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ABSTRACT

This thesis is concerned with applying the distortion quantitative validation 

technique to a robot manipulative system with revolute joints. Using the distortion 

technique to validate a model quantitatively, the model parameter uncertainties are 

taken into account in assessing the faithfulness of the model and this approach is 

relatively more objective than the commonly visual comparison method. The 

industrial robot is represented by the TO. MA2Q0Q robot arm. Details of the 

mathematical derivation of the distortion technique are given which explains the 

required distortion of the constant parameters within the model and the 

assessment of model adequacy.

Due to the .complexity of a robot model, only the firs t three degrees of freedom 

are considered where all links are assumed rigid. The modelling involves the 

Newton-Euler approach to obtain the dynamics model, and the Denavit-Hartenberg 

convention is used through out the work. The conventional feedback control system 

is used in developing the model. The system behaviour to parameter changes is 

investigated as some parameters are redundant. This work is important so that the 

most important parameters to be distorted can be selected and this leads to a new 

term called the fundamental parameters.

The transfer function approach has been chosen to validate an industrial robot 

quantitatively against the measured data due to its practicality. Initially, the 

assessment of the model fidelity criterion indicated that the model was not 

capable of explaining the transient record in term of the model parameter 

uncertainties. Further investigations led to significant improvements of the model 

and better understanding of the model properties. After several improvements in 

the model, the fidelity criterion obtained was almost satisfied. Although the 

fidelity criterion is siighltly less than unity, it has been shown that the 

distortion technique can be applied in a robot manipulative system.

Using the validated model, the importance of friction terms in the model was 

highlighted with the aid of the partition control technique. It was also shown that 

the conventional feedback control scheme was insufficient for a robot manipulative 

system due to high nonlinearity which was inherent in the robot manipulator.
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NOMENCLATURE

Bold letters represent vectors or matrices 

Abbreviations

D-H Denavit- Hartenberg

N-E Newton-Euler

Lower case

D-H parameter, the distance along the common normal between the 

.joint i axis and the joint i+ i axis.

a

Aa

■ 10

constant parameter vector, 

optimised constant parameter vector.

linear acceleration of the centre of mass of link i with respect to 

the base coordinate system and expressed in the base coordinate 

system.

steady state gain of the associate system, 

filte r gain.

a position vector of the centre of mass of link i from the origin of 

the coordinate system i - i  and expressed in the base coordinate

system.

a position vector of the centre of mass of link i from the origin of

the coordinate system i - i  and expressed in the coordinate system i. 

dĵ  D-H parameter, the distance between the intersections of the joint i

axis with the common normals aI_̂  and ar 

dx : small translation along the x axis.

dy small translation along the y’ axis.
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dz

dT

emin1

e

^nin

e'

f i

9ij

hi l J hi2 

and hi3

i

m.

n,

nn.

cu

small translation along the z' axis.

differential change of a homogenous transformation matrix- 

optimised residual e rro r of the i-th output, 

position e rro r of joint i. 

residual e rro r vector.

optimised residual e rro r vector of the overall system, 

position e rro r vector.

force exerted at joint i to suport link i and the distal links, 

linear or nonlinear function vector.

transfer function of the i-th associate system output driven by the 

j-th parameter variation input.

coefficients of the cubic tnajectony. 

joint number, 

mass of link i.

number of degrees of freedom, 

gear ratio of joint, i.

torque exerted at joint 1 to supont link 1 and the distal links, 

torque at joint i due to the motion of link i alone and expressed in 

the coordinate system i.

translation vector of the origin of the coordinate system i from 

the origin of the coordinate system i - 1  and expressed in the base 

coordinate system.

position vector of the centre of mass of link 1 from the origin of 

the coordinate system i and expressed in the base coordinate 

system.

joint i variable.
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ài

to

if

ui

u

V

A
X

f irs t  derivative of joint i variable, 

second derivative of joint i variable, 

initial time, 

final time.

input vector of the model of joint i with respect to link side.

input vector of the overall system.

input voltage vector applied to the amplifier input.

linear velocity of the origin of the coordinate system i with 

respect to the base coordinate system and expressed in the base 

coordinate system.

linear acceleration of the origin of the coordinate system i with 

respect to the base coordinate system and expressed in the base 

coordinate system.

i-th coordiante system.

state vector of the model of joint i with respect to actuator side.

state vector of the overall system.

optimised state vector of the overall system.

state vector of the model of joint 1 with respect to link side.

y model output vector,

z measured output vector.

