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Abstract

We estimate a standard structural model of credit risk to draw insights about the premium

demanded by investors for bearing default risk, using data on credit default swaps and market

capitalization. We pin down the daily market value of assets for a set of non-financial firms

and uncover cross-sectional heterogeneity in terms of the magnitude and time variation of

the premium. By exploring the link between asset and default risk premia, we show that this

heterogeneity closely depends on the relationship between the firm-specific market values of

the assets and the business cycle.
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1. Introduction

This paper analyzes the premium demanded by investors for bearing the risk of corporate

default. Investors do not price assets only on the basis of the actual default risk of the

firm, but they build in an extra return that compensates for the risk they are bearing. The

premium arises from the wedge between the market valuation of the firm’s default risk,

measured by the risk-neutral default probability, and the actual default risk of the firm,

measured by the actual or real-world default probability (Hull et al. (2005)).

Specifically, we define the premium as the ratio between the risk-neutral and the real-

world default probabilities, as in Driessen (2005) and Berndt et al. (2018). The premium

provides a reward for the expected loss in case of default, evaluated using the real-world

default probability and multiplied by a factor equal to the default risk premium. Driessen

(2005) finds that investors multiply the actual default probability by a factor of approxi-

mately 6 for pricing corporate bonds, and Berndt et al. (2018) argue that investors price

twice the expected default loss evaluated under the actual default probability.

We estimate daily default risk premia for a set of non-financial firms and document that

the premium is substantially time-varying. We confirm that the premium is higher than 1 for

the vast majority of the firms. For these firms, we uncover a positive relationship between the

premium and the market value of equity and a negative relationship between the premium

and credit default swap (CDS) spreads. In addition, we find that both the default premium

and the slope of the term structure of the premium are pro-cyclical. However, we show that

a significant fraction of firms display a default risk premium lower than 1. For these firms,

we document a negative relationship between the premium and the market value of equity

and a positive relationship between the premium and CDS spreads, and find that the slope

of the term structure of the premium is more volatile, less cyclical and generally negative.

We rationalize our findings by studying the link between the default risk premium, the

asset risk premium, and the business cycle. We provide empirical evidence that firms dis-

2

Electronic copy available at: https://ssrn.com/abstract=2611984



playing a default premium lower than 1 exhibit a negative asset risk premium and that

the market value of their assets is negatively correlated with the business cycle. Therefore,

these firms offer an opportunity to hedge a systematic risk factor, such as the business cycle.

This justifies a negative asset risk premium and a default premium below 1, as it happens

with counter-cyclical and defensive stocks or for the income-hedging motive of stock market

participation.1

We study the default risk premium through the lens of a simple structural model of credit

risk. We adopt a first-time passage model in which the firm defaults as soon as the value

of its assets falls below a default boundary, following the seminal papers of Black and Cox

(1976) and Longstaff and Schwartz (1995). This framework embeds features and stylized

facts of various bankruptcy codes in which bondholders can trigger default and extract value

when certain financial ratios fall below certain specified boundaries.

We estimate the model with a non-linear Kalman filter using readily available firm-level

data from the credit and stock markets, such as the market value of equity and CDS spreads.

The Kalman filter allows us to exploit all of the information contained in the term structure

of CDS spreads. Data about the pricing of CDS traded on different maturities provide

multiple information that we can use to pin down the daily dynamics of the market value

of assets, which is generally unobservable because several debt items are usually either not

traded on the market or traded very infrequently.

The market value of assets is typically computed as the sum of the market value of equity

and a proxy of the market debt based on book value; data on the latter is often released

infrequently. Moreover, the book value may not incorporate new information in a timely

manner and is subject to discretionary management. In addition, substantial debt items

may be left out of the book and corporate statements are not easy to interpret (Giesecke

1Bonaparte et al. (2014) show that individuals are willing to invest in stocks when their labor income
shocks are negatively correlated with stock market returns; that is, investment in stocks offers the opportunity
to hedge income risk.
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(2006)).2

Our approach can be applied to firms for which equity and CDS prices are available, even

if debt prices are not observable or debt instruments are traded infrequently, as is common

for non-defaulting firms. For each firm, we pin down the daily time series of the market

value of assets and estimate the default boundary. We report that, on average, the firm

defaults when the value of its assets is equal to 76% of the face value of the debt. The

default boundaries are generally concentrated at between 60% and 80% of the face value of

the debt and between 40% and 60% of the implied market value of the assets. Our estimates

of the default barrier are in line with those of Wong and Choi (2009) and slightly higher than

those of Perlich and Reisz (2007) and Davydenko (2012). As in Perlich and Reisz (2007), we

depict a negative relationship between the default boundary and asset volatility.

Not surprisingly, we show that the vast majority of firms generate rates of return on

their assets that are higher than the risk-free rate, thus displaying positive asset risk premia.

However, we estimate negative asset risk premia for a considerable fraction of firms — around

20% of our sample. Using principal component analysis (PCA), we point out that the market

value of assets of these firms is negatively correlated with the main latent common factor,

which is highly correlated with the US GDP. The economic insight of this result is simple

but important: when the market value of a firm’s assets is negatively correlated with the

business cycle, that firm presents an opportunity to hedge a systematic risk factor, and thus

displays a negative asset risk premium. We label these firms as counter-cyclical or defensive.

In contrast, we show that the implied asset value strongly co-moves with the US GDP when

the market value of the firm’s assets is positively correlated with the main common factor

obtained from the PCA. We refer to these firms as pro-cyclical.

2Duffie and Lando (2001) discuss why it is extremely difficult, in practice, for investors in the secondary
market for corporate bonds to observe corporate asset values due to noisy and delayed accounting reports
or barriers to monitoring. In several scandals (e.g., Enron, WorldCom, and Tyco), the level of assets and
liabilities on corporate statements was misrepresented by management.
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Next, we link this result to our firm-specific estimates of the default risk premium. We

show that the premium is generally higher than 1 and pro-cyclical for pro-cyclical firms,

while the premium is lower than 1 and generally counter-cyclical for defensive firms. Time

variation in the premium can be associated, in fact, with opposite responses from CDS

spreads and equity value. On the one hand, the default premium may increase because the

risk-neutral default probability increases more than the real-world default probability. As a

consequence, we expect an increase in the CDS spread and a drop in the equity value due

to a higher default risk, and thus a positive (negative) relationship between the premium

and CDS spreads (equity). The default premium, however, may also increase because the

real-world default probability decreases more than the risk-neutral default probability. In

this case, we expect to observe a drop in the CDS spread and an increase in the equity value.

We show empirically that the first type of relationship between default risk premium and

market data characterizes firms displaying a premium below 1. Importantly, we highlight

that firms displaying a default premium lower than 1 are the same firms for which we estimate

negative asset risk premia and negative correlations between the market value of their assets

and the business cycle. We document, instead, a positive (negative) relationship between the

premium and equity value (CDS spreads) for pro-cyclical firms. We show that the correlation

between default risk premium and the market value of equity (CDS spreads) switches from

negative (positive) to positive (negative) when looking at firms with default premium greater

than 1. The sample correlation between default premium and the market value of equity

(CDS spreads) is on average equal to 0.64 (-0.29) across pro-cyclical firms and equal to -0.82

(0.56) across defensive firms.

We further investigate the cross-sectional heterogeneity using sector classification. We

find that the default risk premium is on average below 1 for defensive sectors and is clearly

above 1 for cyclical sectors. Overall, we show that compared to firms from cyclical sectors,

firms from defensive sectors display lower or even negative correlations with the main common

factor that is highly correlated with the GDP, lower asset risk premia and lower default risk
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premia. Thus, the heterogeneity across firms that we highlight in terms of asset risk premium,

relationship with the business cycle, and default risk premium is consistent with the usual

definitions of cyclical and defensive sectors.

The rest of the paper is organized as follows. In the next Section, we position our paper

in the extant literature. In Section 3, we present the underlying model. We next bring the

model to the data using the methodology described in Section 4. In this Section, we also

describe the data. We report our estimation results in Section 5. We focus on the default

risk premium in Section 6 and link the premium to both equity and CDS data in Section 7.

Section 8 concludes this paper and introduces directions for future research.

2. Related Literature

Our paper speaks to the broad literature that seeks to estimate unobservable firm funda-

mentals using market-based data and a structural approach. Structural models of credit risk

have been widely used to study corporate risky debt and default risk since the pioneer model

of Merton (1974), in which default occurs when the firm fails to pay back its debt at matu-

rity. The important advantage of adopting a structural framework is that the model provides

simple pricing equations relating the observable data, such as equity and CDS prices, to the

unobservable firm fundamentals, such as the market value of the firm’s debt and assets.

We adopt a simple and standard structural model, namely the first-time passage model, in

which the default occurs as soon as the value of the assets crosses below a default boundary,

as in Black and Cox (1976) and Longstaff and Schwartz (1995). We assume a constant and

exogenous barrier, so the equity is equivalent to a down-and-out call option written on the

value of the corporate assets. As in Perlich and Reisz (2007), we assume that the boundary

is constant and strictly positive but no greater than the book value of the liabilities. Perlich

and Reisz (2007) and Wong and Choi (2009) discuss why the results of Brockman and Turtle

(2003), who report values of the default boundary above the nominal value of the debt, are
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misleading and driven by debt mispricing. Brockman and Turtle (2003), in fact, proxy the

market value of debt with the book value.

The model is simple and very tractable when applied to the data. Notwithstanding

several simplifying assumptions and a parsimonious set of parameters, we highlight that the

model fits the data well. The model-implied market value of assets that we pin down with

our method is highly positively correlated with the equity value and negatively correlated

with the CDS spreads. Moreover, a measure of distance-to-default based on our model’s

estimation results negatively and significantly predicts both CDS spreads and equity returns.

Several papers have attempted to estimate the first-time passage model (Brockman and

Turtle (2003), Perlich and Reisz (2007), Wong and Choi (2009), Forte and Lovreta (2012)).

Recently, Du et al. (2019) and Huang et al. (2020) proposed a GMM estimation of a barrier-

dependent structural model using information from both CDS and equity markets. We

estimate the model with a non-linear Kalman filter and, for each firm, reconstruct the daily

time-series of the unobservable market value of its assets using information coming from two

liquid markets. CDS spreads and equity value represent the observable data that we use to

infer the dynamics of the state variable and to estimate the unknown parameters. In the

Kalman filter, the prediction of the current value of the unobservable variable is immediately

updated once new information becomes available, and the impact of the new information on

the update of this prediction is determined endogenously. The structural model, meanwhile,

provides the pricing equations that play the role of the measurement equations in the Kalman

filtering procedure based on a simple state-space model, while the pricing errors depend on

the structural parameters and are used to construct the likelihood function. Inference on

the state variable and estimation of the parameters, then, are jointly executed.

We report values of the default boundary around 76% of the face value of debt. Our

estimates are slightly higher than those of Perlich and Reisz (2007) and Davydenko (2012),

who estimate a default boundary around 66% of the debt value. Perlich and Reisz (2007)

include a few bankrupt firms in their sample, while Davydenko (2012) provides results on a
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sample of defaulting firms, prior to the time of default, for which debt prices are observable.

We also contribute to the literature that studies the premium demanded by investors for

bearing default risk, which captures remarkable attention in both the asset pricing and credit

risk literature. Hull et al. (2005) compute the ratio between the risk-neutral and the real-

world default probabilities by using corporate bond spreads and historical data. Driessen

(2005) estimates a default intensity model to derive the default risk premium implied by

corporate bond spreads and rating-based default probabilities. Berndt et al. (2018) estimate

the premium using 5-year CDS spreads and expected default frequency data from KMV,

while Diaz et al. (2013) use a wider term structure of CDS spreads on European firms. We

study the default risk premium using data on CDS traded on multiple time horizons and

market capitalizations, which we employ as observable variables to estimate the structural

model.

