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Abstract

The techniques of visual programming, in which programs are constructed using 
graphical representations, have much to offer concurrency. This thesis reports on 
work performed during the development of the visual programming language, 
GILT (Graphical Language for Transputers). GILT uses a mixed text-graphics 
paradigm to aid the parallel programming process. It is strongly hierarchical and 
mixes visualisations of Occam style processes, inter-process communication and 
control flow to yield new representations of concurrent programming structures. 
GILTs syntax is fully defined using graph grammars and extended BNF, which 
together provide a new syntactic formalism for visual languages which have a 
mixed text-graphics model.

To support the production of GILT programs, a prototype environment has been 
developed. The environment, which has been developed on a Sun workstation, 
consists of a program editor and a compiler within an integrated runtime 
environment. The editor has been constructed using standard user interface 
components and it is shown that such components are well suited to the rapid 
prototyping of visual languages. GILT’S compiler uses a graph reduction principle 
which is applicable to other visual languages and produces Occam as its output.

Parallel programming is a significantly complex matter for which definitive 
solutions will not be produced in the near future. This thesis therefore 
concentrates on the development of a unified set of techniques for the production 
of visual languages which are aimed at easing the problems of parallel 
programming.



1

Graphical tools for parallel 
programming

1.0 Introduction

Parallel (concurrent) programming is becoming increasingly important as 
multiprocessor based computers rapidly become viable alternatives to more 
trad itional, uniprocessor, machines. Technological lim itations on the 
computational power which may be attained by a single processor signify the 
eventual replacement of uniprocessor machines with parallel computers in very 
many areas.

Writing programs for parallel computers is an extremely complicated and 
problematical matter. Significant problems are caused by the inherent complexity 
of parallel systems and the interactions between their potentially myriad 
components, though even the behaviour of very simple parallel systems can be 
astonishingly complex. Diverse works have noted that parallelism is a particularly 
difficult area for programmers to work in. Programmers used to conventional 
sequential programming often find the conversion to "thinking parallel" quite 
difficult and tedious. In part this may be due to their conditioning into "thinking 
sequential" while programming and a reflection of the effect that the classical 
single processor von-Neumann architecture has had upon computing (Iannucci, 
1983).

Although parallelism in not a new concept, the emergence of formally well 
founded methodologies and tools to aid the design and analysis of concurrent 
systems by overcoming the problems mentioned above has been relatively recent. 
The development of further tools and methodologies is essential to manage the 
complexity of parallel processing and aid the wide usage of parallel machines.

Methodologies like Hoare’s Communicating Sequential Processes, CSP, (Hoare, 
1985) and Milner’s Calculus of Communicating Systems, CCS, (Milner, 1980) have 
advanced the study of parallelism and laid a theoretical framework for the design 
and study of the next generation of parallel systems.

Many tools have been developed for sequential programming, but the need for 
new parallelism specific tools aiding the concurrent programming process has 
been extensively noted, for example in (Cavano, 1988). Visual (graphical) program

l - l
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development tools, which use computer graphics to aid the software development 
process, are one class of tools which have received increasing attention lately. The 
development of such tools is often motivated by arguments drawing on hopes of 
better exploiting the capabilities of the right hand side of the human brain, which 
is currently under utilised in programming (Shu, 1988). To understand why this is 
so it is necessary to examine the distribution within the brain of the highly 
specialised cerebral functions. These functions are in general asymmetrically 
divided between the right and left hemispheres of the brain, which function 
independently of each other to a certain degree. The left cerebral hemisphere is 
commonly thought of as a sequential information processor with specialised areas 
for verbal (spoken and written) expression. It is this side which is traditionally used 
in textually based programming. The right side of human brain is held to think in 
a more intuitive and artistic sense, for example perceiving melodies and other 
complex non-verbal patterns. Images captured in toto are analysed in such and the 
right side of the brain is seemingly capable of parallel processing. Perhaps the use 
of an area of the brain capable of "thinking in parallel" might be useful for the 
programming of concurrent computers? It has also been observed (Backus, 1977) 
that concurrency introduces an "extra dimension" to programming not present in 
conven tional sequen tia l program m ing, m aking the investigation  of 
multi-dimensional (visual) tools for the development of parallel programs seem 
natural.

Some authors have gone so far as to suggest that graphics can completely replace 
text in the programming process. It must be remembered that graphics cannot 
supplant text in very many situations. Badly presented graphical representations 
are at best confusing and at worst unintelligible, while textual representations are 
essential for the expression of fully abstract concepts. Graphical representations 
and textual representations should be seen as complementing each other perfectly. 
Annotated diagrams are a primary example of this fact, which is often forgotten 
in anonymous quotations like "a picture is worth a thousand words".

Visual program development tools for parallel systems may be divided into three 
categories, visual process to processor mapping tools, visual programming tools 
and program visualisation tools. The definitions of the terms "visual programming" 
and "program visualisation" are due to Myers (1988).

Visual process to processor mapping tools are specific to parallel systems. They 
encompass systems which allows the users to specify the mapping of processes to 
processors in a two (or more) dimensional fashion. Visual process to processor 
mapping tools are closely related to visual programming tools, and in some senses 
can be considered a subset of visual programming tools. They are considered 
separately in this thesis.

Visual programming refers to any system that allows the user to specify a program 
in a two (or more) dimensional fashion. Conventional, textual, languages are not 
considered two dimensional since their compilers and interpreters process them 
as long one dimensional streams. Visual programming includes graphical 
programming languages and the use of conventional flow charts to create

1-2
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programs. It does not include systems that use conventional (linear) programming 
languages to define pictures.

Program visualisation is an entirely different concept from visual programming. 
In visual programming, the graphics is the program itself, but in program 
visualisation the program is specified in a conventional textual manner, with 
graphics used to illustrate some aspect of the program or its runtime execution. If 
a program created using visual programming is to be displayed or debugged, clearly 
this would be done in a graphical manner, but this would not be considered to be 
program visualisation.

1.1 Objectives and synopsis

The aim of the work reported in this thesis was to investigate how the techniques 
of visual programming could be applied to the development of parallel software 
for Transputer (Inmos, 1989a) systems. Although the investigation was to be 
Transputer and Occam (May, 1987) specific, as many generalised principles as 
possible were to be extracted for future use. To illustrate the techniques developed 
during the research a prototype "demonstrator" system was to be created. Any such 
system requires three basic components; a language specification, an editing 
system and a translation or compilation system. These components form the 
backbone of the work reported in the thesis.

The thesis describes the development of the demonstrator visual programming 
language "GILT' (Graphical Language for Transputers) together with its 
supporting software and the general techniques created for its implementation. 
GILT is a language relying on the close integration of text and graphics. It 
combines different visualisations of Occam programs to create a unique new 
system for the development of parallel software. GILTs approach allows visual 
programming to be used throughout the programming process except at the very 
lowest levels, which are performed using Occam. It also provides convenient 
visualisations for concurrent programming structures (such as the guarded 
execution of processes) not previously possible. To reflect GILT’s mixed 
textual/graphical nature, its syntax relies upon context free graph grammars (for 
the visual parts of the language) and on context free text grammars (for the textual 
parts of the language). An integrated environment for GILT programming has 
been designed and implemented on a Sun 4/110 workstation (Sun, 1988). The 
environm ent makes heavy use of the Sun’s graphics capabilities. The 
environment’s program editing system is written in C, while the majority of the 
compiler (with the exception of the tokeniser) has been constructed using Prolog. 
A novel parsing method, which is based on graph reduction, and is suited to visual 
languages, is used in the compiler. The compiler produces Occam code suitable 
for further compilation using the Inmos Transputer Development System (Inmos, 
1989), available on a specialised Transputer system (Transtech, 1989) attached to 
the Sun 4/110 used for development of GILTs environment. Software for the 
management of the user interface to the compilation system has also been written 
together with an error detection and display subsystem for the compiler. Figure
1.1 shows a block diagram for the software developed to support GILT.
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Figure 1.1 - A Block Diagram of the GILT system
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1.2 Thesis outline

Chapter two is concerned with previous work relevant to the thesis. Methodologies 
for the design and implementation of concurrent systems are discussed together 
with their relationship to graphical program development tools. Examples of such 
tools for parallel systems, together with a few relevant sequential systems, are 
discussed and categorised.
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Chapter three introduces Occam and the Transputer, discusses visualisations of 
Occam programs and Transputer arrays and analyses their features. A brief 
introduction to the GILT language is given together with the major decisions taken 
in its design. The relationship between the features of GILT and the analysis 
earlier in the chapter is clarified.

Chapter four examines approaches to the development of a formalised syntactic 
and semantic definition for visual languages based on a mixed textual/graphical 
paradigm similar to that used by GILT, drawing on the brief introduction of 
chapter three. It forms a basis for a full definition of the language and demonstrates 
how the visual constructs and symbols used in GILT may be modelled using graph 
grammars. The approach used for GILTs syntax is a new one and is based on the 
use of context free graph grammars and context free text grammars.

Chapter five gives a full definition of the GILT language. The syntax of the 
language is presented and discussed together with an informal semantic definition 
of the language’s constructs, which is based on the correspondence between 
constructs in GILT and those in Occam. Example GILT programs are also given 
and discussed, showing how GILT can aid the development of Transputer 
applications.

Chapter six gives details on the editing system developed for the creation of GILT 
programs which is, unlike previous visual language editing systems, based on the 
use of conventional user interface components. The Sunview system, which was 
used for the implementation of the editing system, is described as are the data 
structures used for the internal representation of the diagrams.

Chapter seven deals with the compilation of GILT diagrams into Occam, 
describing the tokeniser, parser and code generator which have been developed. 
As a conventional approach to tokenisation and parsing is not possible for visual 
languages like GILT, new approaches are developed and described, based on the 
graph grammar syntax representation developed in chapter four.

Chapter eight summarises the results obtained from the work described in the 
previous chapters of the thesis, provides suggestions for future related work and 
draws conclusions.

In addition, appendices are included giving the syntax of Occam (appendix one), 
a formal definition of the graphs and graph grammars used in chapter four and five 
(appendix two), and published work relevant to the thesis (appendix three).
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2

A review of related work

2.0 Introduction

This chapter briefly outlines approaches to the development of parallel software, 
their importance and their relationship to tools and to visual tools in particular. 
Specific graphical tools are then discussed and classified into various categories 
for analysis.

Some tools not specifically concerned with the development of parallel programs 
are also included, where they are considered to be useful and relevant.

2.1 Methodological approaches to parallelism

Mathematical models of parallelism are clearly desirable and are now seen as an 
essential basis for the design of reliable parallel systems. Hoare’s CSP work 
(Hoare, 1985) is the basis of the Occam programming language (May, 1987) and 
is deeply concerned with the material of this thesis. In other fields of computer 
science, formal methods are finding widespread acceptance for system 
development. For example, the VDM (Jones, 1990) and Z (Spivey, 1989) 
methodologies are now commonly used in the formal definition of software 
systems. Further acceptance of such formal methods will mainly depend on two 
factors - the skills of the available work force and the ease of use of formally based 
systems and languages. The development of formally based tools to ease the use 
of rigorous methods in software design and implementation is vital.

Occam (May, 1987) is a language for concurrent programming which is based on 
CSP. Having such a well founded formalism underlying a language confers certain 
advantages. For example, it is possible to prove the correctness of small programs, 
and to apply the techniques of program transformation to the enhancement of 
performance (Roscoe and Hoare, 1986). Relationships between methodologies 
and languages like that between CSP and Occam are increasingly seen as desirable.

Other, higher level, tools using well founded design mechanisms seek to abstract 
design from implementation. Such computer aided software engineering (CASE) 
tools have been developed for distributed and parallel systems (Shatz and Wang, 
1989). These tools seek to apply methodologies at a much higher level of 
abstraction than do languages based on formalisms.
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Visual program development tools have the potential to confer considerable 
advantages on software development tools throughout the software development 
and maintenance process. They can offer more humanistic interfaces to formally 
well founded methods and thus facilitate the greater use of such methods. Several 
reasons for the adoption of visual program development tools were discussed in 
chapter one.

2.2 Work carried out on visual program development tools for 
parallel systems

Although the origins of the study of visual program development tools go back to 
the 1960’s, the field is generally regarded as a recent sub-discipline of computer 
science because suitable technology allowing the widespread use of visual tools in 
the programming environment has only recently become available. Mid eighties 
systems like Piet (Glinert and Tanimoto, 1984) were extremely limited, aimed at 
novice programmers and concerned with sequential programming, but more 
recent developments have centred on aiding professional programmers.

Most recent review papers have been concerned with the wide areas to which 
graphical program development tools have been applied and have not in the main 
focused on visual tools for use with parallel systems. Of such works, developments 
in the visual programming and program visualisation fields are discussed in 
(Myers, 1988), (Shu, 1988) and in (Raeder, 1985). Few of the systems reviewed in 
the papers have been concerned with the generation and maintenance of parallel 
programs, instead focusing on sequential or object oriented programming systems. 
Ambler and Burnett (1989) discuss landmark systems and the impact of available 
technology on the development of visual tools.

2 3  Theoretical aspects of visual tools

Many early visual programming systems lacked a methodological approach. 
Research concentrated on the benefits conferred by visual representation. Systems 
without grammars or any form of language specification were also produced. It is, 
however, reassuring to see a growing, more formal, approach to the specification 
of visual languages. Graph grammars in particular have found application in the 
specification of the syntax of visual languages. A graph grammar may define the 
syntax of a visual language in the same way that a conventional context free 
grammar may define the syntax of a string language. Graph grammars and their 
relationships with visual languages and graphical tools are discussed later in the 
thesis, but several authors have produced important work worthy of mention here. 
Possibly the most notable, (Harel 1988), discusses work on Hi-Graph theory. 
Harel’s work provides the basis of a formal method for describing the syntax of 
many diagrams. Hekmatpour and Woodman (1987) describe a syntax directed 
editing system for the development of graphical languages, aiming to cut down on 
the time required to implement a visual language editor. A similar approach is 
taken by Gottler (1989) in which an editing system based on context dependent 
graph grammars, whose productions may be visually input, is described. Harada
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and Kunii (1984) discusses recursive graph theory as a formal basis for a visual 
design system.

Many visual programming systems rely heavily on the techniques of iconics 
(Lodding, 1983). Icons are commonly used for the representation of data, 
programs, processes, etc. Attempts have been made to produce formal models of 
iconic systems. Perhaps the best known work is (Chang, Tortora, Yu and Guercio, 
1987). Chang et al separate generalised icons into a logical part (concerned with 
the meaning of the icon) and a physical part (the image). Iconic "operators" define 
an "icon algebra" for the construction of complex icons and specification of 
semantics for iconic constructs. A language generation system for purely iconic 
systems based on the work described above has also been produced (Chang, 
Tauber, Yu and Yu, 1987).

2.4 Visual program development technologies

In addition to graphical computer aided software engineering (CASE) tools two 
main types of graphical program development tool are acknowledged in literature 
on the subject - visual programming tools and program visualisation tools. 
Recently, however, a new class of tools unique to concurrent programming can be 
seen emerging. These tools deal with the problems of mapping processes to 
processors in a visual way. They will be referred to here as visual process to 
processor mapping tools and have much in common with the techniques of visual 
programming. Other systems concerned with the simulation of parallel machines 
and software also have some relevance.

2.4.1 Visual programming systems for parallel computation

The term "visual programming" refers to any system that allows the user to specify 
a program in a two or more dimensional fashion. Many visual programming 
systems have been produced for conventional sequential and object oriented 
systems. Surprisingly few systems have been developed for use in concurrent 
programming, and it is possible to review all major work in the area.

Although the visual programming systems discussed here differ from each other 
in many respects it is possible to identify a few common trends within the following 
systems.

Firstly, the majority of parallel visual programming languages use visual 
programming for the specification of static programming structures. These 
structures, for example fixed inter-processor communications pathways or 
dataflow networks, do not change with time. Such languages will be termed "static 
visual programming languages". The production of "dynamic visual programming 
languages", which are concerned with dynamically evolving structures, is a difficult 
task having more in common with the techniques of program visualisation, 
discussed later in this chapter. This is probably because the majority of textual 
concurrent programming languages, such as Occam, are concerned with the
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specification of fixed inter-process communications structures. Only one notable 
system concerned with dynamic visual programming has emerged (Kaplan, 
Goering and Campbell 1989). In this system, dynamically evolving parallel 
structures are described through the use of a graphically displayed graph grammar, 
which constrains the connections that may evolve between processes, and textual 
process descriptions. Program structures can be viewed in execution by users of 
the system, which has many elements of program visualisation embedded in it.

A large amount of the work carried out on static parallel visual programming 
systems has been concerned with dataflow or functional models of parallelism. 
Many of these systems use visual interconnections for the specification of data 
dependencies or pathways (for example in dataflow program graphs or in CSP style 
inter-process communication pathways). Text is then used for the behavioral 
specification of individual components. This approach is often justified by claiming 
that text is a good communicator of sequential algorithms, and that the structural 
aspects of parallelism are better represented visually.

Other, mainly Petri-net based, systems visually model the flow of control in parallel 
systems. Systems based on flow chart like design methodologies with added 
paralle lism  have also been proposed. V isualisation of in ter-process 
communication is not usually included in these systems. Again, textual 
specification is often used as an expression of the functionality of individual 
components, while graphics are used for high level overviews.

In general, parallel visual programming systems tend therefore to concentrate on 
particular aspects of the programming paradigm being visualised. Few systems 
incorporate control flow and inter-process communication in the same model.

2.4.1.1 Petri-net based systems

Petri-nets (Peterson, 1977) are a naturally parallel and visual methodology. They 
have been widely used for the design and analysis of parallel systems and have had 
a major impact on parallel visual programming systems. Of the few fully parallel 
visual programming systems, a large percentage have been based on Petri-net 
models.

The PFG system (Stotts, 1988) uses hierarchical graphs for the expression of data 
structures. Enhanced Petri-nets express the flow of control within the system and 
operations on data structures defined by the graphs.

EDDA (Kerner and Rainel, 1986) is more loosely based on Petri-net theory and 
makes use of dataflow techniques. Program graphs in EDDA are dataflow in 
nature, but borrow concepts from Petri-nets such as token generation and the 
"firing" of nodes. Nodes in the graphs correspond to user defined computations 
expressed in textual program code, further graphs, or to system defined flow 
directing "actors".
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Coloured Petri-nets (Peterson, 1980) form the basis of the MOPS system (Ae, 
Yamashita, Cuhna and Matsumoto, 1986) which is designed to allow parallel 
systems to be constructed and simulated. Coloured Petri-nets expand on the 
simple Petri-net model by the introduction of coloured tokens to represent the 
activation of reentrant code (e.g. recursion). Specifications for modules in the 
system are written in a sequential, textual, programming language.

A later system along similar lines but aimed at the rapid prototyping of real-time 
software has also been developed (Ae and Aibara, 1987).

Transaction networks, based on Petri-net theory, are the subject of work by 
Kimura (1988). Kimura’s system supports a produce/consume paradigm in which 
transaction networks graphically specify computations on "source" and "target" 
databases. Transactions are atomic actions void of internal state. When 
transactions are fired they consume data from source databases, leaving their 
results in target databases. The networks are equivalent to Petri-nets where tokens, 
places and transactions correspond to data, databases and transactions 
respectively.

In the SPECS project (Dahler, Gerber, Gisiger and Kundig, 1988) extended 
Petri-nets are used to model the hierarchical structure and control flow of 
concurrent systems. Data structures and sequential program behaviour are 
described using the Smalltalk (textual) language.

VERDI (Graf, 1987) is a system intended for the design and specification of 
distributed computer systems. N-party interactions are described in the language 
by Petri-net like diagrams labelled with interaction points. Control flow therefore 
forms the major part of the visualisation, which is animated to allow users to see 
the program running by watching the movement of tokens around the diagrams.

2

2.4.1.2 Dataflow and functionally based visual programming systems

Dataflow graphs are another naturally parallel paradigm that has found use in the 
development of static visual programming systems. Various authors have asserted 
that functional style dataflow programming languages are far more clearly 
represented visually then they are textually, for example (Davis and Keller, 1982; 
Cox and Pietrzykowski, 1985; Gillett and Kimura, 1986a). Most of the dataflow 
based visual programming languages that have been developed do not produce 
code for parallel machines. Instead, they compile dataflow languages into code for 
execution on conventional, sequential machines. As such systems could easily be 
modified to generate code for parallel computers like the Manchester dataflow 
machine (Gurd, Kirkham and Bohm, 1987) several systems which produce code 
only for sequential machines are discussed here.

The dataflow paradigm allows programs to be exclusively represented using graphs 
with no need for textual descriptions, although some dataflow based visual 
programming systems do use text to specify the functionality of graph nodes. The 
use of visual dataflow program graphs has been discussed from a practical and
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theoretical viewpoint in (Davis and Keller, 1982) and (Eisenbach, McLoughlin 
and Sadler, 1989).

PROGRAPH (Cox and Pietrzykowski, 1985) is a visual programming system 
based on functional programming and the dataflow principle. Data flows along 
"wires" connecting primitive or user defined processes. User defined processes are 
built up from primitive processes or further lower level user defined processes. 
User defined processes at the lowest level are build up entirely from primitive 
atomic processes. The system incorporates a useful debugger in which the data 
values on PROGRAPH’s wires may be read using a cursor. Figure 2.1 shows an 
example function from a PROGRAPH program. PROGRAPH is chosen for such 
a visual example because it provides a good example of the visual dataflow 
programming style and exhibits many features used by later systems.

A system similar to PROGRAPH called "Show and Tell" is described in (Gillett 
and Kimura, 1986a). The system relies heavily on the ideas of dataflow, as does 
PROGRAPH, but allows the use of icons as visual labels for user defined 
functions, thus adding an extra layer of visual information to the system.

Figure 2.1 - An example function from the PROGRAPH visual 
programming system. The function shown performs recursion on a list, 
and is taken from (Cox and Pietrzykowsi, 1985).
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Two other dataflow based visual programming systems are Fabrik (Ludolph, 
Chow, Ingalls, Wallace and Doyle, 1988) and Conman (Haeberli, 1988). Both of 
these systems rely on dataflow "wires" carrying data, but include facilities for 
interaction with bit mapped displays in their primitive elements. Fabrik is intended 
for use in introductory programming, while Conman is designed for use with 
professional graphics workstations.

A dataflow system radically different from those described above is ALEX (Kozen, 
Teitelbaum, Chen, Field, Pugh and Zander, 1987). ALEX is closest to a 
conventional dataflow language with added recursion. It allows the graphical 
representation of two types of objects: data objects and functions. Data objects are 
represented by rectangles of various sizes, functions or programs by tree-like 
hierarchical structures. Programming is performed by creating or copying data 
objects or functions and placing them on the screen. Data dependencies are then 
specified between the objects by the use of colour coding, not by "wiring diagrams" 
as in the previously discussed systems.

2.4.13 Coarse grain dataflow based visual programming systems

Dataflow systems like those described in the previous section can be regarded as 
having communicating processes with a very fine grain. Dataflow design methods 
have also been used as an underlying paradigm for systems which are intended to 
deal with computations of a much coarser grain. These systems do not implement 
dataflow or functional programming models directly. Instead they apply dataflow 
design principles to the specification of inter-process communication. Typically a 
hierarchical set of dataflow diagrams with atomic leaf nodes completely defines 
the flow of data within the system. A large number of visual programming systems 
have been produced around such methodologies, possibly because of their 
common usage in many areas of the computing industry. Data driven design 
methodologies are discussed in (Gane and Sarson, 1979).

It should be noted that many of the parallel visual programming systems discussed 
in other sections of this chapter contain elements of dataflow based design. As 
exchange of data between computational elements is found in nearly all parallel 
systems this is possibly to be expected, but only systems claiming to be based on 
specific methodologies are discussed in this section.

An environment that uses dataflow based design methods is described by (Fisher, 
1988). The environm ent uses dataflow  design techniques to specify 
communication between user defined mixed language modules. It is targeted at 
developers of scientific and engineering applications, with particular emphasis on 
the needs of researchers in graphics and image processing.

CAEDE (Buhr, Karam, Hayes and Woodside, 1989) is a visual programming 
system for the development of ADA applications. CAEDE’s diagramming 
notation is intended for use with a data driven design methodology. Bubbles in 
dataflow diagrams become boxes in CAEDE diagrams with inter-box connections 
enforcing desired dataflow patterns. Tools are reported to be in development for
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the production of Ada code templates from the diagrams, as well as reverse 
engineering tools to extract CAEDE diagrams from existing Ada programs.

2.4.1.4 CSP and CCS based visual programming systems

CSP and CCS like methodologies offer significant advantages for parallel 
processing. The firm theoretical foundation offered by such systems provides 
potential aid for complex problems such as deadlocks. In addition, CSP’s static 
networks of communicating processes are well suited to the application of current 
visual programming techniques. Given this ease of application it is surprising that 
more visual programming systems based on the methodology have not been 
developed. Visual programming techniques have the potential to offer users better 
interfaces to such methodologies and languages based upon them. The application 
of visual programming techniques to a CSP style programming system and 
methods for the development of systems supporting such a methodology is the 
subject of the remainder of this thesis. Some details on this work have already been 
reported (Roberts and Samwell, 1989), (Roberts and Samwell, 1990). This work 
is not reviewed here, but is included in appendix three.

An early CSP style visual programming environment using a mixed text and 
graphics approach is reported in (Pong, 1986). Programs are constructed from 
boxes representing processes and containing sequential code written in a Pascal 
like language with extensions for inter-process communication. Construction of 
sequential code defining the behaviour of processes is aided by a textual code 
editing environment that supports the use of Nassi-Shneiderman diagrams. Links 
between the icons are drawn to define communication pathways corresponding to 
Occam channels, thus specifying inter-process communication. The system 
produces code for execution on a simulated ring of processors. Figure 2.2 shows 
an example inter-process communications diagram from Pong’s system, IPIGS, 
included because IPIGS was the first CSP based visual programming system.

An almost identical approach for Transputer based Occam programs is taken in 
(West and Capon, 1990), which does not include a Nasi-Shneiderman diagram 
editor but uses similar techniques to aid the automatic generation of procedure 
headers and process "harnesses" for Occam programs. Neither system restricts 
inter- process communication patterns in any way.

A formally based visual programming system based on a two dimensional 
representation of the CCS formalism (Milner, 1980) has been developed for the 
Clara environment (Giacalone and Smolka, 1988). Clara is aimed at supporting 
CCS for the specification, development and simulation of a wide range of parallel 
systems. Graphical CCS style processes are constructed by the "gluing together" of 
a range of textually labelled icons which correspond to CCS constructs. User 
constructed processes may be abstracted to form processes that may in turn be 
used in the construction of further expressions. The visualisation used has been 
found to be extremely helpful in aiding the use of CCS over a range of parallel 
systems. Figure 2.3 shows an example Clara graphical representation of a CCS 
construct. An example from Clara is included because it is the only CCS based
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Figure 22 - An example inter-process communication diagram from the 
IPIGS system which shows a single process communicating with an array 
of five processes. The figure is taken from (Pong, 1986).

visual programming system in existence and because it is one of a small number 
of systems reviewed here which are based on formally well founded principles.

2.4.1.5 Other visual programming systems

As mentioned earlier, most other parallel visual programming systems may be 
regarded as containing elements of dataflow design, since the flow of data between 
computation elements is a universal property of parallel computations. They range 
from systems designed for the production of language and architecture 
independent parallel programming to highly machine specific tools aimed at 
machine level programming.

In addition to the parallel visual programming systems mentioned above, brief 
reviews of some sequential systems using communication based methodologies 
suitable for use in parallel systems are included in this section.
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Figure 23 - Clara pictorial CCS expression showing four processes 
("PROC1", "PROC2", "SEM" and "REG") whose behavior is defined by 
the four pictorial expressions within the large box. Diagonally arranged 
symbols are sequentially executed. Boxes with angled ends represent 
input and output actions, while boxes with straight sides are used for 
other actions. Boxes with two (or more) compartments represent an "or". 
Taken from (Giacalone and Smolka, 1988).

HI-VISUAL (Mondon, Yoshino, Hirakawa, Tanaka and Ichikawa, 1984) is a 
sequential visual programming system targeted at the image processing area. 
Users of HI-VISUAL select from a large number of pre-defined icons and connect 
them into networks to produce applications programs. Icons are regarded as 
functions which have inputs and outputs, with programs constructed by the 
specification of connections between them. It is easy to see how such a system 
could take advantage of a parallel machine by mapping the processes represented 
by icons to physical processors. Figure 2.4 shows an example HI-VISUAL 
applications program for detecting cracks in printed circuit boards, included 
because HI-VISUAL is a well known iconic visual programming system.

Poker (Snyder, 1984) is a system designed for performing programming on the 
Cosmic cube computer and parallel machines based on the ChiP microprocessor. 
Like many other systems, Poker uses a visual programming language for the 
expression of inter-process communication structures, while code for processes is 
written using a Pascal like language with inter-process communication extensions. 
Graphs describing the communications aspects of programs are produced by 
drawing connections between boxes representing processors arranged in a grid. 
Code is then written for the processors on a separate display using a text editor. 
Inter-process communication in Poker appears to be data driven to the 
programmer, but is mapped automatically into the synchronous systolic 
communication facilities of the target microprocessors.
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Systolic programs for such microprocessor arrays typically have fixed (static) 
inter-process communication structures which are easy to express visually. 
Processes execute simple algorithms well suited to expression using imperative 
textual programming languages. The area is ideally suited for visual programming 
techniques. A version of Poker specialised to just this type of computation has also 
been produced (Snyder, 1987).
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STILE (Stovsky and Weide, 1987) and the Conic environment (Kramer, Magee 
and Ng, 1989) are two parallel visual programming systems similar to Poker but, 
unlike Poker, both allow hierarchical program structures to be visually evolved. 
Programs in such systems consist of process "boxes" interconnected by 
communication links. Boxes can contain further graphs or, at the lowest level of 
abstraction, contain simple textual program fragments. STILE is aimed primarily 
at real-time programming applications and the problems involved in real-time 
process control, while the Conic environment is more generally aimed at 
distributed and concurrent programming. Of the two systems, the Conic 
environment has more advanced editing facilities. Kramer, Magee and Ng assert 
that both STILE and Conic are based on the principles of "Configuration 
Programming". Configuration Programming is closely related to the ideas of 
programming in the large and module interconnection languages (DeRemer and 
Kron, 1976). In such systems, graphical connections between "modules" define 
communications structure and system "configuration" in a graphical way, while 
textual specifications or further graphical configurations define modules at lower 
levels of abstraction. Many mixed graphical and textual programming languages 
may therefore potentially be termed configuration languages. It should be noted 
that such graphical configuration languages in general have little to do with 
Occam’s configuration statements (May, 1987), which are concerned with the 
placement of processes upon processors. Both STILE and the Conic environment 
do however provide the facility to affine processes to particular processors in 
distributed systems.

A very highly machine specific visual programming language has been produced 
for the Naviar-Stokes computer (Tomboulin, Crockett and Middleton, 1988), 
which is a high-performance, reconfigurable, pipelined machine designed for 
solving computational fluid dynamics problems. Inefficiencies in mapping 
conventional high-level languages to the Naviar-Stokes’ architecture constrains 
programming on the machine to a very low level. To produce efficient code, 
programmers must have express knowledge of the machine’s architecture. The 
visual program m ing system has been shown to provide significant 
complexity-management advantages over the textual microcode methods 
previously used and is able to aid programmers by managing a large amount of 
previously manually performed tasks.

In contrast, CODE (Sobek, Azam and Brown, 1988) is a system aimed at producing 
parallel programs that are portable across a wide range of MIMD target 
architectures. CODE programming is performed at a very high level of abstraction 
using graphically represented data dependencies, units of computation and filters. 
These elements are combined in graphs which may contain sub-graphs. After a 
CODE program has been drawn, an description file is transferred to the target 
architecture. A compiler running on the target architecture then compiles the 
description file for execution by a simple run time system. Recoding the run time 
system for different architectures is claimed to involve little work.

In (Bhattacharyya, Cohrs and Miller, 1988) a visual interface to the inter-process 
communications facilities of Unix is described. The system allows inter-process 
connections to be graphically specified. Definitions for the processes are written

2-12



A review o f related work

in standard Unix fashion using C or shell scripts. Taskmaster (Arthur and Raghu, 
1989) provides similar facilities with added hierarchical process structuring, 
monitoring and debugging facilities. A similar, earlier and less extensive system 
has also been produced for the Lilith/Modula computer (DeMarco and 
Soceneantu, 1984). All these systems generate code for conventional machines, 
but it is not hard to image such tools in use with multicomputer operating systems 
like Meshix (Winterbottom and Osmon, 1990) or Helios (Perihelion, 1988).

2.4.2 Graphical CASE tools and visual simulation systems

A number of CASE tools produced for use with specific systems design 
methodologies are also worthy of mention here.

A description of possibly the most relevant system in this category may be found 
in (Crowe, Hasson and Strain-Clarke, 1989). Program specifications are 
constructed using "bubble and arc" diagrams in which bubbles correspond to 
processes and arcs to inter-process communication. Bubbles contain further 
diagrams or, at the lowest levels of abstraction, they contain textual specifications 
written in a form of CSP. The system is intended to work as a programmer’s aid in 
the production of deadlock-free Occam programs by allowing the programmer to 
formally reason with CSP in a highly humanistic manner. Crowe, Hasson and 
Strain-Clarke’s tool is essentially a dataflow based design tool with an inherent 
highly specific definition of communication between primitive elements in the 
diagrams.

Other environments aim to support system design methodologies such as 
MASCOT (Simpson, 1986) and SDL (CCITT, 1984) in a graphical way.

A design support environment has been produced for MASCOT (Looney, 1988). 
The environment allows graphical input of MASCOT diagrams. Designs produced 
using the system may be simulated and advisory statistics produced. Similar 
environments for SDL have also been produced (Koyamada and Shigo, 1988; Orr, 
Norris, Tinker and Rouch, 1988; Nakamura, Fujimoto, Suzuki, Tarui and 
Kiyokane, 1986). All these systems have been targeted at the verification and 
design  of com m un ica tion  p ro to co ls  and so ftw are  for use in the  
telecommunications industry. Another system in the same area, PROSPEC (Chow 
and Lam, 1988), applies communicating finite state machines to the design and 
verification of communications protocols. All these tools rely heavily on visual 
programming techniques in the specification of their input diagrams, yet are 
clearly CASE tools.

Graphical CASE systems share many common features with systems for the visual 
simulation of parallel architectures and software systems.

PARET (Nichols and Edmark, 1988) uses behavioral simulation to predict the 
interactions between elements of a simulated parallel system and to allow the 
effect of software systems on parallel architectures to be analysed. Architectures 
may also be analysed separately from software systems. Graphs representing
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systems are interactively input to the system which then graphically displays 
simulation results on a workstation screen using dynamic information overlay.

Starlite (Cook and Auletta, 1986) is a visual simulation system for the prototyping 
of distributed applications. Although textual specifications are used to define 
simulated systems, the system provides extensive facilities for graphical display of 
simulation results. Displays take the form of system defined visualisations of items 
like ethemets and clocks, with simulation specific information overlaid on them.

Also relevant is the Gecko system (Stephenson and Boudillet, 1988), which is 
discussed later in this chapter.

2.43 Program visualisation systems for parallel machines

The aim of program visualisation systems is to help programmers form clear and 
correct mental images of a program’s structure and function (Brown, Carling, 
Herot, Kramlich and Souza, 1985). They use graphics to illustrate aspects of a 
program’s behaviour and design as a means to achieve this goal. A cross section of 
program visualisation systems for sequential machines has been reviewed in 
(Myers, 1988) and a selection of recent program visualisation systems intended for 
the debugging of parallel and distributed systems can be found in (LeBlanc and 
Miller, 1988). General issues concerning the monitoring of distributed systems 
and the graphical display of information obtained through monitoring is discussed 
in (Joyce, Lomow, Slind and Unger, 1987), while (Pancake and Utter, 1989) 
reviews recent work on visually based parallel debuggers and contrasts 
visualisation approaches with underlying computational models.

It should be noted that, while it is possible to "re-visualise" programs produced by 
visual programming systems, most program visualisation systems work with 
conventional, textual languages.

Graphical performance monitoring systems use graphics to display statistics on a 
computer’s performance. Typically statistics such as processor loading and 
utilisation of communications subsystems are shown. Many performance 
monitoring systems use program visualisation to relate performance information 
to areas of program code with the intention of revealing performance bottlenecks 
within the code. These systems will be referred to as program level performance 
evaluation tools and are discussed jointly with other related program visualisation 
systems. System level performance analysis tools, producing views of overall 
system performance, are not discussed here. The reader is directed to (Tang, 1988) 
for further details on this subject.

Program visualisation systems for parallel computers may be divided into two 
classes; static visualisations and dynamic visualisations. Static visualisations show 
constant views of target programs, which do not change with time. Typically these 
visualisations reflect aspects of programs which are not time dependent, such as 
data dependencies, fixed inter-process communication links or non-dynamic 
control flow structures. Dynamic visualisations reflect changing aspects of
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programs, such as usage of data areas. Some dynamic systems calculate static views 
of programs under consideration, overlaying them with information such as 
performance data or shading, perhaps representing executing concurrent 
processes. Other systems recalculate or iteratively modify views of the program as 
execution proceeds.

Although it appears at first consideration that dynamic systems are potentially 
more useful than static systems, the extraction of data from concurrent computers 
has a potentially perturbing effect on the execution of the program being 
monitored. This so called "probe effect" is caused by the fact that any software 
based extraction of data from a monitored machine frequently causes delays in 
execution in the system being monitored. Any such delays in a non-deterministic 
program may result in a change of system behaviour and hence differences 
between output from monitored and unmonitored systems may be detected. A 
cross section of methods for the extraction of information from parallel systems 
can again be found in (Joyce, Lomow, Slind and Unger, 1987), while (LeBlanc and 
Miller, 1988) also contains details on relevant work.

2.4.3.1 Static program visualisation systems

The majority of parallel program visualisation systems display static views of 
programs, representing facets of their execution behaviour. Two systems which are 
typical of static program visualisation systems are ART (McDowell, 1988) and 
GRAIL (Stepney, 1987). Both ART and GRAIL carry out static program 
visualisation with static overlay of information.

In ART, static analysis is carried out on parallel programs to reveal synchronisation 
and data usage errors. Programs are displayed as synchronisation graphs (similar 
to flowcharts) upon which information about potential errors is overlaid. The ART 
system typifies the static analysis approach to the visualisation of parallel 
programs in which program source code is analysed to indicate potential problem 
areas and results are graphically displayed. The analysis of the program is carried 
out either according to a set of heuristics, or to some underlying theoretical 
background.

GRAIL is a program level performance analysis system for ’T-rack" Transputer 
systems running Occam programs. It uses a common approach in which a static 
visualisation of a program’s structure is overlaid with performance information 
obtained through the monitoring of the system. The structure of Occam processes 
and channels is displayed by GRAIL, which also displays the Transputers on which 
the processes reside. All information is drawn on the screen of a colour Sun 
workstation. Information produced by extra Transputer instructions inserted into 
compiled Occam programs by a specially modified compiler is used to colour the 
visualisation. The colours provide a picture of where the program spends most of 
its time, the utilisation of channels and the utilisation of inter-processor links. 
Code where the processor spends a lot of time is coloured red (for "hot") while 
little used code is coloured blue (for "cold"). Suitable shades between the two 
extremes indicate different levels of usage. A similar scheme applies to the
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Figure 2.5 - A screen from GRAIL showing an Occam process and 
associated channel connections. Taken from (Hughes, 1989).
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processor utilisation, link and channel usage statistics. Figure 2.5 shows an example 
screen from GRAIL, included because GRAIL has proved to be an invaluable 
asset for the performance debugging of T-rack Transputer arrays, is widely used 
where it is available, and is possibly one of the best examples of a program 
visualisation system in common usage. A version of GRAIL which extracts 
information directly from executing code on Transputer arrays has also been 
suggested, though it is yet to be implemented.

2.43.2 Dynamic program visualisation systems

Many dynamic program visualisation systems generate static views of programs 
which are then overlaid with changing information (for example, tokens moving 
around a network to indicate control flow or changing levels of processor 
utilisation). These systems will be referred to as having static visualisations with 
dynamic overlay of information. Other systems iteratively modify program views, 
or calculate new views as required. These systems will be termed truly dynamic 
program visualisation systems or, in shorthand, dynamic program visualisation 
systems.

Often, the decision to use a static visualisation with dynamic overlay or a truly 
dynamic visualisation is related to the underlying paradigms used by the 
programming system and the facet of execution which it is desired to display. For 
example, truly dynamic visualisation techniques are highly appropriate for 
viewing processes in systems with constantly evolving sets of processes, e.g. a Unix 
style system. Static systems with dynamic overlay are more appropriate for viewing 
properties of processes in fixed process networks.

2.43.2.1 Static program visualisation with dynamic overlay of 
information

Animated debugging of ADA programs is the subject of work reported in (Moran 
and Feldman, 1985), which uses static visualisation with dynamic overlay. Ada 
tasks are graphically represented as rectangles with unique names and colours. 
Entry queues for tasks are represented by labelled rectangular boxes justified 
down the left hand side of particular tasks. Tokens, coloured in the colour of the 
calling task, are deposited in the entry queues where they wait until accepted. 
When rendezvous are performed, calling and accepting tasks blink and stocks of 
tokens are appropriately depleted. Similar techniques are used by (Garcia and 
Berman, 1985) who present work on the animated debugging of programs written 
in a parallel version of Pascal. Programs are visualised as Petri-nets. Tokens move 
around the nets to indicate the execution of constructs and other facets of the 
program’s execution.

A novel system for debugging Occam programs using "Occam control graphs" (a 
parallel version of flowcharts, with added inter-process communication) has been 
reported recently (Mourlin and Cournarie, 1990). Occam programs are 
transformed into the graphs, which are displayed on a workstation screen. Location
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of control in the system is shown by darkened nodes in the graphs. Graphs can be 
viewed at any desired level of abstraction, while separate windows show traced 
variables and program code. The system allows both static and dynamic analysis 
of program code, with the animation features allowing the detection of deadlocks, 
livelocks and other similar errors. Information for the animations is obtained from 
a multiprocessor simulator, thus avoiding probe effect. The authors claim that the 
structure of the Occam language is particularly well suited to graphical 
representation and that graphical environments are particularly valuable in 
helping understand how parallel programs really work. The system at present 
supports only the Occaml (Inmos, 1984) language, but its authors plan to expand 
it to support the newer Occam2 (May, 1987).

2.43.2.2 Truly dynamic program visualisation systems

Voyer (Bailey, Socha and Notkin, 1988) is a dynamic system for constructing 
application specific animated views of parallel programs. Instead of providing a 
uniform visualisation system for different pieces of software, Voyer’s designers 
take the approach that the program developers should annotate their programs to 
send appropriate messages to data collection subsystems. As well as annotating 
their programs, program developers also write a "modeller" and a "renderer" to 
rationalise and display information. Voyer handles all system level interaction, 
debugging, message routing, etc., leaving the user to write the high level routines 
already mentioned. Voyer has been implemented for the Poker programming 
system (described earlier) and on a Sequent Balance. Various visualisations of 
parallel algorithms have been programmed using the system.

Tree (Tang, 1987) is another truly dynamic system which provides its user with an 
animated graphical view of events which represents a program in execution on the 
Manchester Dataflow machine. Tree shows executing processes as boxes. As new 
processes are spawned by the machine to evaluate expressions, progressively more 
boxes are added and linked to those already in existence to show their ancestry. 
Processes suspended in execution are shown in reverse video. This simple 
visualisation allows the systems "throttle" mechanism (which matches parallelism 
in algorithms to available parallelism in the machine) to be viewed at work. It 
facilitates evaluation of the performance of the machine, but is of limited use 
during debugging.

MONA (Joyce and Unger, 1985) is a dynamic tool for the animation of message 
interactions between concurrent processes over loosely coupled distributed Unix 
systems. It visualises message interactions between concurrently executing 
processes by representing  processes as labelled circles. Requests for 
communication and operations like data reception are shown using a variety of 
simple line styles and highlighting operations. The authors report that, although 
simple, the system shows that graphical monitoring tools such as Mona are 
immensely helpful in obtaining global pictures of the operation of distributed 
systems.
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A relational approach to the visualisation of parallel programs is taken in (Schwan 
and Matthews, 1986). Relationships between components of parallel programs are 
entered into a relational database, later to be visualised on a screen. As the system 
concentrates on the storage and display of information relationships have to be 
manually entered. It does not include features to extract data from programs or 
from processors. Once relationships have been entered, the user interacts with the 
systems to produce views of the program under consideration which show desired 
features. The result is a highly flexible program visualisation system in which users 
are able to specify view contents. Combined with a flexible monitoring system 
performing continuous updating of the database such a system could provide a 
highly flexible dynamic program visualisation tool.

(Bemmerl, 1988) discusses a variety of tools for use with parallel systems, including 
a dynamic visualisation tool. The tool shows an animated display of the flow of 
communication between processes, but is reported at an early stage of 
development and thus few details are given.

IDD (Harter, Heimbigner and King, 1985) is a system for debugging distributed 
systems using a form of temporal logic. Modified temporal logic expressions 
constrain the information collected by the monitoring system. This information 
(specifically inter-process communication) is displayed on a graphics screen as 
lines drawn between points which represent processes. The position of the points 
is determined by a number unique to each process in the system (y axis) and by the 
time at which each process commits to the communication process (x-axis). 
Diagrams are updated as new information arrives at the monitoring system. The 
approach taken is similar to the concurrency maps and time line diagrams 
described in (Stone, 1989).

PIE (Lehr, Segall, Vrsalovic, Caplan, Chung and Fineman, 1989) is a mature visual 
performance debugging system, having been in existence for several years. Like 
GRAIL, discussed earlier, PIE displays information to aid the improvements in 
the performance of parallel software running on a number of machines. Data is 
collected from programs under study using software "sensors". A variety of views 
including dynamic visualisations of process spawning and oscilloscope like traces 
of process execution are supported by the system. PIE’s authors feel that PIE is 
not only a good tool for performance debugging, but also a useful one for 
"understanding the complexities of sequential and parallel programming".