Upper case

length of link 1 of the TQ MA2Q0Q robot model. 

At linear power amplifier gain of joint i.

A:

system matrix of the overall actuating system.

system matrix of the i-th actuator.

system matrix of the closed loop control of joint i.
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: D-H homogenous transformation matrix that transforms the coordinate

B

Bi

Bi

Ci

C2

C3

C23

C

Ci

D
A

D

Ei

F

F'

G
A

G

H
A

H

system i to the coordinate system i-i .

input matrix of the overall acatuating system.

input vector of the i-th actuator.

input matrix of the closed loop control of joint i.

C O S

cos {^2}

C O S  ( 6 q )

cos (62+^3 )

load matrix of the overall actuating system, 

load vector of the i-th actuator.

disturbance vector of the closed loop control of joint i.

Coulomb friction at joint i.

Coulomb friction vector.

inertial acceleration related symmetric matrix, 

estimated inertial acceleration related symmetric matrix, 

back EMF voltage of the i-th actuator, 

complete friction vector, 

filte r transfer function.

net force acting at the centre of mass of link 1 and expressed in 

the base coordinate system, 

gravity torque vector, 

estimated gravity torque vector.

transfer function matrix of the overall associate system, 

coriolis/ centrifugal torque vector, 

estimated coriolis/ centrifugal torque vector.

inertia tensor matrix of link i about its centre of mass and
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*1

In
Jmi

J

Ja

Jx

K

KTi

K:bi

KPi

K,

KDi

'« i

K

Kp

KI

KD

L

L,

Mu

expressed in the base coordinate system.

inertia matrix of link i about joint i and expressed in the coordinate 

system i.

armature current of the i-th actuator, 

identity matrix of dimension nxn. 

rotor inertia of the i-th actuator: 

actuator inertia matrix.

Jacobian matrix of the system with respect to the differential

parameter change.

Jacobian matrix of the system with respect to the differential

state change.

total kinetic energy of the system, 

torque constant of the i-th actuator, 

back EMF constant of the i-th actuator, 

proportional gain of joint i. 

integral gain of joint i. 

derivative gain of joint i.

optical encoder/ counter assembly gain of joint i. 

integrated amplifier and actuator parameter matrix, 

proportional gain matrix, 

integral gain matrix, 

derivative gain matrix.

Lagrangian function.

rotor inductance of the i-th actuator.

inertial related acceleration value of joint i where actuator and 

gear ratio are taken into account.

estimated inertial related acceleration value of joint i where
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actuator and gear ratio are taken into account.

MLOAD

MSQE

MJ

N

N,

P

P

« i

R
i

c'J i

P-“ l

Si

c-oJ J

C;23

: total mass of link 3. 

mass at the robot tip. 

mean squared erro r value.

inertial related acceleration matrix where amplifier, actuator - and 

gear ratio are taken into account.

; estimated inertial related acceleration matrix where amplifier, 

actuator and gear ratio are taken into account, 

gear ratio matrix.

net torque acting at the centre of mass of link i and expressed in 

the base coordinate system.

disturbance torque vector with respect to link side, 

total potential energy of the system.

partial derivative matrix with respect to joint i variable, 

rotation matrix.

rotation matrix that rotates the coordinate system i to the 

coordinate system i-i.

radius of link 1 of the TQ MA2000 robot model, 

terminal resistance of the l-th actuator.

disturbance at joint i where actuator and gear ratio are taken into 

account.

estimated disturbance at joint i where actuator and gear ratio are 

taken into account.

: sin (0^) 

sin (©2?) 

sin (Qq)

: Sin (0^+9-,)£. O
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T

T

Ui

V

w

X

x^

Y 

Y* 

Z

centre of mass position of link 3 from the origin of the coordinate 

system 3.

disturbance vector where amplifier, actuator and gear ratio are 

taken into account.

estimated disturbance vector where amplifier, actuator and gear 

ratio are taken into account, 

homogenous transformation matrix, 

observation time.

input voltage of the i-th actuator.

proportionally back EMF matrix.

weighting matrix.

distorted state vector.

matched distorted state vector.

distorted output vector of the model.

matched distorted output vector of the model.

transfer matrix relating the joint angular acceleration with respect 

to actuator side with the firs t  derivative of the state vector.

