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Abstract—Autonomous vehicles (AVs) are gradually appearing
on the roads. However, how to demonstrate their safety is
still under debate. While operational testing seems essential
for building confidence in AV safety, the amount of testing
required can be prohibitively expensive. Additionally, current
AVs evolve continuously and are used in a changing set of
environmentsRepeating substantial operational testing for each
new AV version, or new use of an AV, seems unaffordable.
Therefore, the idea of applying operational experience from
before such a change towards claims of safety after the change is
attractive. We present new results, addressing the frequent case
in which a new version of the AV can be proved to be safer than a
previous one, bar major errors in design or analysis assumptions.
Mathematically, our new solution applies to all those scenarios in
which the new version or environment is, with high probability,
no less safe than the old one “no matter how safe the old one
was”. We call this scenario “unconditional improvement” (UI).
Various previous papers addressed related scenarios in which
there is some confidence that the change has improved, or at
least not degraded, safety, but they solved the problem under
weaker conditions: our new results substantially improve the
safety claims that can be supported, especially for operation soon
after the change.

I. INTRODUCTION

Experience of safe operation or operational testing is desir-
able evidence for safety demonstration of any system. Such
evidence alone is typically insufficient for strong statistical
confidence in extreme rarity of accidents [1], [2]; yet in many
contexts it plays an important role in ensuring confidence in
safety. Sometimes this experience is presented as classical con-
fidence statements; Bayesian methods allow one to combine
operational evidence with “prior beliefs” derived from, e.g.,
quality of development and verification [1], [3], [4].

A concern is that statistical inference methods require that
the measures being estimated (e.g. probability of failure per
demand, pfd) be unchanged between the past experience from
which statistical data were collected and the future use for
which a safety claim is made. Thus, any change in the
system or in its usage (“operational profile”, “environment”) is
assumed to invalidate previous evidence. For instance, if we
had ample experience of safe operation of a certain system
in a certain environment (let’s call this combination “situation
A”), and wished to argue for safety in a situation B, where
the system has been slightly improved or the operational

This work was supported in part by ICRI-SAVe, the Intel Collaborative
Research Institute on Safe Automated Vehicles.

environment is slightly different, this would be impossible
using the generally recommended statistical methods [4], [5]
for such “proven in use” evidence.

One would then need to repeat an operational testing
campaign from scratch every time the situation changes (a
system is updated and/or used in new environments). This
would be very expensive, and yet, if the experience from A
amounted to many system-years of operation, pre-operation
testing for B would typically bring a much smaller amount of
evidence, seemingly adding little assurance.

Therefore, statistically sound methods are needed for apply-
ing evidence collected from a previous situation of the system
to demonstrating safety in the current situation [3], [6], [7].

These concerns are especially relevant for AVs, which
(a) have requirements for minuscule accident rates; (b) rely
on machine learning (ML), undermining conventional, non-
statistical verification techniques; (c) undergo frequent
changes; (d) may require complex authorisation processes for
realistic testing on public roads.

For these reasons, two of the present authors (Salako and St-
rigini) and colleagues have proposed solutions for integrating
evidence from a situation A in rigorous statistical claims for a
new situation B. These address the case, frequent in practice,
in which B differs from A in that the system and/or the
environment of use are likely to be safer than those in situation
A. Experience from A then improves confidence in the safety
of B, and thus reduces the amount of new operational testing
required before regular operation of B can be allowed to start.

This paper presents an improved method, suitable for some
of the scenarios in the latest paper cited [3].

Although this approach is expected to be applicable more
widely, here we limit our scope, for comparisons with the
earlier work [3], [6], [7], to cases in which

• the evidence from operation is a number of discrete
demands to which the system was subjected (e.g., trips of
a vehicle), all dealt with successfully (e.g. without acci-
dents). Since the mathematical results apply irrespective
of the event whose probability is sought, we will call
this event “failure”, which in different situations might
refer literally to failures, or to accident, or the reaching
of hazardous system states, etc.;

• The objective function of interest is the (Bayesian) con-
fidence in a required upper confidence bound pr on the
pfd of B, given experience of nA failure-free demands



for A and nB for B: the posterior confidence P (XB ⩽
pr | nA, nB). We will call this objective function c for
“confidence”, for brevity.

