

City, University of London Institutional Repository

Citation: Mirmehdi, M. (1991). Transputer configurations for computer vision. (Unpublished

Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/28539/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Transputer Configurations
for Computer Vision

by

Majid Mirmehdi
Department of Computer Science

City University

September 1991

This thesis is submitted as part of the requirements for a Ph.D.
in Computer Science, in the Department of Computer Science of
City University, London, England.

CJtJ6, j Jl > du
r -

To my dear parents for providing
me with the opportunity.

Contents

Contents i

List of Figures vii

List of Plates xi

List of Tables xiii

Acknowledgements xv

Abstract xvii

1 Introduction 1

1.1 B ackground... 1

1.2 Objectives of Thesis ... 2

1.3 Review of the Chapters.. 6

1.4 TIPS: Transputer-based Image Processing System 7

2 Parallelism and Vision: Some Foundations 9

2.1 Introduction and Overview... 9

2.2 Part 1: Image Processing for Computer V is ion12

2.2.1 Background..12

2.2.2 Low-Level Image A n a lysis .. 13

2.2.3 Medium-Level Image A nalysis....................................18

2.2.4 High-Level Image Analysis.. 21

2.3 Part 2: Parallel Processing (for Computer Vision) 22

l

CONTENTS

2.3.1 B ackground..22

2.3.2 Higher Performance in Uni-Processor Systems . . 24

2.3.3 General Structures for Parallel Computers 25

2.3.4 Issues in Multiple Processor Computing27

2.3.5 Performance M easures...33

2.3.6 Alternative C oncepts..35

2.3.7 Architectures for V is i o n ... 35

2.4 Part 3: The Transputer and O C C A M39

2.4.1 Building Transputer Networks....................................39

2.4.2 Communicating Sequential Processes: CSP 40

2.4.3 Designing OCCAM P rogram s....................................40

2.4.4 Communication Issu e s ...41

2.4.5 Process Scheduling and P riorities............................. 43

2.4.6 Deadlock and L ive lock .. 43

2.4.7 Fair Attendance... 44

2.5 Summary and Conclusions...47

3 Analysis and Application of a Data-Routing Scheme 51

3.1 Introduction and Overview...51

3.2 Mapping and Communication C osts.......................................52

3.2.1 Evaluating Communication C o s ts 56

3.2.2 More Network S ta tistics ... 60

3.3 Brief Overview of Label In sp ection62

3.4 Ad-Hoc Solutions...65

3.4.1 The Label Inspection M ethods....................................67

3.4.2 Rectangular L a b e ls ...68

3.4.3 Oval L a b e ls ..70

3.4.4 Acute-angled L a b e ls ..71

3.4.5 Other Labels ...71

3.5 Results for the Experim ents..71

3.6 Summary and Conclusions... 73

li

CONTENTS

4 Parallel Realisations of the Hough Transform 75

4.1 Introduction.. 75

4.2 The Task F a r m .. 75

4.3 The Sub-Image Hough Transform .. 78

4.4 Implementation of the Parallel p O s H T81

4.4.1 Control-Driven Model ..82

4.4.2 Demand-Driven M o d e l...83

4.4.3 Efficient Calculation of p ..84

4.5 Label Inspection and the pdsHT .. 85

4.6 Processing and Inspection R esults.. 86

4.6.1 Sobel Filtering ... 86

4.6.2 pOsHT Processing ...87

4.6.3 Notes on the Execution T im es..................................... 90

4.7 Final Processing and Inspection... 92

4.7.1 Rectangular L abels ...92

4.7.2 Oval L a b e ls ..93

4.8 Summary and Conclusions...95

5 Dynamic Scene Analysis 101

5.1 Introduction...101

5.1.1 Some D efin itions.. 103

5.2 Motion Detection and Measurement..................................... 104

5.2.1 Intensity-based S ch em es..105

5.2.2 Token-based Schemes..109

5.3 Feature Tracking for Motion Analysis.................................. I l l

5.4 Token Parameter Representation .. 118

5.5 Optimal Estimation..120

5.5.1 Prediction Algorithm (or Solution of Kalman Equa-
tions) ... 124

5.5.2 Error M odelling..125

5.6 Token M atching.. 127

5.7 Towards Structure from M o t io n ..131

m

CONTENTS

5.8 S u m m a ry .. 135

6 A Parallel Approach to Token Tracking 139

6.1 Introduction...139

6.2 Use of Parallelism in M otion ..140

6.2.1 Some N otion s...141

6.2.2 Some Exam ples... 142

6.3 The Initial Investigation.. 148

6.3.1 Bootstrap Stage: Continuous Object Detector . . 149

6.3.2 Run Stage: Continuous Object Tracker..................151

6.3.3 Some Remarks on the Investigation........................ 153

6.4 A Parallel Computational Model .. 155

6.4.1 Assumptions, Requirements and Preliminaries . . 155

6.4.2 System Controller.. 157

6.4.3 Com m unications.. 157

6.4.4 Data Structures..159

6.4.5 Load B alancing..161

6.4.6 Processes and Their Behaviour 161

6.5 MATCH: A Multi-Processor Token Tracker........................ 164

6.5.1 Overview ... 164

6.5.2 Some Practical Issues.. 166

6.5.3 The Feature Extraction E n g in e167

6.5.4 The Tracking E n gin e ..179

6.5.5 The Host In terface ... 197

6.6 Tracking Results and Analysis...200

6.6.1 Some Efficiency I s s u e s ..208

6.7 Summary and Conclusions...210

7 Summary and Conclusions 213

7.1 Brief Summary and Initial Conclusions...............................213

7.2 Some General Comments.. 215

7.3 Major C ontributions.. 217

IV

CONTENTS

7.4 The T9000 ... 218

Annotated Bibliography xix

Appendix xxxiii

A Hardware and Software Lists xxxiii

A .l Label Inspection .. xxxiii

A.2 Correspondence Analysis and Token T ra ck in gxxxiv

CONTENTS

1.1 An overview of a simplified 3D scene interpretation cycle 4

1.2 Prediction of the state of the flow m o d e l 5

2.1 Mapping vision algorithms to parallel processing hardware 10

2.2 (a) A step edge in ID, (b) After Gaussian smoothing, (c)
First derivative of the Gaussian giving the edge maxima 17

2.3 (a) 8-connectivity directions chain-code, (b) Chain-code
for a closed-curve b o u n d a ry ..18

2.4 (a) m ,c formulation of the Hough transform, (b) Clusters
for the two lines in m, c space, (c) p, 9 formulation of the
Hough transform, (d) Clusters for the two lines in p, 0
space ... 20

2.5 Static topologies for pipeline, SIMD, and MIMD computers 28

2.6 (a) (An all-connected) Distributed memory computer,
(b) Multi-processor shared-memory c o m p u te r29

2.7 An ALT example for servicing a simple l i f t 46

2.8 Two approaches for a fairer servicing of floors....................... 47

2.9 SIMD, MIMD, or both? .. 49

3.1 Mapping equal-size partitions of an image across a trans-
puter array .. 52

3.2 For a P x Q image, (a) shows a sub-image and its extra
border area, (b) shows the same for the entire image . . 54

3.3 (a) Distribution of case data on 3x3 array, (b) Actions
of 3 consecutive processors in the data path as the data
passes through.. 57

List of Figures

vii

LIST OF FIGURES

3.4 The temporal association of the arrival into the system,
and travel to final destination, of each data packet for
each transputer...

3.5 Typical defects found through label inspection................

3.6 (a) A simple depiction of the configuration used for label
inspection, (b) A direct mapping of the image to the
customised network transputers..

3.7 (a) Rectangular label scan, (b) Oval label scan, (c) A
single scan line on T3 for a rectangular la b e l...................

3.8 (a) Label image across M x N transputer array, (b) Pos-
sible distribution of label segments per transputer

4.1 A linear processor farm and some of its major processes.

4.2 Edge region obtained from an image after Sobel edge
detection and thresholding. The straight line approxi-
mation obtained from the Hough transform is shown in
bold...

4.3 Pseudo-OCCAM code showing the general format of the
master and array processors for the inspection of labels. .

4.4 Pseudo-OCCAM code showing the general format of the
master and farm slaves for the inspection of labels. . . .

4.5 Diagram shows parameters used in calculating p

4.6 (top-left) Original image marked with possible corner
points, (top-right) After pOsHT transformation on net-
work with 64x64 sub-images, (bottom-left) After line
proximity analysis, (bottom-right) The final acceptable
four boundary lines providing the outline of label and its
approximate corner points..

4.7 (top-left) Original image marked with possible centres,
(top-right) After pOsHT transformation on network with
16x16 sub-images, (bottom-left) After aspect ratio trans-
formation, (bottom-right) Normals of all the lines with
peaks at crossing points giving possible centres (Shown
with white dots - cf. with top-left)

4.8 Diagram shows the sub-image areas of oval image with
salient feature points on which operations take place. . .

4.9 Performance of pOsHT for Rectangular and Oval Labels

4.10 (a) Bi-linear farm network, (b) Tri-linear farm network .

viii

59

63

66

68

69

77

81

82

83

84

88

89

91

98

99

LIST OF FIGURES

5.1 An example of Differencing: Two frames from a sequence
and their difference image...107

5.2 An example of Correlation: The template and the match
in the later frame... 108

5.3 An example of Optical F lo w ..109

5.4 (a) shows the actual trajectories of two points over three
frames, and (b) shows two possible trajectories for cor-
respondence of points...112

5.5 Prediction of the state of the flow m o d e l117

5.6 Parametric features of a line segm ent................................ 119

5.7 Estimating the state of a linear sy ste m122

5.8 An example showing the estimated search area for the
next instance of an edge seg m en t...................................... 128

5.9 Pseudo-OCCAM code outlining an ideal implementation
for the token matching process using the Mahalanobis
distance function (not shown)..129

5.10 Pseudo-OCCAM code outlining a more efficient, but still
ideal, implementation of the token matching process us-
ing the Mahalanobis distance function (not shown). . . . 130

5.11 Stages in 3D scene understanding.. 134

6.1 Example of a multi-resolution pyramid image represen-
tation .. 142

6.2 ” Hot Space” area of image and some spatially classified
o b je cts .. 150

6.3 Overview of model communications..................................... 158

6.4 A flow diagram showing the basic algorithm of a tracker
process.. 162

6.5 The three decoupled, parallel and communicating units
of the implementation ..165

6.6 Performance of Canny and Sobel on Control-Driven Net-
work ... 169

6.7 Performance of Canny and Sobel on Demand-Driven Net-
work ... 171

6.8 Three levels in polygonal approximation of an edge list . 173

IX

LIST OF FIGURES

6.9 FEE analysis on a simple scene: (top-left) Original scene,
(top-right) Canny filtering, (bottom-left) Grouping of
pixels into connected strings,(bottom-right) Segmenta-
tion into lines through recursive algorithm......................... 174

6.10 FEE analysis on a busy scene: (top-left) Original scene,
(top-right) Canny filtering, (bottom-left) Grouping of
pixels into connnected strings, (bottom-right) Segmen-
tation into lines through recursive algorithm......................176

6.11 Overview of the parallel tasks of the FEE controller . . .178

6.12 (a) A typical tree network, (b) address table for each
tree node... 183

6.13 Parallel processes, including tracker processes, executing
on each processor of the tracking engine185

6.14 Parallel processes of a TE processor..................................... 186

6.15 Possible parallel sub-processes of a token tracking process 187

6.16 Highest level of processes in the System Controller, and
detail of the TE h a n d ler .. 189

6.17 A round-robin assignment of tokens to processors 190

6.18 An overview of the Processing-and-Queue Manager process 192

6.19 Some data representations on the Blackboard..................... 194

6.20 Variable length channel com m unications............................197

6.21 A hierarchical breakdown of some TE system communi-
cations .. 199

6.22 MATCH: Diagramatic outline of current system config-
uration .. 201

6.23 First frame of the sequence for simple s c e n e 203

6.24 Percentage Success Rate for Simple and Busy Scenes . . 205

6.25 First frame of the sequence for real scene 1 206

6.26 First frame of the sequence for real scene 2 208

x

1.1 A typical high-level menu of the TIPS s y s te m8a

6.1 Frames 11, 18, 24 and 33 of a sequence showing the track-
ing a single ob ject ...154a

6.2 Frames 14, 30, 56 and 76 of a sequence showing the track-
ing of multiple o b je c t s ...154b

6.3 Frames 20, 32, 40 and 55 of a sequence showing continued
tracking despite interruption by occlusion......................... 154c

6.4 Frames 7, 14, 20 and 29 of a sequence for a simple
scene, with colour-coded line segments displaying spatio-
temporal continuity... 204a

6.5 Frames 4, 9, 16, and 26 of a sequence for a simple scene
with occlusion analysis, with colour-coded line segments
displaying spatio-temporal continuity............................. 204b

6.6 Frames 7, 16, 45 and 62 of a sequence for real scene 1,
with colour-coded line segments displaying spatio-temporal
continu ity ... 206a

6.7 Frames 5, 23, 39 and 56 of a sequence for real scene 2,
with colour-coded line segments displaying spatio-temporal
continu ity ... 208a

6.8 The monitoring of the MATCH system ,208b

List of Plates

xi

LIST OF PLATES

List of Tables

3.1 Measured and estimated distribution and collection tim-
ings ... 60

3.2 Distribution and collection timings for the two routing
approaches u sed .. 67

3.3 Results for label inspection performed on a single trans-
puter ... 72

3.4 Results for the flexible 2 x 2 array of transputers...................72

3.5 Results for the customised configuration of transputers . 72

4.1 Results for the Sobel operation on various configurations. 86

4.2 Results for the inspection of the rectangular label test-
image using 64x64 sub-images on different configurations. 87

4.3 Results for the inspection of the oval label test-image
using 16x16 sub-images on different configurations. . . . 90

4.4 Results for final stage processing of both label types . . . 94

4.5 Sobel results using the Demand-Driven model on T800
processor network with 256x256 im ages.............................96

4.6 pOsHT results using the Demand-Driven model on T800
processor networks for rectangular and oval images . . . 97

5.1 Description of parameters used in two representations of
a line segment... 120

6.1 A four-level, temporal, pipelined pyramid, with t as the
present t im e ...143

6.2 Some definitions used in the m o d e l 156

6.3 Example of a typical, globally-acceptable data structure,
containing data pertaining to a token feature.................... 160

xiii

LIST OF TABLES

6.4 Execution times for Control-Driven Model on 256x256
im ages.. 168

6.5 Speed-up table for Control-Driven Model on 256x256 im-
ages ... 169

6.6 Execution times for Demand-Driven Model on 256x256
im ages.. 170

6.7 Speed-up and efficiency table for Control-Driven Model
on 256x256 im a g e s ..172

6.8 FEE processing results for simple scen e175

6.9 FEE processing results for busy scen e................................. 175

6.10 MATCH: network configuration ta b le 200

6.11 Frame results for simple s ce n e ...202

6.12 Average frame processing time for simple scene obtained
over a lengthy run ..202

6.13 Frame results for real two example real s ce n e s204

6.14 Average frame processing time for busy scenes obtained
over a lengthy run ..207

6.15 Execution times for bi-linear farm, Demand-Driven Model
on 256x256 im a g e s ..211

xiv

ACKNOWLEDGEMENTS

Acknowledgements

This thesis is the culmination of my work in a Part-Time PhD course.
I would like to express my sincere appreciation to Dr. Geoff Dowling
for all his help throughout, and to Dr. Tim Ellis for his advice upon
my continuous interruptions of his work over the recent months. Pd
like to thank both again for correcting my many solecisms.

I wish to also thank Dr. Geoff West, Beatrice Brillault, and other
members of the Machine Vision Group at the City University for all
their input. Mr. John Snell must be thanked too for his help towards,
and correction of, my vague knowledge of mathematics.

I would like to thank John Hammond for originally setting me on
course, and my friend Dr. Farshid Kamali for his encouraging words
throughout. Pd also like to acknowledge the support and friendship
of Jonathan Prothero, Matthew Pearse, Lynne Taylor, Bahman Mot-
laq, Hugh Mitchell, my dear brothers Mohsen and Masoud, and my
dear sisters Fakhri and Azam. My appreciation also goes to Sybilla de
Ur ay-Ur a for her understanding.

Declaration
I grant powers of discretion to the University Librarian to allow this
thesis to be copied, in whole or in part, without further reference to
me. This permission covers only single copies made for study purposes,
subject to normal conditions of acknowledgement.

xv

ACKNOWLEDGEMENTS

ABSTRACT

ABSTR ACT

Computer analysis of static images imposes a significant computational
burden on the processing hardware. In dynamic vision, the problem
is manifold, and the requirement is also to reduce the latency of the
processing, in order to allow realistic reaction times to events in the
scene. Flexible, massively parallel architectures hold the promise of
fulfilling these requirements for low, medium and high level vision tasks,
provided that robust algorithms can be implemented in an efficient
manner.

In this thesis the role of the transputer as an intelligent processing
element for multi-processor parallel architectures will be examined to
determine its suitability across the spectrum of vision processing levels.
To explore such possibilities, two fields within computer vision will be
investigated.

Initially, low and medium level vision tasks will be explored to ap-
ply the transputer to the field of label inspection. This investigation
will include the introduction and analysis of a data-routing mechanism
which will then be compared with one already popular in the world
of transputers. Both techniques are suitable for geometric parallelism.
In the course of these inquiries, a highly parallelised approach to the
solution of the normal parameterisation of the Hough transform will be
presented.

Next, to investigate the more demanding aspects of computer vision,
bordering around medium to high level vision, the ideas of temporal
continuity and motion correspondence of image features in time-varying
sequence of images will be examined. A parallel model is described
which is designed for use as a basis for implementation of image-feature
tracking algorithms on general parallel architectures. The model is in-
dependent of feature tracking algorithms. An implementation of the
model is outlined using a tracking algorithm founded on features such
as the mid-point, orientation and the length of edge segments, and us-
ing a modified form of the Kalman filter. The implementation consists
of three independent units each of which has been applied in a stud-
ied transputer configuration. For example, the tracking unit is based
on a tree configuration and displays MIMD characteristics. The edge
extraction unit borrows from earlier work in the thesis and further in-
vestigates that approach.

Overall, this thesis spans the fields of image processing and parallel
processing in the investigation for the applicability of the transputer.

XVII

n iA X

iDvmsav

Chapter 1

Introduction

1.1 Background

The original publicity and the subsequent arrival of the INMOS trans-
puter helped mark the 1980’s as the decade of parallel processing. Par-
allel processing may have its roots in the very early days of computing,
but it has only been in the last few years, and partly because of the
transputer, that it has begun to enjoy popular, widespread recognition
and use as a feasible approach to tackling sequential computation. The
availability of the INMOS T414 and T800 processors has meant that the
averagely funded research department can afford to practice the theo-
retical concepts of parallel processing in real multi-processor hardware
platforms rather than in simulation on an already heavily used, shared,
single processor multi-tasking, departmental machine. The transputer’s
effectiveness and popularity is further corroborated by the impressive
ease in which it may be used as a basic building block in constructing
different multi-processor configurations.

The building of parallel multi-processor configurations is itself today
a requisite in many different fields where the need for more powerful
processing is becoming ever more vital as the gap between increasingly
complex algorithms and hardware constraints widens. Knowledge-based
Expert systems, Artificial Intelligence, and Computer Vision are three
major fields which could reap benefits from the fruits of parallel pro-
cessing.
But these are still early days for parallel processing. For example, for
a parallel processing computer vision system to have the diversity and
capability of the human visual system in scene recognition and un-
derstanding, it must come up with a pair of ” eyes” with 250 million

1

CHAPTER 1. INTRODUCTION

receptors and a ” brain” with processing cells numbering around 1012
(1 million million) with an average of many thousands of interconnec-
tions. The closest machine to this is the Connection Machine from
Thinking Machines Corporation containing 65536 processors, dealing
with a paltry (e.g. 256x256) image resolution, and costing $3 million.

1.2 Objectives of Thesis

A multi-processor system using a common memory and a shared bus is
very efficient when a small number of processors are involved. As the
numbers increase, shared memory contention arises as bus bandwidth is
reduced and overheads increase. In this research work, the use of trans-
puters for building distributed memory multi-processor configurations
are investigated with application to two areas in computer vision,

• low-level and medium-level image processing is examined using
SIMD parallel processing on linear chain and array/mesh trans-
puter configurations, with operations such as edge detection and
edge segmentation parallelised using specially developed task di-
vision techniques and the increasingly popular farming technique.
All these are applied collectively but briefly to the field of label
inspection,

• the vaguely defined borders of medium-level and high-level image
processing are crossed to explore both SIMD and MIMD process-
ing through the stages of edge segmentation, filtering, matching
and upkeep of the temporal continuity of scene features, in appli-
cation to a detailed study of motion correspondence in dynamic
scene analysis.

Computer vision is not only concerned with algorithms, but it is also
concerned with architectures. Furthermore, it normally requires per-
formance in real-time. Thus, transputer-based parallel processing con-
figurations are evaluated in this thesis with respect to real-time perfor-
mance in the aforementioned areas of vision.

SIMD processors match well to low-level image processing techniques
where the spatial domain may be decomposed for distribution across
the available processors. Such matters are investigated with application
to transputers and it will be shown how the transputer can serve as a
coarse-grain size computer with respect to communication and perfor-
mance issues. This is a very valid analysis where there is intense com-

2

1.2. OBJECTIVES OF THESIS

petition in the low-level image processing field from single-chip man-
ufactures, and real-time hardware based convolution processors, with
one example coming from INMOS itself, the A100 signal processor.

Being a coarse-grain processor, the transputer is a more suitable candi-
date for MIMD processing where the communicational load is expected
to be much less than the computation load. In these circumstances,
computation is usually centred on a non-regular pattern or region of
interest with some concern in the surrounding or distant regions. How-
ever, sometimes algorithms require MIMD processing where the com-
munication load may still be high. Therefore, the really major issue
investigated here is whether the transputer can cope with communi-
cational requirements involved in parallelising vision problems across
the board. Nevertheless, it must be stated that due to the relatively
little work that has been carried out to date on the parallelisation of
higher-level vision algorithms, relatively little is also known about the
supporting architectures required [DEH89].

Given the resources made to techniques and approaches in computer
vision, it is hoped that some of the work will help to further advance
the cause in some related vision fields which may benefit from the par-
allel algorithms, schemes and implementations presented here. For ex-
ample, a novel approach to the solution of the Hough transform has
been implemented which lends itself very favourably to SIMD paral-
lelism. The solution encompasses the introduction and detailed study
of a routing mechanism which is compared in performance with the
farming approach when implementing the Sobel filter and the parallel
sub-image Hough transform. The routing mechanism loses this battle.
The work will be applied to the field of label inspection, but will also
be of importance to other work described.

Later in the thesis, the problem of correspondence in motion analysis
is examined; this is depicted by the middle, shaded box in the 3D scene
interpretation cycle depicted in Figure 1.1. A shift of position and ve-
locity can be associated, in each frame sequence, to each of the tokens
in an image when a camera is moving relative to a scene. Knowing the
physical nature of these tokens, allows the determination of their dis-
tance from the camera. By forming groups and structures from these
tokens, they can subsequently be employed to aid a unified understand-
ing of a scene and help the navigation of a vehicle about that scene. To
achieve that elemental correspondence analysis, a scene flow model is
constructed consisting of observed edge tokens, and edge tokens whose
spatial positions are optimally estimated using Kalman filtering tech-
niques. These are brought together for every new frame to build an

3

CHAPTER 1. INTRODUCTION

Monocular Images
from Motion

Figure 1.1: An overview of a simplified 3D scene interpretation
cycle

up-to-date scene flow model as shown in Figure 1.2.

To establish token correspondence, tokens must be available in the first
place (the first shaded box of Figure 1.1). An efficient implementa-
tion of this feature extraction stage is attempted in conjunction with,
and using, some of the earlier work in SIMD transputing in this the-
sis. The routing mechanism introduced earlier wins this battle against
farm processing. However, this is not really a battle to see who wins
and loses, rather it is an investigation of techniques that have been
applied for a fair implementation, where suggestions will be provided
when there is room for growth and advancement of the approaches
introduced or used. All of these will be summarised in the last chap-
ter. In establishing the correspondence between image tokens, a mal-
leable parallel computational model will be introduced as a design basis
for a parallel approach, be it distributed memory or shared memory.
The parallel model will be independent of particular architectures and
token-tracking algorithms. This parallel model will then be used for

4

1.2. OBJECTIVES OF THESIS

Figure 1.2: Prediction of the state of the flow model

implementing a multi-transputer distributed system, MATCH, which
will be studied from many parallel processing points of view, such as
processor configuration, load balancing, communications, control, etc.
A tree configuration will be used for this implementation. Earlier, the
Kalman filtering techniques used in MATCH for filtering and estimat-
ing the state of the image tokens will have been derived and discussed.

Overall, this thesis encompasses both parallel processing issues, mainly
with respect to the transputer, and many image processing issues which
are parallelised, again with respect to implementation on the trans-
puter. The discussion above has been only a brief overview. The aims
of the thesis are elaborated further in the next chapter where also some
foundations and principles in image processing and parallel processing
are laid out. The chapter is followed with four more which together
review and discuss the topics mentioned above, and the whole thesis
ends with a chapter which assesses the complete work of all the chapters
and draws conclusions from them. The conclusions will be at first more
immediately related to the actual work presented in the early chapters,
followed with overall conclusions on the suitability of the transputer
as a powerful tool for computer vision. The possible role of the next
generation transputer, the T9000, will also be examined to see what
benefits, if any, may be derived from that processor in areas of vision
where currently transputers are being investigated, as in the work in
this thesis.

5

CHAPTER 1. INTRODUCTION

1.3 Review of the Chapters

Except for Chapter 2 which is a general review of the foundations
necessary for the whole thesis, the work in this thesis is divided such
that each chapter is supplemented either by an elementary or extensive
review of the associated field depending on the relevance of a topic,

• Chapter 2 is divided into three primary parts. The first part is
further divided into three sections covering those aspects of image pro-
cessing which are of particular interest in later chapters, such as the
Canny edge detection process and the normal parameterisation of the
Hough transform. The second part briefly discusses some of the multi-
farious aspects of the field of parallel processing drawing specifically on
examples and architectures for computer vision. The topic of parallel
processing is continued into the third part via a compact review of only
those aspects of the transputer and OCCAM which are of fundamental
importance to this work. This was in preference to a reproduction of
available literature on the hardware construction of the transputer and
the complete syntax of OCCAM.

Some aims of the thesis are also further elaborated in this chapter.

• Chapter 3 introduces a communications mechanism for mapping
image data across mesh arrays of transputers. The approach is anal-
ysed to provide mathematical means of evaluating the distribution and
collection costs for differently sized images on differently sized, rectan-
gular transputer arrays. The scheme is then applied and tested within
the framework of the communicational requirements of a real-time in-
spection problem and compared in performance to a more customised
and dedicated scheme.

The work in this chapter has been summarised in [Mir90] or [Mir91].

• Chapter 4 reviews an alternative data distribution and collection
mechanism popular in transputer SIMD processing called farm paral-
lelism. The performance of this is compared to the generalised rout-
ing mechanism introduced earlier in Chapter 3 by way of introducing
and implementing the pOsHT sub-image Hough transform. The whole
process is then also applied to a more sophisticated approach to the
problem of label inspection.

The work in this chapter has been summarised in [MWD91].

Please note that the transputer equipment available to the author up
to this stage of the work was of a rather mixed nature, and limited in
number, as it will become clear when the above chapters are studied.
However, more transputers became available prior to the commence-

6

1.4. TIPS: TRANSPUTER-BASED IMAGE PROCESSING SYSTEM

ment of the work outlined in the next few chapters.
• Chapter 5 provides both a review of some major features of the field
of motion and dynamic scene analysis, and a derivation and step by
step study of the correspondence and matching algorithms used for the
work later in Chapter 6. These encompass accumulative differencing,
Kalman filtering applied to the equations of motion, followed by the
a, f3 filter, and the Mahalanobis distance matching technique.

• Chapter 6 presents a parallel approach to the problem of motion cor-
respondence by token tracking. Initially, an elementary investigation
into the tracking of objects is demonstrated to aid the understanding of
general motion issues at hand, and help to prepare for a better and more
modular design of a feature tracking system. This work is indirectly
used in drawing up a parallel computational model for the establish-
ment of inter-frame correspondence by feature tracking. The model
is intended as a guide-line rather than a manual. It is then used for
the implementation of a feature tracking system where the features are
edge tokens. The mixed SIMD and MIMD system is named MATCH,
and consists of three independent sub-units which reflect the general
pipeline processing nature of the vision processing cycle. The three
sub-units are each associated with a separate transputer configuration,
with one unit, the feature extraction engine, drawing heavily from the
work presented in Chapter 4. The tracking engine sub-unit implements
the filtering and matching algorithms described in Chapter 5. Both
sub-units have very modular designs allowing alternative implementa-
tions. The full implementation is studied with respect to many image
processing and parallel processing issues discussed in earlier chapters.

The work in this chapter has been summarised in [ME91].

• Chapter 7 provides a final summary of the thesis coupled with con-
clusions on the particular aspects of the work presented, followed with
some more general and overall observations regarding the use of the
transputer in the world of vision.

The chapters are followed by an annotated bibliography.

1.4 TIPS: Transputer-based Image Pro-
cessing System

A breakdown of the hardware and software items used for this work is
provided in Appendix A. From very early on in the course of this work,
a modular, general, menu-interface system was designed to allow the

7

CHAPTER 1. INTRODUCTION

integration and connection of the various components used under one
controller. This encompasses the following,

• Services provided by the PC, e.g. keyboard, screen, and ports
for external devices. These are handled by a server program in C
running on the PC,

• User interface and menu system, running in OCCAM on the host
transputer and communicating with the PC services when neces-
sary.

The original server program was supplied in basic format as part of the
transputer development system [Inm88b]. However, this was exten-
sively expanded by the author to allow the generation of colour graph-
ics, and access to PC ports. The access to the PC ports was necessary
for communications with the frame-grabber board (a Data Translation
DT2853). Also, since low-level access to the DT2853 is not a standard
feature of the board, a set of assembly routines were developed to allow
direct input/output of images to and from the board’s frame-buffer.
This was a non-trivial task, since it involved low-level manipulation of
the 80286 descriptor tables to be able to access the memory addresses
spanned by the DT2853 board.

The menu-based interface is of extremely modular and adaptable de-
sign, and with some easy editing, new menus can be generated very
elegantly. A sample menu of the system is shown in Plate 1.1. The sys-
tem is called T IP S (Transputer-based Image Processing System) and
was developed and used exclusively for all the work presented in this
thesis. A typical early version of TIPS running on a T414 Host with a
four-node transputer network is capable of standard image processing
operations such as various edge detection operations, smoothing opera-
tions, sharpening operations, arithmetic operations, logical operations,
histogramming, histogram equalisation, chain-coding and more. Sub-
sequent versions of TIPS have also been endowed with those functions
and capabilities discussed by the work in this thesis.

Furthermore, TIPS is independent of the network configurations used
since it is a user-interface, and not a communications harness. It will
however readily allow the nesting of communications and procedure
calls within its structure. This is the means, whereby different config-
urations and routing mechanisms are investigated in this thesis.

TIPS has also been used a number of times for various under-graduate
research projects over the last three years.

8

Plate 1.1: A typical high-level menu of the TIPS system

0
95
Initialised...

1, 1 510,510
1. 1 510,510

000.000s

FI - Help F6 - Histogranning Menu

F2 - Buffers & Filing Menu F7 - Edge Operations Menu

F3 - Cursor 8 Hindoos Menu F8 - Applications Menu

U hnetic Ops. Mem F9 - Miscellaneous Ops,

F5 - Logical Ops. Menu ESC - Return To Last Menu

Please Choose fron the nenu:

8a

Chapter 2

Parallelism and Vision:
Some Foundations

2.1 Introduction and Overview

For computer vision to approach a high level of understanding even
remotely close to the capabilities of human perception, it must,

• develop better and more efficient algorithms,

• exploit the faster information processing speed of today’s most
powerful computers.

Many computer vision scientists are engaged in research to ameliorate
existing vision algorithms, but the most obvious path lies in a combi-
nation of the two principles listed above. Research should be directed
towards the creation, refinement and application of vision perception
algorithms with respect to parallel processing hardware1. This implies
any combination of the following,

1. The vision algorithms may be implemented, almost unchanged,
on parallel processors, with each processor working on a subset of
the data, i.e. geometric or data parallelism (to be defined later).
This is applicable to less elaborate, low-level vision tasks, with
cheap, local access to suitably-partitioned data.

xNote that use of the words Research should be directed... is not intended to
imply that the solution to computer vision necessarily lies around the corner by
using ” parallel vision” .

9

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

Figure 2.1: Mapping vision algorithms to parallel processing
hardware

2. The vision algorithms may first be parallelised and then imple-
mented on parallel processors, with each processor having opera-
tional autonomy, and access to any data , e.g. algorithmic or task
parallelism, (also defined later). This is applicable to more com-
plex, high-level vision tasks, and is still a relatively young area
of research. Most achievements in this area are rather specific
to the proposed problem and not at all general purpose. (The
solution of the problem presented in Chapter 6 also falls under
this category, despite its concern for generality and flexibility in
its own area of application.)

10

2.1. INTRODUCTION AND OVERVIEW

3. All, or at least most, computer vision algorithms may be applied,
preferably with little change, on parallel processors, and remain
completely transparent to the user. Thus, it would be the task
of another programming level, e.g. the operating system, to su-
pervise and exploit any possible parallelism. This would involve
automatic mapping of the image data structure and the particu-
lar flow of data across the interconnected architecture to achieve
the required computation. This would be the ideal case, only it is
very difficult to achieve. If implemented efficiently, vision tasks,
from low-level to high-level, could be executed without the need
for user involvement. But the present naivety regarding the state
of high-level vision, and the parallelisation of complex, high-level
tasks, automatically eradicates the possibility of having such a
general-purpose, intelligent computation system. This is not to
mention, the complexities, cost, performance issues, and limits of
MIMD programming.

This classification is illustrated with corresponding enumeration in Fig-
ure 2.1. The aim of this chapter is to consider and review some of the
various areas shown in the diagram, and explain and discuss some of
the terminology and some of the points raised within the accompany-
ing text. Furthermore, it is intended to examine if a position within
the diagram may be established for the transputer, leading towards the
general intention of considering transputer configurations for computer
vision. Some conclusions for this will be presented at later stages.

To continue for now in satisfying the aims of this chapter, it has been
divided into three distinct parts. The initial part provides a review
of some important image processing issues, encompassing principles
and techniques which will be of direct relevance to and in support
of the work presented later in this thesis. Also, by presenting this
review first, the flavour of discussion for the rest of this chapter in
Parts 2 and 3 may then be purposely tinged with the topic of image
processing and computer vision. In Part 2, a general outline of the
techniques and domain of parallel processing will be presented. Finally,
a compact outline of some fundamental features of the transputer and
its companion-language OCCAM will be discussed in Part 3. In the
summary and conclusion section, Figure 2.1 will be returned to, to
examine and discuss the three parts of this chapter.

11

2.2 Part 1: Image Processing for Com-
puter Vision

2.2.1 Background

The field of image processing is concerned with the improvement of fea-
tures in an image. The input would be an image, which following some
processing would result in an enhanced output image almost always dis-
playing some salient features. This, in general, completes the processing
ready for human interpretation. In image recognition or more recently,
computer vision, the aim is to produce a qualitative and descriptive
breakdown of the features in the input image, to aid the analysis and
understanding of the scene for autonomous machine perception. Image
processing is therefore a pre-requisite stage for computer vision.

Some of the first images ever to undergo image processing techniques
were those of digitised newspaper pictures sent by submarine cable
between London and New York in 1921. These were coded prior to
transmission and decoded by special printing devices at the receiving
end. Computer analysis of images became more widespread after the
success in correcting the distortion of images sent by a space probe to
the Jet Propulsion Laboratory in 1964 [GW87].

Today, the field of image processing and understanding encompasses a
plethora of applications, such as medicine, industrial inspection, auto-
matic vehicle guidance, security and surveillance, and TV image cod-
ing. Many authors have published the various techniques applied in
computer vision for the processing and analysis of images; some of
these are books by [Mar80, Nib85, GW87, Sch89, Dav90], and oth-
ers are numerous conference and journal publications on the subject.
The techniques span from low-level pixel-based computation to high-
level model-based interpretation through medium-level segmentation
and symbolic representation. These will be examined in more detail,
exemplified by a breakdown and description of some of the techniques
applicable to the work in this thesis. For this, a basic knowledge of the
nature of digital images will be assumed. However, as introductory,
yet comprehensive texts, much can be gained from [Nib85, GW87],
and for more detailed analysis and applications, the reader is referred
to [Mar80, GW87, Sch89, Dav90]. Although the topic of image analysis
will be outlined separately under the aforementioned levels of complex-
ity, there are techniques that float around the borders of each division,
as left undefined in Figure 2.1. Therefore the classification is not always
as definitive as sometimes presented.

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

12

2.2. PART 1: IMAGE PROCESSING FOR COMPUTER VISION

In general, the following scenario is applied when processing an im-
age. The input image is pre-processed, for example to remove noise,
to smooth, or to binarise for a two-tone output image. The resulting
image may then be segmented into distinct regions, which are analysed
and distinguished. This is sometimes referred to as feature extraction
or segmentation. The next stage involves the structural grouping of the
features into classes which may then be matched against models with
the same properties, thus enabling the identification of the features in
the scene. A very simplistic example would be as such: In a road-traffic
analysis project, any object segmented as consisting of a rectangular
box approximately equal in width and length to pre-determined val-
ues, with two circles with centres along the same epipolar line and at
pre-determined distances apart from each other, may be regarded as a
London Bus viewed from the side.

In a general review of the field, Rosenfeld [Ros88] provides a break-
down of the 2-D image analysis paradigm, and the 3-D scene analysis
paradigm (according to Marr [Mar80]).

2.2.2 Low-Level Image Analysis

In low-level image processing schemes, the concern is with the manip-
ulation of images at pixel level to produce an enhanced image, with
the image represented as pixels held in a 2D array data structure of
usually square dimensions, and refered to as the function F(x ,y) for
[x, y] e { 0 ,..., n — 1 } where n usually takes a value formed by a power
of 2. The pixels usually take values in the range {0, ...,255}, and are
referred to as gray or intensity values. These are internally represented
as 8-bit byte values. The techniques employed are referred to as those
operating in the spatial domain. Some operations performed on pixels
are arithmetic and logic operations such as addition or negation, and
geometric operations such as translation, scaling and rotation. One
popular operation as a pre-processing stage for many image processing
applications is thresholding as means of transforming a gray-level im-
age, F (x , y), into lower gray-level bands. This is most likely to be a
reduction to two-tonal ’’ binary” image, say B(x,y) , consisting of black
and white pixels only,

B(x ,y) = *
0

255

if F(x ,y) < THRESHOLD

otherwise
(2.1)

where THRESHOLD is a pre-determined value. It is the determination

13

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

of a suitable THRESHOLD which is of paramount importance for appli-
cations. More elaborate and optimal thresholding techniques such as
those adaptable to localised area characteristics have been given cover-
age in many publications, amongst them, [Nib85, GW87, Sch89].

Next, operations combining a pixel and its neighbourhood pixels are
used to change or classify the representation of the pixels in the image.
These may be for adaptive thresholding, sharpening, blurring, edge
detection, histogram equalisation, image restoration, and many other
techniques. When in a 2D array structure, each pixel has 8 surrounding
neighbours (namely 8-connectivity), except for the outer border of the
array, whose pixel points are usually ignored. Except where stated in
this thesis, the operations described will not be applicable to the border
pixels. The concept of edge detection will now be concentrated on by
describing two relevant techniques.

Edge Detection

Edge enhancement and detection, along with thresholding, is a sub-
class of general image segmentation techniques. These aid significantly
in the determination of features in an image, and later it will be seen
how motion can serve as a cue for efficient segmentation. Edge tech-
niques use the discontinuity and similarity of neighbouring gray values
to operate. Thus, a sharp transition in intensity between two neigh-
bouring pixels may be regarded as a step change representing an edge.
Figure 2.2(a) shows a step edge in ID.

The magnitude and direction of intensity change at each pixel address
(xi,yi) in image F (x , y) is obtainable in terms of the directionally ori-
ented spatial derivatives,

V F (x , y) (Vx Ì
/ dF(x,y) \

dx
/

V V y > \ dy / V

F (x + A x ,y) - F (x , y) >
Ax

F (x , y + A y) - F (x , y)
Ay /

(2.2)

where V F (i , y) is the gradient vector pointing in the direction of max-
imum rate of change, with magnitude,

|V F (* .v) l= \ M + v ; (2.3)

and with direction measured with respect to the x axis of,

14

2.2. PART 1: IMAGE PROCESSING FOR COMPUTER VISION

e = tan~ \ = *)
V X

Note, that for A x and Ay equal to one, then the operators above cor-
respond with operators of the form (— 1 1) and (1 — 1)T [Sch89].

These operators are quite sensitive to noise and require high contrast
neighbouring edges for efficient detection. Instead, they can be ex-
panded into 3 x 3 masks which provide a higher level of detection at
the expense of extra computation. Two popular 3 x 3 edge detection
mask are,

(2.4)

Sobel
/ - 1 0 1 \

-2 0 2

l - l 0 1) \

1 2

0 0

- 1 - 2

1 \
0

- 1 /

(- 1 0 1 >1 (1 1 1 \
Prewitt — 1 0 1

0
0 0

1 - 1 0 1) l - l - 1 - 1 /

(2.5)

(2 .6)

For example, the gradient component vectors for the Sobel operator at
pixel position (45,7) would be,

V x — (-^44» 2/8 T 2 a?45, 3/8 -f- X 4 6 ,2/8) (2^44? 2/6 T 2x45,3/6 T 2-465 2/6) (2 .7)

V y — (2^44,3/6 T 2 x 4 4 ,3 /7 T X 4 4 , 3/8) (2^465 2/6 T 2 x 4 6 , 2/7 %46i Vs) (2 -8)

Lee [Lee83] presented some techniques which help improve the per-
formance of a Sobel operator by eliminating some redundancy at the
expense of marginally increased storage capacity. For example, Lee
proposes the retainment of the values used for the operations on the
neighbours of the current pixel which will also be the neighbours of the
next, when the mask window is shifted across the image. (This will be
used as a good example for outlining efficient on-chip memory manipu-
lation for the transputer in Part 3). Using these techniques, a tailored
version of the Sobel algorithm will be used in the implementation of
the label inspection application as presented in Chapter 4.

Another operator which responds to neighbourhood intensity changes
is the Laplacian mask. However, this is not usually used on its own

15

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

for edge detection due to its high sensitivity to noise. Notice that no
separate x and y gradients can be computed,

(°
l 0 \

Laplacian 1 - 4 1
V o 1 0 /

(2.9)

The Laplacian is the sum of the second-order spatial derivatives, such
that,

It has been used in combined-operation edge detection techniques based
on Gaussian smoothing (explained below), such as that proposed by
Marr and Hildreth [Mar80]. The Laplacian of the Gaussian (V 2 3G) of
an image results in a set of zero-crossings (a zero-crossing being the
spatial location corresponding to the mid-point of an intensity change).

Another increasingly popular technique which uses the Gaussian is the
Canny [Can86] edge operation. In developing his edge detector, Canny
specified three major performance criteria,

1 . Good detection: by maximising signal-to-noise ratio, more real
edge points and less non-edge points are marked,

2. Good localisation: a selected edge point should be as close as
possible to the centre of the real edge,

3. Singular response: only one response per edge point is desired.

The "Mexican Hat” shaped normal distribution is also referred to as
the Gaussian distribution. The basic idea for the Canny edge detector
is to smooth the image (Figure 2.2(b)) with a 2D Gaussian shaped fil-
ter, improving edge connectivity and reducing noise. The 2D Gaussian
mask has circular symmetry, so it can be decorrelated and applied as
two ID masks, one in the x direction, and one in the y , thus reducing
spatial and computational requirement. The resulting smoothed image
can then be searched for local maxima of gradient magnitudes which
are subsequently marked as edges. This is conducted by comparing
the magnitude of the gradient at each point in the image with those
on either side of it in the direction of the original gradient in the cen-
tre. This is followed by a hysteresis process, which initially sets an
upper and lower threshold limit. Then, any edge points pertaining to

16

2.2. PART 1: IMAGE PROCESSING FOR COMPUTER VISION

Figure 2.2: (a) A step edge in ID , (b) After Gaussian smooth-
ing, (c) First derivative of the Gaussian giving the edge max-
ima

a line segment, with a value above the upper threshold, are immedi-
ately accepted, followed with any edges above the lower threshold if
they form the remainder of an already established line segment. Thus,
broken edge segments may be ’’ grown” . The output edge-image is then
available.

The value of the standard deviation (a) for the Gaussian mask de-
termines the size of the mask; this must be selected such that over-
smoothing would not lead to the loss of maximum gradients. Davies
[Dav87] studies the design and accuracy of optimal Gaussian opera-
tors testing for the fidelity of the mask to the Gaussian shape and the
isotropy (directionally invariant) nature of the mask. Two optimised
masks are then proposed. Also, new techniques for a more efficient
application of the Canny edge detector are under way at the Machine
Vision Laboratory of the City University with special application to
colour images. The Canny edge detector will be used as a more effi-
cient and appropriate edge detection tool than the Sobel operator for
establishing spatio-temporal correspondence in Chapter 6 , where a per-
formance comparison of the two edge detectors on two different parallel
computational models will be presented.

Finally, for other edge detection templates and methods, and the theory
of their application and their detection, the reader is referred to more
detailed analysis in [Mar80, Sch89, Dav90].

17

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

2.2.3 Medium-Level Image Analysis

With medium or intermediate-level image processing techniques, the
results are no longer just an output image, and they begin to take dif-
ferent shape and form, where features are segmented and described in
usually quite simple representations. Consider edges enhanced through
the convolution of an image with the Sobel filter. Except that they
exist, nothing is known about them. Their magnitude and gradient
could have been recorded along with their spatial position, reducing
image-information space requirements. Yet, this would still only be a
list of salient pixels. As a continuation of the low-level stage of im-
age processing, there are a number of methods for segmenting and
producing feature descriptions with differing complexity and memory
requirements. Two of these will be considered now.

Figure 2.3: (a) 8-connectivity directions chain-code, (b)
Chain-code for a closed-curve boundary

Chain-coding [Fre61] is one technique for segmenting edges into open or
closed-form curves which in turn will represent edge fragments or distin-
guishable (areas of image pixels as) objects. Chain-coding, preceded al-
most always by thresholding, is formed by storing the first pixel address
of the start of an edge curve, followed by the position of each subsequent
edge point along the edge with respect to the previous point. This is
achieved by considering the 4-connectivity or 8-connectivity neighbour-
hood of each pixel, and assigning a direction value for connectivity
to each possible neighbour. The chain-code terminates either by the
non-existence of further neighbours, or by the ultimate arrival at the
starting pixel co-ordinates. These ideas are illustrated in Figure 2.3 by
tracing the pixels of the closed-form boundary of an arbitrary object.

18

2.2. PART 1: IMAGE PROCESSING FOR COMPUTER VISION

Chain-coding can be exploited to yield other information such as the
area, perimeter and the centroid of an object. For example, the area
A, and the object centroid (x0,y0) for an object of C chain points (i.e.
the length of the code) are given by,

c- 1

»'=o

Xi

- X i

0

if Cìc { 0 ,1 ,7}
if (7,6(3,4,5}
otherwise

X 0 c
C - 1

2 x*' »
¿=0

1 c - i
y» = Vi

^ i= 0

(2.11)

(2.12)

More about chain-coding and other representation schemas can be
found in [Fre61, GW87]. Chain-coding will be used as an effective
object segmentation tool in Section 6.3.

The Hough transform [Hou62] is another technique which may be used
for the detection of straight edges and lines in digitised images. Origi-
nally, Hough proposed the use of the straight-line formulation,

yi = mxi + c (2-13)

for transforming all feature points in feature space, (x,y) , to the pa-
rameter space (m ,c), where m and c define the gradient and intercept
of the line respectively (Figure 2.4(a)). Since both m and c are un-
bounded, and can assume a value of infinity, it is better to transform
the edge points into sinusoidal curves in the p, 6 plane defined by,

p = X{CosQ -f yisinO (2-14)

This is more commonly referred to as the normal parameterisation of a
straight line as proposed by Duda and Hart [DH72], and is illustrated
in Figure 2.4(c).

Initially, a 2D array space can be assigned to represent the parameter
space for p, 6. Then, for each edge point, the value of 9 is incremented
and the corresponding p is solved for. This yields a corresponding
number of entries in the 2D parameter space accumulator. Thus, for
each line in the image there will be a cluster of points that indicate
the parameters of the line, as shown in Figure 2.4(b) and (d). (These
are idealised diagrams and the non-point sized clusters are there to
signify that there is some error). The quantisation of the parameter
space for p, 0 is selected depending on the expected accuracy of the
edge detection process.

19

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

Figure 2.4: (a) m ,c formulation of the Hough transform, (b)
Clusters for the two lines in m ,c space, (c) p, 0 formulation
of the Hough transform, (d) Clusters for the two lines in />, 6

space

Notice that for edges of non-single pixel width, such as those obtained
from Sobel edge detection, unnecessary feature point transformation
would result. Thus, a single-width representation of a line segment
would be preferred, for example through a thinning operation. Also,
it is easy to observe that the general computational load of a Hough
transformation is dependent on the number of feature-space points.

The idea of the Hough transform may be expanded to apply to other
shapes that can be associated with a parametric equation, such as

{x - x c)2 + (y - yc)2 = c2 (2.15)

for a circle centred on (xc,yc) [DH72, BB82, GW87]. This would ne-

20

2.2. PART 1: IMAGE PROCESSING FOR COMPUTER VISION

cessitate a 3-dimensional parameter space, substantially increasing the
computational requirements. Davies [Dav90] presents a comprehen-
sive analysis for an accurate centre location algorithm with reduced
computational load. Davies also presents a new formulation of the
Hough transform for line segments which eliminates the use of trigono-
metric functions. This is the foot-of-normal method, which consists
of a parameter space congruent with the image space. Ballard and
Brown [BB82] generalise the Hough transform for application to arbi-
trary shapes with no simple analytical form.

The normal and the foot-of-normal parameterisations of the Hough
transform will be returned to for further examination in Chapter 4,
where an efficient parallel implementation of the (p, 9) Hough transform
will be presented with application to label inspection. The main idea
for parallelisation will be shown to arise through the splitting of the
image into smaller sub-images. Other parallel implementations of the
Hough transform will also be discussed.