GRADIVAL (Vornberger and Zeppenfeld, 1990) provides similar facilities to 
those provided by PIE, but for Transputer systems running Occam programs.

2.5 Visual process to processor mapping tools

Gecko (Stephenson and Boudillet, 1988) is an interesting system which can display 
the results from a simulation of a distributed application and perform process to 
processor mapping. Gecko can visualise Occam programs using a simple "bubble 
and arc" diagram with added colour. Processes may then be mapped onto 
processors in a Transputer system by the interactive placement of bubbles onto
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icons representing processors. Alternatively the system can display output from 
the a parallel architecture simulator. The system thus contains elements of 
program visualisation, visual configuration and visual simulation.

Other, simpler, visual tools for the setting up of reconfigurable processor arrays 
have also been produced. Express (Levco, 1990) includes such a tool for 
reconfiguring arrays of Transputers, while a more generalised tool for Transputer 
based systems is also under development (Tilley, 1990).

2.6 Review summary

This chapter has discussed a number of graphical tools related to the work reported 
in the following chapters of the thesis. Although it is clear that visual programming 
techniques will not quickly replace conventional textual languages for use in 
general purpose programming (Myers, 1988) the relatively primitive graphical 
program development systems reviewed in this chapter have proved that visual 
programming techniques can be successfully applied to the development of 
parallel systems. The work of the following chapters draws its inspiration 
principally from three systems discussed earlier - HI-VISUAL (for the use of 
iconic process representation), STILE (for visual hierarchy) and GRAIL (for a 
"mixed" visualisation). It should however be noted that the GILT system is not a 
development or enhancement of any of above systems, but a completely new 
system in its own right.
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Visualisations of Occam programs and 
Transputer systems

3.0 Introduction

This chapter introduces relevant features of Occam and the Transputer which 
provide a basis for subsequent discussion and analysis of existent visualisations of 
Occam programs and Transputer systems. The GILT language, based on some of 
these features is introduced together with a discussion on some basic design 
decisions taken during its development. The whole chapter provides a background 
for chapter four, which deals with formal representations suitable for the 
expression of GILT’S syntax and semantics, and chapter five, which provides a full 
definition of the language.

3.1 The Occam programming language

This section provides brief refreshment on features of the Occam (May, 1987) 
programming language which are relevant to the subject of this thesis. It should 
not be considered a complete definition of the language. Many language features 
are omitted, and those that are described are discussed very briefly. Complete 
information may be found in (Jones and Goldsmith, 1988) and (May, 1987), while 
a complete syntax may be found in appendix one.

Two flavours of the Occam language have been produced so far. The first, Occaml 
or "proto Occam" (Inmos, 1984), is far simpler than the second, Occam2 (May, 
1987; Jones and Goldsmith, 1988), which contains more advanced data structuring 
and other facilities. The Occam referred to in this thesis is Occam2, except in cases 
where explicit references are made to Occaml.

Occam is a language designed for parallel processing with the aim of exploiting 
multiple processors connected together using communications links. It is an 
imperative language with a basis in the CSP (Hoare, 1985) formalism. Two 
elements are fundamental to Occam - "processes" and "channels". All processes, 
with two exceptions, start, perform some action, and then terminate. Channels 
provide a mechanism for communication between processes executing in parallel. 
Parallel processes are not allowed shared variable access of any type or form.
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3.1.1 Data types, variable definitions and constants

Expressions and variables in Occam may have a value of type BOOL, BYTE, 
INT16, INT32, INT64, INT (length implementation dependent), REAL32 or 
REALM.

The most basic variable definition takes the form of a type keyword followed by a 
list of variable names separated by commas and terminated with a colon. 
Mechanisms for the specification of arrays of all types are included.

Example

INT v a r i a b l e  :

Variables may be renamed by abbreviations:

INT a . c a t  IS a .S ia m e s e  :

Constants (values) are introduced using the keyword VAL in a similar fashion: 

VAL INT c a t s . l i f e s p a n  IS 17 :

3.1.2 Channel protocols

Channels have protocols in the same way that variables have types. Protocols are 
used in channel definitions. A protocol may be given a name in a protocol 
definition.

Example

A protocol for a channel carrying strings of known length might be given as follows: 

PROTOCOL STRING IS INT::[]BYTE :

Various other types of protocol definition exist.

3.13 Channels

Channels form the medium for communication between processes. Channel 
definitions are very much the same as variable definitions, but use channel 
protocols instead of types.
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Example

CHAN OF STRING string.chan :

Arrays of channels are also permitted.

Example

[100]CHAN OF STRING rope :

3.1.4 Primitive processes

The most basic processes in Occam are the three "primitive" processes; 
"assignment", "output", and "input":

3.1.4.1 Assignment

In an assignment the value of an expression is assigned to a variable.

Example

variable := expression

3.1.4.2 Output

The "!" symbol is used for output to a channel. In an output, the value of an 
expression is output to a channel.

Example

channel ! expression

3.1.43 Input

T h e"?" symbol is used for input from a channel. In an input a variable receives a 
value from a channel.

Example

channel ? variable

"channel" is assumed to be a channel, "expression" an expression, and "variable" a 
variable.
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3.1.5 Scope of channels and variables

Channels and variables must be declared before usage. The scope of such 
specifications is defined to be the text of the syntactic entity following the 
specification, excluding any text in the scope of a specification with the same name.

3.1.6 SKIP and STOP processes

Two special processes, "SKIP" and "STOP", perform differently to most processes. 
SKIP starts, performs no action, then terminates. STOP starts, performs no action, 
but never terminates. Both SKIP and STOP are supported as keywords in Occam, 
but they are also used to describe the action of other processes.

3.1.7 Constructed processes

Processes may be combined using constructor processes to form further processes 
or constructs. Constructs may be nested to any required depth, though particular 
implementations may set limits on the depth of the nesting. Each constructed 
process consists of a constructing keyword ("SEQ", "IF', "CASE", "PAR" or "ALT’) 
followed by a number of component processes.

Component processes in a construct are always on separate lines and slightly 
indented from the position of the constructor process keyword.

Regular arrays of processes can be formed by replication. This is discussed after a 
brief synopsis of the simple form of each construct.

3.1.7.1 Sequential construct (sequence)

A sequence or sequential process is formed by the keyword SEQ followed on 
subsequent lines by zero or more component processes. Processes in a sequential 
process are executed one after another.

Example

SEQ
x := l 
y := x + 1

Sequences may also be constructed by replication. A sequence with no 
components is equivalent to SKIP.
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3.1.7.2 Conditional processes

A conditional process consists of the keyword "IF' written above a slightly indented 
list of components. Each component is either a further, nested, conditional process 
or a Boolean expression, below which is a further indented process. The Boolean 
expression is referred to as the condition.

The construct is executed by "downwards" testing of Boolean conditions until one 
is found that is true. An appropriate process is then executed. Erroneous 
conditional processes without any true conditions behave like STOP.

Example

IF
a < 0

less.than := TRUE 
a = 0
equals := TRUE 

TRUE
greater.than := TRUE

The case discrimination process behaves in a similar manner but provides a clearer 
syntax where a conditional process is required to select a branch according to which 
constant value in a range of constant values is taken by an expression.

Example

CASE a 
10, 30 
b := 7

20
b := 10 

ELSE 
b := 0

Only one default "ELSE" expression is allowed.

Conditional processes may also be constructed by replication (section 3.1.10).

3.1.73 Parallel construct

A parallel construct may be formed by the keyword PAR followed on subsequent 
lines by zero or more component processes. Processes in a parallel construct are 
executed concurrently.
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Example

PAR
x := 0 
y := 0

Parallel constructs may also be constructed by replication. A parallel construct 
with no components is equivalent to SKIP.

A parallel construct is invalid if any of its components may change the value of a 
variable that may be used in any of its other components.

Only processes which are in separate components of parallel constructs are 
allowed to communicate using "?" and "!". Inter- process communication in Occam 
is synchronised and processes only communicate when both processes are ready.

Parallel processes may also be formed by replication and processes may be 
allocated to particular processors in a network by the use of PLACED PAR. 
Parallel processes, in particular processors, may also be annotated with directives 
to indicate the relative priority of their components using PRI PAR.

3.1.7.4 Alternative processes

The alternative process formed by the use of the "ALT' keyword performs like a 
multi-way conditional except in that the choice of executed processes depends on 
whether another process is executing an output. It is written as an ALT above an 
indented list of "guarded processes". In the simplest form of an alternative, each 
guarded process is an input process, followed by an accompanying indented 
process.

Example

ALT
up ? increment

x := x + increment 
down ? decrement 

x := x - decrement 
read ? request 

reply ! x

With more complex guards, some input processes may be preceded by Boolean 
expressions, preventing their guarded process from being executed under certain 
conditions. Other variations are possible, including the use of the SKIP process 
for a default guard.
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3.1.8 Comments

Comments are introduced using a pair of dashes and extend to the end of the
line they are introduced on.

3.1.9 Procedural abstraction

Procedure definitions "name" processes and form part of Occam’s abstraction 
mechanism.

Example

In the scope of the procedure definition:

PROC do.nothing()
SKIP

the "call" 

d o .n o th in g ! )

may be used to stand for the body of the procedure i.e .:

SKIP

(Whether anyone would desire such a lengthy abbreviation for a process which 
performs no action is debatable!).

Channels and variables may be passed as parameters to procedures, using a similar 
declaration to that used in the earlier channel and variable declarations.

3.1.10 Loops and replicators

Two types of loop are allowed in Occam, WHILE loops and indexed FOR loops. 
While loops are necessarily always sequential, while indexed FOR loops need not 
be. Indexed FOR loops with constant bounds are used as replicators as mentioned 
earlier.

Example

The loop

WHILE TRUE 
do.nothing!)
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continues to perform no action forever.

While the loop

PAR i = 0 FOR 100 
do.nothing()

executes 100 SKIP statements in parallel.

3.1.11 An example Occam program

A simple Occam program fragment for a buffering system is shown in figure 3.1.

[5]CHAN OF INT link :
—  definition of single buffer process 
PROC buffer.1(CHAN OF INT in, out) 
WHILE TRUE 

INT x :
SEQ

in ? x 
out ! x

—  Main program 
PAR
buffer.1(to.queue, link[0])—  First buffer 
PAR i = 0 FOR 4
buffer.1(link[i], link[i+l]) —  buffers 

buffer.l(link[4], from.queue) —  Final buffer

Figure 3.1 - An example Occam program, demonstrating the use of 
buffering process "buffer. 1" in a queuing system. The existence of channels 
"to.queue" and "from.queue" is assumed.

Integers enter the queue of figure 3.1 via the channel to.queue. The first "buffer. 1" 
process reads from "to.queue" and outputs to the first element of the array of 
channels "link[0]M.
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Subsequent instances of the "buffer. 1" process read from one channel "link" and 
output to a second. The second channel has an index of one higher than the first. 
Integers are passed down the chain of processes via the channels until they are 
finally output by the final "buffer. 1" process onto the channel "from.queue".

In essence, the Occam model of computation restricts computation to be inside a 
process and allows inter-process communication through the use of channels only. 
All data and state information belonging to a process is maintained within the 
process’s own private address space and is accessible only to that process. 
Programs may however be coded to allow processes to request data via a message 
on a channel. Data may then be returned along a channel as a further message.

3.2 The Transputer

This section provides a brief tour of relevant features of the Transputer. Further 
information may be found in (Inmos, 1989a).

The Transputer, which is a physical realisation of the Occam computational model, 
has been designed as a building block for concurrent multi-processor computers. 
The Transputer family consists of a number of single chip devices. Each Transputer 
in the family contains a processor, memory, and four serial communication links 
for connection to other Transputers. Additional memory and links may be 
externally connected as required.

Transputer systems generally consist of a network of Transputers connected via 
the previously mentioned communications links. Transputers do not take the 
Occam computational model down to VLSI level. Instead, each Transputer may 
execute a number of tasks and, with the aid of a microcoded scheduler, simulate 
multiprocessor concurrency. Transputers are able to execute a number of 
low-level processes such as i/o to or from links and arithmetic operations 
simultaneously due to a certain amount of parallelism within the processor itself. 
A queue of active processes which are ready to be executed is maintained by the 
scheduler. Time-slicing is used to execute queued processes and simulate parallel 
execution on a single processor. It is thus possible to run parallel Occam programs 
using simulated concurrency on a single Transputer.

From a pragmatic point of view, any program running on a network of Transputers 
consists of a number of mostly sequential processes. Parallelism is therefore coarse 
grain.

Providing problems can be suitably decomposed, the overall processing rate of the 
Transputer array is limited only by the program’s logical constraints and the 
number of processors available in the system.
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33 Configuration of Occam programs for execution on Transputer 
systems

To run an Occam program across a number of processors it is necessary to allocate 
processes to Transputers and channels to physical links. The process to processor 
mapping function is statically performed before runtime at the program level using 
the Occam language extensions PLACED PAR and PROCESSOR n, where n is 
a logical identifier called the processor number. The processor number uniquely 
identifies a processor in the Transputer network. The entire mapping process is 
known as configuration.

Example

PLACED PAR 
PROCESSOR 0 
do.nothing()

Indicates that processor number 0 is to run the process do.nothing(). The 
procedure do.nothing is assumed to be a suitably compiled procedure.

An extension used in the Inmos Transputer development system (Inmos, 1988) 
specifies which member of the Transputer family the processor belongs to. It takes 
the form of an additional alphanumeric specification after the processor number 
in the PROCESSOR statement.

Example

PLACED PAR 
PROCESSOR 1 T8 
do.nothing()

This indicates that processor number 1 is a member of the T8 family (for example 
a 'T805").

Similarly, in mapping channels to links, the PLACE .. AT statement is used. 
Channels connecting processes residing on connected processors must be placed 
on the input link of one processor and the output link of the other. Processor links 
are identified by a link number.

Example

PLACE a.channel AT linkOin :

where linkOin is the defined hardware address of the input side of link 0.

A full example showing the various placement features in shown in figure 3.2.
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Figure 3.3 shows a simple visualisation of the processors described by the 
configured program.

SC PROC buffer.1(CHAN OF INT in, out) 
—  definition of single buffer process 
WHILE TRUE 

INT x :
SEQ

in ? x 
out ! x

[5]CHAN OF INT link :
—  Main program 
PLACED PAR

PROCESSOR 0 T8
PLACE to.queue AT linkOin :
PLACE link[0] AT link2out :
buffer.1(to.queue, link[0])—  First buffer

PLACED PAR i = 0 FOR 4 
PROCESSOR i+1 T8

PLACE link[i] AT linkOin :
PLACE link[i+l] AT link2out :
buffer.1(link[i], link[i+l]) —  buffers

PLACED PAR 
PROCESSOR 5 T8

PLACE link[4] AT linkOin :
PLACE from.queue AT link2out :
buffer.1(link[4], from.queue) —  Final buffer

Figure 32 - A configured version of the program in figure 3.1. Link 0 
is the input of each process, link 2 is the output. The constants linkOin 
and link2out are assumed to be defined.

The procedure buffer. 1 must be separately compilable, thus accessing no global 
channels or variables. Six processors are connected in a chain, with each processor 
running a separate process. In the TDS (Transputer Development System) a 
utility called the configurer is provided to check the correctness of the 
configuration and generate code for downloading into the processor array.
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Figure 33 - The network topology defined by the configured Occam 
program of figure 3.2. Data enters the queue along link 0 of transputer 0, 
and exits along link 2 of transputer 5.

Configuration should not alter the logical behaviour of the program and is 
commonly performed after programs have been developed on a single processor. 
It should be noted that the programmer performing configuration requires 
knowledge of the underlying hardware architecture.

Clearly some help with configuration would be of considerable advantage. A 
graphical tool in which processes are interactively placed onto processors using a 
mouse or other pointing device is one possible solution.

3.4 Visualisations of Occam and of Transputer arrays

Graphical representations of Occam programs and of Transputer arrays have been 
widely used in the literature. The utility of diagrams in expressing Transputer 
related concepts is shown by authors’ use of them in illustrating aspects of 
processor arrays and programs. This section discusses several different 
visualisations (graphical representations) of Occam programs and Transputer 
arrays and discusses each visualisation’s merits and shortfalls for use in a visual 
programming environment.
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3.4.1 Rack diagrams

"Rack diagrams" are commonly used to graphically represent the topology of 
Transputer networks. Transputers in a network are shown by squares. Links 
connecting Transputers are shown as lines or "wires" and are frequently annotated 
with relevant link numbers at each end. Rack diagrams are similar to diagrams 
found in papers on systolic arrays and in descriptions of other multiprocessor 
systems.

Figures 3.3 and 3.4 show such diagrams.

Figure 3.4 - A Rack Diagram showing sixteen transputers wired into a 
double ring topology. Different line styles are used to distinguish 
between the two rings. Double ring topologies are widely used in 
message routing systems.
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The diagrams are extremely informative and a great improvement over a textual 
network map, as produced by the Inmos network worm (Inmos, 1989b). It is easy 
to imagine a visual programming system for the Transputer based on rack diagrams 
with a single, sequentially coded, Occam process for each Transputer. Connections 
between the four links on each processor could then be drawn to define the 
program’s topology.

3.4.2 Bubble and arc diagrams

Bubble and arc diagrams are an informal diagramming method frequently used in 
the production, analysis and explanation of Occam programs. In the diagrams, 
Occam processes are usually represented by circles which are labelled with a 
suitable mnemonic (usually the process name). In some cases processes may be 
represented using square boxes, cloud shapes or "roundangles" (rectangles with 
rounded corners). Channels connecting processes are drawn as lines and are 
sometimes labelled with the channel’s name. The diagrams are frequently used in 
papers on Occam programming. The diagrams bear a striking similarity to 
diagrams used in dataflow design methodologies (Gane and Sarson, 1979), and 
this is probably their origin. Figure 3.5 shows an example bubble and arc diagram. 
Sometimes bubble and arc diagrams are combined with rack diagrams to show the 
physical allocation of processes to processors.

A CASE tool for the design of deadlock free Occam programs based on the 
diagrams has already been discussed in the review section (Crowe, Hasson and 
Strain-Clarke, 1989). The tool is fully hierarchical. Bubbles representing processes 
may contain functional specifications in the form of a further diagram or as a 
textual definition written in a CSP derivative.

Another related system, Gecko (Stephenson and Boudillet, 1988), uses bubble and 
arc diagrams for the representation of Occam processes. The diagrams are laid 
out according to a "centre of interest" view. A process chosen for visualisation is 
placed in the centre of the screen. Connected processes are placed radially around 
the central process. In turn, other processes are laid out radially around the second 
set of processes and so on. The size of the coloured circles representing processes 
are scaled progressively smaller as the distance (in terms of communication "hops") 
increases. Gecko received its name from this display mechanism, which results in 
displays looking like geckos’ feet.

Also relevant to the diagrams are many visual programming systems based on 
mixed textual and graphical paradigms, including IPigs (Pong, 1986), Conic 
(Kramer, Magee and Ng, 1989), STILE (Stovsky and Weide, 1987) and Poker 
(Snyder, 1984), all of which have already been discussed in chapter two. These 
systems all use bubbles or boxes for the representation of concurrently executing 
processes, while inter-process communication is shown using a variety of line 
styles. Textual specification is used for the expression of node functionality. All of 
the systems apart from Poker are hierarchical and allow the functionality of nodes 
to be expressed using further, lower level, diagrams.
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Display pipeline

Figure 3.5 - A "bubble and arc" diagram from (Inmos, 1989). The 
diagram shows the software structure of a user module for a 
multi-transputer, multi-person, flight simulator. One module is 
required for each person involved in the simulation. Modules are 
connected together into an extensible ring structure, thus allowing a 
very large number of "players". Messages describing the state of the 
system are continually passed around the ring via the channels fromRing 
and toRing and modified appropriately by each module.

The usefulness of hierarchy in programming environments cannot be disputed. 
Amongst the many virtues it has for Occam style programming is that it is useful 
for aiding the mental organisation of processes into functional groupings. The 
usefulness of hierarchical organisation has been recognised for Occam 
programming in the folding editor of Inmos’ Transputer Development System 
(TDS). The editor allows textual documents (usually Occam programs) to be 
created in a hierarchical style which reflects the structure of the program under 
development: "just as a sheet of paper may be folded so that portions of the sheet 
are hidden from view, the folding editor provides the ability to hide blocks of lines 
in a document. A fold contains a block of lines which may be displayed in two ways: 
open, in which case the lines of the fold are displayed between the two marker 
lines (called creases), or closed, in which case the lines are replaced by a single 
marker line called a fold line" (Inmos, 1988).

Kramer, Magee and Ng (1989) have termed the style of programming exemplified 
by systems like IPigs, Conic, STILE and Poker "configuration programming",
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claiming that it not only provides a conveniently abstract form in which to 
comprehend programs but that it is particularly appropriate for distributed 
processing, where graphical software components reside on different machines. 
The graphical part of the program specification can then describe both the 
structure of the required system and the allocation of components to machines.

Bubble and arc diagrams (or similar) are ideal for the visualisation of high levels 
of abstraction in an Occam program’s structure. Typically such high levels of 
abstraction consist of multiple parallel processes communicating with each other 
via channels. Clear visualisation of these structures does not require control flow 
be shown as all processes execute in parallel. From a macroscopic viewpoint the 
flow of control within the processes is determined by data flowing along the inter-
process communications paths.

As the diagrams contain no control flow elements they are not suitable for the 
representation of low level Occam program detail. Low level Occam program 
detail frequently uses imperative control structures which, containing significant 
aspects of control flow, cannot be well represented using bubble and arc diagrams. 
Good examples of such structures are the alternative and conditional processes.

3.43 Control flow diagrams

Control flow diagrams have also been used for the representation of Occam 
programs, though not as widely as have bubble and arc diagrams. Control flow 
diagrams of Occam programs usually take the form of parallel flow charts. They 
are often used in the teaching of Occam programming and serve to illustrate 
constructs formed by parallel processes, multi-way conditionals, etc. They are 
very good at illustrating the relatively complex control flow structures occurring 
at low levels in programs. However, they are not so satisfactory for the illustration 
of higher level overviews of programs. This is for two reasons. Firstly, control flow 
diagrams are not particularly compact and thus do not provide good overviews. 
This can to some extent be alleviated by the use of hierarchical versions of the 
diagrams. Secondly, the diagrams do not provide the potential for the expression 
of structures involving inter-process communication. As high level views of Occam 
programs nearly always involve inter-processes communication, such diagrams 
cannot really be considered useful for programming at a high level of abstraction.

It is possible to overlay communication onto such diagrams. In (Mourlin and 
Cournarie, 1989) this approach has been taken to aid the visualisation of Occam 
programs. Parallel flowcharts are composed of Occam program fragments 
enclosed in boxes. By selecting various options, lines may be drawn between 
communicating primitive processes. Other options are included to "fold up" 
multiple processes into more compact units to aid analysis. Unfortunately, lines 
showing communication may only be drawn between unfolded primitive 
processes. The system therefore restricts the ability to obtain overviews of 
communication. Nonetheless, it does demonstrate that a combination of 
communication diagrams and control flow diagrams is a promising direction, at 
least for teaching. Figure 3.6 shows a diagram from the system.
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Figure 3.6 - A control flow diagram with overlaid inter-process 
communication information from (Mourlin and Cournarie, 1989). Boxes 
in the diagram represent Occam processes. Communication is shown by 
the lines connecting the ’!’ and ’?’ symbols.

GRAIL (Stepney, 1987) is a system which uses a mixed control flow and channel 
visualisation paradigm. Unlike the previous system, GRAIL does not use "wires" 
for the representation of control flow connections between modules. Instead the 
flow of control is indicated by vertical and horizontal juxtaposition of "blocks" of 
program text in a manner similar to Nasi-Shneiderman diagrams. Channels are 
overlaid on top of the diagrams. Again, GRAIL has demonstrated that mixed 
approaches are useful.
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3.5 Features of a visualisation of Occam

This section identifies general features for a visualisation of Occam, based on an 
analysis of the visualisations discussed in the previous section. Some general 
features for visualisations are presented and discussed with references made to 
how they might aid the development of Occam programs.

3.5.1 Visual representation of processes

All the visualisations of Occam discussed above use visual symbols (boxes or 
bubbles) for the representation of processes. Frequently boxes are labelled with 
process names. Many sequential visual programming systems have used icons for 
the visual representation of (non-concurrent) processes, and it is likely that similar 
techniques might be useful in concurrent programming.

3.5.2 Mixed representation of inter-process communication and of 
control flow.

Any visualisation of Occam style programs must include some form of graphical 
representation of inter-process communication. Inter-process communication is 
one of the building blocks of Occam. Bubble and arc diagrams have been 
extensively used for high level overviews of Occam programs and it is easy to 
postulate that the use of similar diagrams in visual program development 
environments is desirable.

Graphical representations which include control flow are able to aid the 
programmer in conceptualising the actions of the control structure of programs. 
Such a representation is therefore particularly well suited to the introduction of 
novice programmers to concurrent programming, and allows visual representation 
to extend to a lower level of abstraction that would usually be possible using bubble 
and arc diagrams.

The two methods may be considered as complementing each other, so a natural 
approach for an Occam style visual programming system is to combine the two into 
a single unified model. A system based on such a model should permit information 
hiding so that the complexity of the display may be reduced. For example, control 
flow information need not be displayed in situations where all processes are in 
parallel or the user has a clear mental model of the processes involved in the flow 
of control. A combined visualisation also allows the visual expression of control 
flow structures which contain elements of inter-process communication, for 
example alternative structures.
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3.53 Use of graphics for high level overviews and text for low level 
detail

Graphical representations are well suited for showing the structural aspects of 
programs. Text on the other hand is better suited to the expression of abstract 
algorithms and low level program detail. Many systems have reported positive 
benefits from a mixed textual and graphical paradigm. Any system should leave 
the decisions on where to leave off visual programming and begin textual 
programming to the user.

3.5.4 Visual hierarchy

Hierarchy, as discussed earlier, can be of great facility. It aids the mental processes 
of software design by encouraging the functional grouping of processes, and has 
complexity management benefits. Hierarchical text editing systems are already 
well used in the development of Occam programs, so the expansion of the "folding 
editor" to a visual environment seems natural. Hierarchy encourages the 
development of small well founded program modules and hence supports code 
reuse. Finally, hierarchy is of considerable use in overcoming the restrictions 
placed on graphical programs by limited screen size and/or resolution.

3.6 The GILT language

The GILT visual programming language was designed with the features of the 
previous section in mind. Before an overview of the specific features of the 
language, some general design principles are analysed.

3.6.1 General design principles

A few obvious principles apply to the design of any prototypical language - it should 
be modular, extensible and modifiable. Within the bounds of practicality these 
principles were adhered to during the design of GILT. They proved to be very 
sound principles which allowed features to be introduced into the language as 
development progressed.

3-19



Visualisations o f  Occam programs and Transputer
systems

The major design decision taken was to combine the control flow and bubble and 
arc diagram approaches. The reasons for this decision have already been discussed, 
but it may be regarded as having the greatest effect on the language’s syntax and 
semantics. Allowing control flow in GILT required the development of suitable 
visualisations of Occam control flow structures and various components associated 
with them.

Another fundamental decision was to allow the use of icons for the graphical 
representation of processes in the system. Simpler approaches might have used 
symbols composed of lines, or even labelled boxes. These were rejected in favour 
of the iconic approach as the use of icons gave greater flexibility by allowing the 
representation of a process to be customised by the user to show the process’ 
function. The use of icons for the representation of sequential processes and 
applications has already been thoroughly investigated and proven useful (Shu, 
1988; Yoshimoto, Monden, Hirakawa, Tanaka and Ichikawa, 1986; Glinert and 
Tanimoto, 1984; Lodding, 1983), so it seemed a natural step to allow their use for 
the representation of concurrent processes. The use of icons transpired to have 
little effect on the syntax or semantics of the language but had a great effect on the 
editing system. Icons may be regarded as decoration to the central principles of 
the language, or even as implementation dependent features. Nonetheless, they 
facilitate usage of the language.

For simplicity, the language was designed to include visualisations for a 
representative selection of Occam’s programming structures only. For example, 
features from each class of Occam’s control structures are included in the language 
- sequential execution of processes, parallel execution of processes, conditional 
execution of processes, iterative processes execution and indeterminate choice. 
Similarly, inter-process communication at the graphical level supports the use of 
simple integer protocols only. In all cases the simplest possible approach which 
was considered to have representative properties was taken. This approach has 
proven to be a good one as in hindsight it seems highly unlikely that a more 
complicated language could have been implemented within the time available for 
the project. Expansion of the system to fully implement all of the structures 
allowed in Occam is discussed in the final chapter of the thesis, but it should be 
noted that such expansion is not regarded as a complex matter, just a time 
consuming one.

The use of hierarchy was a feature which was identified as a promising property 
for any concurrent visual programming system. The most natural way of 
introducing hierarchy into any diagrammatic system is to allow diagrams to define 
the functionality of modules, which may then be used in further diagrams. This 
approach has been commonly used in many other visual programming systems as 
well as ECAD systems. Hierarchy was introduced in GILT by allowing a diagram 
to define the functionality of a "Process Icon", in turn requiring diagramatic 
components for the definition of the external interface of a diagram together with 
representative counterparts at higher levels of abstraction. Similar approaches 
have been adopted in many of the aforementioned ECAD systems which use 
"pads" to define the external inputs and outputs of a circuit which is to be 
encapsulated into a diagram.
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As an implementation and language specification aid, symbols in the language 
were built from the largest possible total number of common parts. In particular, 
icons showing the external connections of symbols are reused over and over again. 
This simplified the syntax of the language, and reduced the implementation time 
for the language’s editor by allowing interaction with many different symbols to 
be described in a modular fashion.

3.6.2 An overview of the GILT system

Development of the language and a syntax capable of defining it were carried out 
largely simultaneously. Hence it is difficult to understand the syntactic 
representation of the language without some understanding of the language and 
vice-versa. Therefore, a brief synopsis of the entire system is given here as a basis 
for the discussion on syntactic representations suitable for formalisation of GILT 
diagrams in chapter four. A fuller description of the language is then given in 
chapter five.

The GILT language is based on a combined control flow and channel based 
visualisation, but uses iconic representation (Lodding, 1983) for language 
components. No previous visual programming system has used such a combined 
control flow and channel visualisation.

GILT programs are built at a workstation by interactive construction of 
hierarchical diagrams. The diagrams may be considered as graphs with labelled 
nodes and edges, which is how they are represented in the syntax developed for 
GILT. Nodes in the graphs are the basic components from which programs are 
built - Occam style processes, tags indicating the start and end of constructs, 
comments, variable definitions, inter-process communications facilities and other 
simple elements. Edges (arcs) between the nodes show the flow of control and 
inter-process communication. Nodes are visually represented by icons, some of 
which have textual labels, while edges are shown using two different line styles. 
The style of a line is dependent on the function of the edge which it represents. 
Processes may have graphical sub-processes or, at the lowest levels of abstraction, 
may be directly expressed in Occam. The graph model used allows the construction 
of programs consisting of small, potentially provable Occam processes connected 
together in a consistent and visual way.

GILT is designed to support a style of programming in which a user initially 
sketches a design of channel connected processes similar to bubble and arc 
diagrams, but with added control flow. Top level diagrams usually have all their 
processes executing in parallel, which is expressed by branching control flow to 
pass through all the processes. In such situations viewing control flow may be 
confusing. GILT therefore allows users to hide control flow from sight, so that 
graphs may be viewed using a pure communicating processes model. This facility 
is particularly useful when all the processes at a particular level of abstraction are 
in parallel, for example at the aforementioned higher levels of abstraction, or in 
the programming of a process array algorithm.
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The functionality of the individual processes may then be expressed in further, 
lower level, GILT graphs until the user is satisfied that a sufficiently small level of 
granularity has been reached. Control flow constructs specifying the execution 
order of processes may be added as required to express the behaviour of processes 
which are not driven by the arrival of data along channels. Simple Occam code is 
then written for the lowest level processes. Graphical primitives for Occam 
operations like assignment, input and output are not included. These types of lower 
level operations are expressed at the textual programming level.

This "top down" approach is not equivalent to pure functional design, but produces 
hierarchical sets of functionally related processes which are expressed in a 
graphical sense by the use of a visual notation.

Alternatively, programs can be formed by wiring together pre-defined processes 
with system defined icons to form constructs. Iconic process labels are supported 
so that a process may be given a visual label appropriate to its function.

This approach is similar to the conventional engineering practice of bottom up 
design and has advantages for code reuse.

Realistically, both bottom up and top-down design methods may be used in 
practical program development. The inclusion of control flow into the graph 
model allows visual programming to proceed to a lower level of abstraction than 
is possible with the use of bubble and arc style diagramming notations.

GILTs icons do not provide functionality - they are not, for example, arguments 
to pre-defined processes as icons have been in some previous systems. Rather they 
provide a visual description of the functionality of the node which they represent. 
The pictographic representations used in GILT do not, however, replace textual 
descriptions for the complete representation of abstract concepts - GILT is based 
on a mixed textual and graphical model with text and graphics complementing each 
other. Textual process names, comments and variable definitions (just some 
examples) are as important in a program as are the program’s visual aspects.

Users interact with the GILT editor by means of a mouse, menu and button based 
system. Icons representing processes (Process Icons) are drawn in a special icon 
editing area, then dragged to an appropriate position on the screen. Process Icons 
may be "entered" to reveal detail within them. Entering a Process Icon is equivalent 
to going down one level in the hierarchy to a lower level of abstraction. Text for 
the lowest level Process Icons is entered from the keyboard into pop-up windows. 
Other icons representing inter-process communication facilities, parts of control 
flow structures, etc. do not possess a hierarchical structure. These icons are simply 
placed in appropriate positions on the screen and connected to the Process Icons 
via "Control Flow Links" and "Channel Links" to form program structures. The 
Control Flow Links and the Channel Links are also defined with the mouse.
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3.63 GILT diagrams

GILT diagrams are built from a small number of basic symbols called "functional 
icons" which may be connected into constructs using the Control Flow Links and 
Channel Links mentioned above. Constructs may in turn be connected together 
to form larger constructs.

Of the functional icons ("Process Icons", "Guard Icons", "Comments", "Variable 
Declaration Icons", "Passed Variable Icons", "Channel Stub Icons", "Control Flow 
Stub Icons", "Control Fork Join Icons", "Channel Connector Icons" and 
"Conditional Icons") the most fundamental is the Process Icon. Most of the symbols 
are composed of smaller sub-symbols to comply with the earlier aim of reducing 
the system complexity to a minimum. In most cases a symbol is composed of a 
unique iconic label, which visually represents the function of the icon, and a 
number of "ports", which provide connection points for Control Flow Links or 
Channel Links. In some cases editable areas for the entry of textual parameters 
are also provided.

GILT’s icons may be regarded as having an hierarchical structure, as they are 
formed from a number of separate, nested, diagramatic units. This hierarchical 
structure is described in more detail in the following chapters.

Process Icons are analogous to Occam processes. Each "Process Icon definition" 
contains either a few lines of Occam code or a "definition diagram". The 
appearance of a Process Icon’s central image or raster and its name may be altered 
by the programmer to give an indication of the icon’s functionality. A "Control 
Flow Input Port" and a "Control Flow Output Port" for the connection of "Control 
Flow Links" are positioned on the left and right hand side of instances of Process 
Icons placed into diagrams. As many "Channel Input Ports" and "Channel Output 
Ports" as are required for inter-process communication appear at the top and 
bottom of the "Process Icon instance". Figure 3.7 shows an example Process Icon 
instance.

Process Icon instances may be combined into control flow structures by connecting 
their Control Flow Ports to Control Flow Ports on other functional icons or to 
Control Flow Stubs (such connections are made via Control Flow Links). The 
other functional icons, the type of which is dependent on the structure being 
created, are either further Process Icon instances or system defined icons 
representing concepts like the branching of control flow or conditional control 
flow switching.

Similarly, inter-process communication structures are built up by the connection 
of Channel Ports and Stubs together via Channel Connector Icons and Channel 
Links. The Channel Connector Icons provide the ability to fork and join Channel 
Links and aid the implementation of some restrictions on the inter-process 
communication structures which may be created.
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Figure 3.7 - A GILT Process Icon representing a data display process. To 
the left of the icon is a Control Flow Input Port which provides a 
connection point for incoming Control Flow Links. A similar connection 
point, a Control Flow Output Port, is positioned to the right of the icon. 
At the bottom is a Channel Input Port, which provides similar facilities 
to the Control Flow Ports, but for Channel Links.

External connections for control flow are provided by the use of Control Flow 
Input Stubs and Control Flow Output Stubs. Each diagram must contain only one 
Control Flow Input Stub and only one Control Flow Output Stub. The Control 
Flow Input and Output Stubs define the entry and exit points of the flow of control 
respectively. When an instance of a Process Icon defined by a diagram (a "graphical 
Process Icon") is used in a further diagram, the Stubs appear as the Control Flow 
Ports at each side of the icon. Control flow enters Process Icons via Control Flow 
Input Ports, and exits via Control Flow Output Ports. Ports give a high level visual 
representation of stubs which are at a lower level of asbtraction.

A similar scheme is used for external channel connections, whereby Channel Input 
and Output Stubs correspond to the earlier Channel Input and Output Ports. 
Channel Links may be connected to Channel Input and Output Stubs just as they 
may be connected to the Channel Input and Output Ports of Process Icons.

Figure 3.8 shows a definition diagram for the Process Icon of figure 3.7.

The system of stubs and ports is similar to the schemes used in ECAD design 
systems for the hierarchical encapsulation of circuits into functional blocks. Stubs 
correspond to the external connections defined for a functional module in such a 
system, while ports correspond to connection points for the symbol representing 
the module.
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Figure 3.8 - A GILT definition diagram defining the functionality of the 
Process Icon of figure 3.7. Two communicating Process Icons instances, 
representing a clipping process and a drawing process, in a parallel 
construct are shown. Control flow (shown by the thin line style) enters 
the diagram at the Control Flow Input Stub (leftmost) and is divided to 
pass through the two Process Icon instances by a Control Split Join Icon. 
The control flow passes through the two Process Icons and is combined 
by another Control Fork Join Icon before passing out via a Control Flow 
Output Stub. Data may enter the system via the Channel Input Stub 
(bottom) which is connected to the Channel Input Stub of the ’clip’ 
Process Icon instance via a channel link (thick line style). Processed 
co-ordinates are emitted on the process’s Channel Output Port and enter 
the ’draw’ Process* Icon instance via its Channel Input Port. Channel 
Connectors (small circles) are used to connect Channel Links between 
Channel Ports and Channel Stubs, or between two Channel Ports. The 
Channel Input Stub defines the Channel Input Port shown on the icon 
of figure 3.7.

3-25



Visualisations o f  Occam programs and Transputer
systems

GILT’s control flow structures are similar to those found in conventional flow 
charts and control flow graphs. Such representations have been widely disparaged 
as a design formalism, but the approach taken here is that hierarchical control flow 
graphs are well suited to the representation of imperative control flow structures 
in the implementation phase, at least for novice programmers. One difference 
between GILT diagrams and representations like control flow graphs and flow 
charts (apart from the obvious inter-process communication included in GILT 
diagrams) is that GILTs control flow structures use diagrammatic components to 
explicitly fork and join control flow links. Figure 3.8 shows an example of the use 
of these components, known as Control Fork Join Icons, in a very simple parallel 
construct.
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Formal descriptions of visual 
languages

4.0 Introduction

A complete definiton of any computer language is always required.

This chapter examines approaches to the development of formal descriptions 
suitable for the specification of visual languages. No great body of knowledge exists 
regarding the definition of the syntax and semantics of visual languages, but this 
chapter shows how textual language specification methods can be merged with 
current methods for visual system demarcation to provide grammatical and 
semantic specifications for visual languages similar to GILT. A notation for the 
representation of GILT diagrams is built up progressively through the chapter to 
provide a basis for a full definition of the language in chapter five.

4.1 Language, communication, and computer languages

Languages have been associated with communication since the beginnings of time. 
The study of languages is a complex arena consuming a vast research effort, with 
particular effort devoted by the computing community towards the understanding 
of "natural" languages and the problems engendered by "context". Yet, despite this 
effort, computer languages are some of the simplest of the diverse languages 
evolved by humankind. Their simple grammars and dictionaries allow them to be 
mechanically processed and thus facilitate the transfer of information between 
human and computer, which is surely our purpose here. Traditionally, computer 
languages are textually based. This can be regarded as due to the historical 
influence of limiting early technology. Just as did the printing process before it, 
computing has now developed methods for the practical reproduction (and 
storage) of images. It is the author’s opinion that computer languages should be 
able to take advantage of these facilities to provide a new flexibility in the 
communication of ideas. However, the idea that purely visual languages can 
replace textual languages for the expression of abstract and concrete ideas is 
somewhat farfetched. Old adages like, "a picture is worth a thousand words" belie 
the fact that pictures and text complement each other and give fuel to proponents 
of views like, "nothing convincing, much less exciting, has emerged from such
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efforts. I am persuaded that nothing will" (in reference to visual programming and 
program visualisation systems) (Brooks, 1987).

4.2 Specification of computer languages

The desirability of a formalised syntax and semantics for any computer language 
can hardly be disputed. Formal semantic and syntactic descriptions for textual 
languages have been in existence for many years, and it is almost impossible to 
consider the implementation of a textual computer language without a firm 
definition of its syntax. Semantic definition, although more problematical, is also 
highly desirable. Such definitions provide a solid basis for the development and 
management of software implementing the language.

43 Grammars and syntactic specification

Grammars are formal devices for the specification of potentially infinite languages 
in a bounded way. The syntax of a given computer language may therefore be 
defined using a grammar. Grammars generate language structures, which need not 
necessarily be textually based. This is done by successively rewriting a structure, 
consisting of a "start symbol", according to a finite set of rewriting rules or 
"productions". In traditional textual grammars, the structures consist solely of 
strings. In this chapter, structures of interest are graphs and textual sentences - 
hence the terms "graph grammar" and "text grammar" will be referred to where 
appropriate. In preparation for a definition of graph grammars, a revision of the 
definition of text grammars is first presented.

43.1 Text grammars and the specification of textual language 
syntax

A "text grammar" can be used to specify a textual language. Text grammars may 
be defined as follows, due to (Aho and Ullman, 1972), though it should be noted 
that there are many other equivalent definitions.

A set of symbols is termed a "vocabulary". The notation V , where V is a vocabulary, 
denotes the set of all strings composed of symbols from V, including the empty 
string. The "empty string", denoted e, consists of no symbols. The notation V + 
denotes V - {e}. If a is a string, then |a | denotes the length of a.

A text grammar is a quadruple (Vt,Vn, S, P) where

Vt is a finite set of symbols called "terminals",

Vn is a finite set of symbols called "non-terminals" s.t. Vt n Vn = 0,

S is a distinguished member of Vn, called the "start symbol", and
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P is a finite set of pairs called "productions" s.t. each production (ajl) is written a 
- >  P  where the "left part"«  e V and the "right part" /3 e  V where V =  Vt u Vn.

In the following discussion, Latin capitals (A,B,....Z) are used to denote 
non-terminals, lower case Latin letters (a,b,....z) denote terminals, and lower case 
Greek letters (afi... c o )  denote strings.

If (a - > /3) is a production and yap is a string, then \pap - > xpfip is an "immediate 
derivation". A "derivation" is a sequence of strings ao, «1,....,an

where n * 0 such that

a0  - > a l, a \ - >  a% ..., an-l - > an.

* . . -f-
It is written ao - > an, a derivation ; or if n * 1 then ao - > an, a "nontrivial 
derivation".

Any string derivable from the start symbol S, i.e. s.t S - > 77 is called a "sentential 
form". Any sentential form consisting only of terminals is called a "sentence". The 
"language" L(G) generated by a grammar G is the set of all valid sentences of the 
grammar;

L(G) = {»/£ Vt* | S - > %  }.

A text grammar is "ambiguous" if any strings in the language have two or more 
distinct derivations.

Text grammars may be classified into four types, ranging from type 0 to type 3 
(DeRemer, 1976). The higher the classification, the more restrictions are placed 
on the productions in the grammar, and the easier the language is to parse 
mechanically.

Type 0 grammars, as defined by the unrestricted grammar above, generate "type 
0 languages". The next three types place successively more restrictions on the form 
of the productions in the grammar.

Type 1 or context-sensitive grammars have productions of the form ipAp - > xpcop 
where A e Vn and a>,p e V .A  context-sensitive grammar generates a "type 1 
language".

Type 2 or context free grammars have productions of the form A - > w where A e 
Vn and co e  V . Sometimes co is not allowed to be the empty string e. A context free 
grammar generates a "type 2  language".

Type 3 or regular grammars are either right linear with productions of the from A 
- > a or A - > aB, or left linear, with productions of the form A ->  a o r A - >  Ba, 
where A e Vn, B e  Vn and a e  Vt. A regular grammar defines a" type 3 language".
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The classification above is generally known as the Chomsky hierarchy. Computer 
languages are generally of type 2 and the specification of their syntax may therefore 
be accomplished using a context free grammar. Backus-Naur Form (BNF) is 
arguably the most common notation for the description of context free grammars, 
and numerous examples of its use are to be found in texts on programming 
languages.

43.2 Graph grammars for the specification of visual language 
syntax

Most diagramming or visual programming "picture models" represent discrete, 
limited structures. These structures consist of a finite number of discrete objects 
interrelated by a finite number of relations. Graphs with discrete objects and edges 
map onto such diagramming methods. Thus a picture may represent a graph by 
visually depicting its nodes and edges. This mapping is not usually a one-to-one 
mapping of picture to graph. Rather it is frequently a many-to-one mapping with 
multiple sets of pictures representing single underlying graphs. Representational 
pictures may therefore contain a degree of information redundancy, for example 
in the domain of spatial information. Some spatial information may be relevant to 
the semantics of a given visual language but it usually has little or no relationship 
to the language’s syntax.

Thus it is possible to describe the syntax of a visual or picture based language by 
the use of a graph grammar. The complexity of the graph grammar is obviously 
related to the complexity of the language it is required to describe. Although graph 
grammars are more complex than conventional grammars, some graph grammars 
can be viewed as generalisations of text grammars. Most of the terms used in the 
study of the text grammars discussed earlier still apply to such graph grammars.