Berndt et al. (2018) report a default risk premium of around two. Consequently, they

argue that investors price twice the expected default loss evaluated under the actual proba-

bility measure. Driessen (2005) finds that investors multiply the actual default probability

by a factor close to 6 for pricing corporate bonds. We report a median value of the premium

around 2 and an average value around 8. Importantly, we show that while the vast majority

of firms display premia higher than 1, a significant fraction of firms is characterized by pre-

mia lower than 1. We point out that this cross-sectional heterogeneity closely depends on

the relationship between the firm-specific implied market values of assets and the business

cycle. We also show that firms displaying premia below 1 belong to sectors that are typically

considered counter-cyclical or defensive, while we report that on average premia on default

risk are substantially above 1 for firms in pro-cyclical sectors.

Huang and Huang (2012) calibrate different credit risk models with corporate bond

spreads and default data from rating agencies and find that the premium decreases with

credit quality as well as after crisis periods. Huang and Huang (2012) and Berndt et al.

(2018) show that the premium is substantially time varying. We confirm a remarkable time
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variation of the default risk premium. In particular, we highlight cross-sectional heterogene-

ity in the dynamics over time of the premium. We note that the premium is pro-cyclical,

co-moves with market capitalization and is negatively correlated with CDS spreads for pro-

cyclical firms. We document an opposite relationship between the premium and equity and

CDS prices, however, for a considerable fraction of our sample, in particular those firms with

a market value of assets that is negatively correlated with the business cycle. Moreover, we

show that the term structure of the premium is generally upward-sloping for pro-cyclical

firms and downward-sloping for defensive firms.

Finally, we build on the literature that relates asset and default risk premia. Drawing

insights from a Merton model, Friewald et al. (2014) argue that the excess rate of return

on the assets depends on both the risk-neutral and the real-world default probabilities. We

explore the link between asset and default risk premium using our estimation results of

a first-time passage model. We highlight that firms display negative asset risk premia and

default risk premia lower than 1 when the market value of their assets is negatively correlated

with the business cycle.

3. The Model

We define the firm i as an entity financed with equity, of market value Si,t at time t, and

a zero-coupon bond with face value Fi maturing at time T . Let Vi,t be the value of the i-th

firm’s assets and Zi,t its risky zero-coupon bond value at time t. The following condition

then holds for every point in time t and for every firm i:

Vi,t = Si,t + Zi,t.

The value of the i -th firm’s assets follows a geometric Brownian motion on the filtered

probability space (Ω,F , {Ft : t ≥ 0},P):
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dVi,t = µViVidt+ σViVidWi,t,

where µVi and σVi are the firm-specific P-drift and volatility constant coefficients and Wi,t is

a standard Brownian motion under the physical probability measure P .

We define the market value of leverage as Li,t = ln
(
Fi

Vi,t

)
, which follows an arithmetic

Brownian motion:

dLi,t = µLi
dt− σLi

dWi,t, (1)

where

µLi
= −

(
µVi −

1

2
σ2
Vi

)
(2)

is the P-leverage drift coefficient, and σLi
= σVi .

For pricing securities, we adopt a first-time passage framework, as in Black and Cox

(1976) and Longstaff and Schwartz (1995), in which the firm defaults as soon as the assets

value crosses from above an exogenous barrier, which is constant up to maturity. We denote

the default barrier by Ci, with Ci < Fi; that is, the barrier lies below the face value of the

debt. The default condition may represent bankruptcy covenants, which allow bondholders

to trigger a default when the value of the corporate assets falls below pre-specified levels.

Therefore, default may occur either any time τ before debt maturity T if the assets’ value

crosses below the default boundary, with probability

PDQi,t(τ < T ) = Φ

(
Ki + Li,t −

(
r − 1

2
σ2
Li

)
(τ − t)

σLi

√
(τ − t)

)

+ exp

(
(Ki + Li,t)

(
2r

σ2
Li

− 1

))
Φ

(
(Ki + Li,t) +

(
r − 1

2
σ2
Li

)
(τ − t)

σLi

√
(τ − t)

)
, (3)
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or at the debt maturity T , if the firm is not able to pay back the outstanding debt Fi at

time T even though the assets’ value never crossed the default boundary before T . Then,

the total probability of default is given by:

PDQi,t(τ ≤ T ) = 1− Φ

(
−Li,t +

(
r − 1

2
σ2
Li

)
(τ − t)

σLi

√
(τt)

)

+ exp

(
(Ki + Li,t)

(
2r

σ2
Li

− 1

))
Φ

(
(2Ki + Li,t) +

(
r − 1

2
σ2
Li

)
(τ − t)

σLi

√
(τ − t)

)
, (4)

where Φ stands for the cumulative distribution function of a standard normal variable, and

Ki = ln
(
Ci

Fi

)
. Since the default boundary is below the face value of the debt, Ki is always

negative. The larger the absolute value of Ki, the larger the distance between the face

value of the debt and the default barrier is. We obtain (3) and (4) from the equations for

the early and total bankruptcy risks of Perlich and Reisz (2007), respectively, and using

Li,t = ln(Fi/Vi,t) and Ki = ln(Ci/Fi).

Similarly, we obtain from Perlich and Reisz (2007) the pricing equation for the equity

value. The firm equity is equivalent to a down-and-out European call option written on the

value of the firm’s assets, with strike price Fi and maturity T . The equity value Si,t is given

by:

Si,t =
Fi
eLi,t

Φ(d1)−Fie−r(T−t)Φ(d1−σLi

√
(T − t))− Fi

eLi,t
exp

(
(Ki + Li,t)

(
2r

σ2
Li

+ 1

))
Φ
(
dCi
1

)
+ Fie

−r(T−t) exp

(
(Ki + Li,t)

(
2r

σ2
Li

− 1

))
Φ
(
dCi
1 − σLi

√
(T − t)

)
, (5)
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where

d1 =
−Li,t +

(
r + 1

2
σ2
Li

)
(T − t)

σLi

√
(T − t)

, dCi
1 =

(2Ki + Li,t) +
(
r + 1

2
σ2
Li

)
(T − t)

σLi

√
(T − t)

.

4. Model Estimation

We now bring the model to the data. First, we formulate the model in state-space form

to apply our estimation methodology (Section 4.1), which we then briefly describe (Section

4.2). We estimate the model using a non-linear Kalman filter in conjunction with maximum

likelihood by combining information from the credit and equity markets. Specifically, we

collect data on credit default swap (CDS) spreads to extract implied default probabilities

as well as data on market capitalization to proxy equity value. We shortly describe the

data (Section 4.3) and how we use the data to draw inference the model parameters and the

unobservable variable. In particular, we explain how we extract probabilities of default from

CDS spreads (Appendix A).

4.1. State-Space model

We use a state-space representation of the model to relate the observable data, such as

equity value and probabilities of default, to the state variable — the market value of leverage

— and the model parameters. As is typical in state-space models, we assume both equity

value and probabilities of default are observed with noise:

˜PD
Q
i,t(τ) = g (Li,t;µLi

, σLi
, Ki, τ) + εi,t, (6)

and

S̃i,t = h (Li,t;µLi
, σLi

, Ki, Fi, τ) + ui,t, (7)

where g and h are two non-linear functions. The structural model provides the functional
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forms of g and h, which are given by the pricing equations (3)-(4) and (5), respectively. More

precisely, the non-linear function g is defined by (3) when τ < T and by (4) when τ = T ,

respectively. Equations (3)-(4) describe the non-linear relationship between the probability

of default and leverage, model parameters, and time-horizon; equation (5) describes the non-

linear relationship between equity value and leverage, model parameters, and time-horizon.

In practice, the observed default probability — the probability of default implied by the CDS

spread — is equal to the ’true’ default probability plus a random measurement error denoted

by εi,t. Similarly, the observed market capitalization is equal to the ’true’ equity value plus

a random observation error denoted by ui,t. We allow the measurement errors for both the

default probability and equity value to vary across firms. For each firm i, we assume that

the measurement errors regarding the default probabilities vary across time horizons, follow

a multivariate normal distribution with a zero mean and diagonal covariance matrix, and

are homoskedastic with firm-specific variance Ri. We also assume that the observation error

ui,t is normally distributed, with zero mean and variance ωi.

In the state-space model, the firm’s leverage, Li,t is the latent state variable, evolving

over time according to the following transition equation:

Li,t+δt = f(Li,t) + ηi,t+δt,

where f is a linear function, δt denotes the discrete time-step, and ηi,t+δt is the transition

error. We derive the discrete-time version of equation (1) to describe the dynamics of the

state variable:

Li,t+δt = Li,t + µLi
δt+ ηi,t+δt, (8)

where ηi,t+δt = σLi
(Wi,t+δt −Wi,t) v N (0, Qi), and Qi = σ2

Li
δt.

In the structural model, the leverage drift and volatility, as well as the default boundary,

are unobservable. In addition, the model assumes a very simplified debt structure: the

13
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firm issues only a zero-coupon bond with face value Fi. In reality, the corporate debt

structure is usually characterized by several different instruments and maturities. As a

consequence, Fi is not observable from the balance-sheet data. Moreover, the variances of

the measurement errors are unobservable. We denote by θi the vector of the firm-specific

unobservable parameters that we target in our estimation:

θi = {µLi
, σLi

, Ki, Fi, ωi, Ri}.

The market value of leverage at each point in time is also unobservable. Then, Li,t and

θi form the set of unknown quantities that we jointly estimate for each firm i.

4.2. Kalman filter and Quasi-Maximum Likelihood Estimation

We estimate the model parameters and the dynamics of the state variable using maximum

likelihood in conjunction with a non-linear Kalman filter to account for the non-linearity of

the relationships between the observable measurement variables and the latent-state vari-

able. Here, we describe the Extended Kalman filter, which is the simpler and straightforward

extension to deal with non-linearities when the non-linear function is continuous and differ-

entiable. In Appendix D, we briefly describe the Unscented Kalman filter, which makes it

possible to handle non-linear as well as discontinuous relationships between the observable

measurement variables and the latent state variable. We run the Unscented Kalman filter

to corroborate the estimation results obtained using the Extended Kalman filter. We report

results on the Unscented estimation in table D.7.

4.2.1. Extended Kalman filter

For a Gaussian state-space model, under standard assumptions, the discrete Kalman

filter is proven to be the minimum mean squared error estimator. However, in the case

of a non-linear relationship between the measurement and the state variables, the classic

linear Kalman filter is no longer optimal. One possible solution is to transform the non-
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Electronic copy available at: https://ssrn.com/abstract=2611984



linear measurement functions into linear equations by using the partial derivatives of the

measurement functions with respect to the state variable around the current estimate of the

state variable:

dg =
∂g

∂L
(L̂),

dh =
∂h

∂L
(L̂),

where dg and dh are the partial derivatives of the measurement functions g and h, respectively,

with respect to the state variable, computed around the current estimate of the state (L̂).

We drop here the i subscript to lighten the notation.

The filter is initialized with arbitrary values for the state variable and the conditional

state variance: {lt−1, pt−1}, with t = 1, where we use lt−1 and pt−1 to denote the priors for the

state variable and variance. Then, we generate the prediction about the value of the state

variable at t using the prior lt−1, the state equation (8), holding the following expectation:

E[Lt] = l̂t = lt−1 + µLδt,

where we use l̂t to denote the expected value of the state variable at t based on information

up to t− 1. We also form a prediction about the conditional state variance:

p̂t = pt−1 +Q.

We then generate a prediction about the value at t of the observable data using the predicted

value of the state variable at t and the measurement functions g and h; that is, by computing

equations (3), (4), (5) by using l̂t:

ˆPD
Q
t (τ) = g(l̂t, τ), (9)
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Ŝt = h(l̂t, T ). (10)

In practice, we compute the expectation of the measurement equations (6) and (7), respec-

tively. We also compute the expected value of the observable data using the prior lt−1 in

order to obtain numerical partial derivatives of the measurement functions with respect to

the state variable:

d̂g =
g(l̂t, τ)− g(lt−1, τ)

l̂t − lt−1
,

d̂h =
h(l̂t, T )− h(lt−1, T )

l̂t − lt−1
,

and we collect derivatives in one vector, d.