Notions of confidence are important in safety assessment, as
it is difficult to assert quantitative safety claims with certainty.
The theory of statistical confidence deals with uncertainty
arising from sampling. But much inevitable uncertainty is
“epistemic”, e.g., in the knowledge of the person preparing an
argument for certification of a system – we will call this person
“the assessor” – about their own probabilistic model of a
system. With Bayesian methods, assessors can treat epistemic
uncertainty via probabilities, updating uncertainty (probabili-
ties of events of interest) by applying evidence (failure or lack
of failure) from operational testing [1], [4].

Claims based on improvements over a previous system
(“No worse than existing system”, or NWTES), as inputs to,
or as results of, a safety argument, are common, in various
industrial sectors, with different names (e.g. “Globally at least
equivalent” (GALE)). For a discussion with examples we refer
the reader to an earlier paper [8].

Like the earlier work cited, we apply “Conservative
Bayesian Inference” (CBI) – a form of robust Bayesian
inference [9], [10]. We offer assessors a method that:

1) is Bayesian: it uses Bayes’ theorem to update “prior
beliefs” (probabilities of events of interest) into “posterior
beliefs”, based on evidence available prior to operation or
operational testing. An example update is our objective
function, posterior confidence c.

2) Claims based on with respect to the assessors’ uncer-
tainties about prior beliefs. Standard use of Bayesian
inference often requires assessors to specify more de-
tailed prior beliefs than they have evidence for. For
example, a complete probability density function for
the unknown pfd of a system. Assessors are offered
“standard”, mathematically convenient forms for such
functions, with no help for verifying whether they ought
to believe them. The resulting claims could therefore be
more optimistic than the evidence warrants. CBI mitigates
this risk by only asking for partial information about
prior distributions; that is, asking for beliefs for which the
assessor has credible evidence1. We call such statements
“Prior Knowledge” statements or PKs; we give examples
later. CBI considers all those prior distributions that are
consistent with the assessor’s PKs and seeks the infimum
of the values of c that they yield, so as to return a
value for c that is guaranteed to be conservative. A prior
distribution that gives this most conservative posterior
confidence is called ”worst-case prior distribution”.

Our colleagues and we have produced a set of CBI results
for a set of scenarios (PKs) and objective functions [3], [7],
[11], [12], from which an assessor can choose, based on the
evidence available before operation/testing2.

1And can argue, e.g. with a regulatory authority, that the evidence does
support them.

2This set does not claim to be complete. We plan to extend it according to
requests from safety practitioners.

The advance that we present here is a CBI solution for an
especially interesting form of “NWTES” scenario, Uncondi-
tional Improvement (UI). We will first recall some limitations
of earlier results [3] and show that when the UI assumption
(PK) is justified, substantially stronger claims can be soundly
made about a new situation B.

In the rest of this paper, II recalls earlier results; Section
III explains a limitation of previous results that we begin
addressing in this paper, and presents the “Unconditional
Improvement” condition and some of its useful properties.
Numerical results illustrate the stronger claims that UI can
support. Section IV concludes the paper.

II. PREVIOUS RESULTS

The CBI approach has been studied in several papers,and
applied to various objective functions, e.g. expected pfd [11].

In CBI extensions that use operational evidence from a
previous system or environment [3], [6], [7], the problem of
estimating a single pfd becomes a two-dimensional problem
about the pfd before and after the change, seen as two random
variables, XA and XB . Failure-free operational evidence from
situations A and B is combined to estimate a pessimistic con-
fidence bound for pfd in situation B. The Bayesian inference
problem amounts to computing posterior confidence c:

c = P (XB ⩽ pr | nA, nB)

=

∫
[0,1]×[0,pr]

(1− xA)
nA(1− xB)

nBdFAB(xA, xB)∫
[0,1]×[0,1]

(1− xA)nA(1− xB)nBdFAB(xA, xB)
(1)

where pr is a required bound on XB and FAB(xA, xB)
is a joint prior probability distribution for random variables
XA, XB . Applying CBI is then an optimisation problem:
determining the infimum of the values of (1) over the set of all
possible prior distributions FAB consistent with the assessor’s
constraints (PKs).

Various scenarios (different sets of PKs) studied in [3], [6],
[7] are summarised in Table I and Fig. 1.

Various forms of “prior knowledge”
PK1 P (XA ⩾ pl) = P (XB ⩾ pl) = 1
PK2-A P (XA ⩽ ϵ) = θ , ϵ < pr
PK2-B P (XB ⩽ ϵ) = θ , ϵ < pr
PK3 P (XB ⩽ XA) = ϕ

PK4 For some intervals I ⊆ [0, 1] and 0 ⩽ ϕ ⩽ 1,
(1− ϕ)P (XB ⩽ XA, XA ∈ I) = ϕP (XB > XA, XA ∈ I)

TABLE I: Examples of “prior knowledge” statements studied
in previous work [3], [6], [7].

