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Abstract—We propose an approach to managing the rolling
out of a new system type so as to contain the risk of mishaps in
its operation to an acceptable level, while using the evidence of
safe operation to support confidence for extending the scale of
operation. This cautious approach of “bootstrapping” confidence
in the safety of a system is now widely applied to autonomous
vehicle (AVs), our example. AVs are subject to extreme safety
requirements; a major concern is the inability to give meaningful
quantitative assurance of safety of an AV type, to the extent
required by society, before it is used extensively.

We exploit a previously published approach to achieving
more moderate, but useful, assurance, e.g. about low enough
probability of causing accidents in a limited period of opera-
tion; and demonstrate how this approach supports choice of
production/deployment strategies, so as to manage the growth
of a fleet of AVs for a given accepted level of risk. Via a
formal mathematical description of “confidence bootstrapping”,
we show: (1) that it is a substantially sound approach in the
right circumstances, and useful for deciding about the early
deployment phase for a new system; (2) how much confidence
can be rightly derived from such a “cautious deployment”
approach, avoiding over-optimism; (3) under which conditions
our sound formulas for future confidence are applicable; (4) thus,
which analyses of the concrete situations, and/or constraints on
practice, are needed in order to enjoy the advantages of provably
correct confidence in adequate future safety over a definite time
(“confidence horizon”).

I. INTRODUCTION

It is common practice to start operation of a system on a
limited scale, based on reasonable confidence that the system
is safe enough for this, so as to collect more evidence to
support this belief in its safety and thus justify larger-scale
operation1.

This paper studies how to base such decisions on a sound
quantitative basis. It is motivated by the prominent current
example of autonomous vehicles (AVs). A major concern
for developers of autonomous vehicle, authorities responsible
for authorising their use, and end users, is how to achieve

This work was supported in part by ICRI-SAVe, the Intel Collaborative
Research Institute on Safe Automated Vehicles.

1We call this process informally “confidence bootstrapping”: the initial,
limited amount of confidence allows the limited amount of operation that
bolsters confidence, allowing more operation, and so on, in a positive feedback
loop. We only use the word “bootstrapping” as a common English language
metaphor; this paper does not deal with the technical statistical concept of
“bootstrapping” as a form of resampling.

confidence that they will be safe enough in operation. The
safety objectives are inevitably, at least in part, quantitative: we
do not want accidents to be too frequent. This might be stated
as a specific maximum frequency of accidents or fatalities per
mile, or a requirement that these frequencies be no greater than
some fraction of the average for human drivers, or comparable
to the better human drivers, etc.. It is important to have
quantitative arguments that properly demonstrate what level of
confidence we can have in these requirements being satisfied.
Given the reliance of AVs on machine learning, arguments that
they are safe enough hinge by necessity on empirical evidence,
from test driving: first of simulated vehicles in simulated
environments, then of real vehicles on the road and in traffic.

However, a major difficulty arises when spelling out these
quantitative requirements for road vehicles on public roads:
when these reasonable requirements are translated into nu-
merical targets about, for instance, a low enough “probability
of fatal accidents per mile driven”, demonstrating that the
requirement is satisfied by just operating the vehicles and
collecting statistical evidence is impractical. The cost and
practical difficulties in building such confidence statistically
seem insurmountable [1]–[3].

An alternative, more feasible quantitative claim can be made
about the probability of safety over a finite amount of future
operation [4]. For example, the claim could be that for a
fleet of cars there is a 90% probability that it will not suffer
accidents due to its self-driving functions, over the next year
of operation. Such a statement could be used by vendors or
regulators to decide whether to allow operation for one year, or
by insurers or investors to assess the risk or insurance premium
for a company developing such an advanced system.

This paper’s main contribution is to extend the approach in
[4] so as to support rational deployment decisions about the
rolling out of a new system type over the lifetime of the fleet.

Such an ability is especially needed when, as with AVs,
much uncertainty surrounds the degree of safety in operation
until demonstrated by operation itself. The practice of cau-
tious small-scale operation to gain some confidence in safety,
followed by gradual increases in the scale of operation (e.g.
number of vehicles in operation) is a natural and common
response to uncertainty: observing safe small-scale operation
naturally gives confidence that these systems will keep op-



erating safely. But how much confidence should one derive
from – say – 1000 vehicle-kms of safe operation? Should
it be, for instance, 90% confidence that the vehicle will not
cause accidents for the next 100 vehicle-kms? 1000 kms? How
quickly can we safely extend pilot operation? When will we
attain adequate confidence for commercial operation? Intuitive
judgement is notoriously unreliable for this kind of problem.

The novelty of this paper is in proposing a mathematically
sound method for these decisions. The method depends on
assessing the probability of experiencing no mishaps over a
stated future amount of operation; or equivalently, if we want
the probability of a future mishap to be lower than a certain
acceptable bound, assessing how much more the vehicle can
operate before reaching that bound. This calculations yield a
“confidence horizon”, until which the required risk level is
not exceeded. We show, in precise mathematical terms, how
experiencing mishap-free operation extends this horizon. But
for decision making like authorising a period of operation
of a fleet of vehicles, the confidence horizon should be
translated into calendar time, e.g. months or years. We show
how this translation is affected by the changes in the size of
the operational fleet, with examples of: pilot operation of a
constant-size test fleet; linearly increasing fleet size; increases
in production rate; and whole-lifetime evolution including
progressive retirement of the type. For a growing fleet, the
confidence horizon in calendar time grows more slowly than
for a constant-size fleet. Our method allows a decision maker
to control the fleet’s growth rate so as to keep the associated
risk within desired limits. An additional merit of this method,
compared to quantitative safety assessment in common use,
is reduces reliance on arbitrary mathematical assumptions,
thanks to its “conservative Bayesian inference” approach [4].

Many different kinds of AVs are in development or in use,
creating many different scenarios for this problem of gaining
confidence in their safety. We will refer to two types of AVs
that are at opposite extremes of the range, from the viewpoint
of how easy or hard it is to accumulate confidence in their
future safety from progressively extended periods of operation.
At one end of the spectrum, we will call “A-type” vehicles
those “SAE level 5” AVs meant to be sold to many millions of
ordinary consumers and to transport them over public roads, in
complex and quite unpredictable environments. At the opposite
end, we will call “Z-type” those AVs that are deployed in
small numbers to perform well-understood, limited tasks in
constrained and protected environments, e.g., a self-moving
crane in a factory or a heavy truck in an open-face mine,
or a self-driving metro train. Z-type AVs may still have
extreme safety requirements (e.g. if they transport dangerous
material in a chemical plant); but the simpler environment and
less pressure for high performance and fast evolution reduce
difficulties in both their development and their assessment.