We can now update the priors for the state variable and variance, using the new available

information at time t. We observe the actual realizations of the data and compute the

measurement errors:

ePD,t = ˜PD
Q
t (τ)− ˆPD

Q
t (τ),

eS,t = S̃t − Ŝt.

We collect the measurement errors in one vector et, which we then use to compute the

posteriors for the state variable and variance, according to the following updating equations:

lt = l̂t + J · e,

J = p̂t · d′ · (d · p̂t · d′ +R)−1,
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where R is the covariance matrix of the measurement errors and J is the Kalman gain, that

is the weight assigned to the measurement errors in the updating of the prior for the state

variable. The value of J depends on how reliable we consider the state prior and the actual

observation of the data to be, where the (inverse of) reliability is expressed by the state

and the measurement error variances, respectively. We also update the conditional state

variance:

pt = pt−1 · (1− J · d).

Finally, we can use lt and pt as the priors for the next point in time and iterate the procedure

over the entire time series. The model parameters that characterize the measurement and

transition equations are estimated by maximum likelihood. At each point in time, the filter

generates a vector of measurement errors et that depend on the unknown parameters col-

lected in θ. By assuming independence and normality for {et}t
n

t=1, where tn is the number of

available data points, we can build a likelihood function and estimate the model parameters.

In summary, for each firm and each point in time, we generate a prediction of the default

probabilities and equity value using the equations (9) and (10), respectively, for a given prior

for the market value of leverage. The difference between the predicted and the observed

values of the equity and default probabilities yields a set of measurement errors that is used

to form a posterior about the market value of leverage. The posterior also becomes the prior

for the state variable at the next point in time. The measurement errors are functions of the

model parameters, which are estimated by maximum likelihood under the usual assumption

of a Gaussian distribution. Thus, we reconstruct the time series of the market value of

leverage for each firm in the sample and estimate the model parameters at the firm-level.

Next, we can finally pin down the dynamics of the value of the assets Vi,t and the level

of the default boundary Ci using the following equations:
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Figure 1. The Data: The figure summarizes daily data on market capitalization and CDS spreads
between December 20, 2007, and December 19, 2013, for 164 firms. Data are obtained from Thomson
Reuters. The top-left panel shows the average 5-year CDS spread (black line) and the standardized value of
the market capitalization (gray line) across firms. CDS spreads are expressed in basis points. We compute
the standardized value of the market capitalization for each firm as the ratio between the daily market
capitalization and the value of the market capitalization on the first day of the time series, at the firm-level.
The top-right panel shows the average 5-year (solid black line) and 10-year (dotted black line) CDS slopes
across firms. We compute the daily 5(10)-year CDS slope as the difference between the daily 5(10)-year CDS
spread and the 1-year CDS spread, at the firm-level. The bottom-left (right) panel shows the distribution
of the firm-specific correlations between the 1(10)-year CDS spread and market capitalization.

Vi,t =
Fi
eLi,t

, (11a)

Ci = eKi · Fi. (11b)

4.3. Data

We collect daily data on market capitalization (the product of the number of outstanding

shares and the share price) and CDS spreads for a sample of worldwide non-financial firms

between December 2007 and December 2013 from Thomson Reuters. We collect data on
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Summary Statistics
Mean St.Dev. p1 Median p99

CDS(1Y) 55.13 80.59 4.97 31.00 430.92
CDS(3Y) 83.05 82.28 13.38 59.00 445.00
CDS(5Y) 109.07 84.38 23.60 85.08 458.96
CDS(10Y) 130.86 84.07 34.51 106.81 464.14
Market Cap 0.86 0.38 0.25 0.81 2.13
Equity Vol 0.36 0.10 0.18 0.35 0.97
CDS Slope(5Y) 53.94 43.28 -40.00 45.09 197.08
CDS Slope(10Y) 75.72 61.46 -75.74 67.79 260.47

Table 1. Summary Statistics: The table reports summary statistics of daily data on market capitalization
and CDS spreads between December 20, 2007, and December 19, 2013, for 164 firms. Data are obtained
from Thomson Reuters. We report the mean and standard deviation, the 1-st, 50-th, and 99-th percentiles
for the 1-year, 3-year, 5-year, and 10-year CDS spreads, the standardized value of the market capitalization,
and the 5-year and 10-year CDS slopes, respectively. We compute the standardized value of the market
capitalization for each firm as the ratio between the daily market capitalization and the value of the market
capitalization on the first day of the time series. We compute the equity return volatility (Equity Vol) as the
standard deviation of the daily growth rate of the market capitalization at the firm-level and we report it
in annual terms. We compute the daily 5(10)-year CDS slope as the difference between the daily 5(10)-year
CDS spread and the 1-year CDS spread at the firm-level. CDS spreads and the CDS slope are expressed in
basis points.

CDS traded on four different maturities: the 1-year, 3-year, 5-year, and 10-year, which are

the most liquid on the CDS market. The availability of liquid data on the term structure of

the CDS spreads is a key factor in successfully implementing our estimation methodology,

because any different CDS maturity equips the state-space model with an additional and

informative measurement equation. We provide details about CDS data in Appendix A,

where we also explain how we extract probabilities of default from CDS spreads.

Our universe of firms is the set of reference entities listed on the Markit indexes, which

include the most liquid companies in terms of CDS transactions. We refer to the iTraxx

indexes for Australia, Japan and Europe, and the CDX North America - Investment Grade
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index for the United States.3

Next, we apply a set of filters to the initial sample. We use only reference entities with

available data on CDS spreads from December 2007, the starting point of our time series. We

exclude financial firms, which are characterized by a peculiar capital structure in terms of

assets and liabilities. We also control for stale prices; that is, prices that do not change for at

least five consecutive days, as in Friewald et al. (2014). Stale prices may create issues when

we extract default probabilities from CDS spreads. In fact, a sufficiently large discrepancy

in the number of active trading days across CDS traded on different maturities may produce

non-monotone default probabilities for a given reference entity. Non-monotonicity appears

when the default probability for the longer time horizon is lower than the default probability

for the shorter time horizon, which is completely wrong.4 We exclude companies with non-

monotone default probabilities for more than 1% of observations for at least one maturity.

In the end, our dataset contains 172 firms. We also remove 8 firms with no data on market

capitalization. Our final dataset consists of 164 firms across four different regions: Australia

(9), Japan (10), the United States (89), and Europe (56).

Finally, we use the sovereign bonds curve constructed by Bloomberg for Australia, Japan,

the United States, and Europe to proxy the term structure of the risk-free rate. The Euro-

pean curve is the result of the aggregation of the triple-A sovereign bonds issued by France,

Germany, and Holland. The inclusion of the best-rated government bonds from very safe and

solid countries guarantees that we are truly considering rates of return on risk-less assets.

This curve coincides with the Euro area yield curve computed exclusively on AAA-rated

3The Markit iTraxx and CDX indices are constructed every six months according to specified criteria and
selection rules which determine the eligibility of an entity to be a constituent of the index. We refer to the
list 20 for the iTraxx indexes and the list 21 for the CDX index. All the lists were issued in September 2013.
We do not include firms from the CDX North America - High-Yield index because no such firms have liquid
CDS data from the beginning of the time period covered in the analysis and continuing through the entire
term structure of CDS considered in the paper.

4A CDS downward-sloping term structure may arise when the company is perceived to be riskier in the
short term than in the long term. However, this curve must be not too steep.

20

Electronic copy available at: https://ssrn.com/abstract=2611984



central government bonds provided by Thomson Reuters.

We summarize the data in table 1 and figure 1. In the top panels of figure 1, we plot

the dynamics of the average market capitalization across firms. In particular, we plot the

standardized value of the market capitalization that we obtain by simply dividing, for each

firm, the daily market capitalization by the value on the first day of the time series. We

undertake this step to guarantee comparability across regions and to highlight the dynamics

in the sample period. Market capitalization tumbles during the 2008-2009 crisis, drops again

during the 2011 crisis, and recovers the initial value only at the end of the sample period.

We also plot the average 5-year CDS spread, which displays an opposite pattern to that of

market capitalization. The dynamics of the 1-year, 3-year, and 10-year CDS spreads are

very similar to those of the 5-year CDS spread, which is usually considered the most liquid

and traded maturity.

In the top-right plot, we document strong cyclicality in the slope of the CDS term struc-

ture: the difference between the longest tenor (10-year) and the shortest tenor (1-year) CDS

spreads is, on average across firms, highly correlated with the average market value of equity.

This result is likely due to the highly negative correlation between market capitalization and

the short-term CDS spread. In the bottom panels, in which we plot the distribution of the

firm-specific correlations between market capitalization and CDS spreads, we show that the

negative correlation between market capitalization and CDS spreads is stronger for the short

maturity CDS than for the longer maturity CDS. For comparability with Han et al. (2017),

we compute the CDS term structure slope using the 5-year maturity as well; this exhibits a

similar pattern to the 10-year slope, and we report an average close to Han et al. (2017) but

with a smaller standard deviation.

5. Estimation Results

We combine the default probabilities extracted from the CDS spreads along with the

market value of equity to compose the set of observable variables, thus combining information
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from the credit and equity markets to estimate the unobservable dynamics of the market

value of leverage and the model parameters. Because we observe the CDS spreads over four

time horizons (1-year, 3-year, 5-year, and 10-year), we have five measurement equations in

the state-space model, at each time t and for each firm i: the market capitalization and

the CDS-implied default probabilities over the four time horizons. In the state-space model,

we use the default probabilities rather than the CDS spreads to improve tractability and to

speed up the estimation process. However, the two approaches are ultimately equivalent due

to the one-to-one mapping between the CDS spreads and the corresponding implied default

probabilities (Appendix A).

We report here the main estimation results using the entire time series of data and the

Extended Kalman filter. We begin this section with an assessment of the overall model

fit (Section 5.1). We next present our estimation results, providing evidence about the

relationship between the default boundary and volatility (Section 5.2) and the asset drift

(Section 5.3). We finally focus on the asset risk premium and rationalize our estimates of

the asset drift using Principal Component Analysis (Section 5.4).

In the Appendix, we report estimation results when splitting the time series into two

separate time windows and when using the Unscented Kalman filter on the full data sample.

In Appendix C, we show that our parameter estimates are generally stable across varying

time periods (table C.6). In Appendix D, we show that our model estimation is robust to

an alternative filtering technique, as the results obtained using the Unscented Kalman filter

are equivalent to those obtained using the Extended Kalman filter.

5.1. Model Fit

We summarize the estimation results in table 2, in which we report summary statistics

of the parameter estimates and provide a breakdown of the model fit. We offer graphical

evidence of our estimation results and model fit in figures B.10 and B.11 (Appendix B).

