, having applied the Sobel 
filter to its own local image partition, splits it into (further) sub-images 
and performs the pOsHT, followed by peak-detection. These latter op-
erations are performed on only those sub-images where the number of 
edge pixels exceeds a certain empirically-determined tolerance. Finally, 
each processor returns a list of all the lines found locally to the master 
transputer. This is illustrated in OCCAM pseudo-code in Figure 4.3.

PAR
—  Master Transputer 
PAR

... Send next image to processors 
SEQ

... Receive list of lines found in previous image

... Process list to formulate complete lines

... Analyse lines and decide to pass or reject label

—  In each processor in array 
SEQ

... Receive own local image partition including border edges 

... Perform Sobel on complete local image partition 
SEQ i =  1 FOR number.of.sub-images 

IF
(number of edge pixels) >  (pre-defined limit)

SEQ
... Perform pQsHT on sub-image i 
... Detect peaks, locate lines, and form line list 

(otherwise)
... line list is empty 

... Return list of lines found

Figure 4.3: Pseudo-OCCAM code showing the general format 
of the master and array processors for the inspection of labels.
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4.4.2 Demand-Driven Model

In this implementation, the controller splits the entire image into the 
required sub-images and makes them available to the farm as discussed 
earlier in this chapter. Each packet is sent, including enough border 
pixels, to comply with requirements of the Sobel and Hough opera-
tions. Initially, farm processors are required to perform the Sobel filter 
on their packets of data. Again, only if the number of edge pixels found 
in any packet exceed the aforementioned tolerance level will the pOsHT 
operation and peak-detection routines follow. Each processor then re-
turns a list of all lines found in each sub-image. See Figure 4.4 for an 
OCCAM pseudo-code outline of the overall operations of the master 
farmer and the worker slaves.

PAR
—  For each image on Master transputer 
SEQ

WHILE more.image.packets.available 
PAR

... Send next packet to farm when load allows 

... Receive list of lines as they arrive from farm 
... Analyse lines and decide to pass or reject label

—  In each processor in the farm 
PAR —  three main processes.

... Pass on line lists from other nodes, and local process 

... keep or pass incoming work depending on local workload 
SEQ

... Perform Sobel and count number of edge pixels 
IF

(number of edge pixels) >  (pre-defined limit)
SEQ

... Perform pOsHT on sub-image 

... Detect peaks, locate lines, and form line list 
(otherwise)

... line list is empty
... Send to local router the latest line-list

Figure 4.4: Pseudo-OCCAM code showing the general format 
of the master and farm slaves for the inspection of labels.
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4.4.3 Efficient Calculation of p

When calculating the corresponding value of p for each value assigned 
to 0, trigonometric functions can be dispensed with to save computation 
by employing the following scheme.

Given (gx,9y) as the local components of intensity at pixel co-ordinates 
(x, y ) on a feature line in an image, let (x0, t/o) be the foot of the normal 
p from the origin to that line. Please note, in this case the origin is 
taken as the centre of the sub-image, although this is not depicted as 
such in Figure 4.5. Also, the line may need to be produced, and this is 
depicted in the example in Figure 4.5. Then, it can be shown that,

gJL_yo_ (4.2)
ffx X0

(x -  x0)x0 +  (y -  yo)yo =  0 (4.3)

p =  J x l  +  yl (4.4)

Figure 4.5: Diagram shows parameters used in calculating p

Thus, solving for p with incurring costs of additions, multiplications, 
just one division, and a dominating square root,

__ XQx d "  V9y

P y/al +  9Ì

This is adopted after the technique introduced by Davies who uses the 
foot of the normal from the origin as a voting position in the param-
eter space [Dav90]. This technique in calculating p is computationally 
invaluable for the normal parameterisation as employed in this work. 
(An alternative approach could have been to allow each processor in 
the architecture to contain trigonometric look-up tables).
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One of the conclusions of Davies’s work on error analysis [Dav90] of the 
foot of the normal method, which is of great relevance to this work, is 
that the error in calculating p which arises due to edge detector errors, 
and to a greater degree to noise, is dependent on the distance of the 
line from the origin. Since the centre of the sub-image is the origin, the 
overall error is minimised, but not eliminated.

4.5. LABEL INSPECTION AND THE pOSHT

4.5 Label Inspection and the p Q s H T

The topic of label inspection was briefly considered in Section 3.3, and 
an ad hoc approach was outlined in Section 3.4 for the detection of 
geometric errors of label shape and position, such as shift from normal 
position, sticking at a tilted angle, tear and folding (Figure 3.5). In 
this study, these faults will be examined again using more sophisticated 
techniques, including the pOsHT approach to feature segmentation.

Two types of labels are considered: Rectangular and Oval. It was in-
ferred in earlier discussion that the optimum sub-image size will depend 
on the length of the lines that need to be detected. Since in the search 
for a rectangular label the aim is to detect long straight lines, a fairly 
large sub-image size was selected for this inspection. In direct contrast, 
a much smaller sub-image size was selected for the oval label inspec-
tion. For a label of this shape, the aim is to detect short, straight line 
segments within the curved edges as shown in Figure 4.2.

Consider the processing of each type of label in both the control and 
demand-driven models. The broken-up short or long line segments in 
each sub-image pertaining to the label itself or any other features in the 
image are available at the end of the processing for each image. This is 
stated to further emphasise the care needed in choosing the optimum 
sub-image size to ensure that more computation is performed locally, 
leaving less post-processing for the master transputer. On the other 
hand, if the processing of each image is so lengthy that the master can 
afford more line-list processing time before the network is ready for the 
next image to be sent, then this introduces another feature to consider 
when implementing the complete system.

Empirically, the test images showed that given a 256x256 image, the 
following sub-image sizes should be used to achieve the most accurate, 
rather than the most efficient, results,

Rectangular Label .........  64 x 64
Oval Label .........  16 x 16
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However, when alternative image sizes were tried for each label, the 
difference in efficiency was marginal, whereas the difference in accuracy 
was much more significant.

4.6 Processing and Inspection Results

The hardware configuration for both of the programming models con-
sisted of a T800-20MHz host on a B004 board interfacing with a PC- 
AT, and four T414-20MHz transputer modules with 1MB RAM each, 
as network processors. More details are provided in Appendix A. The 
results for a single T414 implementation were produced on a 12MHz 
T414 device. All timings are in milliseconds and embrace the time 
spent on communications where applicable.

4.6.1 Sobel Filtering

Initially, the Sobel filter is considered. For the control-driven model, 
the best implementation is a straight mapping of the image to the 
processors, allowing each processor to number-crunch its way across its 
own image partition. Each partition also includes border edges.

System
Configuration

Sobel
Filter

Single T414-12MHz 2616
Single T800-20MHz 1132
2x2 CD array 508
DD Farm (16x16) 1273
DD Farm (32x32) 492
DD Farm (64x64) 478

Table 4.1: Results for the Sobel operation on various configu-
rations. (CD=Control-Driven, DD=Demand-Driven)

Alternatively, in the demand-driven model, the image is split into a 
number of partitions much larger than the number of processors, al-
lowing each processor to perform the Sobel operation on a number of 
smaller packets. To deduce the nearest to the ideal sub-image size, 
16x16, 32x32, and 64x64 sub-image sizes were implemented. Note that 
the real image sizes communicated to processors needed to include the
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border pixels of the partition, resulting in 18x18, 34x34, and 66x66 
sub-image sizes. These results are shown in Table 4.1 including the 
sequential implementation times for a single T414 and a single T800 
processor.

The Sobel filter in this implementation uses the response provided by 
the absolute magnitude of the horizontal and vertical gradients, and the 
processing includes the time spent on thresholding each resultant pixel. 
Note that due to the large number of packets in the 16x16 sub-image 
case, the communication load is greatly increased and four T414s can 
not match the performance of one T800 or the other network cases. 
This changes drastically when the sub-image sizes are increased, and 
therefore much of the communications is overlapped with the compu-
tation in the demand-driven model.

4.6.2 p O s H T  Processing

Table 4.2 and Table 4.3 show the total processing time in milliseconds, 
for the inspection of rectangular and oval labels on different transputer 
configurations using the aforementioned image and sub-image sizes. 
The totals are for the stages consisting of Sobel edge detection (in-
cluding thresholding), the pOsHT transform, and the complete process 
of peak detection and line-list formation.

System
Configuration

Rectangular
Label

Single T414-12MHz 18629
Single T800-20MHz 5815
Control-Driven Array 3428
Demand-Driven Farm 2575

Table 4.2: Results for the inspection of the rectangular label 
test-image using 64x64 sub-images on different configurations.

The pictorial results are shown in Figures 4.6 and 4.7. The images in 
the top-right of each diagram show for each label the pOsHT transfor-
mation, using the corresponding sub-image sizes.
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Figure 4.6: (top-left) Original image marked with possible cor-
ner points, (top-right) After p O s H T  transformation on net-
work with 64x64 sub-images, (bottom-left) After line proxim-
ity analysis, (bottom-right) The final acceptable four bound-
ary lines providing the outline of label and its approximate 
corner points.
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Figure 4.7: (top-left) Original image marked with possible cen-
tres, (top-right) After p O s H T  transformation on network with 
16x16 sub-images, (bottom-left) After aspect ratio transfor-
mation, (bottom-right) Normals of all the lines with peaks at 
crossing points giving possible centres (Shown with white dots 
- cf. with top-left)
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System
Configuration

Oval
Label

Single T414-12MHz 24430
Single T800-20MHz 6711
Control-Driven Array 4520
Demand-Driven Farm 2874

Table 4.3: Results for the inspection of the oval label test- 
image using 16x16 sub-images on different configurations.

4.6.3 Notes on the Execution Times

Except for the sequential implementations, all columns of results in-
clude the time spent on the distribution of the image and collection of 
results, i.e. all conceivable link communications.

The execution time of the pOsHT is directly dependent on the number 
of edge features offered after the application of the Sobel edge detector; 
this is clearly demonstrated by the timing differences for the rectan-
gular and oval test images. These test images were found to produce 
approximately 7800 and 12300 edge pixels respectively. This is further 
demonstrated in Figure 4.8 which shows the productive sub-images for 
the oval test-image on which processing would take place. However, 
this only reduces the computational load in the system, without the 
communication load being affected (In fact the communication load 
is affected marginally since an empty sub-image results in an almost 
empty line-list data packet containing header information only. But for 
the relatively small message sizes in this application it can be regarded 
as insignificant).

The pOsHT imposes a local Hough space for each sub-image which 
is released as soon as processing of the sub-image is completed. The 
ramifications of this are as follows. Since the Hough space is to be 
released, then the process of peak-detection must be performed imme-
diately. This makes the measurement of the processing time for the 
separate stages of the pOsHT rather difficult, hence only totals are 
provided here. However, it means that almost the complete process 
has been parallelised and performed locally. There is another clear 
advantage. The regular Hough transform requires a permanent Hough 
space. Consider the parallel implementation of the regular Hough trans-
form on a control-driven array. The Hough space could be distributed 
amongst the processors, with the processors communicating to update
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each others Hough spaces. In the demand-driven model, they could 
communicate with the one and only Hough space as held by the mas-
ter. Either way, they introduce extra communications and therefore 
major delays in the processing. Clearly, this problem is non-existent in 
the pOsHT implementation and so the execution times presented pro-
vide a very reliable comparison of control-driven and demand-driven 
network models.

Figure 4.8: Diagram shows the sub-image areas of oval image 
with salient feature points on which operations take place.

The results display a superior performance by the demand-driven farm 
model. In this model, the stages involving the distribution, process-
ing and collection of data are concurrent and overlapped, whereas they 
occur consecutively in the control-driven model thus reducing its effi-
ciency (please also see Section 3.2.1).

Also, the performance of a single T800 should be noted as it manages 
to put in a remarkable performance, especially through the use of its 
64-bit floating-point co-processor.

More discussion on the comparison of the control-driven and demand- 
driven models will be presented in Chapter 6, where it will be empha-
sised again that one should determine the use of one scheme or the other 
depending on the nature of the problem at hand. More immediately 
and appropriately, the demand-driven network will be re-visited in this 
chapter to enhance the performance of the label inspection process by 
employing 25MHz T800 processors as the farm slaves.
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4.7 Final Processing and Inspection

Upon completion of the pQsHT transformation and the return of the 
results, a list of all the lines in the image, representing their end-points, 
is available on the master transputer in either network. To follow, the 
master transputer starts the network with the image of the next label, 
while it performs, sequentially, the final stage of the inspection on the 
current label. This final stage requires a limited amount of processing 
and was found unsuitable for implementation on a network due to the 
cost/efficiency ratio. It performs fast enough on the floating-point T800 
(master) transputer, and leaves the network free for work on the next 
label. The steps involved in the final processing stage for each label are 
now considered.

4.7.1 Rectangular Labels

The list of lines is inspected and, using the addresses of the lines’ start-
ing and ending co-ordinates, they are linked to form longer, more com-
plete lines. This is in effect a simple run-of-the-mill neighbourhood- 
proximity phase, which connects together those lines with similar ori-
entation and end-points in close neighbourhood of each other. For a 
rectangular label the processing is simplified since a good label should 
have produced lines in certain orientations (with a degree of tolerance) 
only, and lines with all other orientations can be discarded on first en-
counter. (In fact they are retained, but unlinked from the line list. This 
is reflected in Figure 4.6 where no line-linking is apparent on the few 
non-perpendicular and non-horizontal lines). Then, consider that any 
line A is under examination for connection to any other line B; then to 
allow them to be joined, the following criteria have to be met,

A B S (xea -  x ab) < T AN D  ABS(yea -  ysb) <  T  (4.6) 

A B S (ta n -\ - -  ~  V- ) -  tan~\ Veb ~  Vsb)) < G (4.7)
*£ea ^sa *^eb * ŝb

where, (xsa,y sa) is starting pixel co-ordinates of line A, (xea,yea) is the 
ending pixel co-ordinates of line A, (xsb,ysb) is the starting pixel co-
ordinates of line B, (xeb,yeb) is the ending pixel co-ordinates of line B, 
G is the gradient proximity tolerance, and T is the pixel neighbourhood 
tolerance.

That is, the end co-ordinates of line A must be in the close neighbour-
hood of the starting co-ordinates of line B, and both lines must have a
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similar gradient. In effect only the B lines with starting co-ordinates in 
the pixel neighbourhood area of xea ±  T, yea ±  T  are inspected. When 
performing the above equations, provision is made for lines in opposite 
direction.

These operations provide a new, shorter, list of lines. This new list is 
further inspected, and the two longest horizontal and the two longest 
vertical lines falling within respective tolerances are selected. This last 
phase may need to be adapted for particular labels. These four lines 
are accepted as the boundary outline of the label if their starting and 
ending co-ordinates are found to satisfy the pre-determined thresholds 
(Figure 4.6). In addition, other features such as the vertices may be 
obtained. The boundary and the position of the label are then matched 
against a known model label, resulting in a fail or pass decision.

4.7.2 Oval Labels

Oval labels are approached in a slightly different manner. Most signif-
icantly, the line list is considerably larger due to the smaller sub-image 
size (which breaks up the curved lines into numerous small straight 
lines).

Initially, all horizontal and vertical lines are removed since, in principle, 
curved lines are being sought and no horizontal or vertical lines need 
be present. This also reduces the cost of the computation that follows. 
Next, using a priori knowledge, an aspect ratio is applied to the line list 
resulting in the image shown in the bottom-left of Figure 4.7. (However, 
for this example the horizontal and vertical lines are kept for a more 
aesthetic image.)

A neighbourhood-proximity inspection similar to that described above 
is performed to eliminate from the list any lines which have no other 
line in their neighbourhood. This is then followed by mapping the 
path of the normal to the centre of each of the lines (arc segments) 
remaining in the list, as shown in Figure 4.7 (Bottom Right). The 
image holding the normal paths is smoothed using a low pass filter 
and the three highest crossing-point peaks are considered as possible 
centres, as marked in Figure 4.7 (Bottom-Right and Top-Left). Please 
note that these centres are all three heavily concentrated about the 
centre and not quite resolved in the diagrams. Any one of these that, 
within a pre-set threshold, comes closest to the position of the centre of 
the model label, is accepted as the real centre, and thus the label may be 
passed or failed. Although this is not attempted in this implementation, 
one approach to tackle this problem could consist of fitting a model
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template on each inspected label and shifting it about to find the best 
possible match against the extracted centre points. No faulty labels 
would give a close enough centre position following these calculations. 
The technique described is a Hough-type approach in image space.

Another method to locate the centre of any set of lines forming a circle 
is that suggested by Thomas [TC89]. The method estimates the centre 
and radius of a circular arc by minimising the least mean-square errors 
between the given set of data points and the curve. However, this 
method is very sensitive and gives a centre for any good length of 
an arc, which in the case of a partly torn label would be disastrous. 
Nevertheless, since it is a fast process, it could be used to initially 
estimate a centre for the label. Then, the address of the centre can be 
employed to eliminate all the lines in its local and outer neighbourhood 
before performing, on the reduced line list set, the adopted process of 
peak crossing points calculation as described above. Davies [Dav90] 
also describes enhancements to the Hough transform for faster and 
more accurate circle centre location.

The final inspection processing for both types of labels involves numer-
ous floating-point operations especially for the centre finding algorithm 
on the oval label. This explains the reason for the lengthy execution 
time for the T414 host which, unlike the T800, does not have an on-chip 
floating-point unit. The timings are shown in milliseconds in Table 4.4.

Configuration Rect. Label Oval Label
T414-12MHz HOST 99 841
T800-20MHz HOST 33 91

Table 4.4: Results for final stage processing of both label types

The figures shown in the various tables are representative of tests car-
ried out on three different test label images for each type of label. The 
inspection rate was found reliable when applied to a number of perfect 
and grossly faulty labels. The sensitivity of the fault detection has not 
been pursued. The advantages of the more sophisticated techniques 
used in this chapter for the inspection of the labels are that the po-
sitioning of the label in the image is now less critical, and also that 
the integrity of the whole label is examined. For example, by finding 
the lines describing the rectangular label, the whole borderline of the 
complete label has been checked for rips or folds.
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4.8 Summary and Conclusions

In this chapter the model of the demand-driven farm as an approach 
to geometric parallelism was introduced and briefly investigated. It is 
because a potentially higher degree of communications is involved in 
the distribution, allocation, and collection of tasks that the processor 
farm model will only be beneficial as a solution to the class of vision 
problems with a high computation to communication ratio. Yet, since 
no inter-processor communication exists, the scheme is unlikely to be 
suitable for high-level vision. The approach is also highly unlikely to 
be implementable on a fine-grain SIMD array, such as the DAP or 
the CLIP4. Multi-processor computers with nodes capable of intensive 
local computations are the most likely candidates for this method, such 
as an appropriate configuration of transputers performing parallel tasks 
on different partitions of data.

Although adequate for the purposes of this thesis, the farming tech-
niques presented can be transformed into more sophisticated schemes. 
For example, in this implementation, a data packet travels until it finds 
an idle processor (or in fact an empty buffer on the next processor). 
This means that during the initial load where every processor is com-
pletely idle, the processors further down the chain may not even receive 
any data packets if the computation requirements per packet are very 
small. It would be more efficient to distribute the load evenly by specif-
ically addressing data packets to all the network processors during the 
initialisation stage. Then, during system run, the load would be bal-
anced as before with the hungriest workers taking their pick as and 
when they are ready.

The use of farm parallelism is very much dependent on the nature of 
the problem at hand. This was examined in comparison to the control- 
driven network by considering a highly parallel approach to the (p, 9) 
Hough transform in which the total image is decomposed into smaller 
sub-images with local Hough spaces. Thus the problem is suitable 
for parallel implementation on most parallel architectures, be they the 
IUA, the PC WARP or transputer-based. This approach was named 
the pOsHT transform, for which favourable results were obtained on 
T414-based array and farm networks.

Recently, through the availability of more T800-25MHz transputers, 
the performances of both the Sobel and the pOsHT were re-examined 
for a longer, more powerful linear farm chain. For all the results that 
will follow, percentages showing the efficiency of the increasing farm 
size against a single processor farm will be shown.
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No. of Sobel Sobel Sobel
Processors 16x16 32x32 64x64

1 910 (100%) 884 (100%) 888 (100%)
2 467 (97%) 452 (98%) 473 (94%)
3 335 (91%) 317 (93%) 366 (81%)
4 315 (72%) 271 (82%) 305 (73%)
5 315 (57%) 265 (67%) 285 (62%)
6 314 (48%) 268 (55%) 285 (52%)
7 314 (41%) 270 (47%) 286 (44%)
8 314 (36%) 270 (41%) 286 (39%)

Table 4.5: Sobel results using the Demand-Driven model on 
T800 processor network with 256x256 images

The results for the Sobel operator for varying work packet sizes in 
Table 4.5 indicate that the no real gains in efficiency can be expected 
after about the fourth or fifth processor in the farm. This may be 
attributed to the computation to communication ratio, such that the 
processors nearer the master are ready to accept more work, and they 
leave trailing transputers idle. Note that the 32x32 data packet gives 
the most cost-effective computation to communication ratio. These 
performances will be extended further in Chapter 6.

Table 4.6 and Figure 4.9 show the performance of the pOsHT on T800- 
25MHz processors for the rectangular and oval label images using cor-
responding sub-image sizes of 64x64 and 16x16. Performance efficiency 
percentages are also shown in Table 4.6 which denote the speed-up 
against a single transputer farm implementation.

The higher number of feature points in the oval label image result in 
a higher computational load than in the rectangular label image. This 
combines with the extra communications due to the larger number of 
sub-images to cause a slower performance rate for the oval label when 
there are up to two processors in the farm network. As more processors 
are added, the computational load of the oval label spreads out more 
evenly, and a slightly better performance is achieved.

Although the results in Table 4.6 indicate that given more transputers 
an inspection rate of 1-2 labels per second could be achieved, a more 
efficient utilisation of larger numbers of processors for a demand-driven 
farm network would be to configure them in the forms shown in Fig-
ure 4.10. The bi-linear and tri-linear farms can be employed to increase
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No. of 
Processors

Rectangular
(64x64)

Oval
(16x16)

1 3989 (100%) 4121 (100%)
2 2058 (97%) 2117 (97%)
3 1510 (88%) 1480 (93%)
4 1191 (84%) 1162 (89%)
5 1123 (71%) 1068 (77%)
6 1017 (65%) 940 (73%)
7 927 (61%) 862 (68%)
8 862 (58%) 798 (65%)

Table 4.6: pOsHT results using the Demand-Driven model on 
T800 processor networks for rectangular and oval images

throughput by a factor of two and three respectively. They will be used 
later to examine possible improvements to the implementation of the 
Canny edge detection process as part of the motion analysis system 
presented in Chapter 6.

Also, by employing two modules of the systems described here, the 
throughput of an overall label inspection system of 4-5 labels per second 
could be achieved which is an adequate rate for performance in a real-
time situation.

One other factor directly influencing the pdsHT execution time is the 
number of edge points, and a less busy image would greatly reduce 
the amount of processing involved as depicted in Figure 4.8. This is 
corroborated by [ES89], who have implemented the standard Hough 
transform on a customised-pipeline transputer network with eight T800 
processors. For 1000 edge points in a 256x256 test image, they achieve 
a total processing time of 159 milliseconds for eight transputers. If 
the execution timings for the complete processing of rectangular and 
oval labels were to be scaled down, an average comparable timing for 
1000 edge points of 87 milliseconds would be obtained. This shows an 
approximate improvement by 50% for this implementation. In their 
implementation the parameter space is divided amongst the transput-
ers, and communications are necessary to update the appropriate area 
of the Hough space held by other transputers. This results in consider-
able programming headaches in comparison to the easily programmed 
pOsHT implementation.

Most other parallel implementations of the Hough transform are on
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Figure 4.9: Processing times in milliseconds for corresponding 
number of processors.

SIMD arrays of processors. Rosenfeld et. al. [ROH88] compare several 
of many alternative implementations for simple 1-bit PE meshes, with 
techniques such as the assignment of each different 6 to each PE to 
speed-up the processing. All the techniques naturally involve massive 
communication loads for such fine-grain machines. For just over 1600 
pixels, Hough transformation timings of approximately 130, 920, and 
180 milliseconds are reported for different algorithms on the GAPP 
and MPP processors. Scaling these down to 1000 edge points, approxi-
mate timings of 81, 575, and 113 milliseconds are obtained respectively. 
Bearing in mind that the programming of these algorithms is again very 
complex, only the best of their results is just slightly faster than the 
implementation presented here.

On the PC WARP systolic array (described in Section 2.3.7), each 
of the ten cells receives one-tenth of the Hough space, partitioned 
by 6 [DEH89]. The whole image flows through the PC WARP cells, 
and each cell increments its own partition of the Hough space only. At 
the end, the partitions are returned to the external host. A time of 
340 milliseconds is reported for a 180x512 image with almost 1000 edge
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Figure 4.10: (a) Bi-linear farm network, (b) Tri-linear farm 
network

pixels, which partitions as 18x512 segments for each PC WARP cell. 
This again is a far cry from the 87 millisecond timing achieved here 
albeit that they use a slightly larger image.

Also presented in this chapter were some robust techniques in han-
dling the results of the pOsHT processing to inspect the integrity of 
rectangular and oval labels.

In summary, to find image line segments using the pOsHT on trans-
puters, the following factors (stated almost in order of contemplation) 
must be considered to determine the best optimised configuration:

• the size of the input image (I x I),

• the most commonly occuring length of lines under inspection,

• the size of the sub-image (S x S),

• the number of processors to be used,

• the type of geometric parallelism to be used.

The overall conclusion for this chapter is that in implementing a medium- 
level vision technique in different ways on two typical, SIMD trans-
puter networks, the whole process has been pre-occupied with different
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aspects of communication, as would be the case in any distributed 
system. However, for a transputer network to be a viable bet in a criti-
cally real-time situation, faster communication links would be required 
if not too much effort is to be directed at reducing communication 
costs and overheads (which may in itself prove to be futile and also 
result in unnecessary real costs). Still, for very computationally bound 
medium-level vision tasks, the transputer has the potential of real-time 
performance.
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Chapter 5

Dynamic Scene Analysis

5.1 Introduction

Dynamic scene analysis or Computer Analysis of Time Varying Images 
(CATVI) is the process of analysing a sequence of images captured at 
various frame times with the purpose of making inferences about the 
structure and movement of the observed world. Major uses have been 
found in diverse applications such as,

• Security Surveillance: For example, [ERG91] present a robust 
system for correctly classifying the genuine and false detection of 
intruders, be they human or rabbit, in an outdoor scene.

• Meteorology: The application of cloud tracking, pollution and 
fire detection have been investigated from aerial and satellite im-
age sequences [MA78, BSI90].

• Transport: Two application areas are traffic monitoring [AD90] 
and autonomously guided vehicles (AGV) [THKS88, SH88].

• Medical: Experimental studies have been carried out on cell 
motion and heart motion [YIT80].

• Civil Engineering: Study of displacement in large suspended 
structures, such as the Humber Bridge can be found in [STD90].