Greek symbols

D-H parameter, the angle between the joint i axis and the joint i+ i 

axis.

a(t)

a°(t)

e

e„

time dependent parameter variation vector for distorting the model, 

time dependent parameter variation vector to obtain a perfect 

model-plant match.

D-H parameter, the angle between â _j_ and â .

joint variable vector with respect to link side.

desired angular displacement vector with respect to link side.
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<p

e

7

4>

0

( i i i

§

\ 2

Sx

5y

5-t

7 li

Tm,

a 0

■mi

mi

Ml

'et t i

rotation about the x' axis, 

rotation about the y' axis, 

rotation about the z' axis.

. model state variable difference vector.

: model state variable difference vector in the perfect model-plant 

match condition.

difference between undistorted and distorted model output vector, 

difference between undistorted and distorted model output vector in 

the perfect model-plant match condition.

differential operator of a homogenous transformation matrix.

filte r cut-off frequency.

white noise intensity.

damping ratio of the associate system.

fidelity criterion of the model.

small rotation of about the x' axis.

small rotation of about the y' axis.

small rotation of about the z' axis.

output torque of the i-th actuator.

generalized torque to drive link i with respect to link side, 

generalized torque of joint i with respect to actuator side, 

generalized torque vector with respect to link side, 

expected standard deviation of the j-th parameter, 

standard deviation of the j-th parameter.

total viscous friction of joint i with respect to actuator side, 

viscous damping constant of actuator i. 

viscous damping constant of joint i.

effective total viscous damping constant of joint i with respect to
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V  : viscous friction vector with respect to link side.

U  coefficient of Coulomb friction.

actuator side.

li effective coefficient of Coulomb friction.



CHAPTER 1

INTRODUCTION

±.i Simulation

Simulation is the use of one system to imitate the behaviour of another system. A 

system itself is a collection of interacting elements which act together to achieve 

a desired goal Systems can be studied by building prototypes or by building 

mathematical models. The former is undesirable due to some reasons, eg. expensive 

and risky. The 'purpose of mathematical models in a simulation is to aid the 

analysis, design and prediction without actually building and operating the real 

plant which in turn reduces the risks and costs. It also allows a study 

of the system sensitivity to perturbations in its parameters. On the other hand, if 

a proper design of experiments is not carried out, exercising a computer model can 

be very expensive in terms of computing time and man labour.

Simulation has been formally defined as "the process of designing a computerized 

model of a system (or process) and conducting experiments with this model for the 

purpose either of understanding the behaviour of the system or of evaluating 

various strategies for the operation of the system'' [Shannon, 19751. Nowadays, 

almost all simulations are performed on digital computers rather than on analogue 

computers.

Once a model has been obtained, it. is important to check the validity of the model. 

Validation is a process of confirming that the model is adequate for representing 

the real plant and is capable of imitating its behaviour reasonably within its 

intended purposes. Hence, the purpose of validation is to scrutinise the model with

23



respect to its inadequacies. Without validation, a. model is of very little  use.

1Z Industrial Robot

Due to an increasing demand, both in quantity and quality of products, the trend in 

industry goes towards computer based automation such as the use of robot 

manipulators. An industrial robot has a high flexibility in performing some 

applications. Because of this reason, robot manipulators are more preferable than 

special purpose machines which can only perform predetermined functions with 

limited reprogrammable capabilities.

Definition of an industrial robot [Scott and Husband, 19851 :

1. British Robot Association

An industrial robot is a reprogrammable device designed to both manipulate 

and transport parts, tools or specialized manufacturing implements through 

variable programmed motion for the performance of specific manufacturing 

tasks.

Z  Robot Institute of America

A robot is reprogrammable multifunctional manipulator designed to move 

material, parts, tools or specialized devices, through variable programmed 

motions for the performance of a variety of tasks.

In short, an industrial robot arm is a general purpose manipulator which has
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several links connected commonly by revolute or prismatic joints or a combination

of these two types of joints. It must possess intelligence with the aids of internal 

and external sensors and exhibit flexibility that can be achieved by reprogramming 

its movements through its controller.

The firs t  mechanical manipulator was built at Argonne National Laboratory in 1947 

[Lee, Gonzalez, Fu, 19361. Nowadays, more advanced industrial robots are controlled 

by micro or mini computers with better internal and external sensors. With the 

advances of artificia l intelligence, fast growing of microprocessor developments 

and advanced control system, industrial robots can perform from simple jobs such 

as pick and place operations to complicated tasks such as doing a surgery. Some 

companies in U.K. eg. Colne Robtics Co. Ltd., Powertran Cybernatics Ltd, UMI Group 

and Tequipment Ltd. offer robots for educational and research purposes.