We compute for each firm the correlation between the implied market value of the assets
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Model Parameters
Parameter Estimates Mean St.Dev. p1 Median p99
Volatility 0.12 0.05 0.06 0.11 0.27
Drift(Lev) -0.03 0.04 -0.18 -0.03 0.07
Drift(Ass) 0.04 0.05 -0.06 0.04 0.21
Barrier/Debt 0.76 0.07 0.51 0.78 0.88
Barrier/Assets 0.53 0.14 0.12 0.55 0.78

State Variable
Correlation with Implied Assets Mean St.Dev. p1 Median p99
CDS(1Y) -0.60 0.24 -0.85 -0.62 0.28
CDS(3Y) -0.60 0.23 -0.88 -0.63 0.19
CDS(5Y) -0.55 0.28 -0.89 -0.59 0.48
CDS(10Y) -0.30 0.40 -0.89 -0.35 0.65
Equity 0.92 0.10 0.42 0.96 0.99

Model Fit
Correlation with Implied Data Mean St.Dev. p1 Median p99
CDS(1Y) 0.60 0.30 -0.25 0.70 0.95
CDS(3Y) 0.67 0.26 -0.16 0.75 0.98
CDS(5Y) 0.66 0.25 -0.34 0.71 0.97
CDS(10Y) 0.54 0.36 -0.40 0.63 0.96
Equity 0.99 0.01 0.93 0.99 1

Table 2. Estimation Results: The table reports results from the structural model estimation, using daily
data on market capitalization and CDS spreads between December 20, 2007, and December 19, 2013, for
164 firms. For each firm, we estimate the leverage volatility (σL) and drift (Drift(Lev) = µL), the (log)-
barrier-to-debt ratio (K = ln(C/F )), and the face value of debt (F ), using a non-linear Kalman filter in
conjunction with maximum likelihood. We also compute the asset drift (Drift(Ass) = µV ) using equation
(2). We report results about the default barrier in terms of the face value of debt (exp(K) = C/F ) where
C is the nominal value of the default barrier, as well as in terms of the value of the assets (C/V ). We
compute the nominal value of the default barrier C and the value of the assets V using equations (11b) and
(11a), respectively. Here in particular, we use the firm-specific average assets value over time. The top panel
reports summary statistics of the model parameters estimates. In the middle panel, we report summary
statistics of the firm-specific correlations between the observed data and the model-implied market value of
the assets estimated with the non-linear Kalman filter. In the bottom panel, we report summary statistics
of the firm-specific correlations between the observed data and the corresponding model-implied data. We
obtain the model-implied data from equations (3), (4), (A.2) and (5), using the estimated value of the state
variable and model parameters. We report the mean, the standard deviation, and the 1-st, 50-th, and 99-th
percentiles.
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and the observable data, such as the equity value and the CDS spreads. We obtain the

implied market value of the assets from equation (11a), using our estimates of the state

variable (the market value of leverage) and the estimated model parameters at the firm level.

As expected, the correlation between implied assets and market capitalization is positive and

close to 1, and the correlation between implied assets and CDS spreads is highly negative

but weaker when considering longer maturities.

We report similar patterns for the correlations between actual data and model-implied

data. For each firm and each point in time, we obtain the model-implied equity value and

CDS spreads using our estimates of the state variable and the model parameters at the

firm level. We document correlations close to 1 between actual and model-implied market

capitalization, as well as correlations between actual and model-implied CDS spreads that

are highly positive, though lower, for the longer time horizons.

5.1.1. Distance-to-Default

In addition, we compute a measure of the Distance-to-Default (DtD) using our estimates

of the model parameters and state variable. The DtD expresses the distance between the

current market value of the corporate assets and the default point. In particular, the DtD

measures how many standard deviations the current market value of the assets is from the

default point, which is the default boundary in the specific structural model adopted in this

paper. We build on the standard DtD formula adopted in the Moody’s KMV credit risk

model, using our firm-specific estimates of the default boundary rather than the face value

of debt:

DtDi,t(τ) =
ln
(
Vi,t
Ci

)
+
(
µVi − 1

2
σ2
Vi

)
(τ − t)

σVi
√
τ − t

.

By using
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Ki = ln

(
Ci
Fi

)
;Li,t = ln

(
Fi
Vi,t

)
;µLi

= −
(
µVi −

1

2
σ2
Vi

)
;σLi

= σVi ,

we can express the DtD in terms of our model parameters and state variable as follows:

DtDi,t(τ) =
−Li,t −Ki − µLi

(τ − t)
σLi

√
τ − t

(12)

Thus, the DtD reflects information from both the credit and equity markets when using

our estimates of the model parameters and state variable obtained from CDS spreads and

market capitalization. Next, we test the relationship between the Distance-to-Default and

the observable data using a simple regression analysis. We perform a panel regression of both

CDS spreads and equity returns, defined as the growth rate of market capitalization, over the

lagged DtD, which is the value of the DtD one day earlier. Controlling for both region and

year effects, we find that the DtD negatively and significantly predicts both CDS spreads and

equity returns, in line with the intuitive negative relationship between the DtD and both

CDS spreads and expected equity returns. Indeed, a larger DtD signals that the current

market value of the corporate assets is further from the default boundary and, therefore, the

firm is more worthy and safer. As a consequence, we expect lower CDS spreads and lower

equity returns. We report the results in table B.5 (Appendix B).

5.2. Default Boundary and Volatility

We document that the default barrier is equal to 76% of the face value of debt and 53%

of the assets value on average. Our estimates of the default boundary are in line with those

of Wong and Choi (2009), but lower than those of Brockman and Turtle (2003), which likely

suffer from significant bias due the use of the book value of debt in the barrier estimation.

Moreover, our default boundary estimates are slightly higher than those of Leland and Toft

(1996), Perlich and Reisz (2007), and Davydenko (2012), who report mean barrier-to-debt

ratios equal to 66%, a result likely due to the lower volatility that characterizes our sample
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Figure 2. Default Boundary: The figure shows the distribution of the firm-specific barrier-to-debt ratios
(top-left panel) and barrier-to-assets ratios (bottom-left panel). We compute the barrier-to-debt ratio as
(exp(K) = C/F ) and the barrier-to-assets ratio as (C/V ). We estimate K as well as the face value of debt
F using the non-linear Kalman filter in conjunction with maximum likelihood, and we compute the nominal
value of the default barrier C and the assets value V using equations (11b) and (11a), respectively. Here
in particular, we use the firm-specific average assets value over time. In the top-right panel, we relate the
barrier-to-debt ratio to the estimated firm-specific volatility (σL). In the bottom-right panel, we relate the
barrier-to-debt ratio to the average leverage over time, for each firm. Leverage is defined as (exp(L)), where
L = ln(F/V ) is the state variable in the state-space model (Section 4.1).

firms compared to those of Perlich and Reisz (2007). In fact, we estimate a mean annual

volatility equal to 12%, while they report a mean annual volatility equal to 43%. However,

Perlich and Reisz (2007) use a different approach to back out the implied volatility and

include bankrupt firms in their sample. As a result, their point estimates of asset volatility

span a larger interval of values.

In figure 2, we display the distribution of the default boundaries across firms, which

are mostly concentrated between 60% and 80% of the face value of debt (top-left panel)

and between 40% and 60% of the implied market value of the assets (bottom-left panel).

As in Perlich and Reisz (2007), we document a clear negative relationship between default
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Figure 3. Drift: The figure shows the distribution of the firm-specific leverage drifts (µL, top-left panel)
and asset drifts (µV , bottom-left panel) obtained from equation (2), using µL and σL estimated with the
non-linear Kalman filter in conjunction with maximum likelihood. In the top (bottom)-right panel, we relate
the firm-specific leverage (asset) drifts to the barrier-to-debt ratios. We compute the barrier-to-debt ratio
as (exp(K) = C/F ). We estimate K and the face value of the debt F using the non-linear Kalman filter
in conjunction with maximum likelihood, and we compute the nominal value of the default barrier C using
equation (11b).

boundary and asset volatility (top-right panel). Despite using different approaches and

datasets, our point estimates of the barrier-to-debt ratio are close to those of Perlich and

Reisz (2007) within intervals of values of asset volatility. For instance, we estimate an average

barrier equal to 82% of the face value of debt for firms with annual volatility lower than 10%

and an average barrier equal to 71% of the debt for firms with annual volatility between

10% and 20%. Similar to Perlich and Reisz (2007), we also depict a positive relationship

between the default boundary and the market value of leverage (bottom-right panel), which

is intuitive because lenders require a stronger protection when the firm is more levered.
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5.3. The Drift

We estimate on average an annual leverage drift equal to -3% and a corresponding annual

asset drift equal to 4%. Our sample estimates of the firm-specific asset (leverage) drifts are

mainly positive (negative), which is intuitive because the asset risk premium is typically

positive for most of the firms. Moreover, when we estimate the model by splitting the time

series into two time windows, we find that the asset (leverage) drift is generally higher (lower)

in the second period (i.e., 2011-2013) than in the first period (i.e., up to the end of 2010).

This result may help explain both the lower default risk priced in the CDS spreads and the

increasing market capitalization — particularly from 2010 onward.

We chart the distribution of the firm-specific leverage and asset drifts in figure 3. We

report a positive (negative) asset (leverage) drift for most of the firms. Specifically, we

estimate a positive (negative) µVi (µLi
) for 80% (76%) of our sample firms. In figure 3, we

relate the leverage drifts and asset drifts to the firm-specific barrier-to-debt ratios. While we

do not find any clear relationship between leverage drifts and default boundaries, we uncover

a prevailing positive relationship between asset drifts and boundaries — after controlling for

volatility, since µVi = −(µLi
− 0.5σ2

Li
).

Because the asset drift expresses the expected return on the assets of the i-th firm, we

expect µVi to be generally positive across firms and µLi
to be generally negative across firms.

However, the proportion of firms displaying negative (positive) asset (leverage) drifts, and

thus negative risk premia on the market value of their assets, is remarkable. Perlich and

Reisz (2007) discuss a similar issue in their estimation results regarding physical asset drift,

but prefer to adopt a proxy of the asset drift based on the approach of Huang and Huang

(2012).

In this paper, however, we tackle this intriguing result thoroughly. First, unlike Perlich

and Reisz (2007), we note that our estimates of the asset drift, when splitting the time series,

are substantially stable across time periods. Second, we point out that a negative asset risk

premium can be justified if the investment in the firm offers a hedging opportunity with
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respect to an aggregate risk factor, such as the business cycle, as is seen with negative beta

stocks in standard market models. As a consequence, firms may exhibit negative asset risk

premia when they represent potential hedging opportunities with respect to a systematic

factor priced in the cross-section of the asset returns. We then proceed to empirically test

this simple intuition.

5.4. Principal Component Analysis

We perform PCA to extract the main latent factors that drive the dynamics of the

implied market value of leverage and assets of our sample firms. Because the implied market

value of assets is simply a log-transformation of the market value of leverage, there is no

difference between performing PCA on the assets value versus performing it on the leverage.

We present our results in figure 4.

First, when decomposing the variance-covariance matrix of the implied market value of

our sample firms’ assets, we find that very few factors explain most of the total variability

(top-right panel). More specifically, only the first three principal components (PC) are

necessary to explain around 90% of the overall variability. We focus in particular on the

first PC, which is the main latent factor in terms of explained variance (greater than 60%),

and we study to what extent the first PC is related to an aggregate risk factor, such as the

business cycle. We achieve this by collecting data on the US GDP released quarterly.5

PCA allows to depict how the overall variability in a panel of data is spread across

different (independent) latent sources, but it does not in principle provide any clear economic

insight. In figure 4 (top-left panel), we show that the first PC is highly correlated with the

US GDP. As such, we can state that the main latent factor driving the dynamics of the

implied market value of assets of our sample firms, which we pin down with our method,

5Data on GDP and other macroeconomic indicators are publicly available on the website of the Federal
Reserve of St. Louis.
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Figure 4. Principal Component Analysis: The figure displays results from Principal Component
Analysis (PCA) of the variance-covariance matrix of the implied market value of assets across firms. We
obtain the market value of assets from equation (11a) using the estimated firm-specific model parameters
and state variable. In the top-left panel, we compare the first PC (black dashed line) with the US Gross
Domestic Product (GDP) (gray dotted line) at quarterly intervals. We collect quarterly GDP data from
the Federal Reserve of St. Louis between 2008 and 2013. In the plot, we standardize both variables using
the value of the first PC and GDP on the first day of the time series. In the top-right panel, we report the
eigenvalues associated to the first ten PCs in terms of proportion of explained variance. In the bottom-left
panel, we plot the distribution of the firm-specific loadings of the implied market value of assets in the first
PC. In the bottom-right panel, we relate these loadings to the firm-specific coefficients of the OLS regression
of firm assets value over GDP at quarterly intervals (right axis, circle marker), as well as to the firm-specific
asset drifts (µV , left axis, cross marker) obtained from equation (2) using µL and σL estimated with the
non-linear Kalman filter in conjunction with maximum likelihood.

proxies the business cycle.6

6Because our sample firms are worldwide, we check whether the US GDP may work as a good proxy of
the World GDP, by using annual data from the World Bank database. We find that the correlation between
annual real World GDP and annual real US GDP is equal to 0.98 over the entire available time-series of data
(1960-2020) and equal to 0.96 on the sample time-series. Hence, the US GDP well proxies the World GDP
and thus the worldwide business cycle. Nevertheless, we use the US GDP in our empirical analysis because
data about the US GDP are promptly released on a quarterly basis, whereas data about the World GDP
are instead typically released with lower frequency and wider time lag.
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Going one step further, we investigate the heterogeneity across firms. From PCA, we

obtain firm-specific loadings in the first PC. The loading reveals how each firm-specific

market value of assets is related to the first PC. The firm-specific loading in the first PC

is in fact equivalent to a linear regression coefficient of the firm’s assets value in the first

PC. We plot the distribution of the firm-specific loadings and show that the vast majority

of firms display positive correlation with the first PC (figure 4, bottom-left panel).