PK1 is a lower bound for pfd: the best pfd claim feasible
with current technology. For simplicity, we set pl = 0.

PK2 (applicable for A and/or B) means that the assessor has
a certain confidence in the pfd satisfying a stronger bound than
the required pr. This could typically be based on experience
with systems that are similar in complexity and development
process. It turns out that θ gives the prior confidence, P (XB ⩽
pr|nA = 0, nB = 0) in the worst-case priors.

PK3 is a “confidence in improvement” (CII) assumption: an
assessor’s confidence ϕ in B being no less safe than A. ϕ < 1
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(a) PK1, PK2 and PK3 (b) PK1, PK2, PK4

Fig. 1: The PKs in Table I constrain the probabilities that FAB can
allocate to subsets of its domain [3]. The random variables XA, XB

represent the unknown pfds of A and B. For both figures, ϕ is the
probability of the region under the diagonal, P (XA ⩽ XB).

if the assessor knows that system B has design improvements
over A, meant to improve safety. 1−ϕ represents the probabil-
ity that such improvements unwittingly harming safety. These
probabilities can be based on historical experience.

PK4 will be discussed in Section III.
These papers study in detail the effect of different PKs

on the posterior confidence and the amount of operational
experience required for the new situation (B) to support a
desired confidence c. However, an important scenario not
covered previously – what we call UI in this paper – is covered
in the next section.

III. UNCONDITIONAL IMPROVEMENT (UI)

In this section we discuss UI and the worst-case posterior
confidence it yields in safety after the change from A to B.
This form of reasoning can greatly reinforce confidence in
safety for B. Interestingly, its results are more intuitive than
some results obtained in previous papers using other forms
of CII. So, we take a brief detour to discuss aspects of some
previous results that may appear counter-intuitive, and which
do not occur in UI scenarios.

A. Two “paradoxical” effects in previous results

Fig. 2 shows examples of previous results [3]. In Fig. 2b the
axes xA and xB represent the pfd of A and B, respectively.

While these are correct results of the model – the assump-
tions – used, we note two ways in which they contradict what
a user would probably expect. Both a high nA and a high nB

are “good news”: most people would probably expect that as
nA and nB increase, so would the posterior confidence. The
plots in Fig. 2a exhibit this expected trend, up to a certain value
of xA, but also two surprising features. Indeed, the posterior
confidence c: 1) at the beginning of the plot c is less than 90%,
which is less than the prior confidence, 2) after increasing
until about nA = 5 × 108 demands treated by A without
failures, it starts decreasing – more positive evidence from
A not only does not improve confidence in B any more, but
actually reduces it.

These effects are explained by the shape of the worst-case
priors for these scenarios, shown, e.g., in Fig 2b for the upper
plot in Fig 2a [3]. The fat black points represent discrete

probability masses. 3 The posterior distribution will thus have
the same shape as the prior – discrete probability masses in the
same points – while the probability associated to each point
varies with nA and nB .

(a) Posterior confidence c =
P (XB ⩽ pr|nA, nB) for two
scenarios from [3].

(b) The worst case prior distri-
bution for the plot in Fig. 2a.
c = P (XB ⩽ pr) is the proba-
bility of the hatched region.

Fig. 2: Examples of previous results.[3]

The cause of the “paradoxical” effects now becomes clear:
1) After the first demand successfully processed in A, the

event XA = 1 (point 1 in Fig. 2b) becomes impossible: its
probability becomes zero. The probability associated with
it is redistributed between points 2, 3 and 4. c (posterior
confidence) is the sum of probabilities associated to
points 1 and 3: when the former becomes zero, the sum of
the two drops. As nA increases, confidence grows again
until, after 107 demands on A (see Fig. 2a), we have
regained the initial confidence in B, θ.

2) From now on, further positive experience with A im-
proves confidence in B. However, this improvement stops
at a maximum.

3) As nA increases further, we naturally increase our con-
fidence in A being very safe; but this implies a large
probability mass at point 4: evidence of A being very
safe is also evidence of B not having a pfd better than
desired bound pr.

This effect, however surprising, is a necessary consequence
of the assumptions stated: while intuitively they suggest that
good experience with A should always improve our confidence
in B, mathematical analysis shows that this is not always so.