• Industrial: Dynamic robot vision [EWM87] and dynamic mon-
itoring of industrial processes [Nag83] are increasingly popular 
areas of research. •

• Behavioural Studies: Study of animal feeding patterns and 
training of athletes have been reported [Nag83].
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Two principle uses of dynamic scene analysis are in the tracking and 
identification of discrete objects moving through the scene, and in esti-
mating the ego-motion of the camera. Tracking discrete objects within 
a scene is more commonly performed with a stationary sensor, and this 
constraint can considerably simplify the task [ERG91]. The research 
described here forms part of the front end (low and intermediate level 
processing) to a vision system for use with an autonomous guided ve-
hicle (AGV) that would be fitted with a camera. Thus, the aims of 
this investigation are twofold. The first is to provide visual input to 
the vehicle control system to aid location and navigation. This would 
place the rest of the vision system in a position to consider depth, 
ego-motion, and further analysis towards 3D scene understanding. The 
complete system is targeted towards operating in man-made environ-
ments, matching primitive image features with a geometric model-based 
representation of the world [EWM87, B091]. The second aim is to 
continue the investigations of the earlier chapters on static image pro-
cessing, and consider new approaches in dealing with a dynamic image 
processing problem using transputer-based configurations. Although 
the investigation here is not a fully-fledged high-level vision problem, 
nevertheless the solutions will be seen to tread the paths of MIMD 
processing.

Whilst the data rates from most image sensors, e.g. TV cameras, is 
very high (25 frames per second), it is not always necessary to process 
every frame, and a more important characteristic is the overall latency 
of the processing, which determines the time lag between acquiring the 
image and being able to act on the information it contains. Part of the 
requirement for vision comes from the need to augment other location- 
based information, e.g. odometry, which tends to accumulate errors 
over time, and results in increasing uncertainty in the position of the 
vehicle. Periodically, say once every few seconds, updating this infor-
mation by using visual landmarks can minimise this uncertainty. By 
extracting a number of features from a sequence of images, correspon-
dence between the features may be established to provide magnitude 
and direction of the flow of the detail in the scene. From this infor-
mation, the ego-motion parameters of the camera motion, depth and 
information about scene structure, can be deduced at a later stage in 
the information processing cycle (Figure 1.1).

The rest of this chapter is divided as follows. Initially, a review of the 
different techniques used in the detection and measurement of motion 
is outlined. Later on in the chapter, a breakdown of the motion analysis 
approach adopted (in this research) for tackling the problem of corre-
spondence will be presented. This will include a review and analysis of
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related work. In the next chapter, the motion analysis approach will 
be used in the definition of a parallel computational model for tracking 
image primitives. This will be followed by a parallel implementation 
on a network of transputers. The emphasis throughout this chapter, 
and the next, will be on the algorithmically independent nature of the 
parallel computational model.

5.1.1 Some Definitions

Visual motion perception is a complex perceptual process. Much re-
search has been directed towards understanding the psychology and 
reasoning used by biological vision systems in the analysis of motion 
to help establish specific goals for CATVI. For example, a housefly 
can track moving objects over a background identical in texture to the 
moving target, which thus renders the object indistinguishable in the 
absence of relative motion [RP80].

Ullman [U1179] and Marr [Mar80] both have provided a historical anal-
ysis and new insight in the field. In fact, together they have introduced, 
discussed, and at least touched upon, many topics that have since be-
come the subject of research by various scientists, and this review will 
repeatedly refer to their work. Ullman divides the problem of interpret-
ing visual motion into two parts: the correspondence problem and the 
3-D interpretation problem. He defines correspondence as the process 
that identifies elements in different views as representing the same ob-
ject at different times. Once the correspondence process is completed, 
the 2-D transformations in the object’s appearance may be interpreted 
to achieve a decomposition of the changing scene into objects. Hence, 
their 3D structure and motion may be recovered. This is termed as 
Structure from Motion. (As explained earlier, the area of research cov-
ered here is a parallel approach to the correspondence problem. The 
topic of Structure from Motion will only be briefly reviewed later on 
in this chapter and returned to in passing in the concluding chapter 
of this thesis). One major derivative of the theory of structure from 
motion is that of the rigidity assumption. This states that, given the 
general truth that most things in the world are locally rigid, then,

any set of elements undergoing a two-dimensional transforma-
tion which has a unique interpretation as a rigid body moving 
in space should be interpreted as such a body in motion.

In his subsequent work, Ullman [U1181] points out that the study of 
motion perception in biological systems, and computational studies on
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the interpretation of time-varying imagery, can complement each other 
by providing further insight into the principles and discoveries attained 
in each field.

Marr [Mar80] also viewed the psychological aspects of visual perception 
and conducted experiments in the analysis of the correspondence prob-
lem and structure from motion. The majority of his work was on the 
basis that the visual system uses information about direction alone to 
help analyse the visual field. He then outlined an algorithm for quickly 
detecting the sign of movement direction at the level of local edge seg-
ments. He applied this algorithm to segment independently moving 
surfaces. Marr also employed the term optical flow which he defined as,

the use of the retinal velocity field induced by motion of the 
observer to infer the three-dimensional structure of the visible 
surfaces around him.

Some other definitions will be encountered later in this chapter.

5.2 Motion Detection and Measurement

The essential factor in motion analysis is time. It is by deducing the 
changes which occurred in two instants in time that one can begin 
to interpret the motion in a scene. Therefore, given two consecutive 
image arrays Fi(x,y)  and Fi(x,y) ,  motion may be described in terms 
of a displacement vector field V (x , y, t) which is derived by establishing 
correspondence between points in the two image frames. The direction 
and magnitude of a vector in the vector field are the direction and 
physical displacement between corresponding points in the images, in 
other words Marr’s optical flow. The computation of this vector is a 
measurement of visual motion. There will be more on optical flow later.

The detection and measurement of motion will take on a varying degree 
of complexity if the scene is subject to one or more of the following 
conditions,

• there is a moving background,

• there is camera movement,

• there are random illumination changes

• there are multiple objects,
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5.2. MOTION DETECTION AND MEASUREMENT

• objects move at different orientations and at different directions,

• objects occlude each other.

In a real-world scene, all the above are applicable, thus making the task 
of machine vision a multi-faceted challenge. In considering the problem 
of ego-motion of a camera mounted on an AGV, all the above conditions 
will need to be taken into consideration in one way or another and will 
be discussed when applicable.

With some cross-over, most motion detection and measurement tech-
niques can be divided into two major schemes, intensity-based schemes 
using low level image processing techniques, and token-based schemes 
using medium to high level image processing techniques [U1179, Mar80, 
ADM81, TB81, Ros83].

5.2.1 Intensity-based Schemes

Some motion measurement techniques are based directly on the local 
intensity changes in the image. These may be subdivided into differ-
encing, correlation, and gradient schemes.

Differencing Technique This technique is more commonly applied to 
a positionally static camera. Subtraction of corresponding pixels in two 
frames from a sequence will result in a point-by-point determination of 
changes in intensity. A subsequent threshold of the resultant image will 
give rise to significantly differing regions which may be classified as,

• regions composed of object pixels in the first frame and back-
ground pixels in the second,

• regions composed of background pixels in the first frame and ob-
ject pixels in the second. •

• regions composed of pixels from the same moving object but at 
substantially varying degree of intensity.

and defined as,

D IF F ttt+St(x, y )
' 255

. o

if |F(x,  y , t) -  F(x,  y , t  +  6t)\> A  

otherwise
(5.1)
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given two images F (x , y, t ) and F(x,  y,t  +  8t) selected from a sequence 
at times t and t +  8t, and A as a predetermined threshold, dependent 
on the noise and complexity of the scene.

For example, consider an object in a scene with a contrasting back-
ground, which moves from left to right from one frame to another. The 
difference picture will contain a region on the left due to the uncov-
ering of background, and a region to the right due to the covering of 
background. These effects are demonstrated in Figure 5.1, where two 
images in a sequence are shown along with their thresholded difference 
image. There has been a voluminous amount of research and practical 
work using differencing techniques [JMA79, Jai81, HJ83, AD90], per-
haps due to their computationally simple and fast nature which also 
allows for an easy introduction to problems in motion analysis. For 
example, Jain [Jai81] applied differencing techniques to identify and 
segment changing regions and to classify them using a decision tree.

Differencing techniques are highly sensitive, but they are not robust 
enough to be solely used for inferring occlusion or 3D-structure. Nev-
ertheless, as part of more sophisticated systems, effective and practical 
use has been found in controlled environments, for example in secu-
rity surveillance. Ellis et. al. [ERG91] use differencing techniques to 
observe changes within a fixed perimeter area around a prison, and 
Bernat and Rupel [BR90] have implemented a similar system, based on 
transputers, for tracking human motion across international borders. 
In the next chapter, a simple implementation of an object tracking sys-
tem based on differencing will be described; this was conducted as part 
of an investigation and experimentation for laying the groundwork for 
a more comprehensive, parallel, motion analysis system.

Correlation Technique This is a direct matching technique carried 
out at the level of small image segments. A small region containing 
an object in the first image is matched with a sub-image in the second 
image of a sequence. Consider a scenario where a sequence of images 
of size m x n are available, and a sub-image S for a frame acquired at 
time t is known to contain an object. It is intended to determine the 
occurrence of the object in a later frame F  captured at time t +  8t, 
where,

St =  s (x ,y , t )  x i < x < x 2 , y\ < y < y2 (5.2)

Ft+st =  f ( x ,  y, t  +  8t) 0 <  x < m , 0 <  y <  n (5.3)

The cross-correlation technique will then provide a measure of match, 
C(x,y) ,  between the initial sub-image and every sub-image formed at 
point (x,y)  by applying,
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Figure 5.1: An example of Differencing: Two frames from a 
sequence and their difference image.

X2 V2

C{x ,y )  =  £  Y ,  St{ i , j )  Ft+St(x +  i ,y  +  j )  (5.4)
« = X  1 3 —V\

Selective measurement is usually carried out within a reasonable area 
of (xi,yi)  since the object may be assumed not to have moved by a 
large amount especially if St is small. Information on the object from 
preceding frames could be used in determining this area. The values of 
C(x,  y) can be normalised to eliminate its sensitivity to areas of average 
high intensity, since such areas can result in false matches. Correlation 
techniques are described and applied in [ADM81, U1181, STD90]. For 
example, Aggarwal et. al. [ADM81] use normalised cross-correlation 
as a similarity measure in establishing correspondence between image 
templates. An example of such a process is illustrated in Figure 5.2.
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Figure 5.2: An example of Correlation: The template and the 
match in the later frame.

Note, that the area of image where the template has been found is 
marked.

Independently-moving multiple objects, changes in scale and illumina-
tion levels, and changing object viewpoint are some of the major factors 
that highlight the restricted capability of correlation techniques in per-
forming matches from frame to frame. Also, correlation techniques are 
computationally expensive, but perhaps with the present availability of 
parallel processors, may begin to enjoy more attention.

Spatio-Temporal Gradient Techniques Gradient based schemes 
use the change in intensity at an image point over both time and space 
to estimate the rate of translation (i.e. movement) of the underlying 
surface. Given an image F (x ,y ), then the temporal intensity change 
^  at position (x ,y ) may be deduced from,

dF dx dsx dy dsy
dt dt dt dt dt

where ^  and ^  are the components of the gradient, and and ^  
are the components of velocity in the x and y directions, associated 
with image point (x ,y ). This approach is the already encountered op-
tical flow [Mar80, HS81], and is illustrated in Figure 5.3. Horn and 
Schunk [HS81] present an iterative, gradient-based technique to de-
termine the optical flow in a coarsely quantised sequence of images. 
Caffario and Rocca [CR83] use gradient techniques to achieve TV inter-
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Figure 5.3: An example of Optical Flow (Courtsey of Dr. S. 
Gong of Q M W C , London)

frame coding for eliminating redundancy and remote guidance. They 
also introduce into Equation 5.5 a noise error term with related covari-
ance to account for various luminance differences. Fenema and Thomp-
son [FT79] detect motion by using this technique to segment an image 
into regions corresponding to surfaces with distinct velocities. Optical 
flow has been used extensively to infer depth, 3D motion and structure 
from image sequences [U1179, Mar80, Ros83, AN88]. For example, in 
estimating depth, two images of a scene captured fairly closely in time 
from a moving, monocular camera system could be used in place of two 
images from a stereo pair.

5.2.2 Token-based Schemes

In token-based schemes for measuring motion, elements in the image 
are identified, located and matched over time. These elements are gen-
erally referred to as features, primitives or tokens (all of these terms 
will be used interchangeably in this discourse). To allow a continuous 
perception of motion between a succession of tokens, the visual system 
has to establish a correspondence between them. In intensity-based 
schemes, while no matching is required in determining motion vectors, 
differencing and correlation provide a means for matching between two 
regions of two frames. The task of matching is somewhat more compli-
cated between tokens.

Both biological and machine motion analysis systems share two general 
problems in token matching [U1181]. The first is the degree of prepro-
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cessing and the complexity of the participating tokens, which determine 
the level at which correspondence can be established. Matching can 
be achieved between simple tokens such as points or edge segments. 
Alternatively, complex tokens such as structured forms, or complete 
descriptions of recognised objects may be used, with rigidity assump-
tion playing a large role in the analysis. Since a complex token would 
usually have a unique counterpart in the next image, their use can sim-
plify the matching process. (However, a complete description of all the 
objects recognisable by the human visual system for machine vision is 
an impossible task for tackling everyday, real scenes.) In contrast, a 
simple token such as a small edge segment, has a number of candidate 
matches but carries two distinct advantages,

• It reduces the preprocessing requirements which are essential for 
faster machine motion perception,

• It allows the detection and tracking of arbitrary objects in (simple 
or) complex scenes. This is possible because correspondence be-
tween complex objects is established by matching the elementary 
tokens from which the objects are constructed.

It is relevant to note Marr’s [Mar80] notion of the primal sketch which 
he defines as a set of basic units that are the first to be formed in the 
course of visual analysis, and serve as building-blocks for higher order 
constructs. Thus the immediate use of a set of primitives after the 
matching process, is their role in determining structure from motion, 
and to keep track of complex objects.

The second general problem concerns the role of token-based schemes in 
relation to intensity-based schemes in an integrated visual motion anal-
ysis system. Although fast, intensity-based schemes are highly sensitive 
to noise and result in a high degree of inaccuracy, e.g. in recovering 
the velocity field. Also, intensity-based schemes are ineffective when 
occlusion occurs. On the other hand, token-based schemes are more 
localised and accurate, and can track sharply localised tokens over long 
distances, but all at a higher processing cost in solving the correspon-
dence problem.

Tracking of objects pre-supposes some earlier recognition stage, and 
is associated with discrete objects moving through the scene. For an 
AGV, this approach is inappropriate, since in addition to the disadvan-
tages already stated, most of the elements of the scene are fixed, and 
only exhibit ego motion.
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In this thesis, the interest lies in tracking primitive image features, such 
as edge segments, in the scene as a precursor to model matching. A 
token tracking scheme provides a method of maintaining frame-to-frame 
correspondence between features, accelerating the process of matching 
the image to the scene model and the detection of unexpected obstacles. 
The parallel computational model presented in the next chapter will be 
based on the tracking of tokens, irrespective of the nature of the token, 
i.e. be it point, corner, edge segment or whatever. This latter issue will 
be dealt with in the following section.

There follows a survey of past research on token-based tracking, in-
cluding edge tracking. The idea of the flow model will be introduced 
as a precursor to a general edge tracking algorithm, which can be im-
plemented in many ways. Two implementation approaches will be ex-
amined, both based on Kalman filtering which is a recursive filtering 
technique for estimating the state of a linear system. Standard Kalman 
Filtering is one approach and is discussed in Section 5.5. The discussion 
includes a brief outline of the second approach which is derived from 
the Kalman filter and is called the a, ¡3 filter. The process for matching 
corresponding tokens from one frame to another is usually an expen-
sive process especially if a number of competing candidate matches are 
involved. This issue, and the selected approach for this research are 
reviewed in Section 5.6. Before the summary, the penultimate section 
briefly reviews the fundamental research issues in 3D (structure from) 
motion, and considers the role of token tracking in that field.

5.3 Feature Tracking for Motion Analy-
sis

In Section 5.2 various issues of dynamic scene analysis were reviewed. 
This section concentrates on the most recent work in motion analysis 
which utilise tokens as features of interest for tracking.

The use of elementary image tokens in a feature-based approach to the 
solution of correspondence and tracking has been suggested by numer-
ous authors, for example [U1179, SJ87, THKS88, CSD88, HS88], and 
various image features such as points, corners, vertices and edges have 
been tracked to help in formulating structure from motion. It must 
be emphasised that these features are being viewed here as indepen-
dent entities and not as a sub-description of an object. As mentioned 
previously, the interest lies in exercising the tracking on the feature 
specifically, and it is incidental, but presently irrelevant, that a certain
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group of corners or edges may belong to one object. A higher level de-
scription and classification of the features would occur at a later stage 
in the processing for formulating structure from motion, and this is 
described briefly in Section 5.7.

Sethi and Jain [SJ87] use the idea of smoothness o f motion to iden-
tify the same physical point in a sequence of frames as opposed to just 
two frames. They argue for this approach as a logical step in handling 
the correspondence problem since the motion of the object is not ex-
pected to change instantaneously, as inertia would prohibit it. They 
then assume a complete object to be a point and apply their proposed 
algorithm to the point. This is now briefly reviewed. Given path co-
herence, the problem is a qualitative decision on the best of a set of 
possible trajectories given m points in a sequence of n frames. This is 
illustrated in Figure 5.4.

0 Frame 1 

©  Frame 2  

#  Frame 3

Figure 5.4: (a) shows the actual trajectories of two points 
over three frames, and (b) shows two possible trajectories for 
correspondence of points

For m points in n frames there exists a set of mn trajectories. The 
authors present an algorithm to determine point trajectories over sev-
eral frames, and continue by applying it to a real sequence from a 
world-saving scene in Superman where points on the head and belt of 
three running soldiers are tracked. The points were manually selected 
from the reel. In another example, they use differencing to perform 
a rough segmentation of their objects. The centroid of the object is 
then extracted as a coarse point representation of the object for feature 
point tracking. The ideas used here are rooted in the notion of affinity 
introduced by [U1179], which defines that the correspondence between 
isolated token pairs is governed by a certain built-in similarity metric
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(termed affinity). Griffin and Messimer [GM90] also examine the prob-
lem of tracking feature points, assuming constant velocity and rigid 
motion, using two imaging geometries: orthographic projection, as in 
an X-ray system, and perspective projection as in a camera system. 
The goal in each case is to find point paths by using a heuristic method 
to determine the best of a number of feasible paths, and is thus similar 
in nature to the work in [SJ87]. Possible applications of point tracking 
are traffic analysis and cell motion analysis.

Corners may be treated as points but are generally assigned more at-
tributes such as the local grey level and edge strengths, which are 
used for matching against other corners in later frames. Shah and 
Jain [SJ84] describe a time-varying corner detector based on the AND 
operation between the cornerness and the temporal derivative. (Simi-
lar work applied to edges is described later). They compare different 
corner detectors such as the Kitchen-Rosenfeld [KR82] and the Zuniga- 
Haralick [ZH83], and use the latter to form their corner detector, which 
finds the cornerness at a point and uses the absolute value of differ-
ence at that point to approximate the temporal derivative. Harris and 
Stephens [HS88] have reported a combined corner and edge detector 
in their specific search for consistent feature extraction in noisy and 
natural imagery, such as one with trees or bushes. Such image regions 
usually yield different and fragmented edge segments on each image of 
a sequence. However, by using their combined detector, they obtained 
thin, continuous edges that terminate in corner regions. The edge ter-
minators were then connected to corner pixels residing in corner regions 
to form connected edge-vertex graphs. This satisfied their aim in pro-
ducing features that consist of edges meeting at corners, i.e. junctions 
or vertices. They also found many unconnected corners located in tex-
tural regions such as a bush. Given an image of grey values F(x ,y ) ,  
their corner detector performed by searching for the corner response 
R(x,y)  for 8-connected local maxima and thresholding the resultant 
image, where,

and,

R(x , y) =  Det[M(x, y ) \ - c T  r[M(x, y)] (5.6)

M (x ,y ) A(x ,y )  C (x ,y )  \ 
C(x, y) B (x ,y )  ) (5.7)

M x , y )  = ^ 2 G UV
uv

6F
8xx+ u ,y+ v

(5.8)
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B ( x , y ) =  ^ G u v
uv

8F
8 y x +u,y+v

(5.9)

C {x ,y )  =  '%2Gu
8F 8F

8 x x -\-u,y+v 8yx-\-u,y+v
(5.10)

Guv is a Gaussian weighting function, and c is a constant to provide 
discrimination against high contrast pixel step edges.

This corner detector is an improvement on Moravec’s corner detec-
tor [HS88],

• it is isotropic and determines the average changes in intensity 
that result from shifting the window in all directions by a small 
amount.

• it shifts a smooth, circular Gaussian window across the image 
rather than a noisy, binary and rectangular window.

• it reformulates the corner measure to make use of the variation 
in R (x ,y ) with the direction of shift, to improve its response to 
edge detection.

The corner detector, for which they showed improvement over the 
Kitchen-Rosenfeld corner detector [KR82], was developed specifically 
to allow a more robust detection of features in essentially textural re-
gions. Later, it was used by Stephens and Harris [SH88] as part of 
an edge-vertex feature extractor for use in tracking edge-vertices in 
the DROID vision system. The features are initially extracted for the 
first two images and matched using prior estimates of camera motion, 
and image-plane attributes of feature points. The visual matches are 
then used to estimate camera motion via an iterative ego-motion algo-
rithm [HP87]. The features are then refined and tracked by performing 
an independent Kalman filter (described in Section 5.5) on each one.

A relatively early article on detection of motion in dynamic scenes by 
using edges is that of Haynes and Jain [HJ83]. They present an edge 
operator which includes both change and edge detection,

TimeVaryingEdginess =  D I F F t+st{x,y) * S (x ,y , t  +  8t) (5-11)

where S is the Sobel 3x3 edge detector and D I F F  is the result of the 
subtraction of corresponding pixels of the centre point of the Sobel
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mask (See Equation 5.1). The operator takes the static edginess over 
one frame and at each point multiplies this edginess by the difference 
between corresponding pixel gray values of the current frame and an-
other frame in the sequence. Given a sufficient difference, this operator 
will detect low-contrast moving edges, and if the gradient strength is 
sufficient it will also detect low difference points that would arise, for 
example from slow motion. They obtain from this information a very 
approximate direction of motion by considering the sign of the gra-
dient and of the difference for each edge point. Limitations of their 
approach are in the difficulty in selecting a suitable threshold, in the 
lack of response to horizontal edge movement, and most importantly 
in the detection of false points which are time-varying (e.g. due to a 
change in illumination or reflectance) but not necessarily moving.

Thomas et. al. [TLM+90] have presented a transputer-based imple-
mentation of a vision-guided vehicle which navigates by tracking road 
edges. The edge extraction and tracking techniques employed are simi-
lar to the special methods used in previous work in road-edge following. 
In the bootstrap mode, the strongest edges on the left and right of the 
image space are accepted as road edges by assuming that the vehicle 
is safely positioned in the expected direction of traffic flow. Having an 
accurate knowledge of camera position and orientation, the edges are 
projected onto the real-world horizontal plane using a perspective trans-
formation. A model of the two road boundaries represented as a pair of 
concentric circular arcs lying in the ground plane is then built. Next, 
the model is used to guide the search for edges from frame to frame by 
predicting the position of the edge in the next frame on the basis of the 
known velocity of the vehicle and by extrapolating the model along the 
circular arcs from the most distant points previously detected. Details 
of the transputer implementation are unavailable. Another approach 
to road-edge following was presented by Thorpe et al [THKS88] which 
uses multi-class adaptive colour classification of pixels of the image to 
determine on-road and off-road regions. Each road and non-road class 
is given a confidence value from colour and texture measures, and a vot-
ing system using a 2D parameter space, similar to a Hough transform, 
is employed to select the best next road position. The parameter space 
is made up of parameter P  as the column of the road’s vanishing point 
and parameter 6 as the road’s angle from the vertical in the image.

The concept of edge tracking will now be continued by introducing the 
idea of a scene flow model.
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The Scene Flow Model

Movement of a mobile robot or an AGV will introduce a considerable 
amount of vibration and noise into the measurement of the flow of mo-
tion, thus affecting the process of inferring depth and structure from 
motion in the subsequent stages. By adopting a flow model, consisting 
of a set of active tokens, a technique for minimising the degradation of 
measurement can be employed. Each model token can be represented 
by a vector of feature parameters composed of geometric and dynamic 
attributes. The geometric attributes may be position, neighbourhood 
characteristics, length, gradient, etc., depending on the type of token 
employed. Dynamic attributes associated with each token include ve-
locity estimates. For each token extracted from an image in a sequence, 
referred to as an observation, a match in the flow model is found, and 
the flow model is updated with the active token. If no match is found, 
the token may be added as new to the flow model. Those tokens already 
in the flow model for which no match is found may either be deleted 
immediately, or tied over for a number of frames. Deletion may then 
take place if still no match is found. For observation tokens, only their 
geometric attributes would be known which are determined following 
the process that extracts them from each new image.

This is illustrated in Figure 5.5 which represents a more complete in-
stantiation of Figure 1.2. It may be seen that by introducing a method 
for predicting and estimating the geometric and dynamic attributes of 
the flow model’s active tokens, and employing a robust matching tech-
nique, taking into account measurement uncertainties, a continuously 
updated model of image flow can be maintained, which provides a suit-
able platform for 3D motion analysis. The information describing the 
causative tokens is made available to a 3D scene-model matcher, which 
can relate the tokens to those already in its database describing the 
scene. The efficacy of a token-based approach may be further empha-
sised here by pointing out that tokens from a scene are uncorrelated and 
estimation and measurement error in one will not affect or propagate 
in others.

The flow model can be regarded as a pre-processing stage for infer-
ring depth and structure from camera ego-motion. In an attempt 
to provide a robust and accurate scene flow model, increasing use 
of optimal estimation techniques such as Kalman filtering is being 
made [CSD88, SH88, HS90, CSDP89, DF90].

Harris and Stennett [HS90] track known three-dimensional objects in 
simplified scenes using the a, (3 filter on control points on high contrast 
edges. These control points may be surface markings or profile edges.
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Image from Scene

To 3D Model 
Matcher

Figure 5.5: Prediction of the state of the flow model

Crowley et. al. [CSD88] and Chehikian et. al. [CSDP89] show that by 
assuming a flow model such as that above, it is possible to provide an 
elegant and reliable solution to the problem of image flow measurement 
and correspondence. They continue by applying a simplified form of 
the Kalman filter for tracking edges in software and hardware.

Also using edges as tokens, Deriche and Faugeras [DF90] experimented 
in edge tracking, using the the a, /3 filter. The a, f3 filter, which is an 
extended Kalman filter, will be employed as the main implementation 
algorithm for the parallel computational model presented in Chapter 6 
of this thesis. In this implementation, edges will be used as tokens. This 
decision is fairly arbitrary, and the nature of the token is quite irrelevant 
to the parallel approach which is the major feature of this study. The
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approach is designed to be applicable whatever the representation of the 
token, and use of edges as tokens allows its simplified demonstration. 
For example, edges and vertices together can carry more details for 
token matching. Each vertex can be classified by its degree, which is 
the number of edges attached to it. Its attributes would then consist 
of the directions of the attached edges, the length of the edges and 
the local vector image gradient [SH88]. It will be seen in the next 
chapter that grouping of such information into data structures related 
to each edge-vertex description will be a simple extension of the edge- 
only implementation. Other image primitives could also be added on, 
for example, corners. The parallel computational model will in fact only 
refer to tokens, where tokens can be any type of feature as necessary.