There is, however, a significant fraction of firms for which we obtain negative loadings

in the first PC, revealing negative correlations with the business cycle. Importantly, we

document a neat positive mapping between the firm-specific loadings in the first PC and the

firm-specific drifts of the implied market value of assets (figure 4, bottom-right panel). In

particular, firms presenting negative loadings in the first PC are those firms for which we

report negative estimates of asset drift, and vice-versa. The economic insight of this result

is simple but remarkable: firms that are negatively correlated with the business cycle, thus

offering a hedging opportunity with respect to an aggregate risk factor, display negative

asset risk premia. We corroborate this result by estimating a linear regression of the implied

market value of assets at quarterly intervals over the GDP. We show that the firm-specific

marginal effects of GDP on the implied market value of assets clearly correspond to the firm-

specific loadings in the first PC, thus providing evidence that (i) the main latent common

factor of the assets value dynamics is the business cycle and (ii) the assets value dynamics of

firms that are negatively correlated with this common factor tend to be counter-cyclical. In

figure 5, we plot the average implied assets value across firms with positive (dashed line) and

negative (dotted line) loadings in the first PC against the GDP. We show that the implied

assets value of firms with positive loadings in the first PC is highly correlated with the GDP,

while the implied assets value of firms with negative loadings in the first PC displays the

opposite pattern from the Great Financial Crisis onward.

31

Electronic copy available at: https://ssrn.com/abstract=2611984



Figure 5. Implied Assets and GDP: The figure shows the average assets values at quarterly intervals
across firms with positive (dashed line) and negative (dotted line) loadings in the first PC obtained from
PCA on the variance-covariance matrix of the implied market values of assets. For each firm, we obtain
the implied market value of assets from equation (11a) and using the state variable and model parameters
estimated with the non-linear Kalman filter in conjunction with maximum likelihood. We also display the
US GDP at quarterly frequency (solid line). Quarterly GDP data from 2008 and 2013 was collected from
the Federal Reserve of St. Louis. We standardize all variables using the firm-specific values of the implied
assets and of the US GDP on the first day of the time series, respectively.

6. Default Risk Premium

The default risk premium (DRP) is the wedge between the market valuation of default

risk and the actual bankruptcy risk. The premium quantifies the compensation demanded

by investors for bearing corporate default risk. Similar to Driessen (2005) and Berndt et al.

(2018), we define the DRP as the ratio between the risk-neutral default probability and the

real-world default probability. We compute the premium for each firm i, each point in time

t, and each time-horizon τ as follows:
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Summary Statistics
Mean St.Dev. p1 Median p99

DRP(1Y) 6.90 9.60 0.09 2.95 45.91
DRP(3Y) 8.61 13.49 0.10 2.93 65.61
DRP(5Y) 9.29 13.49 0.09 2.69 78.36
DRP(10Y) 8,77 16.09 0.10 2.07 82.91
Slope(5Y) 8,77 31.88 -1.32 -0.01 188.71
Slope(10Y) 7.91 63.91 -65.56 -0.21 295.86

DRP > 1 (DRP < 1)
Corr-Equity Corr-CDS Loading Drift(Lev) Drift (Ass)

Mean 0.64 (-0.82) -0.29 (0.56) 0.07 (-0.02) -0.04 (0.03) 0.05 (-0.02)
Median 0.80 (-0.90) -0.37 (0.65) 0.06 (-0.01) -0.04 (0.02) 0.04 (-0.01)

Table 3. Default Risk Premium: The table reports results about the Default Risk Premium (DRP)
computed for 164 firms between December 20, 2007, and December 19, 2013. We compute the DRP for
each day t, each time horizon τ , and each firm i as PDQ(τ)/PDP(τ). We obtain PDQ(τ) and PDP(τ)
from equations (3)-(4), using our estimates of the model parameters and state variable, and then using µV

to obtain PDP(τ) and the risk-free interest rate r(τ) to obtain PDQ(τ). We obtain µV from equation (2)
using the estimated µL and σL. In the top panel, we report summary statistics of the DRP for different time
horizons and the 5-year and 10-year slopes of the DRP term structure. We compute the daily 5(10)-year DRP
slope as the difference between the daily 5(10)-year DRP and 1-year DRP at the firm-level. We report the
mean and standard deviation, as well as the 1-st, 50-th, and 99-th percentiles. In the bottom panel, we report
the mean and median of the firm-specific correlations between the 5-year DRP and market capitalization
and between the 5-year DRP and 5-year CDS spread, and the mean and median of the firm-specific loadings
in the first PC obtained from PCA on the variance-covariance matrix of the implied market value of assets,
as well as the mean and median of the leverage and asset drifts (µL, µV ), across firms with DRP > 1 and
across firms with DRP < 1 (within brackets), respectively.

DRPi,t(τ) =
PDQi,t(τ)

PDPi,t(τ)
, (13)

where we obtain the risk-neutral default probability PDQ and the real-world default proba-

bility PDP from equations (3)-(4) using our model estimation results. Specifically, we plug

in the equations (3)-(4) the market value of leverage, which we pin down with the Kalman

filter, and the model parameters obtained by maximum likelihood estimation. The difference

between the risk-neutral and the real-world default probabilities is given by the drift coeffi-

cient. We use the risk-free rate for the risk-neutral default probability and the firm-specific
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physical asset drift µV for the real-world default probability. We obtain µV from equation

(2) using the estimated µL and σL at the firm-level. Finally, we compute the risk-neutral and

real-world default probabilities over four time horizons denoted by τ , with τ = {1, 3, 5, 10}-

year. Consequently, we obtain the daily term structure of the default risk premium for each

firm. For instance, DRPi,t(5) is the ratio between the probability that firm i defaults within

5 years, computed under the risk-neutral measure at time t, and the probability that firm i

defaults within 5 years, computed under the real-world measure at time t.

We report that on average the DRP is higher than 1; this is expected when investors

demand compensation for bearing default risk. We report summary statistics of our DRP

estimates in table 3, in which we document similar numbers to those of Berndt et al. (2018)

and Driessen (2005). We find that the risk-neutral default probability is higher than the

real-world probability of default for around 74% of our sample firms (143 firms). This occurs

when the expected return on the assets is higher than the risk-free rate (positive asset risk

premium).

In figure 6 (top panels), we show that the premium varies substantially over time. In

particular, we document that the DRP is pro-cyclical for firms displaying DRP higher than

1. Moreover, we plot the slope of the DRP term structure, which is the difference between

the DRP computed for the longest time horizon (i.e., 10-year) and the DRP computed for the

shortest time horizon (i.e., 1-year). The slope is generally positive and pro-cyclical for firms

presenting DRP above 1 and negative and more volatile for firms presenting DRP below 1,

thus signaling a downward-sloping curve and lower premium at the longer time horizon.

6.1. Expected Loss and Implied Spread

The DRP has an important and straightforward economic meaning in terms of corporate

bond spread and price. We obtain the price q at time t of a risky zero-coupon bond with

maturity T and face value equal to 1, issued by a firm i that defaults when the value of its

assets crosses below a barrier bi < 1, as the expected discounted payoff under the risk-neutral

34

Electronic copy available at: https://ssrn.com/abstract=2611984



Figure 6. DRP and Implied Spreads: The figure displays results regarding the term structure of the
Default Risk Premium (DRP) and the implied bond spreads. In the top-left (top-right) panel, we show the
dynamics of the median 5-year DRP and DRP slope over the sample time series across firms with average
DRP higher (lower) than 1. We plot the 5-year DRP using the black line and the slope using the gray line.
We generate the slope for each firm and each point in time as the difference between the DRP computed at
the longest (10-year) and the shortest (1-year) time horizons. In the bottom-left panel, we show the average
implied bond spread across firms under the risk-neutral measure Q (black line) and the physical measure
P when the DRP is either equal to 2 (solid gray line) or 0.5 (dotted gray line). In the bottom-right panel,
we plot the corresponding implied bond prices. We obtain the firm-specific implied bond spreads and prices
under Q from equation (15) using our model estimation results, and we obtain the implied bond spreads and
prices under P from equation (16) using our model estimation results and using λ equal to either 2 or 0.5.

measure Q:

qi,t = exp (−rt(T − t)) · EQt [(1− I(t∗ ≤ T )) + bi · I(t∗ ≤ T )] , (14)

where t∗ is the time of default, I(t∗ ≤ T ) is an indicator function with a value equal to 1 if the

firm defaults, and zero otherwise, and bi denotes the fraction of nominal debt value accruing

to the bondholders if the firm defaults. We use the implication that the bondholders take

over the firm as soon as the assets cross from above the barrier bi and so collect a fraction

of the debt value equal to the barrier. By computing the expectation, dropping subscripts,
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and assuming rt=0 for simplicity without loss of generality, the bond price is:

q =
[
(1− PDQ(T )) + b · PDQ(T )

]
= 1− PDQ(T ) · (1− b).

In other words, the risky bond price is equal to the risk-less bond price minus the expected

loss in case of default. Next, we compute the expected discounted payoff of the zero-coupon

bond under the real-world measure P :

p =
[
(1− PDP(T )) + b · PDP(T )

]
Then, we can express the bond price q in terms of PDP(T ). Denoting by λ the T -default

risk premium, that is the ratio between PDQ(T ) and PDP(T ), the bond price is:

q = 1− λPDP(T ) · (1− b).

Thus, when λ is larger than 1, the market price of the risky bond is lower than the expected

payoff computed under the real-world measure: the investor demands a premium in the

form of the difference between the expected payoff and market price. As a straightforward

consequence of this, we can compute the compensation demanded by the investor to bear

the expected loss in case of default in terms of PDP(T ) and λ as follows:

1− q = λPDP(T ) · (1− b) = ELQ.

Thus, the left-hand side is the compensation demanded by the investor in the form of a

discounted price of the risky bond with respect to the risk-less bond. Therefore, 1 − q

compensates, and is equal to, the expected loss in case of default, which is also equal to

the expected loss evaluated using the real-world measure multiplied by a factor equal to the

default risk premium:
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ELQ = λELP .

When λ is larger than 1, ELQ is greater than ELP , and the difference between ELQ and

ELP is the extra return that the investors build in to compensate the risk they are bearing.

For instance, when the default boundary is 0.75, the real-world default probability is 4%,

and the default risk premium is 2, the investor prices at 0.98 a risky zero-coupon bond with

nominal value 1 and expected payoff under the P-measure equal to 0.99: the investor requires

a compensation equal to 0.01 (100bps) in the form of a bond price discount with respect to

the expected payoff under the P-measure.

We now turn to the implied bond spread. We denote by yQi,t the implied rate of return

that prices at t the zero-coupon bond, issued by the i-th firm, with face value 1 and default

boundary bi under the risk-neutral probability measure:

qi,t = exp (−yQi,t(T − t)) = exp (−rt(T − t)) · EQt [(1− I(t∗ ≤ T )) + bi · I(t∗ ≤ T )] .