For a general survey of the Hough transform it is worth studying the
paper by Illingworth and Kittler [IK88]. This paper discusses recent ad-
vances for more efficient application and computation of the transform
covering a wide range of topics, from algorithms to hardware imple-
mentations.

2.2.4 High-Level Image Analysis

High-level image analysis generally refers to the interpretation of seg-
mented image data, as attained from lower-level stages. Regions of
segmented pixels may be labelled and described by their external char-
acteristics, e.g. their boundary, or by their internal characteristics, i.e.
through the pixels comprising the regions [GW87]. Labelled scenes may
then be used for matching against model data in order to identify and
interpret regions and objects in the scene. Rule-based and predicate
logic schemes are examples of techniques used in scene labelling and
manipulation [Sch89]. Non-image related knowledge, such as knowl-
edge about world physical constraints influencing imaged entities and
their environments may also be used. Some of the techniques employed
are multilevel image analysis, 3D modeling and volumetric represen-
tations, and image-based knowledge manipulation, including relational
graph, and statistical classification schemes.

The area of high-level scene understanding is a wide and varied field
with many facets, requiring dedicated analysis and review. For this
thesis, the issue of label inspection, to be yet reviewed and discussed,

21

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

falls essentially in the domain of low to medium level image process-
ing applications for which edge detection and Hough transformation
techniques will be employed. However, the application of image token
correspondence described in Chapters 5 and 6 , can be used as a cue for
high-level image interpretation for understanding motion. The token
correspondence scheme provides token descriptions that may be applied
to the description of a scene. A higher level system must subsequently
use these new tokens, provided for each new frame, for matching against
the scene model to formulate an interpretation and complete descrip-
tion of the scene. (The last processing stage of Figure 1.1). The work
in this thesis pertaining to the problem of correspondence concentrates
on upholding the temporal continuity of token feature sets. Hence, a
more detailed review of higher-level scene understanding with particu-
lar emphasis on dynamic scene analysis will be presented in Section 5.7,
as only a brief outline of some steps to be considered for future use of
the correspondence work.

For general coverage of higher-level and 3D analysis of images much may
be gained, once again from [BB82, Nib85, GW87, Sch89, Dav90]. These
cover topics such as statistical image classification, region and scene
labelling, shape from shading, shape from texture, texture, relational
descriptors, tree and string grammers (and languages), graph matching
(maximal cliques), levels and types of models, and many more.

2.3 Part 2: Parallel Processing (for Com-
puter Vision)

2.3.1 Background

Parallel processing as means of improving computing performance has
been firmly established as a major concern across the computing re-
search community for many years. Hockney and Jesshope [HJ88] sug-
gest that this dates back to the days of Charles Babbage’s Analytical
Engine, when the desire to produce several results at the same time,
for identical but independent computations, was stated. Many parallel
computers have already been offered to the world, and some of these
will be mentioned in the forthcoming discussions. Given the high costs
normally associated with parallel processing, for the average user the
only choice for increased computing performance has usually been in
the purchase of a more powerful processor. This is until now, with
the impact of VLSI technology advancing the case for parallel technol-

22

2.3. PART 2: PARALLEL PROCESSING (FOR COMPUTER VISION)

ogy. Chips are becoming faster due to more integrated designs of a
system’s functional units such as memory, the floating-point or maths
co-processors and the communications hardware. Prime examples are
the INMOS transputer family of processors, and the 80486 Intel chip.
They avoid the delays propagated in accessing devices external to the
actual processor.

In today’s computing world, mainstream computer usage is becoming
more sophisticated moving from the lower level of data and informa-
tion processing to knowledge processing and finally to intelligence pro-
cessing [HB84]. For each stage of these progressions, the processing
requirements reach unprecedented levels. Certainly the need for faster
vision processing via any available technique can hardly need to be em-
phasised any more than it was mentioned in the introduction to this
chapter. For a P x Q image, a simple edge detector such as a Sobel with
a 3x3 kernel, would require millions of operations, given P — Q — 512.
A Canny operation would necessitate thousands of millions! Thus, the
search for more powerful computers has led towards the paths of par-
allel processing and neural networks. However, for parallel processing,
these are early days yet. For example, for a parallel processing com-
puter vision system to have the diversity and capability of the human
visual system in scene recognition and understanding, it must come up
with a pair of ’’ eyes” with 250 million receptors2 and a ”brain” with
processing cells numbering around IO12 (1 million million) with an av-
erage of many thousands of interconnections. The closest machine to
this is the Connection Machine from Thinking Machines Corporation
containing 65536 processors and costing $3 million.

Concurrency3 is achievable both at hardware level and at algorithm
level. The related issues will be reviewed next with leaning towards
the world of computer vision. Rather than dedicating a section to
parallel computers per se, the presentation here will cover parallel pro-
cessing principles, and where known or applicable, will cite machines
which have applied the techniques and theories. Initially, attempts at
improving uni-processor machines will be outlined. The discussion on
parallel processing will start by considering the most common classifi-
cation scheme for computing architectures. This will be followed by an
examination of some of the issues involved and how they relate to the
architectures categorised earlier. (Please note that the machine names

2Each human eye contains 125 million receptors, called rods and cones, which
are nerve cells specialised to emit electrical signals when light hits them [Hub88].

3Arguments rage between computer scientists in their attempt to distinguish or
claim complete similarity between concurrency and parallelism. For the purpose of
this thesis, they will remain to convey the same general ideas.

23

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

mentioned are for general information only, except when as a matter of
interest further details are provided. Details of most of the machines
may be found in [HB84, Qui87, HJ88].)

2.3.2 Higher Performance in Uni-Processor Sys-
tems

Uni-processor machines are based on the von Neumann model which
defines a processor and a memory unit connected by a bus. Hwang
and Briggs [HB84], Hockney and Jesshope [HJ88], and Quinn [Qui87]
provide an excellent outline of various approaches adopted so far for
achieving higher performance in uni-processor machines, most of which
apply still today with the latest of processors. These may be sum-
marised as,

• multiple functional units, e.g the IBM 360/91 with 2 parallel ex-
ecution units, one for fixed point and one for floating point oper-
ations,

• parallelism and pipelining within the CPU, consisting of parallel
adders, carry-lookahead, and instruction pipelining, e.g. Amdahl
470 V /6 where instruction pipelining allows for more than one
instruction to be in some stage of execution at the same time, for
example during the cycle of fetch, decode, operand fetch, execute,
and store,

• balancing of bandwidth between system units, for example by the
use of interleaved and cache memory between the CPU and main
memory, with the first ever computer to have this being the IBM
STRETCH,

• multiprogramming and timesharing, where the system allows for
more than one program to be in some state of execution, and
the (uni-)processor shares its time between the multitude of user
processes,

• plus bit-parallel operations, data pipelining, pipelined functional
units, etc.

Pipelined processing is therefore a major technique for achieving higher
performance.

24

2.3. PART 2: PARALLEL PROCESSING (FOR COMPUTER VISION)

Pipelined Computers

The idea of pipelining is to split the tasks involved into a number of
independent stages, whereby the output of one stage can be the input
of the next. Then, overlapped processing may be achieved while each
stage of the pipeline operates on sub-tasks. In a uniform pipeline, each
stage of the processing takes similar processing time to execute, given
a fair sub-division of tasks. When a fair division is not possible, the
slowest stage of the pipeline becomes the bottleneck of the system and
processors will remain idle at various stages waiting for communication
to and from neighbouring stages.

The ideas of instruction pipelining and functional pipelining in uni-
processor machines have already been mentioned. These ideas have
been used in the architecture of most single unit processors, with the
processors also being part of larger systems, thus allowing multiple
levels of parallelism.

One class of pipelined computers is that of vector computers which
contain instructions to handle both the data processing and the control
sequencing of blocks of data. The CRAY-1 has been described as the
most powerful computer of the seventies with supercomputing abili-
ties [HJ88]. The scalar/vector processor part of the machine contains
13 independent pipelined functional units, each performing different
tasks such as arithmetic and logical operations.

In multiple processor pipelining (Figure 2.5(a)), cascade of processors
handle different partitions of a whole task. Thus, algorithms must be
split in an efficient way across processors.

Reeves [Ree84] describes the basic organisation of a pipeline processor
for image processing. Each processing stage performs the same oper-
ation on every element of data, with a result generated at each clock
cycle. An N x N image would therefore require N 2 clock cycles not
including the set-up time. This machine, the Cytocomputer, can also
implement near-neighbour operations by means of two shift registers.
It has been used for cytology analysis and biomedical image processing,
and is suitable for very low-level image processing tasks.

2.3.3 General Structures for Parallel Computers

State-of-the-art parallel processing architectures may be categorised
quintessential^ into pipelined computers, array processors, and multi-
processor systems. The most popular classification for typical archi-
tecture configurations for parallel processing is that of Flynn [Fly66],

25

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

whose taxonomy is based on the multiplicity in the instruction and
data streams of a computer system. An instruction stream is defined
as a sequence of instructions performed by the processor, and the data
stream is a sequence of data including input and output results, called
for by the instruction stream. Flynn’s classes are described as follows.

SISD - Single Instruction stream-Single Data stream: This is typical
for most sequential computers. The von Neumann computer model
forms the main characteristic of SISD machines such as the CDC 6600,
IBM 360/91, Amdahl 470 V /6 , and CRAY 1. Some SISD machines
may be pipelined and they may have more than one functional unit
(which may be pipelined too). The discussion in the previous section
applies very much to SISD processors.

SIM D - Single Instruction stream-Multiple Data stream: In this class
of architectures, the processors are arranged in an array or mesh for-
mat and each processor holds or receives the same set of instructions,
but operates on different data sets. There is a control unit, and there
may be shared memory or memory only local to each processor. Ex-
amples of SIMD machines are the ILLIAC IV, DAP, CLIP7A and the
MPP. Variations on the SIMD model are the MSIMD (multiple SIMD),
systolic arrays with VLSI processing cells for addition and multiplica-
tion, and associative array processors such as the Goodyear STARAN,
and the PEPE machines. Systolic arrays are regular arrays of identi-
cal finite state machines where each element has a small set of inputs
and outputs with simultaneous activity4. Associative arrays are built
around associative memory which is content addressable, allowing par-
allel access of memory words, as opposed to conventional RAM which
is addressed sequentially. For high processing rates, SIMD machines
must be able to maintain a remarkable flow of instructions and data
throughout the system. The most popular SIMD format remains the
array processor which consists of multiple rows of processors with 4-
connectivity to their north, south, east and west processors, and usually
wrap-around connections from /to border processors, as shown in Fig-
ure 2.5(e). This renders the machine suitable as a parallel processing
platform for performing neighbourhood-based image processing algo-
rithms, where regular processing is carried out on highly structured
data. However, all of the machines in Figure 2.5 could be programmed
for SIMD performance.

M ISD - Multiple Instruction stream-Single Data stream: No real em-
bodiment of this class of processors has yet been realised due to its

4 Systolic machines are named after the process of contraction of the heart that
rhythmically forces the blood forward.

26

2.3. PART 2: PARALLEL PROCESSING (FOR COMPUTER VISION)

impractical nature [HB84, Qui87]. It connotes that several instructions
are operating on the same data stream simultaneously.

M IM D - Multiple Instruction stream-Multiple Data stream: This
specifies a multi-processor system with multiple processing units exe-
cuting in parallel with multiple instructions on multiple data. Examples
of this class of machines may be found in the Connection Machine, the
C.MMP (a collection of PD P-lls), CRAY-X MP, and the PC WARP.
MIMD machines may be operated via centralised or distributed control.
Memory may be a large common reserve, or distributed localised mem-
ory. In general, MIMD machines perform more complex tasks, but need
less communications than SIMD machines. Thus, the MIMD architec-
ture can be regarded as a suitable platform for the higher-level end of
the image processing spectrum of algorithms. All of the machines in
Figure 2.5 could also be programmed for MIMD performance.

Shore [Sho84] classified computer architectures depending on the organ-
isation of the computer’s constituent parts. Six schemes were specified
ranging from the conventional von Neumann architecture through to as-
sociative memory processors which distribute processor logic through-
out the memory. In between, word-serial, bit-parallel machines, repli-
cated von Neumann machines, and shared-memory multiple processing
element machines are covered. They are mostly sub-divisions of Flynn’s
SISD and SIMD classes. Hwang and Briggs [HB84] cover other classi-
fications such as Handler’s.

Flynn’s classification will be adopted in this thesis as it is the most
widespread terminology for the specification of parallel processing sys-
tems, with the main areas of interest being SIMD and MIMD configu-
rations.

2.3.4 Issues in Multiple Processor Computing

In multiple processor computing some form of arrangement is required
for connecting the processors, and co-ordinating their activities. This
raises a number of issues which are now discussed briefly; some will be
picked up on in more detail in later chapters.

Granularity

The first stage of parallelism is to consider the subdivision of compu-
tations into independent tasks. The size of a computation, or grain,
is determined by the quantity of communication needed between the
different computations. It is preferable to keep this to a minimum.

27

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

(b) All-Connected

(a) Linear Pipeline

(f) Binary Tree

(c) 3-Connected Cube

(e) 4-connected mesh with
wrap-around connections

Figure 2.5: Static topologies for pipeline, SIMD, and M IM D
computers

2 8

2.3. PART 2: PARALLEL PROCESSING (FOR COMPUTER VISION)

In SIMD and MIMD systems the grain size depends on the complex-
ity of the processing nodes. For example, a system with large scale
simple processing elements(PEs), such as the CLIP4 image proces-
sor [FMM88], is a classic SIMD processor with fine-grain parallelism,
where each simple PE operates on single-bit data. In contrast, a trans-
puter system, such as the FPS T-Series, can be considered as a coarse-
grain system, where computation load is expected to be heavier than
the communicational requirements.

The performance of all multiple processing systems of all granularities
suffers when high rates of communications are involved. Fine-grain ma-
chines also have high overheads and administration, and are generally
more difficult to formulate software for, which in turn pushes up the
costs of parallel processing.

Figure 2.6: (a) (An all-connected) Distributed memory com-
puter, (b) Multi-processor shared-memory computer

Communication and Synchronisation

Parallel processors may be classified into two divisions on the basis
of data communications between processors. These are shown in Fig-
ure 2.6. In tightly-coupled systems, processors share a common main
memory, with the whole configuration usually controlled by one op-
erating system. Processors may use a switching mechanism to reach
the shared memory. The switching mechanism may take the form of a
common bus, a crossbar switch, or a packet-switched network [Qui87].
Examples of tightly-coupled systems are the HEP, C.MMP, and Se-
quent Balance 8000 multi-processor systems. In loosely-coupled sys-
tems, rather than a shared memory, each processor has local memory
with local control, and communication between processors is necessary

29

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

to exchange information. Loosely-coupled systems are also referred to
as distributed systems, due to the independence and modularity of the
individual processors. Communication between distributed processing
elements is said to take place via message-passing. Example of loosely-
coupled systems are the Cm*, the BBN Butterfly, and the FPS-T series
(which is based on transputers).

Two common techniques used in ” communicating” in shared-memory
systems are mutual exclusion and condition synchronisation. Mutual
exclusion refers to the mutually exclusive execution of a sequence of
statements that must appear to be executed as an atomic operation.
For example, consider the sum A := A + B. If the process operating on
the sum did not store the result before another process read the value
of A, then the outcome of the entire computation may be erroneous.
Condition synchronisation refers to the delaying of the execution of a
process until some data object it shares with another process is in an
appropriate state.

In distributed systems, communications may be synchronous or asyn-
chronous, with given instances in controlled communications and dy-
namic communications respectively. Synchronous communication in-
volves the exchange of messages through the mutual agreement of a
sender and a receiver process. Both have to be ready to communicate,
and each has to wait if the other is not yet ready. Thus, process synchro-
nisation is implicit in the controlled access to local and global memory
by multiple processors through message-passing. Later in Chapter 6 ,
it will be seen how synchronisation is achieved on local processors be-
tween multiple local processes. Asynchronous communication, requires
that communication can take place at any time between two processes,
with the sending process dispatching its message and continuing its
work, and the receiving process buffering all received messages and
attending to them at a later stage. It is easy to deduce why Ben-
Ari [BA90] compares synchronous and asynchronous communication
to the telephone system and the postal service respectively. In send,
no wait asynchronous communications, processing is bounded by the
buffer size and the computation load of the destination process, whereas
in synchronous communication everything may ground to a halt for ei-
ther the sender or the receiver, until both are ready to communicate.
Otherwise, deadlock will have occurred. An interesting asynchronous
message-passing software environment is PISCES [Pra85]. PISCES al-
lows the creation of tasks or processes, and each process is endowed
with a queue to which messages are passed via a handler process which
in turn will receive all senders’ messages. Thus, message passing is al-
ways through the handler process. Also, since a task has independent

30

2.3. PART 2: PARALLEL PROCESSING (FOR COMPUTER VISION)

control on when to pass and when to receive messages, then message
passing is entirely asynchronous. PISCES will be encountered again
when its use for motion detection will be of interest.

Programming of Parallel Computers

For pipeline computers, the application algorithm is split into N sub-
tasks and distributed across the available processors (of which there are
N), with each node working on the data set passed to it by its prede-
cessor, which may or may not be a complete image. This is referred
to as task or algorithmic parallelism, and implies that the design and
breakdown of the sub-tasks is strongly linked to the number of proces-
sors in the pipeline, rendering the portability of the implementation to
a longer (or shorter) length pipeline impractical.

In SIMD computers, data or geometric parallelism partitions the data
into N subsets, over the N processors, with each processor perform-
ing the whole algorithm on its own data subset. The granularity of
the processor nodes will determine the size of the local data partition.
This may vary from l-bit on the DAP, to large array sizes on a SIMD
transputer system. Geometric parallelism can be further sub-divided
into control-driven and demand-driven data parallelism. These are both
other objectives for analysis in this thesis and will be examined later.

In MIMD computers, the situation varies greatly. For fixed implemen-
tations, each processor may be booted with a dedicated program which
will continue with its own independent data set, however it may be
communicated to it. The programmer remains aware of the nature of
this communication and has to design his or her tasks accordingly. In
general purpose systems, task allocation and load balancing techniques
may determine the computation load of each processor, but the task
and data allocation of such parallel systems remain to a large extent
transparent to the user. These machines are much more likely to be
shared-memory systems, where the difficulty of data partitioning and
communications need not arise. MIMD computers can effectively be
programmed using data and task parallelism, with the latter being the
more applicable. The implementation of MATCH in Chapter 6 is an
approach for a problem-dedicated MIMD system.

Major Considerations

The major considerations in acquiring a parallel processing system are
cost, performance, and reliability. These issues are orthogonal and the

31

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

variation in one will severely affect the others. The main issues per-
taining to both SIMD and MIMD systems may be further categorised
as,

• cost, for cost per unit processor, and for cost in programming,

• performance, for throughput and response time,

• bandwidth, for a high communication rate per unit of time,

• partitioning, for the division of the network into independent sub-
networks,

• accessibility, for the shortest path connection or route as the most
desirable means of inter-processor communication,

• reconfigurability, for dynamic reconfiguration as opposed to static
configuration,

• reliability, for reliable system performance. Two major areas of
parallel processing research are fault diagnosis, and fault toler-
ance [HB84] for graceful handling of interconnection and proces-
sor failures.

Other related factors

There is much that could be covered under the topic of parallel pro-
cessing! Some issues have been discussed so far, and some others will
be discussed throughout the thesis. This will start immediately from
Part 3, where some fundamental parallel processing issues with respect
to the design and principles of the transputer and the OCCAM pro-
gramming language will be reviewed, and it will continue throughout
Chapters 3, 4, and 6 , if not a little in 5. The topics and issues that
will be reported on are load balancing and task scheduling, prioritised
process scheduling, data routing, deadlock, cross-bar switches, and pro-
gramming language issues, amongst others. The only parallel language
that will be considered is OCCAM. Other languages used for paral-
lel programming are LINDA-C, MODULA 2, Parallel C, and ADA.
A comparison of communicating sequential processes in OCCAM and
ADA is available in [Mir88].

32

2.3. PART 2: PARALLEL PROCESSING (FOR COMPUTER VISION)

2 .3 .5 P erform an ce M easu res

It is perpetually desirable to measure, accurately or approximately, the
performance of any system. For parallel processing systems this is not
always easy.

Hockney and Jesshope [HJ88] introduce two parameters for use in ap-
proximate descriptions of the performance of computers. The param-
eters are more appropriately used in the context of serial and vector
computers to describe the performance of computers during a single
arithmetic operation on a vector of length n. The parameters are rrM
and m , describing the maximum rate of computation in floating-point
operations performed per second, and the vector length at which the
performance degrades to half of its maximum. Thus, the faster the
machine the higher r^. Hockney and Jesshope complement these pa-
rameters by others on grain size, communication, and scheduling, for
use throughout their book to describe the performance of various ma-
chines.

Two general performance parameters usually considered by workers in
the field are as follows. The most common is the term speed-up which
may be defined as the ratio between the time taken to execute an
optimised sequential algorithm on a SISD machine, and the execution
of the equivalent algorithm as mapped onto a parallel architecture. This
conveys a general definition. Thus, given that a SISD processor requires
time Tsi3d to execute an optimised sequential algorithm, and that the
time to execute a parallel version of the algorithm on N processors is
T||, then speed-up is,

S = -L s is d (2.16)

Others define this ratio differently, for example, Quinn [Qui87] defines
speed-up as the ratio between a parallel computer executing the fastest
serial algorithm and the time taken by the same parallel machine to
execute the parallel algorithm using a number of processors.

Another measure is efficiency given as a ratio between the speed-up
and the number of parallel processors used,

B = | (2'17>

For example, on a pipeline, with the algorithm split across N stages or
processors, with time for each stage being (Tnadu Tsiad2 , ..., TsisdN), the
time to process the full algorithm should be,

33

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

Tpipe = M A X (T sia<n ,T aiad2, ..., Ts,4dn) 4- V (2.18)

where V stands for some minimal overhead. Thus the speed-up and
efficiency for a pipeline processor is given by,

S ,i,' = ^ (2.19)
pipe

E ^ , = (2 .2 0)

For all parallel systems the approximate linear speed-up is given by
Equation 2.16. However, there are arguments against research towards
large scale parallelism based on laws founded on speed-up analysis.
Some of these are Grosch’s law and Amdahl’s law which have been re-
viewed in [Qui87]. For example, Amdahl’s law suggests that a small
number of sequential operations can effectively dominate the perfor-
mance of a parallel machine regardless of the parallel nature of the
system and the part of the code that remains parallel. For example,
given that A is a fraction stating the amount of sequential operations
from the whole, 0 < A < 1, then the maximum speed-up, SAmdahl,
achievable by a parallel computer with N processors would be,

SAmdahl C: A + X-A
N

(2.21)

Thus for an algorithm which contains 20% sequential operations, then
MAX(SAmdahl) = 5, no matter what the value of N may be. As
Quinn [Qui87] suggests, there are algorithms with no sequential op-
erations, and therefore Amdahl’s law can serve as a way of categorising
good candidate algorithms which are suitable for parallelisation.

Hwang and Briggs [HB84] formulate expressions to measure speed-
up and efficiency in a SIMD system. Browne and Hodgson [BH89]
also present the same for a SIMD transputer array. Speed-up will be
used throughout this thesis to indicate performance improvement of the
transputer-based systems presented for both the label inspection work
and the motion work. Earlier in Chapter 3, the issue will be examined
in more detail with respect to SIMD transputer arrays, where previous
work on speed-up measurement (i.e. that of Browne and Hodgson) will
be reviewed and complemented with new work on data communication
strategies and measurements.

34

2.3. PART2: PARALLEL PROCESSING (FOR COMPUTER VISION)

2 .3 .6 A lte rn a tiv e C o n cep ts

A recent parallel processing methodology is the data-flow architecture,
which embodies a model far different from the von Neumann model,
the control-flow computer. A data-flow machine enables the execution
of an instruction only when its required data is available. Instructions
from any part of the program can execute next and therefore there is
no program counter. Data flow architectures reflect the graph of the
problem where data is passed along the arcs of the graph from one
instruction execution point to another. For further analysis of data-
flow computers the reader is referred to a detailed description of these
architectures in [HB84],

Another major advance in recent years is the development of artificial
neural networks, aimed at emulating the way neurons in the human
brain are connected. The potential of such networks would be of great
value to both fields of artificial intelligence and vision (from low-level to
high-level image understanding). Neural networks are based on neural
models or connectionist models. In the former, a neuron becomes a
’’ thresholding” unit, which collects signals from its inputs (synapses),
and places a signal at the outputs (axons). This leads to massively
parallel networks, with special-purpose analog or digital threshold de-
vices as nodes. In the latter, the model is based on self-learning al-
gorithms, thus resulting in nodes which are primitive, programmable
processors [Tre88]. Either way, the fine granularity of these networks
dictates a high rate of communication and even today’s VLSI and WSI
technology can still not offer a practical solution. However, simula-
tions of neural networks abound, with hardware platforms such as the
Connection Machine [Tre8 8 , HJ88], and the transputer [OHRS90].

2.3.7 Architectures for Vision

The Cytocomputer [Ree84] as a pipelined low-level image processor has
already been briefly mentioned. This section will present a compact
review of tightly-coupled and loosely-coupled multi-processor architec-
tures which have been applied to, or specifically built for computer
vision.

• DAP The Distributed Array Processor was first installed at Queen
Mary College, London after its development by ICL. Now with AMT
Ltd., the DAP510 SIMD computer is the latest version with 1024 pro-
cessing elements (PEs) all working under the supervision of a master
control unit. Each PE is a simple bit-serial processor and may have

35

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

access to the rest of the data store by local routing or via an MCU
fetch and broadcast scheme [Pag8 8 , HJ88]. The DAP’s SIMD architec-
ture is suitable for most low-level image processing problems. Sleigh
et. al. [Pag88] report the implementation on DAP of a number of low-
level algorithms, such as 3x3 to 9x9 neighbourhood operations, labelling
of binary image regions, Marr-Hildreth and zero-crossings operations,
and production of image histogramms. They followed their individually
successful experiments with an equally successful application for X-ray
baggage classification, using thresholding, labelling of distinct binary
objects, and finally classifying each object by area size, and rotation
and scale invariant moments.

• CLIP7A Specifically designed for image processing, this is one of
the latest in the CLIP cellular logic image processor family of comput-
ers. Whereas the earlier CLIP4 consisted of 96x96xl-bit array of simple
PEs, the CLIP7A is proposed as a linear array of 256 elements, with
two 16-bit CLIP7 chips at each element, one concerned with data ma-
nipulation, the other with local generation of data memory [FMM88].
CLIP7A instructions would be 256x1 vector operations, thus, process-
ing of 256x256 (or larger) images must be emulated transparently to
the user, and under the scrutiny of the host. In addition, each proces-
sor would have access to 64Kbytes of RAM, and edge storage elements
that allow access to all surrounding pixels for 3x3 neighbourhood op-
erations. This is in contrast to the DAP (or the MPP), which can only
manage direct access to its 4-connected mesh neighbours.

This machine is proposed [FMM88] as a prototype for introducing a
greater degree of autonomy per processor in a SIMD array, and for
studying the possibility of performing high-level image processing by
implementing rapid data transfer between distant processors. This
would be achieved via left or right data exchange from source PE to
destination PE across the linear array.

• The Connection Machine: CM -2 The Connection Machine con-
sists of 65536 bit-serial processors, each with 8K bytes RAM, and 2048
floating-point processors [DEH89]. The machine displays fine-grain par-
allelism, with each processor capable of accessing data held by any other
processor using complex switching networks, hence the name. Compris-
ing of 16 PE chips, each chip contains processors that are connected in
nearest-neighbour grid, and due to its n-cube connectivity, the machine
can be viewed as a 12-dimensional hypercube with 4x4 single-bit PEs
at each node [HJ88]. Used in the main for AI applications, it has also
been applied to image synthesis (where the input data is a model to
be drawn and the output is a 2D image) applications. However, given

36

2.3. PART 2: PARALLEL PROCESSING (FOR COMPUTER VISION)

its interconnection map, it surely provides a suitable platform for both
SIMD and MIMD vision applications.

Notice that all the machines above have array-like structures, which
are most immediately useful for SIMD, low-level, image processing,
but are yet programmable as MIMD processors given that irregular PE
mapping is possible (but at varying degrees of complexity). However,
in massively parallel computers such as the DAP or the CM-2, the
difficulty in programming massive numbers of processors to work in
coordination, as well the high cost of communication given their grain-
size, added to the high cost of execution control, dampens the feasibility
of MIMD processing on such large-scale parallel processors. Therefore,
due to the relatively complex nature of high-level vision, and general
unavailability of MIMD machines, experiences in this area are still very
limited. The solution for higher-level computer vision then clearly lies
in somewhat more intelligent, unit processors with more local memory,
which are capable of both SIMD and MIMD type operations. The IUA
and the PC WARP will be reviewed as two such machines. Also, in the
summary of this chapter, it will be seen how the transputer, described
in Part 3, is envisaged to cater for low-level to high-level vision through
SIMD and MIMD architectures.

• IUA The Image Understanding Architecture is a multi-layer system
of processors with 4096 1-bit processors at the lowest level, 64 16-bit
microprocessors at the intermediate level, and a single symbolic proces-
sor at the highest level [WRHR91]. Each level of the IUA corresponds
with the three levels of abstraction in image analysis as described in
Part 1, with the three levels executing segmentation, symbolic represen-
tation, and scene interpretation respectively. There is inter-processor
communication at each level, but shared-memory between the different
levels, giving a tightly-coupled overall system with dual-ported memory.
There is also parallel associative communication and control between
the low and intermediate levels. In the DARPA Image Understanding
Benchmark tests [WRHR91], containing such tasks as the Sobel edge
detector, the median filter, the Hough transform, labeling of connected
components, and graph matching, the IUA performed its tasks in the
order of milliseconds! Weems et. al. [WRHR91] give a detailed analy-
sis and performance evaluation of the IUA and other machines such as
the Connection Machine, and the Sequent Symmetry 81, but also em-
phasise the differences in the number of processors, clock rates, memory
configurations, etc. However, the catch is that the IUA is still under
construction, and is only available under simulation on a Sequent Sym-
metry multiprocessor. Unfortunately little more detail of this machine
is available, but when it is completed it would serve as a good candidate

37

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

for service under group 3 of the classifications in Figure 2.1.

• The PC W AR P The PC WARP developed at Carnegie Mellon
University (CMU) and constructed by General Electric, consists of a
systolic linear array of 10 cells with local memory and each cell capable
of lOMFlops. The data transfer rate between the cells is 80Mbytes/s.
All cells execute the same program, but each performs on different
data, and at any given time will be at a different stage of program
execution [DEH89]. A classic systolic array is a pipeline, with each cell
performing one step of the algorithm.

The PC WARP machine is also a prime example as a candidate for
group 3 of the classifications in Figure 2.1, but for different reasons to
the IUA. This is due to its input partitioning and output partitioning
schemes. In the former, the image is divided into columns for each cell,
such that for a 512x512 image, cell 0 would take columns 0-51, cell 1
would take columns 52-103, etc., and thus each cell has a tenth of the
image. This allows neighbourhood operations for low-level image pro-
cessing. In the latter, the scheme is used for operations requiring access
to global image data, and yet can be computed independently. Each
cell would have access to the whole image, but would produce output
for part of the image only. This is stored locally until all cells have com-
pleted processing. At CMU, this approach has been used to implement
the Hough transform, chain-coding, graph matching, and connected
components labelling algorithms. For example, chain-coding, although
quite simple in SISD operation, would create horrendous problems in
a SIMD environment with data partitioned across processors. How-
ever, in the output partitioning mode of PC WARP, the problem would
become less complex with the benefit of more arbitrary localised com-
putation.

The next generation machine (iWARP) proposed in [DEH89] is ex-
pected to have 72 cells performing at 16MFlops each.

Although no mention of multi-resolution array architectures for image
processing will be made in this thesis, the idea of multi-resolution im-
agery will be examined quite closely at a later stage. As far as the
transputer is concerned, perhaps the most well known of the general-
purpose, transputer-based, image processing architectures is MARVIN,
running the TINA vision software [RPBK90]. This machine will be con-
sidered in a little more detail in Chapter 6 , with others being mentioned
along the way.

38

2.4. PART 3: THE TRANSPUTER AND OCCAM

2.4 Part 3: The Transputer and OCCAM

The transputer family of processors from INMOS are many in num-
ber. The typical transputer is a VLSI device with a processor, local
memory, and communication links for connection to other transputers.
For example, the T805-25Hz is a 32-bit processor with 33 ns internal
cycle time with a peak instruction rate of 30 Mips, a 64-bit floating-
point unit (FPU) with peak instruction rate of 4.3 Mflops, 4 Kbytes
of on-chip RAM with 1 processor-cycle access time, and bi-directional
peak data rate of 2.35 Mbytes/sec per channel on four communication
link channels. The CPU and FPU can execute concurrently. It has a
micro-coded scheduler for fast context-switching and time-sharing be-
tween processes. Transputer board modules typically come with 1 or 2
Mbytes of external RAM. Now programmable in most high level lan-
guages, the transputer is most appropriately programmed in OCCAM5

which was conceived to provide the best mapping of a concurrent sys-
tem’s process architecture on a single or multiple number of processors.
The transputer was designed to implement OCCAM’S concepts of con-
currency and distributed communication.

It was decided for the sake of brevity, that Part 3 would be dedicated
to the fundamental issues associated with the transputer, and its pro-
gramming techniques using OCCAM, since they are the main tools in
this thesis. Thus, this section is not about an exposition of the physics
of the T414, T800, or T805 transputers, or the syntax of OCCAM. Such
material is already in plentiful supply [Inm87, PM87, Inm88a, Inm89].
However, much about the nature of programming transputer configu-
rations in OCCAM will be given coverage throughout this thesis6.

2.4.1 Building Transputer Networks

Given the four communication links of the transputer, there are a mul-
titude of physical configurations that may be built by the use of pro-
cessors as standard hardware building blocks. Parallel architectures
such as n-cubes, n-linear pipes, stars, arrays, trees, and others (Fig-
ure 2.5) can be physically connected via (cumbersome) hardwiring,

5The name is derived from the 13th century philosopher/scientist Wilhelm Ock-
ham, (or William of Occam), whose famous OCCAM RAZOR principle states:
Pluraliias non est ponenda sine necessitate (One must not multiply entities without
necessity). This was meant to reflect the original OCCAM design principle of a
minimalist approach to avoid unnecessary duplication of language mechanisms.

6Please note that when producing sample code, - - represents a comment, and
... represents a fold containing OCCAM processes achieving the task described.

39

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

or through easy software configuration using the programmable C004
cross-bar switch. This is a 32 way link switch which may be used for
static and dynamic configuration of small or large transputer networks
to provide the connectivity required by certain applications. Despite
the ease of programming, it may be wiser to use hardwiring in critical
real-time systems, since the C004 has been observed by Koontz [K00 88]
to reduce data transfer rates by up to 25% when tested in connecting
T800 processors.

Multi-transputer networks are independent of buses, yet they can be
connected to different buses, e.g. as in [RPBK90, Bux91] with the
help of some standard hardware expertise. Transputer-based super-
computers include the Meiko Computing Surface, with user facilities
for personal-use network configurations and space for large-scale pro-
cessor scalability depending on requirements. The Meiko machine at
the Edinburgh Computing Centre currently contains over 400 transput-
ers, and is a multi-user machine where every user is assigned a number
of processors as their own domain. Another supercomputer is the FPS
T-Series which is theoretically expandable to 214 = 16384 nodes, with a
32-node machine capable of 16Mflops at each node. All nodes contain
a transputer and two 64-bit WEITEK floating-point chips for multipli-
cation and addition respectively [HJ88].

2.4.2 Communicating Sequential Processes: CSP

Hoare’s CSP [Hoa85] was the inspiration for the design of OCCAM.
CSP gives a mathematically-based notation for specifying the behaviour
of multiple, sequential, processes communicating synchronously. Traces
(symbols defining the behaviour of the process), both deterministic and
nondeterministic processes (i.e. when processes have or have not a
limited range of behaviour, given the influences of their environment),
buffered asynchronous communication, deadlock and livelock and many
other issues are dealt with in a formal mathematical language to allow
the description, design, implementation, and verification of complex
computer systems.

2.4.3 Designing O CCAM Programs

OCCAM is based on the CSP model of computation with issues such
as parallel process execution, communication, and synchronisation in
its very structure, with the same model of concurrency applicable to
processes resident on one transputer as on many. This enhances the

40

2.4. PART 3: THE TRANSPUTER AND OCCAM

prospects for design, portability, and re-assignment on transputer plat-
forms. In comparison with other programming languages, e.g. MOD-
ULA 2 or ADA [Mir88] which assume execution of pseudo-independent
processes on a shared-memory computer, OCCAM supports a full model
of message-passing process concurrency. Data permeates through the
system of processes via channels, hiding the details of each process and
its data structures from other processes. Thus, each process can be
defined in terms of sub-processes similar in structure.

The idea of process design modularity creates a perfect specification
mechanism in achieving geometric and algorithmic parallelism, by map-
ping data and tasks onto pipeline, SIMD, and MIMD transputer archi-
tectures. Various interesting program design issues which will also have
an impact on the performance of a system will be discussed next.

2.4.4 Communication Issues

Communications is the essence of distributed parallel programming.
Communication channels between processor-local processes are imple-
mented via memory locations, and between processes on different pro-
cessors via physical, point to point, standard INMOS links. The trans-
puter is capable of initiating communications which are then handled
via autonomous link DMA engines, thus freeing the central processor
unit to continue processing. Channel communications and processor
computation must therefore be always decoupled.

This may be achieved through the use of a simple buffering mechanism
such as,

PAR — Three parallel processes
... Receive data from in.channel and buffer in a FIFO in.queue
... Process data from top of in.queue, put results on out.queue
... Take data from out.queue buffer and place on out.channel

Thus computation can always continue, with the buffers smoothing out
the flow of data. The code below shows each queue buffer may be im-
plemented as a series of channels created by the use of a replicated
PAR statement thus showing how higher level processes may in turn
be broken down into a smaller set of processes. For local processors,
rather than moving huge data chunks, the data can be stored in global
shared memory and only the index to the data passed between chan-
nels to reduce the communication bandwidth. Notice that the use of

41

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

buffering allows asynchronous communication.

[queue.length+1]CHAN OF INT buffer.queue :
PAR

buffer.queue[0] ! image.data.in
PAR i = 0 FOR queue.length

SEQ
buffer.queue[i] ? image.in.transit
buffer.queue[i+1] ! image.in.transit

buffer.queue[queue.length] ? image.data.out

Having separated the communication from the computation, it is also
helpful to reduce the number of link transfers by communicating larger
chunks of data [Atk87]. Each link takes about a microsecond or 20
processor cycles to set up. Once initiated, the transfer is almost au-
tonomous, consuming 4 processor cycles every 4 microseconds. Thus,
the piece of code on the right is much more efficient than the code on
the left,

SEQ i = 0 FOR 256
SEQ j = 0 FOR 256

image.chan ! image[i][j]

SEq i = 0 FOR 256
image.chan ! image[i]

where each row of the image is transfered (256 link activations) rather
than a pixel at a time (65536 link activations). Of course, for larger
link transfers the latency increases.

Variant protocols can be used to pass many different data types between
processes. During link transfers, the data is broken down into bytes and
communicated as such. Each byte must be acknowledged individually.
Faster transfers are achieved by overlapping the data and acknowledge
messages.

Multiple channel I/O across links, or within a local processor, can be
established using multiplexing. A multiplexor is a process which col-
lects inputs from a number of channels, and outputs on one. The mirror
image of this is a demultiplexor process which receives data on one chan-
nel and outputs data on several outgoing channels. Thus, connection
can be established between multiple processes on neighbouring proces-
sors. The use of identity tags in the communication message ensures
correct addressing and communication between source and destination
processes in (de)multiplexed communications.

42

2.4. PART 3: THE TRANSPUTER AND OCCAM

2.4.5 Process Scheduling and Priorities

Processes on the transputer run at two priority levels, high priority
(H) and low priority (L). For each of these there is a process queue,
represented by a linked list in the transputer. The lists contain the
workspaces of processes that are ready to execute. New processes are
added to the end of the appropriate list, which is also where newly
descheduled processes are placed. The transputer always executes an
H process if there is one, and only when the H process has to wait for
communication, a timer input, or when it simply terminates, can the
next H process proceed. Also, only when there are no H processes that
can proceed, is an L process allowed to execute. Then, all L processes
are time-sliced, unless they are descheduled earlier due to the specific
reasons also associated with H processes as given above. They may
also be at any time preempted by a ready-to-execute H process.

Two important computation/communication implementation tips are
derivable from the explanation above. Firstly, the posit as regards
communications, is to run all routing processes at high priority, while
the computing-intensive tasks are run at low priority. This ensures
the immediate availability of data for computation to go ahead. Sec-
ondly, the less the number of processes in the two queues, the less the
context-switching overheads, and the quicker the other processes will
be attended to. Thus, the right-hand image initialisation task below
will execute faster than that on the left.

PAR i = 0 FOR 256 | SEq i = 0 FOR 256
PAR i = 0 FOR 256 | SEq j = 0 FOR 256

image[i][j] := (BYTE 0) | image [i] [j] := (BYTE 0)

A recently developed operating system for the transputer, based on
preemptive scheduling, and providing multiple priority levels, is the
TRANS-RTXc[VTL90]. This would by-pass the FIFO scheduler scheme
where there is no guarantee of the scheduling of a process within a
known time-interval. Thus, the TRANS-RTXc introduces the prospect
of more efficient real-time systems on the transputer.

2.4.6 Deadlock and Livelock

A common source of deadlock in transputer programming occurs when
one channel wishes to communicate with another, whilst the other will
never reach a stage to be prepared to communicate. This can then prop-
agate throughout the system’s set of concurrent processes and cause a

43

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

stand-still. Research at Oxford University on deadlock avoidance has
proved the possibility of implementing completely deadlock free pro-
grams [RD86]. Although the work is based on CSP, it can readily
translate into OCCAM.

When concurrent processes communicate with each other continuously
without ever communicating with their external world, livelock is said to
have occurred. Deadlock and livelock can seem identical to the unaware
user. One method for detecting them can be the employment of a
supervisor or monitor process, running at low priority and completely
independently of normal data flow channels, to determine cpu and link
usage.

2.4.7 Fair Attendance

The OCCAM language features a powerful alternation construct for
achieving concurrency and communication between processes. The ex-
tent of this property of OCCAM is not always fully understood, and it is
the aim of this section to describe the usefulness of this feature through
a simple example. The facility has been a major tool in designing the
programs written throughout the course of this work.

An ALT process in OCCAM is one which is prepared to communicate
with one of a number of processes simultaneously. It will only select
one process which is ready to communicate with it. There are two al-
ternation constructs in OCCAM. The symmetric construct provided by
the keyword ALT, which guarantees the selection of one of its branches,
namely a guard from its list of guards, and the asymmetric construct
provided by the keyword PRI ALT which gives a guarantee on the selec-
tion of one certain guard over the others. The ALT construct is similar
to the SELECT statement in ADA, which has ACCEPT statements as
alternatives [Mir88].

To illustrate this powerful facility, a simple implementation of the basic
functioning of a lift is described. Consider a university with a 5 storey
building, plus a basement, where the floors are served by a simple
lift which may hold only one person at any one time. The lift will
serve its clients on a first-come-first-served basis. It will not accept
any further calls for service until it has served its current request. The
Vice-Chancellor’s office is on the 5th floor, and requests for transport
to and from the 5th floor will receive priority service from the lift over
any other requests.

If the lift becomes inoperational, then it is assumed that this action

44

2.4. PART 3: THE TRANSPUTER AND OCCAM

will be concomittant with the depression of the EMERGENCY button.
This takes precedence over all lift functions.

The lift services the floors unfairly. It accepts the very first request
after it has finished serving the last person. Thus, once the lift is free,
the client must be quick on the request button if the lift is to go to that
floor next. Notice that this is a very basic implementation and in the
real world many extra functions have to be taken into account.
Considering the following definitions,

— Important declarations
[6]CHAN OF BYTE floor :
CHAN OF BOOL emergency :
BOOL operational :
BYTE service, signal :

the code would be as shown in Figure 2.7.

The comments in the figure describe the actions taken once the lift
arrives at a floor. These are not shown for all floors.

PRI ALT introduces an element of prioritisation in order of textual en-
counter. In this example, the emergency channel is always monitored
first while the lift remains operational. Next, it is the fifth floor fol-
lowed by floors 0 to 4. Since the action taken for all floors from the
basement to 4th are similar, a replicated ALT may be used.

ALT i = 0 FOR 5
floor[i] ? service.request

This example illustrates the unfairness of the implementation of the
ALT construct, since it always selects from top down. If service is
required on all the floors from the basement to 4th, at all times, then
the basement request only would ever be serviced.

To introduce some fairness into the scheme, a number of approaches
could be adopted; two simple possibilities are shown in Figure 2.8.

Notes in [Jon89] provide a detailed analysis of the fair ALT.

All the issues discussed in Part 3 are of extreme importance when de-
signing OCCAM programs. Some of these will be re-visited later in
this thesis. INMOS has released a series of technical notes to aid bet-
ter design of OCCAM programs by transputer users. Some of these,

45

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

operational := TRUE
WHILE operational

PRI ALT
emergency ? signal

SEQ
operational := FALSE

floor[5] ? service.request
SEQ

- - Travel to floor 5.
- - Accept signal to identify destination.
- - Travel to destination requested.

ALT
floor[0] ? service.request

SEQ
- - Travel to floor 0, the basement.
- - Accept signal to identify destination.
- - Travel to destination requested.

floor[l] ? service.request

floor[2] ? service.request

floor[3] ? service.request

floor[4] ? service.request
SEQ

- - Travel to floor 4.
- - Accept signal to identify destination.
- - Travel to destination requested.

Figure 2.7: An ALT example for servicing a simple lift

and specially [Atk87] in particular, are essential reading for anyone at-
tempting to produce efficient OCCAM programs requiring maximised
performance at low-down code level. Issues such as the manipulation
of the compiler’s range-checking option, and block moves for vector as-
signments (which is distinctly useful for shifting image data about the
memory), are amongst the many pourboires offered.

The issue of more efficient OCCAM programs will be laid to rest after
considering one final point, the use of on-chip RAM. The OCCAM pro-
grammer can initiate the placement of variables local to a process, on
local on-chip memory of the transputer. This will allow a fast memory
access, at 1 processor cycle, to the most frequently addressed variables
by the CPU, resulting in a much faster execution of the code. For ex-
ample, when performing the Sobel filter, the neighbourhood gray values

46

2.5. SUMMARY AND CONCLUSIONS

— 1 - Rotate the priority of the floors, after each PRI ALT
favourite := 0
WHILE operational

... attend to other channels
PRI ALT i = favourite FOR 5

VAL shifted IS i MOD 5 - MOD gives remainder
floor[shifted] ? service.request

... processing for floor[shifted]
favourite := (favourite + 1) \ 5

— 2 - Give lowest priority next time around to floor selected now,
favourite := 0
WHILE operational

... attend to other channels
PRI ALT i = favourite FOR 5

VAL shifted IS i MOD 5 - MOD gives remainder
SEQ

floorfshifted] ? service.request
... processing for floor[shifted]

favourite := (shifted + 1) \ 5

Figure 2.8: Two approaches for a fairer servicing of floors.

of a pixel can be read into temporary variables and placed in on-chip
RAM. When the operation window is shifted next, those neighbour-
hood points which are also the neighbours of the next pixel, can be
passed to other temporary variables in on-chip RAM. This reduces ac-
cess to external memory, and speeds Sobel execution by manipulating
local memory.

2.5 Summary and Conclusions

The topics discussed in this chapter were intended to serve as a foun-
dation in, and be a general review of, subjects that are of direct impor-
tance to the work presented in the rest of this thesis.
In the first part, image processing techniques such as edge detection and
edge segmentation were discussed. Emphasis was layed on the levels
of complexity in analysing and understanding images. A major tool to
aid in symbolic representation of features in digital images is the Hough
transform. This was reviewed and will be returned to in Chapter 4.

The discussion in Part 1 was centred on techniques in the spatial do-

47

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

main; for those in the frequency domain, such as the Fourier transform,
the reader is referred to [Nib85, GW87, Sch89]. Further image process-
ing techniques and reviews will be presented when the topics of label
inspection and motion are presented.

Part 2 reviewed some different aspects of parallel processing, spanning
architecture classifications, qualitative issues, programming and perfor-
mance issues, and parallel vision architectures from different categories.
In continuation, the topic extended to Part 3, where the transputer and
OCCAM were introduced, and some fundamental aspects like commu-
nications, buffering, and more efficient programming issues were exam-
ined. OCCAM is chosen as the main programming language in this
work not only because it is the only language on the transputer to offer
true parallel segmentation of communicating sequential processes, but
also because it offers the fastest route to designing parallel programs
for the transputer. Its model of concurrency and sequential logic is sim-
ple, mathematically consistent, and is built into the logic of producing
multi-process networks of processors. Therefore, despite its lack of fa-
cilities, such as dynamic memory allocation (which is merely compiler
dependent), OCCAM is preferred for use on the transputer as opposed
to a selection of other sequential languages which have non-standard
and unportable parallel features. Only a little search of the transputer
products market is enough to confuse anyone with numerous ’’ Parallel
C” compilers.

Now that the case for using OCCAM is laid to rest, the question that
has to be asked is, but why use the transputer in the first place? This
is simple, and is not an issue of ” chip A is better than chip B but
chip C has a faster clock cycle than both” . Disregarding all advantages
and disadvantages of the transputer, most of which will have been ex-
amined by the end of this thesis, the transputer remains as the only
cheap source of parallel computing, allowing the simple configuration of
multi-processor, distributed networks. Whereas most research labora-
tories can experiment with at least a handful of their own transputers,
very few others can probably afford to buy a little time on a general, su-
percomputer. The cost of programming is therefore the major deciding
factor in such matters (Section 2.3.4).

So, what role can the transputer and OCCAM play in the image pro-
jected in Figure 2.1? This is examined next.

Certain issues were raised in the introduction to this chapter which need
further exploration now in the light of what has been discussed in be-
tween. The main focus of reference is Figure 2.1. During the course of
this chapter, it was seen that point operations and local neighbourhood

48

2.5. SUMMARY AND CONCLUSIONS

operations in image analysis, can be and have been mapped across sim-
ple 1-bit processing elements or higher degree intelligent nodes arranged
as regular mesh or array of processors. The arrangement is referred to
as SIMD processing. Some machines associated with this approach to
low/medium level image processing were examined. The intention of
some of the work that follows in this thesis is to show that this can
be implemented equally well on a SIMD array of transputer proces-
sors. Furthermore, two major approaches in geometric parallelism will
be employed to aid in the task. This is partly covered in Chapters 3
and 6, and fully projected in Chapter 4.