In the following Section II we address some relevant aspects
of the state of the art and previous research on quantitative
safety assessment for software and for AVs; in Section III,
we recall the method presented in [4] (III-A,III-B), and
introduce our mathematical approach (III-C), and in Section

IV we present some numerical examples; Section V discusses
implications, limitations and direct extensions of the method,
followed by conclusions and future work in Section VI.

II. BACKGROUND AND RELATED WORK

A. Statistics for assessing extreme reliability/safety levels

Statistical assessment of reliability or safety is a long-
established discipline with a colossal corpus of literature.

The basic principles are intuitively simple: logging failures
and a “time” variable (time in operation, number of demands
or similar variables depending on the kind of system) and
estimating a failure rate as the ratio between the two measures.
Complications like variable failure rates to account for phys-
ical ageing of a system have long been covered in textbooks
and engineering handbooks.

Extensions to software reliability have also been well-
established for a long time [5]. These address predictions
about probability of system failures due to design, rather than
random physical, faults. In other words, scenarios in which
whether a system fails or not at a certain point may be a
deterministic function of the stimuli to which it has been
subjected until then, but probabilistic reasoning is needed
to accounts for uncertainty about both which sequences of
stimuli will actually occur and which ones would actually
cause failure (since the system has unknown “design faults”,
often called “bugs”).

With software receiving increasingly critical roles in sys-
tems with safety relevance, attention grew in the 1980s and
1990s on two areas that concern the present work:

1) software in theory might never fail. By definition, correct
(in other words, fault-free) software could not fail.
Advances in formal proof of correctness seemed to
promise the practical possibility of fault-free critical
software. At the same time, discovery of critical bugs in
critical software brought into relief the fact that complex
systems fail due to design faults, not just physical
failures of components; and that demonstrably fault-free
software was generally unattainable, in practice, at the
time. Safety critical industries and their regulators had
to deal with the implications;

2) reliability requirements on the software might be “ultra-
high” (as dubbed in a paper co-authored by one of us
[2]): so stringent that they could not be convincingly
shown to be satisfied by just observing a system operate,
without failures, through a feasible period of operational
testing. That is, requirements such that the system could
be worse than required and yet good enough to pass any
affordable amount of operational testing.

The issue of “ultra-high” reliability requirements2 was high-
lighted in the 1990s in civil aviation. The requirement for
“catastrophic failures” to be “so unlikely that they are not

2We use the word “reliability” for consistency with relevant literature,
although the main concern in this paper is safety. Having requirements about
safety rather than reliability does not change the terms of the problem.
It means requirements about the improbability of certain system failures -
accidents – rather than of any system failure.



anticipated to occur during the entire operational life of [...]
one type” [6]) translated into quantitative terms as a probability
of 10−9 or less for one flight hour. This requirement still
appears in the current version of these rules by the U.S.
Federal Aviation Administration and the European Union
Aviation Safety Agency (EASA). Various authors argued that
strong confidence of such a requirement being satisfied, before
an aircraft could be certified for commercial operation, was
unfeasible [2], [3]: (1) software could not be convincingly
demonstrated to be fault-free; (2) demonstrating from sta-
tistical evidence that the faults, potentially present, would
not cause catastrophic failures too frequently, would require
unaffordable amounts of operational testing.

A minor difficulty here was more complex mathematics.
Reasonably unreliable systems will sometimes be seen to fail.
If they fail for instance nf times in nd demands, nf/nd is a
practical and intuitive estimator of their probability of failure
per demand. More advanced statistical calculations are only
needed if we require confidence bounds around this estimate.
But if a system never failed, the nf/nd estimator would be 0,
and thus likely optimistic. To avoid this, it is appropriate to
estimate instead one-sided confidence bounds: statements of
interest will have the form ”this system’s pfd under this usage
is less than this bound, with this confidence”, a less intuitive
statement than “it is about nf/nd”.

The problem remains of demonstrating satisfaction of re-
quirements of very low pfd or failure rate. The solutions differ
in different industries. Civil aviation regulators in the West
choose simply not to require a demonstration: for design faults
– in software or other complex design artefacts – they do not
require statistical or probabilistic arguments, but just demon-
stration that high quality practices were followed; compliance
with guidelines like (currently) the joint EUROCAE ED-
12C/RTCA DO-178C documents is sufficient for certification.

A different (we would say more realistic) approach is taken,
e.g., by the U.K. Office for Nuclear Regulation (ONR), which
asks [7] for safety arguments to include two “legs”, “Pro-
duction Excellence” and “Independent confidence–building
measures”, the latter including statistical testing. It must be
said that this approach has been usually applied to systems,
within a nuclear power plant, that individually do not have
“ultra-high” requirements: they contribute to the plant’s safety
as parts of redundant and diverse layers of defence.

For ultra-high requirements, the statistics of failures (or,
rather, absence of failures) and operation will not give enough
confidence that a target like the above 10−9 has been attained,
before commercial operation begins. It is necessary to combine
this statistical evidence with what was known before the
statistical observation, which can be done rigorously via a
Bayesian approach, as recommended by researchers [2], [8]
and already accepted in regulatory practice, regarding non-
design faults, in various industrial sectors [9].

In Bayesian inference, “prior beliefs”, described as prob-
abilities of events and probability distributions of random
variables, are updated in view of the evidence observed –
e.g., failure-free operation. E.g., given a prior probability of

catastrophic failures being rare enough, observing a period of
operation without such failures will yield a higher “posterior”
probability.

A major difficulty is specifying these prior probabilities and
probability distributions. A textbook application of Bayesian
inference to assessing a system’s pfd from observing failure-
free operation would require an assessor to translate the
evidence prior to operational testing – e.g., precautions taken
in software development, forms of verification applied, qual-
ification of staff in a project – into a complete probability
distribution for the pfd of the system considered. To simplify
this daunting task, shortcuts are often suggested – even in
regulatory documents – like choosing intuitively plausible
or mathematically convenient functions. This approach risks
implicitly forcing the assessors to build flawed mathematical
arguments: internally correct but based on premises – the prior
distributions – that they cannot justify.

Concern with the sensitivity of conclusions to hard-to-justify
priors has produced extensive research in “robust Bayesian
inference” [10]. In this direction, we and our colleagues have
developed an approach of ”conservative Bayesian inference”
(CBI): we only require an assessor to specify constraints
on the prior distribution; and then prove what is the most
conservative conclusion that can be drawn from combining
a prior in the set thus defined with the observed new evidence
(records of operation and failures or lack thereof) [11]–[13].