By dividing both sides by the risk-less bond price and computing the expectation, we obtain

the risky zero-coupon bond spread over the risk-less rate under the risk-neutral measure Q

that solves the following equation:

exp (−y∗i,tQ(T − t)) =
[
(1− PDQi,t(T )) + bi · PDQi,t(T )

]
= 1− PDQi,t(T ) · (1− bi). (15)

We compute y∗i,t
Q, for each firm i and each day t using our model estimation results.7 Sim-

ilarly, we can obtain the risky zero-coupon bond spread over the risk-less rate and the

7Because we express the default boundary as a fraction of the debt value when defining the model
parameter Ki, as a result bi is simply equal to exp(Ki).
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corresponding risky zero-coupon bond price under the real-world measure P . Then, we can

express y∗i,t
P in terms of y∗i,t

Q and the default risk premium:

y∗i,t
P = − ln

(
1− 1

λi,t
(1− exp(−y∗i,tQ))

)
. (16)

We compute y∗i,t
P and the price of the risky zero-coupon bond for each firm i and each day

t using our firm-specific estimates of the default risk premium. We display our results in

figure 6 (bottom panels). The average implied bond spread across firms under the risk-

neutral measure Q is twice the corresponding P-implied bond spread when the DRP is

equal to 2, or one-half the corresponding P-implied bond spread when the DRP is equal to

0.5. Similarly, we report the average implied bond price across firms under the risk-neutral

measure Q and the real-world measure P . We show that a DRP equal to 2 (0.5) maps to

a bond P-price around 3% (5%) higher (lower) than the bond Q-price during the Great

Financial Crisis and less than 1% (2%) higher (lower) in economic booms: investors valuate

at 0.98 (0.90) a zero-coupon bond with a face value of 1 and market price of 0.95 during the

crisis, when using the P-measure and when the default risk premium is 2 (0.5).

Thus, for a given premium, the distance between the spreads and corresponding bond

prices across the two different risk measures is more severe during crisis periods in which

bond yields are higher due to higher default risk. Meanwhile, the DRP tends to be lower

in crisis periods due to a substantial increase in the actual default risk measured by the

P-probability of default.

7. DRP and Asset Prices

The dynamics of the DRP over time is only driven by time variation of the state variable,

that is the market value of leverage Li,t. Therefore, the risk-neutral and the real-world

probabilities of default in fact move in the same direction. However, as a ratio, the DRP

may increase either due to the risk-neutral default probability (the numerator) increasing
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more than the real-world default probability (the denominator), or due to the real-world

default probability decreasing more than the risk-neutral default probability. In the first

case, we expect an increase in the CDS spread and a drop in the equity value due to a higher

default risk. In the second case, instead, we expect a drop in the CDS spread and an increase

in the equity value to a better firm credit condition. As a result, an increase in the DRP

can be associated with opposing responses by CDS and equity prices.

Similarly, a decrease in the DRP can be associated with opposing dynamics in CDS and

equity prices. The DRP may decrease either because the risk-neutral default probability

increases but less than the real-world default probability, or because the real-world default

probability decreases but less than the risk-neutral default probability. As before, we expect

an increase in the CDS spread and a drop in the equity value in the first case, and a drop in

the CDS spread and an increase in the equity value in the second case.

7.1. Numerical Analysis

In summary, the relationship between the premium and both the CDS spread and equity

value may be either positive or negative. To better understand this relationship, we study

numerically the sensitivity of the DRP to the market value of leverage, based on the facts

that (i) the dynamics of the DRP is solely driven by time variation of the single state variable

of our model and (ii) the model features a one-to-one mapping between the state variable

and both equity value and the CDS spread.

In figure 7 we show that, ceteris paribus, the relationship between the default risk pre-

mium and the state variable depends on the difference between µV and r, and in particular

on whether this difference is positive or negative.

The DRP decreases when the leverage increases if the DRP is higher than 1, and thus

µV > r. In this case, the DRP decreases because the risk-neutral default probability increases

but less than its real-world counterpart. The DRP increases, instead, when the leverage

increases, if the DRP is lower than 1 and thus µV < r. In this case, the DRP increases because

39

Electronic copy available at: https://ssrn.com/abstract=2611984



Figure 7. Numerical Analysis: The plots show the risk-neutral default probability (dotted black line),
the real-world default probability (solid gray line), and the default risk premium (solid black line) when
the market value of leverage takes on different values (x-axis) up to the default boundary. We express
the leverage as (exp(L) = F/V ), where L is the state variable in the state-space model (Section 4.1). We
compute the risk-neutral probability of default PDQ using equation (4) and the risk-free rate r, and we
compute the real-world probability of default PDP using equation (4) and µL = −(µV − 0.5σ2

L). We then
compute the ratio PDQ/PDQ to obtain the DRP. The panels on the left display the results when µV = 0.10
and the panels on the right display the results when µV = 0.01. The value of the other model parameters
are constant across the two cases and are as follows: r = 0.05, σL = 0.2, K = −0.3, τ=5-year.

the risk-neutral default probability increases more than the real-world default probability.

In both cases, however, the CDS spread increases and the equity value drops. Therefore, the

opposing DRP dynamics can be associated with equivalent responses by equity value and

CDS spread, and vice-versa. Next, we study this prediction empirically.

7.2. Empirical Evidence

We test this simple prediction by computing the firm-specific sample correlations between

the DRP and both equity value and CDS spread. We focus on the 5-year time horizon, which

is usually the most liquid and traded maturity of the CDS. We rank the firms according to
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Figure 8. DRP Ranking: The figure shows the firm-specific loadings in the first PC obtained from PCA
on the variance-covariance matrix of the implied market value of assets (top-left panel), correlations between
daily default risk premium (DRP) and market capitalization over the sample time series (top-right panel),
asset drifts µV obtained from µV = −(µL− 0.5σ2

L) using the estimated firm-specific µL and σL (bottom-left
panel), and correlations between daily DRP and 5-year CDS spread over the sample time series (bottom-right
panel). In the x-axis, we report the firm-specific average 5-year DRP over time. The firms are ranked in
ascending order according to their DRP.

their average DRP over time and chart the correlations between the DRP and both equity

value and CDS spread over the sample time series. We present our results in figure 8.

We show that the correlation between DRP and equity value switches from negative to

positive when examining firms with average DRP over time higher than 1, and that the

correlation between DRP and CDS spreads switches from positive to negative when looking

at firms with average DRP over time higher than 1, with very few exceptions.

Overall, the correlation between DRP and market data generally flips when the average

premium becomes greater than 1, in line with the theoretical relationship highlighted in the

numerical analysis. When the DRP is below 1, in fact, an increase in the DRP is associated

with a drop in the equity value and an increase in the CDS spread. When the DRP is greater
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than 1, meanwhile, an increase in the DRP is associated with an increase in the equity value

and a drop in the CDS spread. In table 3, we show that the sample correlation between

DRP and equity value is on average equal to 0.64 across firms with DRP higher than 1 and

on average equal to -0.82 across firms with DRP lower than 1. The corresponding figures for

the sample correlations between DRP and CDS spread are -0.29 and 0.56, respectively.

Importantly, we show in table 3 and figure 8 that firms with average DRP lower than

1 present negative asset risk premia and negative loadings in the first PC. Therefore, the

counter-cyclical or defensive firms that offer hedging opportunities with respect to an ag-

gregate risk factor, such as the business cycle, are those firms that pay out negative asset

risk premia and display default premia below 1. Cyclical firms, on the other hand, pay out

positive asset risk premia and display default premia above 1. For these firms, we predict

a positive relationship between DRP and equity value and a negative relationship between

DRP and CDS spread. In fact, in figure 6, we show that the DRP is pro-cyclical for firms

with DRP higher than 1; that is, the DRP co-moves with the business cycle. When economic

conditions later improve, we would expect a general reduction in corporate default risk and

a higher valuation of the firm.

7.3. Sector Heterogeneity

We further investigate cross-sectional heterogeneity using sector classification. We adopt

the usual Global Industry Classification Standard (GICS) and assign each firm to its corre-

sponding sector. The complete list of sectors is sketched out in table 4. We are particularly

interested in studying whether the link between asset and default risk premia is also found at

the sector level, and to what extent the heterogeneity depicted across firms in terms of asset

risk premium, relationship with the business cycle, and default risk premium is consistent

with the traditional definition of cyclical and defensive sectors. To this end, we compute the

average loading in the first PC obtained from PCA on the implied market value of assets for

each sector. In addition, we compute the mean leverage drift, asset drift, and 5-year default
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Sector Loading Lev Drift Asset Drift DRP N
Energy 0.027 -0.009 0.013 0.745 9
Material 0.072 -0.033 0.042 8.552 17
Industrial 0.037 -0.017 0.024 5.839 28
Cons Services 0.080 -0.046 0.054 11.518 36
Cons Discretionary 0.073 -0.044 0.054 5.502 28
Real Estate 0.046 -0.044 0.048 35.977 8
Health Care 0.023 -0.015 0.021 1.437 12
Information 0.001 0.004 0.006 0.874 12
Technology -0.006 0.013 -0.006 0.513 14

Table 4. Sector Heterogeneity: The table reports results regarding sector heterogeneity. We adopt the
usual Global Industry Classification Standard (GICS) and assign each firm to its corresponding sector. For
each sector, we compute the average loading in the first PC obtained from PCA on the variance-covariance
matrix of the implied market value of assets, as well as the leverage drift, the asset drift, and the 5-year
Default Risk Premium (DRP). We also report the number of firms that belong to each sector (N).

risk premium.

We report our results in table 4 and offer graphical evidence of our results as well in figure

9. The loadings in the first PC are generally positive, with the exception of the technology

sector. In particular, the loading is around zero for the information sector and relatively

small for the energy and health care sectors. Indeed, information, technology, energy, and

health care are usually considered defensive or even counter-cyclical sectors due to their

tendency to be weakly or even negatively correlated with the business cycle. In contrast, the

loading is on average relatively large for the real estate, consumer (both discretionary and

services) and material sectors, which typically co-move with the business cycle. In line with

this result, we also find that the leverage drift is generally negative, with the exceptions of

the information and technology sectors, and is relatively small in magnitude for the energy

and health care sectors. The asset drift is on average negative for the technology sector only,

substantially smaller for the information and energy sectors, and relatively smaller for health

care compared to the cyclical sectors. Importantly, we find that the default risk premium is

on average below 1 for defensive sectors and clearly above 1 for cyclical sectors. Overall, we
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Figure 9. Sector Heterogeneity: The figure displays results regarding sector heterogeneity. We adopt
the usual Global Industry Classification Standard (GICS) and assign each firm to the corresponding sector.
The figure shows, for each sector, the average loading in the first PC obtained from PCA on the variance-
covariance matrix of the implied market value of assets (top-left panel), the leverage drift (top-right panel),
the asset drift (bottom-left panel), and the 5-year Default Risk Premium (DRP) (bottom-right panel). The
dotted line in the bottom-right panel identifies a DRP equal to 1. The complete corresponding list of sectors
is provided in table 4.

show that defensive sectors display a low or even negative correlation with the main common

factor that is highly correlated with the business cycle, low asset risk premia, and low default

risk premia. This evidence is consistent with the heterogeneity found across firms in terms of

relationships with the business cycle and both asset and default risk premia, as highlighted

in previous sections.

8. Conclusions

In this paper, we study the default risk premium through the lens of a simple structural

model of credit risk. Using information gathered from the credit and equity markets, we
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infer the daily dynamics of the market value of assets and the default risk premium at the

firm level. While we confirm that the premium on default risk is higher than 1 for the vast

majority of firms, we show that a significant fraction of firms display a default premium lower

than 1. Importantly, we highlight that these firms also display negative asset risk premia and

negative correlations with the business cycle. We point out that this heterogeneity matters

for the dynamics of the default premium over time and, in particular, for its cyclicality.