Global data operations were reviewed as best suitable for MIMD im-
plementation with different processes working on different data. Two
fundamentally different machines, yet both capable of general purpose
SIMD and MIMD operations were presented. These were the IUA and
the PC WARP. In the work in Chapter 6 the application of the trans-
puter as a MIMD tool will be presented. The nature of the system
will be partly similar to the IUA, and partly similar to the PC WARP,
in that it will have both SIMD and MIMD sub-units, but it will be a
system dedicated to tracking motion by correspondence.

r
Transputers for

9 " Parallel Processing—
 ̂i

> i
• i
• i
■ i
< i
• i
a

: :

■
1 1
1 1
1 1 1 1 1 1 1 1 1 1 II in Vision

-

Figure 2.9: SIMD, M IM D , or both?

Finally, it remains to examine route 3 of the enumerations in Figure 2.1.
Although this issue will be returned to in Chapter 7, it can be said now
that not even a close implementation of such a system stands. Ar-
chitecturally (i.e. for hardware that can map to the bottom section of
Figure 2.1), the resources exist; simply consider fantastic supercomput-
ers such as the IUA (which actually lives in simulation only) and the
PC WARP. On the vision side, the algorithms in the range of low to
high-level vision prevail to a certain extent, with much that still remains
to be developed, and a lot more that are still not suitably developed
enough from a parallelisation point of view. The only tools that have
brought these together are application-specific interfaces, or simple op-
timising compilers which are just not intelligent enough to extract more

49

CHAPTER 2. PARALLELISM AND VISION: SOME FO UNDATIONS

than some simple SIMD parallelism. Although, no particular solution
to this issue can be provided in this thesis, the matter is of interest, and
will be re-examined from a transputer/OCCAM perspective in Chap-
ter 7.

In summary, the rest of this thesis is dedicated to the examination
of the transputer’s role and capability in typical SIMD and MIMD
situations. Where will the transputer best fit into in Figure 2.1? Will
it be applicable across the board? The idea is illustrated in Figure 2.9.
The conclusions for its suitability will be drawn in the final chapter
with some brief comments provided in the chapters in between.

50

Chapter 3

Analysis and Application of
a Data-Routing Scheme

3.1 Introduction and Overview

Having considered a SIMD arrangement of hardware as an important
platform for low-level image processing, and the necessity of data-
partitioning for the implementation of such an idea, these issues will be
extended and examined in this chapter with application to transputers.

Geometric parallelism, introduced in the last chapter, may be accom-
plished via two mechanisms, control-driven and demand-driven. The
demand-driven strategy will be expounded in Chapter 4, whilst the
control-driven technique will be closely attended to here through the
specification, analysis, and application of a message-routing strategy
for an M x N transputer array network, given a P x Q image,

• the specification will be the presentation of a controlled data dis-
tribution and collection scheme,

• the analysis will encompass the derivation of equations for the ap-
proximate projection of the timings required for the distribution
and collection of any regular-sized window on the image data,

• the application will be to the field of label inspection, including
a short review of the field.

The label inspection application started life as an investigation into
proving the possibility of feist, successful image inspection on trans-
puters, which would then grow into a full inspection system, in joint

51

CHAPTER 3. ANALYSIS AND APPLICATION OF A DATA-RO UTING SCHEME

collaboration with Trivector Systems Ltd., part of the Vinten Group
PLC. However, some way through the project, the sponsors withdrew
due to financial and take-over problems. Nevertheless, being past the
midway post, the evaluation study was conducted to its conclusion.
Thus, what will be presented later will be an ad hoc approach to a suit-
ably defined label inspection problem, in order to be able to infer the
performance of a multi-transputer system for an industrial inspection
system.

3.2 Mapping and Communication Costs

The idea of geometric, or data parallelism was introduced in the last
chapter as a method of programming SIMD arrays of processors where
each processor performs the same tasks on different data. In low-level
image processing the data would preferably be composed of uniform,
equal-sized partitions of the image, as depicted in Figure 3.1.

Figure 3.1: Mapping equal-size partitions of an image across
a transputer array. Sample mappings are shown with dotted
projections.

The granularity of the SIMD processing nodes would determine the
granularity of the data. For transputers, in splitting a 512x512 image
across a 2x2 array of processors, each of the 4 sub-images would consist
of a 256x256 image. Yet, split across an array of 128x128 processors,
each sub-image would be 4x4 only. Thus, the data may range across
the fine-medium-coarse grain spectrum, depending on the application.
Its size is determined in length /, and width w by,

52

3.2. MAPPING AND COMMUNICATION COSTS

(3.1)

given that there are M x N transputers, and the image size is P x Q.
Also let it be assumed that the following conditions stand,

4 < P, Q < 512, 2 < A f < j , 2 < N < &, and ^ yield integers.

The process of assignment, distribution, and collection of data takes
place under the supervision of a controller processor, and this would
usually be a separate transputer to the array. At all other times, the
processors exhibit distributed control, i.e. they perform their tasks in-
dependently of any external supervision, and they only rely on the flow
of data as controlled by the supervisor processor. Thus, implicitly, this
method of mapping data to processors is referred to as control-driven.
It may have been noted that inter-processor communication has not
been included in the above explanation. This is due to the fact that it
will not be necessary, and this is examined now.

Some of the major algorithms in low-level vision need to operate on
neighbourhood pixels, and the partitioning shown in Figure 3.1 does
not satisfy this requirement at the pixels along the border of each par-
tition. Morrow et. al. [MCK+88] have proposed a method for passing
image data which is as follows: the controller communicates with the
top-left transputer in the array only, passing the complete image to
that processor a row at a time. Each transputer in the north row of
transputers then retains its own part, and passes the rest of the row to
the east until no more data is left. When their own quota is satisfied,
each transputer in the north row continues along the same scheme by
sending the next segments that it receives partly southwards and partly
eastwards until all processors are fed. Following this, an edge swapping
operation is initiated, whereby each processor swaps the border infor-
mation along its four sides with corresponding neighbouring processors.
They do not specify their exact handling of the edge transputers, al-
though their predicament is acknowledged. Also no mention of access
to pixels from diagonally un-connected neighbours is made. The data is
then recalled in a similar but reverse manner. The authors continue by
performing the averaging operation, and introducing a more high-level
language as a harness for OCCAM in performing image operations.

Clearly, not only is the extra edge-swapping of their distribution phase
unnecessary, it is also conducted rather inefficiently at one pixel at a
time. Assuming that all processors will swap edges exactly in parallel,
there will elapse a time while a total of at least 2(1 + w) extra link set-
ups and communications take place before computation can go ahead.

53

CHAPTER 3. ANALYSIS AND APPLICATION OF A DATA-RO UTING SCHEME

This does not include the time for communicating to diagonal neigh-
bours via other processors. Also, since processes are descheduled at
communication points, the context-switching overheads must also be
taken into account.

/map«

o>

image*
---------------[1--------------r

• {
i - — i 4~ ~ ~ ~ ~

— ------— }■
S •2 i

+ -----------r u
r —

4----------------
» --------- 1 2 !

i---------------

r -----------

-j----------------
— - — r -----------* 4 ---------- r-

• • • j
F ------------

<*»>

Figure 3.2: For a P x Q image, (a) shows a sub-image and its
extra border area, (b) shows the same for the entire image

A more efficient method is illustrated in Figure 3.2. By including the
edge information in the data segments of each original sub-image, the
whole edge-swapping phase can be scrapped to reduce the communica-
tion stages, with the side-benefit of reducing the overall code size by
losing the code for interprocessor control and communication. The seg-
ments corresponding to edge transputers may be complemented by data
determined in some standard way by the controller and prior to com-
munication. For example, this may be achieved via the use of slightly
smaller images, e.g. a 510x510 image allowing borders of width 1. Fur-
thermore, little latency in communications will occur since the increase
in row segment sizes routed will be relatively small.

Other efficient routing methods exist (and will be mentioned later),
but this work is concerned with the analysis of the above method as a
typical message routing strategy. This analysis begins here.

Flatt and Kennedy [FK89] present a timing model for parallel process-
ing, with the initial finding that given a program containing serial and
parallel parts, and running on K processors, then the parallel compu-
tation time is,

T(K) = Tserial + + T0(K) (3.2)

with serial execution time of Tseriai, parallel execution time of
if the program may be partitioned into K parallel components of equal
running time, and communication and synchronisation overhead of
T0(K). They continue by examining the communication and synchro-
nisation overheads on parallel processors, establishing upper bounds on

54

3.2. MAPPING AND COMMUNICATION COSTS

the power of parallel processing under ideal conditions (cf. Amdahl’s
law). They also provide cost, efficiency, and speed-up equations for
very generalised measurements. Equation 3.2 is only valid, at least
in the case of a SIMD transputer array, if each of the three stages in
the equation can be regarded separately. When communications and
computations are overlapped, and the transputer is certainly capable of
autonomous link transfers while the CPU computes, then Pa™l,el and
some of T0(K) will be happening concurrently.

Much more relevant is the work of Browne and Hodgson [BH89] who
provide an investigation of the performance of image processing algo-
rithms when executing on data partitioned across transputer arrays.
They analyse point, neighbourhood, and global image processing oper-
ations, in terms of speed-up and efficiency, by way of simple simulation
of communications in terms of memory access cycles, using quoted av-
erages from [lnm89]. In fact, they divide all memory accesses and link
communications in terms of a number of different memory reference
types of count u, with elapsed time per word of t,-, i’e {0 ,...,u — 1}, with-
out differentiating between reading and writing. Then, assuming K
processors in total, they use the following general equations for T (K),
the time to perform on K transputers, S (K), the speed-up, and E(K) ,
the efficiency, to calculate their estimations,

T (K) = ^ + j E p m i) (3.3)

S(K) = r (l) - T (K) = Tr(1 + g p (i) t (i) (3 .4)

m n _ _ Tp + Vt i to
(} K T (K) Tp + V Z p (i) t (i) (' j

where, Tp is the total processing time for an image processing algorithm,
ti is the time for a local memory access, i.e. ¿(0), V is the total volume
of data (i.e. by the earlier definition in this section, V = P X Q), and,

x) = i M
fou g(x)dx

where, x is assumed as an address variable that can address the full
assumed memory space (including simulated links), and g(x) is the
frequency of accessing memory at x, resulting in p(x) as the probability

55

CHAPTER 3. ANALYSIS AND APPLICATION OF A DATA-RO UTING SCHEME

density of accessing memory at x, with the shape of g(x) determined
by the nature of the image processing application.

3.2.1 Evaluating Communication Costs

Given the general difficulty of measuring parallel distributed processors
performance, Browne and Hodgson present a very efficient simulation,
reporting a maximum difference between estimated and actual perfor-
mance measurements of ~ 14%. However, some essential factors that
they ignore in their work are, traffic load across the links, which will af-
fect the rate of memory access as defined in their terms, and the whole
fundamental issue of image distribution and collection pre and post-
processing respectively. No timing for these are assumed or derived,
and in fact they assume that the image is already distributed. It is the
intention of the work presented here to consider the distribution and
collection operation, since it forms an integral and necessary part of the
measurement of the total computation time. Thus, Equation 3.3 will
be re-stated where Tdc is the total communication time for distribution
and collection of data, before and after processing, and will be found
presently.

r W = ^ + § + L | > (> ' « 0 (3.7)

with K = M x N. Note that by way of the communications method
described earlier, the components of Tdc are equal, that is Td = Tc. For
the moment, consider Td only. Initially, let length /, and width w be
redefined to encompass the extra border data, 6, determined by the
image processing operation at hand, (more commonly 6 = 2),

i = ¥ + il ’ w = N + h (3'8)

Let the total time for distributing a P x Q image across a M x N array
of transputers, using the row-segment method described above, be,

Td = Tt + Tj (3.9)

where Tt is the time it takes the host controller to send the the whole
image, row by row, to the top-left (NW) transputer, and Tj is the time
it takes for the final package to filter through from the NW transputer
to its destination in the bottom-right (SE) transputer in the M x N
array, since that is the furtherest node away. Notice that although Tj

56

3.2. MAPPING AND COMMUNICATION COSTS

may be significant for large packets in large arrays, nevertheless more
usually, Tt >• Tj and Tj, ~ Tt. Therefore, for small transputer arrays
almost no marked improvement can be observed if the reverse process
to the above were to be implemented. That is, start by sending the
data for the SE transputer first, such that T/ will be (almost) non-
existent. This will be termed the reverse-feed distribution scheme and
is the preferred method. For the study here, the first approach, the
forward-feed distribution will be used as it will help build a simpler
picture of what happens.

It is important to notice that computation and communication can be
overlapped. However, the concern here is to measure the distribution
and collection of data as a separate procedure which can be followed by
the separate processing time defined by Browne and Hodgson [BH89].
Also, the overlapping of communications and computation may lead to
poorer performance due to the extra code and buffer processes, espe-
cially when the ratio of computation to communication is small. Still,
the computation on each processor commences once it has its own com-
plement of data, while it may continue to route data through for other
processors.

Equation 3.9 describes a time which assumes that during the operation
all the other transputers will have received their data packets. This is
next shown graphically for a small image on a small array, and can be
proved by induction to be true for all cases of M and N.

(a)

■4c* Walt to ftocg/y»

. !. ! Watt to Sond_ !.J Walt to Rocofvm
i r—i i i

Walt to Rooo/vo _ ¡

J i * i

! Walt to Sand
■ i ■ i----------------------
i i

tima

¡ I ! ¡ L in k tn n a fa r lOi a 11 Il l timm p e rio d Tm

(b)

Figure 3.3: (a) Distribution of case data on 3x3 array, (b)
Actions of 3 consecutive processors in the data path as the
data passes through.

For the sake of clarity, take a simple example including no neighbour-
hood pixels. Figure 3.3(a) shows the distribution of data on an array

57

CHAPTER 3. ANALYSIS AND APPLICATION OF A DATA-RO UTING SCHEME

of K = M x N processors numbered K 1 to K 9, and M = N = 3,
and P = 6,Q — 3. Using Equation 3.8 with 6 = 0, then / = 2 and
tv = 1. For the general case, there would be IM N packages of data
(i.e. row segments) numbered from {0 ,..., (IMN — 1)}, thus for this
example these are {0 ,..., 17}, as shown.

Next, define Ta as the period of a link data-transfer which depends on
the length of the data-block to be transfered (see Section 2.4), and T0
as the time spent on overheads such as the initiation and set-up of the
link transfer. Thus,

Ts = Ta + T0 (3.10)

giving the total transfer time over a single communication, with Ta
T0 and Ts ct Ta. (T0 is said to take about 1 nsec [Atk87], but is largely
dependent on how busy the processor is and can be much greater). Now
consider a snapshot of a short period during the distribution stage for
any three processors who lie orthogonal to the path of the data flow.
Given 0 for output on any link, and I for corresponding input on
receiving link, this snapshot in envisaged for transputers K 2 ,K 3 , and
K6 in Figure 3.3(b) as a data segment passes through, assuming that
the period of output for one transputer is equal to the period of input
of the transputer it is communicating with. Hence, measurements can
be made with respect to the average value of Ts, and thus Figure 3.4
shows the path and number of T, time-slices necessary for each packet
to arrive at its destination.

Note that Wait to Received Wait to send, with the latter being the
period of another link set-up to send the data packet on.

A program was written to simulate this pattern of data flow, and by
analysing the results for varying values of M , N, P, and Q, the following
formula was deduced to give the exact count, C , of time slices, Ta, of link
activity required to distribute any P x Q image on a mesh-connected
array o f M x i V transputer, assuming the conditions mentioned earlier
are satisfied,

C ,m n = (M + N - 3) + l (2MN - 1) (3.11)

Hence, since Td — Tc, the total data distribution and collection is given
by Equation 3.12,

Tdc = 2TsCimn (3.12)

The time Ts was measured for the transfer of varying packet sizes. Ta-
ble 3.1 shows these, along with the measured distribution and collection

58

C
ount in tim

e-slices

3.2. MAPPING AND COMMUNICATION COSTS

RS O ss ROCE ■o
»vo

K7K8 »0\ 3 » »» u>
K2

:

ro ; ** \

u> z z z \

»
................

. * a t>
ÜI i ®

* * fit
............ t j O

o\ I *; 3 J
-J I 8 5?
001*............. 8 ?

? a
»-*
o _________]<?............ ' * s>
M
M » * * ^
H
ISO *

................

Q>
M
U> N . „ . !
H
» N «
M
Ul zz:: LY.......... i !M

_________ 1.®............ /
H
-J _________z ,® /
H
00 nzZ7 1.®............

.................

/

JÇ. s
ro
o I3
ro
M ®............. •
ro
ro ___ 1=.... 2* 2*
ro
u> _________ 1 « . . . g g
ro
* _________^ 1.8............

.................

3 ro
ro
cn r?zz . ? 5 - 0)
to
<X\

................

is
to
.S . .? : . ? 2 o
ro
00 2 _________ .? g 3
ro
JÇ. _________ rs « . . . % ®
w
.9 . _________^ Z _________ 1«?__
u>
M - L?
LO
ro |S r h
u>
u> _________ i.®... . : . ? 1 1
U)
»r?ZZ _________ 1.?....
u>
Ol _________ r e

•

u>
9 .
u>
-J

_________ 1ZZZ
I.?.............

Figure 3.4: The temporal association of the arrival into the
system, and travel to final destination, of each data packet for
each transputer.

59

3.2. MAPPING AND COMMUNICATION COSTS

network of processors are available, e.g. all T414s or all T800s. Let p,
for ¿e{0, (I M N — 1)}, represent each packet of data in the system,
which are also in the order they are sent to the network. The packet’s
row and column destination transputer is given by, m, = n, =
Pi mod N ior 0 < m < M — 1 and 0 < n < N — 1. Then, for each
packet pi, it is possible to find, APi, as the time for packet p,- to enter
the system, and TPi, as the time for packet p, to reach its destination
transputer,

if (pi < IN) and (rii = 0) then(data on NW transputer)

Ap, = T,((21V - 1) | + 1) (3.13)

else if (pi < IN) and (n,- < > 0) then(data on first row)

Ap, = r.((2A r- + 2 m) (3.14)

else if (pi > IN) th en ... (data on other rows)

APi = Ta(2Pi — / + 1) (3.15)

and having found APi,

TPi = APi + T,(mt + rii) (3.16)

Tj can now be calculated using Equation 3.16 where / = p, = (IMN —
1). Another statistic is Tg;mn which gives the time elapsed before any
transputer in position (m, n) has received its own full complement of
data,

TEmn = r , (/ (2 M (m + l) - l) + m + 3 n - 2 M - l) (0 < m < M , o < n < N) (3.17)

TEoo = T,{l(2M - 1) + 2 (1 - M)) (m=o,n=o) (3.18)

More measurements that can also be derived are, Volumennks, and
Volumedata, which provide a count of the total number of times all
links are set-up for transfer, and the total amount of data moved about
the system respectively,

VolumeLinks = 21MN(M + N - 1) (3.19)

Volumedata = 2lw(M N) (M + N - 1) (3.20)

61

CHAPTER 3. ANALYSIS AND APPLICATION OF A DATA-RO UTING SCHEME

Many of the above operations occur concurrently and therefore these
parameters are cited only for the sake of completeness. They could
perhaps best be used for comparison with similar features in other
routing strategies.

Note that all the above equations have been also derived for the reverse-
feed distribution mechanism which was stated earlier to be a more effi-
cient distribution mechanism, but will be omitted to preserve space.

The presentation in this section encompassed both an improved ver-
sion of the data distribution and collection algorithm for a transputer
network as proposed originally by Morrow et. al. [MCK+88], and an
analysis and breakdown of the algorithm to determine various charac-
teristics. Furthermore, the results may be used to complement the per-
formance measures introduced by Browne and Hodgson [BH89]. Since
the method described here is completely general for any image sizes
and transputer array sizes, be they square or rectangular, the routing
method will hereafter be referred to with the prefix of general, or flex-
ible. This method will now be applied to a simple real-time task in
label inspection, as a static image processing application, to determine
its suitability in a practical situation compared with a more customised
routing method. Hence, the emphasis will be on the application of the
message-passing schemes for evaluation for a real-time environment,
rather than a precise approach to label inspection as an industrial in-
spection task. In the following application, little in the classification of
faults and defects will be presented. Instead, the concentration will be
on the passing of labels that satisfy some simple tests. Nevertheless, a
short review of the field of label inspection will be furnished next.

Please note that the discussions that follow, all the way to the end of
this chapter, are kept to a minimum, and are detailed enough to provide
an overall view of the work carried out only. This has been dictated by
lack of space.

3.3 Brief Overview of Label Inspection

The issue of label inspection may be regarded as a sub-problem in
the domain of industrial and commercial inspection, where the gen-
eral idea is to simply perform rigorous checks on the outward quality
of a product before its presentation to the consumer. Figure 3.5 illus-
trates the type of faults that are of major concern in label inspection.
The field of industrial inspection has a wide application area, for exam-
ple printed circuit-board inspection [CH82], food inspection [Dav90],

62

3.3. BRIEF OVERVIEW OF LABEL INSPECTION

specialised packaging inspection [Sha89], or general manufactured-item
defect measurement [Bat79, Oka84]. A general review of automated vi-
sual inspection techniques and systems can be found in [CH82, CD86].
The application subject of this chapter and the next will be on label
inspection only.

Figure 3.5: Typical defects found through label inspection

Most typical defect detection and inspection techniques are mainly con-
cerned with the extraction of a number of particular features from the
image, which are used in the verification of the quality of the product
by matching those features against a pre-defined model. Many such
techniques are reviewed in [CD86]. This approach is also applicable to
label inspection and is adopted for this work. Moreover, in this work
a crude approach will be adopted where the matching criteria will pro-
duce a simple accept/reject decision. However, prior to analysing the
ad hoc procedures implemented here, some past, related work in the
field is reviewed.

Unfortunately, few industrial sources reveal the nature of their label
inspection techniques, and they number amongst the major researchers
in the field. One major aspect of label inspection is the process of
inspecting the quality of the print on the label. For example, correct-
ness of labels on medicinal containers is an application area where the
aesthetics is not as important as integrity.

Commercial systems have been reported in [H0I86 , Dic88] with special
routines which check for label placement, correct label, and container
fill height, with success rates of about 5 to 6 products every second.

63

CHAPTER 3. ANALYSIS AND APPLICATION OF A DATA-RO UTING SCHEME

Dillman [Dil82], from Object Recognition Systems Inc., uses the sum
of row and column pixels of the image of a container as feature values
to perform overall label inspection against a prototype. For want of a
more robust approach, Dillman applies the following scheme. A feature
grid using the features already described is constructed and overlayed
onto the prototype. This grid is then shifted in all directions for a
pre-determined number of pixels, and a one to one match against the
prototype is applied. The first match within pre-determined thresholds
is accepted, otherwise the container is rejected. The author achieves an
inspection rate of two containers/second using 64x64 images in a fully
implemented working system.

Fang et. al. [FKS83] describe their experiment in label inspection
consisting of thresholding, registration, and template-matching stages.
Each image is converted to a binary image using locally adaptive thresh-
olding. A circular scanning technique is applied (label scale must be
known) to points on the label boundary located by a raster scan. Very
briefly, this consists of the registration of all points lying on the edge
of the label at a certain distance away from the central point located
earlier. It is possible that this pattern of points may yield the location
and orientation of the label. This can be verified by comparing against
stored patterns from a model label. In fact, rather than matching the
point patterns, a set of run-coded arc lengths along the circular mask
connecting the point patterns is used. Several circular scans of the la-
bel are taken to reliably deduce a registration transformation. Using
the most acceptable registration, the object is aligned with the model.
Using dilation and erosion techniques, local point sets in the object
are grown or shrunk respectively, and tested against the model as su-
perset or subset of the model label. If these tests are not satisfied, a
’1’ is recorded in a "difference” image. When the complete image is
processed, it is divided into overlapping 20x20 pixel bins. Should any
bin contain more than three error points, defined by pixels with 7 of
their neighbouring pixels set to T ’ , then the label is rejected as defec-
tive. No results for this proposed scheme are given, although sample
experiments are illustrated.

Shabushnig [Sha89] presents a simple method for testing the presence
of a label by finding the distance from the top of a bottle to a region
where the pixels representing a label are expected to be found. No
attention is paid to the rest of the label, so defects in the lower regions
of the label can go un-noticed.

Yamamura of Fuji Electric. Co. describes an automated label inspec-
tion system based on direct scanning methods of the image to search

64

3.4. AD-HOC SOLUTIONS

for particular labels in 64x48 binary images [Yam83]. The algorithms
scan the image to detect starting and finishing pixels, and they mea-
sure width and height of the expected label. Again, a model is used
for implementing feature comparison tests. When applied to a whisky
bottling line, a processing speed of 5 bottles/second was achieved. The
methods used by Yamamura are very straight-forward and ad hoc, tech-
niques based on similar principles are used for the work to be described
in the next section. Furthermore, the algorithms presented here will be
operating on much larger images, which will allow a higher degree of
accuracy. Implemented for concurrent performance, they will allow a
faster and higher rate of inspection.

Of interest, but out of the scope of this coverage, are also the work of
Casasent and Richards [CR88] who inspect health warning messages on
cigarette packets using an optical architecture for a Hough transform
and 1-D correlation functions.

The points common to all the works described above are the controlled
environmental conditions that are either assumed or especially set up
to ease the task of inspection. Hence for similar reasons, this research
work will also assume constant and controllable illumination, little or
no vibration, good contrast between labels and their background, well
determined size, and appropriate positioning relative to packaging.

3.4 Ad-Hoc Solutions

The following is a report to show the performance of a multi-transputer
imaging system applied to a real-time inspection problem, where some
simple tests are conducted on the position of labels on products as
well as a crude look at their overall quality. In Section 3.2, a data
distribution method was presented which was generalised, flexible, and
universally applicable to transputer arrays of any sizes. However, the
timings presented for the distribution and collection of data show some
limitations for the applicability of that scheme for a real-time situation,
for example when a number of labels are to be inspected every second.
A label inspection system was initially devised and implemented on
the generalised network; this resulted in the design of algorithms that
would be general enough to be able to cope with an increase in the size
of the system, since flexibility and increase of processing power were
regarded as major goals. This meant the standard distribution of the
label across any M x N array, with each transputer ending with any
part of the label in the image. Therefore, the algorithms needed to be
very thorough to be able to detect a part of a label in each transputer.

65

CHAPTER 3. ANALYSIS AND APPLICATION OF A DATA-RO UTING SCHEME

Naturally, although very flexible, this proved to be an expensive ap-
proach. These issues will be returned to later in this section. Since
the work was an industrial assignment and an evaluation study for the
implementation of a label inspection system (largely for examining the
correct positioning of the label) using a cheap, affordable set-up, then
a more dedicated, customised system was designed which used only 5
transputers, including the host, to obtain a better inspection rate.

Frame Grabber
A-A Camera

■■■-■u M aste r
------1-------1111

1 > 1 1 1 1— 11 - ! ~ T r
Customised
Server

PC - AT H O S T

T1

T 2 T3 T4

Image Matrix

11 111• k*
12

13
111 14

Direct Mapping: In <==> Tn

(a) (b)

Figure 3.6: (a) A simple depiction of the configuration used
for label inspection, (b) A direct mapping of the image to the
customised network transputers

The hardware available at the time was configured for the customised
network as shown in Figure 3.6 (Please also see Appendix A). The
method of distribution and collection of the data across the 4 transputer
array is as follows. The 2D image array is spread out into a single
ID vector which is subsequently squirted, in whole, from the main
transputer to T1 (Figure 3.6(a)). Transputer T1 extracts II, 12, 13 and
14 from the vector, retains 11, and passes the rest to T2, T3 and T4 (as
vectors) respectively. At this stage, each transputer has its own image
section and will be working on the data. Using the OCCAM RETYPE
facility, there is no need for actual hard-coded translation of 2D to ID
to 2D vectors, and therefore no time is wasted on those operations. The
mapping of the image to the network is also shown in Figure 3.6(b)).

The post-processing resultant image can then be gathered similarly in
the opposite direction. Table 3.2 shows the timings for the distribution
and collection of image data using both the customised and flexible

6 6

3.4. AD-HOC SOLUTIONS

Image Size Flexible Method Customised Method
bytes seconds

512x512 1.034 0.757
256x256 0.297 0.192
128x128 0.072 0.049

64x64 0.021 0.013

Table 3.2: Distribution and collection timings for the two rout-
ing approaches used

methods, when applied to various image sizes on similar number of
transputers. The differences may seem insignificant, but when intend-
ing to inspect several labels per second, every microsecond counts. The
results shown in Table 3.2 will be less for the label inspection exercise
since post-processing results will occupy a few bytes only and there is
no necessity for gathering the resultant image.

3.4.1 The Label Inspection Methods

Some approaches for tackling the label inspection problem were re-
viewed before. However, methods such as template matching [FKS83]
and Hough transforms [CR88] are either not fast enough for a real-time
environment, unless the bottlenecks involved are hardwired (e.g. co-
sine/sine evaluation by look-up table) or they require expensive, can-
tankerous hardware. Here, some simple and efficient algorithms are
proposed that will detect some very common defects such as those
classified in Figure 3.5. The main principle involved in the follow-
ing algorithms is the detection of corner points. Again, many ex-
pensive corner detection techniques exist such as those to be found
in [KR82, ZH83, HS88, Dav90], but here the label is known to be in
sharp contrast against its background with the corners expected to ex-
ist within certain areas of the image since the magnification can be
pre-determined. Their presence is checked for, essential measurements
are made and compared with a known perfect model, and if the results
are within an acceptable threshold, the label is passed. The system
can be setup initially using the menu-system of TIPS to determine the
desired thresholds and tolerances.

67

CHAPTER 3. ANALYSIS AND APPLICATION OF A DATA-RO UTING SCHEME

3.4.2 Rectangular Labels

Initially, some features of a perfect model of a label are specified by
the user, such as expected height and width, tolerances on variation
in position and orientation of the label etc. This set of measurements,
including a histogram of the gray level image of the label, are stored
and used in the process of inspection.

On the Dedicated Transputer System

To detect a rectangular label, the master transputer distributes the cur-
rent image frame over the four transputers in the network, as discussed
earlier. Each transputer would then have a part of the image which
it will threshold into a binary representation prior to scanning it pixel
by pixel. The method and direction of scanning for each transputer is
different and is shown in Figure 3.7.

Figure 3.7: (a) Rectangular label scan, (b) Oval label scan, (c)
A single scan line on T3 for a rectangular label

The direction of scanning is always perpendicular to the expected corner
point, and the first scanned line found to satisfy the following conditions
is accepted as the line touching a corner point:

• the start pixel value must be the same as the final pixel value,

• the pixels scanned must show a change of state at least once,

• the number of label pixels (np) must satisfy 0 < np < = L, where
L is dependent on the general quality of image. (Figure 3.7(c)), •

• the above conditions must also be satisfied by the next two (user
adjustable) scan lines (this condition will help deal with noise).

6 8

3.4. AD-HOC SOLUTIONS

Essentially similar, but nevertheless different programs run on T l, T2,
T3 and T4, allowing the system to be loosely termed as MIMD. Each
transputer then returns either the address of the pixel which it has
found to be the corner point, or a "not found” flag if no corner point
was encountered.

On the Flexible Transputer System

In a truly flexible implementation, the system’s processing power must
be able to grow without resulting in further costs. In the system imple-
mented here, the inspection algorithms are designed to be able to cope
with increasing array size, regardless of the number of transputers used.
Each transputer will receive a part of the image which may be any one
of the possibilities illustrated in Figure 3.8. Since edge information is
also passed at the distribution stage, there are no complications if the
label falls exactly on the border of two transputers.

Figure 3.8: (a) Label image across M x N transputer array, (b)
Possible distribution of label segments per transputer

The search strategy is more complex. Each transputer has to scan the
whole of its own image section from all directions, stopping only when
a possible corner or the end of scan is reached. Hence, as well as the
extra distribution time, this method is considerably more costly. Also,
the results of only a few of the transputers will be at all significant,
and the use of too many transputers would be a waste of resources. (In
fact, this spells out why a straight-forward customised approach is a
much cheaper, and more appropriate solution).

While the transputers in either method are returning the corner pixel
addresses to the master transputer, they are ready and receiving the
next image. In turn, once the master transputer has dispatched the next
image, it sorts the information returned for the last frame and decides
if the inspected label (il) is perfect or faulty. This is determined by
using a user-defined label (ul) as a template and checking the following

69

CHAPTER 3. ANALYSIS AND APPLICATION OF A DATA-RO UTING SCHEME

against it for each corner:

ABS(ul Corner Address - il Corner Address) < Allowance Threshold

This condition will indicate if the label is shifted, tilted, missing, folded,
or torn at the corners, with the Allowance Threshold allowing for po-
sitional changes within the tolerance of the manufacturers. To detect
the presence and legibility of the print on the label, the following is
computed,

M A X { (3.21)
Hi

where Hi is the linear histogram of the user-defined label and Ht- is the
linear histogram of the label under inspection, and both are functions of
intensity i, (ie{0...255}) [Bat79]. The computed value is then compared
to a predefined tolerance parameter, which is re-set heuristically by
the system as labels are checked during a run. These calculations are
performed only on a predefined area of the label called the print check
area. Constant illumination is very important for this stage to perform
accurately.

Notice that the whole verification process is performed sequentially on
a single transputer, but in parallel to the work of the network on the
next label image.

3.4.3 Oval Labels

For Oval labels, two ” corner points” are searched for. These are the
peak point and the base point of the label, and are found by tracing
downwards on transputers T1 and T2, and tracing upwards on trans-
puters T3 and T4 (Figure 3.7(b)). Similar comparisons to those used
for a rectangular label are used to pass or fail oval labels. This ap-
proach does not map very well on the flexible multi-processor array
due to the less regular distribution across the different processors; too
many noise points are accepted as corner points in each transputer.
(This was simulated in software for varying M x N values on a single
transputer). A more sophisticated (and hence more expensive) method
will be necessary for a successful implementation, and thus no results
for Oval labels on the flexible network will be produced.

70

3.5. RESULTS FOR THE EXPERIMENTS

3.4.4 Acute-angled Labels

These are treated similarly to rectangular labels, and four distinctive
corner points are searched for. The search involves a normal raster
scan for transputers T1 and T2 and a vertical left to right scan for
transputers T3 and T4. Once the points are returned to the master
processor, the defects, if any, are detected using the same comparison
methods as those used for a rectangular label.

3.4.5 Other Labels

The same approach may be employed to develop the software to detect
most other types of labels.

3.5 Results for the Experiments

The algorithms were tested using 128x128 and 256x256 images of 256
gray levels, with print check areas of various sizes. The average image
distribution, results collection, and processing times, in seconds, are
shown in Tables 3.3, 3.4, and 3.5 for various configurations. Process-
ing efficiency percentages against single transputer implementations are
shown in brackets for both flexible and customised systems. Table 3.5
indicates a fast rate of inspection using the customised network con-
figuration. When comparing the average processing times per label
against the single transputer implementation, the average efficiency is
72% for 128x128 images and 59% for 256x256 images. In contrast, the
flexible 2x2 array of transputers using the general distribution method,
and the generalised inspection algorithms, achieves only correspond-
ing efficiency percentages of 40% and 33%. Pictorial results are not
shown here, instead they are produced following the work described in
Chapter 4.

There are a number of ways for improving the system performance.
Firstly, the scanning could be conducted at every other scan-line reduc-
ing the search by a factor of two. This will naturally affect the degree
of accuracy, and can only be attempted in the "installed” situation by
observing the resulting acceptance and rejection rates. Secondly, given
a conveyor belt system, the host transputer’s accept or reject decision
may not be immediately required, and the transputers could be em-
ployed to perform more stringent checks on the labels, such as those
that will be described in Chapter 4. Thirdly, should the production-

71

CHAPTER 3. ANALYSIS AND APPLICATION OF A DATA-RO UTING SCHEME

Label Type Image Size Check Area Average/Label Labels/Sec
Rectangular 256x256 60x110 0.514 1.9

128x128 30x60 0.160 6.3
Oval 256x256 95x155 0.487 2.1

128x128 40x80 0.144 6.9
Acute-angled 256x256 30x125 0.535 1.9

128x128 30x60 0.170 5.9

Table 3.3: Results for label inspection performed on a single
transputer

Label Type Image Size Check Area Average/Label Labels/Sec
Rectangular 256x256 60x110 0.432 (30%) 2.3

128x128 30x60 0.111 (36%) 9.0
Oval n/a n/a n/a n/a
Acute-angled 256x256 30x125 0.382 (35%) 2.6

128x128 30x60 0.097 (44%) 10.3

Table 3.4: Results for the fle x ib le 2 x 2 array of transputers

Label Type Image Size Check Area Average/Label Labels/Sec
Rectangular 256x256 60x110 0.214 (60%) 4.7

128x128 30x60 0.054 (74%) 18.5
Oval 256x256 95x155 0.199 (61%) 5.0

128x128 40x80 0.049 (73%) 20.4
Acute-angled 256x256 30x125 0.239 (56%) 4.2

128x128 30x60 0.061 (70%) 16.4

Table 3.5: Results for the cu stom ised configuration of transput-
ers

72

3.6. SUMMARY AND CONCL USIONS

line speed be able to supply larger numbers of labels past the system
than what it is currently able to detect, then a number of customised
systems could be implemented in parallel.

3.6 Summary and Conclusions

In this chapter, a message-passing scheme, namely the forward-feed
distribution scheme, suitable for data distribution and collection in a
regular SIMD array of transputers was presented. Furthermore, the dis-
tribution and collection mechanism was analysed to provide equations
for determining vital performance-related statistics. The reverse-feed
distribution scheme was also introduced as the favoured method.

Naturally, alternative methods of controlled message-routing exist. This
may vary in the manner the data is packaged or passed between source
and destination. For example, the data may be passed in alternative
formats, e.g. as complete sub-image blocks, which would reduce the
number of link communications, but increase the latency. This method
has been implemented and used during this research work, for exam-
ple for MIMD processing of the object detection investigation in Sec-
tion 6.3. In fact it has also been used for the customised network in
this chapter. When using small numbers of transputers, little differ-
ence with other efficient methods can be observed. The type of anal-
ysis presented in this chapter could simply have been reproduced for
this method too. However, the point that the control-driven method is
completely analysable, is already made, and a repetition of similar work
would have been an unnecessary step and a waste of precious space.

The data may also be routed differently. Two mechanisms of faster
source to destination addressing are as follows. Firstly, shortest path
addressing methods can be used for routing data across the transputer
arrays (by establishing wrap-around communications). This is most
efficient when using large numbers of processors, and is also of ben-
efit to complement a system where inter-processor communication is
necessary. As such, it is not quite as important (for low-level image
processing) on a SIMD array as it is for a MIMD system, where it
might even prove obligatory. Secondly, to increase the bandwidth of
the message-routing algorithm, it may be possible to use the extra
links on the controller to connect to more distribution and collection
points on the network. (This could be viewed as a very simple but
alternative version of a shortest path method.) The scheme will at best
be limited to three connections to the network for a transputer system,
and reduce the communication costs by approximately a factor of 3.

73

CHAPTER 3. ANALYSIS AND APPLICATION OF A DATA-RO UTING SCHEME

The implementation would require special code at the gateway proces-
sors in the network. However, an example of where the use of the extra
links will not be possible is demonstrated in the MATCH system in
Chapter 6, where there simply are not any free links available on the
controller processor. Nevertheless, this option will be returned to later
as a useful scheme in other configurations.

The routing method presented in this chapter will be used as a com-
munication tool for all control-driven investigations in all future work
in this thesis. The use of the scheme was demonstrated and compared
against a customised routing method with application to label inspec-
tion. It will be employed again in Chapter 4 for the implementation of
the Sobel operator and the Hough transform, and in Chapter 6 for the
implementation of the Canny operator.

Also presented in this chapter were a brief review of the field of label
inspection and a study into the feasibility of the use of a cheap, afford-
able system with a high processing rate of inspection. Although the
customised system described has room for improvement, for example
by using more stringent inspection tests, it also has verified that under
assumed conditions it can deliver a realistic real-time inspection rate
using significantly larger label images than, say, [Dil82, Yam83].

Unfortunately, the investigation has also shown that the communica-
tions rate can prove to be a major bottleneck. This is specially so in
the generalised network because of its flexible distribution and collec-
tion strategy which nevertheless is necessary when the system array size
is expected to increase, and software and communications alterations
are to be avoided. The issue of communication as a principal problem
in the use of transputers will be returned to at a later stage.

In general summary of the latter sections of this chapter, to illustrate
the ideas on mapping and communications for low-level image process-
ing operations, a real problem in automatic inspection was considered
to allow the evaluation of real-time problems in mapping and commu-
nication. The solutions were trivial and crude, and they showed that
they limit the expansion of the system since they are not easily di-
visible across multiple processors. Therefore, more isotropic solutions
where every processor would run the same code (geometric parallelism)
would be preferable, unless a very dedicated, customised MIMD ap-
proach more aggressive than that presented here can be employed. A
more extensive solution, with a high potential for performing in real-
time in inspecting labels, is presented in Chapter 4 where geometric
parallelism is fully exercised.

74

Chapter 4

Parallel Realisations of the
Hough Transform

4.1 Introduction

This chapter continues the work from Chapter 3 by considering an al-
together different approach to g e o m e tric p a ra lle lis m , namely d e m a n d -

d r iv e n task f a r m or f a r m p a ra lle lis m . Following a short discussion of the
characteristics of this scheme, the method will be compared against the
c o n tro l-d r iv e n approach in terms of efficiency. The Sobel operation and
the sub-image Hough transform will be used as benchmarks. In fact,
a section dedicated to the sub-image Hough transform will portray its
significance as an important tool for a parallelised edge segmentation
technique, and as a demonstration of this, the sub-image Hough trans-
form will be used for a more sophisticated approach to the problem of
label inspection. Ways of improving the performance of the farm will
be suggested.

4.2 The Task Farm

The demand-driven processor farm model was originally proposed by
May and Shepherd [MS87] for a graphical representation of the Man-
delbrot set, based on the general theory of the task queue model. The
demand-driven model of parallelism is identical to the control-driven
model in so far as each processor performs the same sequence of al-
gorithms on the data, and that the (image) data is again sub-divided
into equal-sized data segments. However, the data is partitioned into a
significantly larger number of (small) data segments than the number

75

CHAPTER 4. PARALLEL REALISATIONS OF THE HO UGH TRANSFORM

of processors in the network would suggest. This implies that a higher
degree of communications is involved in the distribution and allocation
of the task data. Described simply, the processor farm model consists of
a farmer (master) processor which conducts the proceedings by making
available the aforementioned task-data segments to a number of worker
(slave) processors which then actually do the work. The farmer proces-
sor communicates tasks to the farm as and when necessary and collects
results data as and when they are produced. This can happen in many
ways, three of which are described here in increasing order of efficiency:

• Each slave processor sends a request to the master processor for a
new task, which it returns upon completion of the computation,
and follows it with a request for the next task,

• Each slave processor sends a request to the master processor for
a new task, but uses a cache mechanism to buffer an extra work
packet. When it finishes work on the first work packet, it sends
a new request for more work and continues by working on the
buffered data packet. This allows an overlap of computation with
communication,

• Communications are reduced by scrapping the request access of
the slave processors. Instead, each slave processor functions by
simply accepting work when its own buffer is empty. Thus, as
in the previous case, it always works on one task while it holds
another ready in its buffer. While it is busy as such, it passes any
incoming data packets to its neighbouring processor via a routing
mechanism. The system is kept tightly balanced by the master
processor by only supplying enough work to have every processor
busy and fully buffered with work. Thus, as soon as it receives
some results, it sends another work packet to the network which
will be automatically passed around until it reaches an empty
buffer.

The Mandelbrot example in [MS87] is CPU intensive and requires lim-
ited communications, thus no buffers are used in the implementation.
For the tasks considered in this work, the latter of the three methods
was found the most efficient, and its actions are depicted in Figure 4.1.
The linear topology is the most popular configuration used for farm
parallelism, and is suitable for algorithms with a relatively small com-
munications overhead. Suggestions for improvements on this are pro-
vided later in this chapter. Figure 4.1 shows a simplified breakdown
of the tasks within the master and the nodes. The master processor,

76

4.2. THE TASK FARM

Figure 4.1: A linear processor farm and some of its major
processes.

which is both the fountain-head of data packets and the reservoir of
processed results, runs three major processes operating in parallel,

• a process which breaks up the data space into the desired parti-
tions and sends them to the farm load-balancer process,

• the load-balancer process which hands out the image-data par-
titions to fill up the network, and then continues to supply the
network with more data partitions when results are returned to
it. These results are passed on to the "gatherer” process as they
arrive,

• a "gatherer” process which receives results data from the network
via the load-balancer, and gathers them into the appropriate for-
mat defined by the application. For example if each result packet
is an image partition, this process would map it into its spatial
position.

Data routing takes place as tasks enter the farm network. The router on
each node checks the local buffer to see if it will be able to accept further
work. If so, the work packet is buffered and used by the processor when
the CPU becomes free, otherwise the router passes the data to the
next processor along in the chain. Therefore, a number of concurrent
activities take place on a farm processor, •

• forward to local buffer or to next processer in the chain, the next
work packet depending on the status of the local buffer (feed

77

CHAPTER 4. PARALLEL REALISATIONS OF THE HO UGH TRANSFORM

router),

• perform user application using the next available data packet.
When finished, read the next packet of work from the buffer,

• accept results from the local computation process, and also receive
results from processors further down the chain (bleed router).
These are input using the PRI ALT construct, which monitors
the incoming link channel and the local processor channel with
decreasing priority. The results are directed up the chain towards
the master processor.

All inter-processor routing is performed at high priority to avoid proces-
sor idleness across the farm. Note that all the tasks may be processed
and returned from the farm in any order, and that there is no inter-task
communication.

The above approach is that used for all the relevant work in this the-
sis. The nature of the approach, its performance, and the possibilities
regarding its improvement will be discussed later in this chapter. For
a mathematical modelling of the processor farm the reader is referred
to [TD90]. In the next section, the sub-image Hough transform will
be discussed. It will then be implemented in Section 4.4 on both the
processor farm and the generalised array of transputers from Chapter 3.

4.3 The Sub-Image Hough Transform

The (p, 6) Hough transform which was introduced in Section 2.2.3 was
said to be better than the (m ,c) (gradient, intercept) method because
it is bounded: the angle 6 can only vary from 0 to 2ir and p can only
vary from 0 to half the diagonal width of the image (assuming the ori-
gin is positioned at the centre of the image). The (m ,c) transform is
unbounded because the gradient can vary from 0 to oo and the inter-
cept can be indeterminate. The (p, 0) Hough transform is most often
implemented using the following sequence of operations,

1. Detect edges using an edge detector such as the Sobel or Canny
which provides edge direction data,

2. Threshold edges from the background,

3. For each edge pixel compute the normal and angle, and increment
accumulator space at this location,

78

4.3. THE SUB-IMAGE HOUGH TRANSFORM

4. Search accumulator space for all peaks,

5. Back project for each peak into the image and keep portions of
straight line segments that correspond to edge pixels.

In most cases, the Hough transform is used to determine all candidate
straight lines over the whole image, i.e. all the edge pixels in the im-
age contribute to one accumulator space. Candidate straight lines are
detected as peaks in the accumulator space that specify the (p, 9) pa-
rameters. Back projection is then used to determine the parts of the
lines supported by edge pixels in close proximity to the lines in the im-
age. A straight line will be hypothesised as occurring across the whole
image as it will be unbounded by end points. However, only part or
parts of this line will occur in the image. It is relatively easy to detect
long straight lines. Short lines are detected with more difficulty because
these produce low amplitude peaks in the accumulator space which can
be masked by long lines with similar parameters (and therefore close by
in the image). Furthermore, the accumulator space can be large. For
example, assuming a 1° resolution for angle and a 1 pixel resolution
for the normal, for an image size of 256x256 the accumulator would
be 181x360. Whilst this is not a significant amount of memory, it re-
quires much searching to find the peaks as there may be many straight
lines in an image. In addition, the Hough transform will not work if
the image predominantly contains curved edges, as each curved edge
will not generate a dominant peak in accumulator space. The normal
solution to this is to use a different formulation for each type of curve,
for example, the circle and the ellipse. However these require increased
dimensionality of the Hough space, novel parameterisations or multiple
stage accumulation.

An alternative formulation of the Hough transform is now described to
overcome some of the problems mentioned above. It will be referred to
as the pQsHT transform, where the s signifies sub-images. Let the im-
age be divided up into sub-images, as suggested by [Dav90], e.g. 16x16
pixels. The standard (p, 9) Hough transform is then performed on each
sub-image and straight lines are detected. The accumulator resolution
and size is chosen so as to detect curved edges as small straight line seg-
ments. The straight line segments are then processed at a later stage to
detect long lines or circular arcs by linking them together. Using sub-
images, the processing is simplified and has the following advantages,

• only a small accumulator space is required,

• searching is simplified since only a small number of lines can be
present in a sub-image,

79

CHAPTER 4. PARALLEL REALISATIONS OF THE HO UGH TRANSFORM

• curved edges are detected as approximations to straight lines,

• segmentation occurs between edges at large angles,

• sub-images with very few edge points can be ignored,

• processing on sub-images can be performed in parallel.

A small accumulator is feasible, since the number of possible orienta-
tions and positions of a line in each sub-image is restricted. Considering
orientation, the best case resolution will be 1 pixel over the width (or
length) of the sub-image. Therefore, the minimum resolvable angle, <j>,
will be:

< t>
— tan *(

length1
(4.1)

Hence, for a sub-image of 16x16 pixels, the minimum resolvable angle
will be 3.58°, which results in ||| intervals. The minimum resolvable
radius, g, will be 1 pixel and the longest value of g will be from the
centre of the sub-image to any one of the corners. For a 16x16 pixel
sub-image this will be 11.31. The accumulator will then be, to the
nearest integer, 101x12 bins in size.