B. Assessment, certification, licensing of autonomous vehicles

AVs have attracted huge investments and political interest,
creating intense pressure to authorise their operation. However,
how to demonstrate that they are safe enough for general
use on public highways is a classical “ultra-high reliability”
problem. The safety level of human drivers is indicated by
statistics like, in the U.S., a rate of about 1 fatality in 108

miles driven. Simple classical confidence calculations have
been published [1] to show how expensive it would be to gain
from road testing strong confidence that an AV type equals
even this average performance (an average among all drivers,
good or bad).

E.g., given a safety target that an AV type must deliver no
more fatalities/mile than this average U.S. driver, the classical
analysis requires 275 million fatality-free miles [1] in order
to achieve 95% confidence in the target being attained. A
Bayesian (CBI) analysis [13], [14] only confirms how hard
the goal is. For instance, aiming at 95% posterior probability
for the same target being achieved, this amount of road testing
could be reduced to 69 million fatality-free miles, if one had
90% prior confidence that the AVs are two orders of magnitude
safer than the 10−8 target.

The ultra-high reliability problem is akin to that faced
in aviation, but a major difference is that key functions in
AVs are performed by machine learning-based systems, as
opposed to conventional software. This undermines mature
verification methods that exist for the latter, to check that
the software (when operating on non-faulty hardware) would
satisfy specific requirements.



The AV industry has naturally embraced use of independent
safety monitors (see e.g. [15], [16]) to detect and resolve
hazardous situations. However, this does not solve the problem
of demonstrating that a type A AV will be as safe as required.
Firstly, hazardous situations may be subtle to detect and hard
to resolve; more importantly, it does not change the cost of sta-
tistical demonstration of safety, because the effectiveness of a
monitor for a particular AV cannot be estimated independently
of the specific AV [2], [17], [18].

Two relevant research reports from the RAND Corporation
[19], [20] address the interconnected issues of interpreting
societal demand for “sufficient safety”, demonstrating its at-
tainment via measurement, and risk communication between
vendors, government and the public. These reports have pop-
ularised in the debate the terms “lagging indicators” and
“leading indicators” for safety. “Lagging indicators” desig-
nates aspects of actual, measured safety of operation, like
numbers and severity of accidents. “Leading indicators” are
proxy measures that suggest how safe the vehicle will be. They
may range from measures of events in operation (e.g. near
misses or “disengagements” – handovers to a human driver) to
characteristics of the design or the development process. The
major concern at this stage is identifying how such indicators
may be related to actual safety, as measured in e.g. accidents
per vehicle-km.

Koopman et al [21], [22] advocate an ongoing safety
assurance approach where leading and lagging indicators are
used to estimate achieved safety and also provide opportunities
for safety improvement. This strategy is also incorporated into
the ANSI/UL 4600 safety assurance guidance for AVs [23]
where the safety case is no longer static, but is updated using
feedback from actual operation 3.

The work we present here fits in this pattern of demon-
strating safety via realistic accumulation of evidence and its
integration into a safety argument. The novelty of this paper
is that we offer a mathematically formal way of representing
such incremental safety arguments.

III. BASIC MODEL AND RESULTS

We show the reasoning for the case that the process of
mishaps occurring4 can be modelled as “Bernoulli trials”: the
system is subjected to a series of demands, and mishaps on
different demands are independent events with the same prob-
ability (“probability of failure per demand”, pfd). Bernoulli

3This is similar in principle to the mandatory aviation incident reporting
schemes, where severe incidents and accidents have to be reported and
analysed so that safety can be improved [24], [25]. This approach has been
operating for many decades and accident rates have fallen continuously over
this time.

4We use the umbrella term “mishap” for the negative event about which
one wants to give predictions. Some may want to reason about probability of
a deadly accident as in [1], [13], or of any accident, or of potential accidents,
e.g. violations of an assigned safety envelope, or even failures that analyses
reveal could cause an accident. In safety, one would typically wish to use this
last definition (potential accident); but to have data for statistical inference,
it may be necessary to reason just about serious accidents, those that are
reported and will appear in logs.
We retain instead the word “failure” in “probability of failure on demand”,
as a standard term in the probabilistic treatment of safety.

processes are a common model for failure processes [9], [26].
One could call “demand” a single trip; or, as in [1], [13],
driving a mile or a kilometre. If mishaps are rare, the Bernoulli
process should be a tolerable approximation of reality, despite
successive demands, if defined this way, not being independent
[27].

We use Bayesian inference: the uncertain values of interest
are considered random variables; a “prior” distribution that
represents the state of knowledge and uncertainty about their
values before new evidence is observed, and is updated on
the basis of this new evidence. In the present context, the
new evidence is that some amount of operation was completed
with no mishaps. In particular, we use here the approach of
“conservative Bayesian inference” (CBI for brevity) to avoid
the need to specify the prior distribution in full, and instead
depend on specifying only some characteristics of it that one
can trust to have good reasons for believing.

We use here a specific version of CBI [4] where, based on
• a very limited partial description of the prior distribution;
• the observation of a period of mishap-free operation;

a rigorous lower bound can be obtained on the probability of
the system continuing to operate without mishap for a specific
amount of future operation.

We follow this approach because, as we argued [4]:
• the real question of interest is whether the probability of

having any mishap over a certain period of operation
(e.g., the whole lifetime of the system; or the next year
of operation) is acceptably low (in other cases, whether
the probability of too many mishaps is); estimating a pfd
is just a mathematical detail of how one can answer this
question;

• for many systems, there is strong confidence, before we
start operating them, that they are reasonably safe: that
for some short period of operation, they are unlikely to
cause mishaps. Indeed, the decision to start even small-
scale operation of such systems would not happen if the
decision makers (vendors, operators, and/or regulators)
did not have this confidence. The source of the confi-
dence is typically in that these systems were developed
following good quality practice, the code was extensively
verified, etc. How much confidence this evidence should
really generate is a separate problem.

This prior confidence is affected by uncertainty, of course.
Expensively developed and verified systems have been put
into operation despite failure modes with astonishing high
probabilities: historically, e.g., the early Space Shuttle software
had a probability of 1 in 67 per flight of failing to start properly
[28]; the initial version of the Ariane 5’s control system, a
100% probability of destroying the rocket [29]. In general,
a thorough interrogation of what one knows should indicate
some estimate of a probability (less than 100%) that the pfd
is acceptably low. We note that this is a Bayesian probability:
the system’s pfd, given the way the system will be used and
the world around it, is a specific number, but is unknown.
This probability of acceptable pfd describes our “epistemic”



uncertainty about what the pfd’s real value is; this uncertainty
is a crucial factor in our decision whether to take the “gamble”
of operating the system.