B. Understanding the inference process via odds ratios

It’s useful to describe Bayesian inference in terms of pos-
terior odds ratios. For any two events Ev1 and Ev2 there is a
relationship between posterior odds ratio given an observation
Ob and prior odds ratio (when P (Ob&Ev2) ̸= 0):

P (Ev1|Ob)

P (Ev2|Ob)
=

P (Ev1)

P (Ev2)

P (Ob|Ev1)

P (Ob|Ev2)
(2)

3Worst-case prior distributions found in CBI are usually discrete distribu-
tions, with non-zero probabilities for only a few points in the xA, xB plane.
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The l.h.s. is the posterior odds ratio, the first term on the r.h.s.
the prior odds ratio, and the second term the likelihood ratio.

For instance, referring to the prior distribution in Fig. 2b and
considering only the effect of increasing nA (keeping nB = 0),
the likelihood ratio between point 3 and point 2 is

(1− ϵ)nA/(1− pr)
nA (3)

This is an increasing function of nA. So, in (2), increasing
nA reduces the probability at point 2 relative to that at point
3. More generally, any point will have its probability reduced
relative to any other points to its left.

So (calling P1, . . . , P4 the posterior probabilities for the
points in Fig. 2b), with high enough nA, P1 and P2 become
negligible and P3, P4 grow, at first in proportion to their prior
values (thus the decrease of P2 increases P3, i.e., c); but as
nA increases further, the likelihood ratio between points 4 and
3 grows, until P3 starts decreasing as in Fig. 2a.

This reasoning clarifies that the applied CII (PK3) does
not actually imply that all positive evidence about A would
increase confidence in B. We now discuss how UI, a slightly
different form of CII, avoids this.

This is why PK3 does not ensure that failure-free operation
from system A (i.e. increasing nA) increases confidence in the
B system – all non-zero probability eventually accumulates at
the leftmost point 4, causing confidence (1) to go to zero.
To prevent this from happening, a new form of CII – called
Unconditional Improvement (UI) – is defined next.

C. Unconditional improvement (UI) prior knowledge

UI is a form of CII that occurs often in practice: when
evidence suggests XB is no worse than XA, no matter what
the true value of XA is. Intuitively, this guarantees that if we
have evidence that A is very good, we will still believe B to
be at least as good. For instance, the following quote from [3]:

“system B is obtained by adding to system A some
safety protection: e.g., A is a safety system and
B adds another independent safety monitor with
authority to effect the safety action [. . . ]. This way of
building B ensures that the set of demands on which
B fails unsafely, UB , is a subset of those where A
fails unsafely, UB ⊆ UA. Hence,

pfdB =
∑

D∈UB

P (D) ⩽
∑

D∈UA

P (D) = pfdA (4)

The difference between UI and previously studied scenarios
as in Fig. 2a is that, under UI, we know (with probability
ϕ) that system B is no less safe than system A were pfdA

“known”; in the earlier scenarios, we knew that (with proba-
bility ϕ) systems “like A” are no less safe than systems “like
B”. To give more concrete examples:

• a scenario that may lead to the results in Fig. 2a:
(a) system B is a plug-in replacement for system A,
built to the same requirements, but with methods rec-
ommended for more stringent safety requirements; and
(b) from historical statistics, the assessor knows that were
they to randomly pick, independently, an “A-type” system

(developed with the weaker methods) and a “B-type”
system, on a fraction ϕ of the attempts the B-type system
would be found to be no less safe than the A-type system;

• a scenario in which UI applies is: (a) system B is a
design improvement of A, designed to remediate known
or potential safety weaknesses of A; (b) appropriate
probabilistic analysisof the two designs (e.g. fault tree
analysis) proves that indeed B will be safer than A. This
cannot give 100% certainty: errors in the assumptions or
the calculations are possible. The assessor, however, on
the basis of experience judges that cases in which such
“verified to be safer” changes actually harm safety happen
with frequency lower than (1− ϕ).

The UI condition: no matter what the true value of XA

(pfdA) is, XB (pfdB) is believed to be better with probability
ϕ. That is, for 0 ⩽ ϕ ⩽ 1 and all intervals I ⊆ [0, 1],

(1− ϕ)P (XB ⩽ XA, XA ∈ I) = ϕP (XB > XA, XA ∈ I)
(5)

UI is PK4 (from Table I) applied to all possible intervals in
[0, 1]); so, any I = [xA1 , xA2 ] for any distinct pfds xA1 and
xA2 (even when these are arbitrarily close in value).