43.2.1 Previous work on the syntactic descriptions of visual 
languages

Most visual programming languages have been based on highly informal syntactic 
definitions having little theoretical basis, and although more formal syntactic 
descriptions of visual languages have recently been gaining in popularity, the 
majority of visual languages are still heuristically based.

The syntax of many visual languages may be described using graph grammars. Like 
textual grammars, these grammars can exhibit interesting properties and can be 
specified in many different ways. Unlike textual languages there is no standard or 
even widely used method in existence for syntactic specification. Instead, a variety 
of different graph grammar based methods have been applied to the problem. 
Even the term graph grammar is a hazy one, referring as it does to a multitude of 
methods for the specification of sets of graphs or maps developed since the late 
1960’s. Graph grammars have been applied in pattern recognition, molecular 
modelling, VLSI layout schemes, data bases, lambda-calculus, and a host of other 
diverse activities.
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The use of graph grammars in the field of visual languages has not been confined 
to the specification of the syntax of visual languages. For example, several papers 
have proposed the use of graph grammars both as a tool for syntactic definition of 
visual languages and as an aid in their implementation (e.g. Harada and Kunii, 
1984; Gottler, 1989). In particular graphical syntax directed editors, which may be 
customised by the use of a graph grammar description of a visual language’s syntax, 
have been proposed to cut down on the often lengthy business of developing an 
editor for a visual language (e.g. Gottler, 1989; Hekmatpour and Woodman, 1987). 
Relevant syntax directed editors have also been developed for diagramming 
methods (e.g. Inman, 1987; Dutton, 1986; Albizuri-Romero, 1984; and Szwillus, 
1987). These tools are still in their infancy, and are unable to deal with visual 
languages of realistic complexity. Certainly none of these systems would be 
suitable for the implementation of a GILT-like visual programming language, 
mainly due to their lack of support for bitmapped icons and their lack of support 
for the multiple levels of abstraction required by GILT diagrams.

Another relevant work in the area is Lakin’s paper on spatial parsing (Lakin, 1987), 
which is concerned with formalising human-computer diagram based interaction. 
Such interaction can be regarded as the foundation underlying visual 
programming, program visualisation and other schematically based systems.

Work has also been performed on the representation of textual programs using 
hierarchical graphs (Pratt, 1971; Yau and Grabow, 1981), which are discussed in 
detail in later sections of the thesis and will not be further mentioned here.

Harel (1988) has reported work on the theory of "Hi-Graphs". A Hi-Graph is a 
general kind of diagramming object formed by the replacement of nodes in 
hypergraphs with visual representations of sets. Hyperedges then express 
relationships between sets of objects. Harel does not offer methods for the 
specification of particular classes of Hi-Graphs, instead concentrating on the 
underlying theory of the diagrams. A graph-grammar like system could be 
developed for use with Hi-Graph theory, which offers a high level of generality. 
Such an approach is not taken here as most of the features offered by Hi-Graphs 
are not required for the visual representation of GILT or many other visual 
languages. The graphs generated by the simple graph grammars offered below as 
a syntactic formalism may however be regarded as equivalent to simple Hi-Graphs.

In an approach very different to the ones described above, the syntax of visual 
languages has been defined using textual formalisms. The major difficulty with 
such approaches is the specification of the mapping between the two dimensional 
graphical language being described and the one dim ensional textual 
representation used to describe it. Another associated difficulty lies in finding a 
suitable grammar for the representation of the sets of the combinations of textual 
elements used. Gillett and Kimura (1986) have used such an approach for the Show 
and Tell language, while a less formal, though similar, system has been used for 
the syntax of Prograph (Cox and Mulligan, 1985). The lack of a formalised 
equivalence between the representations used and difficulties with suitable 
grammars for the textual specification makes such methods unattractive, at least 
for GILT’s syntax.
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43.2.2 Graph grammars

Graph grammars provide similar facilities for visual languages that text grammars 
provide for textual languages. As mentioned earlier there is a wide diversity of 
graph grammars in existence, with many methods for their specification. All graph 
grammars specify graph languages in a manner similar to the way in which text 
grammars specify text languages. Instead of working with strings the grammars 
work with graphs and produce languages of terminal graphs. Rather than 
specifying the replacement of strings of symbols with strings of symbols, 
productions in the grammars specify replacements of sub-graphs in host graphs 
with other sub-graphs. The various graph grammar specification methods differ 
from each other in the way in which the "embedding transformation" is specified. 
The embedding transformation defines the way in which the new sub-graph’s edges 
are connected to the original graph. The task of reviewing the entire spectrum of 
approaches, contrasting the various methods and reviewing applications has 
already been accomplished and therefore will not be undertaken here. Ehrig, Nagl, 
Rozenberg and Rosenfeld (1986) includes tutorial introductions to the major 
methods but a few references to the major approaches are perhaps appropriate at 
this point. The most well known methods are the algebraic method (Ehrig, 1979), 
the NLC (Node Label Control) approach (Rosenberg, 1986) and the set-theoretic 
approach (Nagl, 1986a).

The approach developed in this chapter is a form of NLC graph grammar, but has 
directed edges which are not usually found in NLC grammars. The grammar is 
based on work by (Pratt, 1971), (Della-Vigna and Ghezzi, 1978) and is a form of 
context free graph grammar. The method was chosen because it offered sufficient 
generality to describe the constructs of the GILT language, exhibited properties 
of context freeness (and hence generated a grammar that is easy to parse), yet was 
relatively simple in both its description and theory. A context free grammar is 
required, at least in the representation of the control flow information in GILT, 
to allow the easy recognition of GILT’S language constructs.

Before describing the grammar itself some underlying terms must be defined. In 
both the definition of the graph grammar and the preamble, attempts are made to 
draw parallels between the definitions of textual grammars and graph grammars, 
even to the extent of using the same symbols for like concepts.

A set of symbols is termed a "vocabulary". Assume that Vm  and Va  are finite sets 
of distinct symbols. Vm  and Va  are the sets of node labels and arc labels 
respectively.

Definition :

A "labelled graph" G over Vm  and Va  is a triple (N,L,E) where N is a finite set of 
nodes.
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L:N- > Vm  (L, the node labelling function, defines the label of each node).

E - > (NxVa x N) (E - the arc set, defines the arcs of G and their labels).

If (n,a,m) e  E, then an arc exists from node n to node m with label a.

If G is a graph, then Ng , Lg  and Eg  denote the node set, node label function and 
arc set of G respectively.

Definition:
*

If Vm  and Va  are finite sets of distinct symbols then the vocabulary V (Vm , Va ) 
= {G | G is a graph over Vm , Va }. In shorthand, where Vm  and Va  are assumed 
it is written V . In equivalence to the vocabulary in the earlier text grammar, V 
is the set of all graphs composed with nodes and arcs having labels from Vm  and 
Va , including the "empty graph".

The empty graph, denoted e ,  has no nodes or edges. The notation V denotes V
-W -

A "graph grammar" is a quintuple (Vt, Vn, Va, S, P) where :

Vt is a finite set of "terminal" node labels (the "terminals"),

Vn is a finite set of "non-terminal" node labels (the "non-terminals"),

Va is a finite set of arc labels (the "arcs"),

S, the "start symbol", is a distinguished member of Vn,

and P is a set of "productions" s.t. each production is a quadruple (G,H,I,0) and 
written G - > Hi,o. The "left part" G e Vn . The "right part" is Hi,o. In general H e  

V . In our case we do not allow H to be the empty graph e and hence H e V + . I 
and O are distinguished nodes in H termed the "input" and "output nodes" (or 
"gluing points") respectively.

Productions are used to derive graphs with node labels in Vt  starting from a "host 
graph" containing only the start symbol S. During the derivation, the nodes of the 
host graph with labels in Vn  (e.g. an arbitrary node A labelled B, with B e Vn ) are 
replaced by the right part of some rule rewriting B, e.g. B - > Ci,o. Every arc 
originally entering (exiting) the node B becomes an arc entering I (exiting O). Thus 
I and O define the "embedding" of the right part (C) in the host graph. Thus the 
way in which the "embedding transformation" is specified in the grammar is 
extremely simple.

A graph grammar is "ambiguous" if the language that it generates contains a graph 
with two or more distinct derivations.
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Although Chomsky’s hierarchy clearly applies only to textual grammars it is easy 
to see that some of the notions of context freeness (type 2 grammar) can be 
transferred to graph grammars. A context free graph grammar, like the one above, 
has productions which replace only single non-terminal nodes with graphs. A 
context dependent graph grammar would have productions in which sub-graphs 
were replaced with other graphs. The embedding mechanism of such a grammar 
would have to be considerably more complex than that used above, which has only 
two gluing points (I and O) defining the connectivity of the substituted graph with 
the host graph. Obviously a completely general graph grammar with unrestrained 
substitution would correspond with Chomsky’s type 0 grammar. Regular 
grammars pose more of a problem however. Any attempt to classify graph 
grammars into a hierarchy like Chomsky’s would have to remove the notion of 
right and left linear grammar, as there is no "right" or "left" to most graph grammars, 
as they do not take account of the spatial positioning of nodes.

43.23 A simple visual language grammar

A good example to begin with is a grammar for a "box language". The box language 
is a trivial language - its input space consists of chains of simple boxes, one 
connected to the next. At the start and end of the chains of boxes are connected a 
start box and an end box. Each chain of boxes must have one start box, one end 
box, and at least one middle box. Clearly any chain of boxes in the language can 
be modelled as a simple directed acyclic graph with labelled nodes. The problem 
is to find a simple graph grammar description for the language which allows chains 
of boxes of all lengths to be developed, and hence legal chains of boxes to be 
mechanically parsed. In a sense, such a simple box grammar is very like a string 
grammar - boxes are equivalent to characters, but the connections between the 
boxes are modelled explicitly. Connections between characters in string grammars 
are not shown - they are implicit in the grammar. The grammar for such a simple 
language is a good place at which to introduce the terminology and methods 
described above in a practical way.

Terminal symbols

Terminal symbols in the grammar representing the different box types are shown 
as labelled nodes. Three exist - the start box, which we shall label [SB], the end 
box [EB] and the intermediate boxes [B]. All terminal symbols are enclosed by 
square brackets. In later, more complex, examples terminal symbols will be 
enclosed in rectangles.

Vt  = { [ S B ] ,  [ E B ] ,  [ B ] }

Non-terminal symbols and productions

Non-terminal symbols in the grammar are enclosed by round brackets. Later, more 
complex, examples have non-terminal symbols enclosed by rounded rectangles.

VN = { (GRAPH), (BOXES) }
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The productions in the grammar may be written in a similar manner to BNF 
productions:

p = {

(GRAPH) : : = 1 [ S B ] - >  ( BOXES) - >  [EB]  ° ( 1 )

(BOXES) : : = H M o

( 2 )

: ; = 1 [ B] - >  (BOXES) 0 ( 3 )

}

The input and output nodes (or gluing points), as defined earlier, are denoted by 
"I" and "O". The >" symbol indicates an arc (edge) between symbols. In later, 
more complex, examples arcs are shown by directed lines. The bracketed numbers 
are used to reference the productions in later examples.

Start symbol

The start symbol, Vn , which must be part of the set of non-terminals is (as 
expected) the symbol GRAPH.

S = (GRAPH)

Arc Labels

All arcs in the diagrams have the same label. Hence, for simplicity, no arc labels 
are applied. In other cases, different style lines may be used to avoid writing many 
labels.

Rewriting

The two productions above are enough to describe any legal box graph. Rewriting 
begins with a single (GRAPH) node and proceeds until no non-terminal nodes 
exist in the graph.

Example

Initially a graph consists of the start symbol:

(GRAPH)

Applying substitution (1) we obtain :

[ S B ] - >  ( BOXES) - >  [EB]
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As there were no connections to the initial symbol, the gluing points of productions 
(1-3) were redundant. They will however be required in future rewritings of the 
(BOXES) symbol, which has connected arcs.

We now have a choice of substitution to make for the non-terminal (BOXES). 
Selecting the (3) substitution yields :

[SB] - > [B]- > (BOXES) -> [EB]

Arcs entering the original (BOXES) symbol are connected to the node labelled 
[B], while those connected outwards from the original (BOXES) symbol are 
connected from the new (BOXES) symbol, as defined by the gluing points.

Clearly substitutions for (BOXES) could continue indefinitely. Instead we select 
(2) giving :

[SB] - > [ B] - > [ B] - > [EB]

which contains no non-terminal nodes and is clearly a legal graph. This notion of 
rewriting until no non-terminal nodes exists in the graph is fundamental to the 
method.

43.2.4 A graph grammar for a subset of GILT

A slightly more complex example of a visual language, which can be regarded as 
defining a subset of the GILT language, may be developed with simple sequential 
and simple parallel control flow constructs. The language is flowchart-like, is 
without conditionals or indeterminate choice of any kind but allows one parallel 
control flow construct. Graphs in the language are composed of networks of 
processes "wired" either sequentially or in parallel, like sequential and parallel 
constructs in GILT.

Constructs in the language, modelled by the non-terminal "CONSTRUCT" 
include a sequential construct (non-terminal "SEQ"), a parallel construct 
(non-terminal "PAR"), a "SKIP" symbol (term inal) and a single process 
("PROCESS INSTANCE" terminal). The terminal "CONTROL SPLIT JOIN" is 
used to fork and combine control flow. As in Occam, sequential and parallel 
constructs may be nested as deeply as required. The start symbol is "PROCESS 
DEFINITION".

The grammar defines the syntax of a simple subset of GILT by representing GILTs 
icons with labelled nodes. Control flow links are represented by edges. The 
representation does not model the hierarchical structure of the icons, leaving them 
instead as simple non-hierarchical terminal symbols.

In Occam the notation of a set of processes (using {}) is an essential part of 
Occam’s grammar (appendix one). It allows SEQ, ALT, and PAR constructs to be 
easily defined and simply written.
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For example, the production

parallel : PAR
{process}

defines the non-terminal "parallel" as being the terminal "PAR", followed by zero 
of more occurrences of "process" non-terminals.

A similar notation is required for the elegant representation of sets of processes 
wired between two common nodes such as those in a parallel construct. Infinite 
sets of sequential processes can easily be represented using recursive productions, 
as in the box grammar.

Therefore, Occam’s set notation is extended to encompass graphical parallel sets 
of processes. In such a parallel set, a pair of horizontal braces delimits a construct 
that may be replicated vertically in the production. For example, figure 4.1(c) 
contains a production for the parallel construct in the simple language. The 
parallel construct can consist of one or more of the branches shown between the 
braces, provided that each branch is connected to the terminals labelled 
"CONTROL FORKJOIN".

Figure 4.1 shows the grammar for the restricted subset of the GILT language, 
including non-terminal symbols (4.1a), terminal symbols (4.1b) and productions 
for the grammar (4.1c). Only one edge label exists, as before, and is shown by lines 
using a thin line style.

Figure 4.2 shows a simple example graph, containing sequential and parallel 
constructs. The parallel constructs are worthy of note, having been generated using 
productions expressed using the earlier set notation.

43.2.5 Hierarchy and communication

The grammar above can easily be extended to provide a complete description for 
non-hierarchical diagrams without a mixed inter-process communication and 
control flow visualisation. Such a grammar is capable of describing visual 
expressions for all common block structured control constructs, but the grammar 
cannot express mixed inter-process communication and control flow diagrams or 
multi-level (hierarchical) graphs.

Two extensions are required to allow the grammar to fully represent GILT 
diagrams. Firstly, some sort of hierarchical structure is needed so that processes 
may contain sub-processes to an arbitrary level of abstraction. Secondly, some way 
of expressing inter-process communication in the same diagram as control flow 
connection is required.
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{
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Figure 4.1a - Non-terminal symbols for the restricted GILT grammar. 
Non-terminal symbols (Vn ) in the grammar are denoted by rounded 
rectangles. The start symbol (S) is "PROCESS DEFINITION".

{ CONTROL CONTROL
IN STUB 3 OUT STUB

PROCESS CONTROL

INSTANCE 3
SPLITJOIN

SKIP

}

Figure 4.1b - Terminal symbols in the restricted GILT grammar. 
Terminal symbols ( Vt ) in the grammar are strings enclosed by rectangles.
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SKIP

o

i ________  o
PROCESS
INSTANCE

Figure 4.1c - Productions in the restricted GILT grammar. Productions 
(P) are written in a BNF like notation. The input and output glueing 
points are denoted by I and O. Only one edge label exists in the grammar. 
Edges are therefore assumed to all be labelled with the same label.
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Figure 42  - An example graph generated using the grammar of figure 4.1. 
The graph was generated using rewriting as described for the box grammar.

43.2.5.1 Hierarchy

Hierarchy can be added to the definition of a graph by replacing the earlier node 
label function with a "node value function" which allows the value of a node to be 
a terminal symbol or a graph. Structures composed of hierarchies of graphs may 
be expressed using such a model, as follows: The top level in a hierarchy is a single 
graph. Each node in this graph has a value which is either a terminal symbol or a 
graph, which could be called a second level graph. Each second level graph in turn 
contains nodes whose values are again either terminals or third level graphs, and
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so on. Ultimately, the lowest level in the hierarchy contains graphs which have 
only terminal values.

Grammar rules in such a modified system rewrite non-terminal nodes as graphs 
which may contain terminals and non-terminals, as before, or additionally, other 
graphs whose nodes in turn may contain terminals, non-terminals or graphs to any 
(finite) depth. As context free graph grammars can be thought of as 
generalisations of context free string grammars, even textual strings can be 
integrated into such a hierarchical graph model by modelling connections between 
characters in textual sentences explicitly, as in the earlier box language.

The definition of a labelled graph is therefore expanded to that for a "hierarchical 
valued graph" (henceforth, an "H-graph"), using similar notation to that used in 
the definition of the labelled graph.

4.3.2.5.1.1 H-graphs

In a hierarchical valued graph, the notion of a node label is replaced by that of a 
node value.

A hierarchical valued graph or H-graph over V m , V a  is defined as follows:

The vocabulary of a level-0 H-graph H o* ( V m , V a ) = V m .

A level-1 H-graph over Vm  and Va  is a valued graph over Vm  and Va . The valued 
graph is as the labelled graph defined in section 4.3.2.2, except all references to 
node label are replaced by references to node values. The full definition for a 
valued graph is reproduced in appendix 2.

H i (Vm , Va ) = V (Vm , Va ), the set of all level-1 H-graphs.

A level-k H-graph (k :> 1) over Vm , Va  is a graph over 

k-i
Ui = o Hj (Vm , Va ) providing that Va  

has at least one node value in Hk-i*(VM, Va ).

In shorthand, Hi (Vm , Va ) is written Hi*.

Hk (Vm , Va ) = {X | X is a level-k H-graph}

H (Vm , Va ) = V k = o Hk is the set of all H-graphs over Vm , Va , in shorthand 
written H*.

The notation H + denotes H* - {e}.
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43.2.5.1.2 An H-graph grammar for a subset of GILT

Productions are allowed to rewrite non-terminals to graphs whose node values 
may be terminals, non-terminals, or further graphs. These further graphs may in 
turn contain terminals, non-terminals or graphs. The "depth" of the rewriting is 
restricted to be finite.

The definition of the earlier labelled graph grammar and the definition of a 
H-graph grammar are so similar that a complete reproduction of both is 
unnecessary here. Indeed, extension of the earlier labelled graph grammar 
definition to cover H-graphs requires only a few simple modifications, though for 
completeness a definition for the H-graph grammar is given in appendix 1. The 
modifications that need to be made to the earlier labelled graph grammar to 
expand it to an H-graph grammar are as follows: Firstly, V is replaced throughout 
by H . Secondly, the notion of a node label is replaced by that of a node value and 
finally, the input and output nodes of a production are constrained to be in the top 
level of the right side of a production.

43.2.5.13 The simple grammar with hierarchy.

The earlier simple grammar of figure 4.1 is expanded by replacing the "PROCESS 
INSTANCE" terminal symbol with a "PROCESS INSTANCE" non-terminal. A 
production rewrites this non-terminal to a node with a value that is a "PROCESS 
DEFINITION" non-terminal or to a terminal textual process. The "SKIP" symbol 
is also modelled in greater detail by a production which rewrites a "SKIP" non-
terminal into a node with a value which is a graph consisting of a "CONTROL IN 
STUB" terminal connected to a "CONTROL OUT STUB" terminal. Thus 
hierarchical graphs of any required depth and complexity may be developed. The 
grammar is considerably expanded, but lacks any representation of inter-process 
communication. More control flow structures such as while loops, if..else 
structures, etc. may easily be added, however.

Nodes with values which are graphs are shown in the rectangular terminal style 
with their value graph enclosed in the confines of the rectangle.

Figure 4.3 shows the expanded grammar, with figure 4.4 showing an example 
hierarchical graph.

43.2.5.2 Communication

Inter-process communication must also be included in a definition of GILT’s 
syntax. Extensions to the previous graph model are required because a context free 
graph grammar cannot express all possible inter-process communication patterns 
even though it is possible to include more syntactic information in a graph grammar
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Figure 43a - Non-terminal symbols in the heirarchical restricted GILT 
grammar.

CONTROL CONTROL TEXTPROC
IN STUB

3
OUT STUB

3

CONTROL
SPLITJOIN

Figure 43b - Terminal symbols in the heirarchical restricted GILT 
grammar.
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Figure 43c - Productions in the hierarchical restricted GILT grammar.
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Figure 4.4 - Example heirarchical graph. The graph was generated using 
the grammar of figure 4.3.

than it is possible to include in a text grammar. This extra information may be 
quite different from that contained in conventional, textual syntactic descriptions.

As has been already shown, the control flow information in GILT may easily be 
represented by using a form of context free graph grammar. Unfortunately, it is 
not possible to include the specifications of the inter-process communications 
connections in the same, context free, grammar as the control flow information.

To see why this is the case, consider graphs representing processes and 
inter-process communication only. In such graphs, nodes represent processes, and 
arcs, inter-process communication. The graphs formalise the earlier bubble and 
arc diagrams discussed in chapter three where "bubbles" are processes, and "arcs", 
inter-process communication. How far can a context free grammar go towards 
expressing such diagrams ?
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It has been shown that a context free graph grammar cannot express the complete 
set of planar graphs (Della-Vigna and Ghezzi, 1978) due to limitations in the 
embedding mechanism used by such grammars. The theorem used relies on a 
generalisation of the "Pumping Lemma" (Aho and Ullmann, 1972) for context free 
textual grammars. Productions in a context free graph grammar, like the earlier 
ones, must have an input ("I") and an output ("O") node which may be the same 
node. These nodes define the gluing points of the graph being inserted. In reverse, 
for a graph to be generated by a context free graph grammar, it must at least be 
possible to replace a non-trivial "sub-graph" with a single node. The sub-graph, 
which forms the right side of a production rule, must have an input ("I") and an 
output ("O") node (which again may be the same node). Consider the partition of 
a graph into a sub-graph and a "remainder graph", formed by the removal of the 
sub-graph from the original graph. For a graph to have been generated by a context 
free graph grammar if must at least be possible to find a sub-graph which has 
distinguished "I" and "O" nodes so that I is connected to the remainder graph only 
by incoming edges and O only by outgoing edges. None of the other nodes in the 
sub-graph may be connected to the remainder graph in any way. Clearly the 
sub-graph and the remainder graph must be non-trivial and have more than one 
node.

Amongst the planar graphs that cannot be represented are regular graphs of 
arbitrary size with two way links connecting between nodes. Such structures are 
commonly used in parallel programming, for example as regular arrays of 
processes used for pattern matching (see figure 4.5). They cannot be represented 
by a context free graph grammar because it is not possible to find a sub-graph which 
satisfies the conditions of the previous paragraph and has "I" and "O" nodes 
connected to the remainder of the graph in the correct manner. The addition of 
extra links and nodes to such graphs, for example those which might be required 
for the representation of the control flow, does not alter the nature of the problem, 
and hence the graphs like those required for the representation of GILT diagrams 
cannot be generated using a single context free graph grammar.

Several methods have been used to overcome problems like the one above. 
Context free productions in a grammar have been used to represent some parts of 
the syntax, with context dependent productions representing other parts. This 
approach has been used by several authors (Gottler, 1989; Nagl, 1986b; Engels 
1986) and the context dependent productions in the grammar are often described 
informally.

Pratt (1971) suggested a scheme in which a "reduction" rule is used to amalgamate 
nodes with the same label thus forming an arc between them. Pratt used his 
approach for the representation of GOTO statements in Algol programs. This 
approach enables arcs to be formed between nodes generated by different 
rewritings, and allows the insertion of non-context free edges in graphs.

A different approach is taken here. Separate context free grammars sharing the 
same vocabulary are used to define different aspects of diagrams. Syntactically 
correct graphs are then formed by the connection of graphs defined by each context 
free grammar, with certain restrictions placed on the final combined graph. In
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o o o o •
o o •

Figure 4.5 - A generalised n x n processor array, such as might be used in 
a pattern matching algorithm. Undirected edges represent pairs of 
directed edges.

essence, different aspects of the diagrams are formalised using different grammars. 
This method should be easy to generalise to other visual programming languages 
and diagrammatic representations.

In GILT, connection points for inter-process communication connections 
(Channel Links) are modelled using discrete icons. The icons defining the external 
connections of diagrams are Channel Input Stubs and Channel Output Stubs, 
while their counterparts for connections to Process Icons are Channel Input Ports 
and Channel Output Ports. Channel connectors are used to fork and join channels 
so that a single channel may connect a number of different inter-process 
communication points, as defined by the simple graph grammar of figure 4.6.

The communication components of GILT diagrams are considered as separate 
from the remainder of GILT diagrams and consist of Channel Connector Icons, 
Channel Input Stubs, Channel Output Stubs, Channel Input Ports and Channel 
Output Ports interconnected by Channel Links. In the communications grammar, 
ports are not connected to processes but are instead considered to be separate
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f CHANNEL 
1 INPUT w ' COMMS L ^ J ' CHANNEL ) 

OUPUT J

CHANNEL
CONNECTOR

C  1 CHANNEL 0 1 CHANNEL
CHANNEL I — OUTPUT INPUT

l INPUT 1 PORT STUB

C  1 CHANNEL O 1 CHANNEL
CHANNEL ■■ — INPUT OUTPUT

1 OUTPUT I PORT STUB

Figure 4.6 - Productions describing communication graphs. Sets of 
terminal and non-terminal symbols are assumed. The start symbol (S) 
for the grammar is "CHANNEL". Thick inter-node connection lines 
correspond to a new class of labelled arcs used to represent inter-process 
communication paths.

entities. They are subject to the following rules, which may be developed from the 
"communications grammar" of figure 4.6 :

1) No Channel Port or Channel Stub may have more than one outgoing 
or incoming Channel Link, though Channel Connector Icons may have 
multiple input and output links, and must have at least one input connec-
tion and one output link.

2) Channel Links can connect from Channel Output Ports or from Chan-
nel Input Stubs to Channel Connector Icons.
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Figure 4.7 - Example communication graphs. The graphs were generated 
using the grammar of figure 4.6. Two disjoint graphs are shown, one 
connecting two Channel Output Ports to a Channel Input Port, the other 
feeding a Channel Output Stub from a Channel Output Port.

3) Channel Links can connect from Channel Connector Icons to Chan-
nel Input Ports or to Channel Output Stubs.

The grammar precludes the creation of communications structures whose 
meanings are unclear and which cannot easily be expressed in Occam (this subject 
is dealt with in more detail in chapter five). The representation of the 
communications aspects of a GILT diagram consists of zero or more disjoint 
"communication graphs". Each communication graph consists of a single 
"CHANNEL CONNECTOR" terminal connected to Channels Ports and/or 
Channel Stubs, as shown by the example communication graphs of figure 4.7,

4-23



Fortnal descriptions o f visual languages

which are in the set of graphs which may be generated using the communications 
grammar of figure 4.6.

Another grammar, called the "base grammar", may be defined in a manner similar 
to the earlier hierarchical simple grammar. The base grammar defined here is in 
fact an extension of the earlier simple hierarchical grammar of figure 4.3.

The base grammar and the communications grammar share a common vocabulary. 
A legal "simple GILT' graph may then be formed by the attachment of 
communication graphs to a base graph. The points of attachment are nodes valued 
with terminal values contained in productions of both the base grammar and the 
communication grammar.

Figure 4.8 shows productions in the base grammar defining the Process Instance 
non-terminal symbol. These productions replace the earlier productions for the 
Process Instance non-terminal of figure 4.3. The addition of the new non-terminals 
and terminals to figure 4.3’s vocabularies is assumed. The base grammar defined 
for the simple GILT graphs in this chapter is simpler than the version of the 
grammar contained in chapter 5, which contains more productions and defines the 
complete language. Figure 4.9 shows an example base graph for the grammar of 
this chapter. The ports in the diagram have the same values as the ports in the 
earlier example communications diagram, figure 4.7.

A legal simple GILT graph consists of a single base graph with zero or more 
attached communications graphs. All Channel Port nodes in the base graph must 
appear in one (and only one) communications graph. A full definition of the 
attachment conditions is included in appendix 2.

Treating the base and communications graphs separately enables the two graphs 
to be separately parsed and thus reduces the complexity overall. It also allows 
modular changes to be made separately to the base and communications 
grammars.

Figure 4.10 shows a legal simple GILT graph formed by the attachment of the 
communications graphs of figure 4.7 to the base graph of figure 4.9.

43.2.6 Omissions of the grammar

The two grammar system above does not implement versions of Occam’s extra 
syntactic restrictions concerning communication between processes that are not 
in parallel.

An example of these restrictions, enforced by extra grammatical rules, is :

"A sequence is invalid if there is a channel which may be used only for input by 
one of its components, and only for output by another of its components" (Jones 
and Goldsmith, 1988).
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Figure 4.8 - Productions describing base graph connectivity with Channel 
Input and Output Ports. The figure gives replacement productions for the 
"PROCESS INSTANCE" production of figure 4.3c. The productions 
above expand upon figure 4.3c’s definition by explicitly modelling control 
flow input and output connection points ("CONTROL IN PORT' and 
"CONTROL OUT PO R T  terminals), as well as introducing Channel 
Input and Output Ports. Inter-node communication connections are 
modelled as heavy lines, with control flow as light lines. These two classes 
of lines correspond to two different arc labels in the grammars arc label 
set, assumed.

which prohibit clearly erroneous code like : 

SEQ
ch ? x 
ch ! y

It is not possible to implement such restrictions in the syntax of a textual language 
because they are context dependent, relying on both the pattern of channel 
connections between processes and the pattern of control flow in the program. 
The idea that there might be a way of bringing such restrictions into the syntactic 
domain because the channel connection pattern and the flow of control within the 
program are modelled by graph grammars is appealing. However, the explicit 
nature of the channel connections and control flow in the grammars presented in
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Figure 4.9 - Examplefbase graph. A base graph generated using the simple 
base grammar of section 4.3.2.4.2. Connect ion points to the 
communication graph are at the nodes valued "CHANNEL INPUT 
PORT' and "CHANNEL OUTPUT PORT'.
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Figure 4.10 - Total graph. The graph is formed by the connection of the 
graphs in figures and 4.7 and 4.9. Note that other graphs could be formed 
by the connection of the two graphs.
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this chapter does not alter the context dependent nature of the problem. 
Therefore, restrictions like the one above may not be brought into the syntactic 
domain, at least for languages similar to GILT.

Extra grammatical restrictions like the one mentioned earlier are difficult to 
enforce formally and in any case the connection of a channel structure between 
processes only indicates that the processes may communicate, and not that they 
will communicate.

The grammars used cannot provide any form of consistency checking between the 
Channel Stubs in a diagram and the Channel Ports on the Process Icon which 
represent it. A similar situation exists for passed and declared variables. Both of 
these cases have a parallel in conventional sequential languages where such 
context dependent problems are implemented using extra syntactic rules.

43 .2 .1  GILT graph symbols and their relationship to nodes and arcs

GILT’s "functional icons" correspond to terminal or non-terminal symbols in the 
grammar. Some functional icons (for example, "Channel Input Stubs" and "Control 
Output Stubs") map directly to terminal symbols in the grammar. Other functional 
icons (for example "Process Icons") correspond to non-terminal symbols. A 
complete correspondence between symbols in the grammar and GILT’s functional 
icons is discussed in greater detail in the next chapter.

4 3 3  Describing the textual parts of the GILT language

A major facet of GILT is its ability to describe the functionality of a Process Icon 
using a textual or a graphical specification. Certain other components in the 
language (for example, variable declarations) also contain textual elements. A 
model for the specification of structures in a graphical specification has formed 
the bulk of this chapter. Grammars like those described above do not describe 
textual structures, with nodes containing text considered to be terminals in a 
grammar. Extending them to include a description of diagram components with 
textual elements can be regarded as a matter of converting textual BNF 
productions describing the textual elements to graph grammar productions in 
which connections between characters are explicitly modelled by arcs, as in the 
box language grammar. Instead of being modelled as terminal symbols, diagram 
components containing text are modelled as non-terminal symbols, with 
productions rewriting them into strings of explicitly connected characters. This 
work has already been carried out by (Pratt, 1971) for Algol, and presents no real 
challenge. Alternatively, the textual elements of diagram components may be 
modelled as terminal symbols. The structure of the text contained by the terminal 
symbols is then described by separate modified BNF style productions. This 
method retains the simplicity of representing the textual parts of diagrams by 
terminal nodes, yet allows familiar BNF productions to be used in the definition 
of the text’s structure. As the conversion of productions from one system to another 
is obviously trivial the second, simpler, method is used in the following chapter.
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4.4 Semantics of visual languages and the semantic definition of 
GILT

A formal semantic specification for a language is beneficial because it provides a 
precise standard for implementations of the language and can be used as a tool for 
language design or analysis.

Little work has been carried out on the formal expression of the semantics of visual 
languages. (Chang, Tortora, Yu and Guercio, 1987) proposed a formal theory of 
iconics in which a generalised icon has a logical part (the meaning) together with 
a physical part (the image). (Harel, Pnueli, Schmidt and Sherman, 1987) gave a 
formal semantics for statecharts, which are Hi-Graph based extensions to state 
transition diagrams. The latter study indicates that conventional semantic 
definition methods can be modified for use with visual languages.

In contrast, considerable research has been performed on the semantics of 
Occam. Research has taken place in three areas of semantic definition; 
denotational, algebraic and operational semantics. An example work from each 
area is quoted. Early work was involved with the production of a denotational 
semantics for most of the Occaml language (Roscoe, 1984). An algebraic 
semantics, using a transformational approach for a similar subset was produced 
later (Roscoe and Hoare, 1986) while (Barret, 1988) gives an operational 
semantics concentrating on the communications behaviour of the Transputer 
implementation of Occaml. Roscoe’s denotational semantic definition is 
currently being expanded to cover the whole of the Occam2 language (Goldsmith, 
1990).

A full semantic definition of GILT is not attempted here. GILT constructs have a 
direct correspondence to constructs in Occam, and an informal definition of 
GILT’s operational semantics is obtained by reference to Occam constructs. Such 
a definition is contained in the next chapter.

A more formal definition of GILT’s semantics could be obtained by defining a 
formal mapping between GILT’s constructs and those of Occam using, for 
example, a pair grammar (Pratt, 1971). Such a formal mapping would obtain a 
semantic definition for GILT cheaply through usage of that produced for Occam. 
Numerous advantages would be conferred by such a system. For example, some 
of the laws contained in (Roscoe and Hoare, 1986) could be considered as graph 
morphisms transforming between logically equivalent graphical constructs. A 
program transformation system for GILT based on graph transformation could 
therefore be produced with graph morphisms regarded as productions in a context 
dependent graph grammar. The effect of transformations applied to a GILT 
program could be viewed visually with the transformed program displayed in 
source, end and intermediate forms. One example application for such a system 
would be a sequentialisation transformation, in which parallelism is removed from 
a process. The transformation could be used to increase performance of a parallel
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algorithm that is to be run on a single Transputer by minimising context switching. 
A visual program transformation system would allow the creation of a highly 
humanistic interface to a complex formal method, hence allowing users to 
manipulate programs in a natural way.
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The GILT programming language

5.0 Introduction

This chapter gives a full description of the GILT language. The syntax of the 
language is described using the graph grammars of chapter four, while a semantic 
definition is obtained through reference to features of Occam. In addition, an 
explanation of the origins of the language’s constructs and components is also 
included, while examples provide a demonstration of the language in use. 
Throughout the chapter, the first instance of a particular diagrammatic object is 
introduced by quotes ("") and the initial letters of each word making up an object’s 
name are capitalised throughout. A clear distinction between the components 
making up GILT diagrams and other objects may therefore be made.

5.1 The GILT language

Because it supports a small number of programming constructs, the GILT visual 
programming language is relatively simple compared to many textual parallel 
languages, yet is far more comprehensive than previous visual parallel 
programming languages. The language’s simplicity allowed a prototype 
implementation to be produced within a reasonable time span.

In GILT, Occam style processes are visually represented by "Process Icons" which 
are connected into networks with further icons and "links" of two types. The 
functionality of a Process Icon is defined either by a "definition diagram" 
("graphical Process Icon") or by a textual specification written in Occam ("textual 
Process Icon"). A distinction is made between the definition of a Process Icon, a 
"Process Icon definition", and an instance of a Process Icon, a "Process Icon 
instance". This distinction is similar to the one made in textual, imperative, 
programming languages between the definition of a procedure and calls made to 
it. GILTs Process Icons are more general than textual language procedures since 
they represent generalised processes which may be procedural or non-procedural. 
Instances of "procedural Process Icons" are equivalent to calls to a procedure, 
while instances of "non-procedural Process Icons" are equivalent to the use of a 
reference to a macro definition.

In the following description of the language, the graphical facets of GILT are 
described prior to the textual part because GILT programs make use of the
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graphical parts of the language for higher level detail, followed by the textual parts 
for lower level detail.

5.2 GILT diagrams

Chapter four outlined how hierarchical graph (H-graph) grammars may be used 
to model GILTs constructs. This chapter uses the grammars of chapter four to 
fully define the GILT language, whilst explaining the functionality of its various 
components.

GILT diagrams consist of "functional icons" which are connected into constructs 
by links which are attached to specific connection points. Functional icons 
correspond to diagrammatic symbols used in GILTs editing system and are 
defined in the syntax by connected networks of terminal symbols, most of which 
are described by productions rewriting a single non-terminal symbol, or by simple 
non-terminal symbols. The terminal symbols in the networks represent the 
components of the functional icons, "functional icon components". GILT’s 
constructs are defined by graphs formed from terminal or non-terminal nodes 
representing functional icons and arcs which define the links between the 
components of the construct. The graphs defining the constructs are formalised in 
the grammar by productions rewriting non-terminal symbols into networks of arc 
connected nodes. As shown in chapter four, two separate sets of productions are 
required to describe GILT diagrams, those for a "base grammar" and those for a 
"communications grammar". The grammar of this chapter may therefore be 
thought of as having three classes of productions. Firstly, those describing 
functional icons, or parts of functional icons, with connection points for control 
flow and inter-process communication links. Secondly, productions describing 
control flow constructs and thirdly, productions describing inter-process 
communication constructs.

The components making up GILT diagrams are therefore defined and discussed 
in the following order, from the bottom (least complex syntactic entities) to the 
top (most complex syntactic entities) :

1) Functional icon components (defined in the syntax by terminal sym-
bols) - section 5.2.1.

2) Links (defined in the syntax by labelled arcs) - section 5.2.2.

3) Functional Icons including Process Icon instances (defined in the syn-
tax as connected networks of terminal symbols, most of which are 
described by productions rewriting a single non- terminal symbol, or by 
simple non-terminal symbols) - section 5.2.3.

The way in which the "diagram components" described above are used in GILT 
makes up the following two sections after those described above. Section 5.2.4 
describes Process Icon definitions and definition diagrams, including a description 
of GILTs procedural and non-procedural abstraction mechanisms. Section 5.2.5
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describes the constructs used in definition diagrams, giving example constructs and 
their uses.

5.2.1 Functional icon components

For simplicity and modularity, many of GILTs functional icons are made up of a 
number of discrete parts. In particular, standard connection points for the two 
different types of links used in the connection of functional icons into constructs 
are utilised in many diagram components. Each discrete part of a diagram 
component is modelled in G ILTs grammar as a separate node. Nodes are 
connected by labelled arcs to form graphs which define functional icons, or parts 
of functional icons. Some of the simpler functional icons are described by single 
terminal nodes.

Functional icon components, which are modelled in the grammar by terminal 
nodes, are unique to specific diagram components with the exception of two classes 
of components ("ports" and "text areas"), which are common to many functional 
icons. There would be little point in discussing classes of functional icon 
components which are unique to particular functional icons, so a description of 
ports and text areas follows with the more specific components introduced in later 
sections as required.

5.2.1.1 Ports

Together with various other components, the five types of ports ("Control Flow 
Input Ports", "Control Flow Output Ports", "Not Control Flow Output Ports", 
"Channel Input Ports" and "Channel Output Ports") form part of GILTs larger 
functional icons. They were introduced into the language to provide explicit 
connection points for links. The use of ports separates link connection points from 
the other components of the functional icons, allows the structure of symbols to 
be modelled more accurately and reduces the complexity of the language and its 
editing system. It also enables an exact modular specification of component 
functionality to be given and ensures orthogonality between the various types of 
functional icons. For example, the construction of the editing system was simplified 
by allowing the same routines to be used as part of the behavioural specification 
of many functional icons.

As ports are one of the most basic components in the language, they are modelled 
by terminal symbols in the grammar. Figure 5.1 shows the ports as they appear in 
the current implementation, together with their representative terminals symbols.

5.2.1.1.1 Control Flow Ports

Control Flow Input and Control Flow Output Ports provide control flow 
connection sites for various type of functional icons and appear on the left and 
right hand sides of functional icons respectively. Control flow enters icons through
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Port Terminal symbol Graphical representation

Control Flow 
Input Port

Control Flow 
Output Port CONTROL 

OUT PORT

CONTROL 
IN PORT

Not Control Flow 
Output Port NOT CONTROL 

OUT PORT U

Channel Input 
Port CHANNEL 

INPUT PORT
ES

Channel Output 
Port CHANNEL 

OUTPUT PORT

Figure 5.1 - Ports in the current implementation of GILT together with 
their representative terminal symbols in the grammar.

Control Flow Input Ports and may exit through Control Flow Output Ports. In the 
present implementation Control Flow Ports are shown as 16x16 monochrome 
rasters depicting an appropriate directional arrow.

5.2.1.1.2 Not Control Flow Output Ports

Not Control Flow Output Ports are used in conditional control flow structures to 
provide a control flow output from a functional icon which is enabled when a
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conditional is not satisfied (thus, "Not Control Flow Output Port"). The Not 
Control Flow Output Port is identified by a directional arrow like that used in the 
Control Output Port, but has an "N" symbol close by. Not Control Flow Output 
Ports are discussed in more detail in section 5.2.3.23.

5.2.1.13 Channel Ports

Channel Input and Channel Output Ports provide connection sites for "Channel 
Links" (described in section 5.2.2). Functionally, data items on Channel Links, 
which are analogous to Occam channels, may be thought of as entering icons via 
Channel Input Ports and exiting icons via Channel Output Ports. In the present 
implementation the ports consist of 16x16 monochrome rasters showing the words 
"IN" and "OUT1 respectively. Only one Channel Link may be connected to or from 
each Channel Port. Channel Input and Output Ports were introduced for similar 
reasons to the Control Ports and provide discrete connection points for Channel 
Links. They are further discussed in the later section on communications 
constructs (section 5.2.5.2).

5.2.1.2 Text Areas

The other common functional icon components, apart from ports, are the text 
areas which are used for purposes such as the naming of processes and the 
expression of booleans in conditional control flow structures. Like ports, text areas 
are modelled in the grammar by terminal symbols, but may be distinguished from 
one another by their textual contents. The text which may be contained in a text 
area is defined by a few modified BNF productions like those used for Occam’s 
grammar (appendix one).

Six types of text area are presented below; "Name Text Areas", "Expression Text 
Areas", "Condition Text Areas", "Shutoff Text Areas", "Input Variable Text Areas" 
and "Variable Declaration Text Areas". Figure 5.2 shows examples of each area, 
with the representative terminal symbols in the grammar. In the current 
implementation, each area consists of a twenty character scrollable text editing 
area. A smaller number of characters are displayed at any one time in the area.

5.2.1.2.1 Name Text Areas

Name Text Areas are used for Process Icon names and, in correspondence to 
Occam’s micro syntax, each Name Text Area may contain a "name". A name is 
composed of a sequence of letters, digits and full stop characters, etc., the first of 
which must be a letter. No name may be one of Occam’s reserved words.
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Text area Terminal symbol Graphical Representation

Name Text 
Area NAME 

TEXT AREA
|n»m«d . proc |

Expression Text
Area e x p r e s s io n

TEXT AREA
|x + 181

Condition Text
CONDTTION 
TEXT AREA I3 < b 1

Shutoff Text 
Area SHUTOFF 

TEXT AREA [ TRUE

Input Variable 
Text Area INPUT VAR 

TEXT AREA
|invar

Variable Declaration 
Text Area

VARIABLE 
DECLARATION 
TEXT AREA INT X

Figure 5.2 - Examples of Text Areas and their representative terminal 
symbols in the grammar.

5.2.1.2.2 Expression Text Areas

Expression Text Areas are used as components of functional icons which pass 
non-channel (variable) parameters to Process Icons and may contain a variable
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name or a suitable expression, as defined by the following modified BNF 
expression where "expression_text" is the root symbol:

expression_text ::= rand | mon.op rand | rand rator rand

rand : literal | variable | ( expression_text )

rator ::= number.op | bit.op | shift.op | relate.op

mon.op - | MINUS | - | BITNOT

number.o p : : = + | - | * | / | \

bit.op ::= /\ | BITAND | V  | BITOR | ><

shift.op ::= > | <

Where "literal" and "variable" are syntactic entities defined in Occam’s syntax as 
shown in appendix 1, which also contains a definition of the notation used above.

5.2.1.23 Condition Text Areas

Condition Text Areas serve similar purposes to Occam’s conditionals and form 
part of conditional control structures. The syntax of the text string which may be 
contained in a condition area as defined by the following modified BNF 
expression, where "condition_text" is the root symbol:

condition_text ::= expr relate.op expr

relate.op ::= equality | inequality

equality ::= = | <>

inequality ::= < | <= | > | >=

"expr" is equivalent to "expression_text" is defined in the previous section.