In Bayesian terms, the unknown pfd is a random variable
– we will call it Q for brevity – and our uncertainty about
it is described by a probability distribution, say a probability
density function, fQ (q).

A. Argument based on probability of pfd = 0

The simplest version of our conservative form of reasoning
[4] applies for systems so simple that one has some substantial
confidence that they are free from safety-relevant faults, i.e.,
that their pfd is zero.5

Of course one never has 100% confidence of this. Thus a
parameter of this kind of argument is the probability Pp of
the statement “pfd = 0” being true. So, with probability Pp

the system has zero probability of mishap per demand: we
could operate it for an infinite amount of time and a mishap
would never happen (remember that we are talking about
mishaps due to the design of the self-driving function, not due
to physical failures, or to fatally reckless behaviour of other
drivers, “acts of God”, etc.: with this restrictive focus, if there
is no fault in the system, it will never fail so as to generate
a mishap). With probability (1 − Pp), thus, the system does
have design faults and will – sooner or later – fail: experience
a mishap. The Bayesian description of the problem is that the
pfd may have any value, with different probabilities: using the
notation we used earlier [4], we call Q the unknown pfd. Q
is a random variable, with a prior probability density function
fQ(q), which in this case is.

fQ (q) = Pp δ (q) + (1− Pp) fQn (q) (1)

where δ(q) is Dirac’s delta function6 and fQn (q) is the
probability density function (pdf ) for the system pfd condi-
tional on pfd> 0.

If the future period of operation for which we wish to know
that the system is safe enough is made up of Tfut demands,
the probability of surviving it without mishap (a reliability
function) is:

R (Tfut) =

∫ 1

0

(1− q)
Tfut fQ (q) dq

=

∫ 1

0

(1− q)
Tfut (Pp δ (q) + (1− Pp) fQn (q))dq

=

∫ 1

0

(1− q)
Tfut Pp δ (q) dq

+

∫ 1

0

(1− q)
Tfut (1− Pp) fQn (q))dq

= Pp + (1− Pp)

∫ 1

0+

(1− q)
Tfut fQN

(q) dq (2)

5This case is convenient for the purpose of presentation: its results yield
simpler plots than the general case, which we introduce in section V-A2, of
imperfect confidence in the pfd being less than a small non-zero value.

6Defined as: δ(x) = 0 for any x ̸= 0 and
∫+∞
−∞ δ(x)dx = 1.

One can observe that the reliability will stay higher than Pp

for any duration of future operation; the risk we take in the
“gamble” of operating this system is a weighted sum between
zero risk (if indeed pfd = 0) and the risk due the potential
defects in the system. With the common approach, instead, of
only seeking a confidence bound on pfd, and using it for a
conservative prediction of future probability of mishap, one
ignores the fact that with a certain probability those defects
are absent and thus pose no risk in operation. This would be
needlessly pessimistic. Once we start operating the system,
operation experience feeds new evidence about how much we
should trust the hypothesis that pfd = 0.

B. How mishap-free operation extends the confidence horizon

After Tpast independent demands without mishaps, the
posterior probability of Tfut further mishap-free demands is
(from Bayes’ theorem):

R (Tfut|Tpast) =

∫ 1

0
(1− q)

Tpast+Tfut fQ (q) dq∫ 1

0
(1− q)

Tpast fQ (q) dq
(3)

As mentioned earlier, so that the results can be trusted not
to be an artefact of unjustified details of the prior distribution,
we applied a “conservative Bayes” method [4]: given a value
of Pp, and assuming we do not know the rest of the prior
distribution, fQN

(q), this method obtains the most pessimistic
posterior reliability, for any pair {Tpast, Tfut}, compatible
with that Pp [4]. Thus our confidence in future mishap-free
operation is the most pessimistic given these inputs. Clearly
one could study “confidence bootstrapping” with any other
choice of prior distribution. The advantage of this approach
is the guaranteed conservatism with respect to uncertainties
about the detailed prior distribution of the pfd.

Figure 1 exemplifies the results of the conservative infer-
ence. In this scenario where the prior distribution is described
only via its Pp value, this probability is a function of the
ratio Tfut/Tpast, so these bi-dimensional plots are sufficient
to describe, for any values of Pp and Tpast, the probability
of having any mishaps over a certain Tfut. Our confidence
level is 1 minus that value: the probability of no mishap
happening in the next Tfut amount of operation. So, given
the Pp that one trusts, and the confidence level one desires
in future operation without mishaps, one can see how much
such future operation can be. We will call the value of Tfut for
which this confidence holds the “confidence horizon” that the
experience Tpast supports for that required confidence level.

E.g., for a desired confidence 95% that no mishaps will
occur (i.e., 1 − 0.95 = 0.05 on the vertical axis in Fig. 1),
the plot shows that if I have Pp = 0.9 the confidence horizon
is about 5 times Tpast (the exact value of the probability for
Tfut = 5 Tpast is 0.94). It is useful to visualise the confidence
horizon as a multiple of Tpast. We will write Thor = kTpast,
so in this case k = 5; we will use this value in our examples
below.



Fig. 1: Probability of one or more mishaps (i.e., 1 minus confidence
that no mishap will occur) over Tfut future demands, supported by
given Pp and Tpast amount of past mishap-free operation (from [4]).

C. Bootstrapping confidence; confidence horizon measured in
amount of operation and in calendar time

Our scenario is now as follows. A required probability
of no mishaps occurring has been chosen. For this required
confidence level, the current Pp value gives a “confidence ex-
tension coefficient” k that determines the confidence horizon,
Thor = kTpast. On this basis, a fleet of vehicles is allowed to
operate. If the fleet size is constant, and the way it is operated
(environments in which they run, times of operation, kinds of
trips, how many trips of each kind per day or month) does not
change, then the formulas for the confidence horizon, although
written in terms of future number of demands, could just as
well be written in terms of time on the road, or calendar
time: each one of these measures is proportional to the others.
If we use lowercase ‘t’ for calendar time, while keeping
uppercase ‘T’ for amounts of operation (e.g., vehicle-days,
or total trips) we can write that t ∝ T . We define an average
rate of operation, oavg (measured in demands/vehicle/year, i.e.,
kms/vehicle/year, or trips/vehicle/year, etc, depending on the
definition of “demand” adopted for measurement), and assume
that every vehicle operates at this rate – an approximation that
will become good enough once enough vehicles are on the
road (we will discuss its limitations later). So, at any time,
we have clear indication of what our confidence horizon is,
and this is growing longer; alternatively, if our main interest
is the probability of avoiding mishaps over a fixed horizon,
this probability is growing constantly.