Advantages of using robots :

- In industrialised countries where labour costs are high, production costs can be 

reduced by the use of robots.

- Robots work relatively faster than human beings, so productivities can be 

increased.

- Robots have a high degree of accuracy and repeatability which yield better 

quality products.

- Robots can replace human workers in hazardous environments.

- The use of robots can improve management control.

Disadvantages of using robots :



- In some countries the use of robots can be more expensive.

- Unemployment problems.

- The tasks that can be performed by robots are still relatively limited.

Current research interests are modelling, control, sensors, robot vision, robot 

languages, machine intelligence and system architecture.

1.3 General Description of Thesis

Numerous research in validating mathematical models quantitatively using the 

distortion technique were performed in the field of nuclear power plant

[Butterfield, Sutton, 1979, Butterfield, 1931; Butterfield and Thomas, 1933,

Butterfield and Thomas, 1933, Butterfield, 1939; Harrison and McCabe, 1939, Li, 

1933, 19391 and in a linear system [Cameron, 19391. Using this quantitative 

validation technique, the parameter uncertainties of the model are taken into 

account. To date however, no application of the distortion technique has been 

performed in the field of an industrial robot manipulator system. Only a few

authors carried cut works in robot model validation, eg. Gawthrop, Mirab and Li

[19391. They performed a robot model validation work where the frequency response 

of the model was compared to the frequency response of the real system. The 

parameter uncertainties of the model, however, were not taken into account in 

validating the model. Thus, it was based on visual comparison. This thesis presents 

a research work which was carried out in applying the distortion quantitative 

validation technique to a robot manipulative system with revolute joints. With the 

use of the distortion technique in validating a robot model quantitatively, where 

the model parameter uncertainties are taken into account, the result, is relatively 

more objective than the visual comparison method used commonly by other authors.



The TO. MA2000 robot arm from Tequiprnent Ltd. was used in this work.

Chapter 2 gives the common procedures in a simulation study and in building 

mathematical models. The importance of parameter estimation and validation are 

also mentioned.

Chapter 3 is concerned with the mathematical model development of an industrial 

robot arm. It discusses the robot arm kinematics, the derivation of the dynamical 

model, the design of trajectory in which the arm follows to accomplish the tasks 

and the control system to govern the arm along a desined trajectony.

Chapter 4 discusses the mathematical development of the distortion technique to 

validate a model quantitatively. Mathematical analysis for both the time and 

frequency domain approaches are given in detail. An extension for a multiple 

measured variable case in the frequency domain approach is also given.

Chapter 5 describes the implementation of the distention technique given in 

chapter 4 to validate a robot model quantitatively. Some modifications are needed 

in the computation of nobot dynamics. Sensitivity analysis of the inertial 

parameters are discussed and a new term of the fundamental parameters is 

introduced.

A full description of the TQ MA2Q0Q robot arm is given in chapter 6. Both 

hardware and software of this robot are explained in detail. The experiment 

carried out prior to exercising the distortion validation method is discussed and

some expenimental results are presented.



The application of the quantitative model validation technique described in chapter 

4 to a robot manipulator system is given in chapter 7. Important model parameters 

are identified in a closed loop manner and the frequency domain method is then 

used to validate the TO MA2000 robot arm model against measured data obtained 

from experiment. Validation results and discussions of the model are given.

Chapter S presents an application of a validated mathematical model in control 

system design. A partitioned control technique is used in studying the superiority/ 

inferiority  of the models. The performance of a classical PID control system is 

also discussed.

Finally, chapter 9 gives the overall conclusions of this work and suggestions for 

future work.

The flowchart as shown in figure (1.1) gives a clear description of the

organization of this thesis.



Figure i . i

Flowchart of' thesis



CHAPTER 2

MATHEMATICAL MODELLING

Z i  Introduction

Having introduced a general concept of simulation in chapter 1, a procedure to 

perform simulation tasks from developing a formulation of the mathematical model 

to using a validated model in some applications is given in this chapter. Important 

parts in a simulation - model building, parameter estimation and validation - are 

discussed in detail. Computer modelling and simulation has been introduced in 

university curricula since i960s ENeelamkavil, 19871.