In the next section, two geometric representations of edge tokens will 
be examined. Use of the Kalman filter has already been mentioned 
but without much clarification. This will be remedied with a detailed 
examination and derivation of the Kalman filter equations for the mo-
tion model. The matching process will then be described, completing 
the various stages of the algorithm. The overall picture will be pieced 
together in the summary for this chapter.

5.4 Token Parameter Representation

It was shown that the dynamic scene will be described by a set of para-
metric primitives, namely edges, which will be based on observations 
about the scene. In selecting an edge token representation, the geomet-
ric parameters for line segments must be examined. Some of these are 
illustrated in Figure 5.6 and Table 5.1.

Edges in real 3D structures are expected to remain fairly consistent in 
frame sequences, providing good feature parameters as well as future 
connectivity information. Most simply, edge tokens may be described 
by their end-points. However, on their own, the end-points of a line are 
an inadequate representation, since digitisation effects1 and the extrac-
tion process can result in fragmented edge segments in each image of 
a sequence, and both these factors deteriorate the chances of success-
ful matching and Kalman filtering. It is therefore necessary to observe 
some measure of uncertainty and tolerance when considering any rep-
resentation of a (digitised) line.

1 Pixels are affected by noise both at sensing and amplification of the initial 
electronic signal, and by quantisation noise when registered in a frame-store. One 
major source of error is variation in illumination.
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Figure 5.6: Parametric features of a line segment

Crowley et. al. [CSD88] and Chehikian et. al. [CSDP89] use feature 
vector V =  [c, d, 0, £] to represent line segments. Considering the un-
certainties associated with the edge extraction process, the precision 
of the perpendicular distance c from the origin will be to the order of 
very few pixels. However, the shorter the edge segment length, the less 
reliable is the orientation 6. Thus 6 is highly dependent on l.

Deriche and Faugeras [DF90] compare this representation with the mid-
point representation feature vector M  =  [xm,ym, 6, l] and following an 
analysis of the [c, d, 0, and [xm,y m,0,l\ covariances show that the 

1} representation is more appropriate by noting that,

• [c, d, 0, j] feature vector representation leads to a covariance ma-
trix that depends strongly on the position of the associated line 
segments in the image through the parameters c and d. Thus, the 
uncertainty on the [c, d] parameters for two line segments with the 
same length and orientation will be completely different depend-
ing on their position in the image. This situation will not arise 
for the mid-point representation, since the uncertainty of the mid-
point (xm, ym) depends only on the uncertainty associated with 
the endpoints of the line segment, •

• [ im) Vmi 0, f] feature vector parameters are decorrelated allowing 
for more efficient post-processing and tracking.
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Line Endpoints Xi,yi and x2,y2

Midpoint
Xm,ym where, 

xm = ^  and ym =  ^

Orientation 6 = V X2— X\ /

Length of line l =  \J(x 2 -  z i )2 +  (2/2 -  yi)2

Perpendicular distance from 
line segment to the origin c _

Distance along the line from 
perpendicular intercept of the 
origin to midpoint of the segment

J (¡r2-xi )*(r2+xi )+(y2-yi )*(y?+yi )
a ~  2 *1

Table 5.1: Description of parameters used in two representa-
tions of a line segment

By adopting Deriche and Faugeras’s conclusions, each edge segment 
will be tracked by implementing four Kalman filters for it, one for each 
of its x m,ym,6 and l parameters.

5.5 Optimal Estimation

The problem of estimation may be defined as the process of extracting 
information from measured data. To estimate the minimum error state 
of a system, an optimal estimator may be applied which takes into 
account [Gel74],

• information describing the initial condition of the system,

• a knowledge of system model and measurement dynamics,

• assumed statistics of system noise,

• assumed statistics of measurement errors.
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Problems such as determining the path of earth satellites, or the state 
of the current in a circuit as the voltage is affected by instrument noise, 
can be cited as examples where optimal estimation techniques may be 
applied. The problem of estimation may be categorised into three areas 
of interest: consideration of the past state of a system is smoothing, the 
estimation of its present state is filtering, and the estimation of its 
future is predicting. The primary concern here is with the issues of 
filtering.

Modern elementary estimation methods have undergone a drastic sim-
plification in the last thirty years. To aid the examination of modern 
estimation theory, mathematical tools such as matrix algebra, basic 
probability theory, and calculus are considered adequate[Lie67]. A no-
table contributor to the fusion of the various topics involved was R. E. 
Kalman who produced an optimal filtering technique for estimating the 
state of a linear system with results in the time domain rather than the 
frequency domain[Kal60]. Figure 5.7 represents an example where the 
capabilities and limitations of optimal estimators may be observed.

Thus, Kalman filtering [Kal60] can be defined as a statistical approach 
to modeling and estimating a time-varying state vector from noisy mea-
surements, and within this context, may be used as a recursive estima-
tion scheme designed to match the dynamic system model of the moving 
token, the statistics of the error between the model and reality, and the 
uncertainty associated with the measurements.

The requirement here is to consider the application of Kalman filters 
to the tracking of edge segments in order to maintain a frame-to-frame 
correspondence between features and aid the process of matching the 
image to the scene model. During tracking, there is uncertainty of 
measurement as well as inaccuracy of the model, and these may be 
represented as process noise. Hence, the state of the token in the flow 
model may be predicted using the Kalman filter. The general equations 
for the model of the system dynamics and the measurement model are 
as follows,

Xt+1 — +  pt
Yt =  CtXt +  ut

(5.12)
(5.13)

where,

X  is the vector of state variables, 
Y  is the vector of measurements,
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Figure 5.7: Estimating the state of a linear system

$  is the state transition matrix,
C  is the output matrix,
pi is the zero-mean Gaussian noise sequence of covariance 
u  is the zero-mean Gaussian noise sequence of covariance Q.

Applying to Equations of Motion

When a given line segment moves, each feature parameter representing 
the line follows a trajectory in the one dimensional space. The kine-
matics of the motion of the line segment consists of the trajectory, the 
velocity and the acceleration of the feature parameters. Therefore, four
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independent K alm an filters are applied to  each param eter in feature 
vector M  =  [xm,y m,0,l\ , thus necessitating the in troduction  o f  the 
follow ing state vectors,

M 1 =
 ̂ 'Em  ̂

¿ m ,m 2 =
 ̂Um ^

ÿm ,A*3 =

(  0 \  

6 ,m 4 =
( 1 \ 

i

 ̂ ) K ÿ™ } \ 0  ) 1 7/

For each edge segm ent feature, the state vectors represent the position  
o f  the param eter, its ve locity  and its acceleration .

G iven that the derivative o f  position  is ve locity  and that o f  velocity  
is acceleration , then the equations o f  m otion  for uniform ly accelerated 
m ovem ent are,

x t =  a (5 .14)

it  =  at +  v0 (5 .15)
1 2x t =  -a t  +  v0t +  c (5 .16)

Thus at tim e t +  1,

Xt+1 =  —a(t ^)2 v°ft T  1) +  c

Xt=  Xt +  Xt +  —  +  c (5 .17)

¿t+ i =  a(t +  1) +  Vo
=  it  +  Xt (5 .18)

T herefore, the equations o f  m otion  describing the system  dynam ics and 
m easurem ent m odel can be  equated as follow s,

f  X t + 1 \ ( 1 i n (  X t  >

IIrH+ ¿<+1 = 0 1 1 x t

 ̂ *«+1 / [ o  0  1  ) \ x t )

(5.19)

and

where,

Yt =
(  V t  \ < X t  ^

*
\ y t  )

= ( i  °  ° ) X t

\  /
+  u>t (5 .20)
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is the state transition matrix evolving the position,
1 1 \ \

=  I 0 1 1 
0 0 1 ;

velocity and acceleration from one time sample to another, 

Ct — ( 1 0 0 ) is the output matrix in this application,

* . =  =
I al 0 0 \

0 0
\ 0 0 )

is the zero-mean covariance matrix.

In this application, the value Yt of the measurement model is a com-
bination of the measured position x from the matching process, and 
u t which is the measurement uncertainty error <7̂  on position with 
zero-mean Gaussian noise sequence of covariance Dt.

The model derived above is a classic example of uncorrelated system 
and measurement noise processes. A typical source of noise common 
to all aspects of the model is the vibration of the camera mounted on 
an AGV. In their study, Deriche and Faugeras [DF90] simply ignore 
this due to their lack of knowledge about it, and assume it to be zero. 
Here, this lack of exact knowledge is felt too, but it is proposed that the 
presence of this noise is inherent in the model and measurement noise 
processes, and thus is already dealt with, only not in an independent 
sense.

5.5.1 Prediction Algorithm (or Solution of Kalman 
Equations)

The prediction algorithm is bootstrapped into action by setting the esti-
mated position of the state vector and its associated covariance matrix 
using initially measured and estimated data,

X 0 =  E (X o) =  Y0 and P0 =  Var(X0) =  (5.21)

In the ensuing run stage, the following steps are dealt with sequentially,

• Compute the Kalman gain matrix, Gt, which indicates the weight 
to be attached to each new measurement,

Gt =  $t Pt c j  (Ct Pt C j  +  a ) " 1 (5.22)

It is easily seen that the influence of the measurement in deter-
mining the state estimate may be altered by using a small or large
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uncertainty Qt to achieve a large or small weighting Gt respec-
tively.

• Now compute the prediction estimates for the state vector using 
the Kalman gain,

X t + 1 = * t X t + Gt (Yt -  C t x t ) (5.23)

• Compute the covariance prediction for the state vector,

Pt+i =  (St -  Gt Ct)  Pt (5.24)

Note that this is a simplified form which disregards the corre-
lation between the system and measurement noise processes as 
previously mentioned above.

• Compute the covariance prediction for the measurement vector,

St+1 =  (C t Pt+1 C j)  +  a  (5.25)

This covariance is then used to determine the search area for the 
matching process which follows.

5.5.2 Error Modelling

Due to the inaccuracy of the system model, divergence [Gel74] or grow-
ing uncertainty will occur in the Kalman filter. The assumed constant 
velocity and acceleration model is essentially correct only locally, e.g. 
when considered in small time steps (which is why in this work the 
velocity is continuously tracked, but uniform acceleration is assumed). 
Through appropriate error modelling, the system model constraints 
may be made more flexible. Hence, two techniques are employed for 
reducing the divergence problem.

Firstly, divergence is minimised through the addition of process noise 
as already shown in Equation 5.13 using the term fit with covariance 
fl't, where,

*t  =  E(ntfiJ)
/ 0 0 \

0 0
\ 0 0 * 2 /

(5.26)

The choice for the values of c^, <7% and is largely heuristic and for 
this work roughly estimated values were used and refined by practical
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experiments. The choice on the variance on the position a2m is deter-
mined from the amount of noise expected from the digitisation and 
edge extraction stages. For example, this can be determined by re-
peated edge segmentation of a static scene and measurement of the 
positional variance under normal conditions.

Secondly, old data can be regarded as irrelevant (since the model is 
claimed to be local in time and not in space) and thus eliminated from 
the system. This may be achieved by weighting old data according 
to the time of their occurrence [Gel74]. This can be accomplished by 
increasing the covariance matrix for past measurements by using an 
scalar factor A greater than or equal to 1 in Equation 5.24 to give,

Pt+i =  A($ , -  Gt Ct) Pt +  * t (5.27)

The discussion above outlines the first algorithm that is used in this 
study. In addition, a second algorithm which is an extension to the 
Kalman filter but of a simpler design, will also be discussed briefly 
now. This is intended to show the flexibility of the parallel computa-
tional model, proposed later, in embracing different algorithms for easy 
implement at ion.

The second algorithm uses the limiting Kalman filtering equations, bet-
ter known as the near optimal a , /3 tracker, again based on an assumed 
model of the trajectory with constant velocity and acceleration. Fol-
lowing the work by Deriche and Faugeras [DF90] and Gelb [Gel74] the 
Ricatti differential equation is derived from the standard Kalman fil-
ter by adding process noise to the covariance prediction for the state 
vector; this steady state equation is then solved and the Kalman gain, 
composed of two positive scalars less than one, is deduced. By assigning 
constant values to the Kalman gain, G =  (a /3)T, the application deal-
ing with a constant velocity model will yield the following decoupled 
equations,

x t =  — (a +  /3 -2 )*xt- i  -  (1 — a)*X i_2 +  a *v t +  (—a +  /3)*vt- i  (5.28)

xt =  - ( a  +  /? -  2) * ¿t_i -  (1 -  a) * x t - 2  +  ¡3 * (vt -  vt- i )  (5.29) 

and the covariance matrix P,

P ( a  /3 \
1 - a \ P  / ? * ( «  +  /?) )

(5.30)

126



5.6. TOKEN MATCHING

The a , (3 filter has the following advantages,

• it is simple to implement

• the coefficients of the recursive equations are determined once 
only at compile time

• the position and velocity components are completely decoupled

• only the state vectors from 2 previous time frames need be stored

This decoupled implementation allows for the recovery of the compo-
nents of the state vector, i.e. position and velocity, in a completely 
separate way using the two Kalman filters in Equations 5.28 and 5.29. 
The reader is reminded that this is applicable to each of the four ge-
ometric feature parameters of the token. Also to be noted is that the 
a, (3 algorithm and the standard Kalman filter solutions are expected 
to yield the same results, only they use approaches with different com-
putational and algorithmic complexity.

Finally, the a, f3 equations show that the representation of active to-
kens in the flow model will be continuously refined by their geometric 
and dynamic feature attributes as discussed earlier in the comments 
accompanying Figure 5.5.

5.6 Token Matching

A common operation in perception is the comparison of primitives at 
different points in time, to determine if they represent the same physical 
quantity. In this section, the process of matching tokens (or primitives) 
between the observed tokens and flow model tokens is discussed (Fig-
ure 5.5). Indeed, this is a verification of the measure of affinity as 
stated in Ullman’s [U1179] general correspondence principles. The re-
sults of the Kalman filtering are used to predict an image region within 
which the next expected instance of the edge being tracked will lie 
(Figure 5.8). Given that a certain number of observed tokens will be 
found to exist in such an area, a matching process must be employed 
to establish which token best corresponds with the edge being tracked.

Now, perceived quantities are never exact measurements and constant 
from one scene to another, and thus some measure of tolerance and 
uncertainty must be introduced. Therefore, the token matching process 
employs the Mahalanobis distance which is essentially a feature distance 
squared, normalised by variance to represent the uncertainty,
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Figure 5.8: An example showing the estimated search area for 
the next instance of an edge segment

dx2 =  (Ff -  Fe)T{n  +  T )-\ F f -  Fe) (5.31)

where Fj is the feature vector of N components with a covariance ma-
trix II and Fe is the feature vector found in the estimated search area 
with a covariance matrix T. Note that where no correlation exists 
between vectors Fj and Fe then the covariance matrix of the vector 
difference, Ff — Fe, is the sum of II and T. The distance associated 
with each component has a x 2 distribution with 1 degree of freedom in 
this application.

Hence, the Mahalanobis distance can be used to determine a similarity 
measure for the comparison of edge tokens represented by feature vec-
tor [xm,ym,6 , l ] . For each component of each observed feature vector 
in the search area, the Mahalanobis distance is calculated using the 
components of the flow model feature vector that is under scrutiny. 
Given that the distance for each component is less than the Maha-
lanobis threshold (3.84 for a successful matching probability of 95%), 
the observed token can be regarded as a candidate match and a sum 
of the distances of the components is determined as the cost. The 
most promising match is then selected to be the token with the least 
overall cost. A pseudo-OCCAM outline of this process is provided in 
Figure 5.9. The code is ideally parallelised: for the matching procedure
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for a token executing on a single transputer, it is more efficient to run 
the algorithm sequentially, since less processes exist for the scheduler 
to cope with. However, ideally, the independent parts could be run in 
parallel.

— Comments:
— Each parameter will require its own covariance representation.
— e and /  stand for estimated and flow model respectively.
Match.Found :=  -1
MINIMUM.COST.SO.FAR =  VERY.EXPENSIVE  
PAR i =  0 FOR (Every.Token.in.Search.Region)

SEQ
PAR

cost[i][0] :=  MAHALANOBIS(xme[*'], r ex, x m } , n ^ )  
cost[i][1] :=  MAHALANOBIS(yme[i], r ej/, y m f , n ^ )  
cost[i][2] :=  MAHALANOBIS(0e[*1, r e<?, 6f , H f e ) 
cost[i][3] :=  MAHALANOBIS(/e[t], Tel, H f l )

Total.Cost[i] :=  cost[i][0]+cost[i][l]+cost[i][2]+cost[i][3]
SEQ i =  0 FOR (Every.Token.in.Search.Region)

IF
Total.Cost[i] <  M INIMUM.COST.SO.FAR  

SEQ
Match.Found :=  i
M INIMUM.COST.SO.FAR :=  Total.Cost[i]

TRUE
SKIP__________________________________________________________

Figure 5.9: Pseudo-OCCAM code outlining an ideal imple-
mentation for the token matching process using the Maha- 
lanobis distance function (not shown).

Another implementation could be similar to the pseudo-code illustrated 
in Figure 5.10. This algorithm allows the token under inspection to be 
abandoned immediately, upon encountering the first (of the four) Ma- 
halanobis distances that falls foul of the threshold test. (Note, this 
avoids extra computation for most cases but leads to a worst case for 
those matches that satisfy all the conditions and for which the cost 
function has to be calculated effectively twice. A more elaborate and 
sequential code can overcome this problem by calculating, saving and 
then examining each component cost before going ahead with the next 
component cost.) For a very busy scene with many tokens, this algo-
rithm would perform best.

The following are the equations used for calculating the Mahalanobis

129



CHAPTER 5. DYNAMIC SCENE ANALYSIS

— Comments:
— Each parameter will require its own covariance representation.
— e and m stand for estimated and flow model respectively.
VAL M T  IS 3.84 :
Match.Found :=  -1
MINIM UM .COST.SO.FAR =  VERY.EXPENSIVE  
PAR i =  0 FOR (Every.Token.in.Search.Region)

SEQ
IF

(MAHALANOBIS(arme[*], Tex, x mJ, U Jx) <  M T ) AND  
(M AHALANOBIS(yme[i], Tey, y m f , U Jv) <  M T ) AND  
(M AHALANOBIS(0e[*], Lee, 0f , n/tf) <  M T ) AND  
(M AHALAN OB IS(/e[*], T e/, / , ,  n /() <  M T)

SEQ
PAR

cost[i][0] :=  MAHALANOBIS(xme[j], T ea;, x mJ, I l /x ) 
cost[ij[1 j :=  MAHALANOBIS(yme[i], T ey, y m f , n/y) 
cost[i][2] :=  MAHALANOBIS(0e[*], L e0, 6f , U f e ) 
cost [¡j [3] :=  MAHALANOBIS(/e[i], Te/, / / ,  n / ; ) 

Total.Cost[i] :=  cost[i][0] +
cost[i][l] +  cost[i][2]i +  cost[i][3]

TRUE
SKIP

SEQ i =  0 FOR (Every.Token.in.Search.Region)
IF

Total.Cost[i] <  MINIMUM.COST.SO.FAR  
SEQ

Match.Found :=  i
M INIM UM .COST.SO.FAR :=  Total.Cost[i]

TRUE
SKIP

Figure 5.10: Pseudo-OCCAM code outlining a more efficient, 
but still ideal, implementation of the token matching process 
using the Mahalanobis distance function (not shown).
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distance for each observed token parameter in the projected search area,
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given that the covariance matrix for feature vector [xm,ym,6 , l] is,

(5.32)
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and Pn is obtained from P  in Equation 5.30. These distances, bounded 
by the threshold, define the search area (although in practice, only those 
associated with the mid-point are chosen in this implementation using 
a large uncertainty).

This section concludes the final topic related to the token matching 
algorithm. The full algorithm will be summarised in Section 5.8 af-
ter some words about the general use of token tracking in 3D motion 
analysis.

5.7 Towards Structure from Motion

Analysis of corresponding image features have led to a considerable and 
varied amount of research on structure from motion [Ros83, Low87, 
HP87, SH88, AN88, THKS88, SBC+89, HS90, WH90]. 3D percep-
tion is a prerequisite for autonomous vehicle navigation. Road follow-
ing systems based on 2D image-plane techniques have been success-
ful [THKS88], but in less constrained and structured environments, 
tasks of greater complexity, such as obstacle avoidance, are necessary 
and require a 3D approach.

Many techniques for understanding 3D scene geometry have been ap-
plied in the past. The trade-offs have been complexity of implemen-
tation and detail of scene representation. With respect to the latter,
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token tracking provides a robust and compact technique which accrues 
easy-to-update information as further knowledge is extracted from sub-
sequent images. This section is intended to highlight the uses of token 
tracking in its own aftermath. The discussion will be brief since the 
nature of this topic is beyond the scope of this thesis.

When a camera is moving relative to a three-dimensional scene, a shift 
of position and velocity can be associated, in each frame sequence, 
to each token using the information provided from the token tracking 
stage. Knowing the physical nature of these tokens, allows the determi-
nation of their distance from the camera. By forming structures from 
these tokens, a higher level of understanding about the scene is attained 
which can subsequently be employed to aid the navigation of a vehicle 
about the scene.

Let it be assumed then, that matching has been performed and corre-
spondences are available for images obtained either from a stereo pair 
of cameras or through successive frames in a sequence. The initial ob-
jective in 3D scene interpretation is then to obtain a depth map of the 
scene. Human perception of depth is remarkably efficient without the 
need for high-level information, e.g. depth data can be derived from 
random dot stereograms [U1181]. In computer vision, depth may be 
recovered by examining the relative disparity of corresponding features 
(i.e. tokens in this particular case), which arises due to the shift be-
tween the viewer and the feature being viewed. This is best illustrated 
by holding a finger a short distance in front of one’s face and observing 
the shift when the finger is viewed by each eye alternately. The fur-
ther away the finger is held, the less the shift in position. Therefore, 
to achieve the same perception in computer vision, stereo images, or 
images obtained from camera motion, can be analysed to determine 
depth and structure from motion, given that the motion of the sensor 
is approximately known.

Camera ego-motion is the major cue in 3D scene interpretation for mo-
tion of an AGV and has been determined in various ways by deriving 
information from corresponding tokens in serial images. An example of 
such an approach is the work on the DROID project at Plessey Roke 
Manor Research. Matched point information from a sequence of im-
ages has been manipulated by Harris and Pike [HP87] to estimate the 
motion of a camera moving through a static environment. A boot-
strap process determines a 3D instantiation of a scene using the first 
two frames of the sequence to estimate the depth of these points. In 
the run mode, point features are matched using image-plane proxim-
ity and attribute similarity, followed by an estimation of the relative
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camera motion using these matches. The motion is represented by a 
6-dimensional quantity, describing both vector translations and rota-
tions of the camera. Kalman filtering procedures are then applied to 
the camera ego-motion estimates, to project the next search region in 
which candidate points for matching must lie. The points are then 
matched using an alternative implementation of the Mahalanobis dis-
tance concept. This work is later followed by Stephens et. al. [SBC+89] 
who used both stereo and motion to determine both feature position 
and camera ego-motion. They describe a prototype 3D vision system in 
which surfaces are constructed from the 3D representation of matched 
feature points and are used to segment the scene into navigable and 
non-navigable regions. The basis of surface extraction is in applying 
triangulation techniques to Kalman filter tracked corner points [HS88].

Two other recent techniques applied to 3D scene understanding are 
now briefly reviewed.

Walker and Herman [WH90] use geometric reasoning as a cross-over 
step, from formulating 3D structures to maintaining a 3D model, via 
model matching and object completion. Geometric reasoning is used 
to determine the type, position, and orientation of structures neces-
sary to complete an object, and to hypothesise additional structures 
about known objects in the real world. For example, in the domain of 
airplanes, they all must have two symmetric wings. In effect, this ap-
proach divides the latter stage of processing of the vision system shown 
in Figure 1.1 into that shown in Figure 5.11.

Initially, the 3D structures (which in turn correspond to 2D features, 
such as corners and edges, obtained from stereo or camera motion) are 
developed as sparse 3D wireframe descriptions of the scene. The scene 
model is represented as a graph of planar surfaces, edges, and their 
topology and geometry. With each new wireframe developed from the 
next processed image, the resulting wireframes are matched with the 
current scene model, and the model is updated as necessary. Geometric 
reasoning is then used to exploit strong constraints within the domain 
of knowledge applicable to the 3D objects under study and derive infor-
mation from 3D structures to complete the scene model. The authors 
apply this system to an original model designed to describe partially 
complete polyhedral objects, with a number of constraints. They use 
it in recovering 3D models of urban buildings with the constraint that 
all surfaces and edges are limited to be either horizontal or vertical. 
They then apply geometric reasoning to complete faces since buildings 
often have parallelogram faces, and as they do not normally float in 
mid-air, supporting edges can be hypothesised for floating faces. The
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Figure 5.11: Stages in 3D scene understanding

authors also suggest the use of complete CAD models in an attempt 
to deal with ambiguities propagated from earlier stages. This idea has 
also been suggested by Ellis et. al. [EWM87].

Finally, an alternative approach to 3D scene interpretation will be con-
sidered that accomplishes recognition of a 3D object without resource 
to depth information. Lowe [Low87] presented a three-stage method to 
recognise objects from 2D images which makes use of prior knowledge 
of objects:

• Perceptual Organisation This groups straight line segments in 
the image, on the basis of proximity, parallelism, and collinearity. 
The intention is to achieve a grouping of features that tend to be 
invariant over a wide range of viewpoints.

• Search Space Reduction This locates and groups structures to 
reduce the number of primitives that will need to be matched at 
the next stage. To quote:

For example, trapezoid shapes are detected by examining 
each pair of parallel segments for proximity relations to 
other segments which have both endpoints in close prox-
imity to the endpoints of the two parallel segments.
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• Model Matching This process consists of an optimal and rank-
ing procedure for selective matching of the perceptual groupings 
against the structures of the object model which are likely to give 
rise to that form of grouping. The author’s approach included 
view-point solving and verification for a more accurate interpre-
tation of model matches.

The role of token tracking is clear as a necessary pre-processing stage 
in all the above examples. The examples were specifically on the actual 
interpretation of corresponding tokens in a 3D scene, but using differ-
ent approaches in accomplishing similar stages in the complete process 
cycle, from tokens through scene structure description to scene model 
matching.

In the next section, a summary of the points raised in this chapter will 
be provided.

5.8 Summary

In this chapter, a mixed combination of related work was presented:

• a review of some general approaches for tackling the early stages 
of motion understanding and scene analysis,

• a section by section breakdown of the motion tracking algorithm 
to be employed later in the next chapter.

After a brief introduction to dynamic scene analysis, two major ap-
proaches in the subject were outlined: intensity-based schemes and 
token-based schemes. Following a general review of the former, the 
latter topic was further presented in detail. This included a study of 
the state of research in token-based algorithms, and the presentation of 
the scene flow model as a robust technique for measuring image plane 
motion via token tracking. The scene flow model has been adopted in 
this research work for use in tracking edge tokens in particular. The 
flow model may be used for providing token correspondences, token ve-
locity information, and it can aid in the recovery of depth. All of these 
can contribute to the composition of a 3D model of a scene. Next, ge-
ometric representation of edges as line segments were compared, with 
the [xm, ym, 0, /] representation selected as the more appropriate. Then, 
Kalman filtering techniques applied to motion equations were derived 
to aid general token-based tracking, by applying the filter to each rep-
resentative feature of the causative token. This was followed by an
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examination of the Mahalanobis distance for the matching of observed 
tokens to that of the flow model. Finally, a review of some possible 
approaches for employing tracked and identified tokens in 3D motion 
analysis were discussed.