But suppose that the vehicle is in production: the fleet size is
increasing. A given confidence horizon Thor = k∗Tpast, stated
e.g. as a number of vehicle-months, has to be spread over
operation of a growing number of vehicles: in calendar time,
our confidence extension coefficient will be less than k. In
other words, thor/tpast < Thor/Tpast. The confidence horizon
is a necessary time buffer for decision makers: could the
growth of fleet size reduce it too much? Will it progressively
shrink to nothing? We study these questions below.

1) Case 1: constant number of vehicles: At any time t, with
a constant number n of vehicles, Tpast = tpast×n×oavg and
thor = ktpast.

As time passes, the future confidence horizon expands,
proportionally to the time elapsed. This may be a quite

satisfactory situation, e.g. if I am in early pilot operation with
a fixed number of vehicles, and want to run this pilot phase
for e.g. one year, then, in our example of k=5, after 2 months
in operation I will have sufficient confidence of mishap-free
operation for the remaining 10 months; and this confidence
will increase towards 100%, as is natural, as more time passes
without mishaps; or if I am concerned about a fixed population
(type Z vehicles, e.g. the set of autonomous bespoke heavy
load vehicles in a certain mine), after 1 year I will be confident
enough for the next 5 years, and if the planned operating life is
- say - 30 years, after 5 mishap-free years we will be confident
enough of safe operation for the rest of the operating life.

While no mishaps occur, the confidence horizon expands
constantly; if we were interested instead in absence of mishap
for a constant period into the future, a constant tfut, say one
year, or 5 years, our confidence in this outcome would keep
increasing. This will be true for all scenarios that we examine.

2) Case 2: linear growth of fleet in operation: Suppose
now that after a pilot period of operation, a production line
is activated that delivers vehicles at a constant rate rv . Let us
count time from this moment. The pilot period accumulated a
total amount of operation (demands) Tp, so that we have “ac-
cumulated confidence” for a future amount of operation kTp,
considered sufficient to decide to start production. As the fleet
grows, we can soon ignore this initial ”capital” of confidence:
it becomes negligible, compared to that accumulated through
operation of the mass-produced vehicles. We assume for the
sake of simplicity that every vehicle starts operation as soon
as produced, and all operate at the same rate oavg .

We want to calculate the confidence horizon after a time
tpast has elapsed from the start of mass production (and mass
operation) of the AV type. The amount of operation until then
will be

Tpast =

∫ t

0

(t− τ) rv oavg dτ =
rvoavg t

2
past

2
(4)

giving a confidence horizon

Thor = k Tpast (5)

To translate this into calendar time, we consider that

Tpast + Thor = (k + 1)Tpast (6)

hence, substituting from (4):

Tpast + Thor =
(k + 1) rvoavg t

2
past

2
(7)

and observing that, by analogy with (4):

Tpast + Thor =
rvoavg (tpast + thor)

2

2
(8)

one sees from equating (7) and (8) that:

thor =
(√

k + 1− 1
)
tpast (9)

e.g., for our example of k=5, thor ≈ 1.45 tpast.



That is, after 1 year of operation, we have gained the
required confidence in future mishap-free operation for ap-
proximately another year and a half.

We can call the coefficient on the right hand side

klinear =
√
k + 1− 1 (10)

We note that:

• this result does not depend on the production rate, but
only on it being constant;

• though always smaller than k, for a high enough k this
coefficient klinear , of the order of

√
(k), can still be high,

e.g. for k = 10 , klinear ≈ 2.32.

A warning is appropriate: while k is a ratio between
operation times in vehicle-months, which applies no matter
how the fleet size evolves over time, klinear is a ratio between
interval lengths in calendar time, and only applies if vehicles
enter operation at a constant rate. For each law of fleet size
change as a function of time, a different law of evolution of
the confidence horizon in calendar time applies. In practice
any such evolution law can be easily studied by simulation,
as we do for the examples we present later in this paper.

Readers may observe that the row for k = 100 in Table I
contains Pp values that are only marginally smaller than the
desired confidence of mishap free operation for a time k tpast.
Indeed, if we want assurance of safety for an amount of future
operation much greater than we have observed, our confidence
in it needs to rely mostly on the confidence we had prior to
that observation [2]. The way of reasoning we propose does
not create evidence out of thin air; it does instead indicate
clearly what can be trusted based on the evidence itself.

The good news from this table is that for moderate amounts
of future operation, the required prior confidence Pp is
markedly lower than the posterior confidence sought. That is,
with this approach a decision maker can trust that operation
for a finite future interval is safe, and during that interval,
additional positive evidence can be collected, if indeed the
system is as safe as intended. One can manage incremental
deployment, the only sure way of building up, gradually,
evidence of sufficient safety, with an understanding of the
amount of risk it entails, and can thus contain that risk at
a level considered acceptable.

3) Increasing the rate of growth of the fleet in operation:
If the production rate increases, the confidence horizon will
decrease accordingly (or confidence will decrease if we want
the same horizon). E.g., if, in the previous example, after five
years of operation we suddenly double the production rate, by
opening another identical production line, the amount of past
operation becomes, for any tpast = t > 5, the sum of that due
to vehicles from the older factory and vehicles from the new
one:

Tpast =
rvoavgt

2

2
+

rvoavg (t− 5)
2

2
(11)

Desired P(no mishap)
90% 95% 99%

k klinear Pp Pp Pp

100 9.05 0.89 0.95 0.99
10 2.32 0.86 0.93 0.99
5 1.45 0.84 0.92 0.98
3 1 0.8 0.9 0.98
2 0.732 0.77 0.88 0.97
1 0.414 0.67 0.82 0.96

0.6 0.265 0.56 0.75 0.94
0.5 0.225 0.52 0.72 0.93
0.2 0.0954 0.26 0.5 0.86
0.04 0.0198 0.0092 0.071 0.53

TABLE I: Pp values required for different levels of confidence in
further mishap-free operation for the static fleet case (k) and the
linear fleet increase case (klinear). Each Pp column shows the value
of Pp = P (pfd = 0) that would support the level of posterior
confidence listed above the column, for the k value on that row.

and

Tpast + Thor =
rvoavg (t+ thor )

2

2
+

rvoavg (t+ thor − 5)
2

2
(12)

but it is also true that

Tpast + Thor = (k + 1)Tpast (13)

So, substituting (11) and (12) in (13) and solving, we obtain,
for our example with k = 5:

thor = −t+ 5/2 +

√
24 t2 − 120 t+ 275

2
(14)

which at the time the production increases, has the value
5.8 (units of time): the confidence horizon for the combined
output of the two factories is now substantially lower than that
calculated without taking into account the new factory, which
was 7.2.