Mathematical modelling is an attempt to describe the behaviour of the real system 

in mathematical terms. A problem defined by a mathematical model may have a 

feasible solution, optimum solution, satisfactory solution or even no solution at all 

and the studies of computer modelling and simulation lean towards finding 

satisfactory solutions ENeelamkavil, 19871. The main advantage of mathematical 

models is to provide a useful tool in learning the principles of operation, 

capabilities and limitations EFinkelstein and Watts, 197S1 For example, by having a 

good mathematical model, a company can work efficiently and has a capability of 

making products economically.

Since a mathematical model is an important part of a simulation work, the physical 

properties of the system which is to be modelled must be studied carefully. In 

order to have a useful mathematical model as well as confidence in using it, a 

mathematical model must be validated
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22 Principal Steps in a Simulation Study

1. Develop a formulation of the mathematical model of the system to be studied to 

the complexity it is intended for or to the limits of the computer capability in 

terms of the computing time and the software which are available. All simplifying 

assumptions used in developing the mathematical model are defined.

2. Create a computer program of the mathematical model for running on the digital 

computer system. This program in turn must be verified and if necessary some 

refinement or modification must be made.

3. Perform the parameter estimation of the model in such away so that the error 

between the plant recorded response and the model response is minimum.

4. Validate the model under a condition where it was intended to represent. Go back

to step 1  if an improvement in the model is required.

Once the model has been validated, a simulation study such as safety analysis can 

be performed. Figure (2.1) shows the sequence in a simulation study.
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Figure 2.1

Procedures in a simulation study
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771 Mathematical Model

A mathematical model is the heart of any simulation. By understanding thoroughly 

the physical properties of the system under investigation and putting physical 

principles as seemed relevant, a good mathematical model can be developed. Due to 

the complexity of the nature of the real system, some assumptions are usually made 

to simplify the model. Since this work involves the exercise of this model using a 

digital computer, the nature of the results depends on the simplifications which 

have been made.

Because of the nature of the problems, simulation studies are often carried out on 

dynamic systems where the time history of the system's behaviour is important. 

This in turn will involve the use of state equations in the model.

77? Computer P ro -a m

Mathematical models must be converted into computer code firs t before any 

simulation can be exercised. Simulations can be carried out using a special 

simulation language. The most important feature of this language is that its 

structures allow process modelling to be done directly, thus mathematical equation 

writing is greatly reduced. Another important feature is the run time command 

which allow the user to change parameter value(s) in the middle of a simulation run. 

There is also another type of simulation language which is based on the block 

diagram. These block structures provide the process modelling more direct- to the 

user.

Ordinary languages such as FORTRAN can also be used in modelling since there is
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a huge number of numerical libararies available. The biggest disadvantages of 

using this ordinary language are that it does not have the run time commannd 

facilities and it is difficult to debug the program. In both types of languages, the 

availability of ordinary differential equation algorithms plays an important role in 

a dynamic simulation.

Z2.3 Verification

Verification is concerned with the correctness, and consistency of the 

mathematical model implementation in the computer program, so that the 

mathematical model behaves the way an experimenter intends. This is because, 

although the programmer knows what the program is intended to do, the program 

may well do something else. Thus, ensuring the correctness of the program as a 

mathematical model to confirm that the model is a faithful representation of what 

was intended is important. However, it should be kept in mind that a verified 

simulation program does not guarantee the validity of the model.

ZZ4 Parameter Estimation

Optimisation has an important role in modelling, because the model which is 

developed has a set of independent parameters to determine so that it produces a 

good fit against the behaviour of the real system. This is because the mathematical 

model is only an approximation of the real system and a perfect measurement of 

the real system can never be achieved. The choice of technique to perform 

optimisation depends on the nature of the problem, eg. the availabilty of the 

derivatives of the objective function.
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2.2.5 Validation

Once a model has been obtained, it is important to check the validity of the model. 

To validate means to prove that the model is an exact replica of the real system 

[Neelamkavil, 19871 and validation is a process of confirming that the model is 

adequate for representing the real plant and is capable of imitating its behaviour 

reasonably within its intended purposes. Hence, the purpose of validation is to 

scrutinise the model with respect to its inadequacies in comparison to the real 

system. Validation can be performed qualitatively such as by visual comparison to 

assess the goodness of fit between model and plant responses. Another method for 

validation is that the model validity is assessed by a quantitative means such as 

by quantifying the residual errors between model and plant. Without validation, 

confidence in performing a simulation work cannot be achieved and so a model is 

of very little  use.