A sequential, step by step breakdown of the overall token tracking 
algorithm programmed for this work is now presented. To start with, 
when the bootstrap stage is initiated, no knowledge of the motion of 
the line segments in the model is available. Therefore, the following 
steps are necessary for the bootstrap mode.

• The Bootstrap Mode

1. Capture the first image frame.

2. Perform feature extraction.
3. Construct list of tokens.

4. Assume zero velocity and acceleration for tokens and ini-
tialise associated uncertainties with large values to indicate 
a low confidence in the assumption.

5. Assign tokens to the flow model and initialise estimated val-
ues of each token parameter with observed measurements.

The system is now prepared for the run mode which will follow imme-
diately after the bootstrap process, and continue repeatedly for each 
new image frame.

• The Run Mode

1. Use the flow model to predict the position of each token 
parameter in the next image frame.

2. Use estimated values and their uncertainty to determine the 
search area for each token in the next image frame.

3. Capture the next image frame.

4. Perform feature extraction.

5. Construct list of newly observed tokens.

6. Use the Mahalanobis distance to match each flow model to-
ken to those observed tokens found in the search area.

7. Update the flow model accordingly depending on the out-
come of the matches.

8. Continue from Step 1
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This algorithm is inherently generalised and can be applied to any 
representation of tokens, be they corners, edges or vertices, and in a 
high level sense, it can be mapped to those algorithms employed, for 
example, in [HP87, CSD88, SH88, DF90, WH90] which track tokens in 
2D images. Therefore, Figure 5.5 really represents a symbolic flowchart 
of the overall algorithm.

In the next chapter, a parallel computational model for generalised 
token-based algorithms will be presented followed by an implementation 
of the algorithm presented above using the computational model as the 
guide. By selecting a general tracking algorithm such as that above, the 
algorithm-independence of the parallel model approach is hoped to be 
emphasised in the next chapter. This will be demonstrated to a certain 
extent, by implementing step 1 of the algorithm (in run mode) using 
two algorithmically disparate approaches to Kalman filtering, which 
is construed as the heart of the algorithm. In fact, this section of the 
overall algorithm will be dedicated to a whole separate parallel network 
of processors as a separate unit, thus also displaying the independence 
and flexibility of the implementation.
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Chapter 6

A Parallel Approach to 
Token Tracking

6.1 Introduction

In Section 2.1, by way of Figure 2.1, a general classification of vision 
algorithms for parallel architectures was presented.

The most natural approach to exploiting parallelism in motion can 
be determined by regarding the steps outlined in Figure 1.1. At the 
highest level these display an inherent pipeline effect. Pipelining, as a 
temporal approach to parallelism, would allow the division of the steps, 
in between image capture to 3D scene understanding, into independent 
units executing as black boxes in parallel, each supplying its outside 
world with its results. Further parallelism may then be investigated by 
delving into the domain of each of the black boxes.

By momentarily casting the reader’s mind back to Section 5.7, it can 
be stated that whichever approach to 3D scene interpretation is to be 
employed, the provision of features extracted from 2D visual input is an 
unavoidable and universal necessity. Therefore, a major contribution 
of the work presented in this chapter, is the provision of a continuously 
updated scene flow model as part of the front end processing to an 
AGV vision system. To achieve this, the first two black boxes of Fig-
ure 1.1 will be considered in some detail, with major concentration on 
the second stage, i.e. the establishment of token correspondence. The 
unique aspect of this work in comparison to other related work is the 
parallel computational model designed as an approach to efficient im-
plementation of the scene flow model on parallel processing hardware. 
Also, the implementation itself is maintained as a general algorithm, so
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that it may be adapted easily if changing conditions and requirements 
so dictate. Moreover, the approach proposed in this chapter, decouples 
the stages involved in the tracking of tokens into independent units, 
providing a chance for absolute optimisation of each unit. Thus, the 
system as a whole may be fine-tuned for a better performance. These 
points will be elaborated on later in this chapter.

With respect to algorithmic and geometric parallelism, a hybrid of these 
two parallel programming models will provide for a suitable implemen-
tation of the token tracking algorithm. This issue will be discussed in 
Section 6.5.4, where it will be shown that in using a hybrid approach, 
system performance can deteriorate due to certain characteristics of the 
transputer.

The work in this chapter is divided as follows. Initially, a review of 
work in motion is presented where parallel processing has played an 
active role. In Section 6.3, an initial investigation into motion analysis 
is outlined using differencing and chain-coding techniques to aid the 
tracking of objects in a simple scene. Next, in Section 6.4, a skeleton 
parallel computation model for tracking tokens is proposed. The model 
will be independent of the tracking algorithm and the host architecture. 
In the subsequent section, the model will be used efficaciously to realise 
a transputer-based MIMD implementation of the tracking algorithm as 
described in the previous chapter. This section will encompass many 
features, such as a performance evaluation of the Canny edge operator. 
In Section 6.6 results of the implementation are produced, and general 
summary and conclusions are presented in the final section.

6.2 Use of Parallelism in Motion

In this section, a brief review of the use of parallelism in dynamic 
scene analysis will be presented, with special leaning towards the use of 
transputers as the principal parallel architecture. The discussion will 
also concentrate on the fundamental issue of achieving correspondence, 
since that topic is the basis of this work.

Until recently, the concentration of research in motion has been on the 
improvement and accuracy of motion algorithms only, a few examples 
are [ADM81, HJ83, SJ87, HP87, THKS88, SBC+89]. When the need 
for efficiency has arisen, many have resorted to implementing their al-
gorithm in hardware [CSD88, SBC+89, DF90]. Thus, the use of parallel 
processing has been largely neglected, probably due to the lack of avail-
ability or access to parallel architectures. The arrival of the transputer
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as a cheap, available source of parallel computing is about to change 
this, and some recent work which has been trickling through will be 
reviewed a little later.

6.2.1 Some Notions

The pipeline approach discussed earlier, is a logical structure for per-
ception, and has been employed by most of those who have attempted 
to view the motion problem from a parallel perspective, (regardless of 
the relation in their approach to human perception). Pipelining will be 
at least inherent in all the works reviewed here.

Ullman [U1179] addresses three assumptions in considering the compu-
tational feasibility of correspondence: Parallelism, Locality, and Sim-
plicity. Parallelism is deemed necessary since there are a large number 
of elements, and Ullman states that the pairing of corresponding el-
ements can be accomplished, ” to a large extent”, in parallel. In this 
thesis, it will be shown that due to the independence of the tokens, and 
by way of the parallel computation model and the consequent imple-
mentation, correspondence of the flow model tokens can take place in 
full parallelism. Locality, states that there are only local connections 
between processors. By this, Ullman has in mind the issue of sharing 
and exchanging of correspondence information. This issue will be dis-
cussed and respected by the model but regarded in implementation as 
an unnecessary step in a parallel approach to determining correspon-
dence between independent tokens, i.e. local communications will not 
be necessary. Simplicity states that the individual processors are rather 
simple computing devices. This classification is more befitting of ma-
chines such as the CLIP4 [FMM88] and the AMT DAP [HJ88] (see 
also Section 2.3.7) and is certainly not applicable to transputers. But 
a number of simple processors could be simulated in software on trans-
puters to achieve the same effect if necessary. In fact, in some areas 
of research into neural networks, exactly such a notion has been con-
sidered [OHRS90]. Ullman continues by defining a simple network to 
perform a minimum-cost mapping function to perform correspondence. 
This in principle is the root of the approach described in Section 5.6, 
when using the Mahalanobis distance for determining the closest match.

Martin and Aggarwal [MA78] have suggested three phases of motion 
perception as existing in parallel in the human visual system. (The 
reader is reminded to notice the inherent pipelining principle). •

• Peripheral processes that scan the field of view and detect fea-
tures within the field such as colour, shape, texture, but in this
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case mainly motion,

• A ttentive processes which focus their attention on interesting 
areas of the field of view, and must be able to track the movement 
and understand the associated details of the object in motion,

• C ognitive processes that perform higher-level abstractions by 
relating observations from the preceding two phases to knowledge 
about the real world.

Thus, while peripheral processes extract image features, attentive pro-
cesses could be expected to perform token correspondence, and cog-
nitive processes could be active in the interpretation of motion. Ull- 
man [U1181] has suggested that a combination of intensity-based schemes 
for peripheral processes, and token-based schemes for attentive pro-
cesses, could be engaged as the feeding processes to cognitive activities.

6.2.2 Some Examples

Tan and Martin [TM86] have applied peripheral and attentive pro-
cessing to the problem of rigid object tracking, and have implemented 
their approach using the simulated MIMD parallel environment called 
PISCES [Pra85](please also see Section 2.3.4).

Figure 6.1: E xam ple o f  a m ulti-resolution pyram id im age rep-
resentation

They create a set of parallel, peripheral processes to extract promising 
areas representing possible motion. These areas are subsequently di-
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rected to other processes for attentive processing. The system is made 
up of a pipelined image pyramid structure1 (Figure 6.1), with peripheral 
processes active at the coarsest level, and attentive processes cooper-
ating at the finer resolution levels. Attentive processes move to a finer 
resolution level on successful matching. Loss of objects forces the pro-
cesses to coarser resolution levels. Each level of the pyramid maintains 
the image in a different time frame from that of its neighbour level, 
with the finest level holding the most recent, as shown in Table 6.1.

Tracking is achieved by using trajectory of motion to project a search 
window in the next level of the pyramid, to be attended to by the 
associated process.

Level Resolution Time
0 64x64 t - 3
1 128x128 t - 2
2 256x256 t -  1
3 512x512 t

Table 6.1: A four-level, temporal, pipelined pyramid, with t 
as the present time

Their implementation, running on a VAX 11/780 under UNIX 4.2, uses 
many novel ideas, such as bounded windows on the image for more re-
strictive searches, and a central information exchange repository called 
the scene description model (sdm) through which agent processes can 
communicate. Unfortunately, the implementation suffers from a lack 
of generality, in which only rigid objects, described by their area, and 
major and minor axes, can be tracked, with the simulation performed 
on paper cut-outs. For example, their object detection approach would 
be inadequate for a real scene. Occlusion becomes a specifically acute 
problem since much of the scene information is lost at the coarsest 
resolution level. Another cause for the deterioration in performance is 
the idea of the four-level, temporal pyramid, and its asynchronous na-
ture with respect to the agent processes. (Note, the following comments 
would apply even more acutely for a more realistic scene.) The pyramid 
is continuously updated as new frames arrive, while attentive processes 
traverse down the pyramid. This flow-through of images in the pyra-
mid structure means that an agent process would not necessarily have

1An image pyramid structure may be constructed by partitioning the image into 
2x2 pixel sets, and using the average value of each set to form the image layer of 
the level above. Please also see Equation 6.11.
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access to consecutive images as it progresses to a finer resolution level. 
Moreover, images flow through regardless of the processing speed of the 
agents. Thus, due to computational delays, agents can miss frames and 
lose track, and objects may be picked up by new agents thus causing 
duplication, all leading to further inefficiency in performance. However, 
as a basis for the consideration of the problems involved in motion from 
a parallel perspective, Tan and Martin’s work provides an important 
analysis and implementation.

For a more recent point of view, two major transputer-based systems 
will now be discussed which have a direct bearing to AG Vs. These 
two are part of four systems whose associated research activities are 
being pooled together within one consortium known as the VOILA 
project [Bux91]. The intention of the VOILA project is to develop sev-
eral dynamic vision systems for the control of robot vehicles operating 
in different environments such as, indoors in industrial and commercial 
areas, or outdoors in stockyards and car parks etc. Thus the software 
and hardware knowledge of some eight separate European institutions 
are being integrated to produce efficient platforms for diverse applica-
tions. All the information regarding the systems about to be noted are 
cited from [Bux91], a report which only became available at the time 
of writing this thesis, thus much of the information is entirely new.

The DROID project has already been mentioned and some related work 
has been covered [HP87, HS88, SH88, SBC+89] in the previous chap-
ter. In summary, it consists of a corner detection scheme for token 
matching, followed by 3D estimation and analysis. Although [SBC+89] 
reports a hardwired schematic of the corner detector [HS88], a new 
transputer based implementation is reported in [Bux91]. This shows 
an approach similar to that presented later on in this chapter, where 
a dedicated network of transputers is proposed and assigned to the 
process of feature extraction as the first step in the process of token 
correspondence. The corner detection is performed on transputers, ar-
ranged in multiple one dimensional arrays and employing a farming 
approach. The collection of a SUN4 host, the network controller and 
slave processors is known as PARADOX. A Datacube MaxScan frame- 
grabber board is accessed in PARADOX by a special interface board 
with an on-board transputer. The interface board allows image data 
to be passed at video rate to an array of 32 transputers on a Transtech 
MCP 1000 card. Images are partitioned into 4x7 segments (no explana-
tions are provided for this) and transmitted in parallel to the multiple 
farm networks. Following the corner detection, the data is passed to 
the Sun4 host workstation which as well as acting as the overall con-
troller, carries out the correspondence and 3D computations required
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by the DROID system. On a serial machine, the corner detector is said 
to account for 90% of the entire computation of DROID’s 3D scene in-
terpretation capabilities. PARADOX performs its full analysis in 0.87 
seconds per 256x256 frame with comparable performance between the 
separate stages assigned to the transputer network and the SUN4. The 
VOILA report suggest many improvements as currently under consid-
eration for DROID, such as more accurate ego-motion measurement, 
and a transputer implementation of the correspondence and the 3D 
scene analysis stages.

The second system is a combination of the TINA vision software and 
MARVIN multi-transputer architecture. Although these two systems 
are fairly well-known in the vision community, their development into 
3D motion analysis is quite recent and new features have been revealed 
in some detail only in the VOILA report. For example, Rygol et. 
al. [RPBK90] discuss the recovery of 3D scene geometry and control of a 
robot arm for picking up (stationary) parts, but conclude only with an 
announcement of their intention to implement a feature tracker. Hence, 
as with DROID, it is interesting to note for now the authors’ approach 
to the problem of correspondence in particular.

The GEC HRC MARVIN (as defined in [Bux91]) consists of special pur-
pose TM AX cards each containing 1 Mbyte of dual-ported video RAM, 
and a T800 transputer that provide a wide bandwidth, multinode in-
terface between data on a Datacube frame-grabber, industry standard 
MAXbus, video-bus and a transputer array. Initially, it is reported that 
full-frame 3D stereo analysis, including Canny edge detection, stereo fu-
sion, line fitting, object recognition and location is performed in 12-15 
seconds on the 18 transputer MARVIN system. This is declared as an 
order of magnitude too slow for a machine to maintain an on-going 
description of its environment. Next, in order to exploit an alternative 
avenue, the VOILA report presents an example of tracking a known 
object on MARVIN by tracking the parallel lines of the object, fol-
lowed by the use of the successfully tracked segments in the estimation 
of the position and orientation of the object as a whole. Their ap-
proach is based on the exploitation of the spatio-temporal coherence 
of the world. The full-stereo system described above is initially used 
to recognise and locate the object, and to boot a run-mode in which 
the predicted position of an object is used to reduce the computation 
load. This predictive feed-forward algorithm is capable of returning 
the 3D position and orientation of the moving object in 300ms. The 
interesting factor is the combination of the edge extraction and tracking 
procedures implemented on MARVIN using the processor farm model. 
The farm controller is known as a virtual tracker, and the nodes as
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feature trackers. Each feature tracker, which is resident on one TMAX 
card to ensure the most rapid access to the stereo data, performs ID 
edge detection in the vicinity of the predicted position of the line seg-
ment to find the new actual position of the object’s edge feature. New 
line segment descriptions of the edge are then computed for both stereo 
images2 and projected out into 3D. The master virtual tracker conducts 
the distribution and collection of features and results respectively. Fol-
lowing the return of all the features, the latest position of a moving 
object is calculated.

The above description is of a prototype which seems to perform well 
for a known object in a well-contrasting scene, and where not all the 
segments need to be tracked successfully to determine the position and 
orientation of the object. Similar constraints applicable to object track-
ing systems in general are prevalent here too, e.g. severe occlusion. The 
combined edge extraction and tracking procedure is a fair approach 
which compared to a separately staged setup, reduces data communi-
cation rates (at the cost of design modularity). Moreover, this combi-
nation is a more practical proposition for their application, since the 
predicted search area where the image should be edge filtered is more 
accurately determined through the familiarity with the object geome-
try, e.g. the knowledge of the length of the expected edge segment.

This prototype MARVIN system is involved in a project with many 
software and hardware facets and with a strong manpower base, and 
it is expected that future research will lead to a system more read-
ily applicable to general scenes as defined by the aims of the VOILA 
project. The examples will now continue with two more capsular de-
scriptions of transputer-based motion detection systems using inten-
sity-based schemes.

Stephen et. al. [STD90] have used a simple transputer set-up to de-
termine the displacement of Civil Engineering structures, such as the 
behaviour of the Humber bridge at the centre of its span, using a cor- 
relation/template matching technique, applied to a single target object 
only. The tracking and predicting procedures are as follows. A 12x12 
pixel template of a user selected feature is searched for in subsequent 
images. The matching is determined by evaluating a least square error 
similarity measure over a 32x32 search window. The prediction algo-
rithm also uses a least mean square parabolic approximation applied to 
the object’s motion trajectory. This is not as optimum a technique for

2This author believes that by using calibration information from the geometry of 
the stereo cameras, the matching of the edge segments in the stereo pair of images 
is carried out through a one-dimensional search along the connecting epipolar line.
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linear prediction as Kalman filtering, but results in a simple equation 
for fast computation and still provides some measure of immunity to 
noise. The implementation consists of a single processor which tracks, 
and a pipeline which is used to execute the prediction process, in stages, 
on its three nodes. A real time response is achieved due to the small 
size of the images dealt with, and the application to a single target 
object.

Bernat and Rupel [BR90] have presented a cellular, transputer-based 
system to detect and track human motion across the border between 
the United States and Mexico. The tracking and prediction technique 
is based on the differencing technique, with median filtering applied to 
reduce the effects of camera noise or wind shake. The image is divided 
into geopixels (a rectangle of contiguous pixels in the image), each of 
which is associated with a cell which determines the cause of motion 
in the geopixel. The cells base their decision by consulting with neigh-
bouring cells. Various thresholds are used to distinguish between noise 
and real motion, and motion is tracked by noting movement from ” cell 
to cell” . The parallel implementation treats cells as processes on a 
single transputer which communicate over soft (internal) channels, and 
the geopixels are treated as data packets farmed out to slave processors. 
The authors itemise a number of shortcomings of which two of the most 
interesting will be cited here, selecting one from a motion point of view, 
and one from a parallel implementation point of view. Each cell bases 
its decision on the existence of motion, using a pre-defined equation re-
lating the input from the change detectors between two frames, and the 
cell’s decision from the previous frame. Accordingly, decisions undergo 
a relaxation during communication, and if they are not continually 
supported by additional cells detecting a change, then prediction con-
tinuity will suffer. The implementation is of the one-dimensional case 
for the pre-defined equation. Objects in real-life do not move in one 
dimension, and to implement motion in two dimensions, the cells need 
to communicate with their diagonal neighbours too. Hence, the authors 
state their preference for increased number of links on the transputer. 
The solution necessitates multiplexing and re-routing.

Note that the last two items of motion work on transputers have been 
based on intensity-based schemes, and have been successful due to the 
nature of the applications. Intensity-based schemes can also find an 
inherently suitable platform in neural networks. However, this author 
has found no particular references to support this idea.

Other transputer-based motion applications of note are [AD90] and 
[TLM+90], both of which provide little discussion on the actual trans-
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puter implementation. (The motion algorithm used in [TLM+90] has 
been cited in Section 5.3).

6.3 The Initial Investigation

The aim of this section is to outline some initial work on object tracking 
carried out in the attempt,

• to have a more thorough understanding of intensity-based motion 
techniques by regarding one in detail,

• to understand the basic, but fundamental, issues in dealing with 
full, rigid objects in a sequence of images, and as a consequence, 
use the knowledge for a better approach towards tackling object 
primitives, namely tokens,

• to help lay out the basic requirements for the parallel computation 
model, particularly with regard to process communication and 
synchronisation,

• to design a modular software structure that will be capable of em-
bracing various tracking algorithms, intensity-based or otherwise, 
with little change, and still based on the parallel model.

Stated in order of importance within the context of this section, the lat-
ter two were by far the most important issues. Hence, by attempting the 
implementation described here, which will be regarded compendiously, 
much work in the later application of the token tracking algorithm 
was saved. This work on object tracking was based on differencing 
and chain-coding techniques (please see Sections 5.2.1 and 2.2.3, re-
spectively). Yet, only the motion issues will be concentrated on at this 
stage, saving the parallel processing issues for the later sections to come. 
The aim is therefore to merely share some notions that were either ap-
plicable or inappropriate for use in the approach to token tracking. It 
will however be said that the system was fronted by TIPS, expanded 
to run on both a PC-Host B004 board, and a Harlequin frame-grabber 
board with a T800, 20MHz processor and 1Mbyte memory on board. 
The network was arranged as a tree network. All these issues and more, 
such as the system communications, process load balancing etc., will be 
discussed in detail for the token tracking application, since the underly-
ing system architecture is applicable to both object and token tracking 
techniques.
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The technique used here is similar to the accumulative differencing tech-
nique, which allows the analysis of frames F i,...,F n against the refer-
ence frame F\ in the sequence [Jai81]. This allows a partial history of 
the movement of an object in the scene to be observed. From the out-
set, it was decided that as a first step towards parallelism, each object 
must be assigned to a separate, monitoring process. To keep matters 
simple, the idea of smoothness o f motion and path coherence [SJ87] for 
a rigid object will be assumed. With these points in mind, the imple-
mentation will now be described through the consideration of its main 
stages: bootstrap and run.

6.3.1 Bootstrap Stage: Continuous Object De-
tector

The bootstrap process should have more appropriately been named the 
continuously-executing object detector process. This process remains 
active throughout the run of the system. Initially, by user interaction, 
it saves an image of the scene which becomes the reference image. Then, 
through its direct access to the Harlequin frame buffer, it samples and 
accepts images each time it has finished processing the previous image. 
This processing of the image incorporates the following steps,

1. Capture the next frame.

2. Perform differencing, against the reference image, on a ” hot space” 
border area around the image. Keep an account of the number 
of pixels that satisfy the threshold A, in C P  (Changed Pixels),

1
C P t =  C P t +

0

if |P(x,j/,0) 

otherwise

-  F ( x , y , t )| > A  

for  t =  1,2,...
(6 . 1 )

where A was taken as 25, to represent (approximately) a 10% 
change in the state of a pixel from the possible range of values 
associated with a pixel, which is [0, ...,255]. The ” hot space” area 
is shown in Figure 6.2.

3. If the total count exceeded a predetermined threshold, in this case 
10, then the hot space area is searched by a chain-coding process, 
which produces an object list of all the objects in the area (The 
objects must have at least their starting pixel co-ordinates in the
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Figure 6.2: ’’ Hot Space” area of image and some spatially 
classified objects

’’ hot space” area, therefore both objects A and B in Figure 6.2 are 
detected). To avoid confusion, objects that are found to be still 
in the course of entering the image are struck off the object list, 
since their description will be incomplete, for example object C 
in Figure 6.2. It is assumed that the object will be captured in a 
future frame. Should the object never enter the image completely, 
no unnecessary action will have been undertaken.

4. Send the list of objects found to the network controller, and con-
tinue processing from Step 1 again. The list contains information 
describing the chain-code, the area, and the centre point for each 
object. Addition of further characteristics would be a simple pro-
cess of adding to the data structure describing each object.

Thus, the bootstrapping process attempts to minimise its amount of 
computation by only searching a limited area in the image (if it was 
to process the full image, a heavy processing bottleneck would have
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built up at this early stage). Furthermore, the bootstrapping process’s 
function remains independent of the subsequent tracking stage. Also, 
note that the direction of motion for objects A, B and C is irrelevant to 
the detection process. The objects are dutifully detected and reported, 
but it remains the task of the tracking controller process to establish if 
an object, such as object C, is just entering or just leaving the scene.

Note, other processes run concurrently with the detector process to 
handle the data exchange between it and the tracking controller process.

6.3.2 Run Stage: Continuous Object Tracker

The run stage consists of a controller process to manage and organise 
the tracking and a number of tracker processes to carry out the actual 
task.

Controller Process

Whenever the detection process communicates with the controller pro-
cess, it passes the object list and the full associated image. The con-
troller itself consists of a number of parallel processes which are sim-
plified and itemised below.

• Buffer processes which queue incoming lists and images.

• A process which accepts an object list for the latest frame plus its 
corresponding image. It scans the list and matches the attributes 
of the objects within, to those currently being tracked. If no 
match is found, the object is issued as new to a waiting process. 
(Matching is a straight comparison of the object attributes all of 
which must satisfy corresponding thresholds).

• Buffer processes which queue incoming processor requests.

• A process which accepts requests from the tracking processes for 
sub-images which are expected to contain the next instant of an 
object.

• Buffer processes which output results to the outside world, i.e. 
TIPS.

Each tracker process executes the following (compacted) algorithm as 
enumerated below, given the object state vector Sj at time tj  in frame
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f  to be Sf =  [Sxf ,Syf,Se /], describing the object’s current position 
co-ordinates and direction of travel. M IS S IN G  is a variable used for 
occlusion analysis.

1. Accept assignment for tracking a new object, and receive object 
attributes. Thus at frame /  =  0, time is to, state vector is 5o, 
and M IS S IN G  =  0.

2. Request a sub-image of the next frame, where the size of the 
sub-image is determined using a large uncertainty.

3. Receive new sub-image ( /  =  / - { -  1). Perform chain-coding and 
form list of objects found in sub-image. Match each object to 
that under investigation. If successful, update state vector with 
observed measurements, set M IS S IN G  =  0 and continue, oth-
erwise carry on from Step 8.

4. Using the previous and new position attributes, estimate the ve-
locity Vf, and predicted displacement Dj+\, and thus predict the 
state vector S/+\ of the object in frame /  +  1,

v  _  y / ( S * f  ~  S * f - 1 ) 2  +  ( S y f  ~  S v f - 1 ) 2

5 t f ~  i f -1

D j+1 — Vf * (t j+1 — tj)

o  j ____—  l  /  * ^ y /  ~  S y f - i  \Sej  =  tan ( - ------- ------ )
x f  d xf — 1

giving new position co-ordinates for Sj+\ of,

Sxf+i =  Sxf +  Df+i * COS(Sej)

Syf+i =  Syf +  D f+1 * SIN(Sef)

5. Use the new position to determine the next search area. This is 
centred on the position with a radius determined from the maxi-
mum and minimum pixel position co-ordinates of the object, ob-
tained when chain-coding the object. If the sub-image lies fully 
within image limits, then continue from Step 6 (This would be 
applicable to object D in Figure 6.2). If the sub-image is found 
to lie partly outside the viewing limits of the camera, but only 
by a margin less than a pre-determined tolerance, then continue 
from Step 7, otherwise give up and continue from Step 1.