The productions define a subset of Occam’s boolean conditional expression. A 
subset is used to exclude Occam features not supported in GILT diagrams, such 
as function calls.

5.2.1.2.4 Shutoff Text Areas

Shutoff Text Areas are similar to Conditional Text Areas, but are used in the 
guards of alternative constructs. Structurally, any text contained in a Shutoff Text 
Area may be the same as that contained in a conditional, but the text area of a 
shutoff may also be empty, so that a shutoff area does not have to contain any text:
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shutoff_text ::= empty | condition_text 

empty ::=

The root symbol is "shutoff_text".

5.2.1.2.5 Input Variable Text Areas

Like Shutoff Text Areas, Input Variable Text Areas are also used in the guards of 
alternative construts. Structurally, the area may be empty or contain a reference 
to an integer variable :

input_variable_text ::= empty | variable 

variable ::= name | variable[int.expr]

where int.expr is syntactically equivalent to the "expression_text" symbol above, 
but is restricted to having an integer value as it is used for array subscripting. The 
root symbol is "input_variable_text".

5.2.1.2.6 Variable Declaration Text Areas

Variable Declaration Text Areas form parts of two different functional icons; those 
used for variable declarations and those used in the declaration of non-channel 
parameters for Process Icons. The symbol "variable_declaration_text" is the root 
symbol:

variable_declaration_text ::= specifier name 

specifier ::= base.type | [expr.option] specifier

base.type ;:= BOOL | BYTE| | int.type | float.type

int.type ::= INT16 INT32 INT64 INT

float.type ::=|REAL32| |1REAL64

expr.option ::= int.expr | empty

The symbol "int.expr" (defined earlier) is used for array sizing, while "name" is a 
name as defined in section 5.2.1.2.1 and is used to refer to a defined variable or 
parameter. The syntax used is similar to Occam’s, but due to limitations on screen 
size it excludes Occam style multiple variable definitions (separated by commas) 
and some of Occam’s expression evaluation features not supported by GILT at the 
graphical level of abstraction.
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5.2.2 Links

Connections between components in GILT’s diagrams are made with flexible links 
which were chosen because their common use in electronic circuit design systems 
meant that they were well known to many potential system users. Two types of 
link exist in GILT diagrams - "Channel Links" and "Control Flow Links". Channel 
Links are used for the specification of possible inter-process communication 
pathways, while Control Flow Links specify the execution order of processes and 
wire together functional icons into constructs analogous to Occam constructs. 
Different line styles are used to differentiate between Channel Links and Control 
Flow Links, which are represented in the syntax by labelled arcs. Labelled arcs are 
also used to represent the logical connections between the functional icon 
components making up each functional icon. These arcs thus have no direct 
diagrammatic counterpart in GILT’s diagrams, except that all of the components 
of a particular functional icon are physically close to each other and are easily 
recognised as being part of the same diagrammatic object. Instead of writing a 
textual label on each arc in GILTs production, which would be confusing, different 
line styles are used to differentiate between differently labelled arcs. The 
correspondence between labelled arcs in the syntax and the links in the diagrams 
is shown in figure 5.3.

DIAGRAM UNK UNE STYLE SYNTAX EDGE UNE STYLE COMPONENT

(NONE) CONNECTIONS BETWEEN FUNCTIONAL ICON 
COMPONENTS

CONTROL FLOW UNK

► CHANNELUNK

Figure 53 - Line styles used in GILT diagrams and their representation in 
the syntax.
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5.23 Functional icons

Functional icons have various purposes, such as aiding the delimitation of 
constructs and the representation of processes. They may be divided into two main 
classes; those forming parts of constructs and those that do not form parts of 
constructs. All functional icons are uniquely distinguishable from one another and 
are defined in GILT’S grammar by networks of connected terminal nodes, or by 
simple terminal nodes. The set of functional icons is shown in figure 5.4 together 
with their corresponding grammatical representations. Most functional icons are 
represented in the grammar by non-terminal symbols with associated productions 
rewriting the non-terminals into the networks of connected terminal symbols 
mentioned above. The structure of any particular functional icon may be found by 
looking up the appropriate non-terminal(s) from figure 5.4 in the productions of 
figure 5.5,. Figure 5.5 gives a set of productions for the base grammar of the full 
GILT language.

Functional icons may be divided into two classes - those that form part of 
constructs, and those that do not (specifically functional icons for comments and 
for local variable declarations). Functional icons which do not form part of 
constructs are discussed first, followed by a section on functional icons which do.

5.23.1 Functional Icons which do not form part of constructs

This class of functional icons correspond to those to which Control Flow Links or 
Channel Links may not be connected. The most basic functional icon in this class 
is the Comment. There are also Variable Declaration Icons.

5.23.1.1 Comments

Comments are simple text strings which may be positioned anywhere on the 
screen. They have no connections for Control Flow or Channel Links, and are 
ignored by the compiler. In the grammar, Comments are modelled by the terminal 
"COMMENT'. Any number of Comments may be placed in a definition diagram. 
Comments were introduced to allow additional annotation of GILT diagrams in 
line with GILT’s philosophy of a mixed textual/graphical paradigm. It has been 
noted that few other visual programming systems have allowed such textual 
comments (Myers, 1988).
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FUNCTIONAL ICON NAME GRAMMAR SYMBOL GRAPHICAL REPRESENTATION

Comment COMMENT Requests for oats enter nere

Variable Declaration

Process Icon Instance

Control Input Stub

Control Output Stub

f  \
VARIABLE
DECLARATION

( \
PROCESS
INSTANCEV" )

CONTROL 
IN STUB

CONTROL 
OUT STUB

v' r: [S3INT but

PNI
X

- ,  □  -,
T X

most
m ]  [¡¡Dr 

GD

G D

Channel Input Stub

Channel Output Stub

CHANNEL 
INPUT STUB

CHANNEL 
OUTPUT STUB

Figure 5.4a - The equivalence between functional icons and their 
grammatical representations.
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FUNCTIONAL ICON NAME GRAMMAR SYMBOL GRAPHICAL REPRESENTATION

Condition Icon

NOT CONTROL 
OUT PORT

r
CONDITION

Y J
>t >

f ■\
Guard Icon GUARD

V J

r~ T
Declared Parameter Icon DECLARED

PARAMETER J

—» |TRUE |[TN][Tn~. var [—»

I INT X. |~>

Passed Parameter Icon PASSED
PARAMETER

|x + i e i  [->

Channel Connector Icon CHANNEL
CONNECTOR

Control Split Join Icon
/  \  

CONTROL 
SPUT JOIN

- > (SD-H

Figure 5.4b - The equivalence between functional icons and their 
grammatical representations.
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Figure 5.5a - The productions in the base grammar describing the GILT 
language. Terminal symbols are enclosed in rectangles with square 
corners, while non-terminal symbols are shown enclosed by rectangles 
with rounded corners. Also shown is the set of labelled arcs used between 
components. Sets of terminal and non- terminal symbols are assumed, and 
are not shown.
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1,
\

GUARD . .  ' CONTROL SHUTOFF
INPUT
VARIABLE CONTROL

1 BOOY , ■ ■ z z IN PORT TEXTAREA TEXTAREA OUT PORT

Figure 5.5b - The productions in the base grammar describing the GILT 
language, continued.
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I CONDITION CONDmONAL CONDmON

I BOOY J **" MARKER TEXT AREA

Figure 5.5c - The productions in the base grammar describing the GILT 
language, continued.
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I __________  ̂o
f PROCESS I COMMENT
\ DEFINITION I

Figure 5.5d - The productions in the base grammar describing the GILT 
language, continued.
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I PROCESS 
INSTANCEV 11

I PROC
AND PORTSV ;

I o

NAME 
TEXT AREA

Figure 5.5e - The productions in the base grammar describing the GILT 
language, continued.
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SKIP PROC 
MIDDLE

STOP PROC 
MIDDLE

CONTROL CONTROL
IN STUB OUT STUB

NAME 
TEXT AREA

CONTROL CONTROL
IN STUB OUT STUB

NAME 
TEXT AREA

f DECLARED | CONTROL
1 PARAMS 1 . . _ IN STUB

I
I DECLARED 
l PARAMS

DECLARED
PARAMETER

f DECLARED j
VARIABLE 
DECLARATION 
TEXT AREA

CONTROL
[ p a r a m e t e r  J ; ; = OUT PORT

Figure 5.5f - The productions in the base grammar describing the GILT 
language, continued.
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Figure 5.5g - The productions in the base grammar describing the GILT 
language, continued.
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5.23 .1 .2  Variable Declaration Icons

Variable Declarations Icons are visually similar to Comments but have an 
additional "Var" string as a distinguishing label. They allow local variables to be 
declared at a graphical level of abstraction. Declared variables are considered to 
be outside the flow of control in a particular diagram and the variables defined by 
them hold scope over and "downwards" from the diagram in which they are defined. 
Such variables may be used as passed parameters for Process Icons. Alternatively, 
they may be used by non-procedural Process Icons at equal or lower levels of 
abstraction than that at which their Variable Declaration Icon occurs. Variables 
may have as their type any of the Occam types and array declarations, including 
multi-dimensional arrays, are allowed. As with Comments, as many Variable 
Declaration Icons as are required may be included in a definition diagram. 
Variable Declaration Icons are modelled in GILT’S grammar by a non-terminal 
valued "VARIABLE DECLARATION".

5 .23 .2  Functional Icons which form parts of constructs

The Functional Icons in this class may have Control Flow Links and/or Channel 
Links connected to them and may thus be connected into constructs. As the 
purpose of many functional icons is interwoven with the semantics of the constructs 
of which they form part, descriptions of the structural aspects of functional icons 
are given here with semantic definitions following in the later section on 
constructs.

5.23.2.1 Process Icon instances

A distinction between Process Icon definitions and Process Icon instances has 
already been made (section 5.1). Process Icon instances are the most fundamental 
of the functional icons used in GILT diagrams, consisting of a small (64 x 64) 
monochrome raster with an associated eleven character text label which is 
surrounded by ports for the connection of Channel Links and Control Flow Links. 
The raster and the contents of the text label are derived from the Process Icon’s 
definition, which is described in section 5.2.4. The textual label (which provides a 
name for the Process Icon instance) is modelled in the grammar by a Name Text 
Area. No two Process Icon definitions within the same program may have the same 
name, though multiple Process Icon instances may exist in the same way that 
multiple references to a procedure are allowed in textual languages. On the left 
side of a Process Icon instance is a Control Flow Input Port and on the right side 
is a Control Flow Output Port. At the top and bottom of the icon are as many 
Channel Input Ports and Channel Output Ports as are defined by the Process Icon’s 
definition. Process Icons are unique amongst the components of GILT graphs in 
that their functionality and, to a degree, their appearance is defined by the user. 
All other symbols have system defined functionality and appearance.
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Earlier versions of GILT (Roberts and Samwell, 1989) used Process Icons without 
textual names. Textual names were subsequently added (Roberts and Samwell, 
1990) because there are many circumstances where the functionality of a process 
cannot be well described using an iconic representation without a textual label. 
Icons with textual labels retain the "instant recognition" capabilities of "pure" icons, 
but in addition have the capability to display further relevant information.

Process Icons may be procedural (equivalent to Occam procedure definitions and 
references) or non-procedural (similar to macros in textual languages). The type 
of a Process Icon is determined by the use of a visual "toggle" whose value is 
associated with the Process Icon’s definition. The semantics of procedural and 
non-procedural Process Icons is discussed in a later section of this chapter (5.2.4), 
with the visual toggle discussed in chapter six. Instances of both types of Process 
Icon may have passed parameters attached to their Control Input Port. The 
structure of a Process Icon instance and its passed parameters is modelled in the 
grammar by the non-terminal "PROCESS INSTANCE".

5.23 .2 .2  Stubs

Stubs provide the definition of a diagram’s external connectivity. They provide 
similar facilities to ports, but do not form part of other icons. A stub in the 
definition diagram of a Process Icon appears as a port on an instance of a Process 
Icon. Stubs are essential to GILT’S visual abstraction and folding mechanism, 
having a similar function to pads in VLSI design systems. GILTs stubs are 
modelled by terminal symbols in its grammar.

5.23.2.2.1 Control Input and Control Output Stubs

Control Input and Control Output Stubs provide connections for Control Flow 
Links to higher levels of abstraction. All GILT diagrams have one Control Input 
Stub and one Control Output Stub and no more than one Control Input Stub and 
one Control Output Stub are allowed per diagram. The Control Input Stub defines 
the position at which the flow of control enters the diagram while the Control 
Output Stub defines the position at which control exits the diagram. The stubs 
appear as Control Input Ports and Control Output Ports on instances of the Process 
Icon defined by the diagram containing the stubs. They were introduced to provide 
explicit incoming and outgoing points for the connection of Control Flow Links 
and to give support for "skip" and "stop" constructs based on Occam’s SKIP and 
STOP processes. Control Input and Output Stubs are modelled in the grammar 
by the terminal symbols "CONTROL IN STUB" and "CONTROL OUT STUB" 
respectively.

5.23.2.2.2 Channel Input and Output Stubs

Channel Input and Channel Output Stubs look like bigger versions of Channel 
Input and Output Ports, and can be seen in figure 5.4. They provide connections
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for Channel Links to higher levels of abstraction and are similar to the definition 
of passed channels in an Occam procedure header. Data items enter a GILT 
diagram from Channel Input Stubs and exit via Channel Output Stubs. In the 
present implementation they are shown as 64x64 monochrome rasters showing the 
words "IN" and "OUT1 respectively. Channel Input and Output Stubs provide 
obvious connection points for incoming and outgoing Channel Links, and are 
modelled in the grammar with terminal symbols "CHANNEL INPUT STUB" and 
"CHANNEL OUTPUT STUB".

5 .2 3 .2 3  Condition Icons

Condition Icons form part of GILT’S "if', "if..else" and "while" constructs. They 
consist of a Conditional Text Area with an associated visual label provided by a 
small raster with a diamond shaped image. A Control Flow Input Port, Control 
Flow Output Port and Not Control Flow Output Port are provided for the 
connection of Control Flow Links. Condition Icons provide control flow switching 
facilities for the construction of conditional control flow structures. They are 
modelled in the grammar by the non-terminal "CONDITION" with an attached 
"NOT CONTROL FLOW OUTPUT PORT' terminal node. Condition Icons are 
the only functional icons which are not described in GILTs grammar by a single 
non- terminal symbol and associated productions. The Condition Icon and the 
Not Control Output Port cannot be combined into a single non-terminal node with 
an associated production due to limitations in the embedding mechanism used by 
the graph grammar, which does not allow more than one distinguished output 
gluing point to be specified in each production. Representing a Condition Icon as 
a single non-terminal node would require two such points, introducing additional 
complexity into the grammar’s embedding mechanism. Functionally, control 
enters a Condition Icon at its Control Input Port and exits at either the Control 
Output Port or the Not Control Output Port dependent upon whether the textual 
condition held by the Condition Text Area is true or false.

Other possibilities for the representation of conditional flow of control included 
the use of conditioned arcs similar to those used in state transition diagrams. This 
course was rejected as it would have introduced extra complexity into the language, 
the grammar and the language’s editing system.

5.23.2.4 Guard Icons

Guard Icons provide support for alternative selection processes by modelling 
Occam guard statements. Guards consist of a connected structure formed from a 
Control Input Port, a shutoff area, a Channel Input Port, an input variable area 
and a Control Output Port. The semantics of a Guard Icon may not be discussed 
without reference to the alternative construct designed to contain it, and is left 
until a later section (5.2.5.1.6). Guard Icons are modelled in the grammar by the 
terminal "GUARD".
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5 .23 .2 .5  Declared Parameter Icons

Declared Parameter Icons are used to define non-channel parameters for Process 
Icons. They consist of a Variable Definition Text Area (for defining the type and 
name of a non- channel (variable) parameter) which is attached to a Channel 
Output Port and allows the Declared Parameter Icon to be linked to a Control 
Input Stub. Information on the use of Declared Parameter Icons is included in 
section 5.2.4. Declared Parameter Icons are modelled in the grammar by the 
non-terminal "DECLARED PARAMETER".

5.23.2.6 Passed Parameter Icons

Passed Parameter Icons are used to instantiate the parameters defined by 
Declared Parameter Icons. They consist of an Expression Text Area attached to a 
Channel Output Port which allows the linking of the passed variable to the Control 
Input Port of a Process Icon. Further information on Passed Parameter Icons may 
be found in section 5.2.4. Passed Parameter Icons are modelled in the grammar 
by the non-terminal "PASSED PARAMETER".

5.23.2.7 Channel Connector Icons

Channel Connector Icons allow the convergence and divergence of Channels from 
a single point. They are used as syntactic sugar to enforce certain rules regarding 
the connection of Channel Links in the language. Further information may be 
found in section 5.2.5.2. Channel Connector Icons are modelled in the grammar 
by the terminal "CHANNEL CONNECTOR".

5.23.2.8 Control Split Join Icons

Control Split Join Icons divide and combine the control flow in GILT diagrams. 
They consist of a Control Flow Input Port, a Control Flow Output Port and a small 
distinguishing icon sandwiched between the two. Control Split Join Icons enable 
forking and combining of control flow in the language and are used to delimit the 
start and end of conditional constructs. They were introduced to allow GILT to be 
fully modelled using a context free graph grammar, with the use of a single symbol 
for both forking and combining control flow, avoiding the use of two symbols. 
Control Split Join Icons are modelled in the grammar by the non-terminal 
"CONTROL SPLIT JOIN".

Early versions of GILT (Roberts and Samwell, 1989) did not contain Control Split 
Join Icons. Instead, parallel control flow constructs were produced by forking 
control flow out of Control Flow Output Ports or Input Stubs. Control flow was 
combined at Control Flow Input Ports or Output Stubs. This arrangement worked
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well, but it was not possible to represent all of the control flow structures of Occam 
efficiently. For example, a representation of two parallel constructs wired in series, 
equivalent t o :

SEQ
PAR
processl
process2

PAR
process3
process4

required the introduction of an extra Process Icon in addition to those required 
for the representation of the four processes, in order to combine and fork the flow 
of control between the two parallel constructs. Figure 5.6 shows an example 
diagram using this style of representation. Far better is the diagram of figure 5.7 
which shows control flow explicitly forking and joining via Control Split Join Icons. 
Using the Control Split Join Icon, users can place processes and wire up control 
flow wires to produce legal structures, just like using a CAD package. A good 
analogy is building a network of resistors wired in series and in parallel.

Figure 5.6 - A definition diagram with two parallel constructs in sequence 
using the original representation.
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CUD GD

Figure 5.7 - A definition diagram with two parallel constructs in sequence 
using the current representation.

5.2.4 Visual abstraction and the definition of Process Icons

A distinction has already been made between the definition of a Process Icon (a 
Process Icon definition) and instances of a Process Icon (Process Icon instances). 
A Process Icon definition for a graphical Process Icon consists of two parts; firstly, 
a diagram defining the functionality of a Process Icon referred to as a definition 
diagram and secondly, a "Process Icon representation", which consists of a small 
black and white raster with an associated process name. A Process Icon instance 
is visually depicted using the raster and name from the Process Icon 
representation, and is surrounded by Ports for the connection of Channel Links 
and Control Flow Links, as discussed earlier.

A definition diagram is defined in the grammar by the non- terminal "PROCESS 
DEFINITION". Rewritings of the non-terminal "PROC MIDDLE", which is used 
to describe the central area of a Process Icon instance, allow nested definition 
diagrams to any required depth to be developed. The distinction between Process 
Icon definitions and Process Icon instances is a purely notational one which allows 
multiple instances of the same Process Icon. It may be thought of as providing 
"pointers" from Process Icon instances to Process Icon definitions, and is not 
enforced in the grammar, which treats all Process Icon instances separately.
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Two icons must be present in every definition diagram - a Control Input Stub and 
a Control Output Stub. These stubs define the entry and exit points for control 
flow in the diagram, providing connection points for Control Flow Links to 
constructs defined in GILTs base grammar. Some of the most basic constructs in 
GILT are constructed using these two components, which are also used in the 
declaration of non-channel parameters for a Process Icon definition.

As discussed in the introduction to this chapter, Process Icon definitions may be 
of two types, procedural or non-procedural. The distinction between procedural 
and non-procedural Process Icons is made by the programmer through use of the 
program editing system, which is discussed in chapter six. Procedural Process Icons 
are compiled as such, with references generated as necessary. Non-procedural 
Process Icons are compiled as inline code.

GILT diagrams rely on the principle of visually passing parameters to Process Icon 
instances and visually declaring parameters for the Process Icon definitions which 
define the functionality of the instances. The semantics of the parameter passing 
process is determined by the procedural or non-procedural nature of the Process 
Icon definition for which parameters are defined. Parameters for a Process Icon 
definition are declared with Channel Input and Output Stubs (for channel 
parameters) and Declared Parameter Icons (for non-channel parameters). 
Parameters are passed to a Process Icon instance by the connection of Channel 
Links to the Process Icon’s Channel Input Ports (incoming channels), from its 
Channel Output Ports (outgoing channels) and by the connection of Control Flow 
Links from Passed Parameter Icons to the icon’s Control Flow Input Port 
(non-channel parameters).

Declared non-channel param eters are described in the grammar by the 
non-term inal node "DECLARED PARAM ETERS". Similarly, passed 
non-channel parameters are described in the grammar by the non- terminal 
"PASSED PARAMETERS". Passed and declared channel parameters are part of 
GILT’S communications constructs, described in section 5.2.5.2.

For procedural Process Icons, a Process Icon definition is equivalent to the 
declaration of an Occam procedure. Instances of procedural Process Icons 
connected in GILT diagrams are equivalent to references to an Occam procedure, 
while Channel Input Stubs and Channel Output Stubs in the definition diagram 
of a procedural Process Icon are the equivalent of passed channel declarations in 
the Occam procedure definition. Similarly, Declared Parameter Icons connected 
with Control Flow Links to the definition diagram’s Control Flow Input Stub are 
the equivalent of non-channel parameter declarations in the Occam procedure 
definition.

For non-procedural Process Icons, a Process Icon definition is similar to the 
definition of a macro in a conventional textual language. Instances of 
non-procedural Process Icons connected in GILT diagrams are equivalent to 
references to a macro definition. In compilation, all passed parameters are unified 
with the Process Icon’s declared parameters. Non-procedural Process Icons 
provide all the facilities of folds in the Inmos Transputer Development System and
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allow hierarchical structuring of programs without the use of procedural 
abstraction. In addition however, they have the extra functionality given by 
macros.

There is a one to one correspondence between Channel Stubs in a definition 
diagram (which define channel parameters) and the Channel Ports on a Process 
Icon instance (which are used to pass channel parameters). Each Channel Stub in 
the definition diagram has an equivalent Channel Port on the Process Icon 
instance. The positions of the Channel Ports on a Process Icon are determined by 
the positions of the Channel Stubs in the Process Icon’s definition diagram. A 
simple algorithm which quantises the screen into eight areas is used to determine 
the position of a port on a Process Icon from its corresponding stub in the Process 
Icon’s definition diagram. Stubs above the centre of the diagram correspond to 
ports above the central area of the Process Icon instance while those below the 
centre correspond to ports below the central icon area. Similarly, four columns, 
each of which is a quarter the size of the diagram, are used to assign the left - right 
position of the ports on the Process Icon instance. For purely practical reasons 
(limited screen resolution and size) only eight stubs (and thus ports) are allowed 
per Process Icon. This restriction could easily be overcome with the use of a bigger 
raster for the representation of the Process Icons, or smaller rasters for the 
representation of ports, and presents no real problems. When an instance of a 
defined Process Icon is connected into a diagram, Channel Links connected to 
Channel Ports on the instance correspond to passed channels in a reference an 
Occam procedure. Figure 5.8 shows an instance of a Process Icon, without 
connected links, illustrating the correspondence between stubs and ports.

A similar scheme to that used for channel connections is used for passing and 
defining non-channel parameters. Declared Parameter Icons connected to the 
Control Flow Input Stub of a definition diagram provide the non-channel 
parameters of the Process Icon defined by the definition diagram. They correspond 
to the declaration of variable parameters for an Occam procedure. When an 
instance of a defined Process Icon is connected into a diagram, Passed Parameter 
Icons connected to the Control Input Port of the Process Icon define the calling 
parameters for the instance. They correspond to passed variables in a reference to 
an Occam procedure. Calling non-channel parameters are matched to declared 
non-channel parameters in a manner similar to that used in conventional textual 
languages. In such languages, calling variables are matched to declared variables 
by positioning in the relevant lists. GILT’S system does not use a list position 
technique (there is no "list" of parameters!). Instead, it relies on the relative y-axis 
position of the non-channel parameters. Thus, the "highest" calling non-channel 
parameter is matched to the "topmost" declared non-channel parameter, and so 
on. Figure 5.9 illustrates the non-channel parameter passing mechanism.
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Figure 5.9 An illustration of GILT’s non-channel parameter passing 
mechanism. The left hand side shows a number of Passed Parameter 
Icons connected to the Control Flow Input Port of a Process Icon, while 
the right side shows a portion of the Process Icon’s definition diagram 
showing the defined non-channel parameters. The topmost parameter 
on the left hand side instantiates the topmost on the right hand side, with 
the next lowest left instantiating the next lowest right, etc.

5.2.5 Constructs

Constructs in GILT are formed by the connection of functional icons by links. 
Control flow constructs are formed by the connection of functional icons by 
Control Flow Links, while inter-process communication constructs are formed by 
the connection of Channel Links between functional icons. Control flow 
constructs are discussed initially, followed by communications constructs.

5.2.5.1 Control flow constructs

Control flow constructs in GILT are described using productions in GILTs base 
grammar (figure 5.4). Each control flow construct is represented by an alternate 
rewriting of the non-terminal node "CONSTRUCT'. Only functional icons having 
Control Flow Ports are connected together via Control Flow Links to form control
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flow constructs. In general, the functionality of a graphical Process Icon definition 
is specified by a construct which is connected between a Control Flow Input Stub 
and a Control Flow Output Stub, which must be present in every definition 
diagram. There are two exceptions, both concerned with the modelling of the 
Occam SKIP and STOP processes. In these exceptions, the Control Flow Input 
and Output Stubs are used to form very simple constructs.

GILT has only a small number (9) of control flow constructs ("stop11, "skip", 
"unconstructed process", "sequence", "parallel", "alternative", "if, "if..else", and 
"while"), but provides all the elements essential to a parallel, imperative, 
programming language. Each construct has an equivalent in Occam.

GILTs constructs are described in the following sections according to the ordering 
given above. Each description includes an informal semantic and syntactic 
definition of the construct it discusses. References to the non-terminal symbols 
used in the grammar to represent the constructs are also included.

Many descriptions make reference to the "start" and "end" of constructs. The start 
and end points of a construct are defined by the input ("I") and output ("O") gluing 
points for the production describing the construct.

5.2.5.1.1 The stop and skip constructs

The simplest possible definition diagram consists of a Control Input Stub and a 
Control Output Stub only. Without any specification of the flow of control within 
the diagram, the control "stops" at the Control Input Stub, and never proceeds. 
The process represented by this diagram is equivalent to the Occam STOP process. 
Figure 5.10 shows GILTs stop construct, defined by the non-terminal "STOP" in 
the grammar.

The next simplest definition diagram is formed by the connection of the two stubs 
by a Control Flow Link. Such a definition diagram is semantically equivalent to 
the Occam SKIP process. Figure 5.11 shows the GILT skip construct, defined by 
the non- terminal "SKIP" in the grammar.

Both constructs provide a natural visual expression for Occam’s STOP and SKIP 
constructs with control flow seeming to behave like an electrical current faced with 
an open or a short circuit.

5.2.5.1.2 Unconstructed process

One of the most basic elements in GILT is a simple (single) Process Icon instance, 
known as an unconstructed process. Unconstructed processes are used as 
components of constructs in the same way that Occam’s primitive processes are 
used in the construction of processes, and are represented by the non-terminal 
"PROCESS INSTANCE" in the grammar.
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Figure 5.10 - The stop construct in GILT. On the left is a Control Input 
Stub, with a Control Output Stub on the right. No connection between 
the two ports is shown. Hence control enters the structure, and never 
proceeds.

(2 D --------------------------------------(ZD

Figure 5.11 - GILT’S skip construct. Like the stop construct it has a 
Control Input Stub and a Control Output Stub, but it has an additional 
Control Flow Link between them indicating that control flow passes 
straight through the definition diagram without action.

5.2.5.13 Sequential construct (sequence)

A sequence or sequential construct is formed by the connection of a number of 
constructs end to start via Control Flow Links and may be thought of as a "chain" 
of constructs. The sequence behaves like the Occam sequence and runs the first
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construct until it terminates, then running the rest in sequence. As in Occam, 
GILT’s sequence is associative in that a sequence may be formed by joining 
together two sequences. Figure 5.12 shows an example sequential construct. 
Sequential constructs are represented by the non-terminal "SEQ" in the grammar.

5.2.5.1.4 Parallel construct

A parallel construct is formed by the connection of a number of constructs in 
parallel. Control Flow Links from the Control Flow Output Port of a single 
Control Fork Join Icon are connected to the start of each component construct. 
Control Flow Links from the end of each component construct are connected to 
the end of a different (single) Control Fork Join. The parallel construct runs its 
component constructs simultaneously, with the possibility of communication 
between them. Figure 5.13 shows an example of a parallel construct without 
communication (an example parallel construct with communication is shown in 
figure 5.8). Communication between branches of a parallel construct is dealt with 
in section 5.2.5.2 of this chapter. The GILT parallel construct is equivalent to the 
Occam parallel construct and obeys the laws of associativity, so that many nested 
parallel constructs are equivalent to a single large one. A parallel construct is 
invalid if any of its components may change the value of a variable which may be 
used in any of its other components. Restrictions on the connections to and from 
Channel Ports belonging to parts of parallel constructs also exist, and are discussed 
in the section on communications constructs (5.2.5.2). Parallel constructs are 
represented in the grammar by the non-terminal "PAR".
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Figure 5.13 - An example parallel construct. Three instances of the 
Process Icon "any.proc" are shown, wired in parallel between the two 
Control Flow Fork Join Icons. No communication between the Process 
Icon instances is shown.

- > 0 5 D - h>

Figure 5.14 - An example alternative construct. Two guarded processes 
are shown. The guards contain textual shutoffs "accept.up" and "accept.dn" 
which may suspend branches of the alternative from operation. When a 
guard fires, a data value on a Channel Link (attached to the Channel Input 
Stub of each guard) is read into the appropriate integer variable "up" or 
"down" and execution of one of the processes "increment" or "decrement" 
begins.
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5.2.5.1.5 Alternative construct

The alternative construct is similar in structure to a parallel construct, but each 
part of the construct has a Guard Icon connected between the starting Control 
Fork Join Icon of the alternative construct and the start of the construct in 
question. The construct is equivalent to the simple class of Occam alternative 
constructs discussed earlier and again is associative. Figure 5.14 shows an 
alternative construct. Alternative constructs are represented in the grammar by 
the non- terminal "ALT'.

A Guard Icon in an alternative "fires" when an appropriate data item is available 
on the Channel Link connected to its Channel Input Port and when the boolean 
expression on its shutoff area is TRUE. If the shutoff area is empty of text, the 
guard behaves as if the shutoff condition is TRUE. During firing, the data item is 
read into the Guard Icon’s variable (if defined), contained in the input variable 
area. Control then exits the Guard Icon via its Control Output Port into the 
appropriate construct. If both the shutoff area and the input variable area are 
empty so that the guard’s variable is not defined, the guard behaves like the Occam 
guard TRUE, and provides a default action. Once one Guard Icon in an alternative 
construct has commenced firing, all others cease to execute and their control flow 
never exits.

5.2.5.1.6 Conditional construct

GILT’s implementation of the conditional construct differs from Occam’s in that 
multi-way conditionals are not supported. This is not important as multi-way 
constructs may be expressed using the existing notation. Two versions of the 
conditional are available, a visualisation of a conventional imperative "if' construct 
and a visualisation of a conventional imperative "if..else" construct. The if construct 
is equivalent to an Occam IF construct with two branches. The first branch contains 
a process to be executed if the condition is TRUE, while the second branch 
contains a SKIP process with a constant TRUE condition. This branch acts as a 
default and ensures that the conditional process always terminates. The if..else 
construct is equivalent to an Occam IF construct with a second TRUE branch 
containing a default process. Figure 5.15 shows an example if and an example 
if..else construct. Conditional constructs are represented in the grammar by the 
non-terminals "IP  and "IFELSE".

Control enters the conditional construct via the Control Flow Input Port of the 
construct’s Conditional Icon. Depending on whether text in the Condition Icon’s 
Condition Text Area is true or false, it exits either on the Control Flow Output 
Port or on the not Control Flow Output Port to the appropriate construct. If the 
construct terminates, control flow enters the Control Split Join Icon at the end of 
the construct and then exits.
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Figure 5.15 - A pair of example conditional constructs. An if construct 
(topmost) and an if..else construct are shown. Both constructs execute the 
process "any.proc" if the condition "a > b" is satisfied. If the condition is 
not satisfied the if construct passes control on to the Control Fork Join 
Icon. The if..else construct shown is similar, but executes the process 
"other" if the condition is not satisfied. If an executed process fails to 
terminate, control will not leave the construct.

5.2.5.1.7 While construct

The while construct is similar in form to the if construct but has a Control Flow 
Link which connects back to the Condition Icon’s Control Flow Input Port. Figure 
5.16 shows an example while construct. The process executes in similar fashion to 
the if construct described above, but control may only leave the construct after the 
conditional become FALSE. While constructs are represented in the grammar by 
the non-terminal "WHILE".

5.2.5.1.8 Other control flow constructs

Occam supports constructs which are not implemented at a visual level by GILT. 
These include replicators, CASE statements and complex guards in ALTs, 
amongst others. Their omission is not significant as enough constructs are included
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Figure 5.16 - An example while construct. The Process Icon instance 
"any.proc" is executed while the condition "i < 99" is satisfied.

in GILT to allow complex programs to be built. The inclusion of further constructs 
in GILT is discussed in the final chapter of the thesis, though it should be noted 
that such constructs may be used at a textual level in GILT programs.

5.2.5.2 Inter-process communication constructs

Inter-process communication in GILT relies on the connections made between 
Channel Connector Icons, Channel Input Stubs, Channel Output Stubs, Channel 
Input Ports and Channel Output Ports. A single Channel Link is allowed from a 
Channel Input Stub or Channel Output Port to a Channel Connector Icon. 
Similarly, a single Channel Link is allowed to a Channel Input Port or Channel 
Output Stub from a Channel Connector Icon. As many connections as are required 
are allowed to or from Channel Connector Icons, but a Channel Link may not be 
connected between two Channel Connector Icons.

Inter-process communication structures in GILT are modelled using a graph 
grammar which constrains the structures which may be evolved. In the grammar 
Channel Connector Icons, Channel Input Stubs, Channel Output Stubs, Channel 
Input Ports and Channel Output Ports are represented by terminal nodes. Channel 
Links between the components are represented by labelled arcs in the grammar. 
The Channel Input and Output Ports provide connection points for the attachment 
of communication graphs to a base graph. The approach has already been 
discussed in chapter four, and will not be further discussed in this section which is 
concerned with the semantics of the communication graphs, their relationship with 
Occam and the reasoning behind the choice of GILT’s representation of 
inter-process communication.
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Occam places relatively few restrictions on inter-process communication patterns 
in programs but, in essence, only processes which may be executing in parallel are 
allowed to communicate with each other. This restriction is enforced by the use of 
extra grammatical rules, as discussed in section 43.2.3. It is not possible to transfer 
such rules into the syntactic domain for GILT, so Occam’s restriction on 
communication between sequential processes is restated in a suitably modified 
form for G ILT:

"A sequence is rendered invalid if a Channel Connector Icon exists which has 
connections to the Channel Input Port of one functional icon and from the Channel 
Output Port of another functional icon".

GILT’s grammar is therefore like Occam’s insofar as it only specifies some facets 
of the inter-process communication process, but it may be considered more 
rigorous in other respects. It had been mentioned that the Channel Stubs in a 
Process Icon’s definition diagram are analogous to the declaration of channel 
parameters in the header of an Occam procedure, but GILT is stricter than Occam 
and requires that the user specify the direction of communication for the channel 
by using an appropriate Channel Stub. Channel Input Stubs indicate that the 
declared channel is an incoming one, while Channel Output Stubs indicate that 
the declared channel is an outgoing one. The best way to imagine the system at 
work is to think about a version of Occam which requires such a rigorous definition. 
The earlier procedure definition for a buffer procedure in section 3.1.11 might 
then look like:

SC PROC buffer.1(INPUT CHAN OF INT in, OUTPUT CHAN OF
INT out)

—  definition of single buffer process,
—  using a more rigorous procedure header

WHILE TRUE 
INT x :
SEQ

in ? x 
out ! x

As Channel Links are directional, only outgoing Channel Links are allowed to 
connect from Channel Input Stubs. Conversely, only incoming Channel Links are 
allowed to connect to Channel Output Stubs. The system allows the directional 
flow of data along channels to be clearly visualised.

GILT’s channel connection philosophy is that diagrams should be thought of 
without reference to the context in which instances of the Process Icon which they 
define are embedded. The notion of input and output stubs aids this process, 
supports stepwise refinement and code reuse, and aids the development of 
modular programs. In support of this notion, Channel Links in GILT do not have 
names. They are used purely for the specification of inter- process communication 
structures.
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Channel Connector Icons were introduced to support this style of programming 
and to ensure that it is not possible to evolve a communication structure in GILT 
which is not part of the Occam computational model, or which has unclear 
meaning. Their introduction was made necessary by the use of control flow in 
GILT diagrams. Without Control Flow Links and with all processes assumed 
executing in parallel, specification of inter-process communication may be carried 
out by allowing point to point Channel Links between Channel Ports and Channel 
Stubs with no more than one connection per item. This system yields diagrams 
similar to bubble and arc diagrams.

Using a diagrammatic model with control flow adds a new requirement, namely 
that multiple ports should be able to be linked together by a common channel so 
that members of a sequential construct should be able to visually access the same 
channel.

An obvious approach used in early versions of GILT allowed channels to fork and 
join at the Channel Input and Output Ports of Process Icons. No Channel 
Connector Icons were used and communication was relatively unstructured.

Figure 5.17 shows a communication graph such as might have been produced by 
the early versions of the system. It contains two Channel Input Ports and a Channel 
Output Port interconnected by Channel Links. The Process Icon instances which

A B

Figure 5.17 - A communications graph such as might have been produced 
in early versions of the GILT system. Two Channel Input Ports and a 
Channel Output Port, connected by Channel Links, are shown.
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A B

Figure 5.18 - The communication graph of figure 5.17 with an added 
Channel Output Port and Channel Link.

include the ports are not shown in the graph. Clearly, if the two input ports are 
part of Process Icons in a sequential control flow structure, then the graph is a 
potentially useful, legal one.

If a second Channel Output Port is added together with another Channel Link, the 
graph of figure 5.18 may be formed. Necessarily, ports B and D are part of a 
sequential construct, and any two Channel Links connected to the same Channel 
Port must form part of the same communications system. Thus port C reads from 
the same channel as does port A. However, the diagram visually implies that 
Channel Output Port D may only output to Channel Input Port C. Such a structure 
violates Occam’s semantics and thus does not have a simple implementation 
(without channel multiplexing) in Occam. Any Occam implementation would 
allow all Channel Output Ports to output to a single channel which could be read 
by all Channel Input Ports. This implementation is not the one implied by the 
diagram. Similar arguments apply to structures containing Channel Input and 
Output Stubs.

Structures like the ones above could be clarified by ensuring that all Channel 
Output Ports in such graphs are connected to all Channel Input Ports. An example 
of such a structure is the fully connected version of figure 5.18 shown in figure 5.19. 
This scheme works well for graphs with only a few inputs and outputs. It is however
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A B

Figure 5.19 - A completely connected version of figure 5.18.

easy to see that the number of connections grows quickly with the number of 
Channel Output and Channel Input Ports. In fact, where "n" is the number of 
Channel Links, "i" is the number of input ports and "o" is the number of output 
ports, n = io.

Just four fully connected input and output stubs require sixteen connections, 
resulting in a mass of confusing connections, which is difficult to parse and to 
represent using a graph grammar.

The situation may be made considerably clearer with the addition of an extra graph 
component and a small set of rules. The extra component corresponds to a Channel 
Connector Icon. Only a single connection may be made outwards from a Channel 
Output Port or Channel Input Stub to a Channel Connector Icon. Similarly only a 
single connection may be made inwards to a Channel Output Stub or Channel 
Input Port from a Channel Connector Icon. As many connections as are required 
may be made to and from a Channel Connector Icon, but Channel Connector Icons 
may not be connected together. Every Channel Connector Icon must have at least 
one incoming Channel Link and one outgoing Channel Link.

Such a scheme results in flower-like communications structures with central 
Channel Connector Icons and radiating Channel Links. The Channel Links 
connect from the Channel Connector Icon to Channel Output Stubs or Channel 
Input Ports and to the Channel Connector from Channel Output Ports or Channel 
Input Stubs. A reduction in the number of connections needed to express a legal 
communications structure is obtained for realistic cases, with n reduced to (i +
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o). Finally, the scheme ensures that users are aware that structures composed with 
Channel Links are language entities in their own right.

The rules may be formally written in the productions of a context free graph 
grammar. Figure 5.20 shows productions in the communications grammar based 
on the rules, which shares common terminal and non-terminal symbols with the 
base grammar. Figure 5.21 shows an equivalent graph to that shown in figure 5.19. 
Figure 5.22 shows a GILT diagram having a communications structure like the one 
represented by figure 5.21.

53 Textual process specifications

The nature and form of the graphical part of GILT programs has been discussed 
and it has been mentioned that the functionality of textual Process Icons is defined 
using Occam. This section is concerned with the syntax of the textual Process Icon 
definitions and their relationship with Occam.

The icon specific part of textual Process Icon instances is modelled by the terminal 
symbol "TEXTPROC" in GILT’S grammar. Like instances of graphical Process 
Icons, textual Process Icon instances have ports arranged around the outside of 
the central area to provide connections for links. The overall external structure of 
the two forms of Process Icons is the same, even to the extent that they share many 
common productions in the grammar.

The Occam for textual Process Icon definitions is entered into pop up windows. 
Diagrammatic symbols arranged in panels around the outside of the windows 
declared the parameters for the textual Process Icon definition

Textual Process Icons, like Graphical Process Icons, may be procedural or 
non-procedural. Occam’s syntax gives the structure of a procedure definition 
(equivalent to a procedural Process Icon) using the production :

proc.definition ::= proc.heading
process

The body of Occam’s procedure definition is modelled using the "process" 
non-terminal, while the procedure header is modelled by the "proc.heading" 
non-terminal.

For a procedural Process Icon the panels around the outside of a text editing 
window define the equivalent of an Occam procedure header, while the central 
textual specification defines the body of the procedure. For non-procedural 
Process Icons the window is the equivalent of a textual macro definition. Figure 
5.23 shows an example text window for a procedural Process Icon. To the top and 
bottom are two panels which are used to specify the text window’s Channel Input 
and Output Stubs (and hence the Channel Input and Output Ports of the Process 
Icon which represents it). As in the earlier graphical process definitions, Channel 
Stubs define external channel connections for the specification. Each stub is
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Figure 5.20 - Productions in a communications grammar which may be 
used to generate the graph of figure 5.21.
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Figure 5.21 - An equivalent graph to that of figure 5.19 produced with the 
grammar of figure 5.20. Central in the graph is a terminal symbol 
representing a Channel Connector Icon. Channel connections radiate to 
Channel Output Ports and from Channel Input Ports.

Figure 522 - A GILT diagram having a communications structure like 
the one in figure 5.21. No control flow information is shown in the 
diagram to clarify communications structure. Clearly however the two 
"producer" Process Icon instances and the two "consumer" Process Icon 
instances must be in two separate sequences (or sequential loops) 
running in parallel.
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Figure 5.23 - An example text window showing a single element buffer 
process with one Channel Input Stub and one Channel Output Stub. To 
the top and bottom of the window are areas for the definition of Channel 
Input and Output Stubs. To the left is a control panel for the window. 
To the right is an area for the definition of non-channel parameters for 
the process equivalent to those defined by Declared Parameter Icons 
for graphical Process Icon definitions (none are defined). The central 
area holds Occam text, which implements a single buffer process.
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named and may be in one of three states; undefined, input or output. The example 
of figure 5.23 has one Channel Input Stub and one Channel Output Stub defined, 
which are named "in" and "out" respectively.

If a stub is undefined, it does not appear on an instance of the Process Icon defined 
by the window. Undefined stubs simply serve to mark potential locations for Input 
and Output Stubs, while stubs in either of the two other states define the Channel 
Inputs and Channel Outputs of a text window. Channel Input Stubs appear as 
Channel Input Ports on the Process Icon defined by the text window, while 
Channel Output Stubs appear as Channel Output Ports. A similar algorithm to 
that described earlier in respect of graphical Process Icons (section 5.2.4) relates 
the positions of stubs and their representative ports. Channel Stubs in textual 
windows are named, unlike those used in graphical process definitions. A stub’s 
name may be used in Occam’s input and output statements and provides an 
interface between the graphical stubs and the textual process code. GILT’S 
Channel Links currently support only integer channel protocols, so integers only 
may be input to or output from the stubs using Occam’s "?" and"!" operators.

The text that may be entered in the Text Editing Area is defined to have Occam’s 
"process" non-terminal as its root symbol, and thus is allowed access to nearly all 
the facilities of Occam with the exception of the process to processor mapping 
statements and other related functions. A full definition of the components of the 
"process" non-terminal may be found amongst the syntax of Occam given in 
appendix 1. Within a textual process, processes may be run in parallel, local 
procedures defined, replicators used and arrays of channels using any of Occam’s 
protocols created. GILT is thus a unique current visual programming system in 
that it allows parallel programming to be performed at a textual level. Most visual 
programming systems restrict textual programming to sequential code, ignoring 
the possibility that text may provide a clearer expression of some parallel 
constructs than may be provided by graphics.