Z2.6 Application

After the validation stage has been passed, mathematical models are now ready for 

some applications. Typical applications include fault diagnostics, environment- 

changes and control system design. Any operation which is dangerous to carry out 

in the real system can be conveniently performed using a mathematical model.

23 Model Building

Mathematical modelling is a technique to describe a system in the real world using 

mathematical terms. Application of mathematical models can be found in the fields 

of biological, physical and social sciences. It comprises parts taken from calculus,
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linear algebra, statistics and various other fields within mathematics.

In a nonmathematical nature, a model is defined as an object or concept to 

represent something else which is scaled down from reality and converted to a 

form to make it comprehensible [Meyer, 19841. For example a plane model prior to 

building a full scale one falls into this category and is called a physical model. A 

mathematical model itself is defined as a model which comprises of mathematical 

terms such as constants, variables, differential equations, etc [Meyer, 19841. 

Building a mathematical model from scratch takes time and ingenuity. In most 

aspects, a mathematical model is superior to a physical model due to the advances 

in computer technology. From this point, the word model refers to a mathematical 

model.

The knowledge of a system under study falls into two categories. A priori 

knowledge is a case where the physical insight of the system is known 

theoretically such as its model structure. If the knowledge is obtained empirically 

from experimental data, such a knowledge is called a posteriori. A priori knowledge 

is usually restricted due to the uncertainty embedded in the system and its 

environment. This makes an estimation procedure necessary to perform. Both two 

types of knowledge are often used in combination to obtain good models. Figure 2.2 

gives a more clear relation between these two types of knowledge [Eykhoff, 1974],
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Figure 2.2

Process in modelling.

Roberts Cl9801 stated the difference between the real system and the model caused 

by modelling uncertainties as follows :

1. The model structure.

The mathematical model is only an approximation of the real system, so model 

simplification and lack of a priori knowledge of the real system cause 

uncertainties in the model.

2. The model parameters.

The parameter values, which are not selected in the parameter estimation
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procedure and considered to have constant values, may not be correct and may 

change with different operating conditions.

3. The real system observations.

The measured output signals from the real system, as a response of the 

measured input signals, may be in error due to disturbance inputs, 

instrumentation and data processing error.

2.4 Parameter Estimation

It is rare to have a complete a priori knowledge of a model. Hence, a mathematical 

model is still susceptible to restricted a priori knowledge as well as 

simplification during the model building. For that reason, all unknown parameters 

associated with the model must be evaluated in order to complete the model. This 

procedure is regarded as parameter estimation. Parameter estimation is also 

defined as the determination of parameter values experimentally that govern the 

dynamic behaviour where it is assumed that the structure of the process model is 

known CEykhoff, 19741. The so called model reference technique is often used where 

the same input signal as applied to the plant is given to the model and the 

parameters of the model are then manipulated to give a minimum performance index.

The most commonly used parameter estimation method is known as the least square 

technique. This method is based on the principle that the sum of the square values 

of the differences between the plant response and model response that measures 

the degree of fit is at. minimum. The performance index which is in a quadratic 

form can then be minimized. Some methods have been developed to include 

extensions from the original least square estimation technique eg. to take account
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of uncertainties in the model structure and disturbances [Roberts, Leal and

Georgantzis, 19791

Another method which has been used in U.KAEA, Winfrith, Dorset, England is based 

on the concept of the system frequency response [Butterfield and Thomas, 19831. 

This method relies on the fact that the frequency response of an open loop system 

near its critical point is important in determining a closed loop performance. The 

error between an open loop frequency response of a plant and and open loop 

frequency response of a model is used as an objective function. This method has 

difficulties eg. open loop responses are not generally available and plant 

recorded measurements are more readily in the time domain rather than in the 

frequency domain.