Fig. 2: Growth of the confidence horizon (for 95% confidence in no
mishaps occurring), in the case of continuous growth of the fleet, and
effects of step increase in production rate. After the increase at time
t = 5, the confidence horizon drops from 7.2 to 4.5, but recovers to
the previous value by time t = 8.

We skip for reasons of space the general solution for this
problem, and show an example of these effects in Figs 2 and
3, for a greater increment (four-fold) in production rate and



Fig. 3: Ratio between confidence horizon and tpast, constant with
continuous growth of the fleet, and the dip caused by a step increase
in production rate.

thus a larger dip in the confidence horizon. Note that (1) the
effects of the dip tend to disappear, in relative terms (Fig. 3), in
the long run; (2) if the increase in production rate is assumed
known before it happens, this dip would start, gradually, earlier
than shown, as soon as the confidence horizon for those AVs
that were produced before the increase reaches the moment at
which the increase will take place.

4) Maturity and retirement : If production continues for a
long time, older vehicles will start to be retired, hence the
confidence extension coefficient will gradually rise back from
klinear, to reach k when a constant-fleet size equilibrium is
reached (new vehicles are added at the same rate at which
older ones are retired). When production is eventually scaled
down and ends, as the fleet size dwindles the confidence
horizon will increase even faster, but by then it will generally
already extend beyond the end of the life of the fleet.

IV. EXAMPLES

1) Example: type Z vehicle, for restricted environments:
Figs. 4 and 5 show a hypothetical history of fleet size evolution
for a type-Z AV, and the corresponding evolution of the confi-
dence horizon. Very satisfactorily, the desired 95% confidence
of no mishaps in all future operation is reached early in the
fleet lifetime.

But it is more interesting to observe the evolution of
the confidence horizon in the early times, when operational
experience is still limited and decisions are needed whether
wider-scale operation should be considered safe enough to

Fig. 4: A possible fleet evolution pattern for type Z vehicle. Pilot
operation proceeds with 5 vehicles for 24 months. Series production
starts at month 24, with 10 vehicles starting operation per month.
Production ends after 16 years. Vehicles are retired at age 25 years.

Fig. 5: Evolution of confidence horizon for type Z fleet of Fig. 4. The
confidence horizon, in vehicle-months of operation, is the vertical
distance between the bottom solid line (accumulated vehicle-months
of operation) and the dotted line. The prior confidence Pp is assumed
0.92, giving a “confidence extension coefficient” k = 5.

proceed. Fig. 6 zooms in on these early days. The confidence
horizon grows quickly while operating a constant-size fleet
but dips when linear increase starts. If this dip were thought

Fig. 6: Evolution of confidence horizon in the early days for the type
Z fleet of Fig. 4. At month 24 (marked by the vertical line), new
vehicles start operation at a rate of 10 vehicles/month. The future
period for which we have 95% confidence of no mishaps (confidence
horizon) thus drops to 10 months, before increasing again as mishap-
free operation accumulates.

excessive, one can phase the production increment: e.g. in
Fig. 7 at month 24, production is started at a rate of only
3 vehicles/month, then at month 36 production is increased to
the desired 10 vehicles/month.

Fig. 7: Evolution of confidence horizon during early operation for
the type Z fleet of Fig. 4, changed to reach the introduction rate
of 10 vehicles/month in two stages: 3 vehicles/month at month 24,
increased to 10 at month 36. This limits the dip in the confidence
horizon to 15.4 months

2) Example: type A vehicle: For type A vehicles, we
do not expect substantial prior confidence that pfd = 0.
However, before starting test on public roads, a decision
maker will require some confidence of acceptable probability
of mishaps, obtained from e.g. verification of the machine



learning platform and of the safety monitors, lab testing of the
machine learning components, extensive simulated road testing
and testing of the vehicle on restricted-access test circuits,
comparisons with results seen in other, similar systems, etc.

We discuss in section V-A how the method can be extended
to deal with this different input. Here, instead, we only
consider an approximation valid for a short initial amount of
operation, during which a small bound on pfd has an effect
on predicted probability of mishap approximately equivalent
to that of having pfd = 0, and thus introduces a small error
in the calculation of the confidence horizon described so far.

Suppose for instance that the evidence available, mentioned
earlier, yields for the decision maker an estimated bound on
pfd such as to give accident rate no more than 10−8 km−1.
This is near the average for human drivers, and thus not
quite adequate for type A vehicles. Furthermore, given the
limitations of the evidence (e.g. uncertainty on the realism of
simulations), our decision maker sets a modest 80% confidence
in this bound. If they require, for instance, 90% confidence in
mishap-free operation in the test period, this yields, from Table
I, k = 3.

This approximation is only useful for an early period of
operation, presumably of test vehicles only. If we assume
e.g., test vehicles running 10,000 kms/month, and given the
aforementioned required 90% probability of no mishaps in this
phase, the approximation will be acceptable for the first 100
vehicle-months of operation: 10−8 × 100 × 104 = 0.01 ≪
1− 0.9.

Thus for instance, if operations starts with one test vehicle
only, after one month of operation there will be confidence in
operating k = 3 vehicles for another month with probability of
mishap at most 90%, etc. If for instance the test fleet expansion
is stopped after month 3, with 9 vehicles and Tpast = 13
vehicle-months, the confidence horizon in vehicle- months will
be Thor = 3 × 13. In calendar months, it will be another
thor = Thor/9 = 4.3 months of test operation.

In the next section, we discuss issues raised in this example:
simple mathematical extensions and practical implications, e.g.
for continuing validation activity.

V. DISCUSSION

The discussion until now has assumed that the chosen
mathematical model of the real world processes is correct.
We believe that it would be correct in many situations with
type-Z AVs (as we defined them in the introduction), and in
much more restricted cases for type-A AVs. We discuss here
the various limits to its applicability, what extra evidence or
research would be needed to extend these limits, and general
insight that can be derived from this study.

A. The probability of pfd = 0 versus “effective fault-freeness”
The form of conservative Bayesian inference we presented

relies on a prior probability Pp of the system having 0 pfd,
although our earlier paper [4] also outlined other forms. This
one has advantages of simplicity when presenting “confidence
bootstrapping” concepts, but it is not the only option. We now
discuss these options in more detail.