6. Send request for search area sub-image to controller and continue 
from Step 3.

( 6 .2 )

(6.3)

(6.4)

(6.5)

( 6 .6)
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7. Send signal to report that object is leaving the field of view, fol-
lowed by an adjusted search window. Continue from Step 3.

8. Let M IS S IN G  =  M IS S IN G  +  1. If M IS S IN G  (occluded) is 
less than a pre-determined tolerance, then use previous associated 
kinematics to estimate new search area and continue from Step 3, 
otherwise report to controller that the object has been lost and 
continue from Step 1.

The uncertainty measure is achieved by over-estimating the size of the 
search area, and thus some protection against variance in actual motion 
is achieved.

6.3.3 Some Remarks on the Investigation

This implementation was tested on uncluttered, simple scenes. Plate 6.1 
shows four (numbered) frames from a motion sequence of a single toy 
object representing the object’s history as it moves from scene-left to 
scene-top-right. The rectangular areas denote the search area predicted 
by the tracking algorithm. Notice how the very initial appearance, i.e. 
in spatial position, of the object resembles that of object C in Fig-
ure 6.2. The object’s next two full appearances in the image is then 
used to make the first prediction for the third occurrence. (This has 
not been reflected in the algorithm described above for simplicity).

Similarly, Plate 6.2 shows the progress of two objects. One object is 
travelling from left to right and the other is travelling in the opposite 
direction. The objects are travelling at a slower speed than that in 
Plate 6.1, thus a continuous deposit is left in the image.

Occlusion is tested and shown in Plate 6.3, where the area between 
the dotted lines is an object which has disappeared through image 
differencing, since it remained stationary. The moving object is lost 
after frame 32 and regained at frame 38. A new prediction for frame 
39 is shown, followed by the new position in frame 40, which due to 
the slow motion of the object is still within the search area of frame 39. 
When occlusion occurs, the tracking process requests the full image 
in its attempt to relocate the object, thus drastically increasing its 
computational load.

Objects, regarded as homogeneous regions in the image, are putative 
tokens. The main advantage of this investigation has been the pro-
vision of a springboard for designing an efficient parallel model and 
distributed processing environment for inter-frame correspondence of
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tokens. The implementation is employing a combined intensity-based 
and token-based approach to detect objects and to establish token cor-
respondence, even though the matching is a simple process of object 
attribute comparison. The ’’hot space” detection mechanism works 
well and reduces computation, although it may miss objects if they 
travel through it fast enough. Also, it is only applicable if the scene is 
known to be devoid of moving objects to start with. It’s use is there-
fore completely redundant for considering camera ego-motion, where 
instantaneous image-global movement may be observed. The width of 
the ’’ hot space” area could be optimised to suit a particular applica-
tion where the maximum speed of objects would be known. Examples 
of application areas are security surveillance, car parking-lot and air-
craft taxiing monitoring, all of which are quite controlled environments 
and can be managed with less sophisticated techniques. Flexibility for 
administering a more elaborate tracking algorithm, using better ob-
ject descriptors for more precise segmentation, also exists due to the 
modularity of the design. The system’s tracking capability could be 
enhanced by employing a more reliable estimation technique, such as 
Kalman filtering. For example, a Kalman filter would be more pre-
cise in estimating a smaller search areas for an occluded object. For 
occlusion, the uncertainty associated with the estimation would grow 
frame by frame while the object is missing, increasing the possibility of 
a re-encounter.
Some shortcomings of this simplified approach are its pre-requisites for 
the use of a static camera, and the need for almost constant illumina-
tion. More detailed analysis of object tracking issues may be found in 
various published articles such as [FT79, ADM81, TB81, Nag83, TM86, 
SJ87, HS90].

There are many questions that are raised by this section. How modu-
lar is the design, how are the processes distributed amongst processors, 
how do they communicate with the controller, how does the system 
achieve a balanced load, and how does the controller deal with incom- 
ing messages? All these issues and more will be clarified through the 
tackling of the problem of token tracking in the next few sections.
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Plate 6.1: Frames 11, 18, 24 and 33 of a sequence showing the 
tracking a single object



Plate 6.2: Frames 14, 30, 56 and 76 of a sequence showing the
tracking of multiple objects
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Plate 6.3: Frames 20, 32, 40 and 55 of a sequence showing
continued tracking despite interruption by occlusion
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6.4 A Parallel Computational Model

A skeleton, multiprocessing model is now presented for parallel com-
putation of inter-frame correspondence. The model is kept concise and 
general to allow it to remain applicable to both shared-memory and 
distributed processing parallel platforms. The model could have been 
described more specifically to represent a "handbook” for a loosely- 
coupled transputer implementation. Perhaps this may be said to have 
been achieved in the next section, where the implementation specifica-
tions can be grouped together and regarded as a matured model. But 
in this section, for the sake of clarity, portability, and applicability, a 
non-specific, high-level approach will prevail.

6.4.1 Assumptions, Requirements and Preliminaries

The model assumes that tokens are continuously available from a se-
quence of frames through a token extraction phase. No waiting is ex-
pected in accessing a new set of tokens for the next frame. To attain a 
reasonable, general-purpose viability, the following requirements should 
be claimed by the model,

• as many tokens as are necessary must be tracked,

• the nature of a token (corner, edge, any connected region) must 
be arbitrary, so long as it can be described as a feature vector or 
matrix, i.e. as a standard data structure,

• to each token one tracking process must be assigned,

• the model is to be independent of the tracking algorithm, and 
thus, the structure of the model tracking processes must remain 
independent of the tracking algorithm,

• addition of further processors or processes must not necessitate 
alteration of the model, or the tracking algorithm,

• in a high-level descriptive sense the model must remain indepen-
dent of any concurrent architecture,

• the model should be implementable on any concurrent architec-
ture, although one may not be as efficient as another.

(Those points in the above itemisation not previously covered, will be 
referred to as the features of the model are unravelled.)
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The model does not intend to exploit parallelism at the algorithm level, 
since it is not expected to have any knowledge of the algorithm. The 
parallelism lies in the handling of the tokens. Any process-local paral-
lelism is left as the responsibility of the tracking process to capitalise 
on.

Before continuing with the model definition, the variables displayed in 
Table 6.2 are defined for use throughout this section.

p total number of processes
T total number of tokens
N total number of processors
Qi total number of processes on processor i

(for i =  0 ,1,..., N  — 1)

Table 6.2: Some definitions used in the model

The model defines that all tokens must be processed concurrently. This 
is commensurate with the assignment of at least one process to each 
token to be processed in parallel with other tokens on the selected 
(parallel) architecture. There may be occasions where two or more 
processes are tracking the same token due to inaccurate predictions 
or noisy data. This forms a possible many-to-one mapping between 
processes and tokens:

P > = T  (6.7)

In the real world, there may not be as many processors available as 
there are processes, or tokens, therefore the model makes provisions for 
a number of processes, i.e. token trackers, to be executed in parallel on 
the same processor. It can therefore be expected that,

P »  N and T »  N  (6.8)

In the following discourse, it will be assumed that P  =  T for simplicity, 
except when stated otherwise, and that processes and trackers are one 
and the same and may be referred to interchangeably.

Given the issues discussed so far, the model assumes that a parallel 
architecture involving a number of processors is available, although it 
is unimportant how these processors are interconnected or even how 
the processes executing on this network of processors share or have ac-
cess to information. What is important, is that they DO share and
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have access to information. The necessity for a systematic control of 
the tracking processes, and the coordination of the laws of informa-
tion sharing as applied to them, combine to dictate the existence of 
an overseer or moderator or controller process. This tracking-network 
controller-process is reviewed next, to be followed by the other facets 
of the model.

6.4.2 System Controller

The task of the system controller is reflected in its name. It creates 
processes, synchronises their actions, accepts their termination, and 
controls the sharing of information, the balance and the process life 
of the network. It conducts its tasks through a Blackboard mechanism 
similar in concept to that of the sdm used by Tan and Martin [TM86]. 
However, unlike the sdm which forms the actual scene description data, 
the Blackboard in this model is the vehicle for coordinating the low level 
operations of the multitude of processes whose results may be used at 
a higher level (external to the model) for a unified interpretation of 
the image scene. It acts as a repository of information for sharing 
knowledge about the status of the whole system. It is only incidental 
that as a sub-function, the Blackboard also holds the scene flow model. 
The Blackboard may be local to the system controller, or dedicated 
to a separate controlling process. The former option will be assumed 
henceforth.

It is the system controller’s task to detect the presence of replicated 
tracks (i.e. when P  >  T) via the knowledge represented through 
the Blackboard, and to issue the actions necessary to continue with 
only one track by forcing the termination of others. This necessitates 
some form of information-sharing between the tracking processes via 
the Blackboard, whether the implementation is via a shared-memory or 
a message passing system. Thus read/writes, messages or requests for 
new information which will all go via the Blackboard must be queued 
and serviced by the system controller on a first-come first-served basis.

In implementation, the system controller will preferably execute on a 
separate processor with a large memory reserve.

6.4.3 Communications

The communications of the model is largely responsible for the be-
haviour of the system. It has to be flexible enough to allow expansion 
without imposing major alterations. Communication can be achieved
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To Outside 
World

System Controller

System
Controller
Sub-Process

\ Blackboard

Figure 6.3: Overview of model communications

in shared-memory systems via the use of semaphores in reading and 
writing of data, and in a distributed memory system via the passing of 
messages (e.g. in tightly-coupled and loosely-coupled systems respec-
tively). However, this remains as an implementation aspect outside of 
the model definitions, and any reference to communication must be re-
garded as applicable to both shared-memory and distributed memory 
systems or even a combination of both.

The model defines communications to exist between,

• system controller and outside world,

• system controller and processor controllers,
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• system controller and tracking processes,

• system controller, its sub-processes, and the Blackboard,

• tracking processes on the same processor,

• tracking processes on different processors,

• sub-processes of each tracking process.

These have been visualised in Figure 6.3. Although the diagram more 
closely resembles a message passing system, it can also apply to a 
multi-processor shared-memory system where the connections show the 
read/write access of data which would take place via a shared bus. The 
number of processes shown are notional.

More details on communication will be encountered in the following 
sections.

6.4.4 Data Structures

Computer vision requires the handling of a wide range of data struc-
tures. For example, the pixel domain is typically represented by square 
arrays, but following feature segmentation, say by chain-coding, the 
data structure more appropriately representing the semantics of con-
nected pixel co-ordinates would be a list of nodes for each independently 
chain-coded segment. Therefore, the model must ideally be able to 
handle the semantics of a wide-ranging assemblage of data structures. 
Moreover, the structures may be dynamic, and even asymmetrical. In 
fact, it is factors such as these that to some extent have determined the 
implementation of particular vision tasks on particular software and 
hardware environments. This is more explicitly shown in Figure 2.1.

Given the problem of token correspondence, the model can have a more 
definitive approach to narrowing the domain of its requirements. Re-
garding the communications between the system controller and outside 
world as implementation dependent, the rest of the communications can 
be specified to take place via dynamic, floating-form data structures, 
where the structures must be globally acceptable by all processes. No-
tice a globally-acceptable data structure does not necessarily pertain 
to globally-defined data. This would depend on a message passing or a 
shared-memory architecture.

For example, a process wishing to communicate its results to the system 
controller may pass a globally-acceptable data structure containing the 
information shown in Table 6.3.

6.4. A PARALLEL COMPUTATIONAL MODEL
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0 Data Structure control id
1 Sending Process id
2 Token Characteristics
3 Token history (past f frames)
4 Predicted Position for next frame
5 Image Area Required for next frame
. . . .
. free space
. . . .

Table 6.3: Example of a typical, globally-acceptable data 
structure, containing data pertaining to a token feature

The model is defined to be independent of any line tracking algorithm. 
Different tracking algorithms may require different items of informa-
tion for a token. This idea of floating-form data structures ensures 
that the carriage of information across the model remains unaffected, 
and that it remains for the tracking algorithm employed to be designed 
to input to and extract from the data structures, the information it re-
quires. Thus an algorithm-independent communications platform may 
be established.

Some other types of communication may be regarded as follows. The 
controller will communicate with processors to create new processes, 
and with processes to supply them with their required information, to 
accept their predictions, or register their termination. In turn, pro-
cesses need to request and receive information about regions of the 
image and they supply the controller with their predictions. They may 
need to communicate with processes on the same processor or other 
processors to exchange tracking information, e.g. for occlusion, or to 
off-load the state of a track during load-balancing stages. These aspects 
are by nature communicationally expensive, performance degrading and 
to some degree difficult to implement. However when implemented, 
these must be limited to take place under instruction from the system 
controller, or at least with the approval of the system controller. Either 
way, the model dictates that the system controller know what is going 
on. It will be shown how this problem is dealt with in Section 6.5.
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6.4.5 Load Balancing

By determining a suitable strategy for the allocation of tasks, a sim-
ilar computation load can be achieved for each processor. Ideally, it 
must be recognised that different tracking algorithms are available for 
tracking different token representations, where the tokens may be of 
various description and degrees of complexity. For the moment assume 
the application of the model to one type of token using the same al-
gorithm. Hence, the model requires the same tracking algorithm to be 
applied to each token and therefore the complexity of computation per 
process is approximately of the same degree. Thus, computation load 
approximates to the number of tracker processes on a processor and 
the ideal balanced state for the model is defined to be a state where 
the difference between the number of tracker processes executing on 
any two processors is never greater than 1. Given N  processors, the 
load must be distributed at the initial bootstrap stage such that each 
processor is committed to Q processes where,

( J  +  1 if i <  (T MOD N)
Qi =  \ (6-9)

[ otherwise

for i =  0,1,...,N-1

During the run mode the controller repeatedly updates that part of 
the Blackboard concerned with the welfare of the processes. When new 
processes are created they are assigned to processor i where,

Qi =  MIN(Qo, Q i , Q ( n - i )) (6.10)

and where M I N  returns the first minimum value if more than one were 
encountered.

When tracker processes terminate, they simply return a signal so that 
the Blackboard may be updated by the controller. While monitoring the 
Blackboard, the controller may find that a processor is running fewer 
processes than another, i.e |Qi — Qfi > 1, for some i and j .  The con-
troller may then redistribute the computation by issuing instructions 
for processor i to pass some of its load to processor j  or vice versa.

6.4.6 Processes and Their Behaviour

The model is defined for achieving parallelism at token or feature level 
rather than at the (tracking) algorithm level. Thus, by nature, a MIMD
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Figure 6.4: A  flow diagram showing the basic algorithm of a 
tracker process

model is being proposed where, numerous processes running the same or 
different tracking algorithms, work on different data sets from different 
or (partially) the same parts of the image, which may or may not be 
overlapped. Each process is an intelligent entity capable of controlling 
its own activities and performing motion analysis, and given a snapshot 
of the status of the model’s processes, they may be expected to be at 
various phases of computation. Each process must have access to means 
to apply the full tracking algorithm to its assigned token, preferably 
through shared libraries. For a distributed processing platform, the 
libraries should be replicated only once per processor. All tracking 
processes on each processor should have a particular status and priority
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depending on the nature of the token being tracked and the importance 
attached to it. It may be that all processes should have equal priority 
within each frame regardless of their nature. A process must have 
access to any part of the image of any size it requires.

A flow diagram showing an abstraction of the function of a tracker 
process is presented in Figure 6.4. The model requires that ideally 
there would be no bounds on the number of processes active at any one 
time in the system. Naturally, one limiting factor will be the amount 
of memory available to each process (or processor as a whole).

New processes are created when new tokens appear in the image. Work-
ing processes simply go on tracking until they lose the track or the cor-
responding edge segment exits the field of view. What happens next at 
such situations is dependent on the particular tracking algorithm em-
ployed. Terminating processes must return their status to the controller 
for the last time and cease execution.

Processors remain responsible for their set of processes through a local 
controller. For example, they create a new process when prompted by 
the system controller. Some other tasks may include filtering process 
data in, out and through.

Synchronisation

Figure 6.3 boasts a number of different processes, local and remote, 
which may communicate with each other. For these to work together, 
some form of synchronisation is necessary. Process synchronisation will 
be largely dependent on the implementation platform. Synchronisation 
issues were described in Section 2.3.4.

The discussion above reviewed the main features of the model. Many 
aspects of the model will be formulated at implementation level and in 
the next section the model is implemented as part of the full system 
design.
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6.5 MATCH: A Multi-Processor Token 
Tracker

6.5.1 Overview

The model described in the previous section will now be extended to 
achieve a distributed memory, message-passing, multiprocessor imple-
mentation of the token tracking algorithm outlined in Chapter 5. In 
addition, a section is dedicated to the edge extraction procedure and 
its most efficient fulfilment.

The complete implementation is named M A T C H : The Multiprocessor 
(or Mixed SIMD/MIMD) Approach to Tracking-by-Correspondence 
Hardware. The details of the hardware used are provided briefly in 
Section 6.6, and in more detail in Appendix A. In the meantime it 
will suffice to say that, firstly, the same overall equipment as that de-
scribed for the work described late in Chapter 4 was available only now 
with more transputer TRAM modules, and secondly, that unlike MAR-
VIN [RPBK90, Bux91] or PARADOX [Bux91], all transputer boards 
and modules used were industry-standard hardware boards. Therefore, 
the emphasis laid more heavily on pinpointing efficient implementation 
routes via software rather than hardware. This means that there are 
not necessarily any fixed configurations for the sub-units of MATCH, 
and the efficiency of algorithm execution will be allowed to define the 
hardware connections required. This helps towards the achievement of 
one of the parallel model’s goals: the ability to extend and add proces-
sors as required (depending on the adeptness of the software design; a 
subject that also will be covered later).

At the highest level, the implementation is made up of three indepen-
dent transputer configurations executing in parallel, as shown in Fig-
ure 6.5. These are the HI (Host Interface - running under the auspices 
of TIPS), the FEE (Feature Extraction Engine), and the TE (Tracking 
Engine). This arrangement is proposed as an efficient decoupling of the 
inter-frame correspondence problem, allowing the optimisation of each 
stage towards a practical whole. The FEE will accept images from the 
HI network, and following a token detection process, passes them in a 
token list to the TE phase, where they will be analysed for correspon-
dence. From the HI to the TE through the FEE network, these stages 
could be viewed as a three-stage pipeline, which can be further com-
plemented when the stage pertaining to 3D model and scene analysis is 
introduced. Please compare this pipeline configuration with that of the 
stages in general vision scene understanding processing as depicted in
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Figure 6.5: The three decoupled, parallel and communicating 
units of the implementation are shown in a pipeline format 
represented by thick lines. The dashed lines represent results 
and diagnostics communications.

Figure 1.1. (At present, the existing configuration is transformed into 
a ring network by assigning the HI to mediate between the engines and 
the external world.) Further parallelism is exploited in each constituent 
part, where the FEE will serve as a SIMD model of computation, and 
the TE as MIMD. The term engine is used since, ideally, the network 
concerned should display improved performance by the addition of fur-
ther processors, as required by the model.

A network of transputers can be configured to achieve various parallel 
models. We examine and discuss the suitability of different models for 
both the edge extraction and the tracking stages. The discussion on the 
host interface, which is the server and the viewer of the proceedings, 
follows last.

Finally, an important note is brought to the reader’s attention. Often, 
one encounters the title of a piece of research work claiming real-time
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operation, say in motion analysis. By looking deep into the research, 
one may find that the real-time system operates on a single rigid object 
in a contrasting scene with an appropriate, well-defined model. Fur-
thermore, what constitutes as real-time in one circumstance may not 
necessarily be so in another. In fact, in AGV motion analysis, motion 
displacement relative to camera input sampling rate is assumed slow, 
particularly for a complex, indoor scene, and processing on each frame 
may be allowed to be completed in the order of seconds. So, it may 
have been noticed that no extravagant claims regarding real-time anal-
ysis have been made here, since MATCH may or may not be real-time 
given the circumstances. The system’s performance will be discussed 
in the closing sections of this chapter, outlining the factors that can 
affect performance, such as the complexity of the scene and therefore 
the number of tokens tracked.

6.5.2 Some Practical Issues

During the implementation of this work, a further set of transputers 
became available such that the full transputer equipment then stood 
at, the PC HOST B004, the Harlequin Frame Grabber, and a total 
of eighteen 20 and 25MHz TRAM transputer modules each endowed 
with 1Mb of RAM, and with a memory access speed of 3 or 4 cycles. 
The extra transputers particularly allowed for a better evaluation of 
the feature extraction stage of the implementation, the results of which 
are presented in Section 6.5.3.

Throughout this work image sizes of 256x256 are used. This was chosen 
in contrast to 512x512 images, purely due to the lack of memory. The 
system is designed at every stage to cope with larger images. In fact, 
each time an image is captured during test runs of the system, it is 
a 512x512 image, which is subsequently reduced in resolution into a 
256x256 and then fed into the system for analysis. The process of 
reducing the image resolution works by assigning the average of the 
sum of every group of 2x2 pixel sets in a 512x512 image, F(x, y ), to the 
pixel value for a corresponding position in a 256x256 image, f ( x , y ), 
using the following equation,

f(x,y) = jJ 2 J 2 F(2x + i’ 2y +i )  (6-n )
4  ¿=0 j = 0

for [x, y] =  0,..., 255.
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6.5.3 The Feature Extraction Engine

WARNING!: This section makes many references back to earlier work 
described in this thesis.

Let it be assumed that the next frame in a sequence of images is avail-
able. The FEE is then the first stage in the manipulation of the tokens. 
The selected features in this application are edge segments. Under 
perfect conditions, edge segments may be continuously extracted and 
considered as possible recurrences of the same edge features from the 
most recent frame in a sequence. However, edges are spatially extended 
features, and factors such as illumination, digitisation, and camera vi-
bration are amongst many that can lead to inconsistencies in extracting 
them from real images. (Edge drop-out has been considered as a ma-
jor problem by [CSD88, HS88, DF90].) The function of the FEE is 
therefore of paramount importance, since a poor provision of tokens 
will lead to a poor tracking rate, causing a high rate of track loss. 
The effort in ascertaining a satisfactory level of consistency at the least 
computational cost will now be investigated.

The FEE consists of a master controller transputer, and its network 
engine of transputer processors. The tasks of the FEE span across 
two distinct phases: a parallel detection of edges, and a sequential 
segmentation of the edge pixels into line segments.

Detecting the Edge Pixels

The edge detection filter used by the FEE is the Canny filter which was 
described briefly in Section 2.2.2. A sequential OCCAM translation of 
the Canny operation from a C source program was already available 
and only some minimal optimisation of this code was attempted by 
the author. The major effort was concentrated on the management 
of its parallel implementation; for this, the geometric parallelism ap-
proach was selected, since the edge detection operation is a low-level 
task which must be applied equally to the whole image. These ideas 
which were covered earlier in this thesis, are once again valid here, 
and in fact the work on parallel Sobel edge detection for the Label In-
spection problem will be used here too, to provide a similar analysis 
for the Canny edge detector. Note there is a complete contrast in the 
amount of computation the Canny detector requires when compared 
with the Sobel filter. Both the array (control-driven model) and farm 
(demand-driven model) networks will now be re-visited to determine a 
fast execution of the Canny filter. However, this will be brief since a 
full analysis of the networks was provided in Chapters 3 and 4. It would
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also be desirable to provide comparisons with the Sobel filter results 
of Table 4.5, to show how the complexity of computation and size of 
data packets affect performance. In fact, since some more transputers 
became available for this part of the work, and to aid quicker analogy of 
Sobel/Canny results, the old Sobel filter results will be re-measured and 
produced for the increased size networks. Furthermore, the Sobel filter 
implemented here will use the square root of the sum of the squares 
of the horizontal and vertical gradients as the value of the gradient 
magnitude. Why though use the Canny edge filter when the Sobel has 
already been implemented and tested? The importance of the FEE as a 
robust precursor to the tracking stage has already been indicated. This 
necessitates the employment of a more precise edge filter such as the 
Canny, in preference to the Sobel. Another importance of this choice 
will be reported when the discussion turns to segmentation of edges 
into lines.

Array
Size

Sobel Data 
Routing

Sobel Canny 
Sub-Image

Canny Data 
Routing

Canny
Total

lx l - 1.649 268x268 - 13.740
2x2 0.296 0.462 140x140 0.361 3.303
2x4 0.335 0.378 140x76 0.457 2.098
4x4 0.373 0.375 76x76 0.550 1.374

Table 6.4: Execution times for Control-Driven Model on 
256x256 images with corresponding Canny sub-image sizes for 
shown transputer array sizes

In the control-driven model, the reverse-feed distribution scheme is 
used, and the image is spread across the array and each sub-image 
contains an area overlapping with its immediate neighbours, as in Fig-
ure 3.2. In the Sobel operation, it was shown previously that the size 
of this overlapping border area is 1 pixel. For Canny, the area size is 
determined through the value of a which is used to form the Gaussian 
mask. A value for a of 1.6 leads to a 13x13 mask. Thus, the length and 
the width of the sub-image must be increased by 12, using 6 pixels on 
each side of the area. The Canny process will then produce results only 
for the required area of the real sub-image, as shown by solid lines in 
Figure 3.2, and uses the pixel information from the overlapped border 
when it requires to look in that area. The results of the control-driven 
model are shown in Table 6.4 and Figure 6.6, for single transputer and 
4, 8, and 16 processor array configurations. The corresponding sub-
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Performance of Canny and Sobel on Control-Driven Network

• Canny 
o Sobel 
o Optimum 

Speedup

Figure 6.6:

image sizes are also shown for the Canny. The execution times are 
for images of 256x256 pixels and they include the time spent on the 
distribution and collection of data. The timing for this communication 
of data is also provided separately in the Data Routing columns. The 
performance of the Sobel operator, and the optimum linear decrease in 
processing time for Canny, are also shown for comparison. Speed-up 
factors for the control-driven model are shown in Table 6.5, with effi-
ciency percentages provided in brackets. Please note that these show 
the speed-up of T800-25MHz processors over a single T800-20MHz im-
plementation.

Array Ideal Sobel Canny
Size Speed-up Speed-up Speed-up
lx l 1 1.00 (100%) 1.00 (100%)
2x2 4 3.57 (89%) 4.16 (104%)
2x4 8 4.36 (55%) 6.55 (82%)
4x4 16 4.40 (28%) 10.0 (63%)

Table 6.5: Speed-up table for Control-Driven Model on 
256x256 images

For the Sobel operator the amount of computation is very small and 
most of the processing time is spent on the communication alone. No-
tice, the heavy communications bottleneck built at the top-left trans-
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puter in the array, disguises the processing time of the Sobel operation 
as the size of the array is increased. In contrast, the processing speed 
of the Canny reduces satisfactorily by the addition of extra processors.