Searching the accumulator is simplified since there are few lines present
in each sub-image and hence few distinct peaks in the accumulator. The
algorithm to find the peaks is shown below:

1. Scan the accumulator for the largest value.

2. Store away parameters.

3. Delete peak point and surrounding area.

4. Repeat until number of peaks detected = Max-Peaks

The algorithm repeatedly looks for the largest peak in the accumulator.
When this is found, the parameters are stored and the peak is deleted.
The surrounding region in the accumulator is also deleted as a peak will
normally be part of a small region, so accumulator values nearby are
part of the peak (please also see Figure 2.4). Max-Peaks is normally
empirically set to the expected number of lines per sub-image plus an
offset, for example 3 + 7 where 3 is the expected number of lines and
7 is the offset that allows for false peaks (in case the third stage of the
algorithm fails to remove the peak completely).

8 0

4.4. IMPLEMENTATION OF THE PARALLEL pOSHT

Figure 4.2: Edge region obtained from an image after Sobel
edge detection and thresholding. The straight line approxi-
mation obtained from the Hough transform is shown in bold.

For the implementation of this algorithm a simple edge detector can be
used, for instance the Sobel edge detector from which the orientation
and magnitude information for each edge pixel can be determined, and
it remains a reasonably inexpensive method. In addition, after thresh-
olding, edges are normally represented by regions more than one pixel
thick. This information allows curved edges to be detected more easily,
as a straight line can be contained in the region generated by a curved
edge as shown in Figure 4.2. These thick edges are often seen as a dis-
advantage of using the Sobel operator, but this is turned to advantage
in this case, and will be seen as an important factor for inspecting oval
and circular labels.

The output of the pQsHT formulation for an image is a set of straight
line approximations (represented by their end points), which are exam-
ined and grouped for further analysis. Typical groupings are collinear,
vertex, curved edge and proximity. Thus higher level features can be
extracted from the data.

4.4 Implementation of the Parallel p Q s H T

The pOsHT was implemented using both the control-driven model of
computation on an array of transputers, and the demand-driven model
on a linear chain of transputers. Principally in both, the processes
of edge detection, Hough transformation, and peak detection are per-
formed on each sub-image, and a list of lines local to the sub-image is
formed. The master transputer in both computational models analyses
all partial lists to form a more unified representation of the image. The
determination of the number and size of sub-images will be discussed

81

CHAPTER 4. PARALLEL REALISATIONS OF THE HO UGH TRANSFORM

shortly.

4.4.1 Control-Driven Model

The image data is the image of the whole label and it is distributed in
equal segment sizes, including the border information for each segment,
amongst the available processors. This used the reverse-feed distribu-
tion mechanism of Chapter 3. Each processor, having applied the Sobel
filter to its own local image partition, splits it into (further) sub-images
and performs the pOsHT, followed by peak-detection. These latter op-
erations are performed on only those sub-images where the number of
edge pixels exceeds a certain empirically-determined tolerance. Finally,
each processor returns a list of all the lines found locally to the master
transputer. This is illustrated in OCCAM pseudo-code in Figure 4.3.

PAR
— Master Transputer
PAR

... Send next image to processors
SEQ

... Receive list of lines found in previous image

... Process list to formulate complete lines

... Analyse lines and decide to pass or reject label

— In each processor in array
SEQ

... Receive own local image partition including border edges

... Perform Sobel on complete local image partition
SEQ i = 1 FOR number.of.sub-images

IF
(number of edge pixels) > (pre-defined limit)

SEQ
... Perform pQsHT on sub-image i
... Detect peaks, locate lines, and form line list

(otherwise)
... line list is empty

... Return list of lines found

Figure 4.3: Pseudo-OCCAM code showing the general format
of the master and array processors for the inspection of labels.

8 2

4.4. IMPLEMENTATION OF THE PARALLEL pOSHT

4.4.2 Demand-Driven Model

In this implementation, the controller splits the entire image into the
required sub-images and makes them available to the farm as discussed
earlier in this chapter. Each packet is sent, including enough border
pixels, to comply with requirements of the Sobel and Hough opera-
tions. Initially, farm processors are required to perform the Sobel filter
on their packets of data. Again, only if the number of edge pixels found
in any packet exceed the aforementioned tolerance level will the pOsHT
operation and peak-detection routines follow. Each processor then re-
turns a list of all lines found in each sub-image. See Figure 4.4 for an
OCCAM pseudo-code outline of the overall operations of the master
farmer and the worker slaves.

PAR
— For each image on Master transputer
SEQ

WHILE more.image.packets.available
PAR

... Send next packet to farm when load allows

... Receive list of lines as they arrive from farm
... Analyse lines and decide to pass or reject label

— In each processor in the farm
PAR — three main processes.

... Pass on line lists from other nodes, and local process

... keep or pass incoming work depending on local workload
SEQ

... Perform Sobel and count number of edge pixels
IF

(number of edge pixels) > (pre-defined limit)
SEQ

... Perform pOsHT on sub-image

... Detect peaks, locate lines, and form line list
(otherwise)

... line list is empty
... Send to local router the latest line-list

Figure 4.4: Pseudo-OCCAM code showing the general format
of the master and farm slaves for the inspection of labels.

83

CHAPTER 4. PARALLEL REALISATIONS OF THE HO UGH TRANSFORM

4.4.3 Efficient Calculation of p

When calculating the corresponding value of p for each value assigned
to 0, trigonometric functions can be dispensed with to save computation
by employing the following scheme.

Given (gx,9y) as the local components of intensity at pixel co-ordinates
(x, y) on a feature line in an image, let (x0, t/o) be the foot of the normal
p from the origin to that line. Please note, in this case the origin is
taken as the centre of the sub-image, although this is not depicted as
such in Figure 4.5. Also, the line may need to be produced, and this is
depicted in the example in Figure 4.5. Then, it can be shown that,

gJL_yo_ (4.2)
ffx X0

(x - x0)x0 + (y - yo)yo = 0 (4.3)

p = J x l + yl (4.4)

Figure 4.5: Diagram shows parameters used in calculating p

Thus, solving for p with incurring costs of additions, multiplications,
just one division, and a dominating square root,

__ XQx d " V9y

P y/al + 9Ì

This is adopted after the technique introduced by Davies who uses the
foot of the normal from the origin as a voting position in the param-
eter space [Dav90]. This technique in calculating p is computationally
invaluable for the normal parameterisation as employed in this work.
(An alternative approach could have been to allow each processor in
the architecture to contain trigonometric look-up tables).

84

One of the conclusions of Davies’s work on error analysis [Dav90] of the
foot of the normal method, which is of great relevance to this work, is
that the error in calculating p which arises due to edge detector errors,
and to a greater degree to noise, is dependent on the distance of the
line from the origin. Since the centre of the sub-image is the origin, the
overall error is minimised, but not eliminated.

4.5. LABEL INSPECTION AND THE pOSHT

4.5 Label Inspection and the p Q s H T

The topic of label inspection was briefly considered in Section 3.3, and
an ad hoc approach was outlined in Section 3.4 for the detection of
geometric errors of label shape and position, such as shift from normal
position, sticking at a tilted angle, tear and folding (Figure 3.5). In
this study, these faults will be examined again using more sophisticated
techniques, including the pOsHT approach to feature segmentation.

Two types of labels are considered: Rectangular and Oval. It was in-
ferred in earlier discussion that the optimum sub-image size will depend
on the length of the lines that need to be detected. Since in the search
for a rectangular label the aim is to detect long straight lines, a fairly
large sub-image size was selected for this inspection. In direct contrast,
a much smaller sub-image size was selected for the oval label inspec-
tion. For a label of this shape, the aim is to detect short, straight line
segments within the curved edges as shown in Figure 4.2.

Consider the processing of each type of label in both the control and
demand-driven models. The broken-up short or long line segments in
each sub-image pertaining to the label itself or any other features in the
image are available at the end of the processing for each image. This is
stated to further emphasise the care needed in choosing the optimum
sub-image size to ensure that more computation is performed locally,
leaving less post-processing for the master transputer. On the other
hand, if the processing of each image is so lengthy that the master can
afford more line-list processing time before the network is ready for the
next image to be sent, then this introduces another feature to consider
when implementing the complete system.

Empirically, the test images showed that given a 256x256 image, the
following sub-image sizes should be used to achieve the most accurate,
rather than the most efficient, results,

Rectangular Label 64 x 64
Oval Label 16 x 16

85

CHAPTER 4. PARALLEL REALISATIONS OF THE HO UGH TRANSFORM

However, when alternative image sizes were tried for each label, the
difference in efficiency was marginal, whereas the difference in accuracy
was much more significant.

4.6 Processing and Inspection Results

The hardware configuration for both of the programming models con-
sisted of a T800-20MHz host on a B004 board interfacing with a PC-
AT, and four T414-20MHz transputer modules with 1MB RAM each,
as network processors. More details are provided in Appendix A. The
results for a single T414 implementation were produced on a 12MHz
T414 device. All timings are in milliseconds and embrace the time
spent on communications where applicable.

4.6.1 Sobel Filtering

Initially, the Sobel filter is considered. For the control-driven model,
the best implementation is a straight mapping of the image to the
processors, allowing each processor to number-crunch its way across its
own image partition. Each partition also includes border edges.

System
Configuration

Sobel
Filter

Single T414-12MHz 2616
Single T800-20MHz 1132
2x2 CD array 508
DD Farm (16x16) 1273
DD Farm (32x32) 492
DD Farm (64x64) 478

Table 4.1: Results for the Sobel operation on various configu-
rations. (CD=Control-Driven, DD=Demand-Driven)

Alternatively, in the demand-driven model, the image is split into a
number of partitions much larger than the number of processors, al-
lowing each processor to perform the Sobel operation on a number of
smaller packets. To deduce the nearest to the ideal sub-image size,
16x16, 32x32, and 64x64 sub-image sizes were implemented. Note that
the real image sizes communicated to processors needed to include the

8 6

4.6. PROCESSING AND INSPECTION RESULTS

border pixels of the partition, resulting in 18x18, 34x34, and 66x66
sub-image sizes. These results are shown in Table 4.1 including the
sequential implementation times for a single T414 and a single T800
processor.

The Sobel filter in this implementation uses the response provided by
the absolute magnitude of the horizontal and vertical gradients, and the
processing includes the time spent on thresholding each resultant pixel.
Note that due to the large number of packets in the 16x16 sub-image
case, the communication load is greatly increased and four T414s can
not match the performance of one T800 or the other network cases.
This changes drastically when the sub-image sizes are increased, and
therefore much of the communications is overlapped with the compu-
tation in the demand-driven model.

4.6.2 p O s H T Processing

Table 4.2 and Table 4.3 show the total processing time in milliseconds,
for the inspection of rectangular and oval labels on different transputer
configurations using the aforementioned image and sub-image sizes.
The totals are for the stages consisting of Sobel edge detection (in-
cluding thresholding), the pOsHT transform, and the complete process
of peak detection and line-list formation.

System
Configuration

Rectangular
Label

Single T414-12MHz 18629
Single T800-20MHz 5815
Control-Driven Array 3428
Demand-Driven Farm 2575

Table 4.2: Results for the inspection of the rectangular label
test-image using 64x64 sub-images on different configurations.

The pictorial results are shown in Figures 4.6 and 4.7. The images in
the top-right of each diagram show for each label the pOsHT transfor-
mation, using the corresponding sub-image sizes.

87

CHAPTER 4. PARALLEL REALISATIONS OF THE HO UGH TRANSFORM

Figure 4.6: (top-left) Original image marked with possible cor-
ner points, (top-right) After p O s H T transformation on net-
work with 64x64 sub-images, (bottom-left) After line proxim-
ity analysis, (bottom-right) The final acceptable four bound-
ary lines providing the outline of label and its approximate
corner points.

8 8

4.6. PROCESSING AND INSPECTION RESULTS

Figure 4.7: (top-left) Original image marked with possible cen-
tres, (top-right) After p O s H T transformation on network with
16x16 sub-images, (bottom-left) After aspect ratio transfor-
mation, (bottom-right) Normals of all the lines with peaks at
crossing points giving possible centres (Shown with white dots
- cf. with top-left)

89

CHAPTER 4. PARALLEL REALISATIONS OF THE HO UGH TRANSFORM

System
Configuration

Oval
Label

Single T414-12MHz 24430
Single T800-20MHz 6711
Control-Driven Array 4520
Demand-Driven Farm 2874

Table 4.3: Results for the inspection of the oval label test-
image using 16x16 sub-images on different configurations.

4.6.3 Notes on the Execution Times

Except for the sequential implementations, all columns of results in-
clude the time spent on the distribution of the image and collection of
results, i.e. all conceivable link communications.

The execution time of the pOsHT is directly dependent on the number
of edge features offered after the application of the Sobel edge detector;
this is clearly demonstrated by the timing differences for the rectan-
gular and oval test images. These test images were found to produce
approximately 7800 and 12300 edge pixels respectively. This is further
demonstrated in Figure 4.8 which shows the productive sub-images for
the oval test-image on which processing would take place. However,
this only reduces the computational load in the system, without the
communication load being affected (In fact the communication load
is affected marginally since an empty sub-image results in an almost
empty line-list data packet containing header information only. But for
the relatively small message sizes in this application it can be regarded
as insignificant).

The pOsHT imposes a local Hough space for each sub-image which
is released as soon as processing of the sub-image is completed. The
ramifications of this are as follows. Since the Hough space is to be
released, then the process of peak-detection must be performed imme-
diately. This makes the measurement of the processing time for the
separate stages of the pOsHT rather difficult, hence only totals are
provided here. However, it means that almost the complete process
has been parallelised and performed locally. There is another clear
advantage. The regular Hough transform requires a permanent Hough
space. Consider the parallel implementation of the regular Hough trans-
form on a control-driven array. The Hough space could be distributed
amongst the processors, with the processors communicating to update

90

4.6. PROCESSING AND INSPECTION RESULTS

each others Hough spaces. In the demand-driven model, they could
communicate with the one and only Hough space as held by the mas-
ter. Either way, they introduce extra communications and therefore
major delays in the processing. Clearly, this problem is non-existent in
the pOsHT implementation and so the execution times presented pro-
vide a very reliable comparison of control-driven and demand-driven
network models.

Figure 4.8: Diagram shows the sub-image areas of oval image
with salient feature points on which operations take place.

The results display a superior performance by the demand-driven farm
model. In this model, the stages involving the distribution, process-
ing and collection of data are concurrent and overlapped, whereas they
occur consecutively in the control-driven model thus reducing its effi-
ciency (please also see Section 3.2.1).

Also, the performance of a single T800 should be noted as it manages
to put in a remarkable performance, especially through the use of its
64-bit floating-point co-processor.

More discussion on the comparison of the control-driven and demand-
driven models will be presented in Chapter 6, where it will be empha-
sised again that one should determine the use of one scheme or the other
depending on the nature of the problem at hand. More immediately
and appropriately, the demand-driven network will be re-visited in this
chapter to enhance the performance of the label inspection process by
employing 25MHz T800 processors as the farm slaves.

91

CHAPTER 4. PARALLEL REALISATIONS OF THE HO UGH TRANSFORM

4.7 Final Processing and Inspection

Upon completion of the pQsHT transformation and the return of the
results, a list of all the lines in the image, representing their end-points,
is available on the master transputer in either network. To follow, the
master transputer starts the network with the image of the next label,
while it performs, sequentially, the final stage of the inspection on the
current label. This final stage requires a limited amount of processing
and was found unsuitable for implementation on a network due to the
cost/efficiency ratio. It performs fast enough on the floating-point T800
(master) transputer, and leaves the network free for work on the next
label. The steps involved in the final processing stage for each label are
now considered.

4.7.1 Rectangular Labels

The list of lines is inspected and, using the addresses of the lines’ start-
ing and ending co-ordinates, they are linked to form longer, more com-
plete lines. This is in effect a simple run-of-the-mill neighbourhood-
proximity phase, which connects together those lines with similar ori-
entation and end-points in close neighbourhood of each other. For a
rectangular label the processing is simplified since a good label should
have produced lines in certain orientations (with a degree of tolerance)
only, and lines with all other orientations can be discarded on first en-
counter. (In fact they are retained, but unlinked from the line list. This
is reflected in Figure 4.6 where no line-linking is apparent on the few
non-perpendicular and non-horizontal lines). Then, consider that any
line A is under examination for connection to any other line B; then to
allow them to be joined, the following criteria have to be met,

A B S (xea - x ab) < T AN D ABS(yea - ysb) < T (4.6)

A B S (ta n -\ - - ~ V-) - tan~\ Veb ~ Vsb)) < G (4.7)
*£ea ^sa *^eb * ŝb

where, (xsa,y sa) is starting pixel co-ordinates of line A, (xea,yea) is the
ending pixel co-ordinates of line A, (xsb,ysb) is the starting pixel co-
ordinates of line B, (xeb,yeb) is the ending pixel co-ordinates of line B,
G is the gradient proximity tolerance, and T is the pixel neighbourhood
tolerance.

That is, the end co-ordinates of line A must be in the close neighbour-
hood of the starting co-ordinates of line B, and both lines must have a

92

4.7. FINAL PROCESSING AND INSPECTION

similar gradient. In effect only the B lines with starting co-ordinates in
the pixel neighbourhood area of xea ± T, yea ± T are inspected. When
performing the above equations, provision is made for lines in opposite
direction.

These operations provide a new, shorter, list of lines. This new list is
further inspected, and the two longest horizontal and the two longest
vertical lines falling within respective tolerances are selected. This last
phase may need to be adapted for particular labels. These four lines
are accepted as the boundary outline of the label if their starting and
ending co-ordinates are found to satisfy the pre-determined thresholds
(Figure 4.6). In addition, other features such as the vertices may be
obtained. The boundary and the position of the label are then matched
against a known model label, resulting in a fail or pass decision.

4.7.2 Oval Labels

Oval labels are approached in a slightly different manner. Most signif-
icantly, the line list is considerably larger due to the smaller sub-image
size (which breaks up the curved lines into numerous small straight
lines).

Initially, all horizontal and vertical lines are removed since, in principle,
curved lines are being sought and no horizontal or vertical lines need
be present. This also reduces the cost of the computation that follows.
Next, using a priori knowledge, an aspect ratio is applied to the line list
resulting in the image shown in the bottom-left of Figure 4.7. (However,
for this example the horizontal and vertical lines are kept for a more
aesthetic image.)

A neighbourhood-proximity inspection similar to that described above
is performed to eliminate from the list any lines which have no other
line in their neighbourhood. This is then followed by mapping the
path of the normal to the centre of each of the lines (arc segments)
remaining in the list, as shown in Figure 4.7 (Bottom Right). The
image holding the normal paths is smoothed using a low pass filter
and the three highest crossing-point peaks are considered as possible
centres, as marked in Figure 4.7 (Bottom-Right and Top-Left). Please
note that these centres are all three heavily concentrated about the
centre and not quite resolved in the diagrams. Any one of these that,
within a pre-set threshold, comes closest to the position of the centre of
the model label, is accepted as the real centre, and thus the label may be
passed or failed. Although this is not attempted in this implementation,
one approach to tackle this problem could consist of fitting a model

93

CHAPTER 4. PARALLEL REALISATIONS OF THE HO UGH TRANSFORM

template on each inspected label and shifting it about to find the best
possible match against the extracted centre points. No faulty labels
would give a close enough centre position following these calculations.
The technique described is a Hough-type approach in image space.

Another method to locate the centre of any set of lines forming a circle
is that suggested by Thomas [TC89]. The method estimates the centre
and radius of a circular arc by minimising the least mean-square errors
between the given set of data points and the curve. However, this
method is very sensitive and gives a centre for any good length of
an arc, which in the case of a partly torn label would be disastrous.
Nevertheless, since it is a fast process, it could be used to initially
estimate a centre for the label. Then, the address of the centre can be
employed to eliminate all the lines in its local and outer neighbourhood
before performing, on the reduced line list set, the adopted process of
peak crossing points calculation as described above. Davies [Dav90]
also describes enhancements to the Hough transform for faster and
more accurate circle centre location.

The final inspection processing for both types of labels involves numer-
ous floating-point operations especially for the centre finding algorithm
on the oval label. This explains the reason for the lengthy execution
time for the T414 host which, unlike the T800, does not have an on-chip
floating-point unit. The timings are shown in milliseconds in Table 4.4.

Configuration Rect. Label Oval Label
T414-12MHz HOST 99 841
T800-20MHz HOST 33 91

Table 4.4: Results for final stage processing of both label types

The figures shown in the various tables are representative of tests car-
ried out on three different test label images for each type of label. The
inspection rate was found reliable when applied to a number of perfect
and grossly faulty labels. The sensitivity of the fault detection has not
been pursued. The advantages of the more sophisticated techniques
used in this chapter for the inspection of the labels are that the po-
sitioning of the label in the image is now less critical, and also that
the integrity of the whole label is examined. For example, by finding
the lines describing the rectangular label, the whole borderline of the
complete label has been checked for rips or folds.

94

4.8. SUMMARY AND CONCLUSIONS

4.8 Summary and Conclusions

In this chapter the model of the demand-driven farm as an approach
to geometric parallelism was introduced and briefly investigated. It is
because a potentially higher degree of communications is involved in
the distribution, allocation, and collection of tasks that the processor
farm model will only be beneficial as a solution to the class of vision
problems with a high computation to communication ratio. Yet, since
no inter-processor communication exists, the scheme is unlikely to be
suitable for high-level vision. The approach is also highly unlikely to
be implementable on a fine-grain SIMD array, such as the DAP or
the CLIP4. Multi-processor computers with nodes capable of intensive
local computations are the most likely candidates for this method, such
as an appropriate configuration of transputers performing parallel tasks
on different partitions of data.

Although adequate for the purposes of this thesis, the farming tech-
niques presented can be transformed into more sophisticated schemes.
For example, in this implementation, a data packet travels until it finds
an idle processor (or in fact an empty buffer on the next processor).
This means that during the initial load where every processor is com-
pletely idle, the processors further down the chain may not even receive
any data packets if the computation requirements per packet are very
small. It would be more efficient to distribute the load evenly by specif-
ically addressing data packets to all the network processors during the
initialisation stage. Then, during system run, the load would be bal-
anced as before with the hungriest workers taking their pick as and
when they are ready.

The use of farm parallelism is very much dependent on the nature of
the problem at hand. This was examined in comparison to the control-
driven network by considering a highly parallel approach to the (p, 9)
Hough transform in which the total image is decomposed into smaller
sub-images with local Hough spaces. Thus the problem is suitable
for parallel implementation on most parallel architectures, be they the
IUA, the PC WARP or transputer-based. This approach was named
the pOsHT transform, for which favourable results were obtained on
T414-based array and farm networks.

Recently, through the availability of more T800-25MHz transputers,
the performances of both the Sobel and the pOsHT were re-examined
for a longer, more powerful linear farm chain. For all the results that
will follow, percentages showing the efficiency of the increasing farm
size against a single processor farm will be shown.

95

CHAPTER 4. PARALLEL REALISATIONS OF THE HO UGH TRANSFORM

No. of Sobel Sobel Sobel
Processors 16x16 32x32 64x64

1 910 (100%) 884 (100%) 888 (100%)
2 467 (97%) 452 (98%) 473 (94%)
3 335 (91%) 317 (93%) 366 (81%)
4 315 (72%) 271 (82%) 305 (73%)
5 315 (57%) 265 (67%) 285 (62%)
6 314 (48%) 268 (55%) 285 (52%)
7 314 (41%) 270 (47%) 286 (44%)
8 314 (36%) 270 (41%) 286 (39%)

Table 4.5: Sobel results using the Demand-Driven model on
T800 processor network with 256x256 images

The results for the Sobel operator for varying work packet sizes in
Table 4.5 indicate that the no real gains in efficiency can be expected
after about the fourth or fifth processor in the farm. This may be
attributed to the computation to communication ratio, such that the
processors nearer the master are ready to accept more work, and they
leave trailing transputers idle. Note that the 32x32 data packet gives
the most cost-effective computation to communication ratio. These
performances will be extended further in Chapter 6.

Table 4.6 and Figure 4.9 show the performance of the pOsHT on T800-
25MHz processors for the rectangular and oval label images using cor-
responding sub-image sizes of 64x64 and 16x16. Performance efficiency
percentages are also shown in Table 4.6 which denote the speed-up
against a single transputer farm implementation.

The higher number of feature points in the oval label image result in
a higher computational load than in the rectangular label image. This
combines with the extra communications due to the larger number of
sub-images to cause a slower performance rate for the oval label when
there are up to two processors in the farm network. As more processors
are added, the computational load of the oval label spreads out more
evenly, and a slightly better performance is achieved.

Although the results in Table 4.6 indicate that given more transputers
an inspection rate of 1-2 labels per second could be achieved, a more
efficient utilisation of larger numbers of processors for a demand-driven
farm network would be to configure them in the forms shown in Fig-
ure 4.10. The bi-linear and tri-linear farms can be employed to increase

96

4.8. SUMMARY AND CONCLUSIONS

No. of
Processors

Rectangular
(64x64)

Oval
(16x16)

1 3989 (100%) 4121 (100%)
2 2058 (97%) 2117 (97%)
3 1510 (88%) 1480 (93%)
4 1191 (84%) 1162 (89%)
5 1123 (71%) 1068 (77%)
6 1017 (65%) 940 (73%)
7 927 (61%) 862 (68%)
8 862 (58%) 798 (65%)

Table 4.6: pOsHT results using the Demand-Driven model on
T800 processor networks for rectangular and oval images

throughput by a factor of two and three respectively. They will be used
later to examine possible improvements to the implementation of the
Canny edge detection process as part of the motion analysis system
presented in Chapter 6.

Also, by employing two modules of the systems described here, the
throughput of an overall label inspection system of 4-5 labels per second
could be achieved which is an adequate rate for performance in a real-
time situation.

One other factor directly influencing the pdsHT execution time is the
number of edge points, and a less busy image would greatly reduce
the amount of processing involved as depicted in Figure 4.8. This is
corroborated by [ES89], who have implemented the standard Hough
transform on a customised-pipeline transputer network with eight T800
processors. For 1000 edge points in a 256x256 test image, they achieve
a total processing time of 159 milliseconds for eight transputers. If
the execution timings for the complete processing of rectangular and
oval labels were to be scaled down, an average comparable timing for
1000 edge points of 87 milliseconds would be obtained. This shows an
approximate improvement by 50% for this implementation. In their
implementation the parameter space is divided amongst the transput-
ers, and communications are necessary to update the appropriate area
of the Hough space held by other transputers. This results in consider-
able programming headaches in comparison to the easily programmed
pOsHT implementation.

Most other parallel implementations of the Hough transform are on

97

CHAPTER 4. PARALLEL REALISATIONS OF THE HO UGH TRANSFORM

Figure 4.9: Processing times in milliseconds for corresponding
number of processors.

SIMD arrays of processors. Rosenfeld et. al. [ROH88] compare several
of many alternative implementations for simple 1-bit PE meshes, with
techniques such as the assignment of each different 6 to each PE to
speed-up the processing. All the techniques naturally involve massive
communication loads for such fine-grain machines. For just over 1600
pixels, Hough transformation timings of approximately 130, 920, and
180 milliseconds are reported for different algorithms on the GAPP
and MPP processors. Scaling these down to 1000 edge points, approxi-
mate timings of 81, 575, and 113 milliseconds are obtained respectively.
Bearing in mind that the programming of these algorithms is again very
complex, only the best of their results is just slightly faster than the
implementation presented here.

On the PC WARP systolic array (described in Section 2.3.7), each
of the ten cells receives one-tenth of the Hough space, partitioned
by 6 [DEH89]. The whole image flows through the PC WARP cells,
and each cell increments its own partition of the Hough space only. At
the end, the partitions are returned to the external host. A time of
340 milliseconds is reported for a 180x512 image with almost 1000 edge

98

4.8. S UMMARY AND CONCL USIONS

Figure 4.10: (a) Bi-linear farm network, (b) Tri-linear farm
network

pixels, which partitions as 18x512 segments for each PC WARP cell.
This again is a far cry from the 87 millisecond timing achieved here
albeit that they use a slightly larger image.

Also presented in this chapter were some robust techniques in han-
dling the results of the pOsHT processing to inspect the integrity of
rectangular and oval labels.

In summary, to find image line segments using the pOsHT on trans-
puters, the following factors (stated almost in order of contemplation)
must be considered to determine the best optimised configuration:

• the size of the input image (I x I),

• the most commonly occuring length of lines under inspection,

• the size of the sub-image (S x S),

• the number of processors to be used,

• the type of geometric parallelism to be used.

The overall conclusion for this chapter is that in implementing a medium-
level vision technique in different ways on two typical, SIMD trans-
puter networks, the whole process has been pre-occupied with different

99

CHAPTER 4. PARALLEL REALISATIONS OF THE HO UGH TRANSFORM

aspects of communication, as would be the case in any distributed
system. However, for a transputer network to be a viable bet in a criti-
cally real-time situation, faster communication links would be required
if not too much effort is to be directed at reducing communication
costs and overheads (which may in itself prove to be futile and also
result in unnecessary real costs). Still, for very computationally bound
medium-level vision tasks, the transputer has the potential of real-time
performance.

100

Chapter 5

Dynamic Scene Analysis

5.1 Introduction

Dynamic scene analysis or Computer Analysis of Time Varying Images
(CATVI) is the process of analysing a sequence of images captured at
various frame times with the purpose of making inferences about the
structure and movement of the observed world. Major uses have been
found in diverse applications such as,

• Security Surveillance: For example, [ERG91] present a robust
system for correctly classifying the genuine and false detection of
intruders, be they human or rabbit, in an outdoor scene.

• Meteorology: The application of cloud tracking, pollution and
fire detection have been investigated from aerial and satellite im-
age sequences [MA78, BSI90].

• Transport: Two application areas are traffic monitoring [AD90]
and autonomously guided vehicles (AGV) [THKS88, SH88].

• Medical: Experimental studies have been carried out on cell
motion and heart motion [YIT80].

• Civil Engineering: Study of displacement in large suspended
structures, such as the Humber Bridge can be found in [STD90].

• Industrial: Dynamic robot vision [EWM87] and dynamic mon-
itoring of industrial processes [Nag83] are increasingly popular
areas of research. •

• Behavioural Studies: Study of animal feeding patterns and
training of athletes have been reported [Nag83].

101

CHAPTER 5. DYNAMIC SCENE ANALYSIS

Two principle uses of dynamic scene analysis are in the tracking and
identification of discrete objects moving through the scene, and in esti-
mating the ego-motion of the camera. Tracking discrete objects within
a scene is more commonly performed with a stationary sensor, and this
constraint can considerably simplify the task [ERG91]. The research
described here forms part of the front end (low and intermediate level
processing) to a vision system for use with an autonomous guided ve-
hicle (AGV) that would be fitted with a camera. Thus, the aims of
this investigation are twofold. The first is to provide visual input to
the vehicle control system to aid location and navigation. This would
place the rest of the vision system in a position to consider depth,
ego-motion, and further analysis towards 3D scene understanding. The
complete system is targeted towards operating in man-made environ-
ments, matching primitive image features with a geometric model-based
representation of the world [EWM87, B091]. The second aim is to
continue the investigations of the earlier chapters on static image pro-
cessing, and consider new approaches in dealing with a dynamic image
processing problem using transputer-based configurations. Although
the investigation here is not a fully-fledged high-level vision problem,
nevertheless the solutions will be seen to tread the paths of MIMD
processing.

Whilst the data rates from most image sensors, e.g. TV cameras, is
very high (25 frames per second), it is not always necessary to process
every frame, and a more important characteristic is the overall latency
of the processing, which determines the time lag between acquiring the
image and being able to act on the information it contains. Part of the
requirement for vision comes from the need to augment other location-
based information, e.g. odometry, which tends to accumulate errors
over time, and results in increasing uncertainty in the position of the
vehicle. Periodically, say once every few seconds, updating this infor-
mation by using visual landmarks can minimise this uncertainty. By
extracting a number of features from a sequence of images, correspon-
dence between the features may be established to provide magnitude
and direction of the flow of the detail in the scene. From this infor-
mation, the ego-motion parameters of the camera motion, depth and
information about scene structure, can be deduced at a later stage in
the information processing cycle (Figure 1.1).

The rest of this chapter is divided as follows. Initially, a review of the
different techniques used in the detection and measurement of motion
is outlined. Later on in the chapter, a breakdown of the motion analysis
approach adopted (in this research) for tackling the problem of corre-
spondence will be presented. This will include a review and analysis of

102

5.1. INTRODUCTION

related work. In the next chapter, the motion analysis approach will
be used in the definition of a parallel computational model for tracking
image primitives. This will be followed by a parallel implementation
on a network of transputers. The emphasis throughout this chapter,
and the next, will be on the algorithmically independent nature of the
parallel computational model.

5.1.1 Some Definitions

Visual motion perception is a complex perceptual process. Much re-
search has been directed towards understanding the psychology and
reasoning used by biological vision systems in the analysis of motion
to help establish specific goals for CATVI. For example, a housefly
can track moving objects over a background identical in texture to the
moving target, which thus renders the object indistinguishable in the
absence of relative motion [RP80].

Ullman [U1179] and Marr [Mar80] both have provided a historical anal-
ysis and new insight in the field. In fact, together they have introduced,
discussed, and at least touched upon, many topics that have since be-
come the subject of research by various scientists, and this review will
repeatedly refer to their work. Ullman divides the problem of interpret-
ing visual motion into two parts: the correspondence problem and the
3-D interpretation problem. He defines correspondence as the process
that identifies elements in different views as representing the same ob-
ject at different times. Once the correspondence process is completed,
the 2-D transformations in the object’s appearance may be interpreted
to achieve a decomposition of the changing scene into objects. Hence,
their 3D structure and motion may be recovered. This is termed as
Structure from Motion. (As explained earlier, the area of research cov-
ered here is a parallel approach to the correspondence problem. The
topic of Structure from Motion will only be briefly reviewed later on
in this chapter and returned to in passing in the concluding chapter
of this thesis). One major derivative of the theory of structure from
motion is that of the rigidity assumption. This states that, given the
general truth that most things in the world are locally rigid, then,

any set of elements undergoing a two-dimensional transforma-
tion which has a unique interpretation as a rigid body moving
in space should be interpreted as such a body in motion.

In his subsequent work, Ullman [U1181] points out that the study of
motion perception in biological systems, and computational studies on

103

CHAPTER 5. DYNAMIC SCENE ANALYSIS

the interpretation of time-varying imagery, can complement each other
by providing further insight into the principles and discoveries attained
in each field.

Marr [Mar80] also viewed the psychological aspects of visual perception
and conducted experiments in the analysis of the correspondence prob-
lem and structure from motion. The majority of his work was on the
basis that the visual system uses information about direction alone to
help analyse the visual field. He then outlined an algorithm for quickly
detecting the sign of movement direction at the level of local edge seg-
ments. He applied this algorithm to segment independently moving
surfaces. Marr also employed the term optical flow which he defined as,

the use of the retinal velocity field induced by motion of the
observer to infer the three-dimensional structure of the visible
surfaces around him.

Some other definitions will be encountered later in this chapter.

5.2 Motion Detection and Measurement

The essential factor in motion analysis is time. It is by deducing the
changes which occurred in two instants in time that one can begin
to interpret the motion in a scene. Therefore, given two consecutive
image arrays Fi(x,y) and Fi(x,y) , motion may be described in terms
of a displacement vector field V (x , y, t) which is derived by establishing
correspondence between points in the two image frames. The direction
and magnitude of a vector in the vector field are the direction and
physical displacement between corresponding points in the images, in
other words Marr’s optical flow. The computation of this vector is a
measurement of visual motion. There will be more on optical flow later.

The detection and measurement of motion will take on a varying degree
of complexity if the scene is subject to one or more of the following
conditions,

• there is a moving background,

• there is camera movement,

• there are random illumination changes

• there are multiple objects,

104

5.2. MOTION DETECTION AND MEASUREMENT

• objects move at different orientations and at different directions,

• objects occlude each other.

In a real-world scene, all the above are applicable, thus making the task
of machine vision a multi-faceted challenge. In considering the problem
of ego-motion of a camera mounted on an AGV, all the above conditions
will need to be taken into consideration in one way or another and will
be discussed when applicable.

With some cross-over, most motion detection and measurement tech-
niques can be divided into two major schemes, intensity-based schemes
using low level image processing techniques, and token-based schemes
using medium to high level image processing techniques [U1179, Mar80,
ADM81, TB81, Ros83].

5.2.1 Intensity-based Schemes

Some motion measurement techniques are based directly on the local
intensity changes in the image. These may be subdivided into differ-
encing, correlation, and gradient schemes.

Differencing Technique This technique is more commonly applied to
a positionally static camera. Subtraction of corresponding pixels in two
frames from a sequence will result in a point-by-point determination of
changes in intensity. A subsequent threshold of the resultant image will
give rise to significantly differing regions which may be classified as,

• regions composed of object pixels in the first frame and back-
ground pixels in the second,

• regions composed of background pixels in the first frame and ob-
ject pixels in the second. •

• regions composed of pixels from the same moving object but at
substantially varying degree of intensity.

and defined as,

D IF F ttt+St(x, y)
' 255

. o

if |F(x, y , t) - F(x, y , t + 6t)\> A

otherwise
(5.1)

105

CHAPTER 5. DYNAMIC SCENE ANALYSIS

given two images F (x , y, t) and F(x, y,t + 8t) selected from a sequence
at times t and t + 8t, and A as a predetermined threshold, dependent
on the noise and complexity of the scene.

For example, consider an object in a scene with a contrasting back-
ground, which moves from left to right from one frame to another. The
difference picture will contain a region on the left due to the uncov-
ering of background, and a region to the right due to the covering of
background. These effects are demonstrated in Figure 5.1, where two
images in a sequence are shown along with their thresholded difference
image. There has been a voluminous amount of research and practical
work using differencing techniques [JMA79, Jai81, HJ83, AD90], per-
haps due to their computationally simple and fast nature which also
allows for an easy introduction to problems in motion analysis. For
example, Jain [Jai81] applied differencing techniques to identify and
segment changing regions and to classify them using a decision tree.

Differencing techniques are highly sensitive, but they are not robust
enough to be solely used for inferring occlusion or 3D-structure. Nev-
ertheless, as part of more sophisticated systems, effective and practical
use has been found in controlled environments, for example in secu-
rity surveillance. Ellis et. al. [ERG91] use differencing techniques to
observe changes within a fixed perimeter area around a prison, and
Bernat and Rupel [BR90] have implemented a similar system, based on
transputers, for tracking human motion across international borders.
In the next chapter, a simple implementation of an object tracking sys-
tem based on differencing will be described; this was conducted as part
of an investigation and experimentation for laying the groundwork for
a more comprehensive, parallel, motion analysis system.

Correlation Technique This is a direct matching technique carried
out at the level of small image segments. A small region containing
an object in the first image is matched with a sub-image in the second
image of a sequence. Consider a scenario where a sequence of images
of size m x n are available, and a sub-image S for a frame acquired at
time t is known to contain an object. It is intended to determine the
occurrence of the object in a later frame F captured at time t + 8t,
where,

St = s (x ,y , t) x i < x < x 2 , y\ < y < y2 (5.2)

Ft+st = f (x , y, t + 8t) 0 < x < m , 0 < y < n (5.3)

The cross-correlation technique will then provide a measure of match,
C(x,y) , between the initial sub-image and every sub-image formed at
point (x,y) by applying,

106

5.2. MOTION DETECTION AND MEASUREMENT

Figure 5.1: An example of Differencing: Two frames from a
sequence and their difference image.

X2 V2

C{x ,y) = £ Y , St{ i , j) Ft+St(x + i ,y + j) (5.4)
« = X 1 3 —V\

Selective measurement is usually carried out within a reasonable area
of (xi,yi) since the object may be assumed not to have moved by a
large amount especially if St is small. Information on the object from
preceding frames could be used in determining this area. The values of
C(x, y) can be normalised to eliminate its sensitivity to areas of average
high intensity, since such areas can result in false matches. Correlation
techniques are described and applied in [ADM81, U1181, STD90]. For
example, Aggarwal et. al. [ADM81] use normalised cross-correlation
as a similarity measure in establishing correspondence between image
templates. An example of such a process is illustrated in Figure 5.2.

107

CHAPTER 5. DYNAMIC SCENE ANALYSIS

Figure 5.2: An example of Correlation: The template and the
match in the later frame.

Note, that the area of image where the template has been found is
marked.

Independently-moving multiple objects, changes in scale and illumina-
tion levels, and changing object viewpoint are some of the major factors
that highlight the restricted capability of correlation techniques in per-
forming matches from frame to frame. Also, correlation techniques are
computationally expensive, but perhaps with the present availability of
parallel processors, may begin to enjoy more attention.

Spatio-Temporal Gradient Techniques Gradient based schemes
use the change in intensity at an image point over both time and space
to estimate the rate of translation (i.e. movement) of the underlying
surface. Given an image F (x ,y), then the temporal intensity change
^ at position (x ,y) may be deduced from,

dF dx dsx dy dsy
dt dt dt dt dt

where ^ and ^ are the components of the gradient, and and ^
are the components of velocity in the x and y directions, associated
with image point (x ,y). This approach is the already encountered op-
tical flow [Mar80, HS81], and is illustrated in Figure 5.3. Horn and
Schunk [HS81] present an iterative, gradient-based technique to de-
termine the optical flow in a coarsely quantised sequence of images.
Caffario and Rocca [CR83] use gradient techniques to achieve TV inter-

108

5.2. MOTION DETECTION AND MEASUREMENT

Figure 5.3: An example of Optical Flow (Courtsey of Dr. S.
Gong of Q M W C , London)

frame coding for eliminating redundancy and remote guidance. They
also introduce into Equation 5.5 a noise error term with related covari-
ance to account for various luminance differences. Fenema and Thomp-
son [FT79] detect motion by using this technique to segment an image
into regions corresponding to surfaces with distinct velocities. Optical
flow has been used extensively to infer depth, 3D motion and structure
from image sequences [U1179, Mar80, Ros83, AN88]. For example, in
estimating depth, two images of a scene captured fairly closely in time
from a moving, monocular camera system could be used in place of two
images from a stereo pair.

5.2.2 Token-based Schemes

In token-based schemes for measuring motion, elements in the image
are identified, located and matched over time. These elements are gen-
erally referred to as features, primitives or tokens (all of these terms
will be used interchangeably in this discourse). To allow a continuous
perception of motion between a succession of tokens, the visual system
has to establish a correspondence between them. In intensity-based
schemes, while no matching is required in determining motion vectors,
differencing and correlation provide a means for matching between two
regions of two frames. The task of matching is somewhat more compli-
cated between tokens.

Both biological and machine motion analysis systems share two general
problems in token matching [U1181]. The first is the degree of prepro-

109

CHAPTER 5. DYNAMIC SCENE ANALYSIS

cessing and the complexity of the participating tokens, which determine
the level at which correspondence can be established. Matching can
be achieved between simple tokens such as points or edge segments.
Alternatively, complex tokens such as structured forms, or complete
descriptions of recognised objects may be used, with rigidity assump-
tion playing a large role in the analysis. Since a complex token would
usually have a unique counterpart in the next image, their use can sim-
plify the matching process. (However, a complete description of all the
objects recognisable by the human visual system for machine vision is
an impossible task for tackling everyday, real scenes.) In contrast, a
simple token such as a small edge segment, has a number of candidate
matches but carries two distinct advantages,

• It reduces the preprocessing requirements which are essential for
faster machine motion perception,

• It allows the detection and tracking of arbitrary objects in (simple
or) complex scenes. This is possible because correspondence be-
tween complex objects is established by matching the elementary
tokens from which the objects are constructed.

It is relevant to note Marr’s [Mar80] notion of the primal sketch which
he defines as a set of basic units that are the first to be formed in the
course of visual analysis, and serve as building-blocks for higher order
constructs. Thus the immediate use of a set of primitives after the
matching process, is their role in determining structure from motion,
and to keep track of complex objects.

The second general problem concerns the role of token-based schemes in
relation to intensity-based schemes in an integrated visual motion anal-
ysis system. Although fast, intensity-based schemes are highly sensitive
to noise and result in a high degree of inaccuracy, e.g. in recovering
the velocity field. Also, intensity-based schemes are ineffective when
occlusion occurs. On the other hand, token-based schemes are more
localised and accurate, and can track sharply localised tokens over long
distances, but all at a higher processing cost in solving the correspon-
dence problem.

Tracking of objects pre-supposes some earlier recognition stage, and
is associated with discrete objects moving through the scene. For an
AGV, this approach is inappropriate, since in addition to the disadvan-
tages already stated, most of the elements of the scene are fixed, and
only exhibit ego motion.

110

5.3. FEATURE TRACKING FOR MOTION ANALYSIS

In this thesis, the interest lies in tracking primitive image features, such
as edge segments, in the scene as a precursor to model matching. A
token tracking scheme provides a method of maintaining frame-to-frame
correspondence between features, accelerating the process of matching
the image to the scene model and the detection of unexpected obstacles.
The parallel computational model presented in the next chapter will be
based on the tracking of tokens, irrespective of the nature of the token,
i.e. be it point, corner, edge segment or whatever. This latter issue will
be dealt with in the following section.

There follows a survey of past research on token-based tracking, in-
cluding edge tracking. The idea of the flow model will be introduced
as a precursor to a general edge tracking algorithm, which can be im-
plemented in many ways. Two implementation approaches will be ex-
amined, both based on Kalman filtering which is a recursive filtering
technique for estimating the state of a linear system. Standard Kalman
Filtering is one approach and is discussed in Section 5.5. The discussion
includes a brief outline of the second approach which is derived from
the Kalman filter and is called the a, ¡3 filter. The process for matching
corresponding tokens from one frame to another is usually an expen-
sive process especially if a number of competing candidate matches are
involved. This issue, and the selected approach for this research are
reviewed in Section 5.6. Before the summary, the penultimate section
briefly reviews the fundamental research issues in 3D (structure from)
motion, and considers the role of token tracking in that field.

5.3 Feature Tracking for Motion Analy-
sis

In Section 5.2 various issues of dynamic scene analysis were reviewed.
This section concentrates on the most recent work in motion analysis
which utilise tokens as features of interest for tracking.

The use of elementary image tokens in a feature-based approach to the
solution of correspondence and tracking has been suggested by numer-
ous authors, for example [U1179, SJ87, THKS88, CSD88, HS88], and
various image features such as points, corners, vertices and edges have
been tracked to help in formulating structure from motion. It must
be emphasised that these features are being viewed here as indepen-
dent entities and not as a sub-description of an object. As mentioned
previously, the interest lies in exercising the tracking on the feature
specifically, and it is incidental, but presently irrelevant, that a certain

111

CHAPTER 5. DYNAMIC SCENE ANALYSIS

group of corners or edges may belong to one object. A higher level de-
scription and classification of the features would occur at a later stage
in the processing for formulating structure from motion, and this is
described briefly in Section 5.7.

Sethi and Jain [SJ87] use the idea of smoothness o f motion to iden-
tify the same physical point in a sequence of frames as opposed to just
two frames. They argue for this approach as a logical step in handling
the correspondence problem since the motion of the object is not ex-
pected to change instantaneously, as inertia would prohibit it. They
then assume a complete object to be a point and apply their proposed
algorithm to the point. This is now briefly reviewed. Given path co-
herence, the problem is a qualitative decision on the best of a set of
possible trajectories given m points in a sequence of n frames. This is
illustrated in Figure 5.4.

0 Frame 1

© Frame 2

Frame 3

Figure 5.4: (a) shows the actual trajectories of two points
over three frames, and (b) shows two possible trajectories for
correspondence of points

For m points in n frames there exists a set of mn trajectories. The
authors present an algorithm to determine point trajectories over sev-
eral frames, and continue by applying it to a real sequence from a
world-saving scene in Superman where points on the head and belt of
three running soldiers are tracked. The points were manually selected
from the reel. In another example, they use differencing to perform
a rough segmentation of their objects. The centroid of the object is
then extracted as a coarse point representation of the object for feature
point tracking. The ideas used here are rooted in the notion of affinity
introduced by [U1179], which defines that the correspondence between
isolated token pairs is governed by a certain built-in similarity metric

112

5.3. FEATURE TRACKING FOR MOTION ANALYSIS

(termed affinity). Griffin and Messimer [GM90] also examine the prob-
lem of tracking feature points, assuming constant velocity and rigid
motion, using two imaging geometries: orthographic projection, as in
an X-ray system, and perspective projection as in a camera system.
The goal in each case is to find point paths by using a heuristic method
to determine the best of a number of feasible paths, and is thus similar
in nature to the work in [SJ87]. Possible applications of point tracking
are traffic analysis and cell motion analysis.

Corners may be treated as points but are generally assigned more at-
tributes such as the local grey level and edge strengths, which are
used for matching against other corners in later frames. Shah and
Jain [SJ84] describe a time-varying corner detector based on the AND
operation between the cornerness and the temporal derivative. (Simi-
lar work applied to edges is described later). They compare different
corner detectors such as the Kitchen-Rosenfeld [KR82] and the Zuniga-
Haralick [ZH83], and use the latter to form their corner detector, which
finds the cornerness at a point and uses the absolute value of differ-
ence at that point to approximate the temporal derivative. Harris and
Stephens [HS88] have reported a combined corner and edge detector
in their specific search for consistent feature extraction in noisy and
natural imagery, such as one with trees or bushes. Such image regions
usually yield different and fragmented edge segments on each image of
a sequence. However, by using their combined detector, they obtained
thin, continuous edges that terminate in corner regions. The edge ter-
minators were then connected to corner pixels residing in corner regions
to form connected edge-vertex graphs. This satisfied their aim in pro-
ducing features that consist of edges meeting at corners, i.e. junctions
or vertices. They also found many unconnected corners located in tex-
tural regions such as a bush. Given an image of grey values F(x ,y) ,
their corner detector performed by searching for the corner response
R(x,y) for 8-connected local maxima and thresholding the resultant
image, where,

and,

R(x , y) = Det[M(x, y) \ - c T r[M(x, y)] (5.6)

M (x ,y) A(x ,y) C (x ,y) \
C(x, y) B (x ,y)) (5.7)

M x , y) = ^ 2 G UV
uv

6F
8xx+ u ,y+ v

(5.8)

113

CHAPTER 5. DYNAMIC SCENE ANALYSIS

B (x , y) = ^ G u v
uv

8F
8 y x +u,y+v

(5.9)

C {x ,y) = '%2Gu
8F 8F

8 x x -\-u,y+v 8yx-\-u,y+v
(5.10)

Guv is a Gaussian weighting function, and c is a constant to provide
discrimination against high contrast pixel step edges.

This corner detector is an improvement on Moravec’s corner detec-
tor [HS88],

• it is isotropic and determines the average changes in intensity
that result from shifting the window in all directions by a small
amount.