Our findings may spark additional investigations proceeding in various directions. First,

we only focus on the main latent common factor in order to disentangle the heterogeneity

across firms in terms of magnitude and time variation of the premium. However, other

factors may exhibit significant co-movements with firm characteristics and economic forces,

and so may help explain this heterogeneity in greater depth. Second, we estimate one

single barrier for each firm that remains constant throughout the sample period, in line

with the underlying theory model that we adopt in the paper. Estimating firm-specific time

series of default boundaries may shed light on the relationship between time variation in

the barriers and the dynamics of the premium. In addition, by further exploring the link

between default and asset risk premia, future research may also deliver new insights about the

controversial relationship between default risk and equity returns. Moreover, we believe that

our estimation approach may contribute to the growing field of debt nowcasting. Nowcasting

is an econometric approach that aims at predicting the present and the very near past and

future states of key economic variables that are otherwise observed infrequently and with

lags. Nowcasting exploits the relationships between different types of information that are

released frequently and in a timely manner and an economic variable of interest, to infer

(nowcast) the state of the latter.
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Appendix A. From CDS to PD

The CDS is a contract between two parties. The protection buyer purchases protection

against the risk of a credit event of a given reference entity, such as a firm, from the pro-

tection seller. The protection buyer pays regularly a fixed premium each period until either

the credit event occurs or the contract expires, while the protection seller is committed to

compensating the buyer for the loss upon the event. The three main credit events that

would trigger the settlement of the contract are bankruptcy, default on a payment, and

debt restructuring. For simplicity, in this paper we refer only to default for simplicity. The

details of a CDS transaction are recorded in the CDS contract, which is usually based on

a standardized agreement prepared by the International Swaps and Derivatives Association

(ISDA), an association of major market participants. As a priority rule, we select the con-

tracts that adopt the no-restructuring (NR) clause, which has been the standard convention

since the CDS Big Bang protocol of April 2009. Otherwise, we include contracts that adopt

the modified-restructuring (MR) clause, which was the standard convention before the pro-

tocol. As a last resort, we include contracts with full-restructuring or modified-modified

restructuring clauses.8

The default risk of a reference entity is then priced in the CDS spread, which reflects

the amount that the protection buyer is willing to pay for buying insurance against the

default of the reference entity. The CDS spread is expressed in basis points as an annualized

percentage of the notional value of the transaction and is defined, at the contract’s inception

date, to equate the expected value of the two contractual legs. The protection buyer pays

the CDS premium regularly until either maturity, if the firm does not default, or until the

time of the default event. The protection seller, meanwhile, must pay back the protection

buyer as soon as the firm defaults, which may occur at any time before maturity.

Then, by assuming the existence of a default-free money market account appreciating at

8See Longstaff et al. (2005) for an extensive description of the CDS contractual structure.
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a continuous interest rate r, and M periodical payments occurring over one year, the CDS

spread γ with time-to-maturity τ , priced at t, solves the following equation:

EQt

[
M ·τ∑
m=1

exp

(
−rt

(m− t)
M

)
γ

M
I(t∗>m)

]
= EQt

[∫ τ

t

exp(−r(t∗ − t))αI(t∗=s<τ)ds
]
, (A.1)

where t∗ stands for the time of default, I(t∗>m) is an indicator function equal to 1 if the

firm has not defaulted before the m-th payment and zero otherwise, I(t∗=s<τ) is an indicator

function equal to 1 if the firm defaults at time s before maturity τ and zero otherwise, α is

the amount paid by the protection seller to the protection buyer in the case of default (i.e.,

the loss given default), and EQ indicates that the expectation is taken under the risk-neutral

measure Q.

The observed CDS spreads are the breakeven spreads that equate the value of the pre-

mium leg and the value of the protection leg.9 The value of both the premium and the

protection legs, for a given risk-less interest rate and recovery rate, depend only on the

default probability. Thus, there is a one-to-one mapping between CDS spread and default

probability. In other words, there is one (risk-neutral) default probability implied by the

CDS spread, which equates the starting value of the premium leg (protection buyer) and the

protection leg (protection seller) in a CDS contract.

Therefore, for a given observed CDS spread γ, termination date, and risk-free rate term

structure, we extract the implied probability of default for each firm i, for each day t, and

for every time horizon τ that solves the following equation:

M ·τ∑
m=1

exp

(
−rt

(m− t)
M

)
γ

M
(1− PDQt (τ)) = α

∫ τ

t

exp(−r(s− t))PDQt (τ)ds, (A.2)

9See O’Kane and Turnbull (2003) for an extensive overview of CDS valuation.
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which is simply obtained from equation (A.1) by applying the expectation operator to the

indicator functions. The step from equation (A.1) to equation (A.2) is allowed by the main-

tained assumption about the size of the loss given default and, as consequence, of the recovery

rate at default. This assumption allows, in fact, to build the one-to-one mapping between

CDS and PD for a given day, firm, tenor and term-structure of the risk-free interest rate.

This assumption is very standard in the credit risk literature, among both academics and

practitioners. In making this assumption, we follow the usual conventions for the contractual

recovery rate (i.e., recovery rate equal to 40%). In addition, while the model analyzes at

which level the value of the assets must fall in order to trigger the default of the company,

the post-default events, such as the legal and practical procedures implemented by the bond-

holders and creditors to recover at least part of their claim over the firm’s assets, are out

of the scope of the model and certainly beyond the scope of the paper. In other words, the

model is useful to determine when the firm defaults- that is, which value the corporate assets

must cross from above in order to trigger the default, but it is silent about what happens

after the default of the company and finally what is exactly the fraction of the residual assets

that the bondholders are able to recover. Therefore, while it is very common and typically

used by several well-known applications of the credit risk models in the industry and in the

academic research, this assumption is important to adopt this barrier-dependent structural

model. Moreover, this assumption is also motivated by a large empirical evidence further

than practical convenience.

Hence, given the maintained assumption about the recovery rate and the consequent

one-to-one mapping between CDS and PD, we can use information from the CDS market,

in conjunction with the information provided by the equity market, to pin down the firm

fundamentals and the structural parameters. Specifically, we use data on CDS traded on

four different time horizons: 1, 3, 5, and 10 years. Thus, we compute implied probabilities

of default with corresponding time horizons τ equal to 1, 3, 5, and 10 years, respectively. In

practice, the probability of default for the 1-year time-horizon is computed using the 1-year
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CDS spread and the 1-year risk-less interest rate, the probability of default for the 3-year

time-horizon is computed using the 3-year CDS spread and the 3-year risk-less interest rate,

and so on. The probabilities of default are then related to the model parameters and the

state variable in the state-space model using equations (3) and (4) in order to estimate the

unknown model parameters and pin down the unobservable state variable. Specifically, we

use equation (3) if τ < T and equation (4) if τ = T , where τ is equal to either the 1-year,

3-year, 5-year, or 10-year, and T is equal to 10 years, which is the longest available maturity

in our sample, which we assume to coincide with the maturity of the firm’s zero-coupon

bond.

Indeed, we acknowledge that the PD is a quantity computed from another variable (the

CDS spread) and is not directly observed. However, the state-space model allows to observe

the measurement variable with error and the measurement error is key in the identification

and estimation of the unknown quantities of the model. In the body of the paper, we

explicitly mention that we use the PD as measurement variable, which is observed with noise,

and thus we can consider the “observed” PD, that is the PD implied by the CDS spread, to

be the “true” PD plus an error. Therefore, the state-space model well accommodates this

salient feature of our framework.
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Figure B.10. State Variable: The figure compares market capitalization (light gray line) and 5-year
CDS spread (dark gray line) with the market value of leverage (solid black line) and assets (dashed black
line) estimated with the non-linear Kalman filter, between December 20, 2007, and December 19, 2013, for
a representative firm, which is the US median firm at each day t. At each day t, we select the firm with
the median value of implied market value of leverage and collect the corresponding market capitalization,
5-year CDS spread, and implied market value of assets and leverage. Leverage is expressed as exp(L), where
L = ln(F/V ) is the state variable in the state-space model (Section 4.1) and F is the face value of debt.
We estimate L and F using the non-linear Kalman filter in conjunction with maximum likelihood, and V is
computed using equation (11a). Equity and the value of the assets are expressed in thousands of US dollars
and CDS spreads are expressed in basis points.

Appendix B. Model Fit. Additional Evidence

In figure B.10, we plot the dynamics of the market value of leverage and assets that we

pin down with our method, and we compare them with the dynamics of the observed market

capitalization and 5-year CDS spread. We show that the leverage sharply increases during

the Great Recession and tumbles afterwards, increases again during the 2011 sovereign debt

crisis, and finally drops. Moreover, the leverage is highly positively correlated with the CDS

spread and highly negatively correlated with market capitalization. The opposite of these
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Figure B.11. Model-Implied Data: The figure compares market capitalization and the 5-year CDS
spread with both model-implied data and the model-implied market value of assets estimated with the non-
linear Kalman filter between December 20, 2007, and December 19, 2013. We obtain the model-implied data
from equations (3), (4), (A.2), and (5) using the estimated value of the state variable and model parameters.
In the figure, we show the distribution of the firm-specific correlations between model-implied assets and
observed market capitalization (top-left panel) and CDS spread (bottom-left panel), between model-implied
and observed market capitalization (top-right panel), and between model-implied and observed CDS spread
(bottom-right panel).

observations applies to the dynamics of the assets value.

In figure B.11, we plot the distribution of the firm-specific correlations between the im-

plied market value of assets and actual data as well as between model-implied data and

actual data. The correlation between market capitalization and implied assets is very close

to 1 for the vast majority of the firms, while the correlation between CDS spread and implied

assets is highly negative for most of the firms. Moreover, our model estimates fit the equity

data very well: the correlation between actual and model-implied equity value is around 1 for

all of the sample firms. We generally document positive, though lower, correlations between

the model-implied and actual CDS spread.
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OLS Regression
(1) (2)

Equity return CDS spreads
Constant 0.0028*** 0.0299***

(0.002) (0.001)
DtDt−1 -0.0003*** -0.0035***

(0.000) (0.000)
Region YES YES
Year YES YES
R2 0.23 0.35
N 256660 256660

Summary Statistics
Mean St. Dev. p1 Median p99
5.21 1.49 2.60 4.98 10.53

Table B.5. Distance-to-Default: The table reports results from the OLS regression with firm-day
observations using daily data on market capitalization and CDS spreads between December 20, 2007, and
December 19, 2013, for 164 firms. The dependent variable is the firm-day equity return (column (1)) and
5-year CDS spread (column (2)). The main independent variable is the one-day lagged Distance-to-Default
(DtDt−1). Equity return is computed for each firm as the growth rate of its market capitalization, CDS
spreads are here expressed in percentage terms (basis points/100), and the DtD is computed from equation
(12) using the estimated firm-specific model parameters and state variable. In both columns (1) and (2),
we control for region-fixed effects and year-fixed effects. N is the number of observations (firms · days). In
the bottom panel, we report summary statistics of the firm-day Distance-to-Default, including the mean and
standard deviation as well as the 1-st, 50-th, and 99-th percentiles.
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Appendix C. Estimation Results. Time Windows

Model Parameters: (First Period)
Mean St.Dev. p1 Median p99

Volatility 0.11 0.05 0.06 0.09 0.26
Drift(Lev) -0.03 0.05 -0.30 -0.02 0.07
Drift(Ass) 0.04 0.06 -0.06 0.03 0.32
Barrier/Debt 0.77 0.07 0.51 0.79 0.88
Barrier/Assets 0.55 0.14 0.14 0.56 0.80

Model Parameters: (Second Period)
Mean St.Dev. p1 Median p99

Volatility 0.12 0.05 0.06 0.12 0.29
Drift(Lev) -0.06 0.07 -0.42 -0.05 0.05
Drift(Ass) 0.08 0.08 -0.03 0.06 0.47
Barrier/Debt 0.75 0.08 0.50 0.74 0.87
Barrier/Assets 0.52 0.14 0.10 0.53 0.76