Not only does (5) often represent the NWTES beliefs an
assessor can have, but in the context we are considering, ϕ
will often be larger than θ. For instance, common experience
tells us that design errors such that an extra safety channel
reduces safety are quite rare; while an ML system failing more
often than is desirable is a rather common event. Therefore,
we study the effects of UI when ϕ > θ.

Finding a worst case prior under the UI condition proved
difficult, so a previous paper tried approximating it via similar,
weaker conditions [3], like Fig. 1b , in which (5) applies to
particular intervals of xA. However, the results still exhibited
effects similar to Fig. 2a. Theorem 1 below illustrates how UI
avoids these effects, allowing confidence in pfdB to grow.

D. Worst-case posterior confidence under the UI assumption

The following theorem gives the least confidence in system
B under the UI condition, in the limit as nA → ∞.

Theorem 1. Let D be the set of all prior distributions of
XA, XB . Using eq. (1), consider the optimisation problem

inf
D

P (XB ⩽ pr | nA, nB) (6)

subject to PK2-A, PK2-B (Table I), and UI (eq. 5). We have

lim
nA→∞

inf
D

P (XB ⩽ pr | nA, nB)

=
ϕ(1− ϵ)nB

ϕ(1− ϵ)nB + (1− ϕ)(1− pr)nB
(7)

This is the expression for P (XB < pr | nA, nB) given by the
discrete prior distribution in Fig. 3.
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Fig. 3: A prior distribution over the unit square that gives the
pessimistic (smallest) value (7) for posterior confidence (1), under the
UI condition as nA → ∞. This prior assigns non-zero probability
masses to only the two locations shown, and zero probability for all
other locations in the square.

E. Example numerical results

Fig 4a compares CBI results with the UI assumption against
results from two scenarios in the older paper [3]. With UI, the
posterior confidence in B being safe enough is higher and
increases monotonically with nA: the “paradoxical” effects
have disappeared.

(a) Comparison between the
posterior confidence in previ-
ous results [3] and under UI.

(b) Possible patterns of discrete
probability masses. Note the
difference between patterns in
the three regions.

Fig. 4: Effects of Unconditional Improvement assumption.

Thus with the UI assumption, often, as we said, justified in
practice, e.g. in the case of intentional safety improvements
to a system, positive operational experience from a previous
situation A can indeed significantly boost claims about the
safety of later situation B. This advantage can be substantial,
depending on the parameters of the problem, θ, ϕ, ϵ, pr, but has
limits: once nA is large enough for the posterior confidence to
be close to its limit in formula (7), further positive experience
with A does not give any more advantage for B.

For example, Fig. 5 compares the posterior confidence
P (XB ⩽ pr | nB) obtained using just prior knowledge about
B – i.e. the fact that P (XB ⩽ pr) = θ (lower curve) – against
that – P (XB ⩽ pr | nA, nB) – obtained with UI (5) if we
also have a large failure-free operational experience on A. The

advantage is large while experience with B is still limited. 4

The advantage decreases as experience with B accumulates
and the posterior confidence approaches 1.

Fig. 5: Posterior P (XB ⩽ pr|nB) with UI and large nA vs with no
knowledge of A.

IV. CONCLUSIONS AND FUTURE WORK

Previous publications showed that given some confidence
that a change in a system or its usage will not reduce safety
(“No worse than existing system” assumption, NWTES), it
is possible to take advantage of the operational experience
before the change for claims about safety after the change,
with conservatism guaranteed via the CBI approach.

We have now presented new results that for a specific form
of prior beliefs support stronger claims and remove aspects
of some previous results that, although correct, could appear
puzzling and discourage use of these useful methods.

Of course, the new results hold only when the ”Uncondi-
tional Improvement” condition holds, which must be argued
on the basis of the specific circumstances.

The large differences in assessment results that follow from
apparently subtle differences in assumptions demonstrate why
rigorous mathematical proof is important in these matters.

The results of the various NWTES scenarios studied so far
are a promising first step towards solving the more general
problem of using experience accumulated across multiple
changes in a system and its environment. Future work will
also need to integrate evidence about changes for which a
NWTES assumption is reasonable, and changes for which it
is not: e.g., an AV may be changed to improve performance,
which does not imply improving safety.