5.4 Programming with GILT

This section provides a step by step analysis of the features that GILT provides for 
concurrent programming by considering an example application (a processor 
farm) and a common parallel programming structure (a circular buffer). To 
illustrate GILTs high level programming features the processor farm is examined, 
while for low level features the circular buffer process is used. Both examples 
present Occam code fragments which are equivalent to the GILT diagrams 
implementing the examples in order to illustrate how GILTs visual display of 
parallelism, communication and control sequencing is helpful in visualising 
software designs, and to enable readers to make a connection between the 
constructs of Occam and those of GILT. The two examples do not use all of GILT’S 
facilities, but are sufficient to allow the essence of GILT programming to be 
demonstrated. It should be noted that it is difficult to describe hierarchical GILT 
diagrams without using the GILT editing system to examine them, as the process 
of viewing a program in GILT is far more interactive and visual than in

5-45



The G ILT programming language

conventional textual languages. The examples presented here are also necessarily 
small in dimensions.

5.4.1 A processor farm in GILT

Processor farms have been used extensively for solving so called "embarrassingly 
parallel" problems. Such problems are computationally expensive, but may be 
divided into a large number of component tasks. Good examples of embarrassingly 
parallel problems amenable to processor farm implementation are the calculation 
of M andelbrot sets, ray-tracing algorithms and many image processing 
applications. Because such problems may be divided into many component pieces, 
almost any implementation strategy will take advantage of the available 
parallelism, but processor farms provide a very simple general method which 
provides almost linear speedup with the number of available processors in very 
many cases.

In a processor farm a "worker" process is run on all but one of the available 
processors in a parallel machine. An additional process, the farmer process, farms 
out "tasks" or "task packets" to each of the worker processes. When a worker 
finishes its task, the results are transmitted back to the farmer process for 
assimilation into the complete solution to the problem being processed and a new 
task is transmitted to the worker concerned. The processing continues until all of 
the available tasks have been transmitted, at which time the farmer collects the 
remaining results from its workers and emits a termination signal. Variants on the 
scheme exist, for example with each worker storing a task, so that "gaps" in 
computation caused by worker to farmer latency do not exist.

Processor farms are commonly implemented in Occam for connected "pipelines" 
of Transputers like the one used for the buffering example of chapter three (figure 
3.3). The Occam for the main part of such a processor farm is shown in figure 5.24.

The instance of the procedure "farmer" sends out work to the farm in packets, while 
"no.of.workers" worker processes labour on the data. Packets flow out via the 
arrays of channels "to.farm" with processed work returning on the channel array 
"from.farm". Each "worker" process removes the work it requires from the 
"to.farm" channel or, if it does not require any more, forwards the work to the 
remainder of the pipeline. The process at the end of the pipeline "end.worker" 
does no forwarding and so is a special worker with only one incoming and one 
outgoing channel and no packet forwarding.

"Bubble and arc" diagrams of processor farms are often included in papers on the 
subject to clarify the structure of a farm. Such a diagram is not reproduced here 
in order to illustrate how GILTs representation of the processor farm is clearer 
than the corresponding textual (Occam) one. Figure 5.25 shows two views of a 
three worker processor farm (equivalent to the Occam of figure 5.24 with 
no.of.workers = 2). The top view shows a GILT diagram for the farm with control 
flow "on" (displayed), the bottom with control flow "off'. The diagram, and the 
following sub-diagrams (for the component Process Icons), are suitable for a
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[no.of.workers + 1]CHAN OF INT to.farm :
[no.of.workers + 1]CHAN OF INT from.farm :
PAR

farmer(to.farm[0], from.farm[0])
PAR i = 0 FOR no.of.workers
worker(to.farm[i], to.farm[i+l],from.farm[i+l], 

from.farm[i])
end.worker(to.farm[no.of.workers],

from.farm[no.of.workers])

Figure 524  - Occam for the main part of a processor farm. The existence 
of the procedures "farmer" "worker" and "end.worker" is assumed. No 
configuration information is included.

distributed implementation of the GILT compiler’s diagram parsing algorithm, 
discussed in chapters seven and eight. All of the Process Icons in the example are 
procedural.

In GILT’s version of the farm, parallelism is immediately obvious. As all of the 
Process Icons are part of the same parallel construct, the control flow information 
(shown by the Control Flow Links and Control Flow Ports in the top diagram of 
figure 5.25) is to some extent redundant, and the diagram is better viewed without 
control flow, as in the bottom diagram of figure 5.25. The pipeline structure of the 
application may be clearly seen, with the Channel Links between the Process Icons 
explicit and visual. It should be noted that, when coding applications in GILT, it 
is difficult to misconnect channels because the communications structure is so 
obvious. The erroneous connection of channels is far easier in Occam where it may 
occur by misordering the passed parameters for a procedure instance. GILTs 
communications structure can equally well be displayed using default Process Icon 
images created by the system, as shown in figure 5.26, rather that the specialised 
ones used in figure 5.25. Specialised icons are useful for tidying up an application 
with "visual comments", for the depiction of the functionality of commonly used 
processes, like buffers, or for indicating what a process does with its channel data.

The internal detail of the component processes making up the farm may also be 
expressed by GILT diagrams. Figures 5.27, 5.28 and 5.29 show respectively the 
internal detail of the "farmer", "worker", and "end.worker" Process Icons, while 
figure 5.30, 5.31 and 5.32 give the Occam equivalents. Control flow is not shown 
in any of the diagrams, as all of the component Process Icons are in parallel (or in 
the case of the "end.worker" Process Icon, one strictly sequential Process Icon) and 
there would be little point. It should be noted that the GILT program editor allows 
the toggling of control flow in the diagrams, so that it may be viewed or not as is 
required (or even rapidly "toggled" for checking purposes). Again, GILT’s
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o o o o
farm er

Figure 5.25 - Two "top-level" views of a processor farm in GILT.
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Figure 5.26 - A view of the farm without specialised icons.

Get data fro« the filing system and distribute it 

Put reduced data back into the filing system

O
D

file

Processed data in here Packets) Raw data out here

Figure 5.27 - Definition diagram for a "farmer" Process Icon.
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Processed dati exits here Packets enter here

Figure 5.28 - Definition diagram for a "worker" Process Icon.
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The end of the pipeline needs no packet forwarding

Figure 5.29 - Definition diagram for a "end.worker" Process Icon.

PROC farmer(results.in, data.out)
CHAN OF INT to.file, from.file :
PAR

file(to.file, from.file)
distribute(from.file, data.out, results.in, 

to.file)

Figure 530 - Occam for a "farmer" process.

5-51



The G ILT programming language

PROC worker(work.in, work.out, results.in, 
results.out)
CHAN OF INT to.reduce, from.reduce :
PAR

forward(work.in, work.out, to.reduce)
reduce(to.reduce, from.reduce)
back(from.reduce, results.in, results.out)

Figure 5.31 - Occam for a "worker" process.

PROC end.worker(work.in, results.out) 
SEQ
reduce(work.in, results.out)

Figure 532 - Occam for an "end.worker" process.

graphical representations aid the clear expression of the internal workings of the 
of the Process Icon, in the style of dataflow diagrams, which is common for 
overviews of parallel programs shown in the literature and for the higher level of 
abstraction in GILT programs.

The "farmer" Process Icon has two component Process Icon instances, both part 
of a parallel construct. The first, "file", interacts with a mass storage system and 
removes tasks from a data file and places the results from completed tasks back 
into a separate file. "Distribute" passes out task packets to the "worker" Process 
Icons further down the pipeline, and collects processed data for transmission back 
to the "file" Process Icon.

"Worker" Process Icons have three component Process Icon instances; "forward", 
"reduce" and "back". "Forward" accepts task packets from the upper rightmost 
Channel Input Stub, passing those intended for other workers to the lower 
rightmost Channel Output Stub. Packets for the "reduce" Process Icon are 
forwarded to it as appropriate. "Reduce" emits its packets of processed data to 
"back", which combines them into the stream of packets heading up the pipeline 
towards "farmer". Of note are the "forward" and "back" Process Icon images. The 
use of iconic representation allows the direction of the data flow in the process 
represented by the icons to be shown explicitly, so that the splitting action of
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"forward" Process Icon and the combining action of the "back" icons may be clearly 
shown. No such technique can by used in textual programming languages.

The "end.worker" Process Icon is a specialised worker process which does no 
forwarding of task or processed data packets.

In all three diagrams the channel connections between processes are explicit and 
visual with the "IN" and "OUT' Channel Ports and Stubs clearly showing the 
direction of data flow in the system.

Further definition diagrams could be produced to describe the component Process 
Icons of the "farmer", "worker" and "end.worker" Process Icons, thus dividing up 
the functional specification of the program into even smaller modules. This course 
is not pursued here as the internal details of the modules in the farm would start 
to become application specific rather than general. Nonetheless, the example 
serves to illustrate GILTs facilities for programming at a high level of abstraction, 
much like dataflow design methods. The next example illustrates how GILTs 
lower level facilities may be used to aid programming at lower levels of abstraction.

5.4.2 A circular buffer in GILT

Buffers are commonly used in parallel programming because they allow a 
processes to run decoupled from their data sources or sinks. An example 
application of a buffer is to found in the previous processor farm, where buffering 
might be required to decouple the actions of the packet forwarding "forward" 
Process Icon instance and the "reduce" Process Icon instance.

The circular buffer is a useful structure which allows a buffer of generalised size 
to be created in an efficient manner. The buffer’s data structure is an array of fixed 
size with two associated pointers "base" and "top" indicating the next object to be 
taken from the buffer’s array and the next free "slot" in the array respectively. With 
each "put" or "get" operation on the buffer the pointers are incremented using 
modular arithmetic so that they "wrap" around the top of the array (hence the term 
"circular"). Obviously an implementation of the buffering process must not allow 
a "get" from an empty buffer, or a "put" to a full one, so a check on the number of 
items in the buffer is kept separately from the pointers. Figure 5.33 shows an 
Occam implementation of the circular buffering process, which consists of two 
main processes, a circular buffer and a single element buffer.

The code of figure 5.33 is necessarily complex because input and output operations 
on a single channel may not be contained in guards of different ALT processes, as 
this would violate Occam’s semantics. The code implements a buffer of size (S + 
1), with one buffered element held in the process "buffer. 1". To read from the 
circular buffer the "buffer. 1" process first indicates that it wishes to read by 
synchronising down the channel "request", then actually reads via the channel 
"reply". External input is performed along the channel "put" and output along "get". 
The interaction between the circular buffer and the single buffer takes the form 
of a double rendezvous, common in Occam programs.
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PROC buffer•1(CHAN OF INT request, in, out)
INT temp :
VAL INT any IS 0 :
WHILE TRUE 

SEQ
request ? any 
in ? temp 
out ! temp

•

PROC circbuf(CHAN OF INT put, get)
VAL INT S IS 32 : —  The buffer size
INT top, base, con : —  next object out, next in

—  number of objects in .. 
[S]INT buf : —  buffer array
CHAN OF INT request, reply :

PAR
—  "most"
SEQ

—  init.vars
con := 0
top := 0
base := 0
—  docircle 
WHILE TRUE
—  putnget 
INT any :
ALT

con < S & put ? buf[top]
—  put 
SEQ
con := con + 1 
top := (top + 1) REM S 

con > 0 & request ? any
—  get 
SEQ
out 1 buf[base] 
con := con - 1 
base := (base + 1) REM S 

buffer.1(request, reply, get)

Figure 533 - Occam code implementing the circular buffer algorithm.
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In GILT, a circular buffer may be implemented as a multilevel diagram, which is 
discussed in the following paragraphs. The Occam code of figure 5.33 contains 
comments with the names of the various Process Icons mentioned in the following 
discussion, so that the Occam code may be related to the diagram, and vice- versa.

Figure 5.34 shows a "top-level" view of the circular buffer in GILT. The top view 
shows the Control Flow Links in the definition diagram, which executes the two 
Process Icon instances named "most" and "buffer. 1" in parallel. The lower view, as 
for the earlier processor farm example, shows a view without control flow 
information. As expected, "most" contains the majority of the code for the buffer. 
The Channel Links between the two Processes may clearly be seen, as can the 
structure of the buffer as a main process ("most") with a subsidiary single element 
buffer process ("buffer. 1"). The various local variables for the buffering process 
are declared by the Variable Declaration Icons on the left hand side of the diagram, 
and are equivalent to those in the earlier Occam version of the buffer. The channel 
used for rendezvous is marked by a dotted arrow in the raster of each of the two 
Process Icon instances "most" and "buffer. 1". External connections of the buffer 
process are seen as the Channel Input Stub to the top of figure 5.34 and the 
Channel Output Stub at the bottom of the same figure. Figure 5.35 shows a text 
editing window for the Process Icon "buffer. 1", which is equivalent to the "buffer. 1" 
procedure definition of figure 5.34 and is not further discussed. Figure 5.36 shows 
a definition diagram for the Process Icon "most", which is non-procedural. Two 
Process Icon instances (in a sequence) are contained in the definition diagram, 
"init.vars", and "do.circle". "Init.vars" is a textual non-procedural Process Icon 
which zeroises the variables "con", "top" and "base" declared in figure 5.34. The text 
for "init.vars" is trivial and is not reproduced. The Process Icon "do.circle", also 
non-procedural, is graphically defined (instead of textually) and executes a 
while-true loop, as shown in its definition diagram (Figure 5.37). Both the 
definition diagrams shown in figures 5.36 and 5.37 have similar communications 
structures, passing channels down to lower levels of abstraction, and both are 
non-procedural. The lowest level definition diagram is that of the non-procedural 
Process Icon "putnget" which is defined by the definition diagram shown in figure 
5.38. The mixed control flow and channel based visualisation allowed by GILT 
allows a clear expression of the alternative structure of figure 5.38, showing clearly 
how the two Process Icon instances "put" and "get" are executed dependent on 
data items received on the Guard Icon’s connected Channel Links. The fact that 
"get" outputs on receiving a request is clearly shown by the diagram. Both "put" and 
"get" are non-procedural textual Process Icons, for which text editing windows are 
shown in figures 5.39 and 5.40 respectively.
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u,r: VAL INT S IS 32.
V ♦

u*r' INT top 

'1 ‘ r :  INT base 

v * r l  INT con 

'"r! [STINT but

Figure 534 - Top-level views of the circular buffer example.
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Figure 535 - A text editing window for the Process Icon "buffer. 1".
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Oata in here

Requests for data enter nere Data out here

Figure 536 - The definition diagram for the Process Icon "most".

Oata in here

Figure 537 - The definition diagram for the Process Icon "do.circle".
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Data in here

r! INT any

— > |con <  S ||TC]|buf [top]^ |— »- - - ■> =

Requests enter here

after a request

Figure 538 - The definition diagram for the Process Icon "putnget".
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Figure 539 - A text window for the Process Icon "put".
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6

An editor for GILT diagrams

6.0 Introduction

Many editors for textual languages have been produced. Such editors are 
frequently far simpler than corresponding visual language editors due to the one 
dimensional nature of text. The existence of a well accepted basic symbol set for 
textual languages (ASCII) has allowed editors with a high level of generality to be 
produced so that the implementation of a new textual language does not usually 
require the implementation of a new editing system.

Attempts have been made at the implementation of "universal" editors for 
graphical (visual) programming languages, for example (Hekmatapour and 
Woodman, 1987; Gottler, 1989), but the level of generality of application for such 
systems is low, caused in part by the diversity of diagramming methods used in 
current visual programming languages and the lack of a basic symbol set. The 
development of a completely general system may be precluded by the lack of 
orthogonality between approaches to visual programming. Certainly no existing 
editing system would be suitable for editing GILT programs due to GILT’S heavy 
use of representative icons and its reliance on a mixed textual-graphical paradigm.

6.1 Editing system overview

GILT’s editing system was heavily influenced by the decision to implement a 
runtime system which supported the traditional edit..compile..edit code 
development cycle. In the cycle, programs are developed using a program editor, 
compiled, and error messages used to refer back to erroneous features of the 
source code. Most previous visual programming language editors have supported 
the development of programs using syntax directed editing facilities, which only 
allow the input of correct (or potentially correct) program fragments. This path 
was not chosen because of the previously mentioned desire to support a traditional 
code development cycle, and because differences between the grammar produced 
for GILT and conventional textual grammars required the development of a new 
checking and compilation system. The system was considered better approached 
in a more modular form than was offered by a fully syntax directed editor.
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The editor does however impose some restrictions on the diagrams which are 
input. These restrictions are termed "lightweight restrictions" because they impose 
little computational load on the editing system and take the form of restrictions 
preventing, for example, the connection of Channel Links to Control Flow Ports. 
All "heavyweight" checking is performed by the compilation system.

6.2 Systems for the implementation of the editor

Several windowing systems were considered for the implementation of the 
diagram editor. After an initial trial (partial) implementation of the diagram 
editing system on a Whitechappel Mg-1 workstation a number of criteria were 
identified for an implementation environment:

a) The environment should support applications consisting of multiple 
adjustable windows able to display text and graphics within the same 
area so that the mixed textual graphical nature of GILT diagrams could 
be emphasised and parts of the program not continuously used could be 
opened, closed, moved or reseized at will.

b) A large "widget toolkit" of user interface components should be readi-
ly available. The components in the toolkit should be easy to use, yet 
flexible enough to implement most (if not all) of GILT’S features, so that 
as little software as possible concerned with low level user interface 
operations, and not directly with the material of the thesis, had to be 
written.

c) The system should be in common use to ensure software support and 
inter-machine portability.

d) A callback or object oriented style of user interface programming 
should be supported to allow freedom from intimate handling of user 
input.

e) The system should run on a machine capable of hosting a Transputer 
development system.

Examination of option (e) reduced the hardware platform to either a Sun or a PC 
based system, with available windowing systems at the time being X-Windows or 
Sunview (on a Sun workstation) or Digital Research GEM (on a PC). After some 
consideration GEM was removed from the list as it did not provide sufficient 
facilities, in particular with regard to (c) and (d). The final selection of Sunview 
over X-Windows was made on Sunview’s wide usage within the City University, 
its large widget toolkit (including useful features like text editing windows), and 
the fact that it was supported by a machine capable of hosting a suitable Transputer 
development system (a Sun 4/110). X-Windows was rejected due to the low level 
of support available within the University and its smaller widget toolkit (at the 
beginning of the implementation).
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6 3  The GILT program editing system

The program editing system for GILT may be divided into two broad functional 
units, the graphics editor and the text editor. In the following discussion, the 
graphics editor will be discussed first, followed by the text editor. Each discussion 
consists of a functional description of the facilities provided, followed by some 
notes on the implementation approach taken.

Both the systems were written in C (Kemighan and Richie, 1988) and use Sunview 
library routines. Throughout existent code was reused or modified so that a fully 
functional editor could be produced quickly.

6.3.1 The graphics editor

GILTs graphics editor provides support for programming at the graphical levels 
of abstraction provided for in GILT. The editor allows the definition of Process 
Icons and the creation of definition diagrams containing them. A flexible icon 
editing system is provided for drawing Process Icon images (forming part of 
Process Icon representations), while a Process Icon library stores all available 
Process Icons for easy access.

For the purposes of extensibility and maintenance the editor was written in a highly 
m odular fashion. Specialised routines handle the drawing of language 
components, which are internally represented using C data structures for speed.

The workstation mouse is used for the entry of diagram components, the editing 
of Process Icon images and for other functions. A control panel associated with 
each functional area or window controls the action of the mouse within the area. 
The system is designed to conform to the style of interaction used in Sun system 
software (Sun, 1989) to ensure uniformity between the editor and other programs.

As the editing system requires a large number of different functions, a number of 
controls are used to define the behaviour of the mouse when editing.

Heavy use is made of pop-up windows which perform tasks like querying 
potentially destructive actions, for example the deletion of diagram components.

The editor performs only very simple checking on the diagrams which are input, 
disallowing meaningless concepts like the connection of Control Flow Links to 
Channel Ports or Stubs and obviously erroneous communications structures. 
Implementation of a full syntax directed editor has not been attempted for the 
reasons advanced earlier. The simple grammar of the communications structures 
has allowed the editor to be implemented so that only legal communications 
structures (or parts of them) can be input. No attempt is made to ensure that the 
context holding the communications structures is correct (for example, it is
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perfectly permissible to connect a Channel Link between two Channel Ports on 
Process Icon instances which form part of a sequence). Earlier discussions have 
shown that this type of structure cannot be outlawed using syntactic methods as it 
requires extra syntactic rules. The addition of such rules to the part of the editor 
which checks communications structures would not however be difficult.

GILTs graphics editor display consists of a main window containing two large 
functional areas (an icon editing area and a diagram editing area) with a pop-up 
window (the Process Icon library or browser) which gives access to Process Icons. 
The text editing system and GILTs compilation system also use pop-up windows.

Figure 6.1 shows the main window for the system, while figure 6.2 shows the 
smaller, pop-up, Process Icon library.

Figure 6.1 - A screendump showing the main window from the diagram 
and icon editing system. To the left is the icon editor, with the diagram 
editing area right. The processor farm example of chapter five (Figure 
5.25) is being edited.
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Figure 6 2  - The pop-up Process Icon library showing three newly created 
(and unedited) Process Icons ready for selection. The panel is accessed 
via the button marked "Process Browser" in the main window.

Varning ! Vhen you delete this instance, all channel 
and control flou connections will also be deleted.
However you can still edit the internal
detail of this process by selecting 1t from the browser frame 
Please confirm.

[C o n f j jn a ^ J ) e n 3 te ^ r o £ e s s ^ J [^ o n ^ j in d ^ c o n n e c t j^ o r^ [ Cance l ]

Figure 63 - A pop-up window requesting confirmation of a delete action.

Please select the name of a file to write 
your graphs to before saving ! !

CÜD

Figure 6.4 - A pop-up window giving assistance on the use of the system.
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Actions which have potentially dangerous effects on a user’s GILT program (such 
as the deletion of diagram components) are protected by pop-up windows which 
allow cancellation of the actions. Figure 6.3 shows an example of such a window. 
Pop-up windows are also used to display advisory information, for example, when 
a user tries to save a program without selecting a filename for it. Figure 6.4 shows 
an example of this type of window.

The three main components of the graphics editor are the Process Icon editor, 
the diagram editor and the Process Icon library or browser.

63.1.1 The Process Icon editor

The Process Icon editor, based on Sun’s Iconedit program (Sun, 1989), is a flexible 
system for editing the representative images used for Process Icons and providing 
a definition of their name. The editor’s display consists of four main sub areas 
(from top to bottom ):

The message panel

At the top of the area is the message panel. The message panel is used for system 
and help messages relevant to the actions taking place in the other areas of the 
Process Icon editor.

The drawing area

The next area down from the message area is the drawing area. This area is used 
for interaction with a Process Icon’s image.

The Process Icon name area

The Process Icon name area is used to define a name for the Process Icon and is 
below the drawing area.

The control panel

The control panel displays the options currently available for the creation of 
images in the drawing area, determines the actions that the mouse takes in the 
drawing area, and provides a button which displays the Process Icon browser. The 
control panel is below the Process Icon name area.

Before creating an image for a Process Icon or editing the Process Icon’s name, a 
Process Icon must have been created and selected for editing using the Process 
Icon browser, described in a later section. Once a Process Icon has been selected, 
the mouse may be used to edit the icon’s image within the drawing area. The left 
button is used to draw, the middle button to erase. The rightmost mouse button 
may be used to undo the previous operation in the drawing area. As drawing 
proceeds, an enlarged version of the icon’s image appears within the drawing area. 
A smaller "life-size" version may be found in the Process Icon browser’s pop-up

6-6



An editor for G ILT diagrams

[Process brouser] [ Clear ] [ Fi 11 ] [invert] 

FI 1 1 0  Src Grid 0  Off

I I Fill Q  Border

O Fill Q  Border

Figure 6.5 - A close up view of the Process Icon editor control panel.

window. The images of any instances of the Process Icon within diagrams are 
updated as editing takes place.

The Process Icon’s textual name is entered into the process name area by 
positioning the mouse within the Process Name area and typing. Standard keys for 
delete and cursor control operations may be used.

63.1.1.1 Process Icon editor controls

The control panel contains a number of items which may be used to control image 
entry in the drawing area and one item which is used to display the library of 
available Process Icons stored in the browser. Some items are buttons which 
initiate commands, while others allow selection from a range of options.

Most items also have a menu which can be selected using the right mouse button.

A close up view of the control panel is shown in figure 6.5, with each item in the 
control panel described below, from left to right and downwards :

Process browser ibuttoni

Pressing this button brings up a pop-up window (the Process Icon library or 
browser) containing the images and names of the Process Icon definitions known 
to the editing system. Using the window icons may be created, destroyed, selected 
for editing or placed in the diagram editing area. The Process Icon browser is 
described in a further section of this chapter.
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Clear (button')

The clear button clears the currently selected icon’s image contained in the 
drawing area.

Fill (button)

The fill button fills the currently selected icon’s image with the current rectangular 
fill pattern, discussed in the section on the paintbrush item.

Invert (button^

The invert button flips the icon’s image so that black becomes white and white 
becomes black.

Fill (cyclical choice item!

This item controls the "operation" used when filling parts of the drawing area. It 
contains a number of options showing logical functions (e.g. "AND", "OR") which 
combine the data displayed in the drawing area with that used in filing.

Grid (cyclical choice item)

The grid item displays a rectangular grid, useful for creating regular images, over 
the drawing area.

Paintbrush (vertical choice iterrA

The paintbrush item allows selection of four painting modes. Each mode is shown 
by a small icon, with a "pointing hand" indicting the "current choice". The modes 
are described from the top downwards :

"Dot" In the first mode, dot, pixels at the mouse’s location in the draw-
ing area are painted when the left or middle buttons are pressed.

"Line" The second mode, line, allows lines to be drawn. In this mode, a 
line is drawn from the position at which the left or middle mouse button 
is pressed down to the position at which it is released. While a button is 
held down "rubberbanding" is used to give feedback.

"Rectangle" The third mode allows rectangles to be drawn. Rectangles 
are defined using the same method as for lines (starting and finishing co-
ordinates) and a rubberbanded rectangle is shown during drawing.

The "fill" item to the right of the rectangle selection item indicates the current 
rectangle fill pattern. Any rectangles drawn will be filled using this pattern, which 
is also used by the "fill" button.
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"Circle" The fourth (and final) mode allows circles to be drawn using a similar 
technique to that used for rectangles.

A "fill" item like that for the "Rectangle" option is also provided for circle drawing.

6.3.1.2 The Process Icon library (browser)

The Process Icon library (Process Icon browser) is used to display, create, delete 
and select Process Icon definitions for editing or Process Icon instances for 
placement in diagrams. Figure 6.2 shows the Process Icon library. The browser’s 
window consists of two main areas. At the top is a control panel containing three 
control items. Items in the control panel are used to create new processes, hide 
the window and to control the action of selection operations (made using the 
mouse) on the icons held in the lower part of the window. The lower part of the 
window consists of a scrollable panel which displays all of the Process Icons stored 
in the editing system.

63.1.2.1 Process Icon Library controls

The control panel has three control items, each of which has a different function. 
The different items are shown in figure 6.6, which is a close up view of the control 
panel:

Add new process fbuttoni

The add new process button creates a new Process Icon in the Process Icon library. 
The Process Icon’s image is initially grey and it has the name ’undefined’. Icons 
created in this way may be selected for editing (using the icon and diagram editing 
areas or a text editing window).

Done (button)

The done button closes the Process Icon library window, hiding it from view. It 
may be brought into view again using the "Process browser" button in the icon 
editor control area.

Select mode (cyclical choice item!

The select mode item affects the action taken when a Process Icon in the browser 
is selected by depressing the left mouse button while the mouse is over the icon. 
Three modes are available :

a)  Edit process graph This is the initial mode. When a Process Icon is selected in 
this mode, the icon become the icon which is being edited. Its image appears for 
modification in the icon editing area, and its definition diagram (if it has one) 
appears in the diagram editing area. Changes to the icon’s image, name, or 
definition diagram may then be made as required.
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(Add Nem Process') [Done]

Select mode: >^-Edit Process Graph

Figure 6.6 - A close up view of the controls for the Process Icon library.

hi Place process When a Process Icon is selected in this mode, an instance of it 
may be placed in the diagram editing area by moving the mouse into the diagram 
area and depressing the left mouse button at an appropriate location (once 
selected, the icon "sticks" to the mouse pointer). Process Icons selected in the 
browser are shown enclosed by a rectangular box. Icons remain selected until the 
left mouse button is depressed over a different Process Icon.

c) Delete Process This mode is used for the removal of unwanted Process Icons 
from the browser. Once an icon has been selected, a small confirmation window 
appears, allowing the user to proceed, and delete the icon, or cancel the operation.

63.13 The diagram editor

The diagram editor works in a similar manner to the Process Icon browser and 
Process Icon editor, but is used for the creation of the diagrams which define the 
functionality of Process Icons (definition diagrams). The area has three main parts; 
the "message panel", the "diagram editing area" and the "control panel", shown in 
figure 6.7. The message panel (at the top of the diagram editing area) is used for 
the display of system messages and for help on editor functions. The diagram 
editing area (middle) is used for the display, creation and modification of diagrams 
using the mouse and keyboard. The functionality of the mouse buttons within the 
area is controlled by the items in the control panel (bottom). Items in the control 
panel are used for system functions, for example the loading and saving of graphs.

63.13.1 Diagram editor controls

The control panel for the diagram editor contains twelve items. Three items are 
concerned with the functionality of the mouse in the diagram editing area. These 
items will be referred to as the "mode controls".
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Figure 6.7 - An enlarged view of the diagram editor parts of the editor 
display. The diagram editor is shown in its initial state. No Process Icon 
is being edited.
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Three "toggle items" are concerned with the way in which diagrams are displayed 
in the diagram editing window and with the nature of the diagram being edited in 
the display area (procedural or non-procedural).

Five "system items" perform functions like exiting the editing system, displaying 
the compiler window and loading or saving diagrams.

One item allows the entry of very long text strings which define the contents of 
comment items. Strings may be entered into this item (the "comment string item") 
and placed at any location on the screen using the mouse.

6 J .U .1 .1  Mode controls and editing functions

The mouse is used in the diagram editing area for the entry of links between icons 
and for the placement, movement, deletion and selection of diagram components. 
The keyboard is used to type into text areas selected with the mouse.

The left mouse button is used for selection operations such as the addition and 
deletion of functional icons, the connection of links between them and for 
"zooming in" to see the internal detail (diagrams or text) of Process Icons. It is also 
used for the selection of text areas, which form part of icons, so that the contents 
of the areas may be edited using the keyboard.

The middle mouse button is used for moving components. Components in the 
diagram editing area may be moved at any time by depressing the middle mouse 
button over the component, moving the mouse to the desired location, and 
releasing the button.

The right mouse button is used for cancelling operations. Operations in progress 
(such as the entry of control flow links) may be cancelled by pressing the right 
mouse button.

The three mode controls, the "Item" choice item, the "Add or Delete Item" choice 
item, and the "E d ititem , are used to determine the functionality of the left button 
of the mouse when the mouse pointer is in the diagram editing area.

Item (horizontal choice item)

The "Item" mode control item determines which of twelve diagram components 
are to be worked with in the diagram editing area. A mnemonic is associated with 
each choice in the item, only one of which may be selected at any time. The 
mnemonics used and their relationship to GILTs diagram components are shown 
below:

Prc Process Icon

Ctr Control flow links
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Ch Channel links 

IS Channel input stub icons 

OS Channel output stub icons 

Com Comment icons 

Var Variable definition icons 

Grd Guard Icons

PV Passed or Declared variable icons. (The same item is used for both
these diagram components as they are structurally the same, and may be 
distinguished by their textual contents).

ChC Channel connector icons

Cnd Conditional Icons

CSJ Control split-join icons

No option for interaction with Control Input Stubs and Control Output Stubs are 
provided. As these components must be present in each diagram they are 
automatically created by the program editor whenever a new Process Icon is 
created using the Process Icon library’s "Add New Process" button.

Add or Delete Item (cyclical choice itenri

The "Add or Delete Item" mode control item allows the addition of new 
components to a diagram ("add" option) or the deletion of existing ones ("delete" 
option).

E d it: (cyclical choice item!

The "E dit:" mode item enables the diagram editing functions controlled by the 
other two mode items and controls the action of the left mouse button when it is 
over a Process Icon instance. When the item is in "Diagram" mode the diagram 
displayed in the diagram editing area may be edited, or icons entered to reveal 
their internal definition diagrams. In 'Text" mode no diagram editing may be 
performed, but if the left mouse button is depressed over a Process Icon instance 
a text entry window may be created for the Process Icon’s definition and text 
entered as required.

The message panel above the diagram editing area continuously displays help on 
using the editor for whatever mode is selected.
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63.13.1.1.1 Adding diagram components to a definition diagram

New components are added to a diagram with the "Add or Delete Item" item in 
"Add" mode and the "Edit :" item in "Diagram" mode.

For icons ("Item" modes "Prc", "IS", "OS", "Com", "Var", "Grd", "PV", "ChC", "Cnd", 
"CSJ") the functional icon selected using the "Item" selector is added to the diagram 
by pointing to an appropriate location and pressing the left mouse button once. 
While the mouse is being moved to the correct location a wire frame tracking 
rectangle of a size appropriate to the icon being placed follow the mouse cursor. 
Multiple instances of the same functional icon may be placed with consecutive 
button pushes. If the "Prc" mode is selected, the Process Icon currently selected in 
the process browser is placed. Other options place different functional icons.

For links ("Item" modes "Ctr" and "Ch") the left mouse button is pressed once at 
the starting port and once at the finishing port of the link. Intermediate "joints" in 
the connection may be defined using further mouse button presses, with the link 
following the points in their order of selection. While links are being defined, the 
position of the mouse is tracked with an appropriate line for the link being defined. 
Connections may be cancelled by pressing the right mouse button.

63.13.1.1.2 Deleting diagram components

Diagram components may be deleted with the "Add or Delete Item" mode control 
in "Delete" mode and the " E d i t m o d e  control in "Diagram" mode. Confirmation 
of deletion requests is asked for by the system using a small pop-up window.

For Icons ("Item" modes "Prc", "IS", "OS", "Com", "Var", "Grd", "PV", "ChC", "Cnd", 
"CSJ") the diagram component of the type indicated using the "Item" mode control 
is removed from the diagram by pressing the left mouse button over it. Any 
connected Channel Links and Control Flow Links are removed when a diagram 
component is deleted. Multiple components may be deleted using consecutive 
mouse button pushes.

In link deletion, the left button is depressed once over the starting port of the link 
and once over the finishing port of the link.

63.13.1.13 Editing the textual or diagrammatic definition of a 
Process Icon

The internal detail (the definition) of a Process Icon instance may be displayed for 
editing with the "Add or Delete I t e m m o d e  control in "Add" mode. Process Icons 
whose internal contents are to be edited are selected using the left mouse button. 
If the selection has taken place with the " E d i t m o d e  control in "Text", text may 
be entered for the process concerned into a text editing window. If the selection
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has taken place with the "E d i t m o d e  control in "Diagram" mode the Process Icon 
becomes the icon currently being edited, just as if it had been selected using the 
"Edit process graph" mode of the Process Icon browser. The operation is 
equivalent to going down a level in the hierarchy of diagrams and provides a 
convenient way of graphically "zooming in" on areas of interest. For "Diagram" 
mode selections on textual Process Icons a pop-up window appears allowing the 
user to change the type of the Process Icon from textual to graphical. Similarly, for 
’Text" mode selections on graphical Process Icons a pop-up window appears which 
allows the user to change the type of the Process Icon to text. As all Process Icons 
are initially created as graphical Process Icons, this pop-up window provides a 
mechanism for the creation of textual Process Icons.

6 3 .1 3 .1 .1 .4  Editing the contents of text areas

The contents of text areas may be modified by placing the mouse over the area in 
any mode and clicking the left mouse button. Standard keyboard commands may 
the be used.

63.13.1.2 Toggle controls

Two of the three 'Toggle" items are used to modify the information displayed in 
the diagram editing area - the "Control flow on this diagram is" item and the "Stub 
Grid" item. The third item determines the procedural or non-procedural nature 
of the definition diagram being edited.

Control flow on this diagram is (cyclical choice iteml

When the item is enabled ("On", the default condition) all Control Flow Links, 
Control Ports and Control Stubs in the definition diagram displayed in the diagram 
editing window are displayed. When the item is disabled ("Off'), no control flow 
information is displayed. The item supports the hiding of control flow information 
at particular levels of abstraction by remembering the value of the toggle for each 
diagram stored in the system.

Stub Grid f cyclical choice iteml

When this item is enabled a grid showing the positions used in mapping Channel 
Stubs to Channel Ports is shown. The grid consists of three vertical and two 
horizontal fines, and is helpful for ensuring the placement of stubs in the correct 
locations.

Compile diagram as ('cyclical choice iteml

The "Compile diagram as" item determines the compilation algorithm to be used 
for the definition diagram currently displayed in the diagram editing area. If the 
choice is "as a procedure" the diagram is compiled as a procedure (for procedural 
Process Icons). If the choice is "as a code insert" the diagram is compiled as a series
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of macro code inserts (for non-procedural Process Icons). This subject is dealt with 
in more detail in chapters five and seven.

63.13.13 System controls

The five systems function buttons in the diagram editor control panel are used to 
control the interaction of the diagram editor with the Sun’s Unix file system, the 
GILT compiler and for exiting the system.

Compiler Window (cyclical choice item)

The "Compiler Window" button is used to display the compiler window. When the 
button is pressed, the window appears if it is not already displayed. The compiler 
is dealt with in the next chapter.

Diagram-Prolog fbuttonl

The "Diagram-Prolog" button is associated with the compiler functions button and 
produces a file containing a set of Prolog clauses to be used with GILT’S compiler 
if the compiler is not being used through the compiler control panel.

I.oad Diagrams and Save Diagrams fhuttonsl

The "Load Diagrams" and "Save Diagrams" buttons read and write files containing 
GILT diagrams. The filename to write to or read from may be highlighted using 
the Sun’s selection facility (Sun, 1989).

Quit (button)

The quit button terminates the GILT editing system. Confirmation of the action 
is sought via pop-up windows before the action is taken, thus avoiding loss of user 
entered information.

63.2 The text editing system

GILT’s text editing system provides facilities for the creation of textual 
specifications of Process Icon functionality. Text is entered into pop-up windows, 
which have surrounding areas for the definition of non-channel parameters 
(variables) and Channel Stubs.

63.21 Functional description of the text editor

Text windows are used to textually define the functionality of a Process Icon. A 
text window may be produced by clicking on an instance of a Process Icon in a 
diagram with the "E d i tm o de  item in the diagram control panel set to ’Text". Text
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windows for up to four Process Icons may be simultaneously displayed. This limit 
is imposed by the number of available file descriptors per process under Sunview.

Text windows have already been described briefly in chapter five, which gave a 
high level overview of their functionality and defined the relationship between the 
components making up a text window and Occam processes. This section gives a 
lower level description of the functionality of text windows and explains the 
functional aspects of the windows in greater detail.

A text window is shown in Figure 6.8. Text windows have five functional areas. 
Central to each window is a text editing area. To the top and bottom of a text 
window are areas concerned with the definition of Channel Input Stubs and 
Channel Output Stubs. To the right of the central text editing area is the passed 
parameter declaration area. To the left is a control panel containing two buttons 
for finishing editing operations. The bar at the top of each text window displays a 
message showing the name of the Process Icon definition which is being edited 
using the window and, if a file is being edited, a filename. If a file is not being edited 
(as is the case with newly created windows) the message "Editing memory" appears 
in place of the filename.

y for process
[Close]

[Pone]

Undefined

un-
d e fin e d  
ch a n n e1

nput

—  Single element buffer process 
VHILE TRUE

I  NT 
SEQ

0  U n d e f in e d  0  O u tp u 0  U n d e f n ed U n d e f

un- un- u n -
d e f m ed d e f in e d d e f 1 ned
channel

-
channel channe 1

N u l l o u t N u l 1 N u l l

i Input vars

Figure 6.8 - A text window, editing memory.
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The central text editing area has the same user interface as Sun’s standard text 
editing system, textedit. In the window, a text cursor may be placed at any location 
by clicking with the left mouse button. Standard text editing keys may also be used 
to create a textual process description, as defined in chapter five. Using menus 
associated with the bar at the top of the window (accessed by holding the right 
mouse button down over the bar) editing facilities such as search and replace can 
be used, files external to the text editing system read in, etc. Full details of the user 
interface of the text editing parts of the windows may be found in (Sun, 1989).

The non-channel (variable) parameter declaration area to the right of the text 
editing window may be used in a similar fashion. Text strings as defined in chapter 
five may be typed into any one of the eight available positions by clicking the left 
mouse button over the appropriate position and typing from the keyboard. The 
same spatial parameter matching technique as is used for graphical Process Icon 
definitions is applied to Process Icons defined textually.

The control area to the left of the central text editing area contains two buttons, 
both of which are concerned with the closing the text window:

Close (button)

The "Close" button closes the text window, but does not save its contents. The 
window remains active and is displayed very quickly if activated by the selection 
of its representative Process Icon. Up to four windows may be open (displayed) or 
closed (not displayed, but still active) at any time. This limit is imposed due to the 
limitations on file descriptors available per process (64) under Sunview.

Done /button)

The "Done" button closes the text window, saves its contents and frees file 
descriptors and storage associated with it. The window does not remain active but 
may be recreated by appropriate selection of its Process Icon. The action increases 
the number of available windows by one, thus allowing text for more that four 
processes to be edited per session. The operation started by "Done" takes longer 
to perform than that initiated by "Close", especially if the editing system is being 
used on a slow machine (a 3/50 or 386i) as opposed to a faster one (a Sparcstation 
or one of the Sun-4 series).

The two stub definition areas (top and bottom) each contain four sets of three 
items. The top item in each item set is a cycle which is used to switch the type of 
the Channel Stub represented by the set from "undefined" (the initial state) to 
"input" or "output". When the cycle is selected by clicking on it with the left mouse 
button the central "stub icon" changes appropriately to show "IN" or "OUT'.

The bottom item of each set, the "stub name" item, allows the entry of a textual 
label for the Channel Stub, which is used to refer to the stub in the text.
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The central "stub icon" serves a dual purpose. It visually indicates the state of the 
Channel Stub (input, output or undefined) and allows the automatic insertion of 
Occam input or output processes into the text. When the stub icon is selected with 
the mouse by clicking the left mouse button, a reference to the stub is inserted into 
the text. The reference includes the stub’s name (defined using the stub name 
item) and an appropriate Occam input or output directive ("?" o r"!"). For example, 
pressing the stub icon named "in" in figure 6.8 would result in the insertion of the 
string "in ?" at the current cursor position in the text. The system frees the 
program m er from remembering the names of stubs and allows textual 
programming to proceed in a "spatial" manner.

6.4.2 Implementation of the GILT program editor

Reasons for the selection of Sunview as an implementation environment have 
already been discussed. This section analyses relevant features of Sunview and 
shows how it was used in implementation of the editing system. Details of the 
im plem entation are also discussed briefly. Only those features of the 
implementation which are considered to be of particular importance are discussed 
in detail.

6.3.2.1 Relevant features of the Sunview system

Sunview (Sun Visual/Integrated Environment for Workstations) is a user interface 
toolkit which supports interactive graphics applications on Sun workstations. 
Sunview allows software systems to be built out of a number of basic building 
blocks including four types of windows known as "canvases", "text sub-windows", 
"panels" and "tty sub-windows". Canvases provide high level raster based drawing 
areas, while text sub-windows have built in text editing capabilities. Panels contain 
user interface "choice" items such as buttons and sliders. Tty sub-windows allow 
programs to be run within them. A further class of windows, known as "frames", 
combine sub-windows of any of the types above to form larger windows. Frames 
are used to create applications consisting of many different windows.

Sunview’s runtime system has a centralised window manager, which manages 
overlapping windows and distributes user input to the appropriate window 
applications. Events are internally distributed to application components by a 
"notifier" system. Components (such as windows, buttons and sliders) have system 
or user defined procedures handling their interactive functionality.

Sunview applications are coded in a callback style. The main control loop in a 
Sunview application resides within the notifier, not within the application. The 
notifier reads events and notifies, or calls out to, procedures which form the 
application and which have been registered with it ("callback procedures"). 
Registration takes place at the time of an item’s creation. Figure 6.9 illustrates the 
typical flow of control in a callback based Sunview application, which consists of 
a number of callback routines which are executed by the notifier depending on the 
user input it receives. Callback based programming removes the burden of
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Application Notifier
su n

Figure 6.9 - The flow of control in a typical Sunview applications program.
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managing a complex, event driven, environm ent from the applications 
programmer. This results in simpler and smaller applications programs.

Library routines are provided for the creation, destruction and modification of 
windows, buttons and other user interface components. Extensive use of these 
routines is made in the GILT diagram editor, which uses buttons to form parts of 
functional icons. Sunview windows may also be accessed at a lower level using 
basic raster manipulation library routines, which are used by the GILT editor for 
functions like drawing links between functional icons.

As mentioned above, user interface items or "widgets" are created using library 
routines. At creation, properties of items (for example their x-y position within a 
window and their size) are set using a number of attributes in a variable length 
attribute list. Each attribute consists of a mnemonic constant (for example 
"PANEL l'l EM X", followed by a number (possibly zero) of parameters. Most 
attributes for an item are readable and writeable at any time, with library routines 
provided for this purpose. Two possible list attributes are used to register an item 
with the not if ier .  These at t r ibutes  ( " P A N E L N O T I F Y P R O C "  and 
"PANELEVENTPROC") may only be set at creation time. Another attribute, 
"PANEL CLIENT DATA" may be used to hold application specific data.

Example

The call:

button = panel_create_item(window, PANEL_BUTTON, 
PANEL_ITEM_X, 100,
PANEL_ITEM_Y, 200,
PANEL_BUTTON_IMAGE, button_image,
PANEL_NOTIFY_PROC, button_proc,
PANEL_CLIENT_DATA, 99,
0) ;

Creates a button "button" in the window "window" at co-ordinates (100,200). The 
item’s image is pointed to by "buttonimage". When the button is selected (using 
the left mouse button) the routine "button_proc" is called. The item attribute 
"PANELCLIENTDATA" is set to have the value "99". The example uses the 
" P A N E L N O T I F Y P R O C "  a t t r i b u t e  for  event  handl ing.  The 
"PANELEVENTPROC" attribute provides a lower level interface to the event 
handling procedure than does the "PANEL_NOTIFY_PROC" attribute, but its 
usage is almost identical.