For more complex models in which the analytical evaluation to find the model 

optimal parameters is limited, optimisation algorithms based on computer iterations 

are used. This method is more well known as a hill climbing method. Beginning with 

an intial guess of a parameter vector, this algorithm calculates the objective 

function. The algorithm then determines the next paramater vector to evaluate. This 

procedure is performed iteratively until the objective function converges to a 

minimum point. Unfortunately, nothing is known about finding a global mimimum or a 

local minimum and incorrect initial guess may also result a poor convergence. Two 

standard heuristics are usually used to get better results le. by finding local 

minima beginning from widely varying starting values and choosing the best one; by 

perturbing a local minimum with a finite amplitude away from it and then check 

wheteher a better point is found. An optimisation procedure which uses a computer 

iteration algorithm by Nelder and Mead [Press, Flannery, Teukolsky and Vetterling, 

19881 with upper and lower bounds is used throughout this work.
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Z5 Model Validation

Every mathematical model are subjected to some errors due to limited a priori 

knowledge, measurement noise, quantization noise, simplification during the model 

building and uncertainties in the system. Prior to using a model in some 

applications, the model must pass a validation test. This in turn will give the user 

a full confidence in using the model.

In a general term, validation means conforming that a model is good enough for a 

specified purpose and capable of imitating the plant behaviour in a certain 

condition by comparing the model response against the plant response. Since the 

real system is never perfectly known, so an exact and perfect representation of 

the real system is never achieved. The result of this is that an absolute 

validation can only be approached, but never achieved CNeelamkavil, 19871.

A common validation method which is widely used is based upon the value of the 

minimum square error value between the plant response and the model response or 

using an eye judgment by overlaying both responses. This method gives less 

knowledge of the physical principles inside the system, and since there is no 

certain criterion how small the square error shoud be, this method is likely to 

give a subjective assessment. Because of this reason, not only optimum solutions, 

but also sensitivity studies on the model are important in validating the model. 

Another method which is relatively more objective is based upon model 

uncertainties [Butterfield and Thomas 19831. This method also gives more knowledge 

of the physical principles and parameter sensitivities inside the system, and is 

applicable to highly nonlinear systems [Butterfield and Thomas 19831. This
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technique is called the Distortion Technique and will be used throughout this work.

2.6 Conclusions

In this chapter, the fundamental concepts of computer modelling and simulation as 

well as the philosophy of model building, parameter estimation and model validation 

have been presented. The procedure in performing a simulation task has been laid 

and this forms the foundation in doing the research work which will be presented 

through out this thesis.
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CHAPTER 3

MATHEMATICAL MODEL OF A ROBOT MANIPULATOR

3.1 Introduction

Robotics is an interdisciplinary field where various disciplines in science and 

engineering give their own contributions. In general, the study of mechanics and 

control of robot manipulators is a collection of topics taken from mechanical 

engineering, electrical engineering, mathematics, computer science and control 

theory. Mechanical engineering provides tools to study the dynamics, electrical 

engineering gives contributions in designing sensors, computer controllers etc., 

mathematics contributes knowledge in spatial motions, computer science 

contributes programming and creating operating systems and control theory 

provides algorithms to perform desired motions.

Nowadays, the applications of industrial robots have increased enormously. 

Consequently, numerous research works are being performed in the robotics field. 

Alongside with the advances in computer technology, more advanced control 

algorithms have been proposed to perform more difficult manufacturing tasks in 

the industry. As a result, research work in the field of modelling robot 

manipulators become an important area. Many control algorithms depend on the 

accuracy of the mathematical model of a robot manipulator. Disturbances in the 

robot system can be greatly reduced if the dynamic behaviour of the robot 

manipulator is known accurately. Thus, the aim of mathematical modelling of 

industrial robots is to obtain information for control purposes.

A complete mathematical model of the system can be developed. Its application for
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real time control purposes, however, in industry may be difficult since a high 

speed computer is needed. Due to economic reasons, 'only a relatively simple

control algorithm is used in the industry. Many research works have been

performed to overcome this problem ie. by developing efficient algorithms to 

obtain information about the dynamics of industrial robots [Huang, Lee, 1988; Li, 

1989a; Li, 1989b; Vuskovic, Liang, Anantha, 19901.

In developing a mathematical model of robot systems prior to control realizations, 

there are subjects to deal with, namely kinematics, dynamics and trajectory 

descriptions. Kinematics is a subject which studies the analytical descriptions of 

the robot manipulator spatial motion as a function of time without regard to the 

torques/ forces that cause the motion. Dynamics deals with the mathematical 

equations which describes the dynamic behaviour of a robot manipulator. In order 

to perform some specified tasks, trajectories must be planned before hand. A 

trajectory is defined as a time history of position , velocity and acceleration for 

each degree of freedom where a degree of fredom is defined as an independent 

position variable [Craig, 19861 Having obtained information in kinematics, dynamics 

and trajectory, control strategies can then be examined or developed.