Last, we note that we only presented an asymptotic result
for conservative Bayesian inference using the ”no worse than
existing system” and “unconditional improvement” assump-
tions. Our planned work includes the complete solution as
well as a more complete study of the practical implications,
for instance about probability of surviving extensive operation
without accidents rather than about confidence bounds.

4Experience on A could even be enough, in theory, for skipping operational
testing of B: e.g., if a regulator required confidence c∗ in XB ⩽ pr , and it
were the case that ϕ ⩾ c∗.
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APPENDIX: PROOF OF THEOREM 1

Proof. Let F be any feasible prior for problem (6), i.e. a prior
satisfying constraints PK2-A, PK2-B (Table I), UI (5). Denote
the value of the objective function (1) given by F as c(F ).

1) The feasible prior distributions can be restricted to only
discrete prior distributions. That is, for any feasible prior F
and arbitrary δ > 0, there exists a feasible discrete prior
F ∗ that assigns non-zero probability masses only to finitely
many points (that lie along finitely many vertical lines in
the unit square), such that |c(F ) − c(F ∗)| < δ. This follows
by construction, since the integrals in the numerator and de-
nominator of c(F ) can each be arbitrarily well-approximated
by integrals of step functions, where these step functions
converge F-almost surely5 to the integrand in c(F )’s integrals
(i.e. the dominated convergence theorem [13]). To create these
step functions, use the main diagonal of the unit square and

5The convergence occurs at every point of the unit square except, possibly,
at points in subsets of the unit square that F assigns zero probability to.

rectilinear grids to create a sequence of partitions of the unit
square6. The probability masses that F assigns to each cell in
a partition can be reallocated to a single point in the cell, so
that probability only lies at a finite number of locations along
vertical lines of the partition. By being selective about these
reallocations, this creates feasible discrete priors that satisfy
the constraints7 of (6), and creates step functions that are
constant over each cell (taking the value that c(F )’s integrand
takes at the point in a cell where mass has been reallocated
to). Thus, any sufficiently fine partition gives a suitable F ∗.

2) The discrete priors can be restricted further, to priors
that assign probability mass to only 3 possible locations along
vertical lines – the locations where a vertical line intersects
the horizontal lines xB = ϵ, xB = pr or the main diagonal.
For any F ∗, the derivative of c(F ∗) along any vertical line
indicates how mass must be reallocated along the line to give
a smaller value for c(F ∗). These reallocations result in a
discrete prior F ∗∗ that assigns probability only to locations
of intersection as claimed (e.g. see Fig. 4b).

3) For any F ∗∗, the value of lim
nA→∞

c(F ∗∗) is given by a

discrete prior F ∗∗∗ that assigns probability only to locations
along a single vertical line; the line itself is located at some
xAl ⩽ ϵ. This follows because F ∗∗ must have probability
masses located at points along some “left-most” vertical line
at some xAl ⩽ ϵ, due to constraint PK2-A (I). Note that, for
any xAl ⩽ ϵ, there exists a feasible prior F ∗∗ with leftmost
vertical line located at xAl.

Now, as nA → ∞, all probability mass must flow to this
leftmost vertical line (see argument in section III-B). The UI
condition ensures that lim

nA→∞
c(F ∗∗) takes the form

ϕ(1− xAl)
nB +M(1− ϕ)(1− ϵ)nB

ϕ(1− xAl)nB + (1− ϕ) (M(1− ϵ)nB + (1−M)(1− pr)nB )
(8)

for some probability M . This is the value of the posterior
confidence P (XB < pr | nA, nB) given by some prior F ∗∗∗

that assigns probability only along a vertical line at xAl.
The derivative of (8) with respect to xAl shows that (8) is
a decreasing function of xAl – it takes its smallest value at
xAl = ϵ. The derivative with respect to M shows an increasing
function of M – it takes its smallest value when M = 0. Thus,
lim

nA→∞
c(F ∗∗) is bounded below by

ϕ(1− ϵ)nB

ϕ(1− ϵ)nB + (1− ϕ)(1− pr)nB
(9)

Our initial choice of feasible prior F was arbitrary, so (9)
is the infimum of the objective function’s values in the limit.
Thus, it is the limit of infima from (6). (9) is the value of
P (XB < pr |nA, nB) given by the prior distribution in Fig. 3.

6These partitions should have the usual properties for integration, e.g. they
get finer and finer, and define a set of points that are dense in the unit square.

7To ensure the vertical lines satisfy the UI condition (5), it is convenient
to require that a vertical line intersects the main diagonal at a point iff a
horizontal line intersects at the same point.
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