1) Probability of pfd = 0 : A non-negligible probability
that the system pfd is zero may be plausible for very simple
systems, but not generally for the control functions of AVs,
which tend to be complex and depend heavily on machine
learning. However, practically all AV manufacturers embrace
the use of “safety monitor” subsystems, which monitor the
vehicle’s situation, checking for any violation of preset safety
constraints, and have authority for taking emergency action.
These are potentially very simple: for instance, detecting
a fixed obstacle via lidar and braking if it is approaching
too quickly is a simple function (in principle). For type-
Z vehicles, for which the environment is simple and safety
is paramount, these safety subsystems could plausibly be so
simple and well verified to have a high probability of 0 pfd,
making our method applicable. Pp would never be 1, since
subtle misunderstandings of hazards, or errors in verification,
may happen, but it would be high enough to support useful
levels of confidence in safety. We would not claim that this
is possible for class-A vehicles, because: (1) the dangerous
situations that can occur in traffic may be very complex and
not amenable to simple detection or simple accident avoidance
decisions; (2) manufacturers have to pursue a difficult balance
between safety and performance (e.g., delivering passengers
to destination in times that are comparable to human-driven
vehicles). However, some manufacturer might try this route
of making the safety monitor subsystems more thoroughly
verifiable for the whole set of potential hazardous situations.

2) “Effective fault-freeness”: If the system is complex, so
that Pp is very small, high quality development and verification
could still support a prior confidence about the pfd being, if
not 0, at least smaller (better) than a very low bound, qS . Some
scenarios in which this could apply are discussed in our earlier
paper [4], showing that the prior confidence has then the form∫ qS

0

fQ (q) dq = PS (15)

leading to a probability of operating over Tfut without mishap:

R (Tfut) =

∫ 1

0

(1− q)
Tfut fQ (q) dq

=

∫ qS

0

(1− q)
Tfut fQ (q) dq +

∫ 1

qS

(1− q)
Tfut fQ (q) dq

≥ PS (1− qS)
Tfut +

∫ 1

qS

(1− q)
Tfut fQ (q) dq

(16)

Note that if qS is such that over the time horizon of interest
its contribution to risk is negligible (or, equivalently, if we
limit our predictions to Tfut values for which this is true):

(1− qS)
Tfut ≈ 1 (17)

then the right-hand side of equation (16) is approximated
by (2) with negligible effect on the confidence in mishap-
free operation over Tfut, and ability to improve confidence



as mishap-free operation accumulates. When qS = 0, (16)
reduces to (2).

This more general model offers a way forward. However, we
have to discuss its limits and possible difficulties. For type-
A AVs, condition (17) would probably apply initially only
for very short Tfut. We can instead develop an exact worst-
case prediction based on (15) and the bound in (16) and
inference from mishap-free operation. Some extra difficulty
arises, which may or may not be surmountable depending on
the circumstances. The pessimism implied by using the bound
in inequality (16) implies that the predicted probability of safe
future operation would never exceed (1− qS)

Tfut : as though
the true pfd were qS . E.g., if one initially chose qS = 10−3,
the inference would indicate that the true pfd is no better than
10−3, even after seeing 106 or 109 mishap-free demands. This
pessimistic prediction would be neither useful nor credible.

To avoid this, one needs to accumulate other evidence, in
parallel with mishap-free operation, to establish a lower PS or
a less coarse description of the distribution fQ (q) for q close
to zero. This should be possible. Indeed, AV manufacturers
have ongoing programmes of accompanying road testing and
operation of their AVs with continuing verification activities in
the form of, e.g., much more extensive simulated driving, pur-
suing static verification of some safety properties, etc. These
activities could progressively improve both PS (increasing it)
and qS (reducing it). Last but not least, manufacturers would
respond to both accidents, and violations of safe behaviour
envelopes that do not cause accidents, with improvements.
To what extent all these activities could allow this form of
“confidence bootstrapping” to be be deployed, as the operation
amounts involved increase, remains to be studied on the basis
of the details of the activities and evidence about their efficacy.

B. Conditions for validity of the model

The “Bernoulli trials” model we used assumes that the pfd
will not change – between the past from which we draw
inferences and the future, or during future operation. This
is only true with certainty if neither the vehicle, nor its
mode of use, change. These conditions may well hold for
type-Z AVs, meant for well-understood tasks in controlled
environments (factories, mines), for which the traditional rule
is followed of avoiding change, as far as possible, for critical
functions of safety-critical systems. This rule indeed exists
because change undermines the confidence that has been built
through expensive verification work. For type-A AVs, meant
for future mass sale to consumers, this condition does not seem
to hold at the present state of aggressive development pace.
The Bernoulli trial model would only apply over short periods
of time between upgrades; although, in the future, maturity
of designs and the need to satisfy authorities and consumers
about safety might at some point make changes in self-driving
functions much less frequent.

Given frequent upgrading of A-type AVs, can “confidence
bootstrapping” work? A sufficient condition for this model
still to help is to convincingly demonstrate that the changes
do not reduce (or actually improve) safety. Then, one could use

evidence of safe operation of previous versions of a vehicle
as though it concerned the latest version, and only err in the
direction of pessimism. How to formalise mathematically this
kind of argument, taking into account the uncertainty that
may affect them, has been studied for various scenarios [13],
[30]–[32]. We need still to study how these results could be
combined with those we present here.

These methods for accounting for “changes for the better”
would also apply to changes of the environment of use. For
type-A AVs using public roads, the environment will certainly
be changing, if nothing else due to the increasing presence of
AVs. This may well mean that the environment will gradually
become more benign, allowing the method we presented to
be extended along the lines of the papers cited above. Other
ways to account for a changing environment are being studied,
including monitoring the changes so as to update predictions
accordingly [33] and making predictions robust by accepting
extra conservatism [34].

In summary, some extensions to deal with changing envi-
ronment and evolving AVs are available for specific scenarios,
and suggest that research may deliver extensions to a broader
range of scenarios.

Irrespective of evolution of the vehicle and the traffic
environment, a reader may question whether mishaps on
different demands (e.g., different trips) are indeed independent
and equiprobable events. We mentioned (Sec. III) that if
mishaps are rare enough events, assuming independence is
an acceptable approximation. More extensive discussion and
references are available in [13], [30]. An essential require-
ment is that the demands from whose outcomes we infer
probabilities must have the same probability distribution (of
characteristics that may affect whether a mishap occurs – like
position and velocity of vehicles, temperature, visibility etc.)
as the future demands to which those probabilities are meant
to apply. Thus in any statistical learning (not just with our
method) care is required, e.g., not to use operation limited
to Summer as a suitable sample for prediction about winter
conditions. Concerns like this will especially apply while the
scale of operations is still so small that fair sampling cannot
be ensured: e.g., a single test vehicle cannot practically sample
all the regions in which the future fleet is meant to operate.