• it shifts a smooth, circular Gaussian window across the image
rather than a noisy, binary and rectangular window.

• it reformulates the corner measure to make use of the variation
in R (x ,y) with the direction of shift, to improve its response to
edge detection.

The corner detector, for which they showed improvement over the
Kitchen-Rosenfeld corner detector [KR82], was developed specifically
to allow a more robust detection of features in essentially textural re-
gions. Later, it was used by Stephens and Harris [SH88] as part of
an edge-vertex feature extractor for use in tracking edge-vertices in
the DROID vision system. The features are initially extracted for the
first two images and matched using prior estimates of camera motion,
and image-plane attributes of feature points. The visual matches are
then used to estimate camera motion via an iterative ego-motion algo-
rithm [HP87]. The features are then refined and tracked by performing
an independent Kalman filter (described in Section 5.5) on each one.

A relatively early article on detection of motion in dynamic scenes by
using edges is that of Haynes and Jain [HJ83]. They present an edge
operator which includes both change and edge detection,

TimeVaryingEdginess = D I F F t+st{x,y) * S (x ,y , t + 8t) (5-11)

where S is the Sobel 3x3 edge detector and D I F F is the result of the
subtraction of corresponding pixels of the centre point of the Sobel

114

5.3. FEATURE TRACKING FOR MOTION ANALYSIS

mask (See Equation 5.1). The operator takes the static edginess over
one frame and at each point multiplies this edginess by the difference
between corresponding pixel gray values of the current frame and an-
other frame in the sequence. Given a sufficient difference, this operator
will detect low-contrast moving edges, and if the gradient strength is
sufficient it will also detect low difference points that would arise, for
example from slow motion. They obtain from this information a very
approximate direction of motion by considering the sign of the gra-
dient and of the difference for each edge point. Limitations of their
approach are in the difficulty in selecting a suitable threshold, in the
lack of response to horizontal edge movement, and most importantly
in the detection of false points which are time-varying (e.g. due to a
change in illumination or reflectance) but not necessarily moving.

Thomas et. al. [TLM+90] have presented a transputer-based imple-
mentation of a vision-guided vehicle which navigates by tracking road
edges. The edge extraction and tracking techniques employed are simi-
lar to the special methods used in previous work in road-edge following.
In the bootstrap mode, the strongest edges on the left and right of the
image space are accepted as road edges by assuming that the vehicle
is safely positioned in the expected direction of traffic flow. Having an
accurate knowledge of camera position and orientation, the edges are
projected onto the real-world horizontal plane using a perspective trans-
formation. A model of the two road boundaries represented as a pair of
concentric circular arcs lying in the ground plane is then built. Next,
the model is used to guide the search for edges from frame to frame by
predicting the position of the edge in the next frame on the basis of the
known velocity of the vehicle and by extrapolating the model along the
circular arcs from the most distant points previously detected. Details
of the transputer implementation are unavailable. Another approach
to road-edge following was presented by Thorpe et al [THKS88] which
uses multi-class adaptive colour classification of pixels of the image to
determine on-road and off-road regions. Each road and non-road class
is given a confidence value from colour and texture measures, and a vot-
ing system using a 2D parameter space, similar to a Hough transform,
is employed to select the best next road position. The parameter space
is made up of parameter P as the column of the road’s vanishing point
and parameter 6 as the road’s angle from the vertical in the image.

The concept of edge tracking will now be continued by introducing the
idea of a scene flow model.

115

CHAPTER 5. DYNAMIC SCENE ANALYSIS

The Scene Flow Model

Movement of a mobile robot or an AGV will introduce a considerable
amount of vibration and noise into the measurement of the flow of mo-
tion, thus affecting the process of inferring depth and structure from
motion in the subsequent stages. By adopting a flow model, consisting
of a set of active tokens, a technique for minimising the degradation of
measurement can be employed. Each model token can be represented
by a vector of feature parameters composed of geometric and dynamic
attributes. The geometric attributes may be position, neighbourhood
characteristics, length, gradient, etc., depending on the type of token
employed. Dynamic attributes associated with each token include ve-
locity estimates. For each token extracted from an image in a sequence,
referred to as an observation, a match in the flow model is found, and
the flow model is updated with the active token. If no match is found,
the token may be added as new to the flow model. Those tokens already
in the flow model for which no match is found may either be deleted
immediately, or tied over for a number of frames. Deletion may then
take place if still no match is found. For observation tokens, only their
geometric attributes would be known which are determined following
the process that extracts them from each new image.

This is illustrated in Figure 5.5 which represents a more complete in-
stantiation of Figure 1.2. It may be seen that by introducing a method
for predicting and estimating the geometric and dynamic attributes of
the flow model’s active tokens, and employing a robust matching tech-
nique, taking into account measurement uncertainties, a continuously
updated model of image flow can be maintained, which provides a suit-
able platform for 3D motion analysis. The information describing the
causative tokens is made available to a 3D scene-model matcher, which
can relate the tokens to those already in its database describing the
scene. The efficacy of a token-based approach may be further empha-
sised here by pointing out that tokens from a scene are uncorrelated and
estimation and measurement error in one will not affect or propagate
in others.

The flow model can be regarded as a pre-processing stage for infer-
ring depth and structure from camera ego-motion. In an attempt
to provide a robust and accurate scene flow model, increasing use
of optimal estimation techniques such as Kalman filtering is being
made [CSD88, SH88, HS90, CSDP89, DF90].

Harris and Stennett [HS90] track known three-dimensional objects in
simplified scenes using the a, (3 filter on control points on high contrast
edges. These control points may be surface markings or profile edges.

116

5.3. FEATURE TRACKING FOR MOTION ANALYSIS

Image from Scene

To 3D Model
Matcher

Figure 5.5: Prediction of the state of the flow model

Crowley et. al. [CSD88] and Chehikian et. al. [CSDP89] show that by
assuming a flow model such as that above, it is possible to provide an
elegant and reliable solution to the problem of image flow measurement
and correspondence. They continue by applying a simplified form of
the Kalman filter for tracking edges in software and hardware.

Also using edges as tokens, Deriche and Faugeras [DF90] experimented
in edge tracking, using the the a, /3 filter. The a, f3 filter, which is an
extended Kalman filter, will be employed as the main implementation
algorithm for the parallel computational model presented in Chapter 6
of this thesis. In this implementation, edges will be used as tokens. This
decision is fairly arbitrary, and the nature of the token is quite irrelevant
to the parallel approach which is the major feature of this study. The

117

CHAPTER 5. DYNAMIC SCENE ANALYSIS

approach is designed to be applicable whatever the representation of the
token, and use of edges as tokens allows its simplified demonstration.
For example, edges and vertices together can carry more details for
token matching. Each vertex can be classified by its degree, which is
the number of edges attached to it. Its attributes would then consist
of the directions of the attached edges, the length of the edges and
the local vector image gradient [SH88]. It will be seen in the next
chapter that grouping of such information into data structures related
to each edge-vertex description will be a simple extension of the edge-
only implementation. Other image primitives could also be added on,
for example, corners. The parallel computational model will in fact only
refer to tokens, where tokens can be any type of feature as necessary.

In the next section, two geometric representations of edge tokens will
be examined. Use of the Kalman filter has already been mentioned
but without much clarification. This will be remedied with a detailed
examination and derivation of the Kalman filter equations for the mo-
tion model. The matching process will then be described, completing
the various stages of the algorithm. The overall picture will be pieced
together in the summary for this chapter.

5.4 Token Parameter Representation

It was shown that the dynamic scene will be described by a set of para-
metric primitives, namely edges, which will be based on observations
about the scene. In selecting an edge token representation, the geomet-
ric parameters for line segments must be examined. Some of these are
illustrated in Figure 5.6 and Table 5.1.

Edges in real 3D structures are expected to remain fairly consistent in
frame sequences, providing good feature parameters as well as future
connectivity information. Most simply, edge tokens may be described
by their end-points. However, on their own, the end-points of a line are
an inadequate representation, since digitisation effects1 and the extrac-
tion process can result in fragmented edge segments in each image of
a sequence, and both these factors deteriorate the chances of success-
ful matching and Kalman filtering. It is therefore necessary to observe
some measure of uncertainty and tolerance when considering any rep-
resentation of a (digitised) line.

1 Pixels are affected by noise both at sensing and amplification of the initial
electronic signal, and by quantisation noise when registered in a frame-store. One
major source of error is variation in illumination.

118

5.4. TOKEN PARAMETER REPRESENTATION

Figure 5.6: Parametric features of a line segment

Crowley et. al. [CSD88] and Chehikian et. al. [CSDP89] use feature
vector V = [c, d, 0, £] to represent line segments. Considering the un-
certainties associated with the edge extraction process, the precision
of the perpendicular distance c from the origin will be to the order of
very few pixels. However, the shorter the edge segment length, the less
reliable is the orientation 6. Thus 6 is highly dependent on l.

Deriche and Faugeras [DF90] compare this representation with the mid-
point representation feature vector M = [xm,ym, 6, l] and following an
analysis of the [c, d, 0, and [xm,y m,0,l\ covariances show that the

1} representation is more appropriate by noting that,

• [c, d, 0, j] feature vector representation leads to a covariance ma-
trix that depends strongly on the position of the associated line
segments in the image through the parameters c and d. Thus, the
uncertainty on the [c, d] parameters for two line segments with the
same length and orientation will be completely different depend-
ing on their position in the image. This situation will not arise
for the mid-point representation, since the uncertainty of the mid-
point (xm, ym) depends only on the uncertainty associated with
the endpoints of the line segment, •

• [im) Vmi 0, f] feature vector parameters are decorrelated allowing
for more efficient post-processing and tracking.

119

CHAPTER 5. DYNAMIC SCENE ANALYSIS

Line Endpoints Xi,yi and x2,y2

Midpoint
Xm,ym where,

xm = ^ and ym = ^

Orientation 6 = V X2— X\ /

Length of line l = \J(x 2 - z i)2 + (2/2 - yi)2

Perpendicular distance from
line segment to the origin c _

Distance along the line from
perpendicular intercept of the
origin to midpoint of the segment

J (¡r2-xi)*(r2+xi)+(y2-yi)*(y?+yi)
a ~ 2 *1

Table 5.1: Description of parameters used in two representa-
tions of a line segment

By adopting Deriche and Faugeras’s conclusions, each edge segment
will be tracked by implementing four Kalman filters for it, one for each
of its x m,ym,6 and l parameters.

5.5 Optimal Estimation

The problem of estimation may be defined as the process of extracting
information from measured data. To estimate the minimum error state
of a system, an optimal estimator may be applied which takes into
account [Gel74],

• information describing the initial condition of the system,

• a knowledge of system model and measurement dynamics,

• assumed statistics of system noise,

• assumed statistics of measurement errors.

120

5.5. OPTIMAL ESTIMATION

Problems such as determining the path of earth satellites, or the state
of the current in a circuit as the voltage is affected by instrument noise,
can be cited as examples where optimal estimation techniques may be
applied. The problem of estimation may be categorised into three areas
of interest: consideration of the past state of a system is smoothing, the
estimation of its present state is filtering, and the estimation of its
future is predicting. The primary concern here is with the issues of
filtering.

Modern elementary estimation methods have undergone a drastic sim-
plification in the last thirty years. To aid the examination of modern
estimation theory, mathematical tools such as matrix algebra, basic
probability theory, and calculus are considered adequate[Lie67]. A no-
table contributor to the fusion of the various topics involved was R. E.
Kalman who produced an optimal filtering technique for estimating the
state of a linear system with results in the time domain rather than the
frequency domain[Kal60]. Figure 5.7 represents an example where the
capabilities and limitations of optimal estimators may be observed.

Thus, Kalman filtering [Kal60] can be defined as a statistical approach
to modeling and estimating a time-varying state vector from noisy mea-
surements, and within this context, may be used as a recursive estima-
tion scheme designed to match the dynamic system model of the moving
token, the statistics of the error between the model and reality, and the
uncertainty associated with the measurements.

The requirement here is to consider the application of Kalman filters
to the tracking of edge segments in order to maintain a frame-to-frame
correspondence between features and aid the process of matching the
image to the scene model. During tracking, there is uncertainty of
measurement as well as inaccuracy of the model, and these may be
represented as process noise. Hence, the state of the token in the flow
model may be predicted using the Kalman filter. The general equations
for the model of the system dynamics and the measurement model are
as follows,

Xt+1 — + pt
Yt = CtXt + ut

(5.12)
(5.13)

where,

X is the vector of state variables,
Y is the vector of measurements,

121

CHAPTER 5. DYNAMIC SCENE ANALYSIS

Figure 5.7: Estimating the state of a linear system

$ is the state transition matrix,
C is the output matrix,
pi is the zero-mean Gaussian noise sequence of covariance
u is the zero-mean Gaussian noise sequence of covariance Q.

Applying to Equations of Motion

When a given line segment moves, each feature parameter representing
the line follows a trajectory in the one dimensional space. The kine-
matics of the motion of the line segment consists of the trajectory, the
velocity and the acceleration of the feature parameters. Therefore, four

122

5.5. OPTIMAL ESTIMATION

independent K alm an filters are applied to each param eter in feature
vector M = [xm,y m,0,l\ , thus necessitating the in troduction o f the
follow ing state vectors,

M 1 =
 ̂ 'Em ̂

¿ m ,m 2 =
 ̂Um ^

ÿm ,A*3 =

(0 \

6 ,m 4 =
(1 \

i

 ̂) K ÿ™ } \ 0) 1 7/

For each edge segm ent feature, the state vectors represent the position
o f the param eter, its ve locity and its acceleration .

G iven that the derivative o f position is ve locity and that o f velocity
is acceleration , then the equations o f m otion for uniform ly accelerated
m ovem ent are,

x t = a (5 .14)

it = at + v0 (5 .15)
1 2x t = -a t + v0t + c (5 .16)

Thus at tim e t + 1,

Xt+1 = —a(t ^)2 v°ft T 1) + c

Xt= Xt + Xt + — + c (5 .17)

¿t+ i = a(t + 1) + Vo
= it + Xt (5 .18)

T herefore, the equations o f m otion describing the system dynam ics and
m easurem ent m odel can be equated as follow s,

f X t + 1 \ (1 i n (X t >

IIrH+ ¿<+1 = 0 1 1 x t

 ̂ *«+1 / [o 0 1) \ x t)

(5.19)

and

where,

Yt =
(V t \ < X t ^

*
\ y t)

= (i ° °) X t

\ /
+ u>t (5 .20)

123

CHAPTER 5. DYNAMIC SCENE ANALYSIS

is the state transition matrix evolving the position,
1 1 \ \

= I 0 1 1
0 0 1 ;

velocity and acceleration from one time sample to another,

Ct — (1 0 0) is the output matrix in this application,

* . = =
I al 0 0 \

0 0
\ 0 0)

is the zero-mean covariance matrix.

In this application, the value Yt of the measurement model is a com-
bination of the measured position x from the matching process, and
u t which is the measurement uncertainty error <7̂ on position with
zero-mean Gaussian noise sequence of covariance Dt.

The model derived above is a classic example of uncorrelated system
and measurement noise processes. A typical source of noise common
to all aspects of the model is the vibration of the camera mounted on
an AGV. In their study, Deriche and Faugeras [DF90] simply ignore
this due to their lack of knowledge about it, and assume it to be zero.
Here, this lack of exact knowledge is felt too, but it is proposed that the
presence of this noise is inherent in the model and measurement noise
processes, and thus is already dealt with, only not in an independent
sense.

5.5.1 Prediction Algorithm (or Solution of Kalman
Equations)

The prediction algorithm is bootstrapped into action by setting the esti-
mated position of the state vector and its associated covariance matrix
using initially measured and estimated data,

X 0 = E (X o) = Y0 and P0 = Var(X0) = (5.21)

In the ensuing run stage, the following steps are dealt with sequentially,

• Compute the Kalman gain matrix, Gt, which indicates the weight
to be attached to each new measurement,

Gt = $t Pt c j (Ct Pt C j + a) " 1 (5.22)

It is easily seen that the influence of the measurement in deter-
mining the state estimate may be altered by using a small or large

124

5.5. OPTIMAL ESTIMATION

uncertainty Qt to achieve a large or small weighting Gt respec-
tively.

• Now compute the prediction estimates for the state vector using
the Kalman gain,

X t + 1 = * t X t + Gt (Yt - C t x t) (5.23)

• Compute the covariance prediction for the state vector,

Pt+i = (St - Gt Ct) Pt (5.24)

Note that this is a simplified form which disregards the corre-
lation between the system and measurement noise processes as
previously mentioned above.

• Compute the covariance prediction for the measurement vector,

St+1 = (C t Pt+1 C j) + a (5.25)

This covariance is then used to determine the search area for the
matching process which follows.

5.5.2 Error Modelling

Due to the inaccuracy of the system model, divergence [Gel74] or grow-
ing uncertainty will occur in the Kalman filter. The assumed constant
velocity and acceleration model is essentially correct only locally, e.g.
when considered in small time steps (which is why in this work the
velocity is continuously tracked, but uniform acceleration is assumed).
Through appropriate error modelling, the system model constraints
may be made more flexible. Hence, two techniques are employed for
reducing the divergence problem.

Firstly, divergence is minimised through the addition of process noise
as already shown in Equation 5.13 using the term fit with covariance
fl't, where,

*t = E(ntfiJ)
/ 0 0 \

0 0
\ 0 0 * 2 /

(5.26)

The choice for the values of c^, <7% and is largely heuristic and for
this work roughly estimated values were used and refined by practical

125

CHAPTER 5. DYNAMIC SCENE ANALYSIS

experiments. The choice on the variance on the position a2m is deter-
mined from the amount of noise expected from the digitisation and
edge extraction stages. For example, this can be determined by re-
peated edge segmentation of a static scene and measurement of the
positional variance under normal conditions.

Secondly, old data can be regarded as irrelevant (since the model is
claimed to be local in time and not in space) and thus eliminated from
the system. This may be achieved by weighting old data according
to the time of their occurrence [Gel74]. This can be accomplished by
increasing the covariance matrix for past measurements by using an
scalar factor A greater than or equal to 1 in Equation 5.24 to give,

Pt+i = A($, - Gt Ct) Pt + * t (5.27)

The discussion above outlines the first algorithm that is used in this
study. In addition, a second algorithm which is an extension to the
Kalman filter but of a simpler design, will also be discussed briefly
now. This is intended to show the flexibility of the parallel computa-
tional model, proposed later, in embracing different algorithms for easy
implement at ion.

The second algorithm uses the limiting Kalman filtering equations, bet-
ter known as the near optimal a , /3 tracker, again based on an assumed
model of the trajectory with constant velocity and acceleration. Fol-
lowing the work by Deriche and Faugeras [DF90] and Gelb [Gel74] the
Ricatti differential equation is derived from the standard Kalman fil-
ter by adding process noise to the covariance prediction for the state
vector; this steady state equation is then solved and the Kalman gain,
composed of two positive scalars less than one, is deduced. By assigning
constant values to the Kalman gain, G = (a /3)T, the application deal-
ing with a constant velocity model will yield the following decoupled
equations,

x t = — (a + /3 -2)*xt- i - (1 — a)*X i_2 + a *v t + (—a + /3)*vt- i (5.28)

xt = - (a + /? - 2) * ¿t_i - (1 - a) * x t - 2 + ¡3 * (vt - vt- i) (5.29)

and the covariance matrix P,

P (a /3 \
1 - a \ P / ? * (« + /?))

(5.30)

126

5.6. TOKEN MATCHING

The a , (3 filter has the following advantages,

• it is simple to implement

• the coefficients of the recursive equations are determined once
only at compile time

• the position and velocity components are completely decoupled

• only the state vectors from 2 previous time frames need be stored

This decoupled implementation allows for the recovery of the compo-
nents of the state vector, i.e. position and velocity, in a completely
separate way using the two Kalman filters in Equations 5.28 and 5.29.
The reader is reminded that this is applicable to each of the four ge-
ometric feature parameters of the token. Also to be noted is that the
a, (3 algorithm and the standard Kalman filter solutions are expected
to yield the same results, only they use approaches with different com-
putational and algorithmic complexity.

Finally, the a, f3 equations show that the representation of active to-
kens in the flow model will be continuously refined by their geometric
and dynamic feature attributes as discussed earlier in the comments
accompanying Figure 5.5.

5.6 Token Matching

A common operation in perception is the comparison of primitives at
different points in time, to determine if they represent the same physical
quantity. In this section, the process of matching tokens (or primitives)
between the observed tokens and flow model tokens is discussed (Fig-
ure 5.5). Indeed, this is a verification of the measure of affinity as
stated in Ullman’s [U1179] general correspondence principles. The re-
sults of the Kalman filtering are used to predict an image region within
which the next expected instance of the edge being tracked will lie
(Figure 5.8). Given that a certain number of observed tokens will be
found to exist in such an area, a matching process must be employed
to establish which token best corresponds with the edge being tracked.

Now, perceived quantities are never exact measurements and constant
from one scene to another, and thus some measure of tolerance and
uncertainty must be introduced. Therefore, the token matching process
employs the Mahalanobis distance which is essentially a feature distance
squared, normalised by variance to represent the uncertainty,

127

CHAPTER 5. DYNAMIC SCENE ANALYSIS

Figure 5.8: An example showing the estimated search area for
the next instance of an edge segment

dx2 = (Ff - Fe)T{n + T)-\ F f - Fe) (5.31)

where Fj is the feature vector of N components with a covariance ma-
trix II and Fe is the feature vector found in the estimated search area
with a covariance matrix T. Note that where no correlation exists
between vectors Fj and Fe then the covariance matrix of the vector
difference, Ff — Fe, is the sum of II and T. The distance associated
with each component has a x 2 distribution with 1 degree of freedom in
this application.

Hence, the Mahalanobis distance can be used to determine a similarity
measure for the comparison of edge tokens represented by feature vec-
tor [xm,ym,6 , l] . For each component of each observed feature vector
in the search area, the Mahalanobis distance is calculated using the
components of the flow model feature vector that is under scrutiny.
Given that the distance for each component is less than the Maha-
lanobis threshold (3.84 for a successful matching probability of 95%),
the observed token can be regarded as a candidate match and a sum
of the distances of the components is determined as the cost. The
most promising match is then selected to be the token with the least
overall cost. A pseudo-OCCAM outline of this process is provided in
Figure 5.9. The code is ideally parallelised: for the matching procedure

128

5.6. TOKEN MATCHING

for a token executing on a single transputer, it is more efficient to run
the algorithm sequentially, since less processes exist for the scheduler
to cope with. However, ideally, the independent parts could be run in
parallel.

— Comments:
— Each parameter will require its own covariance representation.
— e and / stand for estimated and flow model respectively.
Match.Found := -1
MINIMUM.COST.SO.FAR = VERY.EXPENSIVE
PAR i = 0 FOR (Every.Token.in.Search.Region)

SEQ
PAR

cost[i][0] := MAHALANOBIS(xme[*'], r ex, x m } , n ^)
cost[i][1] := MAHALANOBIS(yme[i], r ej/, y m f , n ^)
cost[i][2] := MAHALANOBIS(0e[*1, r e<?, 6f , H f e)
cost[i][3] := MAHALANOBIS(/e[t], Tel, H f l)

Total.Cost[i] := cost[i][0]+cost[i][l]+cost[i][2]+cost[i][3]
SEQ i = 0 FOR (Every.Token.in.Search.Region)

IF
Total.Cost[i] < M INIMUM.COST.SO.FAR

SEQ
Match.Found := i
M INIMUM.COST.SO.FAR := Total.Cost[i]

TRUE
SKIP__

Figure 5.9: Pseudo-OCCAM code outlining an ideal imple-
mentation for the token matching process using the Maha-
lanobis distance function (not shown).

Another implementation could be similar to the pseudo-code illustrated
in Figure 5.10. This algorithm allows the token under inspection to be
abandoned immediately, upon encountering the first (of the four) Ma-
halanobis distances that falls foul of the threshold test. (Note, this
avoids extra computation for most cases but leads to a worst case for
those matches that satisfy all the conditions and for which the cost
function has to be calculated effectively twice. A more elaborate and
sequential code can overcome this problem by calculating, saving and
then examining each component cost before going ahead with the next
component cost.) For a very busy scene with many tokens, this algo-
rithm would perform best.

The following are the equations used for calculating the Mahalanobis

129

CHAPTER 5. DYNAMIC SCENE ANALYSIS

— Comments:
— Each parameter will require its own covariance representation.
— e and m stand for estimated and flow model respectively.
VAL M T IS 3.84 :
Match.Found := -1
MINIM UM .COST.SO.FAR = VERY.EXPENSIVE
PAR i = 0 FOR (Every.Token.in.Search.Region)

SEQ
IF

(MAHALANOBIS(arme[*], Tex, x mJ, U Jx) < M T) AND
(M AHALANOBIS(yme[i], Tey, y m f , U Jv) < M T) AND
(M AHALANOBIS(0e[*], Lee, 0f , n/tf) < M T) AND
(M AHALAN OB IS(/e[*], T e/, / , , n /() < M T)

SEQ
PAR

cost[i][0] := MAHALANOBIS(xme[j], T ea;, x mJ, I l /x)
cost[ij[1 j := MAHALANOBIS(yme[i], T ey, y m f , n/y)
cost[i][2] := MAHALANOBIS(0e[*], L e0, 6f , U f e)
cost [¡j [3] := MAHALANOBIS(/e[i], Te/, / / , n / ;)

Total.Cost[i] := cost[i][0] +
cost[i][l] + cost[i][2]i + cost[i][3]

TRUE
SKIP

SEQ i = 0 FOR (Every.Token.in.Search.Region)
IF

Total.Cost[i] < MINIMUM.COST.SO.FAR
SEQ

Match.Found := i
M INIM UM .COST.SO.FAR := Total.Cost[i]

TRUE
SKIP

Figure 5.10: Pseudo-OCCAM code outlining a more efficient,
but still ideal, implementation of the token matching process
using the Mahalanobis distance function (not shown).

130

5.7. TOWARDS STRUCTURE FROM MOTION

distance for each observed token parameter in the projected search area,

dx2 (x m) —

0’x2(Vm) =

¿ A ») =

M O =

X r X,i/) 2
Pn T 2

(t f m e - V m f Y

Pu + ►d
'h

(6e - O f) 2

P _L 2<t2
• T i l + ~
(le~ b) 2

Pn + 2a2

given that the covariance matrix for feature vector [xm,ym,6 , l] is,

(5.32)

(5.33)

(5.34)

(5.35)

A\pCrnyVni

^ 0 0 0 \
o £ o o
0 0 ^ 0

 ̂ 0 0 0 2a2 J
(5.36)

and Pn is obtained from P in Equation 5.30. These distances, bounded
by the threshold, define the search area (although in practice, only those
associated with the mid-point are chosen in this implementation using
a large uncertainty).

This section concludes the final topic related to the token matching
algorithm. The full algorithm will be summarised in Section 5.8 af-
ter some words about the general use of token tracking in 3D motion
analysis.

5.7 Towards Structure from Motion

Analysis of corresponding image features have led to a considerable and
varied amount of research on structure from motion [Ros83, Low87,
HP87, SH88, AN88, THKS88, SBC+89, HS90, WH90]. 3D percep-
tion is a prerequisite for autonomous vehicle navigation. Road follow-
ing systems based on 2D image-plane techniques have been success-
ful [THKS88], but in less constrained and structured environments,
tasks of greater complexity, such as obstacle avoidance, are necessary
and require a 3D approach.

Many techniques for understanding 3D scene geometry have been ap-
plied in the past. The trade-offs have been complexity of implemen-
tation and detail of scene representation. With respect to the latter,

131

CHAPTER 5. DYNAMIC SCENE ANALYSIS

token tracking provides a robust and compact technique which accrues
easy-to-update information as further knowledge is extracted from sub-
sequent images. This section is intended to highlight the uses of token
tracking in its own aftermath. The discussion will be brief since the
nature of this topic is beyond the scope of this thesis.

When a camera is moving relative to a three-dimensional scene, a shift
of position and velocity can be associated, in each frame sequence,
to each token using the information provided from the token tracking
stage. Knowing the physical nature of these tokens, allows the determi-
nation of their distance from the camera. By forming structures from
these tokens, a higher level of understanding about the scene is attained
which can subsequently be employed to aid the navigation of a vehicle
about the scene.

Let it be assumed then, that matching has been performed and corre-
spondences are available for images obtained either from a stereo pair
of cameras or through successive frames in a sequence. The initial ob-
jective in 3D scene interpretation is then to obtain a depth map of the
scene. Human perception of depth is remarkably efficient without the
need for high-level information, e.g. depth data can be derived from
random dot stereograms [U1181]. In computer vision, depth may be
recovered by examining the relative disparity of corresponding features
(i.e. tokens in this particular case), which arises due to the shift be-
tween the viewer and the feature being viewed. This is best illustrated
by holding a finger a short distance in front of one’s face and observing
the shift when the finger is viewed by each eye alternately. The fur-
ther away the finger is held, the less the shift in position. Therefore,
to achieve the same perception in computer vision, stereo images, or
images obtained from camera motion, can be analysed to determine
depth and structure from motion, given that the motion of the sensor
is approximately known.

Camera ego-motion is the major cue in 3D scene interpretation for mo-
tion of an AGV and has been determined in various ways by deriving
information from corresponding tokens in serial images. An example of
such an approach is the work on the DROID project at Plessey Roke
Manor Research. Matched point information from a sequence of im-
ages has been manipulated by Harris and Pike [HP87] to estimate the
motion of a camera moving through a static environment. A boot-
strap process determines a 3D instantiation of a scene using the first
two frames of the sequence to estimate the depth of these points. In
the run mode, point features are matched using image-plane proxim-
ity and attribute similarity, followed by an estimation of the relative

132

5.7. TOWARDS STRUCTURE FROM MOTION

camera motion using these matches. The motion is represented by a
6-dimensional quantity, describing both vector translations and rota-
tions of the camera. Kalman filtering procedures are then applied to
the camera ego-motion estimates, to project the next search region in
which candidate points for matching must lie. The points are then
matched using an alternative implementation of the Mahalanobis dis-
tance concept. This work is later followed by Stephens et. al. [SBC+89]
who used both stereo and motion to determine both feature position
and camera ego-motion. They describe a prototype 3D vision system in
which surfaces are constructed from the 3D representation of matched
feature points and are used to segment the scene into navigable and
non-navigable regions. The basis of surface extraction is in applying
triangulation techniques to Kalman filter tracked corner points [HS88].

Two other recent techniques applied to 3D scene understanding are
now briefly reviewed.

Walker and Herman [WH90] use geometric reasoning as a cross-over
step, from formulating 3D structures to maintaining a 3D model, via
model matching and object completion. Geometric reasoning is used
to determine the type, position, and orientation of structures neces-
sary to complete an object, and to hypothesise additional structures
about known objects in the real world. For example, in the domain of
airplanes, they all must have two symmetric wings. In effect, this ap-
proach divides the latter stage of processing of the vision system shown
in Figure 1.1 into that shown in Figure 5.11.

Initially, the 3D structures (which in turn correspond to 2D features,
such as corners and edges, obtained from stereo or camera motion) are
developed as sparse 3D wireframe descriptions of the scene. The scene
model is represented as a graph of planar surfaces, edges, and their
topology and geometry. With each new wireframe developed from the
next processed image, the resulting wireframes are matched with the
current scene model, and the model is updated as necessary. Geometric
reasoning is then used to exploit strong constraints within the domain
of knowledge applicable to the 3D objects under study and derive infor-
mation from 3D structures to complete the scene model. The authors
apply this system to an original model designed to describe partially
complete polyhedral objects, with a number of constraints. They use
it in recovering 3D models of urban buildings with the constraint that
all surfaces and edges are limited to be either horizontal or vertical.
They then apply geometric reasoning to complete faces since buildings
often have parallelogram faces, and as they do not normally float in
mid-air, supporting edges can be hypothesised for floating faces. The

133

CHAPTER 5. DYNAMIC SCENE ANALYSIS

Figure 5.11: Stages in 3D scene understanding

authors also suggest the use of complete CAD models in an attempt
to deal with ambiguities propagated from earlier stages. This idea has
also been suggested by Ellis et. al. [EWM87].

Finally, an alternative approach to 3D scene interpretation will be con-
sidered that accomplishes recognition of a 3D object without resource
to depth information. Lowe [Low87] presented a three-stage method to
recognise objects from 2D images which makes use of prior knowledge
of objects:

• Perceptual Organisation This groups straight line segments in
the image, on the basis of proximity, parallelism, and collinearity.
The intention is to achieve a grouping of features that tend to be
invariant over a wide range of viewpoints.

• Search Space Reduction This locates and groups structures to
reduce the number of primitives that will need to be matched at
the next stage. To quote:

For example, trapezoid shapes are detected by examining
each pair of parallel segments for proximity relations to
other segments which have both endpoints in close prox-
imity to the endpoints of the two parallel segments.

134

5.8. SUMMARY

• Model Matching This process consists of an optimal and rank-
ing procedure for selective matching of the perceptual groupings
against the structures of the object model which are likely to give
rise to that form of grouping. The author’s approach included
view-point solving and verification for a more accurate interpre-
tation of model matches.

The role of token tracking is clear as a necessary pre-processing stage
in all the above examples. The examples were specifically on the actual
interpretation of corresponding tokens in a 3D scene, but using differ-
ent approaches in accomplishing similar stages in the complete process
cycle, from tokens through scene structure description to scene model
matching.

In the next section, a summary of the points raised in this chapter will
be provided.

5.8 Summary

In this chapter, a mixed combination of related work was presented:

• a review of some general approaches for tackling the early stages
of motion understanding and scene analysis,

• a section by section breakdown of the motion tracking algorithm
to be employed later in the next chapter.

After a brief introduction to dynamic scene analysis, two major ap-
proaches in the subject were outlined: intensity-based schemes and
token-based schemes. Following a general review of the former, the
latter topic was further presented in detail. This included a study of
the state of research in token-based algorithms, and the presentation of
the scene flow model as a robust technique for measuring image plane
motion via token tracking. The scene flow model has been adopted in
this research work for use in tracking edge tokens in particular. The
flow model may be used for providing token correspondences, token ve-
locity information, and it can aid in the recovery of depth. All of these
can contribute to the composition of a 3D model of a scene. Next, ge-
ometric representation of edges as line segments were compared, with
the [xm, ym, 0, /] representation selected as the more appropriate. Then,
Kalman filtering techniques applied to motion equations were derived
to aid general token-based tracking, by applying the filter to each rep-
resentative feature of the causative token. This was followed by an

135

CHAPTER 5. DYNAMIC SCENE ANALYSIS

examination of the Mahalanobis distance for the matching of observed
tokens to that of the flow model. Finally, a review of some possible
approaches for employing tracked and identified tokens in 3D motion
analysis were discussed.

A sequential, step by step breakdown of the overall token tracking
algorithm programmed for this work is now presented. To start with,
when the bootstrap stage is initiated, no knowledge of the motion of
the line segments in the model is available. Therefore, the following
steps are necessary for the bootstrap mode.

• The Bootstrap Mode

1. Capture the first image frame.

2. Perform feature extraction.
3. Construct list of tokens.

4. Assume zero velocity and acceleration for tokens and ini-
tialise associated uncertainties with large values to indicate
a low confidence in the assumption.

5. Assign tokens to the flow model and initialise estimated val-
ues of each token parameter with observed measurements.

The system is now prepared for the run mode which will follow imme-
diately after the bootstrap process, and continue repeatedly for each
new image frame.

• The Run Mode

1. Use the flow model to predict the position of each token
parameter in the next image frame.

2. Use estimated values and their uncertainty to determine the
search area for each token in the next image frame.

3. Capture the next image frame.

4. Perform feature extraction.

5. Construct list of newly observed tokens.

6. Use the Mahalanobis distance to match each flow model to-
ken to those observed tokens found in the search area.

7. Update the flow model accordingly depending on the out-
come of the matches.

8. Continue from Step 1

136

5.8. SUMMARY

This algorithm is inherently generalised and can be applied to any
representation of tokens, be they corners, edges or vertices, and in a
high level sense, it can be mapped to those algorithms employed, for
example, in [HP87, CSD88, SH88, DF90, WH90] which track tokens in
2D images. Therefore, Figure 5.5 really represents a symbolic flowchart
of the overall algorithm.

In the next chapter, a parallel computational model for generalised
token-based algorithms will be presented followed by an implementation
of the algorithm presented above using the computational model as the
guide. By selecting a general tracking algorithm such as that above, the
algorithm-independence of the parallel model approach is hoped to be
emphasised in the next chapter. This will be demonstrated to a certain
extent, by implementing step 1 of the algorithm (in run mode) using
two algorithmically disparate approaches to Kalman filtering, which
is construed as the heart of the algorithm. In fact, this section of the
overall algorithm will be dedicated to a whole separate parallel network
of processors as a separate unit, thus also displaying the independence
and flexibility of the implementation.

137

CHAPTER 5. DYNAMIC SCENE ANALYSIS

138

Chapter 6

A Parallel Approach to
Token Tracking

6.1 Introduction

In Section 2.1, by way of Figure 2.1, a general classification of vision
algorithms for parallel architectures was presented.

The most natural approach to exploiting parallelism in motion can
be determined by regarding the steps outlined in Figure 1.1. At the
highest level these display an inherent pipeline effect. Pipelining, as a
temporal approach to parallelism, would allow the division of the steps,
in between image capture to 3D scene understanding, into independent
units executing as black boxes in parallel, each supplying its outside
world with its results. Further parallelism may then be investigated by
delving into the domain of each of the black boxes.

By momentarily casting the reader’s mind back to Section 5.7, it can
be stated that whichever approach to 3D scene interpretation is to be
employed, the provision of features extracted from 2D visual input is an
unavoidable and universal necessity. Therefore, a major contribution
of the work presented in this chapter, is the provision of a continuously
updated scene flow model as part of the front end processing to an
AGV vision system. To achieve this, the first two black boxes of Fig-
ure 1.1 will be considered in some detail, with major concentration on
the second stage, i.e. the establishment of token correspondence. The
unique aspect of this work in comparison to other related work is the
parallel computational model designed as an approach to efficient im-
plementation of the scene flow model on parallel processing hardware.
Also, the implementation itself is maintained as a general algorithm, so

139

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

that it may be adapted easily if changing conditions and requirements
so dictate. Moreover, the approach proposed in this chapter, decouples
the stages involved in the tracking of tokens into independent units,
providing a chance for absolute optimisation of each unit. Thus, the
system as a whole may be fine-tuned for a better performance. These
points will be elaborated on later in this chapter.

With respect to algorithmic and geometric parallelism, a hybrid of these
two parallel programming models will provide for a suitable implemen-
tation of the token tracking algorithm. This issue will be discussed in
Section 6.5.4, where it will be shown that in using a hybrid approach,
system performance can deteriorate due to certain characteristics of the
transputer.

The work in this chapter is divided as follows. Initially, a review of
work in motion is presented where parallel processing has played an
active role. In Section 6.3, an initial investigation into motion analysis
is outlined using differencing and chain-coding techniques to aid the
tracking of objects in a simple scene. Next, in Section 6.4, a skeleton
parallel computation model for tracking tokens is proposed. The model
will be independent of the tracking algorithm and the host architecture.
In the subsequent section, the model will be used efficaciously to realise
a transputer-based MIMD implementation of the tracking algorithm as
described in the previous chapter. This section will encompass many
features, such as a performance evaluation of the Canny edge operator.
In Section 6.6 results of the implementation are produced, and general
summary and conclusions are presented in the final section.

6.2 Use of Parallelism in Motion

In this section, a brief review of the use of parallelism in dynamic
scene analysis will be presented, with special leaning towards the use of
transputers as the principal parallel architecture. The discussion will
also concentrate on the fundamental issue of achieving correspondence,
since that topic is the basis of this work.

Until recently, the concentration of research in motion has been on the
improvement and accuracy of motion algorithms only, a few examples
are [ADM81, HJ83, SJ87, HP87, THKS88, SBC+89]. When the need
for efficiency has arisen, many have resorted to implementing their al-
gorithm in hardware [CSD88, SBC+89, DF90]. Thus, the use of parallel
processing has been largely neglected, probably due to the lack of avail-
ability or access to parallel architectures. The arrival of the transputer

140

6.2. USE OF PARALLELISM IN MOTION

as a cheap, available source of parallel computing is about to change
this, and some recent work which has been trickling through will be
reviewed a little later.

6.2.1 Some Notions

The pipeline approach discussed earlier, is a logical structure for per-
ception, and has been employed by most of those who have attempted
to view the motion problem from a parallel perspective, (regardless of
the relation in their approach to human perception). Pipelining will be
at least inherent in all the works reviewed here.

Ullman [U1179] addresses three assumptions in considering the compu-
tational feasibility of correspondence: Parallelism, Locality, and Sim-
plicity. Parallelism is deemed necessary since there are a large number
of elements, and Ullman states that the pairing of corresponding el-
ements can be accomplished, ” to a large extent”, in parallel. In this
thesis, it will be shown that due to the independence of the tokens, and
by way of the parallel computation model and the consequent imple-
mentation, correspondence of the flow model tokens can take place in
full parallelism. Locality, states that there are only local connections
between processors. By this, Ullman has in mind the issue of sharing
and exchanging of correspondence information. This issue will be dis-
cussed and respected by the model but regarded in implementation as
an unnecessary step in a parallel approach to determining correspon-
dence between independent tokens, i.e. local communications will not
be necessary. Simplicity states that the individual processors are rather
simple computing devices. This classification is more befitting of ma-
chines such as the CLIP4 [FMM88] and the AMT DAP [HJ88] (see
also Section 2.3.7) and is certainly not applicable to transputers. But
a number of simple processors could be simulated in software on trans-
puters to achieve the same effect if necessary. In fact, in some areas
of research into neural networks, exactly such a notion has been con-
sidered [OHRS90]. Ullman continues by defining a simple network to
perform a minimum-cost mapping function to perform correspondence.
This in principle is the root of the approach described in Section 5.6,
when using the Mahalanobis distance for determining the closest match.

Martin and Aggarwal [MA78] have suggested three phases of motion
perception as existing in parallel in the human visual system. (The
reader is reminded to notice the inherent pipelining principle). •

• Peripheral processes that scan the field of view and detect fea-
tures within the field such as colour, shape, texture, but in this

141

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

case mainly motion,

• A ttentive processes which focus their attention on interesting
areas of the field of view, and must be able to track the movement
and understand the associated details of the object in motion,

• C ognitive processes that perform higher-level abstractions by
relating observations from the preceding two phases to knowledge
about the real world.

Thus, while peripheral processes extract image features, attentive pro-
cesses could be expected to perform token correspondence, and cog-
nitive processes could be active in the interpretation of motion. Ull-
man [U1181] has suggested that a combination of intensity-based schemes
for peripheral processes, and token-based schemes for attentive pro-
cesses, could be engaged as the feeding processes to cognitive activities.

6.2.2 Some Examples

Tan and Martin [TM86] have applied peripheral and attentive pro-
cessing to the problem of rigid object tracking, and have implemented
their approach using the simulated MIMD parallel environment called
PISCES [Pra85](please also see Section 2.3.4).

Figure 6.1: E xam ple o f a m ulti-resolution pyram id im age rep-
resentation

They create a set of parallel, peripheral processes to extract promising
areas representing possible motion. These areas are subsequently di-

142

6.2. USE OF PARALLELISM IN MOTION

rected to other processes for attentive processing. The system is made
up of a pipelined image pyramid structure1 (Figure 6.1), with peripheral
processes active at the coarsest level, and attentive processes cooper-
ating at the finer resolution levels. Attentive processes move to a finer
resolution level on successful matching. Loss of objects forces the pro-
cesses to coarser resolution levels. Each level of the pyramid maintains
the image in a different time frame from that of its neighbour level,
with the finest level holding the most recent, as shown in Table 6.1.

Tracking is achieved by using trajectory of motion to project a search
window in the next level of the pyramid, to be attended to by the
associated process.

Level Resolution Time
0 64x64 t - 3
1 128x128 t - 2
2 256x256 t - 1
3 512x512 t

Table 6.1: A four-level, temporal, pipelined pyramid, with t
as the present time

Their implementation, running on a VAX 11/780 under UNIX 4.2, uses
many novel ideas, such as bounded windows on the image for more re-
strictive searches, and a central information exchange repository called
the scene description model (sdm) through which agent processes can
communicate. Unfortunately, the implementation suffers from a lack
of generality, in which only rigid objects, described by their area, and
major and minor axes, can be tracked, with the simulation performed
on paper cut-outs. For example, their object detection approach would
be inadequate for a real scene. Occlusion becomes a specifically acute
problem since much of the scene information is lost at the coarsest
resolution level. Another cause for the deterioration in performance is
the idea of the four-level, temporal pyramid, and its asynchronous na-
ture with respect to the agent processes. (Note, the following comments
would apply even more acutely for a more realistic scene.) The pyramid
is continuously updated as new frames arrive, while attentive processes
traverse down the pyramid. This flow-through of images in the pyra-
mid structure means that an agent process would not necessarily have

1An image pyramid structure may be constructed by partitioning the image into
2x2 pixel sets, and using the average value of each set to form the image layer of
the level above. Please also see Equation 6.11.

143

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

access to consecutive images as it progresses to a finer resolution level.
Moreover, images flow through regardless of the processing speed of the
agents. Thus, due to computational delays, agents can miss frames and
lose track, and objects may be picked up by new agents thus causing
duplication, all leading to further inefficiency in performance. However,
as a basis for the consideration of the problems involved in motion from
a parallel perspective, Tan and Martin’s work provides an important
analysis and implementation.

For a more recent point of view, two major transputer-based systems
will now be discussed which have a direct bearing to AG Vs. These
two are part of four systems whose associated research activities are
being pooled together within one consortium known as the VOILA
project [Bux91]. The intention of the VOILA project is to develop sev-
eral dynamic vision systems for the control of robot vehicles operating
in different environments such as, indoors in industrial and commercial
areas, or outdoors in stockyards and car parks etc. Thus the software
and hardware knowledge of some eight separate European institutions
are being integrated to produce efficient platforms for diverse applica-
tions. All the information regarding the systems about to be noted are
cited from [Bux91], a report which only became available at the time
of writing this thesis, thus much of the information is entirely new.

The DROID project has already been mentioned and some related work
has been covered [HP87, HS88, SH88, SBC+89] in the previous chap-
ter. In summary, it consists of a corner detection scheme for token
matching, followed by 3D estimation and analysis. Although [SBC+89]
reports a hardwired schematic of the corner detector [HS88], a new
transputer based implementation is reported in [Bux91]. This shows
an approach similar to that presented later on in this chapter, where
a dedicated network of transputers is proposed and assigned to the
process of feature extraction as the first step in the process of token
correspondence. The corner detection is performed on transputers, ar-
ranged in multiple one dimensional arrays and employing a farming
approach. The collection of a SUN4 host, the network controller and
slave processors is known as PARADOX. A Datacube MaxScan frame-
grabber board is accessed in PARADOX by a special interface board
with an on-board transputer. The interface board allows image data
to be passed at video rate to an array of 32 transputers on a Transtech
MCP 1000 card. Images are partitioned into 4x7 segments (no explana-
tions are provided for this) and transmitted in parallel to the multiple
farm networks. Following the corner detection, the data is passed to
the Sun4 host workstation which as well as acting as the overall con-
troller, carries out the correspondence and 3D computations required

144

6.2. USE OF PARALLELISM IN MOTION

by the DROID system. On a serial machine, the corner detector is said
to account for 90% of the entire computation of DROID’s 3D scene in-
terpretation capabilities. PARADOX performs its full analysis in 0.87
seconds per 256x256 frame with comparable performance between the
separate stages assigned to the transputer network and the SUN4. The
VOILA report suggest many improvements as currently under consid-
eration for DROID, such as more accurate ego-motion measurement,
and a transputer implementation of the correspondence and the 3D
scene analysis stages.

The second system is a combination of the TINA vision software and
MARVIN multi-transputer architecture. Although these two systems
are fairly well-known in the vision community, their development into
3D motion analysis is quite recent and new features have been revealed
in some detail only in the VOILA report. For example, Rygol et.
al. [RPBK90] discuss the recovery of 3D scene geometry and control of a
robot arm for picking up (stationary) parts, but conclude only with an
announcement of their intention to implement a feature tracker. Hence,
as with DROID, it is interesting to note for now the authors’ approach
to the problem of correspondence in particular.

The GEC HRC MARVIN (as defined in [Bux91]) consists of special pur-
pose TM AX cards each containing 1 Mbyte of dual-ported video RAM,
and a T800 transputer that provide a wide bandwidth, multinode in-
terface between data on a Datacube frame-grabber, industry standard
MAXbus, video-bus and a transputer array. Initially, it is reported that
full-frame 3D stereo analysis, including Canny edge detection, stereo fu-
sion, line fitting, object recognition and location is performed in 12-15
seconds on the 18 transputer MARVIN system. This is declared as an
order of magnitude too slow for a machine to maintain an on-going
description of its environment. Next, in order to exploit an alternative
avenue, the VOILA report presents an example of tracking a known
object on MARVIN by tracking the parallel lines of the object, fol-
lowed by the use of the successfully tracked segments in the estimation
of the position and orientation of the object as a whole. Their ap-
proach is based on the exploitation of the spatio-temporal coherence
of the world. The full-stereo system described above is initially used
to recognise and locate the object, and to boot a run-mode in which
the predicted position of an object is used to reduce the computation
load. This predictive feed-forward algorithm is capable of returning
the 3D position and orientation of the moving object in 300ms. The
interesting factor is the combination of the edge extraction and tracking
procedures implemented on MARVIN using the processor farm model.
The farm controller is known as a virtual tracker, and the nodes as

145

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

feature trackers. Each feature tracker, which is resident on one TMAX
card to ensure the most rapid access to the stereo data, performs ID
edge detection in the vicinity of the predicted position of the line seg-
ment to find the new actual position of the object’s edge feature. New
line segment descriptions of the edge are then computed for both stereo
images2 and projected out into 3D. The master virtual tracker conducts
the distribution and collection of features and results respectively. Fol-
lowing the return of all the features, the latest position of a moving
object is calculated.

The above description is of a prototype which seems to perform well
for a known object in a well-contrasting scene, and where not all the
segments need to be tracked successfully to determine the position and
orientation of the object. Similar constraints applicable to object track-
ing systems in general are prevalent here too, e.g. severe occlusion. The
combined edge extraction and tracking procedure is a fair approach
which compared to a separately staged setup, reduces data communi-
cation rates (at the cost of design modularity). Moreover, this combi-
nation is a more practical proposition for their application, since the
predicted search area where the image should be edge filtered is more
accurately determined through the familiarity with the object geome-
try, e.g. the knowledge of the length of the expected edge segment.