Similar routines are provided by the Sunview libraries for the creation of windows 
of different types.

The attributes of items and windows may be read using library routines.
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Example

pcd = panel_get(item, PANEL_CLIENT_DATA);

may be used to read the item’s "PANELCLIENTJDATA" attribute.

Callback procedures, which are associated with items, have a defined type and 
number of specified parameters. As an example a callback procedure for the 
earlier button is shown below:

Example

static int
button_proc(item, event, value)
Event *event;
Panel_item item;
Int value;
{

int pcd;
pcd = panel_get(item, PANEL_CLIENT_DATA); 
print("The item that you have just selected has 
attribute\n");
printf("PANEL_CLIENT_DATA set as %i.\n", pcd);

}

In the procedure, which is called whenever the button is pressed, the 
"PANELCLIENTDATA" attribute is read from the data structure describing 
the item and printed out.

Similar event procedures for windows may also be created. Data describing the 
nature of the event which lead to the calling of the procedure, such as the x-y 
co-ordinates of the mouse, and the event type, may be read in a similar fashion to 
the methods used for reading the "PANELCLIENTDATA" attribute.

63.2.2 The Process Icon editor (implementation)

The Process Icon editor uses a number of callback routines associated with the 
items in the control panel to set variables indicating the mode of the mouse within 
the drawing area. Routines associated with other items, such as the "Clear" button 
perform specific image manipulations of the drawing area and associated icon 
image.

A callback routine for the drawing area processes user interface events, such as 
mouse button presses, and interprets them according to the mode variables set by 
the control panel items. Feedback is provided using Sunview’s drawing routines 
and all instances of the Process Icon being modified are updated appropriately.

6-22



An editor for G ILT diagrams

A further callback routine, called when the mouse is in the Name Text Areas of a 
Process Icon, updates Process Icon names.

A Process Icon’s image is stored in an area of memory which is dynamically 
allocated when the icon is created in the Process Icon library or when files 
containing descriptions of GILT programs are read into the system.

6.43 3  Implementation of the Process Icon library (browser)

The Process Icon library is implemented in a similar manner to the icon editor. 
Some items in the control panel have callback routines which perform specific 
functions like creating icons, or hiding the Process Icon browser window. Other 
items are used to determine the action to be taken when a Process Icon in the 
main part of the window is selected. Process Icons in the main part of the Process 
Icon browser are implemented as pairs of items (a text item and a button which 
has as its image the image of the Process Icon which it represents) with associated 
callback routines.

User interface items representing Process Icons are dynamically created and 
destroyed within the Process Icon library as users of the system add and delete 
processes. Each Process Icon definition contained in the library is represented by 
a button showing the Process Icon’s image and an associated text area. The 
PA NELCLJENTDA TA attribute of each Process Icon item is used by the item’s 
callback routine to reference an array which contains a pointer for each Process 
Icon in the browser (the Process Icon look up table). Pointers in the array reference 
data structures known as "definition nodes". Figure 6.10 shows a diagrammatic 
representation of this system.

Definition nodes define the structure of Process Icons and provide references to 
the component parts of their definition diagram or to a text file containing their 
textual specification. Each definition node contains information like the number 
and relative x-y locations of Channel Ports and pointers to items defining the 
Process Icon’s image and name. The internal detail of a graphical Process Icon is 
described using data structures called "instance nodes", which are fully discussed 
in section 6.43.4. Arrays of pointers within definition nodes reference instance 
nodes which represent functional icons and the links between them. Two sets of 
these pointers are used in a definition node. The first (instance-definition pointers) 
contains the addresses of all instances of the Process Icon defined by a particular 
definition node, and is used to ensure that changes made to the Process Icon 
through editing are correctly propagated to all of its instances. The second 
(parent-child pointers), which only exist for graphical Process Icon definitions, 
reference all of the instance nodes which define the Process Icon’s functionality. 
Textual Process Icons make no use of the last set of pointers, instead having a 
textual filename and a set of numeric values storing their Channel Stubs and 
non-channel (variable) parameters. Figure 6.11 shows the relationship between 
instance nodes and definition nodes via the pointers mentioned above.
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Array containing pointers to 
definition node«

PANELCUENTDAT A 
attribute from Hem representing 
Process icon In procès* library

Figure 6.10 - How items in the browser reference Process Icon definitions 
stored in definition node data structures. Lines indicate pointer 
references.

Key:

Instance node data Definition node data Parent-child pointer Instance-definition pointer
structure structure

Figure 6.11 - The pointers between definition nodes and instance nodes.
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When a Process Icon is created using the "Add Process" button a definition node 
is created, initialised, and linked to a Process Icon look up table. Instance nodes 
describing a Control Flow Input Stub and a Control Flow Output Stub are also 
created and linked to the definition node to define the control flow entry and exit 
points of the diagram. No control flow links are made to or from the two icons, 
which define a newly created icon to be a stop process. Finally, items representing 
the Process Icon are created in the main window of the Process Icon library.

633.4 Implementation details of the diagram editor

GILT diagrams are represented in the diagram editor by a dynamic self referential 
C data structure, created from instance nodes and definition nodes which have 
already been briefly discussed. Sunview items (such as buttons and text editing 
areas) are used to represent functional icons. Links between components are 
drawn using routines which access windows at a lower level than the interface 
provided by the Sunview items.

The instance node data structure is used to describe functional icons and contain 
information like the x-y position and type of a functional icon. Data describing 
Control Flow and Channel Links between the functional icons is also included. 
The logical or connective aspects of Control Flow and Channel Links are described 
by sets of pointers which reference other instance nodes. This information knits 
together instance nodes into constructs. Further pointers refer to simple data 
structures storing the physical co-ordinates for the links. Pointers are also 
included to link the instance node with a definition node which stores information 
on the Process Icon definition of which the instance node is a part. Instance nodes 
which represent Process Icons also have an additional pointer which references 
the definition node defining the Process Icon, as discussed in section 6.4.3.3.

As mentioned above, links between the ports of functional icons are implemented 
as pointers between instance nodes. Each instance node contains a number of 
arrays of pointers each of which contains pointers for outgoing and incoming links 
of different types. Two functional icons with a connecting link each have a pointer 
to the other and additionally have a pointer to a separate structure which contains 
the physical co-ordinates of the link. Figure 6.12 shows how a Channel Link is 
represented in the data structures. The representation used for Control Flow 
Links is similar, but an added complication is introduced by the need to distinguish 
between finks connected to Control Flow Output Ports and Not Control Flow 
Output Ports. This is dealt with by a subscripted array which indicates which of the 
control flow pointers deal with finks from Not Control Flow Output Ports.

Sunview’s items provide a very easy implementation path for creating diagram 
editors like the one used by GILT, and cut down on the time required for 
implementation greatly. Although the items were originally designed for providing 
control functions in Sunview applications, the implementation of GILT has shown 
that they may be equally well applied to the representation of components in 
diagrams and the provision of a flexible diagram editing system.
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Each type of component making up a functional icon is represented by a different 
type of item with an associated callback routine. All components of a particular 
type are registered with the same callback routine. Like the items representing 
Process Icons in the Process Icon library, the "PANELCLIENTDATA" 
attribute of every item in a diagram is used to refer to a data structure. The 
structure, instances of which are dynamically created when new items are created, 
holds information on the type of component that an item represents and a pointer 
to an instance node describing the functional icon of which the item is a part.

Figure 6.13 shows how many separate item descriptors reference the same instance 
node data structure through multiple "button_descriptor" data structures.

The mode controls in the control panel set global mode variables for the program 
panel. The global mode variables determine how events are processed by a 
callback routine associated with the diagram editing area. For example, if the mode 
control items are set for the addition of a Process Icon, then a new instance of a 
Process Icon is created at the x-y co-ordinates of a left mouse button push. When
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such a functional icon is "placed" a new instance node describing the icon is created 
and linked appropriately into the dynamic data structure. Representative items for 
the component are created with PANEL_CLIENT_DATA attributes referring to 
the newly created instance node.

The insertion of links between components corresponds to pointer assignment 
operations and the creation of a new structure to hold the physical co-ordinates of 
the link.

Deletion operations are implemented by memory deallocation routines with 
associated pointer reorganisation and screen redrawing.

The networks of connected instance and definition nodes are saved and loaded 
with the aid of special routines which "flatten" and "unflatten" the data structures 
to and from linear files suitable for storage in the Sun’s Unix file system. All the 
routines are accessed through callback routines associated with the system 
function buttons in the diagram editor control panel.

The diagram editor performs lightweight checking while diagrams are being input. 
By the use of simple restrictions encoded in the callback routines very many illegal 
structures are precluded. Major restriction are obtained by ensuring that 
functional icons are input as complete diagrammatic units, not as their separate 
component parts, which would require much more checking to be performed in 
the parsing sections of the compiler than is currently performed. Further simple 
restrictions in the routines concerned with the entry of links prevent the 
connection of Channel Links to Control Flow Ports or Stubs and vice-versa.

As the grammar for the communications structures is extremely simple sufficient 
restrictions, encoded as conditionals, are placed on the entry of channel 
connections to ensure that only Channel Links which might form part of legal 
communications structures may be entered. The editing system allows the entry 
of Channel Links with one end (and one end only) connected to a Channel 
Connector Icon, but rejects all other, clearly illegal, connections. Only one link 
may be connected to a Channel Input Port or Output Stub, or from a Channel 
Output Port or Input Stub. Multiple links may however be connected into or out 
from a Channel Connector Icon. The restrictions imposed are context free in that 
the decision taken by the system to allow the entry of a Channel Link between two 
functional icon components is dependent only on the type of the components.

It is more difficult to devise simple restrictions which preclude the entry of 
incorrect links in more complex diagrammatic structures such as GILTs control 
flow structures. Any such restrictions would need to take account of the context of 
a component. One possible approach would be the provision of a interactive 
parser, which would check diagrams to see if connections or components could 
form part of a legal structure and accept or reject them accordingly. Such a system 
would require the use of algorithms similar to those used in the compilation 
system, but would need to be able to distinguish between clearly incorrect 
structures and those which are potentially correct. It would not be able to preclude
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the input of all incorrect diagrams, as any diagram which does not contain complete 
constructs (for example those in the process of being constructed) is incorrect.

6 3 3 .5  Implementation of the text editor

The implementation of the text editor was far simpler than that of the graphics 
editor. Sunview’s standard text editing library routines are used for the central 
areas of the text editing windows, while callback routines associated with user 
interface items provide the functionality for items representing Channel Stubs and 
non-channel parameters. The callback routines update a definition node data 
structure, associated with the window by pointers, which holds information on a 
textual Process Icon definition. Further callback routines handle functionality of 
the "Done" and "Close" buttons. The contents of the central text editing area is 
stored in a file, which is referenced by the definition node data structure for the 
textual Process Icon definition which is being edited in a text window. Each textual 
Process Icon has a separate file within the Unix file system, with each file having 
a unique name generated by a special routine.
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A Compiler for the GILT language

7.0 Introduction

This chapter describes the compilation system built for generating Occam code 
from GILT programs. Occam was chosen as a target language because it formed 
the basis of GILTs constructs, allowed the code generation sections of the 
compiler to be far simpler than would ordinarily be the case, facilitated easy human 
analysis of the output code from the compiler, and was already used for the 
functional specification of textual Process Icons. Alternative approaches, such as 
generating native Transputer instruction code, would not allow such easy analysis 
of the output code or the execution of GILT programs on non-Transputer 
architectures supporting Occam compilers.

7.1 Previous work on compilation systems for visual languages

Little work has been published on compilation systems for visual languages as most 
previous visual languages have been interpreted, and not compiled. Lakin (1987) 
is the most often quoted work in the area and is concerned with the understanding 
of generalised diagrams through "spatial parsing" using a form of context free 
grammar. In (Gillet and Kimura 1986a) and (Gillet and Kimura 1986b), the 
parsing of the visual language "Show and Tell" is discussed. A compiler for the 
visual language "Prograph" is discussed in (Cox and Mulligan 1985). Work on both 
of these languages does not use a formal visual grammar like GILT’s but instead 
uses an approach based on a textual representation of the diagram being compiled. 
The set of possible textual representations of the program is defined using a textual 
formalism, leading to a compiler significantly different from the one produced for 
GILT. No compiler for a visual language resembling GILT has previously been 
produced.

7.2 Compiler overview

The compiler has an overall structure similar to that of a compiler for a 
conventional textual language, having a tokeniser, a parser, and a code generator. 
A block diagram of the system is shown in figure 7.1. The main difference between 
GILTs compiler and conventional compilers lies in the nature of the tokeniser 
and parser.
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TOKENISER
Editor data structures

Tokenised diagrams, 
Text files

PARSER

Lists and parse tree

CODE GENERATOR

OCCAM

Figure 7.1 - A block diagram of the compiler for the GILT language.

The tokeniser, which may be regarded as forming part of the editor, is far simpler 
than a tokeniser for a conventional language because the bulk of the tokenisation 
work is performed by GILT’s diagram editing system. The tokeniser converts 
information stored in the editor’s internal data structures into a more explicit form 
suitable for input to the parser. Tokens output from a tokeniser for a visual 
language must be significantly different from those generated for a textual 
language to take into account the multi-dimensional nature of visual languages. 
GILT’s tokeniser outputs graphs, represented by Prolog facts, which have a direct 
relationship to the graphs of the syntax given in chapter five. Prolog facts provide 
a convenient medium for the transfer of information between the tokeniser and
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the remainder of the compilation system, and have the expressive qualities 
necessary for representing the diagrams.

Because of the fundamental differences between graph and text grammars it is not 
possible to use established textual parsing algorithms for the implementation of 
the parser. A very general parsing algorithm for two-dimensional grammars 
similar to GILT’s is therefore presented in this chapter. The algorithm, which is 
computationally similar to the limited backtrack bottom up parsing algorithm used 
for some textual languages, has been implemented in Prolog to form the basis of 
GILT’s parser. An explicit parse tree is generated by the parser.

The code generator, which produces Occam from the parse tree generated by the 
parser, is written in Prolog but has a conventional structure.

The user interface to the compilation system is written in C and is integrated with 
the editing system to provide a comprehensive system for the display of error 
messages and control of the compiler’s functions. A facility to relate error 
messages back to erroneous features in diagrams is also provided by the user 
interface.

73  Choice of implementation language

Prolog was chosen as the implementation language for most of the compiler for 
the following reasons :

1) It provided a natural medium for the expression of graph structures 
using Prolog facts, which allow the multi-dimensional nature of GILT 
diagrams to be expressed.

2) Prolog’s extra logical functions (assert and retract) provided a natural 
implementation of the graph reduction operations required by the par-
ser.

3) The backtracking mechanism provided a clear way of implementing 
recogniser routines in the parser.

4) Prolog’s dynamic, recursive nature removed the need for complex 
data structures storing information, allowing instead the use of simple 
Prolog lists.

5) The use of Prolog allowed interactive testing of the individual Prolog 
functions making up the compiler.

6) A very good implementation of Prolog (Hutchins, 1986) was available 
on the machine used for development of the system.
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Overall, Prolog supported a very clear expression of the ideas and algorithms used 
in the compiler, and so was an ideal implementation language for the prototype 
compiler.

7.4 A very brief introduction to Prolog

Prolog (Clocksin and Mellish, 1981) is a logic programming language. Prolog 
programming consists of defining and querying relations, with a Prolog program 
consisting of a number of "clauses". There are three types of clause; "facts", "rules" 
and "questions". A relation can be specified by facts, which simply state that 
n-tuples of objects satisfy the relation, or by stating rules about relations. The 
arguments of relations can be (amongst other things) concrete objects, called 
atoms, or variables. A Prolog procedure is a set of clauses concerning the same 
relation. Querying relations, by means of questions, resembles querying a 
database, with Prolog’s answer to such questions consisting of a set of objects which 
satisfy the queries.

Prolog establishes whether an object satisfies a query by logical inference, by 
exploring alternatives and by backtracking. These processes are performed 
automatically by the Prolog system and are (at least in principle) hidden from the 
user.

A number of other facilities are provided by Prolog, such as arithmetic operations 
and functions for the maintenance of Prolog’s internal database.

Two types of meaning of Prolog programs are generally distinguished; declarative 
and procedural. The declarative meaning is advantageous from the programming 
point of view, and is concerned only with the relations defined by the program. It 
determines what the result of a program will be. The procedural meaning 
determines how the result is obtained and how the relations are actually evaluated 
by the Prolog system.

The following example provides a quick overview of some of Prolog’s logical 
facilities:

Example

The rule

fallible(X) man(X).

expresses the fact that "All men are fallible", by reference to the variable X. 

m an(socrates).

expresses the fact "Socrates is a man" by reference to the atom "socrates".
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A question, or goal, may be put to the Prolog system to test its powers of logical 
inference:

fallible(socrates).

Prolog evaluates the goal by logical inference. In this case the goal would succeed 
and, if typed interactively at a keyboard, would return "yes". Further Prolog 
facilities are introduced as required in the following sections.

7.5 The tokeniser

The previous chapter presented details of the internal storage of GILT diagrams. 
The diagram editor’s internal data structures store the graphical parts of GILT 
program s. The tokeniser, which is w ritten in C, converts the internal 
representation into a form suitable for input to the parser. It is far simpler than a 
corresponding tokeniser for a textual language and performs a simple translating 
action. The tokeniser produces tokens by iterating over all of the data structures 
which store a GILT program in the editor and outputting Prolog facts according 
to a set of simple conversion rules encoded as conditionals. Though the tokens 
are output in Prolog, they could easily be output in some other form. For example, 
were the tokeniser’s output to be processed by a parser not written in Prolog, little 
would be gained from outputting tokens in Prolog. A better approach would be to 
output them in a more compact, textual or perhaps tabular format.

A unique identifier, expressed as a Prolog atom, is produced for every item of 
interest in a GILT program. Each identifier refers to a separate item. A variable 
number of tokens for each item are expressed using Prolog facts. The number of 
tokens produced for an item depends on the type of the item, with each token 
declaring a separate fact about an identifier. All the tokens for a particular item 
of interest refer to the same identifier which is generated from the address of the 
C data structure used to represent the item in the editor. For example, if the 
address of the C data structure storing information on a Process Icon instance was 
"480440", then the token below would be output:

process_instance_node(480440).

The tokens referencing a single identifier form nodes in graphs whose edges are 
formed by tokens which express relationships between two identifiers. For 
example, a Control Flow Link between the Control Flow Ports of two functional 
icons assigned the identifiers "480440" and "500040" would be represented by the 
token:

control_connect(480440, 500040).

Tokens expressing relationships between identifiers are also used to denote 
Channel Links between diagram components and to describe the hierarchical 
nature of GILT diagrams.
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Two types of identifiers, "definition identifiers" and "diagram component 
identifiers", are produced by the tokeniser. Definition identifiers are used to 
reference information concerning Process Icon definitions, while diagram 
component identifiers are used to reference information about functional icons or 
functional icon components, such as Process Icon instances and the connections 
between them. Both of the examples given above are of diagram component 
identifiers. "Hierarchy tokens" are used to express the hierarchical nature of GILT 
diagrams by linking together definition identifiers and diagram component 
identifiers via simple relationships similar to the earlier example which showed 
how Control Flow Links are represented.

7.5.1 Definition identifiers and associated tokens

A definition identifier is generated for every Process Icon definition stored in the 
editor. A set of "definition tokens" are output by the tokeniser to describe a 
Process Icon definition by reference to the definition identifier. Collectively, all 
of the definition tokens form a definition node. Each definition token is a simple 
translation of information held by the editor in a definition node data structure 
(described in section 6.43.4). Definition tokens are not produced for every item 
of data held in the structure because much of the data is not relevant to the 
compilation process and may be discarded. A good example of such discarded 
information is the pointer which refers to a Process Icon’s image.

Example

Assuming that the unique identifier generated for a Process Icon definition (the 
definition identifier) is the atom "450656", the Process Icon definition would be 
described by the following sequence of definition tokens, which together form a 
definition node:

process_definition(450656).
process_definition_name(450656, 'process.1'). 
compile_as_procedure(450656).

Each of the three tokens, expressed as a Prolog clause, defines a fact about the 
identifier "450656". The first clause defines the identifier "450656" to represent a 
Process Icon definition. The second clause defines the name of the Process Icon 
definition represented by the identifier to be "process. 1". The third states that the 
Process Icon definition should be compiled as a procedure, not as a macro. Were 
the  Process Icon d efin itio n  to be com piled as a m acro, the  token  
"compile_as_code_insert(450656)." would replace the third token.

For a textually defined process a number of additional tokens are also output. 
These tokens define attributes for a Process Icon definition such as the filename 
of the file containing its Occam definition, its declared non-channel (variable) 
parameters and its Channel Input and Output Stubs.
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Example

process_definition(503752).
process_definition_name(503752, 'buffer.1'). 
compile_as_procedure(503752).
text_filename(503752, //home/cb538/gilt/GLTAAAa00622' ) .  
declared_input_channels_list(503752, ['in']).
declared_output_channels_list(503752, ['out']).
declared_variables_list(503752, []).

The above tokens define facts about the identifier "503752" and together make up 
a definition node. As before, the tokens define a name and a compilation method 
for a Process Icon definition. As the definition of the Process Icon is textual, four 
extra clauses are output. The first provides a filename which contains the text for 
the process, with the three subsequent tokens defining parameters for the Process 
Icon definition. Together, all the tokens give a specification for a buffering Process 
Icon named "buffer. 1" whose textual specification is contained in the file 
"/home/cb538/gilt/GLTAAAa00622". The Process Icon has a single Channel Input 
Stub named "in", a single Channel Output Stub "out", and no passed non-channel 
parameters. The order of the parameters in the lists reflects their spatial 
positioning.

7.5.2 Diagram component identifiers and associated tokens

For graphical Process Icon definitions, tokens are produced for each functional 
icon and link forming part of the Process Icon’s definition diagram. Dependent on 
the type of the functional icon a variable number (usually one) of "diagram 
component identifiers" are produced, each identifying a separate component of 
the icon. A number of "diagram component tokens" for each identifier are output, 
with each token describing a different facet of the component represented by the 
identifier. Taken together all of the diagram component tokens referring to a 
particular identifier will be termed a "diagram component node". All the diagram 
component tokens making up a diagram component node are translations of 
information held by the editor’s instance node data structures (section 6.4.3.4). As 
in the earlier translations of information held in definition node data structures, 
some stored information is irrelevant to the compilation process and is not 
tokenised.

Each diagram component node represents an element of GILT’S syntax, such as a 
functional icon. The diagram component nodes form the nodes of graphs, with 
edges being formed by relationships between them. Edges between diagram 
component nodes are equivalent to links between nodes in GILT’S syntax.

Most functional icons are described using a single diagram component node 
consisting of an diagram component identifier and a few related tokens. This 
reduces the amount of information transferred between the tokeniser and the 
parser as opposed to describing every functional icon by a set of tokens 
representing the network of terminal symbols describing it in the grammar. The
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result is a smaller, more efficient, parser which has to perform fewer parses over 
its input in order to generate a parse tree than would be the case if most functional 
icons were described with multiple diagram component nodes. Multiple diagram 
component nodes are used to describe functional icons which have Channel Ports. 
Channel Ports need to be tokenised separately from the bulk of a functional icon’s 
components so that the communications structure of a GILT diagram may be 
parsed separately from the rest of the GILT diagram.

Multiple diagram component nodes describing a single functional icon are 
combined into a single coherent structure using "link tokens". Each link token 
refers to two diagram component identifiers and is used to link a diagram 
component node representing, for example, a Channel Port (a "peripheral node", 
with a "peripheral identifier") to a diagram component node which represents the 
body of the functional icon (a "central node", with a "central identifier"). Link 
tokens are also used to express the Channel and Control Flow Links between 
functional icons as edges between diagram component nodes. No distinction is 
made between link tokens representing part of the internal structure of functional 
icons and link tokens representing links between functional icons.

There is a direct equivalence between the tokens output for a functional icon and 
the functional icon’s representation in GILT’S syntax. Every functional icon is 
represented by a unique set of instance tokens. Table 7.1 (next page) gives an 
equivalence between symbols in GILTs grammar and the tokens output. Tokens 
completely describe the diagram for which they are produced but do not model 
the diagrams’ syntax to the level of detail in the syntax of chapter five. The output 
from the tokeniser may be though of as describing diagrams for a smaller syntax 
that the syntax of chapter five, but one which is equivalent and equally expressive.

Example

Guard Icons are described using tokens referring to two diagram component 
identifiers - one central identifier and one peripheral identifier. Assuming that the 
central and peripheral identifiers produced by the tokeniser are "466312" and 
"466322", the following sequence of instance tokens and link tokens describing the 
Guard Icon would be produced :

guard_node(466312). 
guard_text(466312, 'down'). 
guard_text_2(466312, 'accept.dn'). 
channel_input_port(466322). 
channel_connect(466322, 466312).

The tokens collectively describe a Guard Icon, as defined by the non-terminal 
symbol "GUARD" in the grammar of chapter five, and provide details of the 
contents of the Guard Icon’s two text areas. The tokens referring to the Central 
Identifier "466312" model the central part of the Guard Icon (non-terminal symbol 
"GUARD BODY" in the syntax) while those referring to the peripheral identifier 
"466322" model the guard’s Channel Input Port (terminal symbol "CHANNEL
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Syntactic element Prolog Facts Output

CONTROL IN STUB(T) control_in_stub(i).

CONTROL OUT STUB(T) control_out_stub(i).

CHANNEL INPUT STUB (T) channel_input_stub(i).
parameter_order(i,n).

CHANNEL OUTPUT STUB(T) channel_output_stub(i).
parameter_order(i,n).

COMMENT (T) comment(i) 
comment_string(i, ’s’).

VARIABLE DECLARATION (N) variable_declaration(i). 
variable_declaration_text(i, ’s’).

GUARD BODY (N) guard_node(i) 
guard_text(i, ’s’). 
guard_text_2(i, ’s’).

CHANNEL INPUT PORT (T) charme l_input_port(i). 
channel_connect(i,i).

CHANNEL OUTPUT PORT (T) channel_output_port(i).
channel_connect(i,i).

PASSED PARAMETER (N) pvar_node(i). 
parameter_order(i, n). 
variable_text(i, ’s’).

DECLARED PARAMETER (N) dvar_node(i). 
parameter_order(i, n). 
variable_text(i, ’s’).

Table 7.1 - The equivalence between the valued nodes of GILT’s syntax and 
the Prolog facts or tokens which are output to represent them. The table is 
continued on the next page, with explanation.
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CHANNEL CONNECTOR (T) 

PROC MIDDLE (N)

COND (N)

CONTROL SPLIT JOIN (N)

chancon_instance(i). 
channel_name(i, ’s’).

process_instance_node(i).
instance_of_definition(i,d).

condi tion_node(i). 
condition_text(i, ’s’).

control_splitjoin_node(i).

Table 7.1 - The equivalence between the valued nodes of GILTs syntax and 
the Prolog facts or tokens which are output to represent them. Only tokens 
representing diagram components are included in the table. The terminal or 
non-terminal nature of the valued node in the syntax is indicated by "(N)", for 
non-terminal or "(T)", for terminal. Each token has a number of associated 
arguments, enclosed in brackets. The following letters are used to indicate the 
nature of the arguments :

i- An instance identifier, a unique tag assigned to relate all of the facts 
referring to a particular syntactic element together. For the "chan- 
nel_connect" tokens output for terminals "CHANNEL INPUT 
PORT’ and "CHANNEL OUTPUT PORT' two instance identifiers 
are indicated, showing that diagram component nodes for Channel 
Output and Input Ports must always be connected to (or from) a 
central diagram component identifier.

n- A general integer number, mostly used to indicate the number 
used in "parameter_order" tokens.

s- A general string. The strings are derived from the contents of the 
text areas forming part of functional icons.
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INPUT PORT'). The link token "channel_connect(466322,466312)" connects the 
two sets of tokens via reference to the identifiers "466322" and "466312".

The tokeniser also determines how calling parameters are matched to declared 
parameters. In textual languages, such a match is made by the relative position of 
the parameters in parameter lists. As discussed in chapter five, GILT uses a spatial 
matching technique. The tokeniser therefore performs a simple sorting and 
searching technique to generate "parameter ordering tokens" for Channel Ports, 
Channel Stubs, Passed Parameter Icons and Declared Parameter Icons. This could 
be performed by the parser with tokens giving the position of a diagram 
components on the screen, but the operation is better performed in C, simply 
because C is faster and more efficient at sorting a list of numbers than is Prolog.

7.53 Hierarchy tokens

The hierarchical nature of GILT diagrams is expressed using hierarchy tokens. 
Two d iffe ren t sorts of h ierarchy tokens, "paren t-ch ild  tokens" and 
"instance-definition tokens", exist. Both link diagram component nodes to 
definition nodes via their associated identifiers.

Parent-child tokens are used to link all of the diagram component nodes which 
represent functional icons in a particular definition diagram to a single definition 
node representing a Process Icon definition. All of the tokens for a particular 
diagram are linked to those of the Process Icon definition whose functionality they 
define. The structures produced in this way may be thought of as single rooted 
trees, like the one shown in figure 7.2. One such tree is produced for every 
graphical Process Icon, so the output from the tokeniser consists, at least in part, 
of a number of single rooted trees. The leaves of the trees are diagram component 
nodes, while the roots of the trees are definition nodes. All of the trees are disjoint, 
so that no node is in two separate trees.

Example

If the Guard Icon represented by the tokens in the previous example (section 7.5.2) 
were contained in the definition diagram of the earlier Process Icon definition, the 
following parent- child token would be output:

child_of_process_definition(471248, 450656).

The instance-definition hierarchy token produced for every Process Icon instance 
links the tokens describing the instance to the tokens describing the Process Icon 
Definition which defines its functionality. Each instance-definition token 
references a diagram component identifier and a definition identifier, linking a 
diagram component node to a definition node. Instance- definition tokens may be 
thought of as combining the single rooted trees mentioned earlier into a more 
complex structure (actually a dependency tree) consisting of trees wired leaf to 
root, as shown in figure 7.3.
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tC y :

#C3
Diagram component node Definition node Parent-child token Link token

Figure 1 2  - The relationship between diagram component nodes and 
definition nodes. A definition node is produced for every Process Icon 
definition, with a diagram component nodes produced for functional icons 
in the Process Icon’s definition diagram. All of the diagram component 
nodes for functional icons in a particular definition diagram are linked, 
via parent-child tokens, to the same definition node. Link tokens are used 
express the Control Flow Links and Channel Links between functional 
icons.

Example

If an instance of the Process Icon definition in the earlier example of section 7.5.1 
(assigned the Definition Identifier "450656") were assigned the Instance Identifier 
"485544", the following Instance-definition token would be output:

instance_of_definition(485544, 450656).
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:

•o
Diagram com ponant nod« Definition node Parent-chiid token Instance-definition token

Figure 73 - A view of the instance-definition tokens, showing how 
diagram component identifiers for Process Icon instances are related to 
the definition identifiers for their Process Icon definition.

7.5.4 Example output from the tokeniser

An example of the tokeniser output is shown in figure 7.4 (next page). The figure 
contains the Prolog clauses produced by the tokeniser for a graphically defined 
double "buffer.2" Process Icon and a textually defined single buffer processes 
"buffer. 1". The definition diagram for the double buffer process is shown in figure 
7.5. The numbers of figures 7.4 and 7.5 show the relationship between the tokeniser 
output and the definition diagram.

7.6 Transfer of tokens between the tokeniser and the parser

In conventional compilers the tokeniser (or lexer) is usually implemented as a 
co-routine of the parser which supplies tokens on request. GILTs compiler differs 
from this approach by producing an intermediate file containing a set of tokenised 
Process Icon definitions and tokenised definition diagrams. The file is written by 
the tokeniser, and read in by the compiler. This was done primarily for practical 
reasons, because implementation of a more conventional system would have been 
difficult due to the limited interface between C and Prolog. It also allowed easy 
examination of the output from the tokeniser.
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process_definition(450656) .
process_definitionname (450656, 'buffer.2') . 
compile_as_procedure(450656).

/* 1 */
child_of_process_definition(467608, 450656). 
control_in_stub(467608). 
control_connect(467608,497008) .

/ *  2 * /
child_of_process_definition(470816, 450656). 
control_out_stub(470816).

/* 3 */
child_of_process_definition(474024, 450656). 
channel_input_stub(474024). 
parameter_order(474024,0) .

/* 4 */
child_of_process_definition(477232, 450656). 

channel_output_stub(477232). 
parameter_order(477232,0).

/* 5 */
child_of_process_definition(480440, 450656). 
process_instance_node(480440). 
instance_of_definition(480440, 503752). 
control_connect(480440,500040).

/ *  6 * /
child_of_process_definition(480441,450656). 
channel_output_port(480441). 
parameter_order(480441, 0). 
channel_connect(480440,480441).

/ *  V * /
child_of_process_definition(480450,450656). 
channel_input_port(480450). 
parameter_order(480450, 0). 
channel_connect(480450, 480440).

Figure 7.4 - Output from the tokeniser for the double buffer example, the 
definition diagram of which is shown in figure 7.5. Indents are used to show 
which tokens form part of the same node. The numeric labels (e.g. "/* 1 
V ) shown are not part of the tokeniser output and have been inserted for 
use in relating the output to the definition diagram of figure 7.5. Continued 
over the next two pages.
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/ *  8 * /
child_of_process_definition(484176, 450656) . 
process_instance_node(484176). 
instance_of_definition(484176, 503752). 
control_connect(484176,500040).

/* 9 */
child_of_process_definition(484177,450656). 
channel_output_port(484177). 
parameter_order(484177, 0). 
channel_connect(484176,484177).

/* 10 */
child_of_process_definition(484186,450656). 
channel_input_port(484186). 
parameter_order(4 84186, 0) . 
channel_connect(484186, 484176) .

/ *  11 * /
child_of_process_definition(487912, 450656). 

chancon_instance(487912). 
channel_name(487912,'aaaaa'). 
channel_connect(480441,487912). 
channel_connect(487912,484186) .

/*  12 */
child__of_process_def inition (490944 , 450656) . 
chancon_instance(490944). 
channel_name(490944,'baaaa'). 
channel_connect(484177,490944) . 
channel_connect(490944,477232) .

/* 13 */
child_of_process_definition(493976, 450656). 
chancon_instance(493976). 
channel_name(493976,'caaaa'). 
channel_connect(474024,493976). 
channel_connect(493976,480450).

/* 14 */
child_of_process_definition(497008, 450656). 

control_split_join_node(497008). 
control_connect(497008,484176). 
control_connect(497008,480440).

Figure 7.4 - Output from the tokeniser for the double buffer example, 
continued.
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/ *  15 */
child_of__process_def inition(500040, 450656). 
control_split_join_node(500040). 
control_connect(500040,470816).

process_definition(503752).
process_definition_name(503752, 'buffer.1'). 
compile_as_jprocedure (503752) . 
text_filename(503752, 
//home/cb538/gilt/GLTAAAa00622' ) .  
declared_input_channels_list(503752, ['in']).
declared_output_channels_list(503752, ['out']).
declared_variables_list(503752, []).

Figure 7.4 - Output from the tokeniser for the double buffer example, 
continued.

15

—> G E D —>----------------G D

Figure 7 J  - A definition diagram for the double buffer example, labeled 
with numeric labels for reference to figure 7.4.

7-16



A  compiler for the G ILT language

7.7 Parsing

The parsing of GILT diagrams poses considerably different problems to the 
parsing of textual languages, with the two dimensional nature of the diagrams and 
their corresponding definition in graph grammars precluding the use of the 
conventional tools and techniques which have been developed over a long time 
span for textual languages.

As discussed in chapter five, GILT diagrams may be though of as containing three 
sets of information. The first set describes GILT’S inter-process communications 
structures. The second set describes passed and declared non-channel parameters 
and the declared variables which might potentially be used in them. The third set 
is concerned with the control flow structures which specify the relative order of 
execution of processes, but have connection points for the channel connections. 
This set is defined by the base grammar of chapter five. The parsing of GILT 
diagrams may thus be considered as a three phase task. The first phase is concerned 
with the channel structures. The second phase deals with parsing non-channel 
parameter structures and declared variables. The third phase deals with the 
parsing of the remainder of the diagrams - the flow of control between Process 
Icons.

A parse tree is produced only for the constructs in GILT’s base grammar because 
it would be difficult for a code generation routine to make use of the multiple parse 
trees which could be produced for the different aspects of the diagrams. Instead 
of producing explicit parse trees for the communications constructs and for the 
non-channel parameters, the results from the parses are distributed amongst 
different Prolog lists which are associated with identifiers. Lists are associated 
with definition identifiers (for Process Icon declared and local parameters) and 
with diagram component identifiers (for passed parameters).

The parsing of diagrams rests on the use of graph reductions. Graph reductions 
are used as a mechanism for parsing the diagram in a similar manner to the way in 
which textual "reductions" are used by, for example, shift-reduce textual language 
parsers. The following discussion therefore commences with a discussion of the 
graph reductions and is followed by two sections on the parsing of specific aspects 
of GILT diagrams. The first of the two sections deals with the parsing of 
communications structures, non-channel parameter structures and local variable 
definitions. The second deals with the parsing of the control flow structures in the 
base grammar.

7.7.1 Graph reductions and the parsing of GILT diagrams

In its most basic form, a graph reduction rule consists of three parts :

(1) A graph which is to be removed (the "delete graph").
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(2) A graph which is to be inserted (the "insert graph"). The insert graph 
is a less complex graph that the delete graph.

(3) A prescription for the way in which the insert graph is to be attached 
to the old graph - in essence a set of connection conditions.

Each graph reduction rule may be viewed as a production in a graph language 
which reduces, as opposed to increases, the complexity of the graph to which it is 
applied.

Any graph generated by a context free graph language may be parsed using a set 
of graph reduction rules repetitively applied (Della-Vigna and Ghezzi, 1978). In 
such cases, the insert graph is a single node, the "insert node", with an associated 
graph reduction created from a production in the grammar. One graph reduction 
rule is created for each rewriting on the right side of a production. The delete graph 
is formed by the right side(s) of a production in the grammar. The insert node is 
formed by the left side of a production. Each right side graph in a production has 
a pair of distinguished input and output nodes ("I" and "O"). These nodes form the 
attachment conditions for the insert node into the old graph, with any arcs 
incoming to the "I" node or outgoing from the "O" node reassigned to connect to 
or from the insert node.

A simple algorithm for parsing context free graph languages, which is similar to a 
conventional bottom up backtracking algorithm, may be obtained by repetitively 
cycling through all the graph reduction rules created for a particular grammar 
until no more reductions can be made. If a single node with a value or label 
equivalent to that of the start symbol of the context free grammar exists after all 
possible reductions have been applied, then the parsed graph is in the set of graphs 
defined by the graph language. Otherwise the graph is not within the set of graphs 
defined by the grammar. The algorithm may be applied to the parsing of GILT 
diagrams. Instead of generating one very large parse tree in complete form, which 
would be time consuming due to the time complexity of the algorithm, the 
algorithm is applied to the generation of large quantities of smaller parse trees 
which may be combined to form the larger tree. The parse trees generated are 
stored in the Prolog database as lists associated with identifiers, in a similar manner 
to the earlier parameter lists.

Graph reductions are encoded as Prolog goals in "reduction routines". Some 
reduction routines consist of a number of clauses which match tokens representing 
a complete delete graph, then replace them with appropriate new ones. Other 
routines progressively match, delete, and replace tokens representing parts of 
delete graphs until a complete graph has been identified and replaced. Reduction 
routines of this type are used for some grammar productions which have recursive 
e lem en ts , for exam ple the  p ro du c t i on  for  the  non- t e rmina l  
"DECLARED PARAMS" (figure 5.4e). Prolog’s automatic backtracking 
mechanism is used to locate the tokens matching a particular delete graph, and 
allows a very natural expression of the delete graph, the insert graph and the 
connection conditions.
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Reduction routines are applied successively over the separate definition diagrams 
by the use of extra clauses in delete routines. The extra clauses ensure that all of 
the tokens matched in a parse refer to diagram component identifiers related via 
parent-child tokens to the same definition identifier, and hence are all part of the 
same definition diagram. This minimises the amount of backtracking done by the 
Prolog system in its search for predicates satisfying reduction rules. It should be 
noted that the reductions made over the separated definition diagrams are not 
dependent on each other in any way, so many reduction routines could potentially 
be applied simultaneously in a parallel manner. Parallel execution of many 
reductions simultaneously is discussed in chapter 8.

Prolog’s extra logical "retract" clause is used to remove tokens in the database 
representing parts of the delete graph and its external connections. Similarly, the 
extra-logical "assert" clause is used to add tokens representing the insert node or 
the parse trees and lists generated for particular structures. The database is thus 
maintained and modified by the reduction rules.

7.7.2 Parsing communications structures, non-channel parameter 
structures and local variable definitions

The parsing processes for communications structures, non-channel parameter 
structures and local variables are simple ones. Tokens for structures or local 
variable declarations are recognised using goals which match clauses in Prolog’s 
database. Goals are repeatedly executed until they fail, indicating that no more 
reductions may be performed. Further goals remove tokens giving, for example, 
the relative order of parameters and the contents of their text areas. New tokens 
inserted into the database hold lists of parameters, variable declarations and 
channel declarations.

Five lists are produced for every definition identifier from tokens matched in the 
reduction routines. Each list contains textual parameters or declarations of one 
type from the text areas in a particular definition diagram. All the lists for the same 
definition diagram are associated with the same definition identifier, which 
references all of the instance nodes (and hence tokens) making up the diagram. 
In cases where no legal parameter structure can be found the list is empty. A 
"declared input channels list" for every definition identifier contains a list of 
channel names, one for each Channel Input Stub in the definition diagram, while 
a "declared output channels list" performs a similar purpose for the Channel 
Output Stubs. Channel names for stubs are obtained from the "channel_name" 
tokens associated with diagram component identifiers representing the Channel 
Connector Icons to which the Stubs are connected. The names of all Channel 
Connector Icons which are not connected to Stubs (and hence do not form part of 
a Process Icon’s input parameters) are placed into a "local channels list". All of 
the stubs connected to the same Channel Connector (and hence part of the same 
communications construct) are assigned the same name, again obtained from the 
"channel name" token associated with the instance identifier produced for each 
Channel Connector Icon. A "declared input variables list" contains a list of 
declared variable parameters obtained from the "dvar_name" tokens associated
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with diagram component identifiers representing Declared Variable Icons. 
Similarly, a "local variables" list is generated to hold all of the definitions of local 
variables. The list contains the contents of the text areas forming a part of Variable 
Declaration Icons.

Figure 7.6 shows Prolog facts containing lists generated by the parser for the 
definition node with the definition identifier "450656" of figure 7.4. The declared 
input variables list is empty, as the Process Icon with the definition diagram of 
figure 7.5 has no declared input variables. Likewise, the local variables list is empty, 
due to the fact that no graphically defined variables are included in the diagram.

declared_input_channels_list(450656,[caaaa]). 
declared_output_channels_list(450656,[baaaa]). 
declared_variables_list(450656, []) . 
local_channels_list(450656,[aaaaa]). 
local_variables_list(450656,[]).

Figure 7.6 - Prolog facts containing lists generated by the parser for the 
definition node with definition identifier "450656" of figure 7.4.

A corresponding set of lists are generated for each instance identifier representing 
a Process Icon instance. A "passed input channels list" holds names for all of the 
Channel Input Ports of a Process Icon instance, while a "passed output channels 
list" serves the same purpose for Channel Input Ports. Like the earlier Stub names, 
all of the Channel Ports attached to the same Channel Connector item are assigned 
the same name from the "channelname" token associated with each instance 
identifier representing a Channel Connector Icon. A "passed input variables list" 
holds all of the passed non-channel parameters for the Process Icon instance. 
Again, each list contains parameters, generated from tokens associated with 
diagram component identifiers, but the parameters are the calling parameters for 
Process Icon instances.

Figure 7.7 shows Prolog facts containing lists generated by the parser for the two 
Process Icon instances in the definition diagram of figure 7.5. The lists are shown 
associated with the identifiers generated by the tokeniser for the Process Icon 
instances. The passed variables lists are empty, as no variables are passed to either 
of the Process Icon instances.

As mentioned earlier, declared input channel lists, declared output channel lists, 
and declared parameter lists are associated with definition identifiers, while 
passed input channel lists, passed output channels lists and passed parameter lists 
are associated with instance identifiers. There exists a one-to-one relationship 
between these lists such that:
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passed_output_channels_list(480440,[aaaaa]). 
passed_input_channels_list(480440,[caaaa]). 
passed_variables_list(480440,[]).

passed_output_channels_list(484176,[baaaa]). 
passed_input_channels_list(484176,[aaaaa]). 
passed_variables_list(484176,[]).

Figure 7.7 - Prolog facts containing lists generated for the two Process Icon 
instances in the definition diagram of figure 7.5.

declared input channel lists < -  > passed input channel lists

declared output channel lists < — > passed output channel lists

declared parameter lists < — > passed parameter lists.

(<  — > indicates a relationship)

Declared parameters for definition identifiers and passed parameters for instance 
identifiers therefore match each other. The "declared" lists provide declared 
parameters for a process implementing a Process Icon definition, while "passed" 
lists define calling parameters for an instance of such a Process Icon.

7.73  Parsing the control flow graphs

After the reductions of the previous section have been performed, the database 
contains a number of definition identifiers with associated declared and passed 
parameter lists as described above. All of the original instance tokens relating to 
communications structures and to passed, declared, or local variable definitions 
have been removed, with only those representing Control Flow Links and the 
non-channel parts of functional icons being left. As an example of the state of the 
database on entry to the control flow parsing routine, the internal database from 
the two buffer examples of figures 7.4 and 7.5 is reproduced in figure 7.8.

The parsing process for the remaining structures consists of performing multiple 
reductions over the graphs represented by the remaining tokens, checking that the 
control flow structures which they describe are valid ones, and producing a parse 
tree for them.