We should note that even when assumptions do not strictly
hold and the numerical results are not trusted, we expect the
model to help qualitative understanding of the effects to be
expected from expansion of operation.

C. Long-term operation and mishaps

We have described a way of “bootstrapping confidence” on
the basis of operating an AV without any mishaps. With this
approach, even a single mishap would completely undermine
confidence in future operation. Other studies have addressed,
for different contexts, how confidence would grow again with
subsequent mishap-free operation has been addressed [14],
[35]. Regarding our current context, it is reasonable to demand
that an acceptably safe AV should not suffer mishaps in early
operation: if the target is of the order of less than one serious



accident in 108, or more, kms, one such mishap in the first
– say – 105 kms would be a very strong alarm signal. It is
thus reasonable for our method to respond with a total loss of
confidence.

So, the method we have described is suitable for a type-Z
AV (expected to have no mishaps over its whole lifetime) or
the early period of adoption of a type-A AV.

It becomes inadequate later, when a type-A AV, even if
acceptably safe, would inevitably start to suffer mishaps. The
fact is that even if an AV is acceptably safe, in that its pfd is
as required (say, 10−r), as it goes through extensive operation
it will still reach a stage when mishaps are bound to happen.
After the first 10r−1 demands, there is a non-negligible 10%
probability of having had at least 1 mishap. After (0.7 10r)
demands, this probability becomes 50%. Thus a mishap in
the first 10r−1 demands poses the question whether this AV
has acceptable pfd≤ 10−r, but hit that 10% probability of
an early mishap, or instead possibly has an unacceptable
pfd=10−r+1, or even worse pfd, but hit a lucky, but not wildly
improbable, mishap-free run. To answer these questions, the
method we have presented is as yet inadequate. We plan to
study extensions in this direction. In the much longer run (after
a number of demands much larger than 10r), the problem
disappears: if the rate of mishaps is stable, it is easily assessed
with standard statistical methods, to confirm that the vehicle
is acceptably safe (or that it is not).

Accidents, or even near misses, that appear due to defects of
a system, are likely to trigger attempts to diagnose and remove
the defects that cause them, thus – it is hoped – improving
the pfd in subsequent operation. It has been shown [36] that
if these events were due to defects that will be removed, with
some probability, following any accidents or near misses, the
total number of accidents over the system lifetime will also
be bounded. This bound is affected by the number of defects,
and by how effective the safety monitors and other monitoring
arrangements are in causing a defect to be detected before it
causes an accident. With machine learning systems, just as
with mature, very complex conventional systems, it cannot
be taken for granted that attempts at removing defects will
reduce the pfd. One cannot exclude that such “repairs” will not
only be subject to a law of diminishing returns, but possibly
just cause the system pfd to oscillate up and down without
a definite decreasing trend. However, extending the above
model to describe these situations may bring additional insight
for this kind of scenarios.

D. Risk criteria

We have reasoned so far about scenarios in which the
main concern is whether there will be any mishap (due to
the self-driving functions) in operation. This is one of the
possible concerns, appropriate, it would seem, for a public
authority that only wants to authorise operation if there is
high confidence that the system will not cause harm; or for a
manufacturer fearing that any accident during the early life of a
new model might turn the public off buying it: accidents would
risk all the expected returns on the massive investment made in

development. However, there are other possible viewpoints.
For instance, accidents may entail compensation costs after
each accident; or recalls after each accident. That is, in some
circumstances the dominant concern may not be whether there
will be accidents, but how many. This requires an extension to
the model presented here, using other published results [12].

Last, while we have focused on how the confidence horizon
progressively extends into the future, there will be situations
in which the main concern is absence of mishaps over a fixed
term into the future. For these circumstances, the model we
have presented is very satisfactory, as it shows this confidence
increasing steadily as experience of mishap-free operation
accumulates.

VI. CONCLUSIONS

“Bootstrapping” confidence in a system, by operating it
on a gradually increasing scale, with the next increase being
deemed safe enough on the basis of safe operation in the
previous increments, is common practice. With systems that
are based on machine learning, not amenable to some of the
standard ways of gaining confidence in a software-based sys-
tem before operation, “bootstrapping” is even more important.

But to trust that we are deriving correct decisions from
this encouraging evidence, we need to know how much our
confidence should grow thanks to mishap-free operation. We
have presented a formal mathematical way for a sound (con-
servative) derivation of how much confidence one can really
have on the basis of a certain amount of mishap-free operation.

This method applies well for managing growing scale of
operation in some scenarios: specifically, giving assurance in
the short term for early operation of what we called type-
A AVs, those for which assurance is hardest; and probably
whole-life assurance for type-Z ones (corresponding to some
“SAE level 4” forms of autonomy), those built for extremely
safe operation in constrained and controlled environments.

For other scenarios, our present study is an encouraging
indication that similar solutions may be developed, although
they may require new research: developing the mathemati-
cal methods, but also demonstrating empirically whether the
assumptions of these methods hold in practice (within some
acceptable degree of approximation), or devising variations in
design practices (e.g. regarding safety monitors), or in data
collection practices, that would allow the assumptions to be
proved valid and thus grant the benefit of a sounder basis for
confidence in future safety. Case studies are also needed on
choosing model parameter values of the models on the basis
of evidence prior to operation. There are thus various areas for
future work. On the mathematical side, the most urgent ones
probably concern extending our methods to cover the case in
which mishaps do occur (albeit few of them), so filling the gap
identified in section V-C between the early, no-mishap days
and the very long term phase in which mishaps are rare but
numerous enough to make statistical analysis straightforward;
and extending the efforts mentioned in V-B for taking into
account changes of the vehicle and/or its environment of use.



The proposed form of argument can be applied to early
deployment of any system. For systems with “ultra-high” de-
pendability requirements, where strong beliefs that the system
will live up to its required level of safety cannot be empirically
justified before extensive operation, this way of reasoning
supports responsible management of incremental deployment
so as to keep risk at an acceptable level all along.

This is a more modest goal than certifying, as is required,
at least in theory, e.g., in aviation, that risk is acceptably low
for the whole lifetime of a type; but its very modesty allows
it to be argued and scrutinised rigorously.

Our earlier paper [4] proposed a form of sound argument
for such modest, but practically useful, predictions of adequate
safety over some future period of interest. The present paper
shows how that approach can be used both to manage risk via
controlling the growth of the operational fleet and also, in some
cases, to know when the more extreme, initially unverifiable
claim will become believable with high confidence.
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