This prototype MARVIN system is involved in a project with many
software and hardware facets and with a strong manpower base, and
it is expected that future research will lead to a system more read-
ily applicable to general scenes as defined by the aims of the VOILA
project. The examples will now continue with two more capsular de-
scriptions of transputer-based motion detection systems using inten-
sity-based schemes.

Stephen et. al. [STD90] have used a simple transputer set-up to de-
termine the displacement of Civil Engineering structures, such as the
behaviour of the Humber bridge at the centre of its span, using a cor-
relation/template matching technique, applied to a single target object
only. The tracking and predicting procedures are as follows. A 12x12
pixel template of a user selected feature is searched for in subsequent
images. The matching is determined by evaluating a least square error
similarity measure over a 32x32 search window. The prediction algo-
rithm also uses a least mean square parabolic approximation applied to
the object’s motion trajectory. This is not as optimum a technique for

2This author believes that by using calibration information from the geometry of
the stereo cameras, the matching of the edge segments in the stereo pair of images
is carried out through a one-dimensional search along the connecting epipolar line.

146

6.2. USE OF PARALLELISM IN MOTION

linear prediction as Kalman filtering, but results in a simple equation
for fast computation and still provides some measure of immunity to
noise. The implementation consists of a single processor which tracks,
and a pipeline which is used to execute the prediction process, in stages,
on its three nodes. A real time response is achieved due to the small
size of the images dealt with, and the application to a single target
object.

Bernat and Rupel [BR90] have presented a cellular, transputer-based
system to detect and track human motion across the border between
the United States and Mexico. The tracking and prediction technique
is based on the differencing technique, with median filtering applied to
reduce the effects of camera noise or wind shake. The image is divided
into geopixels (a rectangle of contiguous pixels in the image), each of
which is associated with a cell which determines the cause of motion
in the geopixel. The cells base their decision by consulting with neigh-
bouring cells. Various thresholds are used to distinguish between noise
and real motion, and motion is tracked by noting movement from ” cell
to cell” . The parallel implementation treats cells as processes on a
single transputer which communicate over soft (internal) channels, and
the geopixels are treated as data packets farmed out to slave processors.
The authors itemise a number of shortcomings of which two of the most
interesting will be cited here, selecting one from a motion point of view,
and one from a parallel implementation point of view. Each cell bases
its decision on the existence of motion, using a pre-defined equation re-
lating the input from the change detectors between two frames, and the
cell’s decision from the previous frame. Accordingly, decisions undergo
a relaxation during communication, and if they are not continually
supported by additional cells detecting a change, then prediction con-
tinuity will suffer. The implementation is of the one-dimensional case
for the pre-defined equation. Objects in real-life do not move in one
dimension, and to implement motion in two dimensions, the cells need
to communicate with their diagonal neighbours too. Hence, the authors
state their preference for increased number of links on the transputer.
The solution necessitates multiplexing and re-routing.

Note that the last two items of motion work on transputers have been
based on intensity-based schemes, and have been successful due to the
nature of the applications. Intensity-based schemes can also find an
inherently suitable platform in neural networks. However, this author
has found no particular references to support this idea.

Other transputer-based motion applications of note are [AD90] and
[TLM+90], both of which provide little discussion on the actual trans-

147

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

puter implementation. (The motion algorithm used in [TLM+90] has
been cited in Section 5.3).

6.3 The Initial Investigation

The aim of this section is to outline some initial work on object tracking
carried out in the attempt,

• to have a more thorough understanding of intensity-based motion
techniques by regarding one in detail,

• to understand the basic, but fundamental, issues in dealing with
full, rigid objects in a sequence of images, and as a consequence,
use the knowledge for a better approach towards tackling object
primitives, namely tokens,

• to help lay out the basic requirements for the parallel computation
model, particularly with regard to process communication and
synchronisation,

• to design a modular software structure that will be capable of em-
bracing various tracking algorithms, intensity-based or otherwise,
with little change, and still based on the parallel model.

Stated in order of importance within the context of this section, the lat-
ter two were by far the most important issues. Hence, by attempting the
implementation described here, which will be regarded compendiously,
much work in the later application of the token tracking algorithm
was saved. This work on object tracking was based on differencing
and chain-coding techniques (please see Sections 5.2.1 and 2.2.3, re-
spectively). Yet, only the motion issues will be concentrated on at this
stage, saving the parallel processing issues for the later sections to come.
The aim is therefore to merely share some notions that were either ap-
plicable or inappropriate for use in the approach to token tracking. It
will however be said that the system was fronted by TIPS, expanded
to run on both a PC-Host B004 board, and a Harlequin frame-grabber
board with a T800, 20MHz processor and 1Mbyte memory on board.
The network was arranged as a tree network. All these issues and more,
such as the system communications, process load balancing etc., will be
discussed in detail for the token tracking application, since the underly-
ing system architecture is applicable to both object and token tracking
techniques.

148

6.3. THE INITIAL INVESTIGATION

The technique used here is similar to the accumulative differencing tech-
nique, which allows the analysis of frames F i,...,F n against the refer-
ence frame F\ in the sequence [Jai81]. This allows a partial history of
the movement of an object in the scene to be observed. From the out-
set, it was decided that as a first step towards parallelism, each object
must be assigned to a separate, monitoring process. To keep matters
simple, the idea of smoothness o f motion and path coherence [SJ87] for
a rigid object will be assumed. With these points in mind, the imple-
mentation will now be described through the consideration of its main
stages: bootstrap and run.

6.3.1 Bootstrap Stage: Continuous Object De-
tector

The bootstrap process should have more appropriately been named the
continuously-executing object detector process. This process remains
active throughout the run of the system. Initially, by user interaction,
it saves an image of the scene which becomes the reference image. Then,
through its direct access to the Harlequin frame buffer, it samples and
accepts images each time it has finished processing the previous image.
This processing of the image incorporates the following steps,

1. Capture the next frame.

2. Perform differencing, against the reference image, on a ” hot space”
border area around the image. Keep an account of the number
of pixels that satisfy the threshold A, in C P (Changed Pixels),

1
C P t = C P t +

0

if |P(x,j/,0)

otherwise

- F (x , y , t)| > A

for t = 1,2,...
(6 . 1)

where A was taken as 25, to represent (approximately) a 10%
change in the state of a pixel from the possible range of values
associated with a pixel, which is [0, ...,255]. The ” hot space” area
is shown in Figure 6.2.

3. If the total count exceeded a predetermined threshold, in this case
10, then the hot space area is searched by a chain-coding process,
which produces an object list of all the objects in the area (The
objects must have at least their starting pixel co-ordinates in the

149

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

Figure 6.2: ’’ Hot Space” area of image and some spatially
classified objects

’’ hot space” area, therefore both objects A and B in Figure 6.2 are
detected). To avoid confusion, objects that are found to be still
in the course of entering the image are struck off the object list,
since their description will be incomplete, for example object C
in Figure 6.2. It is assumed that the object will be captured in a
future frame. Should the object never enter the image completely,
no unnecessary action will have been undertaken.

4. Send the list of objects found to the network controller, and con-
tinue processing from Step 1 again. The list contains information
describing the chain-code, the area, and the centre point for each
object. Addition of further characteristics would be a simple pro-
cess of adding to the data structure describing each object.

Thus, the bootstrapping process attempts to minimise its amount of
computation by only searching a limited area in the image (if it was
to process the full image, a heavy processing bottleneck would have

150

6.3. THE INITIAL INVESTIGATION

built up at this early stage). Furthermore, the bootstrapping process’s
function remains independent of the subsequent tracking stage. Also,
note that the direction of motion for objects A, B and C is irrelevant to
the detection process. The objects are dutifully detected and reported,
but it remains the task of the tracking controller process to establish if
an object, such as object C, is just entering or just leaving the scene.

Note, other processes run concurrently with the detector process to
handle the data exchange between it and the tracking controller process.

6.3.2 Run Stage: Continuous Object Tracker

The run stage consists of a controller process to manage and organise
the tracking and a number of tracker processes to carry out the actual
task.

Controller Process

Whenever the detection process communicates with the controller pro-
cess, it passes the object list and the full associated image. The con-
troller itself consists of a number of parallel processes which are sim-
plified and itemised below.

• Buffer processes which queue incoming lists and images.

• A process which accepts an object list for the latest frame plus its
corresponding image. It scans the list and matches the attributes
of the objects within, to those currently being tracked. If no
match is found, the object is issued as new to a waiting process.
(Matching is a straight comparison of the object attributes all of
which must satisfy corresponding thresholds).

• Buffer processes which queue incoming processor requests.

• A process which accepts requests from the tracking processes for
sub-images which are expected to contain the next instant of an
object.

• Buffer processes which output results to the outside world, i.e.
TIPS.

Each tracker process executes the following (compacted) algorithm as
enumerated below, given the object state vector Sj at time tj in frame

151

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

f to be Sf = [Sxf ,Syf,Se /], describing the object’s current position
co-ordinates and direction of travel. M IS S IN G is a variable used for
occlusion analysis.

1. Accept assignment for tracking a new object, and receive object
attributes. Thus at frame / = 0, time is to, state vector is 5o,
and M IS S IN G = 0.

2. Request a sub-image of the next frame, where the size of the
sub-image is determined using a large uncertainty.

3. Receive new sub-image (/ = / - { - 1). Perform chain-coding and
form list of objects found in sub-image. Match each object to
that under investigation. If successful, update state vector with
observed measurements, set M IS S IN G = 0 and continue, oth-
erwise carry on from Step 8.

4. Using the previous and new position attributes, estimate the ve-
locity Vf, and predicted displacement Dj+\, and thus predict the
state vector S/+\ of the object in frame / + 1,

v _ y / (S * f ~ S * f - 1) 2 + (S y f ~ S v f - 1) 2

5 t f ~ i f -1

D j+1 — Vf * (t j+1 — tj)

o j ____— l / * ^ y / ~ S y f - i \Sej = tan (- ------- ------)
x f d xf — 1

giving new position co-ordinates for Sj+\ of,

Sxf+i = Sxf + Df+i * COS(Sej)

Syf+i = Syf + D f+1 * SIN(Sef)

5. Use the new position to determine the next search area. This is
centred on the position with a radius determined from the maxi-
mum and minimum pixel position co-ordinates of the object, ob-
tained when chain-coding the object. If the sub-image lies fully
within image limits, then continue from Step 6 (This would be
applicable to object D in Figure 6.2). If the sub-image is found
to lie partly outside the viewing limits of the camera, but only
by a margin less than a pre-determined tolerance, then continue
from Step 7, otherwise give up and continue from Step 1.

6. Send request for search area sub-image to controller and continue
from Step 3.

(6 .2)

(6.3)

(6.4)

(6.5)

(6 .6)

152

6.3. THE INITIAL INVESTIGATION

7. Send signal to report that object is leaving the field of view, fol-
lowed by an adjusted search window. Continue from Step 3.

8. Let M IS S IN G = M IS S IN G + 1. If M IS S IN G (occluded) is
less than a pre-determined tolerance, then use previous associated
kinematics to estimate new search area and continue from Step 3,
otherwise report to controller that the object has been lost and
continue from Step 1.

The uncertainty measure is achieved by over-estimating the size of the
search area, and thus some protection against variance in actual motion
is achieved.

6.3.3 Some Remarks on the Investigation

This implementation was tested on uncluttered, simple scenes. Plate 6.1
shows four (numbered) frames from a motion sequence of a single toy
object representing the object’s history as it moves from scene-left to
scene-top-right. The rectangular areas denote the search area predicted
by the tracking algorithm. Notice how the very initial appearance, i.e.
in spatial position, of the object resembles that of object C in Fig-
ure 6.2. The object’s next two full appearances in the image is then
used to make the first prediction for the third occurrence. (This has
not been reflected in the algorithm described above for simplicity).

Similarly, Plate 6.2 shows the progress of two objects. One object is
travelling from left to right and the other is travelling in the opposite
direction. The objects are travelling at a slower speed than that in
Plate 6.1, thus a continuous deposit is left in the image.

Occlusion is tested and shown in Plate 6.3, where the area between
the dotted lines is an object which has disappeared through image
differencing, since it remained stationary. The moving object is lost
after frame 32 and regained at frame 38. A new prediction for frame
39 is shown, followed by the new position in frame 40, which due to
the slow motion of the object is still within the search area of frame 39.
When occlusion occurs, the tracking process requests the full image
in its attempt to relocate the object, thus drastically increasing its
computational load.

Objects, regarded as homogeneous regions in the image, are putative
tokens. The main advantage of this investigation has been the pro-
vision of a springboard for designing an efficient parallel model and
distributed processing environment for inter-frame correspondence of

153

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

tokens. The implementation is employing a combined intensity-based
and token-based approach to detect objects and to establish token cor-
respondence, even though the matching is a simple process of object
attribute comparison. The ’’hot space” detection mechanism works
well and reduces computation, although it may miss objects if they
travel through it fast enough. Also, it is only applicable if the scene is
known to be devoid of moving objects to start with. It’s use is there-
fore completely redundant for considering camera ego-motion, where
instantaneous image-global movement may be observed. The width of
the ’’ hot space” area could be optimised to suit a particular applica-
tion where the maximum speed of objects would be known. Examples
of application areas are security surveillance, car parking-lot and air-
craft taxiing monitoring, all of which are quite controlled environments
and can be managed with less sophisticated techniques. Flexibility for
administering a more elaborate tracking algorithm, using better ob-
ject descriptors for more precise segmentation, also exists due to the
modularity of the design. The system’s tracking capability could be
enhanced by employing a more reliable estimation technique, such as
Kalman filtering. For example, a Kalman filter would be more pre-
cise in estimating a smaller search areas for an occluded object. For
occlusion, the uncertainty associated with the estimation would grow
frame by frame while the object is missing, increasing the possibility of
a re-encounter.
Some shortcomings of this simplified approach are its pre-requisites for
the use of a static camera, and the need for almost constant illumina-
tion. More detailed analysis of object tracking issues may be found in
various published articles such as [FT79, ADM81, TB81, Nag83, TM86,
SJ87, HS90].

There are many questions that are raised by this section. How modu-
lar is the design, how are the processes distributed amongst processors,
how do they communicate with the controller, how does the system
achieve a balanced load, and how does the controller deal with incom-
ing messages? All these issues and more will be clarified through the
tackling of the problem of token tracking in the next few sections.

154

Plate 6.1: Frames 11, 18, 24 and 33 of a sequence showing the
tracking a single object

Plate 6.2: Frames 14, 30, 56 and 76 of a sequence showing the
tracking of multiple objects

154b

Plate 6.3: Frames 20, 32, 40 and 55 of a sequence showing
continued tracking despite interruption by occlusion

154c

6.4. A PARALLEL COMPUTATIONAL MODEL

6.4 A Parallel Computational Model

A skeleton, multiprocessing model is now presented for parallel com-
putation of inter-frame correspondence. The model is kept concise and
general to allow it to remain applicable to both shared-memory and
distributed processing parallel platforms. The model could have been
described more specifically to represent a "handbook” for a loosely-
coupled transputer implementation. Perhaps this may be said to have
been achieved in the next section, where the implementation specifica-
tions can be grouped together and regarded as a matured model. But
in this section, for the sake of clarity, portability, and applicability, a
non-specific, high-level approach will prevail.

6.4.1 Assumptions, Requirements and Preliminaries

The model assumes that tokens are continuously available from a se-
quence of frames through a token extraction phase. No waiting is ex-
pected in accessing a new set of tokens for the next frame. To attain a
reasonable, general-purpose viability, the following requirements should
be claimed by the model,

• as many tokens as are necessary must be tracked,

• the nature of a token (corner, edge, any connected region) must
be arbitrary, so long as it can be described as a feature vector or
matrix, i.e. as a standard data structure,

• to each token one tracking process must be assigned,

• the model is to be independent of the tracking algorithm, and
thus, the structure of the model tracking processes must remain
independent of the tracking algorithm,

• addition of further processors or processes must not necessitate
alteration of the model, or the tracking algorithm,

• in a high-level descriptive sense the model must remain indepen-
dent of any concurrent architecture,

• the model should be implementable on any concurrent architec-
ture, although one may not be as efficient as another.

(Those points in the above itemisation not previously covered, will be
referred to as the features of the model are unravelled.)

155

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

The model does not intend to exploit parallelism at the algorithm level,
since it is not expected to have any knowledge of the algorithm. The
parallelism lies in the handling of the tokens. Any process-local paral-
lelism is left as the responsibility of the tracking process to capitalise
on.

Before continuing with the model definition, the variables displayed in
Table 6.2 are defined for use throughout this section.

p total number of processes
T total number of tokens
N total number of processors
Qi total number of processes on processor i

(for i = 0 ,1,..., N — 1)

Table 6.2: Some definitions used in the model

The model defines that all tokens must be processed concurrently. This
is commensurate with the assignment of at least one process to each
token to be processed in parallel with other tokens on the selected
(parallel) architecture. There may be occasions where two or more
processes are tracking the same token due to inaccurate predictions
or noisy data. This forms a possible many-to-one mapping between
processes and tokens:

P > = T (6.7)

In the real world, there may not be as many processors available as
there are processes, or tokens, therefore the model makes provisions for
a number of processes, i.e. token trackers, to be executed in parallel on
the same processor. It can therefore be expected that,

P » N and T » N (6.8)

In the following discourse, it will be assumed that P = T for simplicity,
except when stated otherwise, and that processes and trackers are one
and the same and may be referred to interchangeably.

Given the issues discussed so far, the model assumes that a parallel
architecture involving a number of processors is available, although it
is unimportant how these processors are interconnected or even how
the processes executing on this network of processors share or have ac-
cess to information. What is important, is that they DO share and

156

6.4. A PARALLEL COMPUTATIONAL MODEL

have access to information. The necessity for a systematic control of
the tracking processes, and the coordination of the laws of informa-
tion sharing as applied to them, combine to dictate the existence of
an overseer or moderator or controller process. This tracking-network
controller-process is reviewed next, to be followed by the other facets
of the model.

6.4.2 System Controller

The task of the system controller is reflected in its name. It creates
processes, synchronises their actions, accepts their termination, and
controls the sharing of information, the balance and the process life
of the network. It conducts its tasks through a Blackboard mechanism
similar in concept to that of the sdm used by Tan and Martin [TM86].
However, unlike the sdm which forms the actual scene description data,
the Blackboard in this model is the vehicle for coordinating the low level
operations of the multitude of processes whose results may be used at
a higher level (external to the model) for a unified interpretation of
the image scene. It acts as a repository of information for sharing
knowledge about the status of the whole system. It is only incidental
that as a sub-function, the Blackboard also holds the scene flow model.
The Blackboard may be local to the system controller, or dedicated
to a separate controlling process. The former option will be assumed
henceforth.

It is the system controller’s task to detect the presence of replicated
tracks (i.e. when P > T) via the knowledge represented through
the Blackboard, and to issue the actions necessary to continue with
only one track by forcing the termination of others. This necessitates
some form of information-sharing between the tracking processes via
the Blackboard, whether the implementation is via a shared-memory or
a message passing system. Thus read/writes, messages or requests for
new information which will all go via the Blackboard must be queued
and serviced by the system controller on a first-come first-served basis.

In implementation, the system controller will preferably execute on a
separate processor with a large memory reserve.

6.4.3 Communications

The communications of the model is largely responsible for the be-
haviour of the system. It has to be flexible enough to allow expansion
without imposing major alterations. Communication can be achieved

157

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

To Outside
World

System Controller

System
Controller
Sub-Process

\ Blackboard

Figure 6.3: Overview of model communications

in shared-memory systems via the use of semaphores in reading and
writing of data, and in a distributed memory system via the passing of
messages (e.g. in tightly-coupled and loosely-coupled systems respec-
tively). However, this remains as an implementation aspect outside of
the model definitions, and any reference to communication must be re-
garded as applicable to both shared-memory and distributed memory
systems or even a combination of both.

The model defines communications to exist between,

• system controller and outside world,

• system controller and processor controllers,

158

• system controller and tracking processes,

• system controller, its sub-processes, and the Blackboard,

• tracking processes on the same processor,

• tracking processes on different processors,

• sub-processes of each tracking process.

These have been visualised in Figure 6.3. Although the diagram more
closely resembles a message passing system, it can also apply to a
multi-processor shared-memory system where the connections show the
read/write access of data which would take place via a shared bus. The
number of processes shown are notional.

More details on communication will be encountered in the following
sections.

6.4.4 Data Structures

Computer vision requires the handling of a wide range of data struc-
tures. For example, the pixel domain is typically represented by square
arrays, but following feature segmentation, say by chain-coding, the
data structure more appropriately representing the semantics of con-
nected pixel co-ordinates would be a list of nodes for each independently
chain-coded segment. Therefore, the model must ideally be able to
handle the semantics of a wide-ranging assemblage of data structures.
Moreover, the structures may be dynamic, and even asymmetrical. In
fact, it is factors such as these that to some extent have determined the
implementation of particular vision tasks on particular software and
hardware environments. This is more explicitly shown in Figure 2.1.

Given the problem of token correspondence, the model can have a more
definitive approach to narrowing the domain of its requirements. Re-
garding the communications between the system controller and outside
world as implementation dependent, the rest of the communications can
be specified to take place via dynamic, floating-form data structures,
where the structures must be globally acceptable by all processes. No-
tice a globally-acceptable data structure does not necessarily pertain
to globally-defined data. This would depend on a message passing or a
shared-memory architecture.

For example, a process wishing to communicate its results to the system
controller may pass a globally-acceptable data structure containing the
information shown in Table 6.3.

6.4. A PARALLEL COMPUTATIONAL MODEL

159

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

0 Data Structure control id
1 Sending Process id
2 Token Characteristics
3 Token history (past f frames)
4 Predicted Position for next frame
5 Image Area Required for next frame
. . . .
. free space
. . . .

Table 6.3: Example of a typical, globally-acceptable data
structure, containing data pertaining to a token feature

The model is defined to be independent of any line tracking algorithm.
Different tracking algorithms may require different items of informa-
tion for a token. This idea of floating-form data structures ensures
that the carriage of information across the model remains unaffected,
and that it remains for the tracking algorithm employed to be designed
to input to and extract from the data structures, the information it re-
quires. Thus an algorithm-independent communications platform may
be established.

Some other types of communication may be regarded as follows. The
controller will communicate with processors to create new processes,
and with processes to supply them with their required information, to
accept their predictions, or register their termination. In turn, pro-
cesses need to request and receive information about regions of the
image and they supply the controller with their predictions. They may
need to communicate with processes on the same processor or other
processors to exchange tracking information, e.g. for occlusion, or to
off-load the state of a track during load-balancing stages. These aspects
are by nature communicationally expensive, performance degrading and
to some degree difficult to implement. However when implemented,
these must be limited to take place under instruction from the system
controller, or at least with the approval of the system controller. Either
way, the model dictates that the system controller know what is going
on. It will be shown how this problem is dealt with in Section 6.5.

160

6.4. A PARALLEL COMPUTATIONAL MODEL

6.4.5 Load Balancing

By determining a suitable strategy for the allocation of tasks, a sim-
ilar computation load can be achieved for each processor. Ideally, it
must be recognised that different tracking algorithms are available for
tracking different token representations, where the tokens may be of
various description and degrees of complexity. For the moment assume
the application of the model to one type of token using the same al-
gorithm. Hence, the model requires the same tracking algorithm to be
applied to each token and therefore the complexity of computation per
process is approximately of the same degree. Thus, computation load
approximates to the number of tracker processes on a processor and
the ideal balanced state for the model is defined to be a state where
the difference between the number of tracker processes executing on
any two processors is never greater than 1. Given N processors, the
load must be distributed at the initial bootstrap stage such that each
processor is committed to Q processes where,

(J + 1 if i < (T MOD N)
Qi = \ (6-9)

[otherwise

for i = 0,1,...,N-1

During the run mode the controller repeatedly updates that part of
the Blackboard concerned with the welfare of the processes. When new
processes are created they are assigned to processor i where,

Qi = MIN(Qo, Q i , Q (n - i)) (6.10)

and where M I N returns the first minimum value if more than one were
encountered.

When tracker processes terminate, they simply return a signal so that
the Blackboard may be updated by the controller. While monitoring the
Blackboard, the controller may find that a processor is running fewer
processes than another, i.e |Qi — Qfi > 1, for some i and j . The con-
troller may then redistribute the computation by issuing instructions
for processor i to pass some of its load to processor j or vice versa.

6.4.6 Processes and Their Behaviour

The model is defined for achieving parallelism at token or feature level
rather than at the (tracking) algorithm level. Thus, by nature, a MIMD

161

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

Figure 6.4: A flow diagram showing the basic algorithm of a
tracker process

model is being proposed where, numerous processes running the same or
different tracking algorithms, work on different data sets from different
or (partially) the same parts of the image, which may or may not be
overlapped. Each process is an intelligent entity capable of controlling
its own activities and performing motion analysis, and given a snapshot
of the status of the model’s processes, they may be expected to be at
various phases of computation. Each process must have access to means
to apply the full tracking algorithm to its assigned token, preferably
through shared libraries. For a distributed processing platform, the
libraries should be replicated only once per processor. All tracking
processes on each processor should have a particular status and priority

162

6.4. A PARALLEL COMPUTATIONAL MODEL

depending on the nature of the token being tracked and the importance
attached to it. It may be that all processes should have equal priority
within each frame regardless of their nature. A process must have
access to any part of the image of any size it requires.

A flow diagram showing an abstraction of the function of a tracker
process is presented in Figure 6.4. The model requires that ideally
there would be no bounds on the number of processes active at any one
time in the system. Naturally, one limiting factor will be the amount
of memory available to each process (or processor as a whole).

New processes are created when new tokens appear in the image. Work-
ing processes simply go on tracking until they lose the track or the cor-
responding edge segment exits the field of view. What happens next at
such situations is dependent on the particular tracking algorithm em-
ployed. Terminating processes must return their status to the controller
for the last time and cease execution.

Processors remain responsible for their set of processes through a local
controller. For example, they create a new process when prompted by
the system controller. Some other tasks may include filtering process
data in, out and through.

Synchronisation

Figure 6.3 boasts a number of different processes, local and remote,
which may communicate with each other. For these to work together,
some form of synchronisation is necessary. Process synchronisation will
be largely dependent on the implementation platform. Synchronisation
issues were described in Section 2.3.4.

The discussion above reviewed the main features of the model. Many
aspects of the model will be formulated at implementation level and in
the next section the model is implemented as part of the full system
design.

163

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

6.5 MATCH: A Multi-Processor Token
Tracker

6.5.1 Overview

The model described in the previous section will now be extended to
achieve a distributed memory, message-passing, multiprocessor imple-
mentation of the token tracking algorithm outlined in Chapter 5. In
addition, a section is dedicated to the edge extraction procedure and
its most efficient fulfilment.

The complete implementation is named M A T C H : The Multiprocessor
(or Mixed SIMD/MIMD) Approach to Tracking-by-Correspondence
Hardware. The details of the hardware used are provided briefly in
Section 6.6, and in more detail in Appendix A. In the meantime it
will suffice to say that, firstly, the same overall equipment as that de-
scribed for the work described late in Chapter 4 was available only now
with more transputer TRAM modules, and secondly, that unlike MAR-
VIN [RPBK90, Bux91] or PARADOX [Bux91], all transputer boards
and modules used were industry-standard hardware boards. Therefore,
the emphasis laid more heavily on pinpointing efficient implementation
routes via software rather than hardware. This means that there are
not necessarily any fixed configurations for the sub-units of MATCH,
and the efficiency of algorithm execution will be allowed to define the
hardware connections required. This helps towards the achievement of
one of the parallel model’s goals: the ability to extend and add proces-
sors as required (depending on the adeptness of the software design; a
subject that also will be covered later).

At the highest level, the implementation is made up of three indepen-
dent transputer configurations executing in parallel, as shown in Fig-
ure 6.5. These are the HI (Host Interface - running under the auspices
of TIPS), the FEE (Feature Extraction Engine), and the TE (Tracking
Engine). This arrangement is proposed as an efficient decoupling of the
inter-frame correspondence problem, allowing the optimisation of each
stage towards a practical whole. The FEE will accept images from the
HI network, and following a token detection process, passes them in a
token list to the TE phase, where they will be analysed for correspon-
dence. From the HI to the TE through the FEE network, these stages
could be viewed as a three-stage pipeline, which can be further com-
plemented when the stage pertaining to 3D model and scene analysis is
introduced. Please compare this pipeline configuration with that of the
stages in general vision scene understanding processing as depicted in

164

6.5. MATCH: A MULTI PROCESSOR TOKEN TRACKER

Figure 6.5: The three decoupled, parallel and communicating
units of the implementation are shown in a pipeline format
represented by thick lines. The dashed lines represent results
and diagnostics communications.

Figure 1.1. (At present, the existing configuration is transformed into
a ring network by assigning the HI to mediate between the engines and
the external world.) Further parallelism is exploited in each constituent
part, where the FEE will serve as a SIMD model of computation, and
the TE as MIMD. The term engine is used since, ideally, the network
concerned should display improved performance by the addition of fur-
ther processors, as required by the model.

A network of transputers can be configured to achieve various parallel
models. We examine and discuss the suitability of different models for
both the edge extraction and the tracking stages. The discussion on the
host interface, which is the server and the viewer of the proceedings,
follows last.

Finally, an important note is brought to the reader’s attention. Often,
one encounters the title of a piece of research work claiming real-time

165

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

operation, say in motion analysis. By looking deep into the research,
one may find that the real-time system operates on a single rigid object
in a contrasting scene with an appropriate, well-defined model. Fur-
thermore, what constitutes as real-time in one circumstance may not
necessarily be so in another. In fact, in AGV motion analysis, motion
displacement relative to camera input sampling rate is assumed slow,
particularly for a complex, indoor scene, and processing on each frame
may be allowed to be completed in the order of seconds. So, it may
have been noticed that no extravagant claims regarding real-time anal-
ysis have been made here, since MATCH may or may not be real-time
given the circumstances. The system’s performance will be discussed
in the closing sections of this chapter, outlining the factors that can
affect performance, such as the complexity of the scene and therefore
the number of tokens tracked.

6.5.2 Some Practical Issues

During the implementation of this work, a further set of transputers
became available such that the full transputer equipment then stood
at, the PC HOST B004, the Harlequin Frame Grabber, and a total
of eighteen 20 and 25MHz TRAM transputer modules each endowed
with 1Mb of RAM, and with a memory access speed of 3 or 4 cycles.
The extra transputers particularly allowed for a better evaluation of
the feature extraction stage of the implementation, the results of which
are presented in Section 6.5.3.

Throughout this work image sizes of 256x256 are used. This was chosen
in contrast to 512x512 images, purely due to the lack of memory. The
system is designed at every stage to cope with larger images. In fact,
each time an image is captured during test runs of the system, it is
a 512x512 image, which is subsequently reduced in resolution into a
256x256 and then fed into the system for analysis. The process of
reducing the image resolution works by assigning the average of the
sum of every group of 2x2 pixel sets in a 512x512 image, F(x, y), to the
pixel value for a corresponding position in a 256x256 image, f (x , y),
using the following equation,

f(x,y) = jJ 2 J 2 F(2x + i’ 2y +i) (6-n)
4 ¿=0 j = 0

for [x, y] = 0,..., 255.

166

6.5. MATCH: A MULTI-PROCESSOR TOKEN TRACKER

6.5.3 The Feature Extraction Engine

WARNING!: This section makes many references back to earlier work
described in this thesis.

Let it be assumed that the next frame in a sequence of images is avail-
able. The FEE is then the first stage in the manipulation of the tokens.
The selected features in this application are edge segments. Under
perfect conditions, edge segments may be continuously extracted and
considered as possible recurrences of the same edge features from the
most recent frame in a sequence. However, edges are spatially extended
features, and factors such as illumination, digitisation, and camera vi-
bration are amongst many that can lead to inconsistencies in extracting
them from real images. (Edge drop-out has been considered as a ma-
jor problem by [CSD88, HS88, DF90].) The function of the FEE is
therefore of paramount importance, since a poor provision of tokens
will lead to a poor tracking rate, causing a high rate of track loss.
The effort in ascertaining a satisfactory level of consistency at the least
computational cost will now be investigated.

The FEE consists of a master controller transputer, and its network
engine of transputer processors. The tasks of the FEE span across
two distinct phases: a parallel detection of edges, and a sequential
segmentation of the edge pixels into line segments.

Detecting the Edge Pixels

The edge detection filter used by the FEE is the Canny filter which was
described briefly in Section 2.2.2. A sequential OCCAM translation of
the Canny operation from a C source program was already available
and only some minimal optimisation of this code was attempted by
the author. The major effort was concentrated on the management
of its parallel implementation; for this, the geometric parallelism ap-
proach was selected, since the edge detection operation is a low-level
task which must be applied equally to the whole image. These ideas
which were covered earlier in this thesis, are once again valid here,
and in fact the work on parallel Sobel edge detection for the Label In-
spection problem will be used here too, to provide a similar analysis
for the Canny edge detector. Note there is a complete contrast in the
amount of computation the Canny detector requires when compared
with the Sobel filter. Both the array (control-driven model) and farm
(demand-driven model) networks will now be re-visited to determine a
fast execution of the Canny filter. However, this will be brief since a
full analysis of the networks was provided in Chapters 3 and 4. It would

167

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

also be desirable to provide comparisons with the Sobel filter results
of Table 4.5, to show how the complexity of computation and size of
data packets affect performance. In fact, since some more transputers
became available for this part of the work, and to aid quicker analogy of
Sobel/Canny results, the old Sobel filter results will be re-measured and
produced for the increased size networks. Furthermore, the Sobel filter
implemented here will use the square root of the sum of the squares
of the horizontal and vertical gradients as the value of the gradient
magnitude. Why though use the Canny edge filter when the Sobel has
already been implemented and tested? The importance of the FEE as a
robust precursor to the tracking stage has already been indicated. This
necessitates the employment of a more precise edge filter such as the
Canny, in preference to the Sobel. Another importance of this choice
will be reported when the discussion turns to segmentation of edges
into lines.

Array
Size

Sobel Data
Routing

Sobel Canny
Sub-Image

Canny Data
Routing

Canny
Total

lx l - 1.649 268x268 - 13.740
2x2 0.296 0.462 140x140 0.361 3.303
2x4 0.335 0.378 140x76 0.457 2.098
4x4 0.373 0.375 76x76 0.550 1.374

Table 6.4: Execution times for Control-Driven Model on
256x256 images with corresponding Canny sub-image sizes for
shown transputer array sizes

In the control-driven model, the reverse-feed distribution scheme is
used, and the image is spread across the array and each sub-image
contains an area overlapping with its immediate neighbours, as in Fig-
ure 3.2. In the Sobel operation, it was shown previously that the size
of this overlapping border area is 1 pixel. For Canny, the area size is
determined through the value of a which is used to form the Gaussian
mask. A value for a of 1.6 leads to a 13x13 mask. Thus, the length and
the width of the sub-image must be increased by 12, using 6 pixels on
each side of the area. The Canny process will then produce results only
for the required area of the real sub-image, as shown by solid lines in
Figure 3.2, and uses the pixel information from the overlapped border
when it requires to look in that area. The results of the control-driven
model are shown in Table 6.4 and Figure 6.6, for single transputer and
4, 8, and 16 processor array configurations. The corresponding sub-

168

6.5. MATCH: A MULTI-PROCESSOR TOKEN TRACKER

Performance of Canny and Sobel on Control-Driven Network

• Canny
o Sobel
o Optimum

Speedup

Figure 6.6:

image sizes are also shown for the Canny. The execution times are
for images of 256x256 pixels and they include the time spent on the
distribution and collection of data. The timing for this communication
of data is also provided separately in the Data Routing columns. The
performance of the Sobel operator, and the optimum linear decrease in
processing time for Canny, are also shown for comparison. Speed-up
factors for the control-driven model are shown in Table 6.5, with effi-
ciency percentages provided in brackets. Please note that these show
the speed-up of T800-25MHz processors over a single T800-20MHz im-
plementation.

Array Ideal Sobel Canny
Size Speed-up Speed-up Speed-up
lx l 1 1.00 (100%) 1.00 (100%)
2x2 4 3.57 (89%) 4.16 (104%)
2x4 8 4.36 (55%) 6.55 (82%)
4x4 16 4.40 (28%) 10.0 (63%)

Table 6.5: Speed-up table for Control-Driven Model on
256x256 images

For the Sobel operator the amount of computation is very small and
most of the processing time is spent on the communication alone. No-
tice, the heavy communications bottleneck built at the top-left trans-

169

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

puter in the array, disguises the processing time of the Sobel operation
as the size of the array is increased. In contrast, the processing speed
of the Canny reduces satisfactorily by the addition of extra processors.

No. of Farm
Processors

Sobel
32x3 2 (3 4x34)

Canny
32x32(44x44)

Canny
64x64(76x76)

1 1.157 21.065 15.149
2 0.582 10.633 7.893
3 0.404 7.172 5.477
4 0.316 5.468 4.266
5 0.279 4.403 3.307
6 0.276 3.689 3.058
7 0.276 3.176 2.648
8 0.275 2.823 2.453
9 0.275 2.553 2.102
10 0.275 2.316 2.063
11 0.275 2.148 1.937
12 0.275 1.987 1.849
13 0.275 1.891 1.715
14 0.275 1.784 1.715
15 0.275 1.656 1.715
16 0.275 1.632 1.715

Table 6.6: Execution times for Demand-Driven Model on
256x256 images

The performance of the demand-driven model was examined for dif-
ferent task packet sizes of 32x32 and 64x64 extracted from a 256x256
image. To allow for the necessary edge border data, the actual data
packet sizes were 44x44 and 76x76 respectively. Still, these resulted
in 64 and 16 packets in total, again respectively. The results for the
increasing number of farm processors (up to 16) are shown in Table 6.6,
and in Figure 6.7. Although deteriorating, some improvement is still
observed right up to 16 processors for the 32x32(44x44) sub-image im-
plementation. This occurs since there are a large number of data pack-
ets and even after the processors nearest to the master transputer have
stocked themselves with work packets (i.e. one to work on and one
waiting in their buffer), some work packets still remain to reach the
processors furthest away. This is unfortunately not true for the fewer
work packets that exist in the 64x64(76x76) implementation, so after
the addition of the 13th processor no benefits in execution time can

170

6.5. MATCH: A MULTI-PROCESSOR TOKEN TRACKER

Performance of Canny and Sobel on Demand-Driven Network

Figure 6.7:

be achieved. Nevertheless, up to the 13th processor, the 64x64 imple-
mentation puts in a better performance since the computational and
communicational loads are better spread. In comparison, for the Sobel
operator, for which the 32x32 sub-image is used due to its better per-
formance compared with other sub-image sizes as shown in Table 4.5,
there are as many work packets as the 32x32 Canny. However, since the
algorithm is considerably less elaborate, the time to process a packet is
much less than the time required to transmit a new packet to a slave
processor and the addition of extra processors is ineffective since the
shortest path processors become free quickly and eventually manage
to consume all the packets. The speed-up and efficiency results for the
demand-driven network are shown in Table 6.7. These show the perfor-
mance matched against a single transputer farm implementation. The
efficiency of adding more processors for a computationally intensive al-
gorithm such as Canny in comparison to a Sobel is evident from the
results. Also, the difference in the efficiency rates for the 32x32 and
the 64x64 Canny show that as more processors are added the 32x32
implementation can spread its load at a very high rate, whereas the
64x64 is already fairly well balanced.

171

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

No. of Ideal Sobel Canny 32x32 Canny 64x64
Processors Speed-up Speed-up Speed-up Speed-up

1 1 1.00 (100%) 1.00 (100%) 1.00 (100%)
2 2 1.99 (99%) 1.98 (99%) 1.92 (96%)
3 3 2.86 (95%) 2.93 (98%) 2.77 (92%)
4 4 3.66 (92%) 3.85 (96%) 3.55 (89%)
5 5 4.15 (83%) 4.78 (96%) 4.58 (92%)
6 6 4.19 (70%) 5.71 (95%) 4.95 (83%)
7 7 4.19 (60%) 6.63 (95%) 5.72 (82%)
8 8 4.20 (53%) 7.46 (93%) 6.18 (77%)
9 9 4.20 (47%) 8.25 (92%) 7.21 (80%)
10 10 4.20 (42%) 9.10 (91%) 7.34 (73%)
11 11 4.20 (38%) 9.81 (89%) 7.82 (71%)
12 12 4.20 (35%) 10.60 (88%) 8.19 (68%)
13 13 4.20 (32%) 11.14 (86%) 8.83 (68%)
14 14 4.20 (30%) 11.81 (84%) 8.83 (63%)
15 15 4.20 (28%) 12.72 (85%) 8.83 (59%)
16 16 4.20 (26%) 12.91 (81%) 8.83 (55%)

Table 6.7: Speed-up and efficiency table for Control-Driven
Model on 256x256 images

By comparing the implementation of the two models it can be stated
that although some improvement is observed in additionally extending
the demand-driven Canny (32x32) network, the cost/efficiency ratio
dictates that given this many number of processors it would be more
economical to employ the control-driven model (as depicted in Fig-
ure 6.22(B)). The control-driven model performs better at all 4,8 and
16 processor configurations, with the farm model capable of perform-
ing better than an 8 processor array configuration at 12 processors for
the 32x32 Canny implementation, and at 10 processors for the 64x64
Canny implementation.

Some further analysis and discussion will be presented in the concluding
chapter of this thesis.

In general, the results presented here compare well with other Canny
realisations. Bottalico et. al. [BSI90] report 39.3 seconds, and 6.0
seconds for execution on a single T800, and a network of 16 transputers
respectively, but they do not specify their test image size. Rygol et
al [RPBK90] report 5.5 seconds for a 512x512 image on 24 transputers.

172

6.5. MATCH: A MULTI-PROCESSOR TOKEN TRACKER

Grouping the Edge Pixels into Edge Tokens

This is the second phase of the tasks of the FEE and itself consists of a
number of stages. These tasks are presently executed sequentially, and
on a single T800 only (which is also the FEE controller and interface
to its outside world.)

Figure 6.8: Three levels in polygonal approximation of an edge
list

The initial stage consists of the segmentation of edges into lines af-
ter a technique introduced by Lowe [Low87], and extended by Rosin
and West [RW89]. There now follows the operation which has been
implemented in this study. Once the resultant Canny image has been
returned from the network, the edge pixels are scanned and grouped
together in strings, producing a a number of lists of connected edge
pixels. (Notice, that had Sobel filtered edges been used for this stage,
a thinning operation would have been necessary, with the processing
introducing an extra level of inaccuracy. Thus, the use of the Canny
proves its benefit at this stage. However, it may be that a Sobel opera-
tion followed by a thinning application, take less processing time than
a Canny operation. At the end, it is the accuracy of the results that
wins over other considerations). Let the connected edge pixels be called
space curves. These are either open or closed curves. Open curves start
and end with only one neighbouring pixel, whereas closed curves have
two neighbours at all points and are detected by following the curve
until the start pixel is re-encountered. The whole process is similar to
chain-coding in an image of single-width edges.

Following the formation of the edge lists, a polygonal approximation of
the lines must be found. Lowe’s work is followed, whence each list of
edge pixels is hypothesised as being a straight line passing through its

173

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

end-points. A list is then segmented into two by determining its point
of maximum deviation The same process is then applied recursively
on each of the two lists. The recursive process is discontinued on the
satisfaction of one of two conditions through predetermined thresholds.
The conditions are when a line segment is less than 4 pixels3 in length
and when the deviation is less than a certain number of pixels, which
for this implementation it is set to 4 pixels, and has been determined
empirically.

Figure 6.9: F E E analysis on a simple scene: (top-left) Origi-
nal scene, (top-right) Canny filtering, (bottom-left) Grouping
of pixels into connected strings, (bottom-right) Segmentation
into lines through recursive algorithm.

The recursive procedure produces a multi-level tree where each level
describes a finer approximation of the list of edge pixels than that

3The sm allest line with non-zero deviations is a line of 3 pixels in length. It is
undesirable to retain a three pixel line if the deviation is zero.

174

6.5. MATCH: A MULTI-PROCESSOR TOKEN TRACKER

D etected

pixels

D etected

strin gs

D etected
Line Segm en ts

L in e
Linking

T o ta l

470 3 (1 .5 4 8) 15 (0 .0 5 3) 0 .0 0 8 1.609

Table 6.8: FEE processing results for simple scene

above. As the recursion unwinds, if any of the line segments handed
up to the higher level (closer to the root) are more significant than the
line segment on the current level, then they are retained and passed
to the next level up , otherwise the line segment at the current level
is returned. The measure of significance is determined after Rosin and
West’s report which is defined as the ratio of the maximum deviation
divided by the length of the line segment. Figure 6.8 shows an example
of line fitting at different levels of recursion.

D etected
pixels

D etected
strin gs

D etected
Line Segm en ts

L in e
Linking

T o ta l

44 3 4 171 (1 .8 3 3) 360 (0 .8 5 1) 0 .8 1 2 3 .4 9 6

Table 6.9: FEE processing results for busy scene

It has already been mentioned that OCCAM does not support dynamic
memory allocation and therefore does not allow recursion. Instead,
the problem must be handled using iterative techniques. The problem
of coding the segmentation algorithm in OCCAM was overcome by
implementing a stack, to store and retrieve memory variables at each
level of the multi-level tree in the line segmentation algorithm.

Results of FEE processing are shown in Figure 6.9 and Table 6.8 for a
simple scene, and Figure 6.10 and Table 6.9 for a busy laboratory scene.
The following description applies to both. The top-left corner picture is
the original scene, followed to its right by the image obtained after the
Canny filter operation. A count of the number of pixels are provided in
the first column of each table. Bottom-left image represents the list or
strings of connected pixels. These are marked by a ” + ” pattern at their
start and end points. Column two of each table represents the number
of strings found in each image, with the processing time in brackets.
The final image in the bottom-right represents the edge segments as
determined by the recursion procedure described above. Again start
and end points of the line segments are marked. For example, notice

175

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

Figure 6.10: F E E analysis on a busy scene: (top-left) Original
scene, (top-right) Canny filtering, (bottom-left) Grouping of
pixels into connnected strings, (bottom-right) Segmentation
into lines through recursive algorithm.

the window-panel on the laboratory door, whose curvature leads to a
multitude of small line segments. The number of line segments detected
is provided in the third column of the table, followed by its processing
time.

The final stage of processing consists of the line linking phase which
is a more elaborate version of the algorithm developed for the label
inspection process mentioned in Section 4.7. For this implementation,
this comprehensive neighbourhood-proximity process is used to bridge
possible short breaks along edge length. The execution timings in the
fourth column of the tables refer to this process, followed finally by the
total processing time spent on the post-Canny processing requirements.

176

6.5. MATCH: A MULTI-PROCESSOR TOKEN TRACKER

The grouping of the edge pixels into strings is the most costly process,
since each pixel in the image needs to be examined at least twice, once
searching for open lists and once searching for closed lists. To reduce
the total processing time a number of methods could be attempted.
The emphasis would be to use the processing power of the FEE net-
work processors to achieve a better speed of computation. The task
of grouping the pixels into lists could be split across the transputers,
by allowing each transputer to follow its Canny process by applying
the string formation algorithm while it still holds its sub-image data-
packet. Then it would be the onerous task of the controller to piece
all strings together into a set of continuous lists by reference to the
results of each sub-image. The recursive process of line segmentation
could be implemented using a technique for applying recursive algo-
rithms on pipelined transputer networks [Red88], however, this is also
a non-trivial problem, and may result in longer computation time due
to the extra communication load. The use of the line linking process
has both its advantages and disadvantages. On the one hand, it aids
to reduce the number of lines involved and may help to overcome some
cases of drop-out from one frame to another. On the other hand, due
to its dependence on a number of thresholds, it can lead to erroneously
joined-up lines. Its use has therefore been implemented on a switch
which can be selected at system run time. Naturally, the FEE process-
ing time is reduced when line linking is switched off.

Two methods for an immediate reduction in the complete processing
time of the FI?# have been introduced. Firstly, in order to consider the
most salient of the edges in the scene, those pixel strings which are fewer
in length than a pre-determined number of pixels, are ignored. This
reduces the task of line detection and line linking, and also drastically
lightens the load for the tracking engine. In contrast, it can also lead to
inaccuracies in continuously segmenting robust edges for the tracking
engine. Results due to the enforcement of this process are presented
later in the next section. Secondly, it is noticeable that the initial,
parallel Canny detection, and the subsequent post-processing are de-
coupled tasks. Thus, the two stages can be overlapped, such that in its
steady state the FEE system will require as long as the computation
time of its longest stage to provide the TE with new tokens.

This is more clearly visible by considering the parallel tasks of the
FEE controller as simplified and summarised in Figure 6.11. Not all
buffer processes are shown to maintain clarity. One important buffering
process which allows the overlapping of the edge detection and edge
segmentation processes resides between those processes, as shown. The
engine transputers run processes similar to those shown in Figure 4.1.

177

 F

6.5. MATCH: A MULTI PROCESSOR TOKEN TRACKER

was predictable; the errors in the registration of an edge, associated
with the distance of the edge from the centre of the p O s H T sub-image
are quite considerable, and lead to inconsistent description of the edge
from frame to frame. Added to this the fact that there will be some
disparity caused due to camera motion, it is deducible that the p d s H T

would not suit this application. Another shortcoming of the p O s H T for
this application is its inherent feature that different sub-images sizes
suit the detection of different lengths of lines (Section 4.4, [Dav90]).
Clearly, in a typical motion detection scene, lines of arbitrary lengths
would be encountered. The G H T [BB82] was found to require extensive
processing and the performance further suffers for the high communi-
cations rate necessary for the global Hough space. Still, MATCH has
a completely modular design, and other techniques for evaluation and
implementation could be considered for the F E E as and when necessary.

The final result of the F E E processing is made available to the T E via
the link connection between the F E E and the T E master controllers as
shown in Figure 6.22.

6.5.4 The Tracking Engine

The tracking engine as a sub-unit of MATCH, provides the opportunity
for applying the model described in Section 6.4. Again, the decoupling
of the problem is emphasised, since the T E may at this stage be viewed
as a black box whose only expectation is to receive a token lis t from
the outside world, in return for which it will supply another to ken lis t

as part of the current state of the structures in the scene, which must
be interpreted as so by another stage of processing.

The transputer has been cited as an ideal tool for MIMD processing
by many authors [Pag88, WP89, DEH89]. This is now examined and
evaluated with application to the problem of token correspondence.