Table C.6. Estimation Results. Sub-Samples: The table reports results from the structural model
estimation using daily data on market capitalization and CDS spreads for 164 firms. In the top panel, we
report results from model estimation using data between December 20, 2007, and December 19, 2010. In
the bottom panel, we report results from the model estimation using data between December 20, 2010, and
December 19, 2013. For each firm, we estimate the leverage volatility (σL) and drift (Drift(Lev) = µL), the
(log)-barrier-to-debt ratio (K = ln(C/F )), and the face value of debt (F ) using a non-linear Kalman filter
in conjunction with maximum likelihood, and we compute the asset drift (Drift(Ass) = µV ) using equation
(2). We report results about the default barrier in terms of the face value of debt (exp(K) = C/F ), where C
is the nominal value of the default barrier, as well as in terms of the value of assets (C/V ). We compute the
nominal value of the default barrier C and the assets value V using equations (11b) and (11a), respectively.
In particular, we use here the firm-specific average assets value over time.
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Appendix D. Unscented Kalman filter

The Unscented Kalman filter (UKF) is a non-linear filtering technique that permits the

handling of measurement functions, and eventually transition functions, which are not only

non-linear but also not differentiable. In fact, the UKF does not require any linearization of

the measurement function through partial derivatives to retrieve a linear relationship between

the observable and latent variables. Instead, the UKF applies the unscented transformation

to both the state and measurement variables. The unscented transformation of the prior for

the state variable is needed to compute the predicted value of the measurement variable using

the non-linear measurement function, to which the unscented transformation is then applied

to obtain the measurement error after observing the new available data. This error is then

used to update the prior for the state variable at the next point in time, using the key Kalman

gain. In general, for given priors for the state variable and variance x and p, respectively,

and a non-linear measurement function g, the unscented transformation proceeds as follows:

xU = x+
√
c · [0 √

p −√p]

y = g(xU)

yU = yw

FU = yWy
′

ZU = xUWy
′,

where the unscented transformation is given by the scale parameter c, the vector wm, and

the matrix W . Details on the unscented transformation can be found in ?. We now describe

the Unscented Kalman filter applied to our state-space model.

The filter is initialized with arbitrary values for the state variable and the conditional

state variance: {lt−1, pt−1}, with t = 1, where we use lt−1 and pt−1 to denote the priors for
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the state variable and variance. We apply to lt−1 the unscented transformation:

lUt−1 = lt−1 +
√
c · [0 √

pt−1 −√pt−1],

and we form the prediction about the value of the state variable at t, using lUt−1, the state

equation (8), and taking expectation:

E[Lt] = l̂t = lUt−1 + µLδt,

where we use l̂t to denote the expected value of the state variable at t based on information

up to t− 1. We also form a prediction about the conditional state variance:

p̂t = lUt−1 ·W · (lUt−1)
′
+Q.

We next form a prediction about the value of the observable data at t using the predicted

value of the state variable at t and the measurement functions g and h; that is, by computing

equations (3), (4), (5) and using l̂t:

ˆPD
Q
t (τ) = g(l̂t, τ), (D.1)

Ŝt = h(l̂t, T ). (D.2)

and stack ˆPD
Q
t (τ) and Ŝt in one vector, Y . Then, we apply the unscented transformation

to the predicted value of the measurement variables:

Y U = Y w,

and compute the following matrices:
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FU = YWY
′
+R,

ZU = l̂tWY ′,

which we use to compute the Kalman gain:

J = ZU(FU)−1.

We finally combine the Kalman gain and the measurement errors to update the priors for

the state variable and variance:

lt = l̂t + J · e,

pt = pt−1 − JFUJ ′,

where the vector e contains the measurement errors, which are obtained by taking the

difference between the actual data PDQt (τ), St and the unscented transformation of the

predicted value of the data collected in the vector Y U . As we do in the Extended Kalman

filter, we then use lt and pt as the priors for the next point in time and iterate the procedure

over the entire time series. We report results in table D.7.
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State Variable
Correlation with Implied Assets Mean St.Dev. p1 Median p99
CDS(1Y) -0.55 0.24 -0.85 -0.61 0.27
CDS(3Y) -0.58 0.23 -0.87 -0.63 0.19
CDS(5Y) -0.53 0.28 -0.88 -0.59 0.48
CDS(10Y) -0.29 0.39 -0.89 -0.35 0.65
Equity 0.93 0.10 0.41 0.96 1

Model Fit
Correlation with Implied Data Mean St.Dev. p1 Median p99
CDS(1Y) 0.60 0.30 -0.25 0.70 0.94
CDS(3Y) 0.67 0.26 -0.16 0.74 0.98
CDS(5Y) 0.66 0.25 -0.19 0.71 0.97
CDS(10Y) 0.54 0.36 -0.30 0.64 0.96
Equity 0.99 0.01 0.94 0.99 1

Table D.7. Unscented Kalman Filter: The table reports results from the Unscented Kalman filter (UKF)
using daily data on market capitalization and CDS spreads between December 20, 2007, and December 19,
2013, for 164 firms. In the top panel, we report summary statistics regarding the correlation between the
observed data and the model-implied market value of assets estimated with the UKF across firms. We obtain
the model-implied market value of assets from equation (11a) using the state variable L estimated with the
UKF. In the bottom panel, we report summary statistics regarding the correlation between the observed
data and the model-implied data across firms. We obtain the model-implied data from equations (3), (4),
(A.2), and (5) using the value of the state variable estimated using the UKF and model parameters. We
report the mean and standard deviation, as well as the 1-st, 50-th, and 99-th percentiles.
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Appendix E. Additional Results. Yearly Default Barriers

Mean St.Dev. p1 Median p99
2008 0.75 0.10 0.40 0.76 0.90
2009 0.71 0.08 0.42 0.73 0.89
2010 0.74 0.09 0.41 0.76 0.88
2011 0.77 0.10 0.40 0.79 0.90
2012 0.77 0.12 0.41 0.79 0.90
2013 0.73 0.18 0.41 0.78 0.91

Table E.8. Time-varying barriers: The table reports results on the default boundary estimation using
daily data on equity value (Market Capitalization) and CDS spreads, for 164 firms. We estimate a firm-
specific default boundary for each year of our sample time-series, by using daily data on equity value (Market
Capitalization) and CDS spreads over each year from 2008 to 2013. We report results about the default
barrier in terms of the face value of the debt (exp(K) = C/F). For each year, we report the mean, the
standard deviation, the 1-st, 50-th, and 99-th percentiles of the firm-specific default boundaries across firms.
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Online Appendix:

Alternative State-Space Model

In this Appendix, we present a different version of the state-space model that we describe

in the main body of the paper and use to both perform the estimation of the structural

parameters and pin down the dynamics of the latent state variable. We limit the presentation

of this alternative formulation of the state-space model to the main differences with respect

to the original version. We refer the reader to the section 4.1 for the remaining equations of

the model and the other details which are common across the two versions.

We now use the CDS spread rather than the CDS-implied probability of default (PD)

as observable variable and we assume to observe the CDS spread with noise. Then, the

equation (6) becomes:

γ̃i,t(τ) = γi,t(τ) + εi,t(τ), (.1)

where γi,t(τ) is the CDS spread γ with time-to-maturity τ , priced at t, that solves the

following equation:

M ·τ∑
m=1

exp

(
−rt

(m− t)
M

)
γ

M
(1− PDQi,t(τ)) = αi

∫ τ

t

exp(−r(s− t))PDQi,t(τ)ds, (.2)

where r is the risk-free interest rate, M denotes the number of periodical payments occurring

over one year, the default probability is given by

PDQi,t(τ) = g (Li,t;µLi
, σLi

, Ki, τ) ,

and αi is the amount paid by the protection seller to the protection buyer in the case of

default, which coincides with the loss in the case of default, that we set equal to (1−exp(Ki)),

under the assumption that the bondholders take over the value of the assets as soon as the
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firm defaults, when the assets value is equal to the default barrier. Moreover, we still include

the equity value as additional observable variable, which we assume to observe with noise as

described by equation (7).

We estimate the model to draw inference on the vector of the firm-specific unobservable

parameters θi by using maximum likelihood in conjunction with a non-linear Kalman filter.

For an extensive description of the estimation method, we remind the reader to the section

4.2. With respect to the version of the Kalman filter presented in section 4.2, we now

need to modify the equation (9) to take into account that the measurement variable is the

CDS spread. We generate a prediction about the value of the observable CDS spread, that

we denote by γ̂Qi,t(τ), using the predicted value of the state variable at t and the equation

(.3). Then, γ̂Qi,t(τ) is the CDS spread γ with time-to-maturity τ , priced at t, that solves the

following equation:

M ·τ∑
m=1

exp

(
−rt

(m− t)
M

)
γ

M
(1− ˆPD

Q
i,t(τ)) = αi

∫ τ

t

exp(−r(s− t)) ˆPD
Q
i,t(τ)ds, (.3)

where

ˆPD
Q
i,t(τ) = g(l̂i,t, τ),

.

To update the priors for the state variable and variance, we compute the measurement error

after the realization of the actual data, as follows:

eCDS,i,t = γ̃Qi,t(τ)− γ̂Qi,t(τ),

where γ̃Qi,t(τ) is the CDS spread, with time-to-maturity τ , observed at time t for the i -th

firm. The Kalman filter and the maximum likelihood algorithm then proceed as usual. We
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report the model estimation results in table A9.
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Model Parameters
Parameter Estimates Mean St.Dev. p1 Median p99
Volatility 0.12 0.05 0.06 0.12 0.30
Drift(Lev) -0.03 0.04 -0.16 -0.03 0.08
Drift(Ass) 0.04 0.05 -0.07 0.04 0.21
Barrier/Debt 0.72 0.08 0.50 0.73 0.85
Barrier/Assets 0.52 0.14 0.07 0.53 0.82

State Variable
Correlation with Implied Assets Mean St.Dev. p1 Median p99
CDS(1Y) -0.60 0.25 -0.85 -0.61 0.32
CDS(3Y) -0.59 0.24 -0.86 -0.60 0.25
CDS(5Y) -0.55 0.29 -0.89 -0.57 0.50
CDS(10Y) -0.33 0.40 -0.89 -0.32 0.67
Equity 0.92 0.11 0.35 0.96 0.99

Model Fit
Correlation with Implied Data Mean St.Dev. p1 Median p99
CDS(1Y) 0.60 0.32 -0.26 0.60 0.95
CDS(3Y) 0.66 0.29 -0.13 0.67 0.96
CDS(5Y) 0.62 0.29 -0.36 0.63 0.95
CDS(10Y) 0.57 0.37 -0.50 0.59 0.94
Equity 0.99 0.01 0.91 0.99 1

Table A9. Estimation Results: The table reports results from the structural model estimation, using
daily data on market capitalization and CDS spreads between December 20, 2007, and December 19, 2013,
for 164 firms. For each firm, we estimate the leverage volatility (σL) and drift (Drift(Lev) = µL), the (log)-
barrier-to-debt ratio (K = ln(C/F )), and the face value of debt (F ), using a non-linear Kalman filter in
conjunction with maximum likelihood applied to the state-space model described in the Online Appendix.
We also compute the asset drift (Drift(Ass) = µV ) using equation (2). We report results about the default
barrier in terms of the face value of debt (exp(K) = C/F ) where C is the nominal value of the default
barrier, as well as in terms of the value of the assets (C/V ). We compute the nominal value of the default
barrier C and the value of the assets V using equations (11b) and (11a), respectively. Here in particular, we
use the firm-specific average assets value over time. The top panel reports summary statistics of the model
parameters estimates. In the middle panel, we report summary statistics of the firm-specific correlations
between the observed data and the model-implied market value of the assets estimated with the non-linear
Kalman filter. In the bottom panel, we report summary statistics of the firm-specific correlations between the
observed data and the corresponding model-implied data. We obtain the model-implied data from equations
(3), (4), (A.2) and (5), using the estimated value of the state variable and model parameters. We report the
mean, the standard deviation, and the 1-st, 50-th, and 99-th percentiles.
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