No. of Farm 
Processors

Sobel
32x3 2 (3 4x34 )

Canny
32x32(44x44)

Canny
64x64(76x76)

1 1.157 21.065 15.149
2 0.582 10.633 7.893
3 0.404 7.172 5.477
4 0.316 5.468 4.266
5 0.279 4.403 3.307
6 0.276 3.689 3.058
7 0.276 3.176 2.648
8 0.275 2.823 2.453
9 0.275 2.553 2.102
10 0.275 2.316 2.063
11 0.275 2.148 1.937
12 0.275 1.987 1.849
13 0.275 1.891 1.715
14 0.275 1.784 1.715
15 0.275 1.656 1.715
16 0.275 1.632 1.715

Table 6.6: Execution times for Demand-Driven Model on 
256x256 images

The performance of the demand-driven model was examined for dif-
ferent task packet sizes of 32x32 and 64x64 extracted from a 256x256 
image. To allow for the necessary edge border data, the actual data 
packet sizes were 44x44 and 76x76 respectively. Still, these resulted 
in 64 and 16 packets in total, again respectively. The results for the 
increasing number of farm processors (up to 16) are shown in Table 6.6, 
and in Figure 6.7. Although deteriorating, some improvement is still 
observed right up to 16 processors for the 32x32(44x44) sub-image im-
plementation. This occurs since there are a large number of data pack-
ets and even after the processors nearest to the master transputer have 
stocked themselves with work packets (i.e. one to work on and one 
waiting in their buffer), some work packets still remain to reach the 
processors furthest away. This is unfortunately not true for the fewer 
work packets that exist in the 64x64(76x76) implementation, so after 
the addition of the 13th processor no benefits in execution time can
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Performance of Canny and Sobel on Demand-Driven Network

Figure 6.7:

be achieved. Nevertheless, up to the 13th processor, the 64x64 imple-
mentation puts in a better performance since the computational and 
communicational loads are better spread. In comparison, for the Sobel 
operator, for which the 32x32 sub-image is used due to its better per-
formance compared with other sub-image sizes as shown in Table 4.5, 
there are as many work packets as the 32x32 Canny. However, since the 
algorithm is considerably less elaborate, the time to process a packet is 
much less than the time required to transmit a new packet to a slave 
processor and the addition of extra processors is ineffective since the 
shortest path processors become free quickly and eventually manage 
to consume all the packets. The speed-up and efficiency results for the 
demand-driven network are shown in Table 6.7. These show the perfor-
mance matched against a single transputer farm implementation. The 
efficiency of adding more processors for a computationally intensive al-
gorithm such as Canny in comparison to a Sobel is evident from the 
results. Also, the difference in the efficiency rates for the 32x32 and 
the 64x64 Canny show that as more processors are added the 32x32 
implementation can spread its load at a very high rate, whereas the 
64x64 is already fairly well balanced.
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No. of Ideal Sobel Canny 32x32 Canny 64x64
Processors Speed-up Speed-up Speed-up Speed-up

1 1 1.00 (100%) 1.00 (100%) 1.00 (100%)
2 2 1.99 (99%) 1.98 (99%) 1.92 (96%)
3 3 2.86 (95%) 2.93 (98%) 2.77 (92%)
4 4 3.66 (92%) 3.85 (96%) 3.55 (89%)
5 5 4.15 (83%) 4.78 (96%) 4.58 (92%)
6 6 4.19 (70%) 5.71 (95%) 4.95 (83%)
7 7 4.19 (60%) 6.63 (95%) 5.72 (82%)
8 8 4.20 (53%) 7.46 (93%) 6.18 (77%)
9 9 4.20 (47%) 8.25 (92%) 7.21 (80%)
10 10 4.20 (42%) 9.10 (91%) 7.34 (73%)
11 11 4.20 (38%) 9.81 (89%) 7.82 (71%)
12 12 4.20 (35%) 10.60 (88%) 8.19 (68%)
13 13 4.20 (32%) 11.14 (86%) 8.83 (68%)
14 14 4.20 (30%) 11.81 (84%) 8.83 (63%)
15 15 4.20 (28%) 12.72 (85%) 8.83 (59%)
16 16 4.20 (26%) 12.91 (81%) 8.83 (55%)

Table 6.7: Speed-up and efficiency table for Control-Driven 
Model on 256x256 images

By comparing the implementation of the two models it can be stated 
that although some improvement is observed in additionally extending 
the demand-driven Canny (32x32) network, the cost/efficiency ratio 
dictates that given this many number of processors it would be more 
economical to employ the control-driven model (as depicted in Fig-
ure 6.22(B)). The control-driven model performs better at all 4,8 and 
16 processor configurations, with the farm model capable of perform-
ing better than an 8 processor array configuration at 12 processors for 
the 32x32 Canny implementation, and at 10 processors for the 64x64 
Canny implementation.

Some further analysis and discussion will be presented in the concluding 
chapter of this thesis.

In general, the results presented here compare well with other Canny 
realisations. Bottalico et. al. [BSI90] report 39.3 seconds, and 6.0 
seconds for execution on a single T800, and a network of 16 transputers 
respectively, but they do not specify their test image size. Rygol et 
al [RPBK90] report 5.5 seconds for a 512x512 image on 24 transputers.
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Grouping the Edge Pixels into Edge Tokens

This is the second phase of the tasks of the FEE and itself consists of a 
number of stages. These tasks are presently executed sequentially, and 
on a single T800 only (which is also the FEE controller and interface 
to its outside world.)

Figure 6.8: Three levels in polygonal approximation of an edge 
list

The initial stage consists of the segmentation of edges into lines af-
ter a technique introduced by Lowe [Low87], and extended by Rosin 
and West [RW89]. There now follows the operation which has been 
implemented in this study. Once the resultant Canny image has been 
returned from the network, the edge pixels are scanned and grouped 
together in strings, producing a a number of lists of connected edge 
pixels. (Notice, that had Sobel filtered edges been used for this stage, 
a thinning operation would have been necessary, with the processing 
introducing an extra level of inaccuracy. Thus, the use of the Canny 
proves its benefit at this stage. However, it may be that a Sobel opera-
tion followed by a thinning application, take less processing time than 
a Canny operation. At the end, it is the accuracy of the results that 
wins over other considerations). Let the connected edge pixels be called 
space curves. These are either open or closed curves. Open curves start 
and end with only one neighbouring pixel, whereas closed curves have 
two neighbours at all points and are detected by following the curve 
until the start pixel is re-encountered. The whole process is similar to 
chain-coding in an image of single-width edges.

Following the formation of the edge lists, a polygonal approximation of 
the lines must be found. Lowe’s work is followed, whence each list of 
edge pixels is hypothesised as being a straight line passing through its
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end-points. A list is then segmented into two by determining its point 
of maximum deviation The same process is then applied recursively 
on each of the two lists. The recursive process is discontinued on the 
satisfaction of one of two conditions through predetermined thresholds. 
The conditions are when a line segment is less than 4 pixels3 in length 
and when the deviation is less than a certain number of pixels, which 
for this implementation it is set to 4 pixels, and has been determined 
empirically.

Figure 6.9: F E E  analysis on a simple scene: (top-left) Origi-
nal scene, (top-right) Canny filtering, (bottom-left) Grouping 
of pixels into connected strings, (bottom-right) Segmentation 
into lines through recursive algorithm.

The recursive procedure produces a multi-level tree where each level 
describes a finer approximation of the list of edge pixels than that

3The sm allest line with non-zero deviations is a line of 3 pixels in length. It is 
undesirable to retain a  three pixel line if the deviation is zero.
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D etected

pixels

D etected

strin gs

D etected  
Line Segm en ts

L in e
Linking

T o ta l

470 3 (1 .5 4 8 ) 15 (0 .0 5 3 ) 0 .0 0 8 1.609

Table 6.8: FEE processing results for simple scene

above. As the recursion unwinds, if any of the line segments handed 
up to the higher level (closer to the root) are more significant than the 
line segment on the current level, then they are retained and passed 
to the next level up , otherwise the line segment at the current level 
is returned. The measure of significance is determined after Rosin and 
West’s report which is defined as the ratio of the maximum deviation 
divided by the length of the line segment. Figure 6.8 shows an example 
of line fitting at different levels of recursion.

D etected
pixels

D etected
strin gs

D etected  
Line Segm en ts

L in e
Linking

T o ta l

44 3 4 171 (1 .8 3 3 ) 360  (0 .8 5 1 ) 0 .8 1 2 3 .4 9 6

Table 6.9: FEE processing results for busy scene

It has already been mentioned that OCCAM does not support dynamic 
memory allocation and therefore does not allow recursion. Instead, 
the problem must be handled using iterative techniques. The problem 
of coding the segmentation algorithm in OCCAM was overcome by 
implementing a stack, to store and retrieve memory variables at each 
level of the multi-level tree in the line segmentation algorithm.

Results of FEE processing are shown in Figure 6.9 and Table 6.8 for a 
simple scene, and Figure 6.10 and Table 6.9 for a busy laboratory scene. 
The following description applies to both. The top-left corner picture is 
the original scene, followed to its right by the image obtained after the 
Canny filter operation. A count of the number of pixels are provided in 
the first column of each table. Bottom-left image represents the list or 
strings of connected pixels. These are marked by a ” + ” pattern at their 
start and end points. Column two of each table represents the number 
of strings found in each image, with the processing time in brackets. 
The final image in the bottom-right represents the edge segments as 
determined by the recursion procedure described above. Again start 
and end points of the line segments are marked. For example, notice
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Figure 6.10: F E E  analysis on a busy scene: (top-left) Original 
scene, (top-right) Canny filtering, (bottom-left) Grouping of 
pixels into connnected strings, (bottom-right) Segmentation 
into lines through recursive algorithm.

the window-panel on the laboratory door, whose curvature leads to a 
multitude of small line segments. The number of line segments detected 
is provided in the third column of the table, followed by its processing 
time.

The final stage of processing consists of the line linking phase which 
is a more elaborate version of the algorithm developed for the label 
inspection process mentioned in Section 4.7. For this implementation, 
this comprehensive neighbourhood-proximity process is used to bridge 
possible short breaks along edge length. The execution timings in the 
fourth column of the tables refer to this process, followed finally by the 
total processing time spent on the post-Canny processing requirements.
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The grouping of the edge pixels into strings is the most costly process, 
since each pixel in the image needs to be examined at least twice, once 
searching for open lists and once searching for closed lists. To reduce 
the total processing time a number of methods could be attempted. 
The emphasis would be to use the processing power of the FEE net-
work processors to achieve a better speed of computation. The task 
of grouping the pixels into lists could be split across the transputers, 
by allowing each transputer to follow its Canny process by applying 
the string formation algorithm while it still holds its sub-image data- 
packet. Then it would be the onerous task of the controller to piece 
all strings together into a set of continuous lists by reference to the 
results of each sub-image. The recursive process of line segmentation 
could be implemented using a technique for applying recursive algo-
rithms on pipelined transputer networks [Red88], however, this is also 
a non-trivial problem, and may result in longer computation time due 
to the extra communication load. The use of the line linking process 
has both its advantages and disadvantages. On the one hand, it aids 
to reduce the number of lines involved and may help to overcome some 
cases of drop-out from one frame to another. On the other hand, due 
to its dependence on a number of thresholds, it can lead to erroneously 
joined-up lines. Its use has therefore been implemented on a switch 
which can be selected at system run time. Naturally, the FEE process-
ing time is reduced when line linking is switched off.

Two methods for an immediate reduction in the complete processing 
time of the FI?# have been introduced. Firstly, in order to consider the 
most salient of the edges in the scene, those pixel strings which are fewer 
in length than a pre-determined number of pixels, are ignored. This 
reduces the task of line detection and line linking, and also drastically 
lightens the load for the tracking engine. In contrast, it can also lead to 
inaccuracies in continuously segmenting robust edges for the tracking 
engine. Results due to the enforcement of this process are presented 
later in the next section. Secondly, it is noticeable that the initial, 
parallel Canny detection, and the subsequent post-processing are de-
coupled tasks. Thus, the two stages can be overlapped, such that in its 
steady state the FEE system will require as long as the computation 
time of its longest stage to provide the TE with new tokens.

This is more clearly visible by considering the parallel tasks of the 
FEE controller as simplified and summarised in Figure 6.11. Not all 
buffer processes are shown to maintain clarity. One important buffering 
process which allows the overlapping of the edge detection and edge 
segmentation processes resides between those processes, as shown. The 
engine transputers run processes similar to those shown in Figure 4.1.
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was predictable; the errors in the registration of an edge, associated 
with the distance of the edge from the centre of the p O s H T  sub-image 
are quite considerable, and lead to inconsistent description of the edge 
from frame to frame. Added to this the fact that there will be some 
disparity caused due to camera motion, it is deducible that the p d s H T  

would not suit this application. Another shortcoming of the p O s H T  for 
this application is its inherent feature that different sub-images sizes 
suit the detection of different lengths of lines (Section 4.4, [Dav90]). 
Clearly, in a typical motion detection scene, lines of arbitrary lengths 
would be encountered. The G H T  [BB82] was found to require extensive 
processing and the performance further suffers for the high communi-
cations rate necessary for the global Hough space. Still, MATCH has 
a completely modular design, and other techniques for evaluation and 
implementation could be considered for the F E E  as and when necessary.

The final result of the F E E  processing is made available to the T E  via 
the link connection between the F E E  and the T E  master controllers as 
shown in Figure 6.22.

6.5.4 The Tracking Engine

The tracking engine as a sub-unit of MATCH, provides the opportunity 
for applying the model described in Section 6.4. Again, the decoupling 
of the problem is emphasised, since the T E  may at this stage be viewed 
as a black box whose only expectation is to receive a token  lis t from 
the outside world, in return for which it will supply another to ken  lis t  

as part of the current state of the structures in the scene, which must 
be interpreted as so by another stage of processing.

The transputer has been cited as an ideal tool for MIMD processing 
by many authors [Pag88, WP89, DEH89]. This is now examined and 
evaluated with application to the problem of token correspondence.

In determining the type of multiprocessor configuration to use, the 
n-linear pipe, the array, the hypercube, and the tree networks were 
narrowed down as the most likely candidates to fit this purpose. The 
intention was to keep matters fairly simple and straightforward, but 
most of all to choose the most appropriate configuration given the lim-
ited number of processors available.

The processes in the parallel model follow their predictions by requests 
to receive all the edge segments found in a certain area of the image 
in order to perform their matching process. The requests are spatio- 
temporally independent, but process and processor dependent. Since

179



CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

the criteria that any processor must be able to execute any task cannot 
be met, the processor farm computational model (described in Chap-
ter 4) was dismissed as unsuitable and thus so was a linearly arranged 
configuration.

The array processor configuration or a model of higher dimension is 
appropriate for implementation if inter-processor communication is to 
exist as defined in the tracking model. For a transputer-based sys-
tem, such configurations can provide the most efficient basis for short-
est path addressing from any processor to another (Section 3.6). It 
will be shown later in section 6.5.4 that inter-processor communica-
tion is not necessary, due to the choice and nature of token-tracking 
requirements. Therefore, 2D mesh, cubic, or other similar configu-
rations of even higher order are unnecessary, rather than unsuitable, 
for this implementation. However, it must be brought to notice that 
when inter-processor communication is necessary, the network trans-
puters would need more complex message handlers and consume extra 
processor cycles in routing messages to other processors since there are 
only a limited number of link connections. Moreover, there simply were 
not enough transputers available to implement a suitably-sized array 
or cube network. To add to this further, a desire for investigating an 
alternative configuration also played a major role.

In fact, the use of the configuration adopted for this implementation 
can be justified as the most practical in any case. As in any application, 
the minimum amount of communication along with the possibility of 
taking the shortest route are the most desirable factors in a message-
passing, multiprocessor system. Given that the communications in the 
tracking model have fixed target addresses, a network topology where 
the path between the source and the target is unique and short would 
be ideal. A tree configuration was selected to achieve this where there 
is a unique and direct path between the tree root (or controller) and the 
target process(or), and each node in the network need only hold a small 
table of addresses for its own children. The bandwidth of the system 
is also increased since a message can be propagated from root node to 
target using Oilog^N) communications in a network of N  processors 
with b branches at each node. This compares with 0 ( N)  propagations 
in a linear topology. For clarity in understanding and presentation, the 
implementation discussed here only uses two branches at each node, 
although three are available given the number of links on each trans-
puter. However, a step up to three branches would be a simple case of 
reconfiguration of the system and alteration of each processor’s local 
address-table. The correspondence analysis remains unaffected, and 
given the very small number of processors used in this implementa-
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tion, it is guess-estimated that a substantial performance improvement 
would not be observed by using a tertiary tree.

Various elements of the tracking engine are now considered using direct 
reference to the issues discussed in the model. To start with, problems 
faced at the lowest level, i.e handling processes, will be discussed, where 
it will be seen how they affect the path of the implementation. But 
before continuing, the reader will be reminded by providing a simplistic 
overview of the task at hand. In short, there will be a number of 
processes, running on a smaller number of processors, each of which 
will be responsible for a token in the image. The processes are expected 
to provide a progress report on the token, through communication with 
the central controller and B la c k b o a rd  system.

Process Manipulation

It was mentioned early on in this thesis that the OCCAM language is 
sometimes described as the assembly language of the transputer, and 
that its support for concurrency (process invocation, communication 
and synchronisation) provides for simpler concurrent program design. 
However, the OCCAM compiler for the transputer does not support 
dynamic memory management, thus memory and processes must be 
declared at compile time. One of the effects of this restriction is the 
inability to create processes to track new tokens. This limitation is 
solved by declaring for each processor, a number Q  of inactive, static 
processes at compile time where each process q,

4 € (0, 1,2.....1) (6.12)

is a c tiv a te d  a n d  d eac tiv a te d  instead of created  a n d  te rm in a te d  during a 
system run.

All processes start at a deactivated state, and a deactivated process 
initialises its environment and waits to be activated as a completely 
fresh tracker process. An alternative method would have been to load 
a node processor with new processes from the host processor [Inm88b], 
but this method was considered too costly in management and commu-
nication terms for this application. Also dynamic creation of processes 
is valid when an ’’unlimited” number of tracking processes are desired. 
For this work, the system wishes to select those tokens that are specif-
ically salient, and thus a static allocation of a limited (but still large) 
number of tokens is desirable and intentional, and it allows for a much 
faster and more efficient implementation with a higher likelihood of
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keeping nearer to real-time. These ideas are further emphasised in the 
next paragraph.

New processes are activated when new tokens appear in the image, and 
working processes simply continue tracking until they lose their track 
or the corresponding edge segment disappears from view. A process 
may lose the track because of noise or inconsistent edge data from the 
edge extraction stage. An edge segment may disappear because of oc-
clusion or simply because it leaves the camera’s field of view. In such 
situations the process may continue tracking by using one of numerous 
techniques in its attempt to re-establish contact with the ’’ lost” edge 
segment. These may be continuous imaginary tracking, active search 
of neighbourhood areas, simple wait for reappearance and more other 
expensive methods. The approach that has been adopted, and it proves 
the most efficient for this application, is described as follows. An image 
of a real scene will generally consist of many edges. The intention of this 
particular application is to provide a basis for a unified interpretation 
of all the constituent features of a scene. Loss of tracking information 
on some parts of a scene will not affect the continuity of information 
regarding the overall nature of the scene. Therefore, it is chosen for a 
process to terminate immediately upon losing an edge segment. Should 
this happen when the edge segment leaves the field of view, then ter-
mination has not been in vain. If occlusion has occurred, the edge may 
either never reappear or it will show itself at a later frame when it can 
be issued to a new process for a fresh track. Finally, if the edge segment 
is simply lost by its tracker, regardless of the cause, the actual line seg-
ment can be issued to a new process in the next frame for a fresh track. 
For both previous cases, the new information will be incorporated im-
mediately into the scene interpretation process working elsewhere. Loss 
of track is a more common occurrence due to inconsistent data from the 
edge extraction stage. Thus creation and termination of processes is a 
common occurrence and so activation and deactivation of processes a 
cheaper, more appropriate implementation of the model requirements.

Nevertheless, the issue of occlusion will not be left as such, since the TE 
can still deal with it, only it is proposed here that it is more efficient to 
deal with it in the manner described above. When occlusion does occur, 
Kalman filtering results of the tracking procedure will be exploited to 
continue the tracking of a lost token. This can be simply achieved by 
replacing the unobtainable measurement parameters of a token with the 
estimated parameters. Thus tracking is said to have continued through 
an imaginary phase. If new measurements become available after a 
predefined number of frames, the token is said to have reappeared and 
the tracking can continue for real. Otherwise, the process is allowed to
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give up and deactivate . This occlusion analysis and tolerance process 
has been programmed into the system as an optional requirement which 
may be switched off or back on. Results to support this are provided 
in Section 6.6. It should be expected that in a very simple scene with 
only few edges,

=>• consistent tracking will occur,
= 4  the tracking processes would have a long life,
= >  there would be a very low rate of activation and deactivation,
= >  and the system would, ideally, remain balanced.

Processor Address Tables

Root: [all processors]
Nl: [N3,N7,N8,.»,N4,„.]

N2:[NŜ N6r„]

N3:[N7^N8 ]̂

N4:[J

• • •

(a) (b)

Figure 6.12: (a) A  typical tree network, (b) address table for 
each tree node

However, in a real, noisy scene, a token’s track life may not last very 
long. This could arise through inconsistent edge extraction and/or sig-
nificant acceleration in the scene. Short track life would lead to a fairly 
high rate of activation and deactivation in this implementation result-
ing in inter-frame instances when system load is unbalanced. But this 
is soon overcome when new tracking processes are activated to either
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continue with lost tracks or start on fresh edge segments. This approach 
works well in practice and eliminates the need for inter-processor com-
munication to off-load tracking processes onto other processes. This 
too is further illustrated in Section 6.6.

The system is implemented on a binary tree network where the root 
processor of the tree network becomes the system controller and the 
nodes are the slave processors (Figure 6.12). Each node is said to be 
the parent of the lower level nodes branching from itself, which are in 
turn referred to as its children. Each processor node in the tracking 
engine contains a number of parallel processes which are the process 
tasks, the buffers, the multiplexor and demultiplexor processes, and 
the message routing tasks of the processor. These and the commu-
nication channels are shown in Figure 6.13. Figure 6.14 provides a 
pseudo-OCCAM outline of the parallel processes. When a data packet 
is received, the feed-router process of the processor determines which 
processor it belongs to. By looking up its own private address-table, 
the packet is then forwarded down the appropriate branch towards the 
child processor. This is illustrated in a sample tree network in Fig-
ure 6.12. The diagram also shows a sample address table. Note that 
each table is further sub-divided to contain child processor addresses 
relevant to each branch.

When a router process finds that a message has arrived ” home” , it 
passes it to a buffer/demultiplexer process which acts as a distributor 
of data to the collection of tracker processes currently active on the 
processor. Similarly, a buffer/multiplexer process is always active and 
ready to collect matching and tracking messages from the tracker pro-
cesses. It passes the results back to a router process which points them 
towards the processor’s parent processor along with other processors 
results arriving from all immediate child nodes. The data coming into 
the buffer/demultiplexor is by nature queued. However, for data go-
ing out of the processor, they are received from the multiple tracker 
processes by the buffer/multiplexor through a fair ALT arrangement 
to ensure an equal service to the processes. They are then buffered 
(queued) for output, via a bleed-router process, to a higher level pro-
cessor in the tree. The fair ALT schemes follow the principles described 
earlier in Section 2.4.7. The bleed-router also has the task of accepting 
the messages and data from the child processors of the processor it is 
executing on.

Each process has access to processor-local libraries which contain the 
tracking algorithm routines. Each can execute the full tracking al-
gorithm, the standard Kalman filter or the a, ¡3 Kalman tracker, as
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From PARENT

Figure 6.13: Parallel processes, including tracker processes, 
executing on each processor of the tracking engine
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—  Router processes are run in parallel, but at a higher priority
—  level to that of the main task process.
—  The channels of communication for the routers are shown
—  in brackets.
PRI PAR

PAR —  High priority processes for main communications 
... feed.router(From.PARENT,

To.CHILD.Right,To.CHILD.Left,To.MAIN)
... bleed.router(To.PARENT,

From.CHILD. Right, From.CHILD. Left,From. MAIN) 
PAR —  Low priority processes of the main process 

... buffer messages and data as they arrive on TO .M AIN channel 

... demultiplex for consumption: send out on process.in[q] channels 
PAR q =  0 FOR Number.of.PreSpecified.Processes —  i.e. Q

tracker. process(q, process.in[q], process.out[q])
... multiplex for collection: receive on process.out[q] channels 
... buffer messages and output on FROM.MAIN

Figure 6.14: Parallel processes of a TE processor (the low
priority processes can be read through as though depicting
the sequence o f events)

appointed. (The overall algorithm for each process was presented in 
Section 5.8.) Each process could also exploit further parallelism, since 
it has to process four independent, uncorrelated parameters per token, 
as shown in Figure 6.15. This provides an opportunity for mixing in 
some geometric parallelism into the MIMD model presented here.

However, let it be assumed that Q tracker processes are currently active 
on any single processor in the system. There is then a potential increase 
by 4Q in the number of schedulable processes. It takes the transputer 13 
processor cycles to start a new process and approximately 20 cycles4 at 
best to re-schedule it (as a low priority process) each time its turn comes 
up. This is clearly inefficient for the local-processor performance, and 
processor cycles could be spent more wisely by executing the filters in 
sequence. The alternative would be to communicate these tasks to other 
transputers, but that would be a phenomenally expensive approach. 
However, this opportunity could be exploited in say a finer-grain, but 
tightly-coupled multiprocessing platform, such as the IUA, where less 
communication would be necessary.

Even further parallelism is attainable per process. The decoupled equa-

4Transputer instructions: ldl I; ldl W; stnl-1; ldl W; ldpri; or; runp
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—  Each process assigned to a single token can exploit further
—  parallelism by invoking additional parallel processes for independent
—  Kalman filter calculations on token parameters.
PAR

... Kalman filter for xm

... Kalman filter for ym

... Kalman filter for 0

... Kalman filter for /

Figure 6.15: Possible parallel sub-processes o f  a token tracking 
process

tions 5.28 and 5.29 of the a, ¡3 Kalman tracker can be evaluated sepa-
rately and concurrently. Another level of parallelism arises at the time 
of computation of the Mahalanobis distance. This issue was discussed 
in Section 5.6.

The constitution of process messages and data will be discussed in a 
following section. However, the general semantics of their action is 
reviewed, partly here, and partly later in the comments on the system 
controller. Processes send and receive various types of messages or 
requests back and forth to the system controller. For brevity, only 
those sent from the processors are touched on here. These are itemised 
below,

• request: a request for the provision of a list of tokens to be found 
in a particular (search) area of the image following some tracking 
analysis,

• request: a request for the latest frame’s time-stamp,

• message: the results of the current frame where either a match 
is found and indicated so that the system controller can update 
the scene flow model, or where no match is found. Depending on 
the occlusion analysis switch discussed earlier, this could mean 
the termination or the provisional continuation of the process,

• message: a short message for the verification of deactivation.

It is emphasised that the general framework of the messages imple-
mented here are by no means intended to be rigid and unchangeable. 
These may be increased or decreased in number or context depending 
on the algorithm in mind. The system’s overall modular design should 
be able to handle other variations. This is specially achievable through
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the use of the OCCAM CASE statement on variant-protocol channel 
communications. For example, facilities exist to allow a process to re-
quest the time-stamp of the next available frame. This is particularly 
useful in the case of the object detection investigation presented in Sec-
tion 6.3 where the time-stamp was necessary in determining the next 
position of the object, assuming constant velocity, since the previous 
time-stamp. This facility is merely by-passed and ignored by the cur-
rent Kalman filter-based implementation. In the next section on the 
system controller, it will be seen how various processes are geared to 
handle and process varying tracker process requests.