In determining the type of multiprocessor configuration to use, the
n-linear pipe, the array, the hypercube, and the tree networks were
narrowed down as the most likely candidates to fit this purpose. The
intention was to keep matters fairly simple and straightforward, but
most of all to choose the most appropriate configuration given the lim-
ited number of processors available.

The processes in the parallel model follow their predictions by requests
to receive all the edge segments found in a certain area of the image
in order to perform their matching process. The requests are spatio-
temporally independent, but process and processor dependent. Since

179

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

the criteria that any processor must be able to execute any task cannot
be met, the processor farm computational model (described in Chap-
ter 4) was dismissed as unsuitable and thus so was a linearly arranged
configuration.

The array processor configuration or a model of higher dimension is
appropriate for implementation if inter-processor communication is to
exist as defined in the tracking model. For a transputer-based sys-
tem, such configurations can provide the most efficient basis for short-
est path addressing from any processor to another (Section 3.6). It
will be shown later in section 6.5.4 that inter-processor communica-
tion is not necessary, due to the choice and nature of token-tracking
requirements. Therefore, 2D mesh, cubic, or other similar configu-
rations of even higher order are unnecessary, rather than unsuitable,
for this implementation. However, it must be brought to notice that
when inter-processor communication is necessary, the network trans-
puters would need more complex message handlers and consume extra
processor cycles in routing messages to other processors since there are
only a limited number of link connections. Moreover, there simply were
not enough transputers available to implement a suitably-sized array
or cube network. To add to this further, a desire for investigating an
alternative configuration also played a major role.

In fact, the use of the configuration adopted for this implementation
can be justified as the most practical in any case. As in any application,
the minimum amount of communication along with the possibility of
taking the shortest route are the most desirable factors in a message-
passing, multiprocessor system. Given that the communications in the
tracking model have fixed target addresses, a network topology where
the path between the source and the target is unique and short would
be ideal. A tree configuration was selected to achieve this where there
is a unique and direct path between the tree root (or controller) and the
target process(or), and each node in the network need only hold a small
table of addresses for its own children. The bandwidth of the system
is also increased since a message can be propagated from root node to
target using Oilog^N) communications in a network of N processors
with b branches at each node. This compares with 0 (N) propagations
in a linear topology. For clarity in understanding and presentation, the
implementation discussed here only uses two branches at each node,
although three are available given the number of links on each trans-
puter. However, a step up to three branches would be a simple case of
reconfiguration of the system and alteration of each processor’s local
address-table. The correspondence analysis remains unaffected, and
given the very small number of processors used in this implementa-

180

6.5. MATCH: A MULTI-PROCESSOR TOKEN TRACKER

tion, it is guess-estimated that a substantial performance improvement
would not be observed by using a tertiary tree.

Various elements of the tracking engine are now considered using direct
reference to the issues discussed in the model. To start with, problems
faced at the lowest level, i.e handling processes, will be discussed, where
it will be seen how they affect the path of the implementation. But
before continuing, the reader will be reminded by providing a simplistic
overview of the task at hand. In short, there will be a number of
processes, running on a smaller number of processors, each of which
will be responsible for a token in the image. The processes are expected
to provide a progress report on the token, through communication with
the central controller and B la c k b o a rd system.

Process Manipulation

It was mentioned early on in this thesis that the OCCAM language is
sometimes described as the assembly language of the transputer, and
that its support for concurrency (process invocation, communication
and synchronisation) provides for simpler concurrent program design.
However, the OCCAM compiler for the transputer does not support
dynamic memory management, thus memory and processes must be
declared at compile time. One of the effects of this restriction is the
inability to create processes to track new tokens. This limitation is
solved by declaring for each processor, a number Q of inactive, static
processes at compile time where each process q,

4 € (0, 1,2.....1) (6.12)

is a c tiv a te d a n d d eac tiv a te d instead of created a n d te rm in a te d during a
system run.

All processes start at a deactivated state, and a deactivated process
initialises its environment and waits to be activated as a completely
fresh tracker process. An alternative method would have been to load
a node processor with new processes from the host processor [Inm88b],
but this method was considered too costly in management and commu-
nication terms for this application. Also dynamic creation of processes
is valid when an ’’unlimited” number of tracking processes are desired.
For this work, the system wishes to select those tokens that are specif-
ically salient, and thus a static allocation of a limited (but still large)
number of tokens is desirable and intentional, and it allows for a much
faster and more efficient implementation with a higher likelihood of

181

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

keeping nearer to real-time. These ideas are further emphasised in the
next paragraph.

New processes are activated when new tokens appear in the image, and
working processes simply continue tracking until they lose their track
or the corresponding edge segment disappears from view. A process
may lose the track because of noise or inconsistent edge data from the
edge extraction stage. An edge segment may disappear because of oc-
clusion or simply because it leaves the camera’s field of view. In such
situations the process may continue tracking by using one of numerous
techniques in its attempt to re-establish contact with the ’’ lost” edge
segment. These may be continuous imaginary tracking, active search
of neighbourhood areas, simple wait for reappearance and more other
expensive methods. The approach that has been adopted, and it proves
the most efficient for this application, is described as follows. An image
of a real scene will generally consist of many edges. The intention of this
particular application is to provide a basis for a unified interpretation
of all the constituent features of a scene. Loss of tracking information
on some parts of a scene will not affect the continuity of information
regarding the overall nature of the scene. Therefore, it is chosen for a
process to terminate immediately upon losing an edge segment. Should
this happen when the edge segment leaves the field of view, then ter-
mination has not been in vain. If occlusion has occurred, the edge may
either never reappear or it will show itself at a later frame when it can
be issued to a new process for a fresh track. Finally, if the edge segment
is simply lost by its tracker, regardless of the cause, the actual line seg-
ment can be issued to a new process in the next frame for a fresh track.
For both previous cases, the new information will be incorporated im-
mediately into the scene interpretation process working elsewhere. Loss
of track is a more common occurrence due to inconsistent data from the
edge extraction stage. Thus creation and termination of processes is a
common occurrence and so activation and deactivation of processes a
cheaper, more appropriate implementation of the model requirements.

Nevertheless, the issue of occlusion will not be left as such, since the TE
can still deal with it, only it is proposed here that it is more efficient to
deal with it in the manner described above. When occlusion does occur,
Kalman filtering results of the tracking procedure will be exploited to
continue the tracking of a lost token. This can be simply achieved by
replacing the unobtainable measurement parameters of a token with the
estimated parameters. Thus tracking is said to have continued through
an imaginary phase. If new measurements become available after a
predefined number of frames, the token is said to have reappeared and
the tracking can continue for real. Otherwise, the process is allowed to

182

6.5. MATCH: A MULTI-PROCESSOR TOKEN TRACKER

give up and deactivate . This occlusion analysis and tolerance process
has been programmed into the system as an optional requirement which
may be switched off or back on. Results to support this are provided
in Section 6.6. It should be expected that in a very simple scene with
only few edges,

=>• consistent tracking will occur,
= 4 the tracking processes would have a long life,
= > there would be a very low rate of activation and deactivation,
= > and the system would, ideally, remain balanced.

Processor Address Tables

Root: [all processors]
Nl: [N3,N7,N8,.»,N4,„.]

N2:[NŜ N6r„]

N3:[N7^N8]̂

N4:[J

• • •

(a) (b)

Figure 6.12: (a) A typical tree network, (b) address table for
each tree node

However, in a real, noisy scene, a token’s track life may not last very
long. This could arise through inconsistent edge extraction and/or sig-
nificant acceleration in the scene. Short track life would lead to a fairly
high rate of activation and deactivation in this implementation result-
ing in inter-frame instances when system load is unbalanced. But this
is soon overcome when new tracking processes are activated to either

183

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

continue with lost tracks or start on fresh edge segments. This approach
works well in practice and eliminates the need for inter-processor com-
munication to off-load tracking processes onto other processes. This
too is further illustrated in Section 6.6.

The system is implemented on a binary tree network where the root
processor of the tree network becomes the system controller and the
nodes are the slave processors (Figure 6.12). Each node is said to be
the parent of the lower level nodes branching from itself, which are in
turn referred to as its children. Each processor node in the tracking
engine contains a number of parallel processes which are the process
tasks, the buffers, the multiplexor and demultiplexor processes, and
the message routing tasks of the processor. These and the commu-
nication channels are shown in Figure 6.13. Figure 6.14 provides a
pseudo-OCCAM outline of the parallel processes. When a data packet
is received, the feed-router process of the processor determines which
processor it belongs to. By looking up its own private address-table,
the packet is then forwarded down the appropriate branch towards the
child processor. This is illustrated in a sample tree network in Fig-
ure 6.12. The diagram also shows a sample address table. Note that
each table is further sub-divided to contain child processor addresses
relevant to each branch.

When a router process finds that a message has arrived ” home” , it
passes it to a buffer/demultiplexer process which acts as a distributor
of data to the collection of tracker processes currently active on the
processor. Similarly, a buffer/multiplexer process is always active and
ready to collect matching and tracking messages from the tracker pro-
cesses. It passes the results back to a router process which points them
towards the processor’s parent processor along with other processors
results arriving from all immediate child nodes. The data coming into
the buffer/demultiplexor is by nature queued. However, for data go-
ing out of the processor, they are received from the multiple tracker
processes by the buffer/multiplexor through a fair ALT arrangement
to ensure an equal service to the processes. They are then buffered
(queued) for output, via a bleed-router process, to a higher level pro-
cessor in the tree. The fair ALT schemes follow the principles described
earlier in Section 2.4.7. The bleed-router also has the task of accepting
the messages and data from the child processors of the processor it is
executing on.

Each process has access to processor-local libraries which contain the
tracking algorithm routines. Each can execute the full tracking al-
gorithm, the standard Kalman filter or the a, ¡3 Kalman tracker, as

184

6.5. MATCH: A MULTI-PROCESSOR TOKEN TRACKER

From PARENT

Figure 6.13: Parallel processes, including tracker processes,
executing on each processor of the tracking engine

185

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

— Router processes are run in parallel, but at a higher priority
— level to that of the main task process.
— The channels of communication for the routers are shown
— in brackets.
PRI PAR

PAR — High priority processes for main communications
... feed.router(From.PARENT,

To.CHILD.Right,To.CHILD.Left,To.MAIN)
... bleed.router(To.PARENT,

From.CHILD. Right, From.CHILD. Left,From. MAIN)
PAR — Low priority processes of the main process

... buffer messages and data as they arrive on TO .M AIN channel

... demultiplex for consumption: send out on process.in[q] channels
PAR q = 0 FOR Number.of.PreSpecified.Processes — i.e. Q

tracker. process(q, process.in[q], process.out[q])
... multiplex for collection: receive on process.out[q] channels
... buffer messages and output on FROM.MAIN

Figure 6.14: Parallel processes of a TE processor (the low
priority processes can be read through as though depicting
the sequence o f events)

appointed. (The overall algorithm for each process was presented in
Section 5.8.) Each process could also exploit further parallelism, since
it has to process four independent, uncorrelated parameters per token,
as shown in Figure 6.15. This provides an opportunity for mixing in
some geometric parallelism into the MIMD model presented here.

However, let it be assumed that Q tracker processes are currently active
on any single processor in the system. There is then a potential increase
by 4Q in the number of schedulable processes. It takes the transputer 13
processor cycles to start a new process and approximately 20 cycles4 at
best to re-schedule it (as a low priority process) each time its turn comes
up. This is clearly inefficient for the local-processor performance, and
processor cycles could be spent more wisely by executing the filters in
sequence. The alternative would be to communicate these tasks to other
transputers, but that would be a phenomenally expensive approach.
However, this opportunity could be exploited in say a finer-grain, but
tightly-coupled multiprocessing platform, such as the IUA, where less
communication would be necessary.

Even further parallelism is attainable per process. The decoupled equa-

4Transputer instructions: ldl I; ldl W; stnl-1; ldl W; ldpri; or; runp

186

6.5. M A T C H : A M U LTI-PRO CESSO R T O K E N T R A C K E R

— Each process assigned to a single token can exploit further
— parallelism by invoking additional parallel processes for independent
— Kalman filter calculations on token parameters.
PAR

... Kalman filter for xm

... Kalman filter for ym

... Kalman filter for 0

... Kalman filter for /

Figure 6.15: Possible parallel sub-processes o f a token tracking
process

tions 5.28 and 5.29 of the a, ¡3 Kalman tracker can be evaluated sepa-
rately and concurrently. Another level of parallelism arises at the time
of computation of the Mahalanobis distance. This issue was discussed
in Section 5.6.

The constitution of process messages and data will be discussed in a
following section. However, the general semantics of their action is
reviewed, partly here, and partly later in the comments on the system
controller. Processes send and receive various types of messages or
requests back and forth to the system controller. For brevity, only
those sent from the processors are touched on here. These are itemised
below,

• request: a request for the provision of a list of tokens to be found
in a particular (search) area of the image following some tracking
analysis,

• request: a request for the latest frame’s time-stamp,

• message: the results of the current frame where either a match
is found and indicated so that the system controller can update
the scene flow model, or where no match is found. Depending on
the occlusion analysis switch discussed earlier, this could mean
the termination or the provisional continuation of the process,

• message: a short message for the verification of deactivation.

It is emphasised that the general framework of the messages imple-
mented here are by no means intended to be rigid and unchangeable.
These may be increased or decreased in number or context depending
on the algorithm in mind. The system’s overall modular design should
be able to handle other variations. This is specially achievable through

187

C H A P T E R 6. A PAR ALLEL A P P R O A C H TO T O K E N T R A C K IN G

the use of the OCCAM CASE statement on variant-protocol channel
communications. For example, facilities exist to allow a process to re-
quest the time-stamp of the next available frame. This is particularly
useful in the case of the object detection investigation presented in Sec-
tion 6.3 where the time-stamp was necessary in determining the next
position of the object, assuming constant velocity, since the previous
time-stamp. This facility is merely by-passed and ignored by the cur-
rent Kalman filter-based implementation. In the next section on the
system controller, it will be seen how various processes are geared to
handle and process varying tracker process requests.

System C ontroller (SC)

In its implementation, the system controller behaves almost as specified
in the model. It is the organiser and the conductor of the tracking
engine.

The SC is constituted of three parallel processes at the highest level
of its process family. These are enumerated and demonstrated in Fig-
ure 6.16, along with their communication channels.

The HI handler is used to return general status and functioning in-
formation about the TE to the interface network. The FEE handler
continuously receives extracted edges from the FEE for time-stamped
frames which are subsequently buffered and fed to the TE handler. Its
task is therefore to execute an elementary buffering procedure.

The tasks of the TE handler are now reviewed. This process consists of
a number of parallel sub-processes which collectively execute the main
functions of the SC (Figure 6.16). One of the main tasks of the SC
is to ensure an equal amount of computation for each processor in the
TE network. In this work both static and dynamic load balancing are
achieved. Static load balancing is accomplished at the bootstrap stage
of the MATCH system when a specific number of tasks are allocated to
each processor. At this stage, the SC receives the very first edge seg-
ments and distributes them amongst the network processors according
to Equation 6.9. The actual assignment may take place in a number
of ways, for example in a round-robin fashion or by assigning groups of
tokens at a time. The former is the method implemented here and a
simple pseudo-OCCAM simulation of the code is shown in Figure 6.17.
These assignments are registered in the Blackboard using data struc-
tures named the process.table and the balance.table as described in the
aforementioned figure. Dynamic load balancing is normally achieved
by redistributing processes between heavily loaded and lightly loaded

188

6.5. M A T C H : A M U LTI-PRO CESSO R T O K E N T R A C K E R

To/From
»FEE

To/From TE

To/From
Host

F E E

Handler

H .

Handler

\ . ---------1

Blackboard

To HI handler
To/From TE

Figure 6.16: H ighest level o f processes in the System C on-
troller, and detail o f the T E handler

189

C H A P T E R 6. A PAR ALLEL A P P R O A C H TO T O K E N T R A C K IN G

— Each object is assigned to a process on each processor.

— Processes are identified in the process table as follows:
— process.table[i][0] := transputer address (starts at 0)
— process.table[i][l] := process.no on transputer (starts at 0)
— process.table[i][2] := activation status (0,1 or 2)
— These form the address of token no. i, where
— PROCESS.ACTIVE is 0
— PROCESS.TRANSIENT is 1 (during occlusion)
— PROCESS.INACTIVE is 2

— System is kept balanced by use of the balance.table
— which ensures that no processor runs more processes
— than another (except by 1). Typically,
— balance.tableftransputer address] := no. of active processes
— The balance.table is initialised to zeros at start.

— Let tree.nodes be the number of transputers in tree. Let T
— be the transputer address.(Cyclic between 0 and tree.nodes-1)

T := 0
SEQ i = 0 FOR total.no.of.edges

[header.details]!NT header :
SEQ

— set up process
process.table[i][0] := T
process.table[i][l] := balance.tablefT]
process.table[i][2] := PROCESS.ACTIVE
balance.table[T] := balance.tablefT] + 1
— header contains edge segment details and token ID., which
— is also the colour code used for visual results display.
... formulate header
To.TREE ! Boot.New.Token;process.table[i];header
IF

T = (tree.nodes-1)
T := 0

TRUE
T := T + 1__

F ig u re 6 .17: A ro u n d -ro b in ass ignm ent o f tokens to processors

190

6.5. M A T C H : A M U LTI-PRO CESSO R T O K E N T R A C K E R

processors. An alteration on this theme is managed here which will be
explained soon, but first let some of the stages involved be examined
which happen once the bootstrap phase has been completed.

So, consider a time during the run stage some frames later. Processes
return their predictions and requests for the next frame via messages.
Some processes will profess via their predictions that they have lost
the track and that they have deactivated. Other processes will state
that they intend to continue tracking and require a new set of ob-
served tokens. These messages are initially parsed and then organised
for further action by the Results Organiser process, which incidentally,
contains buffer sub-processes to queue the incoming requests. The Re-
sults Organiser process initially analyses the incoming messages and
requests, sending a report (for one or a group of tokens) to the HI
process. Both deactivation and continuation requests are then sent on
along the appropriate channels for other processes to take care of them.
Continuing processes are of two groups as itemised in the review of the
processes earlier on. Some may be reporting their find, and some may
be requesting a new search area. So, these, along with the deactivation
requests, are reported through separate channels. However, since the
Blackboard is not implemented as a shared data object (and rightly so,
given the OCCAM message passing philosophy), all deactivation and
continuation messages and requests are accepted by the same process
which is the only process with read and write access to the Blackboard.
Yet, these requests are sent along separate channels which provides a
groundwork for a shared-access Blackboard implementation, if neces-
sary.

The requests are received on separate channels by the Processing-and-
Queue Manager under an ALT control. This is the main process of the
SC, and here is a brief summary of its tasks,

• Deactivating processes are marked on the Blackboard, where they
will be used for reassignment when new tokens are discovered,

• Processes requesting further data on observed tokens are queued,

• Results from those processes reporting their correspondence match
are accepted and used to update the scene flow model,

• When free of the above actions, the Processing-and-Queue Man-
ager continuously monitors the process-service-queue and services
the requests, in a FIFO manner. The service comprises of the
gathering, the grouping, and the dispatch of a token (sub-)list,
consisting of all those edge segments whose end-points fall in the

191

C H A P T E R 6. A PAR ALLEL A P P R O A C H TO T O K E N T R A C K IN G

predicted region of the image as specified in the body of the re-
quest message.

These actions are depicted in Figure 6.18. Other channels are also
serviced by this process, for example, a channel for providing the next
time-stamp to a requesting process.

— The process monitors incoming messages and requests on
— a high priority ALT branch, itself consisting of a
— multi-branched ALT construct. Thus, when nothing is
— incoming, the servicing of the requests is continued.

PRI ALT
ALT

receive.token.update ? signal; message
... update scene model

request.new.data.set ? signal; message
... queue process for attention

request.deactivation ? signal; message
... set process status to PROCESS.INACTIVE

request.new.time ? signal; message
... send new time-stamp

TRUE & SKIP - Nothing else to do.
... attend to the process-service-queue.

Figure 6.18: A n overview o f the Processing-and-Queue Manager
process

When all the processes have finally provided their match results per-
taining to a particular frame (identified universally by its time-stamp),
any remaining edge segments that are unaccounted for, from this frame,
will be issued to new or deactivated processes. The task is triggered as
a sub-function of the Processing-and-Queue Manager and carried out
by reference to details held on the blackboard. Thus the SC controls
the load balance of the processors using the principles defined in the
model (see section 6.4.5). The state of affairs at the boot-up stage was
discussed earlier through Figure 6.17 by applying Equation 6.9. Dur-
ing system run, when the necessity for issuing a new process arises, the
balance.table details are checked to find the processor iV, with the min-
imum number of active processes according to Equation 6.10. Using
the processor’s ID, it is referenced in the process.table to find the first
member q of its process set that is in a state of deactivation. This pro-
cess is then charged with the responsibility of tracking the new token.

192

6.5. M A T C H : A M U LTI-PRO CESSO R T O K E N T R A C K E R

In the case where no minimum is found, a new (never activated before)
process on the first and nearest processor is activated. Therefore, dy-
namic load balancing is achieved by redressing the discrepancy between
heavily and lightly loaded processes during system run. This approach
is preferable to redistributing processes between transputers, since it
avoids the necessity of inter-processor computation, and is more prac-
tical as a result of the fact that tracking assignments occur commonly
due to both new tokens in the scene, and old tokens with failed tracks
which must be redesignated as new.

The SC uses a simple rule to reduce the possibility of duplicated tracks.
It is a fact that no duplicated tracks will exist at the bootstrap stage.
Later in the run mode, since the SC has control over which edge seg-
ments are to be delivered to requesting processes for their matching
stage, it can simply refrain from supplying to a requesting process those
edge segments already identified by another process as a match for its
own edge segment, thus reducing duplication risk. However, if some
edges are already supplied as possible candidates to more than a few
processes then the possibility of duplication is increased. It is arguable
that given duplication on a low scale, it is harmless when large numbers
of tokens are being tracked. A way of tackling duplication would be for
extra processor-to-Blackboard bi-directional communication, or even in-
dependent interprocessor communication to share knowledge about the
status of the system. Although this would allow for more intelligent
processes, the extra load on the system is unfeasible, when a low du-
plication rate is acceptable. Also, duplicated processes are harmless in
so far as they would ideally present the same information to the scene
flow model. Furthermore, duplication is only more likely to occur in a
complex scene with densely packed tokens in the image, and when edge
segments with extremely similar features are so close to each other, so
as to be able to fool the accuracy of the complete Kalman filtering and
Mahalanobis distance matching process.

Some run-time results showing an extremely low-rate for duplicated
tracks are presented in the results section later in this chapter.

The Blackboard (as part of the SC)

The Blackboard is the TE system’s knowledge base, as (loosely) de-
fined in Section 6.4.2. There are no strict concepts associated with
blackboards; for example the one presented in this work and those
in [TM86, THKS88] all differ from each other considerably. Thorpe et.
al. [THKS88] propose a distributed process architecture using a hier-

193

C H A P T E R 6. A PAR ALLEL A P P R O A C H TO T O K E N T R A C K IN G

archical blackboard structure, which is ” scattered” amongst different
modules in the system. The modules then need to synchronise to ex-
change information via a central database. (Tan and Martin’s [TM86]
blackboard was briefly mentioned in 6.4.2.) The Blackboard presented
here, is in effect a collection of various data structures organised, ac-
cessed and updated by one major process. All access to the Black-
board by other processes must take place via hard-channel and soft-
channel communications, but ultimately through the Processing-and-
Queue Manager process.

Figure 6.19: Som e data representations on the Blackboard

The Blackboard has already been involved in some of the discussion so
far. Here, the aim is the presentation of Figure 6.19, exemplifying a
sample of its major contents. Some of these will now be described in
short.

The token.grades data structure, assigns an INITIALISE flag to each

194

6.5. M A T C H : A M U LTI-PRO CESSO R T O K E N T R A C K E R

token as they are supplied by the FEE process. As the tokens in the
frame are treated and the match results are returned, the token.grade
structure is progressively updated with those for which a correspon-
dence has been found. These are re-graded to MATCHED. This in-
formation aids the avoidance of duplication whereby the Processing-
and-Queue Manager can disallow the supply of those tokens already
MATCHED to tracker processes.

The scene.flow.model holds the latest information on the currently
active tokens, consisting of lists of \xm, ym, 6, /] information.

The observed.token.list holds the latest set of tokens as extracted
from the latest frame by the FEE network. These are grouped into
sub-lists and dispatched to tracker processes when their search area
requests have been processed. Each group will contain a list of those
tokens whose both end-points fall inside the search area; this can easily
be changed such that all edges with a minimum of one end-point in the
search area are elected into the token sub-list.

The process.table holds an inventory of the address and identification
of all the processes on all the system transputers, be they ACTIVE,
INACTIVE or TRANSIENT.

The balance.table holds the number of processes ACTIVE or TRAN-
SIENT on each of the transputers in the TE network. It provides an
indexing mechanism into the pro cess, table when the SC needs to bal-
ance the TE load.

TE Communications

(Some facets of the TE communications have also been already consid-
ered in the earlier parts of this discussion, such as those in Figure 6.13
and its accompanying comments.)

The model requirements regarding the communications are followed in
full, but with respect to the nature of the implementation. The major
loads in communication are between the SC and the outside world,
which comprises of,

• import of extracted edge data from the FEE network,

• the export of TE results to the HI processors,

• the exchanges between the SC and the numerous tracking pro-
cesses, which takes place via en route processors.

195

C H A P T E R 6. A PAR ALLEL A P P R O A C H TO T O K E N T R A C K IN G

There is no communication between tracking processes.

Floating-form communications is achieved by using ID integer or byte
arrays (the fixed size of which is determined by the implementation
algorithm) where a message of any length may be communicated as
demonstrated in the skeletonised example in Figure 6.20.

The PROTOCOL statement defines a message consisting of an inte-
ger, followed by two pairs of values with each pair consisting of a size
value succeeded by that number of components. The size value can
be zero for one or both of the arrays. In the case when both sizes
are zero, only the initial INT in the message is transfered, usually a
tag value. A general description of the PROTOCOL statement may be
found in [PM87]. The first integer array is always used as a way of pass-
ing essential housekeeping information, such as source process address
or destination process address, consisting of a processor number and a
process number. This manner of communication is adhered to at all
stages of the TE network, where the principle part of the message (the
second array) can be formed into an array of INT’s. It is hoped that
its generality can be applied for use with different token tracking algo-
rithms. For example, one requirement of any tracking and prediction
algorithm is the capability of examining any region of the image. In
this implementation, image regions of any size may be passed by util-
ising the local processor power to pack the region from a 2D array into
a ID array which is then unpacked by the remote processor locally.
This is specially important in transputer link communications where
link activity can take place independently of CPU processing once the
CPU has initiated it. In the object detection system described in Sec-
tion 6.3, this facility was used to pass sub-images from the SC to the
TE processes. By careful use of the RETYPE facility in OCCAM other
types of data could also be passed through INT structures [PM87].

Figure 6.21 demonstrates the format of some of the messages used by
the SC and the TE processes. These all have the tag;message.sizel;
messagel¡message.size2;message2 format, where a messageX may ei-
ther be a message or a request, and which may be made up of different
items of information packed into an array of INT’s. For some message
types the contents of the message are also provided in Figure 6.21.

A header message contains the information necessary for the booting of
a process with a new token’s data, following an activation.signal sent
earlier to that process. Requests are made by returning the proposed
search area. Requests are satisfied by returning the list of tokens found
in the search area, and so on.

Use of buffering in TE communications is of paramount importance to

196

6.5. M A T C H : A M U LT I PROCESSOR T O K E N T R A C K E R

— Variable length channel protocal definition
PROTOCOL TE.Messages IS INT; INT::[]INT; INT::[]INT

— Define channel iolink
CHAN OF TE.Messages iolink :

— A process using the iolink channel would follow this pattern:
— Define array. ID.TAG would be globally known.
[100JINT message :
SEQ

... message array is set up here.
iolink ! ID.TAG; process.address; (SIZE message)::message

— Each message would be recognised and dealt with by establishing
— the value of its identification tag.

Figure 6.20: Variable length channel com m unications

ensure that system performance is not degraded by waiting-to-commu-
nicate channels. For example the router of any TE processor must not
wait to communicate with a certain tracker process while messages for
the child processors are arriving and expecting to be routed through
(Figure 6.13). So a buffer on any processor accepts and queues messages
for the processor, allowing the router to route. It follows logically that
data-routing processes must be run at a higher priority than other
processes, a principle already emphasised in this thesis.

The issue of deadlock is always a detailed and important factor in the
design of any distributed multiprocessing system. Buffering as a solu-
tion is not always enough on its own and fairly strict protocols may have
to be applied to avoid the potential of deadlock. This can take the form
of an acknowledgement or handshaking signal established between any
two communicating processors. As an example, the TE uses a disguised
form of this procedure in allowing processes to request the time-stamp
of the next frame. This can act as both an acknowledgement and a
useful piece of information for many tracking algorithms.

6.5.5 The Host Interface

The interface consists of two transputers both acting as hosts. They are
T800-20MHz processors mounted on a B004 and a Quintek Harlequin
frame grabber/buffer board respectively, with both boards free standing
in the PC (For more details please see Appendix A). Figure 6.22 shows

197

C H A P T E R 6. A PAR ALLEL A P P R O A C H TO T O K E N T R A C K IN G

the connections of the host processors to the FEE and TE networks.

The Harlequin is used to receive images from a camera in the real-time
live mode. The images are then reduced in resolution from 512x512 to
256x256 using Equation 6.11, time stamped, and passed to the FEE for
edge extraction. The Harlequin processor is also responsible for receiv-
ing the results of both the feature extraction stage, and tracking stage
from the FEE and TE respectively. These are subsequently displayed
on a separate monitor allowing a visual observation of the system per-
formance. The processes of supplying images, receiving FEE images,
and receiving TE token tracks, run in parallel and independently of
each other. Only, the frame grabber’s display memory is dual-ported
such that extraction and tracking results may be written to the same
area of shared memory.

The B004 host processor acts as the interface to the outside world by
having access to the PC ports via the server program part of TIPS. It
is also used to drive the user interface as before. As with the Harlequin
processor, the B004 processor is also connected to receive progress re-
ports and results from both the FEE and TE networks. Independent
processes monitoring the inputs from these two networks pass the net-
works messages to a display process, which formats them and passes
them to the PC server program for displaying on the EGA monitor. A
typical display screen is shown later in Section 6.6.

198

6.5. M A T C H : A M U LTI-PRO CESSO R T O K E N T R A C K E R

Source or
Message Type Destination Message Body

Figure 6.21: A hierarchical breakdown o f som e TE system
com m unications

199

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

6.6 Tracking Results and Analysis

The results presented in this section were obtained using the set-up
shown for MATCH in Figure 6.22 and Table 6.10, depicting the con-
figuration and number of transputers used, and displaying the mix of
SIMD and MIMD approaches employed by the system.

Network No. of Transputers Network Type
HI 2 singular connection

FEE 8 regular array
TE 10 binary tree

Table 6.10: M A T C H : network configuration table

All the transputers in the system were T800s at 20 or 25MHz with
standard 64 bit FPU and 4K on chip SRAM, and at least 1MB of
RAM each. Thus, the system currently consists of 8 and 10 transputers
for the FEE and the TE networks respectively. This provides a fairly
balanced state between the two networks for a busy scene of over 100
edge segments, as the results will verify later. Since the number of edge
segments supplied to the TE may be controlled, a balanced state may
always be attained and the TE kept busy while the FEE processes the
next image frame.

A series of experiments were conducted to distinguish the various char-
acteristics of the system. Motion of the camera was attained by mount-
ing a camera on a MAXTASCAN inspection and measurement plat-
form. This machine contains a carriage which moves along a bridge
mounted on the main frame. This allows an accurate and smooth mo-
tion with speeds of up to 12cm/s, controllable manually and dynami-
cally. Pictorial and corresponding statistical results of the tracking im-
plementation are provided in Figures 6.23, 6.24, 6.25, 6.26, Plates 6.4,
6.5, 6.6, 6.7, 6.8, and Tables 6.11, 6.12, 6.13, and 6.14. All execution
times are in seconds, except when stated otherwise. It was mentioned
previously that a unique ID is assigned to each edge token. This ID is in
fact a colour value, selected from a circular scale with the SC as the im-
plementor and manager, and is mapped against a Harlequin colour LUT
when drawing the edge segment on the display monitor. The results in
each figure are presented as four frames sampled at arbitrary intervals,
with the frame number printed in the bottom right-hand corner of each
frame in each quarter-image. The frames are in this sequence: top-left,
top-right, bottom-left, and bottom-right.

200

6.6. TRACKING RESULTS AND ANALYSIS

(C)

Figure 6.22: M ATCH : Diagramatic outline of current system
configuration. To keep the diagram simple, the C004 link
switch and associated connections are not shown.

201

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

Frame
Number

Number of
Tokens

Matched
Tokens

Failed
Matches

Duplicated
Tracks

Success
Rate (%)

7 8 8 0 0 100
14 8 8 0 0 100
20 8 8 0 0 100
29 8 6 2 0 75

Table 6.11: Frame results for simple scene

Avg. No.
of Tokens

Avg. time
for SC

Min — Max
filtering

time/process
matching

8 0.27 sec 136 — 281 fisec 138 — 585 nsec

Table 6.12: Average frame processing time for simple scene
obtained over a lengthy run

Initially, a simple, artificially constructed scene is presented to easily
and comfortably convey the robustness of the tracking. Figure 6.23
shows the original image of the starting frame from a sequence of 29
frames. Plate 6.4 displays the result of the tracking sampled at frames
7, 14, 20, and 29. By studying them, it can be observed that following
an unstable start, which is expected since the constant velocity is not
yet attained, the tracking proceeds in a solid manner (with the camera
moving from left to right). A loss of tracks for the red and light-
blue edges is noticeable in frame 29. These were artificially induced
by altering the speed of the camera motion, yet this only affected a
comparatively few set of tokens. Perhaps rather expectedly, no dupli-
cated tracks were observed given the clarity and simplicity of the scene.
Table 6.11 shows the statistics obtained for the simple scene.

The average processing time for the SC in completely servicing a frame
is displayed in Table 6.12. Note that on average, only the first eight
processors of the TE would have been active with one tracker process
each, compared with numerous processes for the two real scenes pre-
sented next. The minimum and maximum times spent by a process
in Kalman-filtering and matching a token are also provided. This was
obtained by monitoring the performance of every tracker process in the
system. Note that the matching involves the Mahalanobis tests be-
tween the token being tracked and each token in the requested search

202

6.6. TRACKING RESULTS AND ANALYSIS

Figure 6.23: First frame of the sequence for simple scene

window (Please also see Figure 5.10). From Table 6.12, it is evident
that for the worst case, when the processing time for an isolated token
is taken into consideration, the complete process of filtering and match-
ing is under 1 millisecond. Ideally speaking, near one thousand tokens
could be tracked every second. However, the queue-processing and the
communication load of the SC produces overheads that are unavoidable
in a centralised control of a distributed message-passing system. More
about the behaviour of the SC will be said a little later.

Plate 6.5 shows a case where the occlusion analysis option is switched
on. Initially, notice that the object on the right is tracked smoothly
through the whole sequence. The object on the left has a split edge on
the right which by frame 9 has become one edge (the red colour) and
is being tracked as one. Tracking goes smoothly up to frame 16, but
between frames 16 and 26 all 3 main edges are lost by the FEE at least
once. When they are lost, their associated processes still continue to
track, but also new tokens are assigned to the new edges in the image.
A little later, either these new edges are lost in turn, or the edge is
reclaimed by the original Kalman filter, in which case the tracking is
then continued by the old process using the old colour. This sequence of
events may be clearly observed in frame 26 of Plate 6.5 for the light-blue
edge which has reclaimed its token.

203

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

Frame
Number

Number of
Tokens

Matched
Tokens

Failed
Matches

Duplicated
Tracks

Success
Rate (%)

First B u sy Scene (Plat,e 6 .6)
7 104 75 29 1 72.1
16 108 78 30 0 72.2
45 108 69 29 2 63.9
62 105 70 28 1 66.7

Second B usy Scene (P late 6 .7)
5 85 65 20 0 76.5
23 82 63 19 1 76.8
39 84 66 18 2 78.6
56 84 66 18 1 78.6

Table 6.13: Frame results for real two example real scenes

In the two example real scenes coming up, some important points must
be observed when viewing the results (which are obtained in both cases
with the camera moving from right to left). Firstly, only selected edges
are tracked; for example, those below a certain length are ignored.
Therefore a higher rate of track loss is possible due to edge drop-out
at the extraction stage. Secondly, the Kalman filter works "indepen-
dently” of feature speed, though the examples here show only a small
motion in order to allow performance over a large number of image
frames. Thirdly, as the camera moves, new tracks will overwrite previ-
ously plotted tracks as coloured edges are traced on the display monitor.
Thus, some tracks may look as if they were terminated, whereas they
are merely hidden. Finally, the camera moves horizontally, therefore
the reader should expect to notice vertical edges tracked better and
more visible.

The first frame in the sequence of 62 frames for the first real scene
example is displayed in Figure 6.25, followed with the tracking results
sampled at frames 7, 16, 45 and 62 in Plate 6.6. The prominent or-
ange and gray areas in the top right corner of frame 62 illustrate the
idea of immediate reassignment of an edge segment to a new tracker
process (hence a new ID and a new colour from orange to gray) when
a track loss occurs. This may be observed elsewhere in Plate 6.6, but
must not be confused with edge tracks overlaid by others. For example,
the aforementioned gray area has overwritten the orange tracks visible
in frame 45. The second example is represented via Figure 6.26 and

204

Plate 6.4: Frames 7, 14, 20 and 29 of a sequence for a sim-
ple scene, with colour-coded line segments displaying spatio-
temporal continuity

204a

Plate 6.5. Frames 4, 9, 16, and 26 of a sequence for a simple
scene with occlusion analysis, with colour-coded line segments
displaying spatio-temporal continuity

204b

6.6. TRACKING RESULTS AND ANALYSIS

Plate 6.7. This example contains many horizontal lines but some excel-
lent tracking, with examples where little has been overwritten. These
may be observed in the middle-right and the bottom-left of the scene
(especially the light-gray tracks). The statistics for the two busy scenes
are shown in Table 6.13.

The percentage success rate for each of the examples shown are plot-
ted in Figure 6.24. A steady rate is observed in all cases. The large
percentage drop for the simple scene is in fact an artificially induced
loss of two tokens out of eight. The busy scene with less tokens has a
higher success rate due to the higher chances of finding a match. The
number of duplicated tracks was found to be very low in all the experi-
ments conducted. In fact, to such a limit that their effect on the overall
performance may be regarded as negligible.

Occlusion analysis was not switched on for the real scene examples.

Table 6.14 displays the SC and minimum to maximum average TE
process execution times for the filtering and matching stages of a pro-
cess. The execution times include some time spent on a bare-minimum
amount of extra communication for reporting system progress. Again,
the complete ideal processing time for a token is about the order of 1
millisecond, such that almost 1000 tokens could ideally be tracked ev-
ery second. Furthermore, that would be on each transputer! However,

205

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

Figure 6.25: First frame of the sequence for real scene 1

in reality, memory constraints and context-switching times would not
allow such an achievement, even after the communication requirements
are totally ignored. Thus the load must be spread across a number of
processors. The following points must be observed when examining the
process timings,

• The minimum processing time for matching is the same in all the
example scenes. This may be due to those processes which do not find
any tokens in their search area to perform any matching with. The
overheads are approximately just some non-starter loop statements.
However, the point below will also apply to this case.

• It is not clear exactly why the processing of the Kalman filters varies
between the values shown in the appropriate tables, albeit a very slight
variation. Two explanations are as follows. Firstly, it may be that
in cases where spatial movement and velocity are zero, there is less
computation involved, and secondly, each processor is at different stages
of processing and may have different numbers of active processes on the
scheduled list, thus context-switching of these low-priority time-sliced

206

Plate 6.6: Frames 7, 16, 45 and 62 of a sequence for real scene
1» wjth colour-coded line segments displaying spatio-temporal
continuity

206a

6.6. TRACKING RESULTS AND ANALYSIS

Busy
Scene

Avg. No.
of Tokens

Avg. time
for SC

Min — Max
filtering

time/process
matching

1st 108 1.65 sec 136 — 320 fisec 136 — 905 fisec
2nd 85 1.05 sec 136 — 279 fisec 140 — 792 fisec

Table 6.14: Average frame processing time for busy scenes
obtained over a lengthy run

processes leads to differing execution timings.

• Due to the complexity of the scene, the matching takes slightly longer
than in a simple scene, since more tokens are likely to exist in the search
area. However, an upper limit on the number of tokens that can appear
in a search area can be set to be able to control the matching load. In
this implementation this is set to 9 after experimental observations. If
the execution time for a successful match for a search area with only one
token in it may be taken as approximately only slightly more than the
minimum processing time given in Table 6.14, then in fact the timings
show that a maximum of about 5 or 6 matches are being conducted
within a maximum matching-process time of about 792-900 \isec.

• The TE processors are idle while they await the arrival of the data
from the next frame. This idle time could be spent in a number of
ways. One would be to perform tracking on combinations of features,
such as whole objects. Also, the tracking could employ a more com-
plex filtering approach to model acceleration, as well as other features
associated with each token. Furthermore, work is currently in hand at
the Machine Vision Laboratory of the City University in trying to use
this idle time for 3D scene matching of the tracked tokens locally. This
involves the parallelisation of the approach and the satisfaction of the
communicational requirements while the idle time lasts.

The execution times for filtering and matching compare well with other
work such as that of [STD90] who use a very simple least mean square
method for predictive object tracking which takes 64/zsec to execute.
The processing, processors and processes are all monitored by TIPS
to keep the user informed of the goings-on in the various parts of the
MATCH system. An instant of this is shown in Plate 6.8. The window
on the left shows general processing results for each frame. The middle
window shows the load-balance of the system by displaying the number
of active processes on each processor. The last window demonstrates
the address of each active tracker process. For example, note that for 86

207

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

Figure 6.26: First frame of the sequence for real scene 2

edge lines (from the previous frame), the first 5 transputers in the TE
were running 10 processes each, and the last four were running 9 each,
demonstrating the most efficient load balance. The two small windows
below right, are meters displaying the address of the last requesting
process, and the address of the last terminating process, respectively.
The timings show the full processing time inclusive of all extra progress
reporting communications (which can be disabled).

6.6.1 Some Efficiency Issues

The SC is undoubtedly a major communications bottleneck for the
TE network. The computation time of the TE system is dictated by
the administration tasks of the SC, which include queue house-keeping,
system load monitoring, communications per token, and other functions
related to the general upkeep of the Blackboard.

The intricate set of actions handled by the SC are interwoven in a com-
plex, and inter-dependent web of tasks which are difficult to decouple

208

2 ' w k h P I171™ * *! 5.'l r3 ’ 39 and 56 ° f a secluence for real scene
continuity e m e n ta displaying spatio-temporal

208a

Plate 6.8: The monitoring of the M ATCH system

Frane captured in buffer 0
B00VHQ — — — Metuork Monitor

510.510
510.510
000.450s

H II Wk js .§| (transputer/pred ictor)
Franes Done 4 0 0 1 0 2 0 3 0 4 0
Edge Lines 85 T Ü 5 0 6 0 7 0 8 0 0 1
C=(Ft)-(Ft 1) 4.28 1 1 2 1 3 1 4 1 5 1
T=(Ft)-(Ft-l) 2.13 i F6 6 1 7 1 8 1 0 2 1 2
Matched 68 2 2 3 2 4 2 5 2 6 2
Unnatched 18 F7 7 2 8 2 0 3 1 3 2 3
Duplicated 1 V . ; ;

3 3 4 3 5 3 6 3 7 3
: •' V V ' : ■■■:' : ES 8 3 0 4 1 4 2 4 3 4

Max. Track 2 4 4 5 4
. V'; ̂ -,

Latest
4 8

Terninatin«
4 9

F5 Selected. Press a Ley to stop processing...

2 0 8 b

6.6. TRACKING RESULTS AND ANALYSIS

and analyse separately. For example, its actions are dependent on the
speed of the processes in performing their tracking, which are in turn
dependent on the efficiency of the supply of information for performing
the tracking. Naturally, the number of tokens involved has a direct
affect on the performance of the system. Thus, the timings presented
in Table 6.12 and Table 6.14, albeit very small, are directly related to
the conditions surrounding each particular test case. Also, the greater
the number of tokens in the system, the longer for the SC to get round
to paying attention to the process requests. Using a selection filter, the
system must therefore be employed to monitor just enough tokens to
ensure a maximum response time. It is interesting to note the follow-
ing as a contrast. For higher resolution images (such as a 512x512) the
execution time for the Canny is expected to increase by a power of two,
whereas the SC will still only need to deal with approximately the same
number of edge segments (which may now be longer lines, but are still
represented by their end-points).

Improvements could be achieved by employing multiple SCs with inde-
pendent tracking engines. Also, from Figure 6.22 it is noticeable that
there is only one branch from the SC to the TE processors. This is due
to the lack of available links after administrative duties have been taken
care of. By re-distributing these duties (e.g. combining the progress
reports to the HOST B004 to pass through the Harlequin HOST) and
freeing a link, it would be possible to double the bandwidth of the com-
munications. Another approach to increase the performance of the SC
would be the use of the soon to be available T9000 processor. This topic
will be covered in further detail in Chapter 7. The general performance
of the TE network, and the SC component in particular, further suf-
fers by an approximated 25% slow-down in link communications when
the C004 link-switch chip is used for connecting the transputers (please
see Section 2.4.1). Perhaps this will diminish when INMOS Ltd. in-
troduces the C104, the next generation communications chip, due out
around the same time as the T9000.

The weak-point in the current realisation of MATCH is not a lack of
transputers as it may be thought at first. It is true that in order to track
more tokens, more transputers were assigned to the TE network. In
return, this left fewer for the FEE network, causing a slow-down in the
engine’s performance on the Canny edge detection. However, the major
problem lies elsewhere as briefly mentioned earlier: The total processing
time of (the overlapped stages of) the FEE network of 8 transputers
(2x4 array), taking into account the extra overheads, is around 4.1
seconds. This includes around 2.1 seconds for Canny, overlapped by
around 3.5 seconds for the edge segmentation stage. For an average of

209

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

108 tokens, the TE network is ready for its next set of tokens in about
1.9 seconds, again including overheads. Thus, frame-processing rate is
dictated by the FEE processing, for which some improvements were
suggested late in Section 6.5.3. The most immediate step would be to
parallelise the edge segmentation phases.

The results presented were obtained using the a, ¡3 Kalman filter algo-
rithm. The general algorithm-independence of the match system was
also put to the test by using the standard Kalman filter approach.
However, since the a, ¡3 and the standard Kalman filters are in nature
the same technique (only varying in algorithm), the results for both
systems are very similar, leaving no grounds for a comparison study,
except from the point of view of computational performance. This was
found to be marginally slower than the figures presented in Table 6.12
and 6.14. Still, the standard Kalman filter implementation was a step
in reaching the a, ¡3 tracker (as derived in Section 5.5), and a useful
approach in testing MATCH with an alternative algorithm.

Of course, the system was also tested with the basic object tracking
algorithm as presented earlier.

6.7 Summary and Conclusions

This chapter discussed the edge-tracking implementation of a parallel
model for tracking tokens on a mixed SIMD/MIMD parallel process-
ing platform. Initially, a few notions on the use of parallelism were
introduced, followed by some past and present work in motion using
concurrency, especially the work in hand on the VOILA project. Next,
an initial investigation into the application of some basic principles of
motion, using parallel processing, was presented. This investigation of
object-tracking enormously helped in the design and implementation
of the work that was yet to come.

The parallel model of computation was proposed next. It spanned is-
sues such as communications, data structures, a blackboard mechanism,
load balancing and much more. The model was purposely kept free of
any association with particular tracking algorithms or multi-process ar-
chitectures. Thus, it may be applied, as a guideline, across many token
tracking applications where parallel processing is sought.

The model was continued into the next section where the MATCH sys-
tem was presented as a multi-processor tracking system. Initially, for
the feature extraction stage, two different applications of the data par-
allelism model were compared on two SIMD networks for the Canny

210

6.7. S UMM ARY AND CON CL USIONS

edge detection operation. Results for increasing number of transputers
per network were weighed against each other. The array network was
found to be more efficient over the farm implementation, but there is
easy scope for improving the farm network’s performance, given the few
transputers available. The main idea is to double the processing band-
width by adding a new farm to another link on the master processor
(Please see Figure 4.10).

Processors Sobel Canny Canny
Farmi Farm2 32x32 32x32 64x64

1 1 0.577 (100%) 10.626 (99%) 7.886 (96%)
2 2 0.302 (96%) 5.413 (98%) 4.257 (93%)
3 3 0.250 (80%) 3.675 (98%) 3.049 (89%)
4 4 0.247 (64%) 2.806 (97%) 2.441 (87%)
5 5 0.247 (56%) 2.284 (96%) 2.001 (83%)
6 6 0.247 (56%) 1.937 (95%) 1.840 (83%)
7 7 0.247 (56%) 1.717 (92%) 1.527 (86%)
8 8 0.247 (56%) 1.526 (92%) 1.527 (80%)

Table 6.15: Execution times for bi-linear farm, Demand-
Driven Model on 256x256 images.

Table 6.15 shows the results for the implementation of the Sobel and
Canny operations on a bi-linear farm network (with the corresponding
percentage improvement over the linear farm in brackets), with the
master controller supplying packets of data to whichever farm that
is ready to accept next. An alternative approach to this method of
supply would be to decouple the farms by splitting the image into
two halves and supplying each farm with only the appropriate half-
image. Splitting the number of transputers in the network into two
branches also reduces the communication bandwidth for those packets
of data which would otherwise have had a longer path to travel before
reaching their destination. From the table it can be observed that once
again it is only efficient to add more processors for an application with
a high computational load which reduces the communication latency.
Thus the performance soon saturates for the Sobel, whereas excellent
efficiency for the heavy computation load of the Canny is observed as
the farm slaves increase in number. (If these results are compared with
those of Table 6.6 for equivalent number of transputers (e.g. two farms
of 4 for a linear chain of 8 processors), then not much improvement is
observed, since in both cases the controller is still supplying work to

211

CHAPTER 6. A PARALLEL APPROACH TO TOKEN TRACKING

similar number of processors, only for this case it supplies through two
links which are monitored via a standard ALT construct).