The control flow parser routine repetitively cycles through a number of graph 
reductions which reduce all nine of GILTs base grammar constructs which are 
described in section 5.2.5.1. A parse tree is built in a novel way which involves

7-21



A  compiler for the G ILT language

process_definition(450656).
process_definition_name(450656, 'buffer.2'). 
compile_as_procedure(450656).
declared_input_channels_list(450656,[caaaa]). 
declared_output_channels_list(450656,[baaaa]). 
declared_variables_list(450656,[]). 
local_channels_list(450656,[aaaaa]). 
local_variables_list(450656,[]).

child_of_process_definition(480440, 450656). 
process_instance_node(480440). 
instance_of_definition(480440, 503752). 
passed_output_channels_list(480440,[aaaaa]). 
passed_input_channels_list(480440,[caaaa]). 
passed_variables_list(480440,[]). 
control_connect(480440,500040).

child_of_process_definition(484176, 450656). 
process_instance_node(484176). 
instance_of_definition(484176, 503752). 
passed_output_channels_list(484176,[baaaa]). 
passed_input_channels_list(484176,[aaaaa]). 
passed_variables_list(484176,[]). 
control_connect(484176,500040).

child_of__process_definition(497008, 450656) . 
control_split_j oin_node(497008). 
control_connect(497008,484176). 
control_connect(497008,480440).

child_of_process_definition(500040, 450656). 
control_split_join_node(500040). 
control_connect(500040,470816).

process_definition(503752).
process_definition_name(503752, 'buffer.1'). 
compile_as_procedure(503752).
text_filename(503752,'/home/cb538/gilt/GLTAAAa00622' 
) •
declared_input_channels_list(503752, ['in']).
declared_output_channels_list(503752, ['out']).
declared_variables_list(503752, []).

Figure 7.8 - The state of the Prolog database on entry to the part of the 
parser concerned with parsing the control flow structures. Indents are used 
to indicate tokens forming part of the same node.
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propagation of nested lists between nodes being reduced and newly created ones.

Initially, the parser assigns a simple list (the "description") with a single element 
to each diagram component node representing a Process Icon. The single element 
is the identifier for the instance identifier with which it is associated. When a 
reduction for a particular construct is performed, the descriptions of the 
components of the construct are concatenated to form a new list. This list is treated 
as a list element and added to the end of a new list which contains an atom 
reflecting the nature of the reduction made (a "construct keyword") so that the 
first element of the list specifies the type of the construct of which the following 
arguments are a part. Finally the new list is assigned as the description of the newly 
created insert node. An example showing how parse trees are constructed using 
this method is shown in figure 7.9. Initially ( a ) , the control flow graph consists of 
five nodes. Three nodes with diagram component identifiers "B" and "C" and "D" 
are wired into a parallel construct via the two control split join nodes "CSJ". This 
construct is wired into a sequential construct with nodes having the diagram 
component identifiers "A" and "E". After a graph reduction for GILTs parallel 
construct is carried out, the graph becomes the one shown in (b). The new node 
has the description "[PAR, B, C, D]". Carrying out a sequential reduction yields a 
single node with the description "[SEQ, A, [PAR, B, C, D], E]". This nested list 
gives a syntax tree for the graph, as shown in Figure 7.10. At each "level" the list 
consists of a construct keyword (here "SEQ" or "PAR") which indicates the type 
of a construct, followed by a number of parameters defining the components of 
the construct. Each parameter is in turn a list, defined in the same way, until the 
parameters are diagram component identifiers. Each instance identifier forms a 
leaf on the syntax tree, while non-leaf nodes correspond to keywords describing 
the type of the construct of which its descendant nodes are components. Constructs 
with no component constructs, such as GILT’s skip and stop constructs are leaf 
nodes on parse trees.

The process of generating the parse tree is simplified by the associativity of GILT 
and Occam parallel constructs. The associativity of constructs means that, for 
example, in Occam,

PAR
A
PAR

B
C

is directly equivalent to

PAR
A
B
C
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a)

/ ß \
Ç \ - —o

A \  c /  E

D

b)

A [PAR, B, C, D] E

c)

[S E O A ^ P A R , B, C, D], E]

Figure 7.9 - The reduction of a control flow graph showing how a parse 
tree for the graph is constructed. Unlabelled nodes correpond to 
Process Icons, while those labelled "CSJ" correspond to Control Split 
Join Icons.
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Similar laws exist for SEQ and ALT constructs in Occam and their equivalents in 
GILT. An example of GILT’s associativity is shown by the two equivalent parallel 
constructs in figure 7.11. Associativity extends to syntax and parse trees, with the 
two syntax trees shown in figure 7.12 also being equivalent.

Because of the associativity of GILT’s constructs, parsing routines may be allowed 
to generate parse trees for n-way parallel constructs like the one shown in figure 
7.13. This considerably simplifies the graph reduction process by allowing the 
implementation of an n-way parallel structure recogniser with two very simple 
reduction rules. The first, context dependent, reduction reduces two nodes 
connected in parallel between two control split join nodes to a single node 
connected between the two control split join nodes. The second reduction reduces 
a single process connected between two control split join nodes to a single node. 
Providing that as many of the first reductions as can be performed are carried out 
before the second reduction, parallel structure may be correctly recognised by the 
reductions.
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Figure 7.11 - Equivalent parallel constructs in GILT.
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Similar reductions are used for most of GILT’s control flow constructs, resulting 
in a smaller parser that would otherwise be the case. A example parse of the earlier 
control flow graph of figure 7.9(a) using the methods discussed above is shown in 
figure 7.14.

Most of the control flow reductions look for patterns of "process_instance_node" 
t oken  sets connec t ed  wi th o the r  i ns tance  nodes  and p roduce  
"process_instance_node" token sets. This saves a reduction transforming each 
"process_instance_node" token set into a "construct" token set. An example of a 
reduction using this scheme (actually a parallel reduction) is shown in figure 7.15.

The routine of figure 7.15 is called with most of its parameters "anonymous 
variables", as below:

parallel(Def_node, _).

The routine implements the first of the two parallel reductions mentioned earlier 
and used in figure 7.14. The anonymous variable ("_") is a variable which may be 
instantiated by Prolog to match any value.

The routine may be divided into five sections A-E, as shown in figure 7.15 with 
Prolog’s comment c h a r a c t e r :

Section A consists of a set of clauses which match tokens in the database 
representing the parallel structure that the reduction is designed to find. The 
"child_of_process_definition" clauses are used to restrict the amount of 
backtracking done by Prolog while it attempts to find suitable tokens, thus ensuring 
that Prolog does not waste excessive amounts of time searching the database for 
reductions which have no chance of being made. The clauses perform a similar 
function to restrictions in conventional bottom-up limited backtrack compilers 
which limit the number of symbols which may be examined in the search for a 
particular pattern. The last two clauses in the section ensure that the routine does 
not match erroneous structures consisting of the same nodes wired into peculiar 
patterns.

Section B obtains the "description" of each node, for usage in parse tree generation, 
as discussed earlier.

Section C creates a new node wired between the two control flow split-join nodes 
found by section A. The node is assigned a new unique identifier from the global 
variable "N", with the tokens describing the node created using the extra logical 
database manipulation predicate "assert". The description of the newly created 
node is created from the two descriptions obtained in section C and the string 
"PAR".

Section D removes the tokens from the database using the extra logical "retract" 
clause.
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A [PAR, [PAR, B, C], D] E

Figure 7.14 - A parse of the control flow graph of figure 7.19(a) using 
the associativity of constructs to simplify the reductions used in parsing. 
Continued on the following page.
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parallel(Def_node,A,B,C,D)
% section A
child_of_process_definition(A, 
control_split_join_node(A), 
child_of_process_definition(B, 
control_split_join_node(B), 
child_of_process_definition(C, 
process_instance_node(C), 
child_of_process_definition(D, 
process_instance_node(D), 
control_connect(A,C), 
control_connect(C,B), 
control_connect(A,D), 
control_connect(D,B),
A =\= B,
C =\= D,

Def_node), 

Def_node), 

Def_node), 

Def_node),

% section B 
description(C,DC), 
description(D,DD),

% section C 
new_node_number(N),
assert(child_of_process_definition(N, Def_node)), 
assert(process_instance_node(N)), 
assert(description(N,['PAR',DC,DD])), 
assert(control_connect(A,N)), 
assert(control_connect(N,B)),

% section D
retract(control_connect(A,C)), 
retract(control_connect(A,D)), 
retract(control_connect(C,B)), 
retract(control_connect(D,B)), 
retract(process_instance_node(C)), 
retract(process_instance_node(D)), 
retract(description(C,DC)), 
retract(description(D,DD)),

% section E
retract(new_node_number(N)),
N1 is N + 1,
assert(new_node_number(Nl)), 
set_change_flag.

Figure 7.15 - An example graph reduction routine, encoded in Prolog, which 
recognises parts of parallel constructs.
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Finally, section E increments the global number "N" used to create identifiers for 
new token sets, and uses the predicate Mset_change_flag" to set a flag which 
indicates that changes have been made to the database.

Similar reductions are used for the remainder of GILT’s constructs. Some of the 
reductions are more complex, some less. The reductions are repetitively applied 
to Prolog’s internal database until no more reductions may be performed. If the 
reduction of a particular diagram has been successful (i.e. the pattern of tokens 
emitted by the tokeniser was a legal graph), all of the diagram’s constructs are 
reduced to a single instance node. The description of the node which, in the case 
of a successful reduction, contains a parse tree for the diagram is associated with 
a relevant definition identifier. The definition identifier also references the lists 
produced by earlier sections of the parser, and so provides a complete description 
of a Process Icon definition in a form that can be used by the code generator.

7.7.4 Error checking

After all the possible reductions have been performed on the graphs stored in 
Prolog’s database, a test can be applied to see if there are any structures which 
have not been reduced remaining in the database. This is performed by Prolog 
goals which attempt to find specific tokens in the database. If any such tokens are 
located, their unique identifier and a suitable error message is output. The 
identifier may be selected using the mouse and used to locate a diagram 
component for the identifier using the user interface to the compiler (section 
7.9.1).

7.8 Code Generation

Code generation for GILT is a much simpler task that in conventional compilers. 
No attention needs to be paid to usually important issues like storage allocation, 
register usage, etc., all of which is handled by the Occam complier. The code 
generator simply translates the parse tree and lists produced by the parser into an 
Occam program, taking care that the construct spacing required by the Occam 
compiler is correct.

The error handler discussed above ensures that the routines to produce Occam 
code from the lists and parse tree produced by the parser are only called if the 
graphs have been fully reduced, so that of the original tokens, only the 
definition-instance tokens remain. All of the other tokens produced by the 
tokeniser have been removed and replaced with lists associated with instance and 
definition identifiers. As described in sections 7.7.2 the lists hold partial parse trees 
(one parse tree for each definition diagram), lists of local channels or variables, 
and passed and declared parameters.

An example of the information held in Prolog’s internal database on entry to the 
code generation routines is shown in figure 7.16.
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process_definition(450656).
process_definition_name (450656, 'buffer.2') . 
compile_as_procedure(450656).
declared_input_channels_list(450656,[caaaa]). 
declared_output_channels_list(450656,[baaaa]). 
declared_variables_list(450656,[]). 
local_channels_list(450656,[aaaaa]). 
local_variables_list(450656,[]). 
description(450656, [PAR, 480440, 484176]).

instance_of_definition(480440, 503752). 
passed_output_channels_list(480440,[aaaaa]). 
passed_input_channels_list(480440,[caaaa]). 
passed_variables_list(480440,[]).

instance_of_definition(484176, 503752). 
passed_output_channels_list(484176,[baaaa]). 
passed_input_channels_list(484176,[aaaaa]). 
passed_variables_list(484176,[]).

process_definition(503752).
process_definition_name(503752, 'buffer.1'). 
compile_as_jprocedure(503752) . 
text_filename(503752, 
//home/cb538/gilt/GLTAAAa00622'). 
declared_input_channels_list(503752, ['in']). 
declared_output_channels_list(503752, ['out']). 
declared_variables_list(503752, []).

Figure 7.16 - State of the Prolog internal database on entry to the code 
generation routine.

The code generator produces an Occam procedure definition for each definition 
identifier (e.g.. "450656" and "503752" above) having a "compile_as_procedure" 
token, thus creating a separate Occam procedure for every procedural Process 
Icon. The text contained in the "process_definition_name" token provides a name 
for every Occam procedure definition produced by the code generator. This allows 
easy examination of the code produced by the compiler and makes possible the 
manual insertion of Occam’s mapping directives (e.g. "PLACED PAR"), as it is 
easy to identify which Occam procedures have been generated from which Process 
Icon definitions. Calls to the named procedures are inserted into generated code 
as required.
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Occam procedure definitions are not output for definition identifiers with 
"compile_as_code_insert" tokens. Instead code for the definition identifiers, which 
represent non-procedural Process Icons, is output as a non-procedural Occam 
process where required.

The output of a procedure definition for a given definition identifier may be viewed 
as a three stage process :

1) Output of a header for the procedure.

2) Output of a set of local channel and variable declarations.

3) Output of the body of the procedure definition.

The header for the procedure consists of a procedure name (discussed earlier) and 
a set of associated declared parameters, enclosed by brackets. The declared 
parameters are supplied by the declared output channels list, the declared input 
channels list and the declared variables list which are associated with the definition 
identifier.

Local variable definitions and the names of channels contained in the local 
variables list and the local channels list associated with the definition identifier 
respectively are used to generate local channel and variable definitions 
immediately after the procedure header.

For definition identifiers describing textual Process Icon definitions, the body of 
the procedure is the contents of the icon’s text file. For definition identifiers 
describing graphical Process Icon definitions, the body of the procedure is 
produced from the description list associated with the definition identifier. A 
simple breadth first tree walking algorithm is used to produce Occam from the 
parse tree represented by the list. Each keyword in the list identifies a construct 
and determines how its associated parameters are output. Instance identifiers in 
the lists (for example "480440" and "484176" above) generate references to 
procedures or code inserts, while construct keywords are used to produce Occam 
reserved words. The decision to output a procedure reference or a code insert for 
an instance identifier is taken depending on the procedural or the non- procedural 
nature of the definition identifier which is related to the instance identifier in 
question via a instance-definition token. Thus, procedure calls are generated for 
instances of procedural process icons, while code inserts are generated by 
instances of non-procedural process icons.

Procedure calls are extremely simple to output. They consist of the name of the 
procedure being called, followed by a bracket enclosed list of parameters, obtained 
from the passed parameter lists associated with the instance identifier being 
output.
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Example

The call shown below is generated for the instance identifier "480440" contained 
in the earlier figures :

buffer.1(aaaaa, caaaa)

For non-procedural instance identifiers an "equivalence table" is output, followed 
by variable and channel declarations local to the process and by code for the body 
of process. The equivalence table is produced using Occam’s "IS" object 
abbreviation facility and relates calling parameters (in the passed lists associated 
with an instance identifier) to declared parameters (in the declared lists associated 
with a definition identifier) by renaming.

The code for the body of the process produced is obtained by a breadth first tree 
walk down the parse tree of the definition identifier related to the instance node 
identifier, as above. Local channel and variable declarations are output in the same 
fashion as for the earlier procedure definition.

Example

If Process Icon "buffer. 1" of the buffer example were modified so that it were 
n o n -p ro c e d u ra l in s tea d  o f p ro c e d u ra l, th e  to k en  
"compile_as_procedure(503752)." of figure 7.4 would be replaced by the token 
"compile_as_code_insert(503752).". Correspondingly, the code generated for 
instances of the Process Icon would reflect this change, so that the output 
"buffer.l(aaaaa, caaaa)" of the previous example would be replaced by :

in IS caaaa : 
out IS aaaaa :
INT x :
WHILE TRUE 

SEQ
in ? x 
out ! x

Procedures are output in an order determined by instance-definition tokens, which 
define a form of dependency tree. After all of the component procedures have 
been output, a reference to a top-level procedure is output in the form required 
for compilation of the Occam code output as an "EXE" under the TDS, if possible. 
An "EXE" is an Occam program suitable for execution on a single Transputer 
(specifically the host Transputer), and consists of a single sequential process, with 
no declared channels or parameters, unlike the example two buffer example used 
throughout this chapter:

SEQ
toplevel()
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GILT’S compiler will compile programs which do not conform to this model (and 
have Channel Stubs or declared non-channel parameters), but will not produce a 
reference to the top-level procedure, as shown above. Instead, a warning message 
is output.

The toplevel p rocedure  is determ ined  by a pa ram ete r for the goal 
"compile_gilt_to_occam(d)", which compiles the set of tokens loaded into the 
Prolog database. The parameter "d" specifies a definition identifier which is to be 
compiled as the top-level procedure. The goal is automatically executed by a 
specialised interface (section 7.9) so that users of GILT need have no knowledge 
of the compiler’s internal workings. After completion of the code generation 
process started by the goal, a message is produced giving the name of the file that 
the compiler has placed output in. The filename is obtained from the name of the 
top- level Process Icon indicated by the definition identifier "d" with an added suffix 
".occ", used by GILT to indicate files containing Occam code.

Figure 7.17 gives an example of the output from the compiler produced for the 
two buffer example. If the Process Icon "buffer. 1" were non-procedural, as 
described above, the output in figure 7.18 would be obtained. The statement 
"#USE userio" at the beginning of each code segment is generated by the compiler 
from the contents of a library specifier file "gilt_libs.occ" which must be contained 
in every directory in which the GILT compiler is used. The file contains a list 
(possibly empty) of Occam "#USE" library directives. Procedures defined in the 
libraries may be used in the Occam code of textual Process Icons.

7.9 Interaction with the compiler

Though the Prolog system provided a very good environment for development of 
the compiler some knowledge of Prolog was required in order to use it. Therefore, 
a user interface to the compiler was produced.

The "compiler window" consists of two connected windows, as shown in figure 7.19. 
The upper "control panel" contains three buttons for interacting with the lower 
part of the window and with the rest of the GILT system. The "compiler 
sub-window" is a Sunview tty sub-window which runs a Prolog shell for the 
compiler. The compiler sub-window displays messages from the compiler and will 
accept textual commands given as Prolog goals. Tty sub-windows are components 
of the Sunview system designed to allow the easy creation of graphical interfaces 
to existing applications. Once a tty sub-window has been created, a shell may be 
executed in the window asynchronously to the application which started it. 
Routines are provided in libraries to insert text into the input buffer of the shell 
and extract text from its output buffer. The compiler user interface makes use of 
these facilities by starting a Prolog shell in the compiler sub-window, loading the 
compiler into it and interacting with it via Prolog goals sent to the shell’s input 
buffer.
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#USE userio
PROC buffer.1(CHAN OF INT in,CHAN OF INT out)

INT x :

WHILE TRUE 
SEQ

in ? x 
out ! x

PROC buffer.2(CHAN OF INT caaaa,CHAN OF INT baaaa) 
CHAN OF INT aaaaa :
PAR
buffer.1(caaaa,aaaaa) 
buffer.l(aaaaa,baaaa)

Figure 7.17 - Output from the compiler for the two buffer example. The 
first procedure was output for the Process Icon definition named 
"buffer. 1" with definition identifier "503752". The second procedure was 
output for the Process Icon definition named "buffer.2" with definition 
identifier "450656".

#USE userio
PROC buffer.2(CHAN OF INT caaaa,CHAN OF INT baaaa) 

CHAN OF INT aaaaa :
PAR

in IS caaaa : 
out IS aaaaa :
INT x :
WHILE TRUE 

SEQ
in ? x 
out ! x

in IS aaaaa : 
out IS baaaa :
INT x :
WHILE TRUE 

SEQ
in ? x 
out ! x

Figure 7.18 - Output from the compiler for the two buffer example 
modified so that the code produced for non-procedural processes may be 
examined. No procedure was output for the Process Icon definition named 
"buffer. 1" with definition identifier "503752", as it was compiled as inline 
code.
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Figure 7.19 The complete compiler window shown in its initial state. The 
boot up message from the Edinburgh Prolog system used may be seen in 
the tty sub-window.

7.9.1 The control panel

Three control panel buttons are provided in the control panel: "Compile Graph 
to Occam", "Locate to node @ number" and "Done".

Compile Graph to Occam (button)

The control panel button "Compile Graph to Occam" has an associated event 
handling procedure which sends commands to the compiler as Prolog goals via the 
library routines mentioned above. Every button push initiates the following 
sequence of events:

1) The tokeniser is called and a file containing a tokenised version of the 
current GILT program produced.

2) Commands are sent to the Prolog shell to load the intermediate file 
produced by the tokeniser. If the button push is the first one during the 
editing session, a command is sent to load the compiler routines. On sub-
sequent pushes, a command is sent to reset the compiler to a known 
state.

3) The goal "compile_gilt_to_occam(d)." is sent to the compiler instruct-
ing it to produce code for the Process Icon definition currently being 
edited as the top-level procedure, where "d" is the definition identifier of 
the relevant Process Icon definition.
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The compiler then starts compilation, producing appropriate messages as and 
when required.

Locate to node @ Number (button)

This button is used to relate error messages produced by the compiler back to the 
definition diagrams displayed by the editor, providing a visual error location 
facility. The system makes use of Sunview’s "selection service", which allows text 
to be highlighted by using the mouse. Any text highlighted in such a manner when 
the "Locate to node @ Number" button is pressed is checked to see if it is a legal 
instance identifier. If it is, the identifier is used to locate the part of the functional 
icon forming an erroneous structure and display it in reverse video. Figures 7.20 
and 7.21 illustrates the use of this feature, which has proved a very good debugging 
tool. The format of the error messages produced by the compiler as described in 
more detail in section 7.9.2.

Done (button)

The done button closes the compiler window, removing it from view. The compiler 
window may be displayed again (or for the first time) using the "Compiler Window" 
button in the diagram editor control panel.

7.9.2 The compiler sub-window

The compiler sub-window runs a Prolog shell, as discussed earlier. Users of the 
system may interact with the compiler by typing Prolog goals, or use the facilities 
provided by the control panel. The main use of the panel is in the display of error 
and advisory messages.

Error messages all have similar styles, giving a textual error message and a numeric 
instance identifier, as shown by the example of figure 7.20. The instance identifier 
may be used to locate to the erroneous parts of the diagrams. The error messages 
from the compiler may be regarded as giving messages similar to those provided 
by conventional compilers, which commonly consist of a textual part (the error 
message) and a line number. The messages are self explanatory, and will not be 
dealt with in depth here.

Advisory messages are used by the compiler to reassure users about operations in 
progress, provide information on compiler output files and for warnings. Messages 
are produced for most phases in the compilation. A final message is output to 
indicate successful compilation and to indicate the production of an output file 
containing Occam code. Figure 7.22 shows such a message. Warning messages are 
similar to error messages, but give information of a less fatal nature, for example 
specifying that the toplevel procedure call for an EXE has not been output as the 
Process Icon definition chosen is not suitable (section 7.8). A warning message is 
shown in figure 7.23.
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Figure 7.20 - The compiler window showing an error message from the 
compiler indicating a node which has not been reduced, and thus an 
erroneous diagram. An instance identifier has been highlighted using the 
mouse so that the error location facility may be used.

Figure 721 - A view of an erroneous diagram showing a functional icon 
highlighted by the use of the error location facility. The icon highlighted 
is the one indicated by the error message of figure 7.20.
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Figure 7.22 - Successful compilation message giving the filename 
containing the compiler output.

Figure 7.23 - An example warning message.
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8

Results, conclusions and suggestions
for future work

8.0 Introduction

The results of the work presented in this thesis are mainly methods concerned with 
the construction of parallel visual programming systems and are closely allied with 
the conclusions derived from the work. Hence, results and conclusions are 
discussed together in this chapter. Discussion of the results and conclusions is 
followed by a section providing suggestions for future work.

8.1 Results and conclusions

In the development of any new programming language, it is difficult to obtain 
metrics on the usability of the language without extensive user testing. At the final 
evaluation, language longevity is perhaps the ultimate test. As the objective of the 
thesis was primarily in the investigative domain, user testing of the prototype 
system was not carried out. The results and conclusions of this section therefore 
concentrate on giving an empirical analysis of what has been achieved during the 
course of the research. The research has involved the construction of a fully 
working prototype visual programming system, with which a number of examples 
have been coded. Several new principles and techniques for the implementation 
of visual programming systems for concurrent computation have also been 
developed in the course of the work. Specific results are discussed in separate 
(following) sections, and are followed by a very brief summary.

8.1.1 A visual programming system for parallel computation

GILT adopts a new approach to writing concurrent programs for von-Neumann 
style multiprocessors. Imperative programs are represented using a paradigm 
which includes both text and graphics. The graphical aspects of GILT include 
visualisations of control flow and inter-process communication, which have not 
previously been combined into a unified model. The combination of the 
visualisations of control flow and communications with a mixed textual and 
graphical programming paradigm allows the graphical representation of 
concurrent programming structures not visualised in previous systems, for
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example alternative structures. It also allows visual programming techniques to be 
used for very high level overviews and for lower level detail. Very low level detail, 
representing operations on abstract objects like variables, is expressed using 
conventional textual code. Most previous visual programming systems have used 
visual programming exclusively for high level overviews or for low level detail. 
GILT is unique in allowing visual programming to be used over a wide range of 
levels of abstraction, from a very high level to a lower one and offers a choice of 
structural overviews of programs. It does not however impose restrictions on 
where and when visual or textual programming techniques should be used. Instead 
GILT allows users to make such choices. Users may determine the most 
appropriate medium (graphics or text) for the expression of the algorithm 
concerned.

GILT is also the first visual programming system to make a distinction between 
procedural and non-procedural hierarchical structures. This difference is 
considered important, as it allows programs to have a hierarchical structure 
independent of the one conventionally imposed by procedural abstraction. It 
facilitates visual abstraction and aids the efficient management of screen area, a 
feature which has been noted (Myers, 1988) as lacking from many previous 
systems.

It is the author’s opinion that a visual programming system based on the ideas 
presented in this thesis is an appropriate technology for programming current and 
near future parallel computers, and offers the potential of creating an easy to use 
interface to concurrency. In addition, visual programming techniques are 
applicable to the "next" generation of personal computers based on styluses, 
handwriting recognition and flat "writable" screens. It is not difficult to imagine 
the production of a GILT like programming system making use of handwriting 
recognition for the input of textual code while relying, like GILT, on line drawings 
and the selection of pre-defined icons for graphical functions.

8.1.2 The use of graph grammars for visual language syntax

Another major result of the work was the production of a new method of defining 
the syntax of visual languages. Context free graph grammars are simple and easy 
to use, yet offer sufficiently expressive qualities to describe visual languages, as is 
proven by the description of the GILT language in chapter five. Previous work has 
been based on the use of context dependent grammars, or has restricted itself to 
the use of context-free grammars for visually simple languages. The work 
presented in chapter four uses context free grammars, netting their associated 
desirable properties, yet still allows the expression of context-dependent 
information. It should be able to be used widely in visual languages which have 
different overlaid sets of information forming their visualisation.

GILT is one of the few visual programming languages in existence which has a well 
defined syntax, and the only one (to the author’s knowledge) which has a syntax 
expressed using a combination of graph grammars and text grammars.
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8.13 Construction of visual programming systems from standard 
user interface components

Previous visual programming systems have been implemented using highly 
specialised environments. The construction of the prototype GILT system has 
shown that it is possible to implement a visual language using very general user 
interface components. The use of such user interface components allows the 
development time of a visual language to be reduced considerably over what would 
otherwise be the case, yet still allows a highly language specific interface to be 
created, which is not the case with syntax directed diagram editors.

8.1.4 A compiler for a visual language

GILT is one of a very few compiled parallel visual programming languages. The 
Prolog implementation of the compiler’s parser is sufficient for the parsing of small 
to medium scale programs in GILT, and provides a very clear expression of the 
ideas involved in the compiler. Parsing large programs does however require a 
long time period due to the time complexity of the parsing algorithm used. The 
running time of almost all backtracking algorithms is, at worst, 0 (en), where n is 
the number of "objects" being parsed. GILT’s limited backtracking algorithm 
improves on this to a great extent. The number of comparisons made per definition 
diagram is strictly limited by an upper bound imposed by the editing system on the 
number of functional icons which may occur in any given diagram. The running 
time for the building of a parse tree and lists for each definition diagram is thus 
bounded so that the for a GILT program of n definition diagrams it is, at most, 
O(n). However, as 0(1) is fairly high, so the compiler does run relatively slowly. 
For example, the compilation of the processor farm example of chapter five takes 
approximately eleven seconds. Suggestions for speeding up the compilation of 
GILT programs are included in section 8.2.

8.1.5 Summary of conclusions and results

The work presented in this thesis has contributed a new method of syntactic 
specification for visual languages i.e. the use of multiple context free graph 
grammars, produced a new visualisation for Occam style parallel programs 
incorporating a mixed control flow/channel paradigm and shown how standard 
user interface components may be used for producing fully functional visual 
programming systems within short time spans. A nontrivial visual programming 
system supporting the GILT language has been produced. The system includes far 
more support for parallel programming than have previous visual programming 
systems, though there is certainly room for improvement. The development of a 
compiler for GILT has demonstrated useful approaches to the compilation of 
visual languages and resulted in a usable prototype visual programming system 
which has been demonstrated to numerous people and has received universally 
favourable comments.

8-3



Results, conclusions and suggestions for future work

8.2 Suggestions for future work

The previous works discussed in the review section of the thesis and the body of 
the work presented in the preceding chapters strongly suggest that graphical 
program development tools have a role to play in the development of parallel 
systems. However, there is much outstanding work to do. At a very basic level, a 
study of user’s reactions to graphical tools for the development of parallel software 
systems should be carried out to assess the strengths and weaknesses of graphical 
representations in parallel programming.

The suggestions for future work included in the following sections of this chapter 
are of two kinds. Some concern enhancements to the existing system which would 
allow it to be more easily and efficiently utilised while others indicate interesting 
directions for research on future graphical programming development tools 
designed to aid parallel programming.

8.2.1 Improvements and enhancements to the existing system

Although the prototype system is easy to use, a number of minor improvements 
would increase its functionality. The improvements are ordered in descending 
importance.

8.2.1.1 Checking of textual syntactic entities.

At present the GILT programming system performs no checking on the textual 
parts of GILT diagrams which are defined in GILT’S syntax using extended BNF 
expressions. The textual parts of the diagrams are considered as correct syntactic 
entities and are passed straight through to the code generation section of the 
compiler. Thus it is possible to input, for example, incorrect Occam into a text 
window, have it passed through the compiler as part of a GILT program, and for 
the compiler to generate incorrect code because of the original erroneous text 
embedded in it. On further compilation of the output from the compiler, using the 
Transputer Development System, such errors are detected but relating them back 
to the original code is difficult. What is required is simply a number of independent 
lexers and parsers for all of the textual parts of the GILT language which produce 
appropriate error messages. No code generation need take place, but the error 
messages produced would be used for detection purposes and to ensure that 
incorrect text was not propagated into the Occam compiler. The construction of 
parsers for the textual parts of the GILT language was not undertaken due to time 
constraints, but it represents no substantial problem and could easily be completed 
using standard compiler generation tools in a few months.
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8.2.1.2 Configuration of GILT programs

The compiler built for GILT produces unconfigured Occam, suitable for 
compilation for a single Transputer as an "EXE" under the TDS. This code can 
easily be configured manually for multiple transputers by inserting configuration 
statements into the output from the GILT compiler before it is input to the Occam 
compiler. There is no fundamental problem with modifying the code generation 
sections of the compiler to produce code directly for multiple transputers, but 
additional information would have to be supplied to generate the configuration 
information. In line with the rest of the project, a graphical "pick and place" 
mapping tool would be appropriate. The configuration process could be 
approached in a topdown, graphical, manner assigning groups of processes to 
"super groups" of processors, then carrying out stepwise refinement. Performance 
feedback in the form of coloured processor and channel activity coding like that 
used in GRAIL (Stepney, 1987) could be used to guide the assignment process.

8.2.13 More advanced editing facilities

The facilities provided by the program editor are sufficient for the creation of 
complex GILT programs but the addition of some extra features would be 
worthwhile. Enhancements to the editing system could include allowing different 
sized and shaped icons for the representation of processes, zooming (for viewing 
large diagrams), and multi-level diagram editing as well as relatively primitive 
features like a "snap to grid" function, block moving and copying. Channel Ports 
are at present constrained to the upper and lower surfaces of Process Icons, while 
Control Flow Ports must be attached to the left and right sides. This arrangement 
has worked well in most situations, but there are cases (such as regular grid process 
arrays and circular structures) where the ability to distribute ports around the 
outsides of icons in an arbitrary manner would be more appropriate. A "tidy" 
diagram feature, to move functional icons to appropriate positions on a grid would 
also be useful. Some work on automatic layout algorithms suitable for GILTs 
channel connections has already been performed (Kramer, Magee and Ng, 1989).

8.2.1.4 Support for channel protocols

GILT’s visual channels (implemented using Channel Links, Channel Ports and 
Channel Stubs) support only simple integer protocols. Although not a major 
drawback for a prototype system, the expansion of the language to allow the use 
of more complex communications protocols would aid the construction of complex 
parallel programs. Occam’s protocols are widely used by programmers, and could 
easily be included by the association of a pull-down menu with each Channel Stub, 
which would allow the "type" of the channel to be visually set. Alternatively, the 
visualisation user for Channel Stubs in the current implementation could be 
modified to include a text editing area for the definition of a protocol for the 
channel. Neither of these enhancements would involve significant work.
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8.2.1.5 Parsing GILT diagrams

As mentioned earlier, GILT’s complier runs relatively slowly, which is a 
disadvantage for compiling large programs. Improvements to the run time for the 
complier could be made in a number of different directions :

1) The parser could be recoded in an imperative, sequential language so 
that the overheads imposed by Prolog were removed.

2) The parser could be ported to a form of parallel logic language like 
Strand (Foster and Taylor, 1990) which provides similar facilities to

Prolog, but would allow the multiple graphs representing diagrams to be 
simultaneously reduced.

3) The parser could be re-implemented in GILT or in Occam so that 
multiple transputers could be applied to the reduction process. As the 
ratio of computation to the amount of data used by the computations is 
low, a processor farm would be an ideal solution. In such a system a 
farmer process would packet out separate tokenised diagrams to each 
worker process in the farm. The worker processes would perform reduc-
tions on the diagrams until no more could be performed, then send the 
lists and partial parse tree generated by the reductions back to the 
farmer process, which would continue dispatching diagram packets until 
no more were available. The processor farm example of chapter five 
gives an implementation for the main structure of a suitable farm. Such a 
system would even dynamically balance load on the Transputer system it 
ran on. As different amounts of computation are required for the genera-
tion of parses of complex diagrams and parses of simple ones, dynamic 
load balancing is desirable in a distributed parser for GILT diagrams. 
Processor utilisation would be kept extremely high in a processor farm 
parser.

Option (3) is considered the most efficient in terms of runtime overhead and also 
offers the elegant possibility of writing a compiler for GILT which is itself as a 
GILT program! A "new" GILT compiler would, of course, have to be compiled 
using the existing system.

Further improvements to any of the schemes above could be obtained by the use 
of a predictive graph parsing method, as described in (Kaul, 1982) and by only 
parsing the parts of diagrams which had been modified since the previous 
compilation. The production of a very fast parser for GILT diagrams would allow 
the development of a syntax directed editor for the language, or at the very least 
a highly interactive error detection system.
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8.2.1.6 Support for the use of replicators and other constructs

Replicators, which allow the construction of regular arrays of processes using 
indexing variables, are one major feature of Occam not implemented in GILT. 
GILT does allow the creation of process arrays similar to those generated using 
replicators by the placing and wiring of components and by the use of hierarchy 
(for example the construction of an two element buffer from two one element 
buffers, the construction of a four element buffer from two two element buffers, 
and so on), but this approach is not appropriate for multi-dimensional regular 
structures due to the amount of connections required between the different levels 
of abstraction. Nonetheless, replicators are a major feature lacking from GILT. 
An interesting idea worthy of further investigation is the use of graph grammars 
(not neccessarily context-free) to specify replicated structures. Productions in such 
a grammar could be visually input, and graph rewriting used to create the desired 
structure. Productions could even be generated using the techniques of 
programming by example (Myers, 1988), with a system deducing a regular 
connection pattern from a small sub-diagram. Alternatively, simple visual 
bracketing notations could be used, but this would become rapidly more complex 
for multi-dimensional structures.

The addition of further Occam-like constructs into GILT, for example "CASE" 
conditionals and multi-way "IF' constructs would require the addition of a few new 
functional icons and associated productions in the grammar of chapter five. Minor 
additions to the diagram editor would therefore need to be made.

8.2.1.7 Animated execution of GILT programs

The views that GILT provides of parallel programs are static ones. It is easy to see 
that animated execution of explicitly concurrent programs has advantages for 
debugging and for performance analysis. As a view of the program is already in 
existence (specifically a set of GILT diagrams), a graphical debugging or 
performance analysis tool does not need to generate its own visualisation, as has 
been the case with previous Transputer or Occam based systems. Animation of 
important concurrent concepts such as synchronised communications may help to 
reveal deadlocks and other related bugs. A variety of methods could be used to 
extract information from a transputer system, for example those discussed in 
discussed in (West, 1987) and (Zimmermann, 1988). A system allowing animated 
execution of GILT diagrams would be an invaluable tool for teaching, and this is 
considered to be a very worthwhile improvement.

8.2.2 Working towards future graphical program development tools

There are a number of interesting areas in the field of graphical program 
development tools for parallel systems worthy of investigation, some of which are 
described in the following sections.
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8.2.2.1 Mixed paradigm approaches

GILT’S mixed paradigm approach (control flow, channels, text and graphics) 
seems successful and could be an appropriate area for further research. Future 
systems could take the mixed graphics and text approach a stage further and allow 
conventional code to be mixed with graphics so that, for example, a textual for loop 
could enclose, or even replicate, a graphical construct.

8.2.2.2 Combined visual programming and program visualisation

The binary divide of programming systems into program visualisation systems and 
visual programming systems may not be necessary if text and graphics complement 
each other as well as they appear to do. It should be possible to parse in existing 
programs into a visual programming system and lay them out either by hand or 
automatically. Obviously such a "reverse engineering" approach does present 
significant difficulties, but these should not preclude research in this direction.

8.2.23 Visual mixed language programming

Mixed language programming is an area little investigated for concurrent 
programming. It is easy to imagine a mixed language system like GILT allowing 
the functionality of modules (Process Icons) to be described using different textual 
(or even graphical) languages with sets of compatible communications primitives. 
The techniques of visual programming could be used to specify the connections 
between the modules.

8.23.4 The use of colour

The use of colour in parallel programming is a good research area. Colour coding 
of processor activity has already been shown to be useful by a number of systems, 
but further research on other applications is needed. One possibility for the 
application of colour coding in GILT-like systems is to indicate potentially 
erroneous or incomplete structures using different hues. Another possibility is, as 
mentioned earlier, to use colour for the display of performance information.

8.23.5 Multidimensional tools

Graphical program development tools need not necessarily be limited to two 
dimensional representations as there are many common parallel programming 
structures for which three or higher dimensional representations are appropriate. 
Raytracing provides a mechanism for rendering startlingly realistic images of non-
existent scenes, with "glass spheres" and "ball and stick" molecules being common
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in such images. The techniques of virtual reality (Leib, 1990) provide methods for 
interacting with 3-D scenes and it is pleasant to image a graphical tool with a walk 
(fly?) though metaphor in which users wear special equipment (for example, suits 
and goggles with appropriate sensors) to enter a world of glass sphere processes 
connected in three (or more) dimensions via "pipes". Users could "carry" a kit of 
specialist tools for interacting with the environment, such as "channel wrenches". 
Interestingly, the mechanisms used in GILT’s syntax and compiler would require 
little expansion to deal with such a "CSP world".
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As a final concluding remark, graphical program development tools offer many 
exciting possibilities for the development of software systems for parallel 
computers, which are limited only by the imaginations of their designers.
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Appendix 1

The syntax of Occam2

The syntax presented here is a version of that contained in (Jones and Goldsmith, 
1988), to which the reader is directed for further information. It is included here 
to enable a comparison with the various syntactic expressions in the thesis, and 
assumes the definition of concepts such as a "name", "decimal", "hexadecimal", 
"real", in Occam’s micro syntax. Occam’s language structure is described by 
productions in a BNF modified to cope with the two dimensional syntax of Occam. 
Non-terminal symbols are written as lower case, while terminals are enclosed by 
boxes and correspond to Occam reserved words and symbols. Vertical bars ( | ) are 
used to represent alternative parses for a class. Horizontal juxtaposition means 
that components appear after each other on a line. Vertical juxtaposition means 
that the components of a parse must appear above each other on separate lines. 
Two kinds of abbreviation are used for sequences of instances of the same kind :

parallel::=1PAR
{process}

Implies that a parallel can have any number of instances of process in it, arranged 
above each other at the same indentation (here two spaces in from the indentation 
of the PAR.

fun.heading: : = {lfjjbase. type}[FUNCTIO^namejT[{ Ojjjfun. formais }Q]

Implies that fun.heading is laid out on a single line. It beings with a sequence of 
instances of base.type, at least one of them, separated by commas. Between the 
brackets there is a possibly empty sequence of instances of fun.formals separated 
by commas.

Data types
base.type 

int.type : 

float.type 

data.type

: = I BOOlJ I [BYTE I | int.type | float, type

INT16 INT3 2 INT64 INT

REAL32 REAL64

:= base.type | jjjexprjj] data.type
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Protocols
protocol ::= name | simple.protocol | anarchic

protocol.definition sequential.definition
discriminated.definition

simple.protocol ::= data.type | count.type|: ; []|data.type 

count.type int.type BYTE

sequential.definition::= __
PROTOCOL name |is | sequential.protocol

sequential. protocol ::= {l{7J simple. protocol}

discriminated.definition : :=I PROTOCOL name
CASE

{taqged.protocol}

tagged.protocol ::= tag | tag;sequential.protocol 

tag ::= name

anarchic ::= ANY

Literals or constants
literal ::= bool.literal | byte.literal | int.literal 

float.literal

bool.literal 

byte.literal 

int.literal :

:= TRUE FALSE

:= byte | bytef(lBYTEl)l | integer

= integer | integer(int.type) 
byte(int.type)

nia&Mi

integer ::= decimal | hexadecimal 

float.literal ::= real(float.type)

Arrays
table :: = [[]{lQexpr JQ] | string | name

part ::= table | part[expr] | fpart[FROMl expr|FO R ]expr ]
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Specifications and scope
specification ::= declaration | abbreviation | definition

definition ::= protocol.definition | proc.definition
fun.definition

Declaration
type :: = data.type | channel.type | port.type | timer.type 

specifier : := type | [Xjexpr. optiohQJspecif ier 

expr.option ::= expr | empty 

declaration ::= type {lQname} :

variable ::= name | variablef[]expr] 
[variable I FROM! expr expr]

channel, type : := ICHANl fOFf protocol | [[] expr Q] channel, type

channel : : = name | channel[[]expi[]]
[[Jchannel ¡FROM] expr [FOî expiQ]

port, type : ;= [PORTI ¡OFJ data, type | [[]expr}]]port. type

port : : = name | port [[] expr [J
[[£>ort | FROM| expr ¡FOR | expr Q]

timer, type ; : = | TIMER| | [|]expi[J]timer. type

timer ::= name | timerf[̂ xpifj[ [
timer ¡FROM] expr ¡FOR] expr Q]

Abbreviation
abbreviation ::= value.abbreviation

object.abbreviation | 
retyping

value. abbreviation; : = [VAlj specif ier. option name 

specifier.option :;= specifier | empty

expr

object.abbreviation : specifier.option name IS| object : 

object :;= variable | channel | port | timer 

retyping ::= value.retyping | object.retyping 

retyping :;= variable.retyping | object.retyping
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value. retyping : : = IVAI| specifier name [RETYPES] expr :

obj ect. retyping : := specifier name [RETYPES) variable :

Expressions, conversions, etc.
expr::= rand | mon.op rand | rand rator rand | conversion! 

extremum

rand::= literal | part ] variable | [(Jaxpr) | [Rvalue. procQ] | 

fun.call

rator ::= number.op | modulo.op | bit.op 
shift.op | relate.op

logic.op

MINUS IS iBITNOTl NOT 1SIZE

number.op : : = [+! 1 FT I F*1 1 F71 1 f~\l I 1REM

modulo, op : : = PLUSj | |MINUS[ 

logic, op : : = I ANcj | |0R 

bit.op : := [7\1 I [BITANC 

shift.op :

TIMES

\71 I |bitor) > <

relate.op 

equality :

inequality | after

: = (<3| IE3

::= equality

: = H  | [<>]
inequality : := R] | [<=] | \ [>=]

after ::= [AFTER

conversion ::= base.type rounding rand 

rounding empty

extremum ::

ROUNC TRUNC

MOSTPOS int.type | MOSTNEG int.type

value.proc : : = (VALOF
process
RESUI/l| expr. list

specification 
value.proc

Processes
process ::= atom | construct | discrimination | loop 

instance | block

block ::= specification allocation
process process
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atom : : = [ SKIP) | | STOP| | assignment | input | output

Assignment
a s s i g n m e n t  : : =  v a r i a b l e . l i s t  :=  e x p r . l i s t  

v a r i a b l e ,  l i s t  : : =  { l Q  v a r i a b l e }

e x p r . l i s t  : : =  { l Q  e x p r )  [ ¿ ¡ v a l u e . p r o c  f u n . c a l l
CD

Communication
output ::= channel.output | port.output

channel.output ::= channel [Tl source.list
channel Q] tagged.source.list

tagged.source.list ::= tag | tag Q] source.list

source.list ::= ( l Q  source}

source expr | expr [77] expr

port.output ::= port (Tfexpr

input ::= channel.input | port.input | timer.input

channel.input ::= channel ITI target.list
c h a n n e l  [71 |CASEj t a g g e d ,  l i s t

tagged.list ::= tag | tag [Tf target. list

target.list ::= {1 [¿¡target}

target ::= variable | variable [77J variable

port, input : := port [T| variable

timer, input ::= timer [?] variable

delay

d e l a y  t i m e r  ID [AFTERl e x p r

Constructed Processes
construct ::= sequence | conditional 

alternation
parallel

r e p l i c a t o r  : :=  name (=] e x p r  ¡FOR] e x p r
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Sequential Process
sequence ::= | SEQ

{process}
SEQ| replicator 
process

Conditional process
conditional : := [IF] |IF] replicator

{choice} choice

choice ::= guarded.choice | conditional | specification
choice

guarded.choice ::= expr
process

Homogeneous choice
discrimination ::= selection | case.input

selection CASg expr 
{option}

option ::= {lflexpr} 
process

| {ELSE)
process

specification
option

case, input : := channel [T] [CASEl
{variant}

variant ::= tagged.list 
process

specification
variant

Parallel Processes
parallel := PAR

PAR
{process}
_ replicator
process

placed.parallel pri.parallel

placed.parallel PLACEDl [PAR]
{placement} 

iPLACEDl [PAR| replicator 
placement

placement ::= singleton | placed.parallel

singleton : := [PROCESSOR] expr
process

allocation PLACE name AT expr [7]
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pri.parallel : : = |PRf~[|PAR
{process}
PRI I [PARj replicator
process

Alternative Process
alternation ALT

{alternative} 
IaltI replicator 

{alternative} 
pri.alternation

alternative ::= simple.alternative | alternation |
specification
alternative

simple.alternative ::= guarded.alternative
case.alternative

guarded.alternative ::= guard
process

guard SKIP| I expr [&][ SKIP] | input | expr [&] input

case. alternative ::= channel [?] IcASE] | expr [&] channel [?~| ¡CASE]
{variant} | {variant}

pri.alternative PRU [alti
{alternative}

|PRI| 1ALH replicator 
alternative

Unbounded Loops
loop : := [WHILEj expr 

process

Procedure abstraction
proc.definition ::= proc.heading 

process
□

proc.heading 

proc.formais

::= PROC name [(]{ 0 {7[ proc. formals } Q]

: : = specifier} l^name} | |VAL| specifier} IQ name}
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Function Abstraction
fun.definition ::= fun. heading (Ts] expr.listjTl |

fun.heading 
value.proc

0
fun. heading:: = {lQbase. type}[FUNCTION] narnejj]

{ oQ fun. formals

fun.formals ; : = [VAli specifier{lQ name}

fun.call ::= name[[|{ 0 Q fun.actual} Q] 

fun.actual expr
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Appendix 2

Definitions of hierarchical graphs, 
graph grammars and legal GILT

graphs

The syntax of the GILT language is based on "hierarchical valued graphs". 
Hierarchical graphs are in turn based on "valued graphs". Thus this definition 
begins with a definition of a valued graph, and proceeds with a definition of a 
hierarchical valued graph or H-graph. Finally, some conditions for legal GILT 
graphs are defined.