System  C ontroller (SC )

In its implementation, the system controller behaves almost as specified 
in the model. It is the organiser and the conductor of the tracking 
engine.

The SC is constituted of three parallel processes at the highest level 
of its process family. These are enumerated and demonstrated in Fig-
ure 6.16, along with their communication channels.

The HI handler is used to return general status and functioning in-
formation about the TE to the interface network. The FEE handler 
continuously receives extracted edges from the FEE for time-stamped 
frames which are subsequently buffered and fed to the TE handler. Its 
task is therefore to execute an elementary buffering procedure.

The tasks of the TE handler are now reviewed. This process consists of 
a number of parallel sub-processes which collectively execute the main 
functions of the SC (Figure 6.16). One of the main tasks of the SC 
is to ensure an equal amount of computation for each processor in the 
TE network. In this work both static and dynamic load balancing are 
achieved. Static load balancing is accomplished at the bootstrap stage 
of the MATCH system when a specific number of tasks are allocated to 
each processor. At this stage, the SC receives the very first edge seg-
ments and distributes them amongst the network processors according 
to Equation 6.9. The actual assignment may take place in a number 
of ways, for example in a round-robin fashion or by assigning groups of 
tokens at a time. The former is the method implemented here and a 
simple pseudo-OCCAM simulation of the code is shown in Figure 6.17. 
These assignments are registered in the Blackboard using data struc-
tures named the process.table and the balance.table as described in the 
aforementioned figure. Dynamic load balancing is normally achieved 
by redistributing processes between heavily loaded and lightly loaded
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To/From
»FEE

To/From TE

To/From
Host

F E E

Handler

H .

Handler

\ .  ---------1

Blackboard

To HI handler
To/From TE

Figure 6.16: H ighest level o f  processes in the System  C on-
troller, and detail o f  the T E  handler
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—  Each object is assigned to a process on each processor.

—  Processes are identified in the process table as follows:
—  process.table[i][0] :=  transputer address (starts at 0)
—  process.table[i][l] :=  process.no on transputer (starts at 0)
—  process.table[i][2] :=  activation status (0,1 or 2)
—  These form the address of token no. i, where
—  PROCESS.ACTIVE is 0
—  PROCESS.TRANSIENT is 1 (during occlusion)
—  PROCESS.INACTIVE is 2

—  System is kept balanced by use of the balance.table
—  which ensures that no processor runs more processes
—  than another (except by 1). Typically,
—  balance.tableftransputer address] :=  no. of active processes
—  The balance.table is initialised to zeros at start.

—  Let tree.nodes be the number of transputers in tree. Let T
—  be the transputer address.(Cyclic between 0 and tree.nodes-1)

T  :=  0
SEQ i =  0 FOR total.no.of.edges 

[header.details]!NT header :
SEQ

—  set up process 
process.table[i][0] :=  T
process.table[i][l] :=  balance.tablefT] 
process.table[i][2] :=  PROCESS.ACTIVE 
balance.table[T] :=  balance.tablefT] +  1
—  header contains edge segment details and token ID., which
—  is also the colour code used for visual results display.
... formulate header
To.TREE ! Boot.New.Token;process.table[i];header 
IF

T  =  (tree.nodes-1)
T  :=  0 

TRUE
T :=  T  +  1________________________________________________

F ig u re  6 .17: A  ro u n d -ro b in  ass ignm ent o f  tokens to  processors
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processors. An alteration on this theme is managed here which will be 
explained soon, but first let some of the stages involved be examined 
which happen once the bootstrap phase has been completed.

So, consider a time during the run stage some frames later. Processes 
return their predictions and requests for the next frame via messages. 
Some processes will profess via their predictions that they have lost 
the track and that they have deactivated. Other processes will state 
that they intend to continue tracking and require a new set of ob-
served tokens. These messages are initially parsed and then organised 
for further action by the Results Organiser process, which incidentally, 
contains buffer sub-processes to queue the incoming requests. The Re-
sults Organiser process initially analyses the incoming messages and 
requests, sending a report (for one or a group of tokens) to the HI 
process. Both deactivation and continuation requests are then sent on 
along the appropriate channels for other processes to take care of them. 
Continuing processes are of two groups as itemised in the review of the 
processes earlier on. Some may be reporting their find, and some may 
be requesting a new search area. So, these, along with the deactivation 
requests, are reported through separate channels. However, since the 
Blackboard is not implemented as a shared data object (and rightly so, 
given the OCCAM message passing philosophy), all deactivation and 
continuation messages and requests are accepted by the same process 
which is the only process with read and write access to the Blackboard. 
Yet, these requests are sent along separate channels which provides a 
groundwork for a shared-access Blackboard implementation, if neces-
sary.

The requests are received on separate channels by the Processing-and- 
Queue Manager under an ALT control. This is the main process of the 
SC, and here is a brief summary of its tasks,

• Deactivating processes are marked on the Blackboard, where they 
will be used for reassignment when new tokens are discovered,

• Processes requesting further data on observed tokens are queued,

• Results from those processes reporting their correspondence match 
are accepted and used to update the scene flow model,

• When free of the above actions, the Processing-and-Queue Man-
ager continuously monitors the process-service-queue and services 
the requests, in a FIFO manner. The service comprises of the 
gathering, the grouping, and the dispatch of a token (sub-)list, 
consisting of all those edge segments whose end-points fall in the
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predicted region of the image as specified in the body of the re-
quest message.

These actions are depicted in Figure 6.18. Other channels are also 
serviced by this process, for example, a channel for providing the next 
time-stamp to a requesting process.

—  The process monitors incoming messages and requests on
—  a high priority ALT branch, itself consisting of a
—  multi-branched ALT construct. Thus, when nothing is
—  incoming, the servicing of the requests is continued.

PRI ALT 
ALT

receive.token.update ? signal; message 
... update scene model 

request.new.data.set ? signal; message 
... queue process for attention 

request.deactivation ? signal; message 
... set process status to PROCESS.INACTIVE 

request.new.time ? signal; message 
... send new time-stamp 

TRUE & SKIP -  Nothing else to do.
... attend to the process-service-queue.

Figure 6.18: A n overview  o f  the Processing-and-Queue Manager 
process

When all the processes have finally provided their match results per-
taining to a particular frame (identified universally by its time-stamp), 
any remaining edge segments that are unaccounted for, from this frame, 
will be issued to new or deactivated processes. The task is triggered as 
a sub-function of the Processing-and-Queue Manager and carried out 
by reference to details held on the blackboard. Thus the SC controls 
the load balance of the processors using the principles defined in the 
model (see section 6.4.5). The state of affairs at the boot-up stage was 
discussed earlier through Figure 6.17 by applying Equation 6.9. Dur-
ing system run, when the necessity for issuing a new process arises, the 
balance.table details are checked to find the processor iV, with the min-
imum number of active processes according to Equation 6.10. Using 
the processor’s ID, it is referenced in the process.table to find the first 
member q of its process set that is in a state of deactivation. This pro-
cess is then charged with the responsibility of tracking the new token.
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In the case where no minimum is found, a new (never activated before) 
process on the first and nearest processor is activated. Therefore, dy-
namic load balancing is achieved by redressing the discrepancy between 
heavily and lightly loaded processes during system run. This approach 
is preferable to redistributing processes between transputers, since it 
avoids the necessity of inter-processor computation, and is more prac-
tical as a result of the fact that tracking assignments occur commonly 
due to both new tokens in the scene, and old tokens with failed tracks 
which must be redesignated as new.

The SC uses a simple rule to reduce the possibility of duplicated tracks. 
It is a fact that no duplicated tracks will exist at the bootstrap stage. 
Later in the run mode, since the SC has control over which edge seg-
ments are to be delivered to requesting processes for their matching 
stage, it can simply refrain from supplying to a requesting process those 
edge segments already identified by another process as a match for its 
own edge segment, thus reducing duplication risk. However, if some 
edges are already supplied as possible candidates to more than a few 
processes then the possibility of duplication is increased. It is arguable 
that given duplication on a low scale, it is harmless when large numbers 
of tokens are being tracked. A way of tackling duplication would be for 
extra processor-to-Blackboard bi-directional communication, or even in-
dependent interprocessor communication to share knowledge about the 
status of the system. Although this would allow for more intelligent 
processes, the extra load on the system is unfeasible, when a low du-
plication rate is acceptable. Also, duplicated processes are harmless in 
so far as they would ideally present the same information to the scene 
flow model. Furthermore, duplication is only more likely to occur in a 
complex scene with densely packed tokens in the image, and when edge 
segments with extremely similar features are so close to each other, so 
as to be able to fool the accuracy of the complete Kalman filtering and 
Mahalanobis distance matching process.

Some run-time results showing an extremely low-rate for duplicated 
tracks are presented in the results section later in this chapter.

The Blackboard (as part of the SC)

The Blackboard is the TE system’s knowledge base, as (loosely) de-
fined in Section 6.4.2. There are no strict concepts associated with 
blackboards; for example the one presented in this work and those 
in [TM86, THKS88] all differ from each other considerably. Thorpe et. 
al. [THKS88] propose a distributed process architecture using a hier-
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archical blackboard structure, which is ” scattered” amongst different 
modules in the system. The modules then need to synchronise to ex-
change information via a central database. (Tan and Martin’s [TM86] 
blackboard was briefly mentioned in 6.4.2.) The Blackboard presented 
here, is in effect a collection of various data structures organised, ac-
cessed and updated by one major process. All access to the Black-
board by other processes must take place via hard-channel and soft- 
channel communications, but ultimately through the Processing-and- 
Queue Manager process.

Figure 6.19: Som e data representations on the Blackboard

The Blackboard has already been involved in some of the discussion so 
far. Here, the aim is the presentation of Figure 6.19, exemplifying a 
sample of its major contents. Some of these will now be described in 
short.

The token.grades data structure, assigns an INITIALISE flag to each
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token as they are supplied by the FEE process. As the tokens in the 
frame are treated and the match results are returned, the token.grade 
structure is progressively updated with those for which a correspon-
dence has been found. These are re-graded to MATCHED. This in-
formation aids the avoidance of duplication whereby the Processing- 
and-Queue Manager can disallow the supply of those tokens already 
MATCHED to tracker processes.

The scene.flow.model holds the latest information on the currently 
active tokens, consisting of lists of \xm, ym, 6, /] information.

The observed.token.list holds the latest set of tokens as extracted 
from the latest frame by the FEE network. These are grouped into 
sub-lists and dispatched to tracker processes when their search area 
requests have been processed. Each group will contain a list of those 
tokens whose both end-points fall inside the search area; this can easily 
be changed such that all edges with a minimum of one end-point in the 
search area are elected into the token sub-list.

The process.table holds an inventory of the address and identification 
of all the processes on all the system transputers, be they ACTIVE, 
INACTIVE or TRANSIENT.

The balance.table holds the number of processes ACTIVE or TRAN-
SIENT on each of the transputers in the TE network. It provides an 
indexing mechanism into the pro cess, table when the SC needs to bal-
ance the TE load.

TE Communications

(Some facets of the TE communications have also been already consid-
ered in the earlier parts of this discussion, such as those in Figure 6.13 
and its accompanying comments.)

The model requirements regarding the communications are followed in 
full, but with respect to the nature of the implementation. The major 
loads in communication are between the SC and the outside world, 
which comprises of,

• import of extracted edge data from the FEE network,

• the export of TE results to the HI processors,

• the exchanges between the SC and the numerous tracking pro-
cesses, which takes place via en route processors.
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There is no communication between tracking processes.

Floating-form communications is achieved by using ID integer or byte 
arrays (the fixed size of which is determined by the implementation 
algorithm) where a message of any length may be communicated as 
demonstrated in the skeletonised example in Figure 6.20.

The PROTOCOL statement defines a message consisting of an inte-
ger, followed by two pairs of values with each pair consisting of a size 
value succeeded by that number of components. The size value can 
be zero for one or both of the arrays. In the case when both sizes 
are zero, only the initial INT in the message is transfered, usually a 
tag value. A general description of the PROTOCOL statement may be 
found in [PM87]. The first integer array is always used as a way of pass-
ing essential housekeeping information, such as source process address 
or destination process address, consisting of a processor number and a 
process number. This manner of communication is adhered to at all 
stages of the TE network, where the principle part of the message (the 
second array) can be formed into an array of INT’s. It is hoped that 
its generality can be applied for use with different token tracking algo-
rithms. For example, one requirement of any tracking and prediction 
algorithm is the capability of examining any region of the image. In 
this implementation, image regions of any size may be passed by util-
ising the local processor power to pack the region from a 2D array into 
a ID array which is then unpacked by the remote processor locally. 
This is specially important in transputer link communications where 
link activity can take place independently of CPU processing once the 
CPU has initiated it. In the object detection system described in Sec-
tion 6.3, this facility was used to pass sub-images from the SC to the 
TE processes. By careful use of the RETYPE facility in OCCAM other 
types of data could also be passed through INT structures [PM87].

Figure 6.21 demonstrates the format of some of the messages used by 
the SC and the TE processes. These all have the tag;message.sizel; 
messagel¡message.size2;message2 format, where a messageX may ei-
ther be a message or a request, and which may be made up of different 
items of information packed into an array of INT’s. For some message 
types the contents of the message are also provided in Figure 6.21.

A header message contains the information necessary for the booting of 
a process with a new token’s data, following an activation.signal sent 
earlier to that process. Requests are made by returning the proposed 
search area. Requests are satisfied by returning the list of tokens found 
in the search area, and so on.

Use of buffering in TE communications is of paramount importance to
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—  Variable length channel protocal definition 
PROTOCOL TE.Messages IS INT; INT::[]INT; INT::[]INT

—  Define channel iolink 
CHAN OF TE.Messages iolink :

—  A process using the iolink channel would follow this pattern:
—  Define array. ID.TAG would be globally known.
[100JINT message :
SEQ

... message array is set up here.
iolink ! ID.TAG; process.address; (SIZE message)::message

—  Each message would be recognised and dealt with by establishing
—  the value of its identification tag.

Figure 6.20: Variable length channel com m unications

ensure that system performance is not degraded by waiting-to-commu- 
nicate channels. For example the router of any TE processor must not 
wait to communicate with a certain tracker process while messages for 
the child processors are arriving and expecting to be routed through 
(Figure 6.13). So a buffer on any processor accepts and queues messages 
for the processor, allowing the router to route. It follows logically that 
data-routing processes must be run at a higher priority than other 
processes, a principle already emphasised in this thesis.

The issue of deadlock is always a detailed and important factor in the 
design of any distributed multiprocessing system. Buffering as a solu-
tion is not always enough on its own and fairly strict protocols may have 
to be applied to avoid the potential of deadlock. This can take the form 
of an acknowledgement or handshaking signal established between any 
two communicating processors. As an example, the TE uses a disguised 
form of this procedure in allowing processes to request the time-stamp 
of the next frame. This can act as both an acknowledgement and a 
useful piece of information for many tracking algorithms.

6.5.5 The Host Interface

The interface consists of two transputers both acting as hosts. They are 
T800-20MHz processors mounted on a B004 and a Quintek Harlequin 
frame grabber/buffer board respectively, with both boards free standing 
in the PC (For more details please see Appendix A). Figure 6.22 shows
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the connections of the host processors to the FEE and TE networks.

The Harlequin is used to receive images from a camera in the real-time 
live mode. The images are then reduced in resolution from 512x512 to 
256x256 using Equation 6.11, time stamped, and passed to the FEE for 
edge extraction. The Harlequin processor is also responsible for receiv-
ing the results of both the feature extraction stage, and tracking stage 
from the FEE and TE respectively. These are subsequently displayed 
on a separate monitor allowing a visual observation of the system per-
formance. The processes of supplying images, receiving FEE images, 
and receiving TE token tracks, run in parallel and independently of 
each other. Only, the frame grabber’s display memory is dual-ported 
such that extraction and tracking results may be written to the same 
area of shared memory.

The B004 host processor acts as the interface to the outside world by 
having access to the PC ports via the server program part of TIPS. It 
is also used to drive the user interface as before. As with the Harlequin 
processor, the B004 processor is also connected to receive progress re-
ports and results from both the FEE and TE networks. Independent 
processes monitoring the inputs from these two networks pass the net-
works messages to a display process, which formats them and passes 
them to the PC server program for displaying on the EGA monitor. A 
typical display screen is shown later in Section 6.6.
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Source or
Message Type Destination Message Body

Figure 6.21: A  hierarchical breakdown o f  som e TE  system  
com m unications
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6.6 Tracking Results and Analysis

The results presented in this section were obtained using the set-up 
shown for MATCH in Figure 6.22 and Table 6.10, depicting the con-
figuration and number of transputers used, and displaying the mix of 
SIMD and MIMD approaches employed by the system.

Network No. of Transputers Network Type
HI 2 singular connection

FEE 8 regular array
TE 10 binary tree

Table 6.10: M A T C H : network configuration table

All the transputers in the system were T800s at 20 or 25MHz with 
standard 64 bit FPU and 4K on chip SRAM, and at least 1MB of 
RAM each. Thus, the system currently consists of 8 and 10 transputers 
for the FEE and the TE networks respectively. This provides a fairly 
balanced state between the two networks for a busy scene of over 100 
edge segments, as the results will verify later. Since the number of edge 
segments supplied to the TE may be controlled, a balanced state may 
always be attained and the TE kept busy while the FEE processes the 
next image frame.

A series of experiments were conducted to distinguish the various char-
acteristics of the system. Motion of the camera was attained by mount-
ing a camera on a MAXTASCAN inspection and measurement plat-
form. This machine contains a carriage which moves along a bridge 
mounted on the main frame. This allows an accurate and smooth mo-
tion with speeds of up to 12cm/s, controllable manually and dynami-
cally. Pictorial and corresponding statistical results of the tracking im-
plementation are provided in Figures 6.23, 6.24, 6.25, 6.26, Plates 6.4,
6.5, 6.6, 6.7, 6.8, and Tables 6.11, 6.12, 6.13, and 6.14. All execution 
times are in seconds, except when stated otherwise. It was mentioned 
previously that a unique ID is assigned to each edge token. This ID is in 
fact a colour value, selected from a circular scale with the SC as the im-
plementor and manager, and is mapped against a Harlequin colour LUT 
when drawing the edge segment on the display monitor. The results in 
each figure are presented as four frames sampled at arbitrary intervals, 
with the frame number printed in the bottom right-hand corner of each 
frame in each quarter-image. The frames are in this sequence: top-left, 
top-right, bottom-left, and bottom-right.
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(C)

Figure 6.22: M ATCH : Diagramatic outline of current system 
configuration. To keep the diagram simple, the C004 link 
switch and associated connections are not shown.
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Frame
Number

Number of 
Tokens

Matched
Tokens

Failed
Matches

Duplicated
Tracks

Success 
Rate (%)

7 8 8 0 0 100
14 8 8 0 0 100
20 8 8 0 0 100
29 8 6 2 0 75

Table 6.11: Frame results for simple scene

Avg. No. 
of Tokens

Avg. time 
for SC

Min — Max 
filtering

time/process
matching

8 0.27 sec 136 — 281 fisec 138 — 585 nsec

Table 6.12: Average frame processing time for simple scene 
obtained over a lengthy run

Initially, a simple, artificially constructed scene is presented to easily 
and comfortably convey the robustness of the tracking. Figure 6.23 
shows the original image of the starting frame from a sequence of 29 
frames. Plate 6.4 displays the result of the tracking sampled at frames 
7, 14, 20, and 29. By studying them, it can be observed that following 
an unstable start, which is expected since the constant velocity is not 
yet attained, the tracking proceeds in a solid manner (with the camera 
moving from left to right). A loss of tracks for the red and light- 
blue edges is noticeable in frame 29. These were artificially induced 
by altering the speed of the camera motion, yet this only affected a 
comparatively few set of tokens. Perhaps rather expectedly, no dupli-
cated tracks were observed given the clarity and simplicity of the scene. 
Table 6.11 shows the statistics obtained for the simple scene.

The average processing time for the SC in completely servicing a frame 
is displayed in Table 6.12. Note that on average, only the first eight 
processors of the TE would have been active with one tracker process 
each, compared with numerous processes for the two real scenes pre-
sented next. The minimum and maximum times spent by a process 
in Kalman-filtering and matching a token are also provided. This was 
obtained by monitoring the performance of every tracker process in the 
system. Note that the matching involves the Mahalanobis tests be-
tween the token being tracked and each token in the requested search
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Figure 6.23: First frame of the sequence for simple scene

window (Please also see Figure 5.10). From Table 6.12, it is evident 
that for the worst case, when the processing time for an isolated token 
is taken into consideration, the complete process of filtering and match-
ing is under 1 millisecond. Ideally speaking, near one thousand tokens 
could be tracked every second. However, the queue-processing and the 
communication load of the SC produces overheads that are unavoidable 
in a centralised control of a distributed message-passing system. More 
about the behaviour of the SC will be said a little later.

Plate 6.5 shows a case where the occlusion analysis option is switched 
on. Initially, notice that the object on the right is tracked smoothly 
through the whole sequence. The object on the left has a split edge on 
the right which by frame 9 has become one edge (the red colour) and 
is being tracked as one. Tracking goes smoothly up to frame 16, but 
between frames 16 and 26 all 3 main edges are lost by the FEE at least 
once. When they are lost, their associated processes still continue to 
track, but also new tokens are assigned to the new edges in the image. 
A little later, either these new edges are lost in turn, or the edge is 
reclaimed by the original Kalman filter, in which case the tracking is 
then continued by the old process using the old colour. This sequence of 
events may be clearly observed in frame 26 of Plate 6.5 for the light-blue 
edge which has reclaimed its token.
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Frame
Number

Number of 
Tokens

Matched
Tokens

Failed
Matches

Duplicated
Tracks

Success 
Rate (%)

First B u sy Scene (Plat,e 6 .6 )
7 104 75 29 1 72.1
16 108 78 30 0 72.2
45 108 69 29 2 63.9
62 105 70 28 1 66.7

Second B usy Scene (P late 6 .7 )
5 85 65 20 0 76.5
23 82 63 19 1 76.8
39 84 66 18 2 78.6
56 84 66 18 1 78.6

Table 6.13: Frame results for real two example real scenes

In the two example real scenes coming up, some important points must 
be observed when viewing the results (which are obtained in both cases 
with the camera moving from right to left). Firstly, only selected edges 
are tracked; for example, those below a certain length are ignored. 
Therefore a higher rate of track loss is possible due to edge drop-out 
at the extraction stage. Secondly, the Kalman filter works "indepen-
dently” of feature speed, though the examples here show only a small 
motion in order to allow performance over a large number of image 
frames. Thirdly, as the camera moves, new tracks will overwrite previ-
ously plotted tracks as coloured edges are traced on the display monitor. 
Thus, some tracks may look as if they were terminated, whereas they 
are merely hidden. Finally, the camera moves horizontally, therefore 
the reader should expect to notice vertical edges tracked better and 
more visible.

The first frame in the sequence of 62 frames for the first real scene 
example is displayed in Figure 6.25, followed with the tracking results 
sampled at frames 7, 16, 45 and 62 in Plate 6.6. The prominent or-
ange and gray areas in the top right corner of frame 62 illustrate the 
idea of immediate reassignment of an edge segment to a new tracker 
process (hence a new ID and a new colour from orange to gray) when 
a track loss occurs. This may be observed elsewhere in Plate 6.6, but 
must not be confused with edge tracks overlaid by others. For example, 
the aforementioned gray area has overwritten the orange tracks visible 
in frame 45. The second example is represented via Figure 6.26 and
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Plate 6.4: Frames 7, 14, 20 and 29 of a sequence for a sim-
ple scene, with colour-coded line segments displaying spatio-
temporal continuity
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Plate 6.5. Frames 4, 9, 16, and 26 of a sequence for a simple
scene with occlusion analysis, with colour-coded line segments
displaying spatio-temporal continuity
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Plate 6.7. This example contains many horizontal lines but some excel-
lent tracking, with examples where little has been overwritten. These 
may be observed in the middle-right and the bottom-left of the scene 
(especially the light-gray tracks). The statistics for the two busy scenes 
are shown in Table 6.13.

The percentage success rate for each of the examples shown are plot-
ted in Figure 6.24. A steady rate is observed in all cases. The large 
percentage drop for the simple scene is in fact an artificially induced 
loss of two tokens out of eight. The busy scene with less tokens has a 
higher success rate due to the higher chances of finding a match. The 
number of duplicated tracks was found to be very low in all the experi-
ments conducted. In fact, to such a limit that their effect on the overall 
performance may be regarded as negligible.

Occlusion analysis was not switched on for the real scene examples.

Table 6.14 displays the SC and minimum to maximum average TE 
process execution times for the filtering and matching stages of a pro-
cess. The execution times include some time spent on a bare-minimum 
amount of extra communication for reporting system progress. Again, 
the complete ideal processing time for a token is about the order of 1 
millisecond, such that almost 1000 tokens could ideally be tracked ev-
ery second. Furthermore, that would be on each transputer! However,
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Figure 6.25: First frame of the sequence for real scene 1

in reality, memory constraints and context-switching times would not 
allow such an achievement, even after the communication requirements 
are totally ignored. Thus the load must be spread across a number of 
processors. The following points must be observed when examining the 
process timings,

• The minimum processing time for matching is the same in all the 
example scenes. This may be due to those processes which do not find 
any tokens in their search area to perform any matching with. The 
overheads are approximately just some non-starter loop statements. 
However, the point below will also apply to this case.

• It is not clear exactly why the processing of the Kalman filters varies 
between the values shown in the appropriate tables, albeit a very slight 
variation. Two explanations are as follows. Firstly, it may be that 
in cases where spatial movement and velocity are zero, there is less 
computation involved, and secondly, each processor is at different stages 
of processing and may have different numbers of active processes on the 
scheduled list, thus context-switching of these low-priority time-sliced
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Plate 6.6: Frames 7, 16, 45 and 62 of a sequence for real scene
1» wjth colour-coded line segments displaying spatio-temporal
continuity
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Busy
Scene

Avg. No. 
of Tokens

Avg. time 
for SC

Min  —  Max 
filtering

time/process
matching

1st 108 1.65 sec 136 — 320 fisec 136 — 905 fisec
2nd 85 1.05 sec 136 — 279 fisec 140 — 792 fisec

Table 6.14: Average frame processing time for busy scenes 
obtained over a lengthy run

processes leads to differing execution timings.

• Due to the complexity of the scene, the matching takes slightly longer 
than in a simple scene, since more tokens are likely to exist in the search 
area. However, an upper limit on the number of tokens that can appear 
in a search area can be set to be able to control the matching load. In 
this implementation this is set to 9 after experimental observations. If 
the execution time for a successful match for a search area with only one 
token in it may be taken as approximately only slightly more than the 
minimum processing time given in Table 6.14, then in fact the timings 
show that a maximum of about 5 or 6 matches are being conducted 
within a maximum matching-process time of about 792-900 \isec.

• The TE processors are idle while they await the arrival of the data 
from the next frame. This idle time could be spent in a number of 
ways. One would be to perform tracking on combinations of features, 
such as whole objects. Also, the tracking could employ a more com-
plex filtering approach to model acceleration, as well as other features 
associated with each token. Furthermore, work is currently in hand at 
the Machine Vision Laboratory of the City University in trying to use 
this idle time for 3D scene matching of the tracked tokens locally. This 
involves the parallelisation of the approach and the satisfaction of the 
communicational requirements while the idle time lasts.