The efficiency idea could be continued ultimately to a third branch
leading to a tri-linear farm. Also, multiple arrays could be used for
the control-driven approach, with each array processing part of the
image. However, the FEE system’s real bottleneck was found to be the
non-localised processing of the string transformations (into lines) which
renders the job somewhat abstracted from easy parallelisation. Since
the concentration of this work has been on the correspondence analysis
stage, the requirements for further improvement of the FEE system’s
bottlenecks were considered out of the scope of the most immediate
work, and were not pursued any further.

Next, the parallel model was extended for implementation on the trans-
puter as a distributed memory model, using the a, /? Kalman filter for
the tracking algorithm. The MIMD implementation used a tree net-
work whose suitability and functional aspects were considered along
with other factors such as the SC’s Blackboard and process manage-
ment issues, and TE processor functions and process manipulations.
Results pertaining to the general analysis of the processes, the match-
ing, and the tracking were presented next, succeeded by some efficiency
issues. These showed a frame processing rate suitable for use in AGV
motion analysis for providing visual input to the vehicle central system
to aid location and navigation. The TE network’s overall throughput
may be increased by employing three branches at each node of the
tree rather than the present binary approach. However, the TE still
performs at an acceptably fast rate especially in relation to the FEE
network. Furthermore, the modularity of the design of MATCH allows
for the integration of a different, more efficient FEE network, what-
ever its configuration and overall nature may be, without interfering
with the structure or the implementation of the TE, as long as the TE
receives its token lists via a link connection.

The applicability of the system was tested by using an object track-
ing algorithm (described in the earlier investigation phase), and two
different approaches of the Kalman filter to linear estimation. This
vindicated the effectiveness of the model and its subsequent implemen-
tation as a sound proposition towards an independent communications
and hardware platform for the analysis and implementation of general
token tracking algorithms based on transputers.

212

Chapter 7

Summary and Conclusions

7.1 Brief Summary and Initial Conclu-
sions

The aim of this thesis was to present and evaluate the use of the trans-
puter in appropriate configurations with respect to the enhancement
and parallelisation of vision algorithms, as pertaining to distinct image
processing applications and problem areas.

In Chapter 2 some foundations in the fields of image processing and
parallel processing were laid, and many important and relevant topics
to this thesis were reviewed. In addition, some fundamental aspects of
the transputer and OCCAM were studied. Also, issues in more efficient
OCCAM programming on the transputer were discussed enhanced by
the ’’ lift” example.

Chapter 3 introduced the forward-feed or reverse-feed distribution mech-
anisms for distributing images across arrays or meshs of transputers.
The scheme was analysed rigorously to provide mathematical means of
evaluating the distribution and collection costs of images on transputers
prior to main image processing. Since communication factors are of pri-
mary importance when evaluating or simulating system performance,
the issues tackled by this work can be of great value. Estimated re-
sults were obtained which matched closely those measured (Table 3.1).
The scheme was then applied to a real-time situation where the general
positioning of labels stuck on products were examined.

Some initial thoughts following this work were that transputers are
extremely easy to work with, and one need simply connect them to-
gether to establish multi-processor configurations without resource to

213

CHAPTER 7. SUMMARY AND CONCLUSIONS

external logic or other specific hardware. The reverse-feed distribution
scheme was intended as a general scheme to map any P x Q image
onto a M x N transputer array. This flexibility also meant that the
method was too costly for the real-time label inspection problem, added
to which was the cost of performing totally generalised, parallel algo-
rithms for inspection. To this end, a customised system of transputers
was set up, and this investigation showed a much better performance
efficiency. From the results in Tables 3.3 and 3.5, it could be concluded
initially that a customised set-up of transputers could provide a cheap,
affordable, and efficient system for label inspection. More generally, it
can be concluded that the transputer is very likely to perform well as
a processing unit in an embedded system.

In Chapter 4, the demand-driven approach of farm parallelism was ex-
amined and compared with the control-driven mechanism of the reverse-
feed distribution scheme through the implementation of the Sobel edge
filter and the Hough transform as preliminary, but independent, stages
of a more sophisticated approach to label inspection. In addition, the
Hough transform was shown to parallelise well when considered in sub-
images. The resulting pOsHT transform was also found to be suitable
for detection of arcs as small line segments, which greatly simplified
the detection of oval (or circular) labels. Inspection results were pro-
vided in Tables 4.2, 4.3, and Figures 4.6 and 4.7. Sobel and pOsHT
processing times were further measured for a larger, eight transputer
configuration as presented in Tables 4.5 and 4.6 in Section 4.8.

Despite some of the very efficient speed-ups achieved, and despite the
fact that some computationally complex algorithms are being executed
extremely fast, the transputer is still rather slow to provide a fully real-
time performance in this application, although the potential is there.
In fact it is not so much that the transputer itself is slow, but that the
communication demands are very heavy when distributing data and
receiving results. This can be concluded to be generally true for SIMD
parallel processing of images on transputers.

Chapter 5 started as the vehicle for introduction to the field of CATVI
or dynamic scene analysis. The opportunity was then used to introduce
the optimal estimation technique of Kalman filtering, which was sub-
sequently applied to derive the state and measurement vectors for the
equations of motion. Token matching via the Mahalanobis distance
was studied, and this was followed by the possible uses of tokens in
3D structure from motion understanding. The overall feature tracking
algorithm used for the bootstrap and run stages of a feature tracking
system employing a scene flow model was outlined in Section 5.8.

214

7.2. SOME GENERAL COMMENTS

Finally in Chapter 6 much of the earlier work in this thesis on geomet-
ric parallelism was updated and used in the FEE engine in conjunc-
tion with a MIMD approach to feature tracking via the TE engine of
the MATCH system. The MATCH system was shown to reflect the
pipelined processing phases in typical vision processing through com-
ments accompanying Figures 1.1 and 6.5. The system was described
in detail through its varying sub-units which represented the steps in-
volved in the process of achieving motion correspondence by tokens.
Earlier, an investigation into object tracking had also been outlined.
This had been followed by the parallel computational model which was
the guideline to the implementation of MATCH. Extensive results for
the different stages of MATCH were presented in Sections 6.3.3, 6.5.3,
6.6, and 6.7.

Conclusions specific to the role of the transputer within the concepts
and results of Chapter 6 must be that again the SIMD parallelism of
the FEE unit is rather slow due to the communications latency. The
TE fares rather better, since the overall processing of the tokens is of a
lighter nature, and so the TE is always ready for the FEE network, given
that an appropriate number of tokens are involved. Nevertheless, the
communicational load of the TE is extremely heavy, since the system
control is centralised, and the SC is completely burdened with work.

There were some advantages in using the transputer too. It was most
straight-forward to work with and parallel processing techniques were
implemented on transputer configurations with great ease. Crowley
et. al. [CSD88] and Deriche and Faugeras [DF90] have discussed the
implementation in hardware of Kalman filters for token tracking. The
transputer has been shown capable of achieving filtering and matching
rates that justify its serious consideration in place of a dedicated hard-
ware system. In addition, it provides a flexibility for alterations and
improvements that is not reflected in a hardware-based system. Fur-
thermore, MATCH is intended as the front-end processor for a vision-
based vehicle navigation system. Subsequent to token tracking, the
next stage matches the labelled tokens to the geometric model of the
environment - this stage is currently under development, but will op-
erate in parallel with a ” bootstrapping” model recognition and vehicle
location algorithm also currently under development [B091].

7.2 Some General Comments

The general conclusion of this thesis must be that, for computer vi-
sion, communications are the nemesis of the transputer. Communi-

215

CHAPTER 7. SUMMARY AND CONCLUSIONS

cations have caused such problems for the transputer that most have
resorted to enhancing their transputer systems with special hardware-
based buses or shared memory. Examples of these may be found
in [Pag88, DEH89, RPBK90, Bux91]. What then becomes of the trans-
puter with respect to the SIMD and MIMD spectrum of hardware for
low-level to high-level computer vision as depicted in Figure 2.1? It was
seen how the PC WARP and the IUA architectures are built to cater for
different vision algorithms. They are successful to a certain degree to
satisfy their intended purposes, and are probably as general-purpose as
vision architectures come. (Note that no real instant of the IUA has yet
been reported). It is envisaged that the transputer may be able to play
a role as an autonomous processor, either as part of a larger machine, or
as the building block of a completely transputer-based machine. How-
ever, without special hardware, as employed for such machines as MAR-
VIN and PARADOX, it is doubtful that it could compete with other
vision architectures which invariably include dedicated communications
mechanisms or shared-memory systems. Dedicated hardware would be
at least a necessity when concerned with SIMD processing. However,
for MIMD processing, the transputer could prove the ideal tool if faster
and more efficient communications were provided. MIMD processing is
computationally bound, and that is where the transputer shines. But
processors then need to communicate, be it with a control processor or
with other processors. Multiplexing and de-multiplexing of messages
across links is tedious, and it seriously limits the communications band-
width. A prime example of this is the MATCH system. Some solutions
that spring to mind are as follows,

• make the communication links faster,

• achieve direct processor to processor connection using link con-
nection reconfiguration techniques during program activity,

• have a communication processor in hardware which will also han-
dle the multiplexing and de-multiplexing.

Faster links are limited only by what the latest technology can offer. Re-
configuration is not so much non-trivial than down-right cumbersome,
where each algorithm will have different reconfiguration requirements,
once again leaving the burden on the user, and probably leading to
non-portable code. However, in the absence of any other means to
speed up processing, reconfiguration is a valuable approach [Pag88].
A hardware communications processor is a very attractive idea which
could greatly reduce processing/communications latency. It would also

216

7.3. MAJOR CONTRIBUTIONS

be a more sensible idea than an arbitrary increase in the number of
links, since that would still not be enough for many (besides VLSI lim-
itations on the number of links possible), and it would merely create
more administrative problems for the end-user for inter-connection and
programming of the devices.

Overall, as with the PC WARP and the IUA, the transputer may find
itself in a suitable home in a hybrid architecture, with perhaps extra
communications hardware, that supports both SIMD and MIMD. In
such a case it might even fit and perform well as an elementary research
machine within the framework of classification 3 of Figure 2.1. However,
as stated by Prior et. al. [PNRC90]:

...for many applications the performance of a system in an
irregular configuration can be expected to exceed by far that
of systems in standard configurations...

(Note the pseudo-MIMD customised approach to label inspection de-
scribed in Chapter 3 which was more successful than a regular grid
approach with a similar number of transputers). This further empha-
sises the necessity and the difficulty in achieving an ideal system within
vision which is capable of the task depicted in classification 3 of Fig-
ure 2.1, since the hardware burden should be taken away from the
scientists for them to be able to concentrate on the task of pushing the
boundaries of computer vision towards those of human vision for scene
perception.

OCCAM as a parallel processing tool, allows for a very user-friendly
sub-division of a problem into parallel sub-processes. For that it is
applauded and in the author’s opinion, OCCAM is as good as any
language for exploiting vision algorithms that must be implemented
in parallel. It could even form the underlying structure of the intelli-
gent interface of Figure 2.1’s classification 3. However, at the moment
OCCAM performs best only on the transputer, and it is almost unavail-
able, except in interpreted format, on any other machine. Therefore,
before some improvements to the transputer are seen, it is unlikely that
OCCAM will gain the popularity that it deserves.

7.3 Major Contributions

The major contributions of the work presented in this thesis are briefly
itemised as follows,

217

CHAPTER 7. SUMMARY AND CONCLUSIONS

• Proposal and implementation of a decoupled approach to the
problem of correspondence,

• Presentation of a parallel computation model for the implemen-
tation of token tracking algorithms for different image tokens (for
achieving motion correspondence),

• The introduction and implementation of the pOsHT line segmen-
tation technique,

• The presentation of an image distribution and collection tech-
nique with performance evaluation tools for transputer arrays,

• Fresh approaches towards more real-time inspection of product
labels,

• And finally, more generally, the evaluation of the position of the
transputer within the spectrum of vision processing levels.

7.4 The T9000

The new generation INMOS transputer has only recently been an-
nounced [Inm91] and it is to be available around the middle of 1992.
The T9000, as it is named, is projected to feature the following,

• Peak performance rate of 200Mips for its integer processor,

• Peak performance rate of 25Mflops for its floating-point processor,

• Communication links that provide a peak total of 80Mbytes/second
bidirectional bandwidth,

• Pipelined superscalar micro-architecture allowing multiple instruc-
tions to be issued and executed per processor cycle. The T9000
contains hardware which assembles instructions from the instruc-
tion stream into groups and then sends them through the pipeline,

• 16K instruction and data cache,

• Workspace cache of 32 words holding the most frequently used
data,

• Virtual channel multiplexing and communications hardware ca-
pable of mapping logical links onto physical links.

218

7.4. THET9000

It is said that the T9000 running at 50MHz will be capable of executing
compiled code for a 20MHz T805 typically 10 times faster. The T9000
will be complemented with the C104 packet routing switch which is
an improved and updated version of the C004. The C104 is expected
to introduce only sub-microsecond latency. Together, they will allow
faster reconfiguration for direct connections to other T9000s. Could
it be that a lot of the communicational problems associated with the
existing family of transputers will be eliminated with the introduction
of this new proposed transputer? This could happen most immediately
in two ways,

• Fewer processors would be required since each T9000 will be capa-
ble of putting in the performance of several T800 or T805 trans-
puters. Fewer processors would need less in the way of communi-
cations,

• Faster link speeds, and the virtual channel router, will provide a
much higher communicational bandwidth giving a better overall
computation to communication ratio.

Not only will the T9000 processor be a massive boost to SIMD or
MIMD transputer-based systems in general, it may finally herald the
transputer’s entry into the super-league of microprocessors with the
prospect of much more widespread use. It will certainly be a strong
contender for vision-based architectures, capable of coping with even
the task of low-level image processing at rates comparable to present
special-purpose processors.

More immediately for the work in this thesis, the T9000 could be used as
a super SC in the TE network of MATCH. If its projected performance
improvement over a T805 could be assumed to be true here too, the
SC could perform its task for a scene of approximately 100 tokens in
an average of 135 milliseconds, giving a projected processing rate of
about 7 frames a second which would, by present standards, be more
than adequate for AGV motion. This is not to mention the benefits
that would be observed by employing T9000 processors for other parts
of the MATCH system.

In summary and conclusion, it must be said that the transputer can be
used for real-time processing in vision. Only, there are still constraints
in low-level image processing, which are likely to be alleviated by the
T9000. However, for medium and high-level vision operations when
computation load is quite demanding, the transputer performs well

219

CHAPTER 7. SUMMARY AND CONCLUSIONS

enough to warrant its use for real-tim e vision work. This was am ply
justified through the investigations on the p9sHT and C anny im ple-
m entations, and also through the token tracking application . Further-
m ore, the flex ib ility offered by the transputer in build ing and program -
m ing m ulti-processor architectures m eans that it is a m ore cost-effective
approach than constructing special-purpose hardware for m any vision
tasks. Finally, not on ly have transputers m ade it possible for m ore
scientists to perform research at lower cost, they have further em pha-
sised the problem s com puter vision faces in reaching the capabilities o f
hum an vision.

220

Annotated Bibliography

[AD90] A .T . Ali and E.L. Dagless. Autom atic Traffic Monitoring using
Transputer-Image Processing System. Proc. of the Second Int.
Conf. on Transputer Applications, pages 209-210, 1990. The
authors formulate moving object detectors by combining differencing with edge
detection, and apply them to traffic scene analysis. They report dissatisfaction
with the communication speeds of the transputer for their implementation.

[ADM81] J.K. Aggarwal, L.S. Davis, and W .N . Martin. Correspondence
Processes in Dynamic Scene Analysis. Proceedings of the IEEE,
69(5):562—572, 1981. The authors use two general approaches for estab-
lishing correspondence between features, pixel-based and token-based techniques.
Icons and structures are used for matching between frames in each approach, re-
spectively.

[AN88] J.K. Aggarwal and N. Nandhakumar. On the Computation o f
Motion from Sequences o f Images-A Review. Proceedings of the
IEEE, 76(8):917-935, 1988. The authors present a review paper on the
developements in the computation of motion and structure of objects in a scene
from a sequence of images, highlighting and comparing token-based and optical
flow-based approaches.

[Atk87] P. Atkin. Performance Maximisation. Technical Report 72-
TCH-017-00, INMOS Ltd., 1987. This is a very useful technical note for
new O C C A M programmers. It provides many tips for more efficient coding.

[BA90] M. Ben-Ari. Principle of Concurrent and Distributed Program-
ming. Prentice Hall, 1990.

[Bat 79] B.G . Batchelor. Interactive Image Analysis as a Prototyping
Tool for Industrial Inspection. Computers and Digital Tech-
niques, 2(2) ¡61—70, 1979. A variety of tasks, including texture analysis of
metal surfaces, measurement of female screw threads, and print legibility inspec-
tion are considered by the author.

[BB82] D.H. Ballard and C.M. Brown. Computer Vision. Prentice Hall,
1982.

xix

ANNOTATED BIBLIOGRAPHY

[BH89]

[B091]

[BR90]

[BSI90]

[Bux91]

[Can86]

[CD86]

[CH82]

[CR83]

R.F. Browne and R.M . Hodgson. Mapping image processing
operations onto transputer networks. Microprocessors and Mi-
crosystems, 13(3):203—211, 1989. This paper examines the performance
of SIMD transputer networks with application to image processing. However, it

considers computational speedup without explicitly taking into account communi-

cation costs.

B. Brillault-O’Mahoney. (In Preparation). PhD thesis, City
University, London, 1991.

A.P. Bernat and J. Rupel. A Transputer-Based Motion De-
tection and Tracking Algorithm. In Proc. Third Int. Conf. of
NATUG, pages 295—305. IOS Press, 1990. A differencing technique

is used in conjunction with a cellular decision making process to track motion
across international borders. The transputer is found as an elegant approach for

implementation.

S. Bottalico, F. De. Stefani, and F. Imelio. Real-Time Processing
Architectures in Ground Surveillance Systems. In Proc. of 5th
Int. Conf. on Image Analysis and Processing, pages 699-705,
1990. Transputers are used for the implementation of low-level image processing
algorithms for remote sensing and surveillance systems. Results for Sobel, Canny

and Marr-Hildreth edge detectors are produced, amongst other techniques.

B. F. Buxton. P2502 VOILA - Vision Research Pilot Project.
2nd annual report, VOILA Consortium, May 1991. This is a report
on the state of research on the vision systems involved in the VOILA consortium,

whose aim is to develop dynamic vision systems for the control of robot vehicles.

J. Canny. A Computational Approach to Edge Detection. Pat-
tern Analysis and Machine Intelligence, 8(6):679-698, 1986. The
author presents a mathematical analysis for an edge detector based on a function

accurately approximated by the derivative of a Gaussian.

R .T . Chin and C.R. Dyer. Model-based Recognition In Robot
Vision. Computing Surveys, 18(1):67 -108 ,1986. The authors present
a comparative study and survey of model-based object-recognition algorithms for

robot vision including applications to industrial inspection.

R .T . Chin and C .A . Harlow. Automated Visual Inspection: A
Survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAM I-4(6):557—573, 1982. A wide-ranging overview of
automated visual inspection techniques is provided.

C. Cafforio and F. Rocca. The Differential Method for Image
M otion Estimation. In Image Sequence Processing and Dynamic
Scene Analysis, ed. T.S.Huang, pages 104-124, 1983. Using dif-

ferencing and cross-correlation techniques, the authors present a method for esti-

X X

ANNOTATED BIBLIOGRAPHY

[CR88]

[CSD88]

[CSDP89]

[Dav87]

[Dav90]

[DEH89]

[DF90]

[DH72]

[Dic88]

mating motion with application to television images where coding for redundancy
reduction and remote guidance is necessary.

D. Casasent and J. Richards. Industrial Use o f a Real-time
Optical Inspection System. Applied Optics, 27(22):4653-4659,
1988. An industrial inspection system is described including a label inspection
phase using the Hough transform and ID correlation.

J.L. Crowley, P. Stelmaszyk, and C. Discours. Measuring Im-
age Flow by Tracking Edge Lines. In IEEE Proceedings of the
2nd Int. Conf. on Computer Vision, pages 658-664. Computer
Society Press, December 1988. This paper proposes the idea of tracking
edges for use in updating a model of image flow, using a very simplified form of

the Kalman filter which can subsequently be implemented in hardware.

A. Chehikian, P. Stelmaszyk, and S. De Paoli. Hardware Evalu-
ation Process for Tracking Edge Lines. In IEEE Proceedings of
the Int. Workshop om Industrial Applications of Machine Intel-
ligence and Vision, pages 332-336, April 1989. A 68000 processor and
an ADSP 2100 are proposed for use in a hardware implementation of a simplified

Kalman filter for edge tracking.

E . R. Davies. Design o f Optimal Gaussian Operators in Small
Neighbourhoods. Image and Vision Computing, 5(3):199—205,
1987. This paper presents two optimised Gaussian masks which are more accurate
in reducing image noise and can maximise isotropy.

E.R. Davies. Machine Vision: Theory, Algorithms, Practicali-
ties. Academic Press, 1990.

P.M. Dew, R .A . Earnshaw, and T .R . Heywood, editors. Parallel
Processing for Computer Vision and Display. Addison-Wesley,
1989.

R. Deriche and O.A. Faugeras. Tracking Line Segments. Image
and Vision Computing, 8(4):261-270, 1990. This paper analyses two
different representations for a line segment and selects the mid-point representation
to use in its implementation of the or, (3 tracker. It also performs some detailed error

analysis.

R.O. Duda and P.E. Hart. Use o f the Hough Transformation
to Detect Lines and Curves in Pictures. Communications of the
ACM, 15(1): 11—15, 1972. The authors present the Hough transformation

technique based on the normal (p, 6) parameterisation of a line.

M. Dickey. Success Demonstrates Inspection Reliability.
Robotics World, pages 37—39, 1988. This article outlines case studies of
label inspection applications.

XXI

ANNOTATED BIBLIOGRAPHY

[Dil82]

[ERG91]

[ES89]

[EWM87]

[FK89]

[FKS83]

[Fly66]

[FM M88]

[Fre61]

E.G . Dillman. Vision System for Quality Control o f Label In-
spection. Proc. SPIE Int. Soc. Opt. Eng., 336:168-172, 1982. A
feature comparison approach based on image row and column sums is described

for inspecting labels on containers.

T.J. Ellis, P. Rosin, and P. Golton. Model-Based Vision for Au-
tom atic Alarm Interpretation. IEEE Aerospace and Electronic
Systems, 6(3): 14—20, 1991. A surveillance system is presented, implemented
as a knowledge-based recognition system. Differencing and median filtering tech-

niques are used to detect motion, followed by classification and model matching

to identify the causes of alarms.

S. Eghtesadi and M. Sandler. Implementation o f the Hough
Transform for Intermediate-Level Vision on a Transputer Net-
work. Microprocessors and Microsystems, 13(3):212-218, 1989.
A parallel implementation of the Hough transform on an eight transputer network

is presented. The authors partition the Hough space across the processors which
are updated via link communications.

T . J. Ellis, G .A .W . West, and P. Moukas. Complete Object In-
spection using CAD Models and Object Inspection. In Proceed-
ings of the Alvey Vision Club Conference, AVC87, pages 117—
124, 1987. A robot arm is employed to provide different views of an object in
its stable orientations. The authors then use CAD models of the object to check

for manufacturing defects.

H.P. Flatt and K. Kennedy. Performance o f parallel processors.
Parallel Computing, 1 2 (l) l l—20, 1989. The authors study the upper

bounds of performance of parallel processors under ideal conditions through the

impact of communication and synchronisation overheads.

T.J. Fang, L.N. Kanal, and G.C. Stockman. Experiment in
Label Inspection Using Template Matching. Proc. of Int. Conf.
on Systems, Man and Cybernetics, pages 192-196, 1983. A three-
stage experimental method for label inspection consisting of adaptive thresholding,
registration, and template matching is proposed.

M. J. Flynn. Very High-Speed Computing Systems. Proceedings
of the IEEE, 54(12):1901—1909, 1966. The author categorises machines
on instruction and data streams. His classification is widely in use today.

T.J. Fountain, K.N. Matthews, and Duff. M .J.B. The CLIP7A
Image Processor. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAM I-10(3):310-319, 1988. This paper de-
scribes the CLIP7A processor which is a 256 element linear array processor with

two CLIP7 processors at each element.

H. Freeman. On the Encoding o f Arbitrary Geometric Configu-
rations. IRE Trans, on Electronic Computers, EC-10:260-268,

XXII

ANNOTATED BIBLIOGRAPHY

[FT79]

1961. This paper describes the popular method of chain-coding using re ctangular
and hexagonal array representations of geometric shapes.

C.L. Fenema and W .B . Thompson. Velocity Determination in
Scenes Containing Several Moving Objects. Computer Graphics
and Image Processing, 9:301-315, 1979. This paper describes a non-
matching procedure which is a gradient intensity method. It detects and quantities

velocities of several moving objects in an image which may be thus segmented.

[Gel74] A. Gelb. Applied Optimal Estimation. M IT Press, 1974. This
book on optimal estimation, covers the subject from a theoretical, mathematical

and engineering point of view. Linear and non-linear estimation techniques are

covered amongst other topics.

[GM90] P.M. Griffin and S.L. Messimer. Feature Point Tracking in Time-
Varying Images. Pattern Recognition Letters, ll(12):843-848 ,
December 1990. Feature point tracking is described for non-rigid motion of
constant velocity points using minimum number of frames.

[GW87] R. C. Gonzalez and P. Wintz. Digital Image Processing.
Addison-Wesley, 1987.

[HB84] K. Hwang and F. A . Briggs. Computer Architecture and Parallel
Processing. McGraw-Hill, 1984.

[HJ83] S.M. Haynes and R. Jain. Detection o f Moving Edges. Computer
Vision and Image Processing, 21:345-367, 1983. A time-varying
edge detector is presented which helps in estimating the direction of motion by

combining edge detection and frame differencing.

[HJ88] R .W . Hockney and C.R. Jesshope. Parallel Computers 2. Adam
Hilger, 1988.

[Hoa85] C .A .R . Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

[H0I86] J. Hollingum. W indow on Japanese Vision Sensing. Sensor
Review, pages 80—82, April 1986. The label inspection application of the
MW-2000 system built by Fuji Electric Co. is reviewed.

[Hou62] P.V.C. Hough. Method and Means for Recognising Complex
Patterns. U.S. Patent 3,069,654, 1962. The author introduces the
straight-line transformation for detecting complex patterns of points in binary

image data.

[HP87] C. Harris and J. M. Pike. 3D Positional Integration from Image
Sequences. In Proceedings of the 3rd Alvey Vision Conference,
pages 233—236, 1987. Kalman filtering is applied to image point features to
determine camera ego-motion.

xxm

ANNOTATED BIBLIOGRAPHY

[HS81] B.K.P. Horn and B.G. Schunck. Determining Optical Flow.
Artificial Intelligence, 17:185—203, 1981. An iterative algorithm for

determining velocity vectors based on the spatial temporal gradient method is

presented. The motion considered here is assumed to be simple, continuous and

varying almost everywhere across the image.

[HS88] C. Harris and M. Stephens. A Combined Corner and Edge De-
tector. In Proceedings of the 4th Alvey Vision Conference, pages
147—151, 1988. This paper presents a combined comer and edge operator to
cater for images regions containing texture and isolated features such as a bush.

[HS90] C. Harris and C. Stennett. RAPID - A Video Rate Object
Tracker. In Proc. 1990 British Machine Vision Conference,
pages 73—77, 1990. The authors present a real-time model-based tracking

algorithm for a known three-dimensional object. Control points on the edges of

the known object are tracked using the Kalman filter.

[IK88] J. Illingworth and J. Kittler. A survey o f the hough transform.
Computer Vision, Graphics, and Image Processing, 44:87-116,
1988. This paper lists the wide coverage given to the Hough transform in dealing
with different parameterisations, applications, and architectures.

[Inm87] Inmos. Transputer Instruction Set: A Compiler Writer’s Guide.
Prentice-Hall, 1987.

[Inm88a] Inmos. OCCAM 2 Reference Manual. Prentice-Hall, 1988.

[Inm88b] Inmos. Transputer Development System User Manual. Prentice
Hall, 1988.

[Inm89] Inmos. The Transputer Databook. Prentice-Hall, 1989.

[Inm91] Inmos. The T9000 Transputer: Products Overview and Manual.
Prentice-Hall, 1991.

[Jai81] R. Jain. Dynamic Scene Analysis Using Pixel-based Processes.
IEEE Computer, pages 12-18, August 1981. Differencing and accu-
mulative differencing techniques are explained, and applied to classify changing
regions using a decision tree.

[JMA79] R. Jain, W .N . Martin, and J.K. Aggarwal. Segmentation
through the Detection o f Changes Due to Motion. Computer
Graphics and Image Processing, 11:13-34, 1979. Differencing tech-
niques are used to correspond changing regions of images to moving objects. Re-

finement processes, such as gap filling, are used to aid better segmentation of
(regions into) objects.

[Jon89] G. Jones. Carefully Scheduled Selection with ALT. OCCAM
User Group Newsletter, 10:17-23, January 1989. An analysis and

discussion on the implementation of fair ALT selection in O C C A M is presented.

X X IV

ANNOTATED BIBLIOGRAPHY

[Kal60] R.E. Kalman. A New Approach to Linear Filtering and Pre-
diction Problems. Journal of Basic Engineering, pages 35-45,
March 1960. Using sophisticated mathematical terminology, this is the original

paper in which Kalman re-examines the classical filtering and prediction problems.

It shows that the optimal estimate is the orthogonal projection o f the true state

upon the linear space spanned by the metisurements.

[K0088] K. Koontz. C004 Transfer Rate Problems. This was an electronic mail

posting on the occam -request@uk.ac.oxford.prg newsgroup set up for the O C C A M
and transputer community. It showed results for routing delays caused by the use

o f C004s., 1 9 8 8 .

[KR82] L. Kitchen and A. Rosenfeld. Gray-Level Corner Detection.
Pattern Recognition Letters, 1(2):95-102, 1982. A com er detector is

proposed for measuring com em ess in gray level images without prior segmentation.

[Lee83] C. C. Lee. Elimination o f Redundant Operations for a Fast
Sobel Operator. IEEE Trans, on Systems, Man and Cyb., SMC-
13(3):242—245, 1983. A useful report on the reduction o f com putation time

in performing the Sobel operator is presented.

[Lie67] P.B. Liebelt. An Introduction to Optimal Estimation. Addison-
Wesley, 1967. This book provides a very elementry , but first-rate, introduction

to the topic o f optimal estimation. It contains dedicated sections on the mathe-

matical and probability theories used in the book.

[Low87] D .G . Lowe. Three-Dimensional Object Recognition from Sin-
gle Two-Dimensional Images. Artificial Intelligence, 31:355-395,
1 9 8 7 . A process for transforming 2D image features to knowledge about the 3D

scene is presented. This involves perceptual grouping of edge segments. Also pre-

sented is a technique on segmentation o f linked points into straight line segments.

[MA78] W .N . Martin and J.K. Aggarwal. Survey: Dynamic Scene
Analysis. Computer Graphics and Image Processing, 7:356-374,
1978. An early survey o f the field which also introduced the ideas o f peripheral

and attentive processing.

[Mar80] D. Marr. Vision. Freeman, 1980. To aid visual perception, the author

proposes three levels o f representation for visual information: the primal sketch,

the 2 sketch and the 3D m odel representation.

[M CK +88] P. Morrow, D. Crookes, P. Kilpatrick, P. Milligan, and N. Scott.
A Comparison o f Two Notations for Programming Image Pro-
cessing Applications on Transputers. In Proceedings of the OC-
CAM User Group, Volume 7, pages 1-9 , 1988. This paper describes a

logical approach to routing data across an array o f transputers. It also introduces

a harness language called LATIN for performing imaging operations.

X XV

mailto:occam-request@uk.ac.oxford.prg

ANNOTATED BIBLIOGRAPHY

[ME91] M. Mirmehdi and T .J. Ellis. A Parallel Approach to Tracking
Edge Segments in Dynamic Scenes. Submitted for Publication,
1991. This paper is currently at the IEE under consideration for publication.

[Mir88] M. Mirmehdi. Comparison o f Parallel Processes in A D A and
O CCAM . Computing, June 1988. This magazine article, published in
two parts, consists of a review of the differences in AD A find O C C A M in handling
communication and synchronisation between processes.

[Mir90] M. Mirmehdi. Product Label Inspection Using Transputers.
In Proc. of Second Int. Conf on Transputer Applications 90,
Southampton (TA90), pages 408-416. IOS Press, 1990. This paper
summarises the work described in Chapter 3 of this thesis.

[Mir91] M. Mirmehdi. Product Label Inspection Using Transputers.
Concurrency: Practice and Experience, 3(4):265-273, 1991. This
is the same as the paper above which was selected to appear in an special issue of

this journal on TA90.

[MS87] M .D. May and R. Shepherd. Communicating Process Com put-
ers. Technical Report 72-TCH-022-00, INMOS Ltd., 1987. The
processor farm in its basic format is presented and applied to a ray-tracing exam-

ple. Farming is also compared to pipelining.

[MWD91] M. Mirmehdi, G .A .W . West, and G .R. Dowling. Label Inspec-
tion using the Hough Transform on Transputer Networks. Mi-
croprocessors and Microsystems, 15(3):167-173, April 1991. Us-
ing two approaches in geometric parallelism, the problem of industrial inspection

is examined by using a variation of the Hough transform specially suitable for
parallelisation.

[Nag83] H.H. Nagel. Overview on Image Sequence Analysis. In Image Se-
quence Processing and Dynamic Scene Analysis, ed. T.S.Huang,
p a g e s 2—39, 1983. A review paper outlining some motion analysis techniques
and some attempted applications up to 1983.

[Nib85] W . Niblack. An Introduction to Digital Image Processing. Pren-
tice Hall, 1985.

[OHRS90] K. Obermayer, H. Heller, H. Ritter, and K. Schulten. Simu-
lation o f Self-Organising Neural Nets: A Comparison between
a Transputer Ring and a Connection Machine CM -2. In Proc.
Third Int. Conf. of NATUG, pages 95-106,1990. Benchmark studies
are presented to compare the performance of parallelised Self-Organising Feature

Maps on two parallel systems. Of interest is the mapping of neuron nodes to trans-

puter nodes.

[Oka84] Y . Okawa. Automated Inspection O f The Surface Defects O f
Cast Metals. Computer Vision, Graphics, and Image Processing,

X XV I

ANNOTATED BIBLIOGRAPHY

2 5 :8 9 —112, 19 84 . The author presents a method of detecting surface defects
of cast metals.

[Pag88] I. Page, editor. Parallel Architectures and Computer Vision.
Clarendon Press, 1988.

[P M 8 7] D. Pountain and D. May. A Tutorial Introduction to OCCAM
Programming. Inmos Document 72 O C C 0 4 6 0 0 , 19 87 .

[P N R C 9 0] D. Prior, M. Norman, N. Radcliffe, and L. Clarke. W hat Price
Regularity? Concurrency: Practice and Experience, 2 (1) :5 5 —78 ,
1 9 9 0 . The authors review various properties of irregular graphs and suggest

their use as useful maps for connecting processors together in distributed memory
machines.

[Pra85] T .W . Pratt. Pisces: An Environment for Parallel Scientific Com -
putation. IEEE Software, 2 (4) :7 —2 0 , 1 9 8 5 . A virtual machine which
provides a simulated MIMD environment for parallel computation using processes

that can communicate asynchronously.

[Qui87] M.J. Quinn. Designing Efficient Algorithms for Parallel Com-
puters. McGraw-Hill, 1987.

[R D 8 6] A .W . Roscoe and M. Dathi. The Pursuit o f Deadlock Freedom.
Technical Report Monograph PRG-57, Oxford University Com -
puting Laboratory, 1 9 8 6 . This booklet describes a CSP approach to proving

programs free of deadlock.

[Red88] S. Redfern. Implementing Data Structures and Recursion in
OCCAM . Technical Report 72-TCH-038-00, INMOS Ltd., 1988.
A brief technical report with tips on handling queues, stacks and lists, including

methods of coping with recursion.

[Ree84] A.P. Reeves. Survey: Parallel computer architectures for image
processing. Computer Vision, Graphics, and Image Processing,
2 5 :6 8 —8 8 , 1 9 8 4 . Pipeline, SIMD and MIMD structures for image analysis are

surveyed, and a simple model for the comparison of such systems is proposed.

[R O H 8 8] A. Rosenfeld, Ornelas.J., and Y . Hung. Hough Transform Al-
gorithms for Mesh-Connected SIMD Parallel Processors. Com-
puter Vision, Graphics and Image Processing, 41:293-305,1988.
Different techniques in improving the performance of the Hough transform on
SIMD arrays are presented and tested on the GAPP and MPP.

[Ros83] A. Rosenfeld. Motion: Analysis o f Time-Varying Images. Funda-
mentals in Computer Vision, ed 0 D Faugeras, pages 1 7 3 -1 8 3 ,

1 9 8 3 . A short review paper providing an outline of pixel-based and region-based
techniques in estimating motion, followed by some remarks on the inference of

structure from motion.

X X V ll

ANNOTATED BIBLIOGRAPHY

[Ros88] A. Rosenfeld. Computer Vision: Basic Principles. Proceedings
of the IEEE, 76(8):863—868, 1988. This invited paper provides a general

review of the techniques, operations, and architectures used in computer vision.

[RP80] W . Reichardt and T . Poggio. Figure-Ground Discrimination
by Relative Movement in the Visual System o f the Fly, Part
I: Experimental Results. Biology and Cybernetics, 35:81-100,
1980. The motion detection and measurement in the visual system of the fly

is based on non-linear multiplication-like interactions between adjacent pairs and
groups of photoreceptors. A fly can detect and track a figure which moves relative

to a ground of similar texture.

[RPBK90] M. Rygol, S. Pollard, C . Brown, and J. Kay. MARVIN &
TIN A: A Multiprocessor Vision System. In Proc. of Second
Int. Conf. on Transputer Applications 90, Southampton (TA 90),
pages 2 1 8 —2 2 5 . IOS Press, July 1 9 9 0 . The authors present a multi-

transputer vision system (using specially developed hardware) for recovery of 3D
scene geometry, and for control of a robot arm.

[RW89] P.L. Rosin and G .A .W . West. Segmentation o f Edges into Lines
and Arcs. Image and Vision Computing, 7 (2):109 -114 ,1989. This
paper summarises line and arc segmentation algorithms based on Lowe’s work on

perceptual organisation.

[SBC+89] M. Stephens, R. Blissett, D. Charnley, E. Sparks, and J. Pike.
Outdoor Vehicle Navigation using Passive 3D Vision. In Proc.
1 989 IEEE Conf. on Computer Vision and Pattern Recognition,
volume 1, pages 556-562, June 1989. The ego-motion of a camera

mounted on am outdoor vehicle is determined by tracking feature points such as
comers. Also, triangulation techniques are used to form 3D surfaces to determine

navigable areas in images.

[Sch89] R.J. Schalkoff. Digital Image Processing and Computer Vision.
John W iley & Sons, 1989.

[SH88] M. Stephens and C. Harris. 3D Wire-Frame Integration from
Image Sequences. In Proceedings of the 4th Alvey Vision Con-
ference, pages 159—165, 1988. Edge-vertices are used as features in the
DROID system as a preparation for determining structure from motion.

[Sha89] J. G. Shabushnig. Inspection o f Pharmaceutical Packaging with
Linear-Array Video Sensors. In Society of Manufacturing En-
gineers Vision 89 Conference, pages 13-23, 1989. The inspection
of label position on a cylindrical bottle and verification of proper child-resistant

closure on the bottle are examined.

[Sho84] J. E. Shore. Second Thoughts on Parallel Processors. In Com-
puting and Electrical Engineering, volume 1, pages 95-109,1984.

XXVlll

ANNOTATED BIBLIOGRAPHY

[SJ84]

[SJ87]

[STD90]

[TB81]

[TC89]

[TD90]

[THKS88]

[TLM+90]

This paper present another classification of parallel processors by dividing them
into six classes depending on the amount of processing and memory hardware.

M .A. Shah and R. Jain. Detecting Time-Varying Corners. In
7th Int. Conf. on Pattern Recognition, volume 1, pages 2 -5 ,
1984. A com er detector is developed combining the Zuniga-Haralick Com er

Detector [ZH83], and the differencing o f two images in a sequence.

I.K. Sethi and R. Jain. Finding Trajectories o f Feature Points
in a Monocular Image Sequence. IEEE Transactions on Pattern
Analysis and Machine Intelligence, P A M I-9 (l):5 6 -7 3 ,1987. This
is an important paper addressing the problem of correspondence. It examines point
tracking by taking the ideas of smoothness of motion and path coherence into
consideration. It selects the most smooth trajectory from the possible set as the

most appropriate track for a point.

G. A. Stephen, C. A . Taylor, and E. L. Dagless. Real Time Image
Analysis for Dynamic Displacement Measurement. In Proc. of
Second Int. Conf. on Transputer Applications 90, Southampton
(TA90), pages 2 1 1 —2 1 7 . IOS Press, July 1 9 9 0 . A correlation technique

is used by the authors to find the match for a template in a search area. A least

squares method is then used for tracking.

W .B . Thompson and S.T. Barnard. Lower-Level Estimation and
Interpretation o f Visual Motion. IEEE Computer, pages 20-28,
August 1981. Thi paper reviews intensity-based and token-based techniques.

S.M. Thomas and Y .T . Chan. A Simple Approach for the Esti-
mation o f Circular Arc Center and its Radius. Computer Vision,
Graphics, and Image Processing, 45:362-370, 1989. This is a short
note for the estimation of the center and radius of a circular arc by minimising the
least-mean-square errors between the given set of data points and the curve.

R. W . Tregidgo and A . C. Downton. Processor Farm Analy-
sis and Simulation for Embedded Parallel Processing Systems.
Proc. of 12th OCCAM User Group Technical Meeting, pages
179—189, 1990. The authors provide a mathematical analysis of processor
farms and attempt to show that general-purpose multi-processor systems can be

analytically designed.

C. Thorpe, M.H. Hebert, T . Kanade, and S.A. Shafer. Vision
and Navigation for the Carnegie-Mellon Navlab. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, PAMI-
10(3):362—373, 1988. Using low resolution images, this work describes the

implementation o f a colour classification algorithm for road-edge following and 3D

vision techniques for obstacle detection and avoidance.

B .T . Thomas, R .A . Lotufo, A .D . Morgan, D.J. Milford, and E.L.
Dagless. Real-Time Image Analysis for Vision Guided Control.

xxix

ANNOTATED BIBLIOGRAPHY

[TM86]

In IEE Proceedings of UK IT Conference, pages 6 6 -7 0 . I E E ,
March 1990. This paper implements an edge tracking algorithm and a sur-

face segmentation technique, both specifically for road-edge following, on a multi-
transputer architecture.

C.L. Tan and W .N . Martin. A Distributed System for Analyz-
ing Time-Varying Multiresolution Imagery. Computer Vision,
Graphics and Image Processing, 3 6 :1 6 2 -1 7 4 , 1 9 8 6 . The authors

present a hierarchical, pipelined, multi-resolution object tracking system imple-
mented on a VAX machine, using the PISCES MIMD message-passing simulation

package.

[Tre88] P. C. Treleaven. Parallel Architecture Overview. Parallel Com-
puting, 8 :5 9 —7 0 , 1 9 8 8 . This paper provides an overview of some recent

parallel architectures, and discusses their likely commercial impact.

[U1179] S. Ullman. The Interpretation of Visual Motion. The M IT Press,
1 9 7 9 . Using artificial intelligence methodology to investigate the phenomena of
visual motion perception, the author attends to the problems of correspondence
and structure from motion.

[U1181] S. Ullman. Analysis o f Visual Motion by Biological and Com -
puter Systems. Computer, 1 4 :5 7 -6 9 , August 1 9 8 1 . This pa-
per divides motion measurement techniques into intensity-based and token-based

schemes. It concludes by an update on the state of the recovery of structure from
motion.

[VTL90] E . Verhulst, H. Thielemans, and K . Leuven. Preemptive Pro-
cess Scheduling and Meeting Hard Real-Time Constraints with
TR A N S-R TX c on the Transputer. In Proc. of Second Int. Conf.
on Transputer Applications 90, Southampton (TA90), pages
2 8 8 —2 9 5 . IOS Press, 1 9 9 0 . The authors discuss several design features

of a transputer operating system capable of running processes at multiple priority
levels.

[WH90] E.L. Walker and M. Herman. Geometric Reasoning for Con-
structing 3D Scene Descriptions from Images. Artificial Intel-
ligence, 34:275—290, 1990. This paper describes a method for completing

object descriptions and performing model matching, using model domain knowl-
edge and geometric reasoning.

[WP89] J. Wexler and D. Prior. Solving Problems with Transputers:
Background and Experience. Microprocessors and Microsys-
tems, 1 3 (2) :6 7 —78 , 1 9 8 9 . A general survey of distinctive characteristics
of transputer-based concurrent system’s design using OCCAM is presented.

[WRHR91] C. Weems, E. Riseman, A. Hanson, and A. Rosenfeld. The
D ARPA Image Understanding Benchmark for Parallel Com put-
ers. Journal of Parallel and Distributed Computing, 11(1):1—24,

xxx

ANNOTATED BIBLIOGRAPHY

[Yam83]

[YIT80]

[ZH83]

1991. A detailed study and comparison of a set of image analysis tasks on various
parallel computers is presented. The benchmark itself is also examined.

T . Yamamura. Autom ated Label Inspection Apparatus. In In-
formation Processing 83, pages 169-172, 1983. A linear scan approach
for the inspection of labels on Whisky bottles is presented.

M. Yachida, M. Ikeda, and S. Tsuji. A Plan-Guided Analysis
o f Cineangiograms for Measurement o f Dynamic Behaviour o f
Heart Wall. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, PAM I-2(6):537-543, 1980. Movement of heart wall
boundaries are detected by applying edge filters to differenced images, and using
correspondence between portions of the wall between successive frames.

O. A . Zuniga and R. M. Haralick. Corner Detection Using the
Facet Model. In Proc. 1985 IEEE Conf. on Computer Vision
and Pattern Recognition, pages 30-37, 1983. The pixel values in a

given neighbourhood are considered to be discrete quantised noisy samples from

an underlying continuous gray tone intensity surface. Using this assumption, the

comemess of the pixel neighbourhood is measured.

X X X I

ANNOTATED BIBLIOGRAPHY

XXX11

Appendix A

Hardware and Software Lists

The following provides a listing o f the hardware and software systems used
at various stages o f this work. The list in A . l corresponds to the work in
Chapters 3 and 4, and the list in A .2 corresponds to the work in Chapter 6.

A .l Label Inspection

The transputer modules in the list below are early, non-standard items from
Transtech Ltd.

• Standard IBM -PC compatible computer with an 8MHz 80286 proces-
sor, EG A colour monitor, and 20Mbyte hard disk.

• An INMOS B004-compatible board designed to slot into an IBM -PC
compatible computer. The board contains a T800-20MHz transputer
which is connected to a PC port via its link 0. It has 2Mbytes o f
RAM accessable at a rate o f 4 processor cycles. Earlier, the board
had been fitted with both a T414-12MHz chip and a T800-20MHz
chip, and both o f these have also been used for quoting some figures
in the thesis.

• Transtech TSM B-16 Module motherboard mounted on a customised
Transtech metal box with a power unit. The board is capable o f hous-
ing 16 vertically mounted transputer modules, and contains a C004
crossbar chip which is accompanied with basic configuration software.

• Four TSM42 20MHz modules, each with 1 Mbytes o f RAM with an
access rate o f 4 processor cycles fitted onto the TSM B-16 motherboard.
The module links are capable o f bi-directional data transfer at rates
o f up to 2.35M bytes/sec.

• Data Translation DT2853 512x512x8-bit frame-grabber board fitted
into the PC. It has two on-board memory buffers, and features a

XXXlll

APPENDIX A. HARDWARE AND SOFTWARE LISTS

hardware cursor, LUT processor, and 1:1 pixel aspect ratio. This
frame-grabber was interfaced using specially written software to com -
municate with the B004 transputer via the PC server program (all as
part o f TIPS).

• Standard CCD camera with 12.5-75mm F1.8 6X zoom lens.

• An EIZO 3010 12” monochrome monitor, used for viewing images.

• The TDS development environment version D700B, later D700C.

• Development and use o f TIPS (version 1.0 and later 2.0).

A .2 Correspondence Analysis and Token
Tracking

The transputer hardware in this section is completely industry-standard,
except for the Harlequin frame-grabber board.

• Standard IBM -PC compatible computer with an 8MHz 80286 proces-
sor, EG A colour monitor, and 20Mbyte hard disk.

• An INMOS B 004-compatible board designed to slot into an IBM -PC
compatible computer. The board is connected to a PC port via one
o f its links. It has 2Mbytes o f RAM with an access rate o f 4 processor
cycles.

• A Harlequin transputer-based, 512x512x8-bit, frame-grabber board
designed to slot into an IBM -PC compatible computer. It has a T800-
20MHz transputer with 1 Mbyte o f RAM with an access rate o f 4
processor cycles, in addition to its two dual-ported image buffers. This
board is compatible with the INMOS B007 graphics board.

• A B012 Eurocard T R A M motherboard with slots for up to 16 TRAM s
where T R A M s are TRAnsputer Module boards, housed in customised
Transtech metal box with power unit.

• Eight T R A M s each with a T800-25MHz transputer and 1 Mbyte o f
RAM with an access rate o f 3 processor cycles. These are 32-bit pro-
cessors with a 64-bit floating-point unit, 4K on-chip SRAM , and 4 links
capable o f bi-directional data transfer at rates o f up to 2.35M bytes/sec
per link.

xxxiv

A.2. CORRESPONDENCE ANALYSIS AND TOKEN TRACKING

• The Harlequin’s graphic display generates its output via a raster scan
through a block o f memory. The bytes accessed as such are then
converted into an 18-bit colour combination using the board’s Red,
Green and Blue output channels via a programmable LUT. This allows
the use o f up to 256 colour combinations which were used for the
display o f the results shown in Chapter 6.

• Eight further TR A M S, each with a T805-25MHz transputer and 1
Mbyte o f RAM each with an access rate o f 4 processor cycles. The
T805 is essentially a T800 with extra processor instructions used for
debugging purposes.

• A Packard Bell colour monitor used to view the colour image results.

• Standard CCD camera with 12.5-75mm F I.8 6X zoom lens.

• MMS2: Standard INMOS network configuration software.

• The TDS development environment version D700D.

• Further development and use o f TIPS (version 3.0).

xxxv

APPENDIX A. HARDWARE AND SOFTWARE LISTS

X X X V I