Definition - valued graph

A set of symbols is termed a "vocabulary". Assume that Vm  and Va  are finite sets 
of distinct symbols. Vm  and Va  are the sets of node values and arc labels 
respectively.

A valued graph G over Vm  and Va  is a triple (N,L,E) where N is a finite set of 
nodes.

L:N- > Vm  (L, the node value function, defines the value of each node)

E- > (NxVa x N) (E - the arc set, defines the arcs of G and their labels)..

If (n,a,m) t E, then an arc exists from node n to node m with label a. If G is a graph, 
then Ng , Lg  and Eg  denote the node set, node value function and arc set of G 
respectively.

*

If Vm  and Va  are finite sets of distinct symbols then the vocabulary V ( Vm , Va ) 
= {G | G is a^graph over Vm , Va }. In shorthand, where Vm  and Va  are assumed 
it is written V and is informally the set of all graphs composed with nodes having 
values from Vm  and arcs having labels from Va , including the "empty graph".

4- *The empty graph, denoted e, has no nodes or edges. The notation V denotes V
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Definition o f heirarchical graphs, graph grammars and
legal G ILT graphs

Definition - hierarchical valued graph

An hierarchical valued graph or H-graph over Vm , Va  is defined as follows:

The vocabulary of a level-0 H-graph Ho *(Vm , Va ) = Vm .

A level-1 H-graph is a valued graph over Vm and Va , as defined previously :

Hi* (Vm , Va ) = V (Vm , Va ), the set of all level-1 H-graphs.

A  level-k H-graph (k 1) over Vm , Va  is a graph over 
k-i

Ui = o Hi (V m , Va ) providing that Va

*has at least one node value in Hk-i (Vm , Va )
*  ^

Hk (V m , Va ) (in shorthand written Hk ) = {X | X is a level-k H-graph}
* 00 * ,

H (V m , Va ) = Vk = o Hk , the set of all H-graphs over Vm , Va , in shorthand
written H .

The notation H + denotes H - {e}.

Thus, a level k hierarchical valued graph is composed of nodes which have values 
which are level k-1 hierarchical valued graphs. A level 1 hierarchical valued graph 
is a simple valued graph.

Definition - H-graph grammar :

A "H-graph grammar" is a quintuple (Vt, Vn, Va, S, P) where :

Vt is a finite set of "terminal" node labels (the "terminals"),

Vn is a finite set of "non-terminal" node labels (the "non-terminals"),

Va is a finite set of arc labels (the "arcs"),

S, the "start symbol", is a distinguished member of Vn,

and P is a set of "productions" s.t. each production is a quadruple (G,H,I,0) and 
written G - > Hi,o. The "left part" G e Vn . The "right part" is Hi,o. In general H e 
H . In our case we do not allow H to be the empty graph e and hence H e H . I 
and O are distinguished nodes in H termed the "input" and "output nodes" (or 
"gluing points") respectively.

Productions are used to derive graphs with node values in H + starting from a "host 
graph" containing only the start symbol S. During the derivation, the nodes of the 
host graph with values in Vn  (e.g. an arbitrary node A valued B, with B e Vn ) are 
replaced by the right part of some production rewriting B, e.g. B - > Ci,o. Every
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Definition o f  heirarchical graphs, graph grammars and
legal G ILT graphs

arc originally entering (exiting) the node B becomes an arc entering I (exiting O). 
Thus I and O define the "embedding" of the right part (C) in the host graph. Thus 
the way in which the "embedding transformation" is specified in the grammar is 
extremely simple.

An H-graph grammar is "ambiguous" if the language that it generates contains a 
graph with two or more distinct derivations.

Definition - Legal GILT graph

Let Q be the base grammar defined in chapter five, figure 5.5 and W be the 
communications grammar of figure 5.20 in the same chapter. Q is a comprehensive 
definition both of the control flow structures used in GILT and the connection 
points for graphs generated using the communication grammar "W", which is a 
comprehensive definition of the legal communication constructs of the language.

Let two node and arc vocabularies, V m  and V a  such th a t:

V m  =  V m q  u  V m w ,

V a  =  V a q  u  V a w .

w here V m q  and V m w  are the node vocabularies o f Q and W  respectively, and 
V a q  and V a w  are the arc vocabularies o f Q and W  respectively.

A graph Gi over (V m , V a ) is a legal level-1 GILT graph if it can be formed by the 
union of two graphs Bi and Ci such that :

Bi is a level-1 base H-graph, defined by grammar Q.

C’l is a set of n communications graphs defined by grammar W.

C’i = {Ci,i, Ci,2,..., Ci,n}

All Ci,i e C’i  are defined to be disjoint s.t.

for all Cij, Ci,k e C’l,

a £ Cij, a «} Ci,k-

The "total communications graph" Ci is formed by the union of all disjoint Ci,i’s : 

Ci = Ui = o Ci,i

N b i o  is the set of all nodes labelled "CHANNEL OUTPUT PORT' in Bi.

Nb i i  is the set of all nodes labelled "CHANNEL INPUT PORT' in Bi.

Similarly,
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N cio is the set of all nodes labelled "CHANNEL OUTPUT PORT' in Ci.

N cn is the set of all nodes labelled "CHANNEL INPUT PO R T  in Ci. 

so that,

Nb io  is a proper subset of Bi, Nb 1q  a proper subset of Bi, 

and,

Nb io  £  Bi Nb io £ Bi ,

If Nb io  = N cio and Nb i i  s  Nc i i .

G i = Bi u Ci and is a legal GILT level-1 graph.

Let Gk be a graph over (V m , V a ). Gk is a level-k (k >. 1) GILT graph if all the 
values of nodes in Gk which are graphs are legal level (k-1) GILT graphs, and if 
two graphs Bk and Ck can be generated such that :

Bk is a base H-graph, defined by grammar Q.

C’k be a set of n communications graphs defined by grammar Q.

C’k = {Ck,l, Ck,2, Ck,n}

All Ck,i £ C’k are defined to be disjoint s.t.

for all Ckj, Ck,k £ C’k,

a e Ckj, a 4 Ck,k.

The total communications graph Ck is formed by the union of all disjoint Ck,i’s : 

Ck — U i = o Ckj

NBko is the set of all nodes valued CHANNEL OUTPUT PORT in Bk.

Nb u  is the set of all nodes valued CHANNEL INPUT PORT in Bk.

Similarly,

Ncko is the set of all nodes valued CHANNEL OUTPUT PORT in Ck.

Ncki is the set of all nodes labelled CHANNEL INPUT PORT in Ck. 

so that,

NBkO £ Bk, NBkl £ Bk,
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and,

NckO £ Ck, NckI £ Ck,

NBkO s  NckO and NBkl s  Nckl.

Gk = Bk u Ck and is a legal k-level GILT graph.

A generalised legal GILT graph is one such k-level GILT graph where k is finite.

The definition of the H-graph and grammar are based on that in (Pratt, 1971). It 
differs from Pratts’s in that it uses a different method for the creation of graphs 
which cannot be generated using a context-free graph grammar. Instead of using 
labelling and reduction, as used by Pratt, it uses a simple set union method in which 
a complete graph is formed from two partial graphs (the base and communication 
graphs). The graphs are joined by graph union at the nodes with labels 
"CHANNEL INPUT PORT' and "CHANNEL OUTPUT PORT". Various 
restrictions ensure that such nodes are fully connected into the final graph and that 
no unconnected nodes exist
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Appendix 3

Published Work

This appendix contains published work by the author which is relevant to the 
subject of the thesis. Work is included in the following order; (Roberts and 
Samwell, 1989), (Roberts and Samwell, 1990), (Roberts, 1990a), (Roberts 1990b).
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A VISUAL PROGRAMMING SYSTEM FOR THE DEVELOPMENT OF PARALLEL SOFTWARE

M. Roberta and P. M. Samwell

The Centre for Information Engineering, City University, London, U.K.

This paper describes GILT, a visual 
programming language for transputer based 
multiprocessors, which is under development 
at City University. GILT programs take the 
form of hierarchical graphs in which nodes 
are processes visually represented by icons 
and edges are either control flow or inter-
process communication paths. Users of GILT 
interactively build programs using a mouse at 
a high resolution workscreen. Only when a 
program has been completely specified in 
terms of communicating processes need the 
user enter conventional program text for the 
lowest level processes. GILT programs may 
then be compiled into Occam for execution on 
transputer arrays. This approach to 
concurrent programming has a number of 
advantages, which include increased speed of 
interaction, a much higher information 
transfer bandwidth between man and machine, 
and a more natural representation of 
parallelism than is allowed by conventional 
textual languages.

GRAPHICAL TOOLS FOR CONCURRENT PROGRAMMING

Graphical tools for concurrent program 
development and analysis have the potential 
to make parallel programming a much easier 
task. Backus (1) notes that concurrency 
introduces an "extra dimension” to 
programming not present in conventional von- 
Neurnann type sequential languages. While 
textual languages appear reasonably well 
suited to the demands of sequential 
programming, textual concurrent programming 
languages force programmers to express their 
thoughts of multiple interacting threads of 
execution in terms of one dimensional textual 
strings. In these textual representations 
certain information (specifically 
concurrency) is well hidden and its 
extraction requires considerable mental 
effort. It is therefore natural to use 
multidimensional, graphical representations 
of parallelism, rather than textual 
representations.

The increased representational power of 
graphical views of concurrency can be 
recognised by the large number of diagrams 
used in papers on the subject e.g. (2). It is 
our experience that programmers, whether 
implementing or analysing a program, 
frequently use diagrams and sketches of the 
multiple interacting processes in a large 
concurrent program. More formal design 
methodologies for concurrent systems, such as 
Mascot (3) or Harel's work on Statecharts 
(4), can be seen as supporting this view.

It is well known that pictures provide a much 
higher information transfer bandwidth' between 
computer and man than does text, hence the 
greater understanding of graphically 
represented systems. Quoting Raeder (5) “The 
best way to give a programmer an idea of the 
parallelism obtained by design is probably to 
devise a graphical display of the program in 
action that highlights the multiple

concurrent actions". Surely a programming 
language that highlights multiple concurrent 
actions is even more desirable!

Graphical tools for concurrency fall into two 
main areas - program visualisation (PV) tool^ 
and visual programming (VP) tools. Program 
visualisation tools turn a textual or non- 
graphical representation of a program into a 
visual representation showing aspects of the 
program's structure or behaviour. Systems 
producing static or dynamic views have been 
developed, and it has been demonstrated that 
many facets of parallel program structure and 
behaviour are excellently represented by 
graphical means. Some recent parallel program 
visualisation systems include GRAIL (6), TREE 
(7), MONA (0) and (9). By contrast, visual 
programming systems make use of graphical 
structures as the program input medium, while 
many systems have been produced for 
sequentially based, object oriented, or data 
structure programming languages surprisingly 
few concerned with explicit concurrency 
exist. Of these few, some have used the 
naturally visual data flow model (10), (11). 
Other approaches have used visual programming 
for the specification of the program's 
interprocess communication structure and the 
interaction between the various component 
processes forming a parallel program, with 
the specification of the functionality of the 
program's component processes performed with 
a conventional von-Neumann language. STILE 
(12) and Poker (13) are typical of this 
approach.

MATHEMATICAL MODELS Q£ PARALLELISM

Mathematical models of parallelism e.g. (14), 
(15) allow the application of formal methods 
to program design and development and as such 
are a necessary basis for concurrent 
languages. They have obvious applications in 
the design of safety critical and/or real 
time systems in which program correctness is 
a central issue. However, few visual 
programming systems have incorporated such 
rigorous methodologies. The unification of 
visual programming techniques and languages 
based on mathematical models of parallelism 
is obviously desirable.

VISUAL FORMALISMS

GILT is a visual programming system based on 
the Occam (16) computationa1 model. GILT 
programs take the form of hierarchical graphs 
in which nodes are processes and edges 
represent control flow or interprocess 
communication. Nodes contain further, lower 
level, GILT graphs or simple Occam code. The 
graph model used allows the construction of 
programs consisting of small, potentially 
provable occam processes connected together 
in a consistent and visual way. Such an 
approach is similar to that used in (17). In 
a typical session a user would initially 
sketch a design of channel connected 
processes, similar to the sketches produced 
by many occam users in program development.
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The functionality of the individual processes 
defined would then be expressed in further, 
lower level, GILT graphs until the user had 
satisfied himself that a sufficiently small 
level of granularity had been reached. Simple 
Occam code would then be written for the 
lowest level processes. This "top down" 
approach i6 not equivalent to pure functional 
design, but produces hierarchical sets of 
functionally related processes which are 
expressed in a graphical sense by the use of 
GILT'S visual graph notation.

THE GILT SYSTEM

GILT users interactively build program graphs 
using a mouse at a high resolution 
workscreen. Graphs are visually displayed by 
the use of icons representing nodes and 
graphical 'links' showing edges. Such visual 
representations have numerous advantages. For 
example, it is well known that human minds 
are strongly visually oriented and that 
people acquire information at a much higher 
rate by discovering graphical relationships 
in complex pictures than they do by reading 
text (5). Instant random visual access to any 
part of a picture is provided by our eyes 
whereas text is an essentially sequential 
medium. Pictures also provide many more 
dimensions of expression than do words, and 
allow us to use a host of familiar visual 
symbols for the expression of concepts. Gilt 
icons do not provide functionality - for 
example, they are not arguments to pre-
defined processes, as icons have been in some 
previous systems. Rather they provide a 
visual description of the functionality of 
the process that they represent. Box based 
visual programming systems e.g. (11)/ (18) do 
not allow the use of real world symbols and 
thus iconic systems with user defined symbols 
potentially provide much more program related 
information. Graphical program 
representations do not however replace 
textual descriptions for the expression of 
abstract concepts. Rather textual and 
graphical representations complement each 
other in that textual representations can 
convey information difficult to express 
graphically and vice versa.

R e a l  t i m e  s y s t e m s  a n d  G I L I

Real time systems are inherently parallel 
and so a language based on parallel 
communicating modules is ideal for real time 
applications. Equally desirable is a formal 
basis to such a language allowing the 
application of formal methods for program 
design and development. In GILT or occam 
based real time software, applications are 
decomposed into many small communicating 
processes, each dealing with one aspect of 
the system's real time behaviour. The formal 
aspects of occam should allow the behaviour 
of such small processes to be reasoned about. 
However, textual languages obscure
parallelism and communications between 
parallel program modules, making the writing 
of such parallel programs an unnecessarily 
difficult task. The GILT approach is intended 
to give the programmer the advantages that 
occam offers in terms of modularity and 
formality, while adding features intended to 
make the coding of communications structure 
and parallelism an easier task.

GILT Graph Components

Gilt Graphs are composed of a small number of 
basic components :

Process Icons represent process nodes 
analogous to occam processes (See Figure 1). 
Each process node contains either a few lines 
of occam code or an internal GILT graph. The 
appearance of process icons may be altered by 
tne programmer to give an indication of the 
functionality of the process node that the 
icon represents. Figure 2 shows the internal 
GILT graph of the process node represented by 
the icon in Figure 1.
Control flow links and as many ports as are 
required for communication with other process 
nodes are arranged around the outside of the 
icon. Channel links connect ports to ports or 
ports to Channel stub icons (see Figure 2). 
Ports are representations at a higher level 
of abstraction of the channel stub icons 
present at a lower level of abstraction. 
Thus, the display process of Figure 3 has one 
input port, which corresponds to the single 
channel stub icon shown in Figure 2. 
Communication between levels of abstraction 
is implemented in this manner. Note that, as 
in occam, the connection of two ports by a 
channel link does not indicate that the 
processes owning the ports will communicate, 
only that they may.
Control flow stubs indicate the connection of 
control flow to the level of abstraction 
above the current level in the hierarchy of 
graphs. Only one control flow input and one 
control flow output are allowed at any level 
of abstraction. The appearance of control 
flow links, ports, channel links and channel 
stub icons is at present fixed, and is not 
alterable by the programmer. Figure 2 
illustrates all the basic components of a 
GILT graph.

Figure 3 shows a GILT display representing a 
pipeline structure for the calculation of 
mandelbrot sets. Five concurrent processes 
are shown - a display process, a controller 
process, two worker processes (which are
identical) and a special end pipeline 
process. The display process handles the 
display of information passed to it by the 
controller process, which also allocates work 
to and collects work from the worker 
processes. Worker processes perform work sent 
to them by the controller process, as well as 
routing work to and from other worker 
processes in the pipeline. The end pipeline 
process also performs work, but does not need 
to do any through routing of work for other 
processes. Concurrency in the pipeline is 
shown by the control flow forking to pass 
through each of the processes shown in 
parallel. In sequential control flow, the 
control flow links would connect processes 
serially.

Each node or edge in the graph may also have 
a textual comment associated with it. This 
allows the pictorial representation of a 
program to have text associated with it in 
the same way that we might annotate a 
diagram. Allowing free-hand drawing of arrows 
and other graphical annotations may be 
desirable in future, as such sketches are 
frequently used in both program development 
and documentation.

GILT graph structure rules

It is not enough that the graph components 
simply be defined - some restrictions must be 
placed on the classes of graph that may be 
constructed, as certain concepts that may be 
visually expressed can have no meaningful 
implementation in occam. These restrictions 
are enforced by the use of structure directed 
editing. Structure directed editing is 
equivalent to the syntax directed editing 
methods employed with conventional languages, 
but instead of acting on the syntactic rules
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associated with a textual language, it uses 
structure rules associated with the graph 
model. Our set of structure rules is 
certainly not complete in that it is possible 
to produce erroneous GILT programs. An 
example of an error would be a deadlocking 
program. It is difficult to devise 
restrictions to the graph formation rules 
which preclude such errors without imposing 
unnecessary limitations on valid programs. 
However, logical analysis may be useful in 
"highlighting" possible problem areas for 
programmer consideration.

Our set of graph structure rules are at 
present represented in a verbal and non- 
formal way. A good example of one such rule 
would be our ' non-recursive' rule - "No node 
may have itself as a descendant". This rule 
is a simple reflection of implementation 
restrictions - occam does not presently 
support recursion. Other rules disallow the 
production of classes of incomprehensible 
program structures, for example - separate 
threads of execution are not allowed to pass 
through the same instance of a process. ( We 
define a thread of execution as a sequence of 
instances of execution of processes. The 
number of processes in the thread must be 
finite and non-zero.) We are currently 
investigating the formal representation of 
such rules. Harel (4) has discussed formal 
descriptions of visual representations and it 
is easy to see the relationship between 
Harel's Higraphs and GILT graphs. The use of 
a description such as that of Higraph for the 
GILT visual model may enable a full formal 
representation for the system to be 
developed. Certain parallels also exist 
between Higraph descriptions and the CSP 
model (14) .

User Interaction with the system

processor only. Code for multiple processors 
will be produced by the use of a visual 
process-to-processor mapping tool in which 
processes are grouped together and 
interactively assigned to processors. A 
similar graphical tool, Gecko, has been 
produced for transputer based systems (19). 
However, GILT'S hierarchical graph model 
allows a novel approach to the mapping 
problem. Processes at particular levels of 
abstraction are assigned to groups of 
processors. The assignment of processes to 
individual group members is then carried out 
at a lower level of abstraction. Providing 
group members are close to each other in 
terms of communication, and processes at a 
given level of abstraction are also close in 
terms of communications, then an efficient 
mapping should be achieved.

ANIMATION

Although animation is a powerful aid to the 
comprehension of concurrency, few previous 
systems have made use of animation to 
represent explicit concurrency. Systems that 
do so include (9), PIE (20), MONA (8), Tree 
and Graph (7). (9) uses animation to display 
various facets of parallel program behaviour 
for debugging purposes. PIE provides a 
graphical animated view of objects and their 
relationships within a parallel environment 
and MONA displays a process event trace 
graphically, updating this information to 
provide a "movie" of the actions taken by a 
distributed system. Tree and Graph provide 
animated program and machine level views of
dataflow programs in execution. In addition
to these systems, a number of papers on 
visual programming have proposed the use of 
animation for the display of concurrency (5), 
(2 1 ), (2 2 ).

Users interact with the GILT editor by means 
of a mouse and menu based system. Icons 
representing processes and i/o stubs are 
drawn in a special icon editing area, then 
dragged to an appropriate position on the 
screen. Icons may be "entered" to reveal
detail within them. Entering an icon is 
equivalent to going down one level in the 
hierarchy to a lower level of abstraction. 
Text for the lowest level icons is entered 
from the keyboard into pop-up windows. Note 
that no capability to "open" icons is 
provided due to limited screen resolution and 
layout problems. Indeed, allowing the opening 
of nodes in hierarchical systems may be 
undesirable, as it encourages a programmer 
not to structure his program in a top-down 
manner. Support for concurrent editing at 
different levels of abstraction will be 
supported in later versions of the system 
editor, although the current editor supports 
only editing at one (variable) level. 
Control flow and channel links are also 
defined with the mouse. Structure directed 
editing prevents connection of channel stubs 
to control flow, placement of icons on top of 
one another and other similar problems. 
Figure 3 shows a GILT display.

Compilation of GILT graphs

Compilation of GILT graphs is a two stage 
process. Firstly, GILT graphs are compiled 
into occam code. This code is then compiled 
via a standard occam compiler to produce 
transputer executable code. A parse tree is 
produced from the GILT program graph, 
allowing easy application of program 
transformation techniques. Initial versions 
of the compiler produce code for a single

GILT is already a visual programming language 
and so there is no need to create a different
view of the program as is the case with 
program visualisation systems. We only need 
to select appropriate views of the program at 
particular levels of abstraction and overlay 
information on top of the existing views. For 
example, concurrently executing processes may 
be shown by highlighting and data may be 
shown moving down channels by tokens. 
Synchronised communication may be shown by 
first highlighting stubs that are ready to 
communicate. Only when two connected stubs 
are highlighted can a token move graphically 
down a channel to indicate data transmission 
between the processes. Use can also be made 
of a multi-windowing environment to provide 
views of the program in execution at 
different levels of abstraction.

The extraction of information from 
multitransputer systems is interesting, but 
beyond the scope of this paper. We do 
however, plan to extract information from 
running transputer systems. West (23) has 
investigated the use of program 
transformation for this purpose and Tang (7) 
discusses a variety of methods that could be 
used to obtain information for use in 
animated program views.

GRAPHICAL PROGRAM TRANSFORMATION

As occam is a language based on algebraic 
laws, it is possible to transform one form of 
an occam program into another. This technique 
is known as program transformation. 
Transformations may for example be applied to 
programs to improve their efficiency. 
However, with a textual representation it is 
difficult to obtain an overview of the
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transformed program and the net effect of the 
transformation. A graphical program model 
provides a framework for transformation in 
which the results of transformations can 
easily be seen. As GILT graphs allow a freer 
representation of parallelism than is 
obtainable with textual programming 
languages, it is hoped that programmers may 
feel encouraged to encode their programs in a 
highly parallel (ideally maximally parallel) 
manner. when the program is to be scheduled 
for maximum real time efficiency over a 
number of processors, a maximally parallel 
version of the program i6 not necessarily 
desirable - as the processors will have to 
perform large amounts of context switching. A 
technique suggested by Roscoe and Hoare (24) 
might be to take a maximally parallel version 
of the program and use the symmetry and 
associative laws of the occam PAR constructor 
to divide the task into groups of processes 
suitable for running on single processors in 
a given network. Some of the parallelism 
within these groups could then be eliminated. 
Such an approach is ideal for graphical 
implementation with users being able to 
directly view the effect of the restructuring 
on their program. Other program 
transformation approaches could be equally 
informative when visually represented.

SUMMARY

Thi3 paper has described GILT, a concurrent 
visual programming system for transputers. 
GILT programs are represented as visually 
displayed hierarchical graphs, a notation 
which has many advantages for parallel 
programming and provides a basis for program 
transformation, animation, and other 
desirable techniques. The system is currently 
being implemented on a Sun 4/110 workstation. 
The user interface and graph editing systems 
are completed and a compiler for GILT graphs 
is under development. Ongoing work centres on 
four main areas. Firstly, the development of 
an efficient compiler for GILT graphs. 
Secondly, the extraction of debugging 
information from transputer systems and its 
overlay on GILT graphs. Thirdly the 
practicality and uses of visual program 
transformation, and finally on a formal 
description of the GILT graph model.
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Figure 1 - A process icon representing a
display managing process

Figure 2 - The internal detail of the process 
represented by the icon of Figure 1. Two 
parallol procooeoG, a co-ord ina to 
transforming process and a primitive display 
process, are shown.
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Abstract

The difficulty of producing reliable safety-critical software is widely appreciated. The major 
problems arise from the complexity of realistic systems and their inherent requirements of 
interaction with concurrent, real-time and possible non-deterministic aspects of their 
environment. The software engineer’s best strategy for maximising confidence in solutions 
is the use of tools which have a rigorous mathematical background. Recent visual program-
ming techniques can also aid the software engineer by facilitating the management of 
complexity in concurrent software development and by providing a better human interface 
to the programming process. However, few visual programming systems have incorporated 
mathematical models of parallelism. They have instead focused on a less formal and more 
humanistic approach. The unification of visual programming techniques and parallel lan-
guages based on mathematical models is obviously desirable.

This paper describes the visual programming language GILT (Graphical Language for 
Transputers) and discusses how the application of GILT-like languages to the development 
of parallel software can further the development of explicitly parallel programming and 
widen the acceptance of the transputer as a basic component for the production of parallel 
systems. Compiling GILT visual programs into occam as well as new developments in the 
GILT visual graph model are discussed. Applications in both computer science education 
and concurrent program development are given.
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On the use and facility of graphics in concurrent programming

It is well known that visual, as opposed to textual, representation is a powerful tool for 
comprehension and expression of complex designs - in particular many aspects of parallel 
systems. We have found that programmers of transputer based systems often draw diagrams 
of processes and communications channels as well as the ’rack diagram’ commonly found 
at transputer sites. More formal design methodologies, such as Mascot [Simpson86] or 
Harel’s work on Statecharts [Harel88], can be seen as further evidence as to the facility of 
graphics in a concurrent environment.

Visual (graphical) programming languages not only achieve a very high information transfer 
bandwidth between human and machine, but they also give a far more natural description 
of parallelism than is achieved by conventional textual languages. This more natural 
description of parallelism aids the software development process by increasing use of the 
left hemisphere of the brain, which is currently under-used in programming [Shu88], It has 
been noted that graphical program development tools are particularly efficient in computer 
science education. A good application for graphical parallel program development tools 
lies in the initiation of the conventional sequential programming community in concurrent 
programming techniques. The tools can help to widen acceptance of parallel processing by 
improving the human computer interface in concurrent programming practice.

In addition, graphical tools may be able to provide a highly humanistic interface to formal 
mathematical models of parallelism (e.g. [Hoare85, Milner87]), which allow the application 
of formal methods to program design and development and as such are a necessary basis 
for concurrent languages. However, most visual programming systems have yet to incor-
porate such rigorous method ologies. The unification of visual programming techniques 
and languages based on mathematical models of parallelism is obvious ly desirable.

These reasons, amongst others, have lead us to believe that the visual expression of 
concurrent programming structures is a realistic tool for code development for concurrent 
systems, particularly for those systems based on the naturally visual communicating proces-
ses model.

Recent and related work

Recent work on graphical program development tools has centred in two main areas - 
program visualisation and visual programming. Program visualisation tools turn a textual 
or non-graphical representation of a program into a visual representation showing aspects 
of the program’s structure or behaviour. By contrast, visual programming systems make use 
of graphical structures as the program input medium. While many systems have been 
produced for sequentially based, object oriented, or data structure programming languages 
surprisingly few concerned with explicit concurrency exist. Some relevant concurrent visual 
programming and program visualisation systems are discussed in [Roberts89]. Two recent 
and interesting systems are described in [Mourlin89] and [Crowe89]. Such tools have 
demonstrated that both program visualisation and visual programming have the potential 
to make parallel programming an easier task.
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Visual programming with GILT

GILT is a visual programming system based on the Occam [May87] computational model. 
Programs are built at a workstation by interactive construction of hierarchical graphs in 
which nodes are processes and communication facilities, with edges showing flow of control 
and inter-process communication. Nodes are visually represented by icons with textual 
labels, while edges are shown using a variety of different line styles dependent on the edge’s 
function. Processes may have graphical sub-processes or, at the lowest levels of abstraction, 
may be directly expressed in occam. The graph model used allows the construction of 
programs consisting of small, potentially provable occam processes connected together in 
a consistent and visual way. A user may initially sketch a design of channel connected 
processes similar to the sketches produced by many occam users during program develop-
ment. The functionality of the individual processes may then be expressed in further, lower 
level, GILT graphs until the user is satisfied that a sufficiently small level of granularity has 
been reached. Simple occam code can then be written for the lowest level processes. This 
"top down" approach is not equivalent to pure functional design, but produces hierarchical 
sets of functionally related processes which are expressed in a graphical sense by the use of 
a visual graph notation. Alternatively, programs can be constructed by the "snapping 
together" of standard program components stored in a process library. This approach is 
similar to the conventional engineering practice of bottom up design and has advantages 
for code reuse. Realistically, both approaches may be used in practical program develop-
ment. Previous CSP based visual programming systems (such as [Pong86]) have not 
included control flow within their graph model. The inclusion of control flow into the graph 
model allows visual programming to proceed to a lower level of abstraction than is possible 
with the use of pure communicating processes visualisation models. In certain situations, 
however, viewing control flow may be confusing. GILT therefore allows users to hide 
control flow from sight, so that graphs may be viewed and constructed using a pure 
communicating processes model. This facility is particularly useful when all the processes 
at a particular level of abstraction are in parallel, for example in a systolic array.

GILT’s icons do not provide functionality - they are not, for example, arguments to 
pre-defined processes as icons have been in some previous systems. Rather they provide a 
visual description of the functionality of the node which they represent. The pictographic 
representations used in GILT do not, however, replace textual descriptions for the complete 
representation of abstract concepts - GILT is based on a mixed textual and graphical model 
with text and graphics complementing each other. Textual process names, comments and 
variable definitions (just some examples) are as important in a program as is the program’s 
visual information. GILT’s close integration of control flow, inter-process communication 
and text within a single unified graph model addresses many of the problems associated 
with both visual programming and concurrency. As illustration, GILT’s text-graphic in-
tegration yields a convenient graphical representation for guarded execution of processes 
lacking in previous concurrent visual programming systems. (Figure 1)

Users interact with the GILT editor by means of a mouse and menu based system. Icons 
representing processes and i/o stubs are drawn in a special icon editing area, then dragged 
to an appropriate position on the screen. Icons may be "entered" to reveal detail within 
them. Entering an icon is equivalent to going down one level in the hierarchy to a lower 
level of abstraction. Text for the lowest level icons is entered from the keyboard into pop-up 
windows. Note that no capability to "open" icons is provided due to limited screen resolution 
and layout problems. Indeed, allowing the opening of nodes in hierarchical systems may be
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undesirable, as it encourages a programmer not to structure programs in a top-down 
manner. Support for concurrent editing at different levels of abstraction will be supported 
in later versions of the system editor, although the current editor supports only editing at 
one (variable) level. Control flow and channel links are also defined with the mouse.

GILT graph components

GILT graphs are composed of a small number of basic components - Process Icons, Guard 
Icons, Comments, Variable Declaration Icons, Passed Variable Icons, Control Flow Links, 
Channel Stub Icons, Channel Links and Control Flow Stub Icons. Readers are directed to 
[Roberts89] for a fuller description of the most basic components. Since then, a number of 
refinements to the graph model have introduced several new components to the above list 

Guard Icons, Variable Declaration Icons, and Passed Variable Icons. We plan to add 
further refinements to the model, such as control flow switches corresponding to the Occam 
’if and ’case’ statements. GILT’s icons have also been amended to include a textual label, 
similar to the textual icon labels used in Hi- Visual [Yoshimoto86], This system allows users 
to easily deter mine the function of iconic symbols new to them, while still allowing the use 
of the icons for quick information recognition. Figure 2 shows current symbols within the 
graph model. Figure 3 shows a trivial graph, and its equivalent in Occam.

Ensuring graph correctness

It is possible to express concepts visually that can have no meaningful implementation in 
Occam. One such construct would be the connection of control flow to a Channel Stub Icon. 
Restrictions to the structures that may be evolved are enforced by the use of structure 
directed editing. Structure directed editing is equivalent to the syntax directed editing 
methods employed with conventional languages, but instead of acting on the syntactic rules 
associated with a textual language, it uses structure rules associated with the graph model. 
The set of structure rules that may be evolved are enough to produce syntactically correct 
programs. It is difficult to devise restrictions to the graph formation rules which preclude 
logical errors without imposing unnecessary limitations on valid programs. However, the 
development of compiler for GILT graphs based on the graph reduction principle has 
highlighted a very plausible approach to the checking of graphs, which is even "smart" 
enough to enable suggestions be to made as to possible correct program structures within 
an erroneous framework.

Harel [Harel88] has discussed formal descriptions of visual representations and it is easy to 
see the relationship between Harel’s Fligraphs and GILT graphs. Although it is possible to 
represent GILT graphs using Harels’ Hi-Graph theory, we are using a context free graph 
grammar for the formalisation of GILT graphs.
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Compilation of GILT graphs

Compilation of GILT graphs is a two stage process. Firstly, GILT graphs are compiled into 
occam code. This code is then compiled via a standard Occam compiler to produce 
transputer executable code.

A new GILT compiler which works on a reduction principle relying on the laws of occam 
[Roscoe86], particularly the symmetry and associativity of occam constructor processes, is 
being written.

A number of graph reductions have been developed which may be applied to GILT graphs. 
These reductions replace existing graph structures with a new node in the graph whose 
attribute describes the original structure. For example, a parallel reduction rule specifies 
that two nodes wired in parallel may be reduced to a single node with an attribute list 
representing the two original nodes executing in parallel. Due to the associativity of the 
PAR constructor, it is possible to reduce any n-branch parallel structure into a single node 
with a textual attribute equivalent to the parallel structure.

Equivalents for the reduction of SEQ constructs exist. Reduction of ALT constructs 
requires several simple reductions. The compiler may be modified to recognise different 
visual structures by the addition of new reductions or by modification of existing ones. 
Communication between process nodes is easily compiled by replacing instances of proces-
ses in the textual attribute list of a reduced node with a channel definition and process 
instances with the generated channel name as a passed parameter.

The reductions are encoded as a set of productions. These productions of a grammar define 
the syntax of the graphs. Any fully reducible graph is therefore syntactically correct. The 
productions are encoded in Prolog, allowing them to be repeatedly applied to a Prolog rule 
base containing a description of the graphs. The Prolog rule base description is produced 
by the graph editor from its internal database describing graphs, with the editor performing 
tokenisation usually associated with the initial passof a compiler over a conventional textual 
language. Erroneous graphs will not reduce fully; they are left partly reduced, with the 
erroneous structure remaining in its original form. Error detection is therefore greatly 
simplified, and is just a matter of checking to see if graphs have been reduced at every level 
of abstraction. Propagation of errors back into the visual representation of the graph is also 
rather easy - outstanding links and nodes can be related back to the original graph and, for 
example, highlighted.

Of some concern is the slowness of the compilation process due to the Prolog matching 
process. It may be advantageous to re-code the reduction process in C once it has been 
thoroughly explored.

Productions may also be applied to graphs for the purpose of program transformation. 
When program transformation is applied to a textual language it is difficult to obtain an 
overview of the net effect of the transformation. However, with our graphical programming 
model, simple transformations may be applied to the rule base and the results displayed 
graphically. This approach provides a good interface to the transformation process.
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Initial versions of the new compiler will produce code for one processor only, though the 
use of a visual language allows easy use of a visual process to processor mapping tool similar 
to Gecko [Stephenson88]. It is also possible to approach the mapping problem in a topdown 
graphical manner, assigning groups of processes to ’super groups’ of processors, then 
carrying out stepwise refinement. Performance feedback in the form of coloured processor 
and channel activity coding like that used in Grail [Stepney87] can be used to guide the 
assignment process.

Graphical debugging and performance analysis

The views that GILT provides of parallel programs are static ones. It is easy to see that 
animated execution of explicitly concurrent programs has advantages for debugging and 
performance analysis. As a view of the program is already in existence any future graphical 
debugging or performance analysis system does not need to generate its own visualisation. 
Information can simply be overlaid on top of the existing view. This is not the case with 
program visualisation systems, in which computation of the view often forms the largest 
part of the system. Animation of important concurrent concepts such as synchronised 
communication may help to reveal deadlocks and other related bugs. A variety of methods 
can be used to obtain suitable information for such an animation. The issues involved in the 
extraction of suitable information are more fully discussed in [ West87], while Zimmermann 
[Zimmermann88] discusses the issues involved in animation.

Summary

This paper has described GILT, a concurrent visual programming system for transputers. 
GILT provides an abstract, hierarchical, visual program development system with close 
textual and graphical integration. GILT relies upon Occam’s mathematically based syntax 
and semantics. We aim to provide designers of parallel software systems with a more 
tractable and, therefore, a more productive design environment without sacrificing the 
rigour of the underlying level of implementation.

The system is under development on a Sun 4/110 workstation. The user interface and graph 
editing systems have been completed and a new compiler for GILT graphs, based on the 
reduction principle, is under development. The user interface and graph editing systems 
are written in C, whilst the compiler is currently written in Prolog. Our primary priority at 
present is the completion of the new compiler and the back propagation of errors into the 
editing system.
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Figure 1- A simple graph showing guarded execution of three processes. Once a guard has 
fired, one of the processes ‘increment’, ‘decrement’ or ‘request’ begins operation. Consult 
Figure 2 for a key to the icons.

Pn)
H > P  v a r  f- >  G D

Figure 2 - Key to icons. On the left, from top to bottom - Guard Icon, Process icon, Channel 
Input Stub, Channel Output Stub, Passed Variable Icon. On the right, from top to bottom, 
Control Flow out Stub Icon, Control Flow in Stub Icon. Control Flow Links are shown as 
thin lines. Channel Links are shown as thicker lines.
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Figure 3 - A trivial graph and its Occam equivilent. The graph is purely control flow and no 
communication between the component processes is shown.
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GRAPHICAL PROGRAM DEVELOPMENT TOOLS
a new special interest group 

Mike Roberts, City University, London

At the last occam user group meeting 1 proposed the formation of a ‘Graphical 
program development tools’ special interest group. As the suggestion did not meet 
with quite the hilarity I anticipated (six people were genuinely interested) I decided 
to test the water with the following short piece. Anyone interested in the formation 
of the SIG may contact me at the address below.

What is a graphical program development tool?

Graphical program development tools do, as their name implies, use graphics in the 
program development process. Many experimental tools have been produced for 
use in all stages of the sequential software life cycle ranging from high level project 
management systems to low level tools using graphics in the programming process.

As yet however, few have been produced for parallel systems though many feel 
that graphical tools may help in that ‘Holy grail’ of parallel processing - the export 
of parallel systems and languages into the so called real world.

They fall naturally into two main areas - program visualisation tools and visual 
programming tools. Program visualisation is the use of computer graphics to enhance 
program presentation and facilitate the visualisation, understanding and effective use 
of programs by humans. Visual programming on the other hand is a collection of 
related techniques through which algorithms are expressed using various graphical 
representations. In short programming visualisation shows aspects of the program 
graphically, where as visual programming makes use of graphics as the program input 
medium. For initial informed introductions to both areas see references [1, 2).

But can such methods aid concurrent programming? I think that they can. 
Most of the reasons behind the adoption of graphics based programming tools centre 
on increasing the use of the left side of our brains, little used in the programming 
process at present. With the increased software complexity often shown in concurrent 
programs, it makes sense to bring as much as is possible of our underutilised brains 
to bear upon the task. Several recent reports from within the occam community (3, 
4, 5, 6, 7) demonstrate the viability of such tools and can be seen as supporting this 
opinion.

If sufficient interest is expressed by members of the OUG, I will organize an initial 
SIG meeting at the Exeter technical meeting.

References

[1] B. A. Myers, The state of the art in visual programming and program 
visualisation, Report N9 CMU-CS-88-144, Computer Science Department, 
Carnegie Mellon University, Pittsburg; presented at the British Computer 
Society Displays Group’s Symposium on Visual programming and program 
visualisation, London, 16 March 1988.

[2] Nan C. Shu, Visual programming, Van Nostrand Reinhold, New York. ISBN 
0-442-28014-9, 1988.
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[3] W. D. Crowe, R. Hasson, P. E. D. Strain-Clark, A CASK tool for designing 
deadlock free occam programs, in the Proceedings of the 1 1th Occam user group 
technical meeting, ed. John Wexler, Developing transputer applications, 
OUG-11, Edinburgh, IOS, September 1989.

[4] F. Mourlin, Graphical environment, for occam programming, occam user group 
newsletter N9 11, July 1989.

[5] M. Roberts, P. M. Samwell, A visual programming system for the development 
of parallel software, in the Proceedings of the Second International Conference 
on Software Engineering for Real Time Systems, Cirencester, IEE, September 
1989.

[6] M. Stephenson, 0. Boudillet, GECKO: a graphical tool for the modelling and 
manipulation of occam software and transputer hardware toplogies in the 
Proceedings of the 9th occam user group technical meeting, ed. Charlie 
Askew, occam and the transputer - research and applications, OUG-9, 
Southampton, IOS, September 1988.

[7] S. Stepney, GRAIL: graphical representation of activity, interconnection and 
loading, in the Proceedings of the 7th occam user group technical meeting, ed. 
Traian Muntean, Parallel programming of transputer based machines, OUG-7, 
Southampton, IOS, September 1987.

Mike Roberts m.roberts@uk.ac.city
The Centre for Information Engineering
City University
Northampton Square
London EC1V OHB
United Kingdom
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GRAPHICAL PROGRAM DEVELOPMENT TOOLS SIG
Mike Roberts, Cilij University, London

The first meeting of the Graphical Program Development Tools Specialist Interest 
Group meeting was held at the last OUG technical meeting. About 30 people 
attended the evening meeting. Notably, a strong contingent from industry attended, 
perhaps indicating that market forces may be moving in the direction of graphical 
tools.

A lively discussion with an almost ‘evangelical’ feel ensued, with members of the 
community standing up to tell the meeting about graphical tools in development, 
proposals for new tools, and summaries of existing tools.

Mechanical Intelligence told us briefly about the graphical configuration facilities 
of Express. Express seems to be one of the few tools with graphic configuration 
facilities in widespread use.

42 Occam user group newsletter

The benefits of Susan Stepney’s GRAIL graphical performance monitoring tool 
were also extensively discussed, with many people feeling that GRAIL required 
further development as a product for the entire transputer community (not just 
those with T-racks). Undoubtably such an effort would be well repaid. Interest in 
just such a tool was expressed by Jonathan Gulley from Thorn-EMI who instigated 
an interesting discussion by canvassing attendees on their views as to what a graphical 
program visualisation/performance monitoring tool should consist of. Many views 
were put forward, but a consensus was reached on the issue of portability - any such 
tools should be portable over a wide range of transputer based architectures and host 
systems.

N. Winterbottom (IBM) told the meeting of his experience with visualisation 
tools based on simple calls inserted into code calling display routines. Such tools are 
apparently not only easy to implement and use but also give a good return on the 
effort taken to implement them.

Other tools discussed included City’s visual programming tool GILT, the Gecko 
configuration tool from PCL and the work at Manchester on the automatic generation 
of occam PROC headers from a process diagram drawing package.

Proposals for discussion at future meetings included a one day workshop on 
graphical tools, a more formal basis to the group, and possible demonstrations of 
tools at future meetings.

Anyone attending the meeting has been ‘conscripted’ into a list of SIG members - 
anyone else wishing to voluntarily ‘join up’ should contact me (preferably by email).

In conclusion then, a successful first meeting of the SIG with a bright future in 
view.

Mike Roberts +44 71 253 4399 x3889/3S77
The Centre for Information Engineering m.roberts@uk.ac.city
City University
Northampton Square
London EC1V OHB
United Kingdom
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