The execution times for filtering and matching compare well with other 
work such as that of [STD90] who use a very simple least mean square 
method for predictive object tracking which takes 64/zsec to execute.
The processing, processors and processes are all monitored by TIPS 
to keep the user informed of the goings-on in the various parts of the 
MATCH system. An instant of this is shown in Plate 6.8. The window 
on the left shows general processing results for each frame. The middle 
window shows the load-balance of the system by displaying the number 
of active processes on each processor. The last window demonstrates 
the address of each active tracker process. For example, note that for 86
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Figure 6.26: First frame of the sequence for real scene 2

edge lines (from the previous frame), the first 5 transputers in the TE 
were running 10 processes each, and the last four were running 9 each, 
demonstrating the most efficient load balance. The two small windows 
below right, are meters displaying the address of the last requesting 
process, and the address of the last terminating process, respectively. 
The timings show the full processing time inclusive of all extra progress 
reporting communications (which can be disabled).

6.6.1 Some Efficiency Issues

The SC is undoubtedly a major communications bottleneck for the 
TE network. The computation time of the TE system is dictated by 
the administration tasks of the SC, which include queue house-keeping, 
system load monitoring, communications per token, and other functions 
related to the general upkeep of the Blackboard.

The intricate set of actions handled by the SC are interwoven in a com-
plex, and inter-dependent web of tasks which are difficult to decouple
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Plate 6.8: The monitoring of the M ATCH  system
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and analyse separately. For example, its actions are dependent on the 
speed of the processes in performing their tracking, which are in turn 
dependent on the efficiency of the supply of information for performing 
the tracking. Naturally, the number of tokens involved has a direct 
affect on the performance of the system. Thus, the timings presented 
in Table 6.12 and Table 6.14, albeit very small, are directly related to 
the conditions surrounding each particular test case. Also, the greater 
the number of tokens in the system, the longer for the SC to get round 
to paying attention to the process requests. Using a selection filter, the 
system must therefore be employed to monitor just enough tokens to 
ensure a maximum response time. It is interesting to note the follow-
ing as a contrast. For higher resolution images (such as a 512x512) the 
execution time for the Canny is expected to increase by a power of two, 
whereas the SC will still only need to deal with approximately the same 
number of edge segments (which may now be longer lines, but are still 
represented by their end-points).

Improvements could be achieved by employing multiple SCs with inde-
pendent tracking engines. Also, from Figure 6.22 it is noticeable that 
there is only one branch from the SC to the TE processors. This is due 
to the lack of available links after administrative duties have been taken 
care of. By re-distributing these duties (e.g. combining the progress 
reports to the HOST B004 to pass through the Harlequin HOST) and 
freeing a link, it would be possible to double the bandwidth of the com-
munications. Another approach to increase the performance of the SC 
would be the use of the soon to be available T9000 processor. This topic 
will be covered in further detail in Chapter 7. The general performance 
of the TE network, and the SC component in particular, further suf-
fers by an approximated 25% slow-down in link communications when 
the C004 link-switch chip is used for connecting the transputers (please 
see Section 2.4.1). Perhaps this will diminish when INMOS Ltd. in-
troduces the C104, the next generation communications chip, due out 
around the same time as the T9000.

The weak-point in the current realisation of MATCH is not a lack of 
transputers as it may be thought at first. It is true that in order to track 
more tokens, more transputers were assigned to the TE network. In 
return, this left fewer for the FEE network, causing a slow-down in the 
engine’s performance on the Canny edge detection. However, the major 
problem lies elsewhere as briefly mentioned earlier: The total processing 
time of (the overlapped stages of) the FEE network of 8 transputers 
(2x4 array), taking into account the extra overheads, is around 4.1 
seconds. This includes around 2.1 seconds for Canny, overlapped by 
around 3.5 seconds for the edge segmentation stage. For an average of
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108 tokens, the TE network is ready for its next set of tokens in about
1.9 seconds, again including overheads. Thus, frame-processing rate is 
dictated by the FEE processing, for which some improvements were 
suggested late in Section 6.5.3. The most immediate step would be to 
parallelise the edge segmentation phases.

The results presented were obtained using the a, ¡3 Kalman filter algo-
rithm. The general algorithm-independence of the match system was 
also put to the test by using the standard Kalman filter approach. 
However, since the a, ¡3 and the standard Kalman filters are in nature 
the same technique (only varying in algorithm), the results for both 
systems are very similar, leaving no grounds for a comparison study, 
except from the point of view of computational performance. This was 
found to be marginally slower than the figures presented in Table 6.12 
and 6.14. Still, the standard Kalman filter implementation was a step 
in reaching the a, ¡3 tracker (as derived in Section 5.5), and a useful 
approach in testing MATCH with an alternative algorithm.

Of course, the system was also tested with the basic object tracking 
algorithm as presented earlier.

6.7 Summary and Conclusions

This chapter discussed the edge-tracking implementation of a parallel 
model for tracking tokens on a mixed SIMD/MIMD parallel process-
ing platform. Initially, a few notions on the use of parallelism were 
introduced, followed by some past and present work in motion using 
concurrency, especially the work in hand on the VOILA project. Next, 
an initial investigation into the application of some basic principles of 
motion, using parallel processing, was presented. This investigation of 
object-tracking enormously helped in the design and implementation 
of the work that was yet to come.

The parallel model of computation was proposed next. It spanned is-
sues such as communications, data structures, a blackboard mechanism, 
load balancing and much more. The model was purposely kept free of 
any association with particular tracking algorithms or multi-process ar-
chitectures. Thus, it may be applied, as a guideline, across many token 
tracking applications where parallel processing is sought.

The model was continued into the next section where the MATCH sys-
tem was presented as a multi-processor tracking system. Initially, for 
the feature extraction stage, two different applications of the data par-
allelism model were compared on two SIMD networks for the Canny
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edge detection operation. Results for increasing number of transputers 
per network were weighed against each other. The array network was 
found to be more efficient over the farm implementation, but there is 
easy scope for improving the farm network’s performance, given the few 
transputers available. The main idea is to double the processing band-
width by adding a new farm to another link on the master processor 
(Please see Figure 4.10).

Processors Sobel Canny Canny
Farmi Farm2 32x32 32x32 64x64

1 1 0.577 (100%) 10.626 (99%) 7.886 (96%)
2 2 0.302 (96%) 5.413 (98%) 4.257 (93%)
3 3 0.250 (80%) 3.675 (98%) 3.049 (89%)
4 4 0.247 (64%) 2.806 (97%) 2.441 (87%)
5 5 0.247 (56%) 2.284 (96%) 2.001 (83%)
6 6 0.247 (56%) 1.937 (95%) 1.840 (83%)
7 7 0.247 (56%) 1.717 (92%) 1.527 (86%)
8 8 0.247 (56%) 1.526 (92%) 1.527 (80%)

Table 6.15: Execution times for bi-linear farm, Demand- 
Driven Model on 256x256 images.

Table 6.15 shows the results for the implementation of the Sobel and 
Canny operations on a bi-linear farm network (with the corresponding 
percentage improvement over the linear farm in brackets), with the 
master controller supplying packets of data to whichever farm that 
is ready to accept next. An alternative approach to this method of 
supply would be to decouple the farms by splitting the image into 
two halves and supplying each farm with only the appropriate half-
image. Splitting the number of transputers in the network into two 
branches also reduces the communication bandwidth for those packets 
of data which would otherwise have had a longer path to travel before 
reaching their destination. From the table it can be observed that once 
again it is only efficient to add more processors for an application with 
a high computational load which reduces the communication latency. 
Thus the performance soon saturates for the Sobel, whereas excellent 
efficiency for the heavy computation load of the Canny is observed as 
the farm slaves increase in number. (If these results are compared with 
those of Table 6.6 for equivalent number of transputers (e.g. two farms 
of 4 for a linear chain of 8 processors), then not much improvement is 
observed, since in both cases the controller is still supplying work to

211



CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

similar number of processors, only for this case it supplies through two 
links which are monitored via a standard ALT construct).

The efficiency idea could be continued ultimately to a third branch 
leading to a tri-linear farm. Also, multiple arrays could be used for 
the control-driven approach, with each array processing part of the 
image. However, the FEE system’s real bottleneck was found to be the 
non-localised processing of the string transformations (into lines) which 
renders the job somewhat abstracted from easy parallelisation. Since 
the concentration of this work has been on the correspondence analysis 
stage, the requirements for further improvement of the FEE system’s 
bottlenecks were considered out of the scope of the most immediate 
work, and were not pursued any further.

Next, the parallel model was extended for implementation on the trans-
puter as a distributed memory model, using the a, /? Kalman filter for 
the tracking algorithm. The MIMD implementation used a tree net-
work whose suitability and functional aspects were considered along 
with other factors such as the SC’s Blackboard and process manage-
ment issues, and TE processor functions and process manipulations. 
Results pertaining to the general analysis of the processes, the match-
ing, and the tracking were presented next, succeeded by some efficiency 
issues. These showed a frame processing rate suitable for use in AGV 
motion analysis for providing visual input to the vehicle central system 
to aid location and navigation. The TE network’s overall throughput 
may be increased by employing three branches at each node of the 
tree rather than the present binary approach. However, the TE still 
performs at an acceptably fast rate especially in relation to the FEE 
network. Furthermore, the modularity of the design of MATCH allows 
for the integration of a different, more efficient FEE network, what-
ever its configuration and overall nature may be, without interfering 
with the structure or the implementation of the TE, as long as the TE 
receives its token lists via a link connection.

The applicability of the system was tested by using an object track-
ing algorithm (described in the earlier investigation phase), and two 
different approaches of the Kalman filter to linear estimation. This 
vindicated the effectiveness of the model and its subsequent implemen-
tation as a sound proposition towards an independent communications 
and hardware platform for the analysis and implementation of general 
token tracking algorithms based on transputers.
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Chapter 7

Summary and Conclusions

7.1 Brief Summary and Initial Conclu-
sions

The aim of this thesis was to present and evaluate the use of the trans-
puter in appropriate configurations with respect to the enhancement 
and parallelisation of vision algorithms, as pertaining to distinct image 
processing applications and problem areas.

In Chapter 2 some foundations in the fields of image processing and 
parallel processing were laid, and many important and relevant topics 
to this thesis were reviewed. In addition, some fundamental aspects of 
the transputer and OCCAM were studied. Also, issues in more efficient 
OCCAM programming on the transputer were discussed enhanced by 
the ’’ lift” example.

Chapter 3 introduced the forward-feed or reverse-feed distribution mech-
anisms for distributing images across arrays or meshs of transputers. 
The scheme was analysed rigorously to provide mathematical means of 
evaluating the distribution and collection costs of images on transputers 
prior to main image processing. Since communication factors are of pri-
mary importance when evaluating or simulating system performance, 
the issues tackled by this work can be of great value. Estimated re-
sults were obtained which matched closely those measured (Table 3.1). 
The scheme was then applied to a real-time situation where the general 
positioning of labels stuck on products were examined.

Some initial thoughts following this work were that transputers are 
extremely easy to work with, and one need simply connect them to-
gether to establish multi-processor configurations without resource to
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external logic or other specific hardware. The reverse-feed distribution 
scheme was intended as a general scheme to map any P  x Q image 
onto a M  x N  transputer array. This flexibility also meant that the 
method was too costly for the real-time label inspection problem, added 
to which was the cost of performing totally generalised, parallel algo-
rithms for inspection. To this end, a customised system of transputers 
was set up, and this investigation showed a much better performance 
efficiency. From the results in Tables 3.3 and 3.5, it could be concluded 
initially that a customised set-up of transputers could provide a cheap, 
affordable, and efficient system for label inspection. More generally, it 
can be concluded that the transputer is very likely to perform well as 
a processing unit in an embedded system.

In Chapter 4, the demand-driven approach of farm parallelism was ex-
amined and compared with the control-driven mechanism of the reverse- 
feed distribution scheme through the implementation of the Sobel edge 
filter and the Hough transform as preliminary, but independent, stages 
of a more sophisticated approach to label inspection. In addition, the 
Hough transform was shown to parallelise well when considered in sub-
images. The resulting pOsHT transform was also found to be suitable 
for detection of arcs as small line segments, which greatly simplified 
the detection of oval (or circular) labels. Inspection results were pro-
vided in Tables 4.2, 4.3, and Figures 4.6 and 4.7. Sobel and pOsHT 
processing times were further measured for a larger, eight transputer 
configuration as presented in Tables 4.5 and 4.6 in Section 4.8.

Despite some of the very efficient speed-ups achieved, and despite the 
fact that some computationally complex algorithms are being executed 
extremely fast, the transputer is still rather slow to provide a fully real-
time performance in this application, although the potential is there. 
In fact it is not so much that the transputer itself is slow, but that the 
communication demands are very heavy when distributing data and 
receiving results. This can be concluded to be generally true for SIMD 
parallel processing of images on transputers.

Chapter 5 started as the vehicle for introduction to the field of CATVI 
or dynamic scene analysis. The opportunity was then used to introduce 
the optimal estimation technique of Kalman filtering, which was sub-
sequently applied to derive the state and measurement vectors for the 
equations of motion. Token matching via the Mahalanobis distance 
was studied, and this was followed by the possible uses of tokens in 
3D structure from motion understanding. The overall feature tracking 
algorithm used for the bootstrap and run stages of a feature tracking 
system employing a scene flow model was outlined in Section 5.8.
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Finally in Chapter 6 much of the earlier work in this thesis on geomet-
ric parallelism was updated and used in the FEE engine in conjunc-
tion with a MIMD approach to feature tracking via the TE engine of 
the MATCH system. The MATCH system was shown to reflect the 
pipelined processing phases in typical vision processing through com-
ments accompanying Figures 1.1 and 6.5. The system was described 
in detail through its varying sub-units which represented the steps in-
volved in the process of achieving motion correspondence by tokens. 
Earlier, an investigation into object tracking had also been outlined. 
This had been followed by the parallel computational model which was 
the guideline to the implementation of MATCH. Extensive results for 
the different stages of MATCH were presented in Sections 6.3.3, 6.5.3, 
6.6, and 6.7.

Conclusions specific to the role of the transputer within the concepts 
and results of Chapter 6 must be that again the SIMD parallelism of 
the FEE unit is rather slow due to the communications latency. The 
TE fares rather better, since the overall processing of the tokens is of a 
lighter nature, and so the TE is always ready for the FEE network, given 
that an appropriate number of tokens are involved. Nevertheless, the 
communicational load of the TE is extremely heavy, since the system 
control is centralised, and the SC is completely burdened with work.

There were some advantages in using the transputer too. It was most 
straight-forward to work with and parallel processing techniques were 
implemented on transputer configurations with great ease. Crowley 
et. al. [CSD88] and Deriche and Faugeras [DF90] have discussed the 
implementation in hardware of Kalman filters for token tracking. The 
transputer has been shown capable of achieving filtering and matching 
rates that justify its serious consideration in place of a dedicated hard-
ware system. In addition, it provides a flexibility for alterations and 
improvements that is not reflected in a hardware-based system. Fur-
thermore, MATCH is intended as the front-end processor for a vision- 
based vehicle navigation system. Subsequent to token tracking, the 
next stage matches the labelled tokens to the geometric model of the 
environment - this stage is currently under development, but will op-
erate in parallel with a ” bootstrapping” model recognition and vehicle 
location algorithm also currently under development [B091].

7.2 Some General Comments

The general conclusion of this thesis must be that, for computer vi-
sion, communications are the nemesis of the transputer. Communi-
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cations have caused such problems for the transputer that most have 
resorted to enhancing their transputer systems with special hardware- 
based buses or shared memory. Examples of these may be found 
in [Pag88, DEH89, RPBK90, Bux91]. What then becomes of the trans-
puter with respect to the SIMD and MIMD spectrum of hardware for 
low-level to high-level computer vision as depicted in Figure 2.1? It was 
seen how the PC WARP and the IUA architectures are built to cater for 
different vision algorithms. They are successful to a certain degree to 
satisfy their intended purposes, and are probably as general-purpose as 
vision architectures come. (Note that no real instant of the IUA has yet 
been reported). It is envisaged that the transputer may be able to play 
a role as an autonomous processor, either as part of a larger machine, or 
as the building block of a completely transputer-based machine. How-
ever, without special hardware, as employed for such machines as MAR-
VIN and PARADOX, it is doubtful that it could compete with other 
vision architectures which invariably include dedicated communications 
mechanisms or shared-memory systems. Dedicated hardware would be 
at least a necessity when concerned with SIMD processing. However, 
for MIMD processing, the transputer could prove the ideal tool if faster 
and more efficient communications were provided. MIMD processing is 
computationally bound, and that is where the transputer shines. But 
processors then need to communicate, be it with a control processor or 
with other processors. Multiplexing and de-multiplexing of messages 
across links is tedious, and it seriously limits the communications band-
width. A prime example of this is the MATCH system. Some solutions 
that spring to mind are as follows,

• make the communication links faster,

• achieve direct processor to processor connection using link con-
nection reconfiguration techniques during program activity,

• have a communication processor in hardware which will also han-
dle the multiplexing and de-multiplexing.

Faster links are limited only by what the latest technology can offer. Re-
configuration is not so much non-trivial than down-right cumbersome, 
where each algorithm will have different reconfiguration requirements, 
once again leaving the burden on the user, and probably leading to 
non-portable code. However, in the absence of any other means to 
speed up processing, reconfiguration is a valuable approach [Pag88]. 
A hardware communications processor is a very attractive idea which 
could greatly reduce processing/communications latency. It would also
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be a more sensible idea than an arbitrary increase in the number of 
links, since that would still not be enough for many (besides VLSI lim-
itations on the number of links possible), and it would merely create 
more administrative problems for the end-user for inter-connection and 
programming of the devices.

Overall, as with the PC WARP and the IUA, the transputer may find 
itself in a suitable home in a hybrid architecture, with perhaps extra 
communications hardware, that supports both SIMD and MIMD. In 
such a case it might even fit and perform well as an elementary research 
machine within the framework of classification 3 of Figure 2.1. However, 
as stated by Prior et. al. [PNRC90]:

...for many applications the performance of a system in an 
irregular configuration can be expected to exceed by far that 
of systems in standard configurations...

(Note the pseudo-MIMD customised approach to label inspection de-
scribed in Chapter 3 which was more successful than a regular grid 
approach with a similar number of transputers). This further empha-
sises the necessity and the difficulty in achieving an ideal system within 
vision which is capable of the task depicted in classification 3 of Fig-
ure 2.1, since the hardware burden should be taken away from the 
scientists for them to be able to concentrate on the task of pushing the 
boundaries of computer vision towards those of human vision for scene 
perception.

OCCAM as a parallel processing tool, allows for a very user-friendly 
sub-division of a problem into parallel sub-processes. For that it is 
applauded and in the author’s opinion, OCCAM is as good as any 
language for exploiting vision algorithms that must be implemented 
in parallel. It could even form the underlying structure of the intelli-
gent interface of Figure 2.1’s classification 3. However, at the moment 
OCCAM performs best only on the transputer, and it is almost unavail-
able, except in interpreted format, on any other machine. Therefore, 
before some improvements to the transputer are seen, it is unlikely that 
OCCAM will gain the popularity that it deserves.

7.3 Major Contributions

The major contributions of the work presented in this thesis are briefly 
itemised as follows,
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• Proposal and implementation of a decoupled approach to the 
problem of correspondence,

• Presentation of a parallel computation model for the implemen-
tation of token tracking algorithms for different image tokens (for 
achieving motion correspondence),

• The introduction and implementation of the pOsHT line segmen-
tation technique,

• The presentation of an image distribution and collection tech-
nique with performance evaluation tools for transputer arrays,

• Fresh approaches towards more real-time inspection of product 
labels,

• And finally, more generally, the evaluation of the position of the 
transputer within the spectrum of vision processing levels.

7.4 The T9000

The new generation INMOS transputer has only recently been an-
nounced [Inm91] and it is to be available around the middle of 1992. 
The T9000, as it is named, is projected to feature the following,

• Peak performance rate of 200Mips for its integer processor,

• Peak performance rate of 25Mflops for its floating-point processor,

• Communication links that provide a peak total of 80Mbytes/second 
bidirectional bandwidth,

• Pipelined superscalar micro-architecture allowing multiple instruc-
tions to be issued and executed per processor cycle. The T9000 
contains hardware which assembles instructions from the instruc-
tion stream into groups and then sends them through the pipeline,

• 16K instruction and data cache,

• Workspace cache of 32 words holding the most frequently used 
data,

• Virtual channel multiplexing and communications hardware ca-
pable of mapping logical links onto physical links.
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It is said that the T9000 running at 50MHz will be capable of executing 
compiled code for a 20MHz T805 typically 10 times faster. The T9000 
will be complemented with the C104 packet routing switch which is 
an improved and updated version of the C004. The C104 is expected 
to introduce only sub-microsecond latency. Together, they will allow 
faster reconfiguration for direct connections to other T9000s. Could 
it be that a lot of the communicational problems associated with the 
existing family of transputers will be eliminated with the introduction 
of this new proposed transputer? This could happen most immediately 
in two ways,

• Fewer processors would be required since each T9000 will be capa-
ble of putting in the performance of several T800 or T805 trans-
puters. Fewer processors would need less in the way of communi-
cations,

• Faster link speeds, and the virtual channel router, will provide a 
much higher communicational bandwidth giving a better overall 
computation to communication ratio.

Not only will the T9000 processor be a massive boost to SIMD or 
MIMD transputer-based systems in general, it may finally herald the 
transputer’s entry into the super-league of microprocessors with the 
prospect of much more widespread use. It will certainly be a strong 
contender for vision-based architectures, capable of coping with even 
the task of low-level image processing at rates comparable to present 
special-purpose processors.

More immediately for the work in this thesis, the T9000 could be used as 
a super SC in the TE network of MATCH. If its projected performance 
improvement over a T805 could be assumed to be true here too, the 
SC could perform its task for a scene of approximately 100 tokens in 
an average of 135 milliseconds, giving a projected processing rate of 
about 7 frames a second which would, by present standards, be more 
than adequate for AGV motion. This is not to mention the benefits 
that would be observed by employing T9000 processors for other parts 
of the MATCH system.

In summary and conclusion, it must be said that the transputer can be 
used for real-time processing in vision. Only, there are still constraints 
in low-level image processing, which are likely to be alleviated by the 
T9000. However, for medium and high-level vision operations when 
computation load is quite demanding, the transputer performs well

219



CHAPTER 7. SUMMARY AND CONCLUSIONS

enough to  warrant its use for real-tim e vision work. This was am ply  
justified through the investigations on  the p9sHT  and C anny im ple-
m entations, and also through the token tracking application . Further-
m ore, the flex ib ility  offered by  the transputer in build ing and program -
m ing m ulti-processor architectures m eans that it is a m ore cost-effective 
approach than constructing  special-purpose hardware for m any vision 
tasks. Finally, not on ly have transputers m ade it possible for m ore 
scientists to  perform  research at lower cost, they have further em pha-
sised the problem s com puter vision faces in reaching the capabilities o f 
hum an vision.
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Appendix A

Hardware and Software Lists

The following provides a listing o f the hardware and software systems used 
at various stages o f this work. The list in A . l  corresponds to the work in 
Chapters 3 and 4, and the list in A .2 corresponds to the work in Chapter 6.

A .l Label Inspection

The transputer modules in the list below are early, non-standard items from 
Transtech Ltd.

• Standard IBM -PC compatible computer with an 8MHz 80286 proces-
sor, EG A colour monitor, and 20Mbyte hard disk.

• An INMOS B004-compatible board designed to  slot into an IBM -PC 
compatible computer. The board contains a T800-20MHz transputer 
which is connected to a PC port via its link 0. It has 2Mbytes o f 
RAM  accessable at a rate o f 4 processor cycles. Earlier, the board 
had been fitted with both a T414-12MHz chip and a T800-20MHz 
chip, and both o f these have also been used for quoting some figures 
in the thesis.

• Transtech TSM B-16 Module motherboard mounted on a customised 
Transtech metal box with a power unit. The board is capable o f hous-
ing 16 vertically mounted transputer modules, and contains a C004 
crossbar chip which is accompanied with basic configuration software.

• Four TSM42 20MHz modules, each with 1 Mbytes o f  RAM  with an 
access rate o f 4 processor cycles fitted onto the TSM B-16 motherboard. 
The module links are capable o f bi-directional data transfer at rates 
o f up to 2.35M bytes/sec.

• Data Translation DT2853 512x512x8-bit frame-grabber board fitted 
into the PC. It has two on-board memory buffers, and features a
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hardware cursor, LUT processor, and 1:1 pixel aspect ratio. This 
frame-grabber was interfaced using specially written software to com -
municate with the B004 transputer via the PC server program (all as 
part o f  TIPS).

• Standard CCD camera with 12.5-75mm F1.8 6X zoom  lens.

• An EIZO 3010 12” monochrome monitor, used for viewing images.

• The TDS development environment version D700B, later D700C.

• Development and use o f  TIPS (version 1.0 and later 2.0).

A .2 Correspondence Analysis and Token 
Tracking

The transputer hardware in this section is completely industry-standard, 
except for the Harlequin frame-grabber board.

• Standard IBM -PC compatible computer with an 8MHz 80286 proces-
sor, EG A colour monitor, and 20Mbyte hard disk.

• An INMOS B 004-compatible board designed to slot into an IBM -PC 
compatible computer. The board is connected to a PC port via one 
o f  its links. It has 2Mbytes o f  RAM  with an access rate o f 4 processor 
cycles.

• A  Harlequin transputer-based, 512x512x8-bit, frame-grabber board 
designed to slot into an IBM -PC compatible computer. It has a T800- 
20MHz transputer with 1 Mbyte o f RAM  with an access rate o f  4 
processor cycles, in addition to its two dual-ported image buffers. This 
board is compatible with the INMOS B007 graphics board.

• A  B012 Eurocard T R A M  motherboard with slots for up to 16 TRAM s 
where T R A M s are TRAnsputer Module boards, housed in customised 
Transtech metal box with power unit.

• Eight T R A M s each with a T800-25MHz transputer and 1 Mbyte o f 
RAM  with an access rate o f  3 processor cycles. These are 32-bit pro-
cessors with a 64-bit floating-point unit, 4K on-chip SRAM , and 4 links 
capable o f  bi-directional data transfer at rates o f up to 2.35M bytes/sec 
per link.
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A.2. CORRESPONDENCE ANALYSIS AND TOKEN TRACKING

• The Harlequin’s graphic display generates its output via a raster scan 
through a block o f memory. The bytes accessed as such are then 
converted into an 18-bit colour combination using the board’s Red, 
Green and Blue output channels via a programmable LUT. This allows 
the use o f up to 256 colour combinations which were used for the 
display o f the results shown in Chapter 6.

• Eight further TR A M S, each with a T805-25MHz transputer and 1 
Mbyte o f  RAM  each with an access rate o f 4 processor cycles. The 
T805 is essentially a T800 with extra processor instructions used for 
debugging purposes.

• A  Packard Bell colour monitor used to view the colour image results.

• Standard CCD camera with 12.5-75mm F I.8 6X zoom  lens.

• MMS2: Standard INMOS network configuration software.

• The TDS development environment version D700D.

• Further development and use o f  TIPS (version 3.0).
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