3.2 Manipulator Description

An industrial robot may be considered as an open chain of bodies connected by 

joint as shown in figure (3.1). Each joint exhibits one degree of freedom. These 

bodies are commonly called links. An n degree of freedom industrial robot is 

composed of n joints, n links and a base. From now on, in the rest of this thesis, a 

robot refers to an industrial robot. All these links are numbered starting from the 

base which is usually called link 0 to link n which is the hand. Proximal links and
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distal links refer to links close to the base and links distant from the base,

respectively. At the last link, a tool is attached and it is usually called an end 

effector. Depending on the intended applications, an end effector may be a gripper, 

a welding torch or other devices.

link i+ i

I
I

I

Figure 3.1

An industrial robot consists of a base, links and joints.

There are two types of joint which are commonly used in industrial robots, namely 

a revolute joint and a prismatic joint. In a rotary joint, link i rotates with respect 

to link i - i  while in a. prismatic joint, link 1 slides with respect to link i - i ,  for 1 = 

i  to n. These joints are equipped with position sensors which allow the relative 

position of the neighbouring links to be measured and sometimes are also equipped
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with velocity sensors. More advanced robots may have torque/ force sensors in

each joint. Each .joint is driven by an actuator. This actuator may be electrically, 

hydraulically or pneumatically powered.

3.3 Denavit-Hartenberg (D-H) Representation

3.3_1 Denavit-Hartenberg Parameters

The relative motion of each joint results in the motion of a robot arm that gives 

the hand in the desired position and orientation. Denavit and Hartenberg [1955] 

proposed a spatial description between two neighbouring links as shown in figure 

(3.2) and the related parameters are called the Denavit-Hartenberg (D-H) 

parameters.

A joint axis i is established at the connection between link i-1 and link i. Thus, 

each link has two joints at both ends with the exception of link 0 and link n where 

they have only 1 joint. There are four parameters which are associated with each 

link in a robot manipulator system as shown in figure (3.2). In a revolute joint 

system, a prismatic joint system or a combination of both, there are two fixed 

parameters in each link, namely â  and <xr  The parameter â  is the distance along 

the common normal between the joint i axis and the joint i+ i axis, and cŝ  is the 

angle between the joint i axis to the joint l+ i axis measured in a plane 

perpendicular to ar  The other two parameters are Ĝ , which is the angle between 

ai - i  anc* ai mea5ured in a plane perpendicular to the joint l axis, and d̂  which is 

the distance between the intersections of the joint l axis with the common normals 

a ^  and â . For a revolute joint system, Ĝ  is the joint variable while dj remains 

constant and for a prismatic joint- system, d̂  is the joint variable while Ĝ  remains
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constant.

In many industrial robots, â  is simply the length of link i, cl-x is the twist angle of 

link i and a typical value of is either 0° or 90°. In the rest of this thesis, the 

D-H parameters refer to a ,̂ â , and d̂ .

joint i axis i+1 axX5

Figure 3.2

The D-H parameters in a robot manipulator.

3.3.2 Coordinate System Placement

To describe the spatial relationships of a robot arm motion which in turn gives 

the position and orientation of the hand, it is necessary to place a coordinate 

system (frame) to each link systematically and consistently. The Denavit -
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Hartenberg concept gives a systematic orthonormal coordinate system assignment 

to an articulated chain of a robot arm. This orthonormal coordinate system is 

established at each link.

The coordinate system i is fixed at link i and located at joint i+1 as shown in 

figure (3.3). Since the coordinate system i and the coordinate system i - i  are fixed 

at link i and link i-i ,  respectively, when link i moves with respect to link l - i ,  the 

coordinate system i also moves with respect to the coordinate system i-i . The 

coordinate system 0 is attached to the base. This coordinate system is not moving 

and sometimes is called the base frame.

The assignment of every orthonormal coordinate system which is established for 

each link (except link n) follows the following rules CDenavit, Hartenberg, 19551 :

1. The z^ axis lies along the axis of motion of the joint i+i.

2. The x̂  axis is perpendicular to a plane where the Zj_j_ and the z^ axes lie 

or along the common normal between the Zj_^ and the z^ axes when they are 

parallel.

3. The y^ axis is in a direction where it completes the right handed 

coodinate system.

The hand coordinate system is established by placing the Zn axis parallel to the 

z ^ ^  a*is and the Xn axis in normal to both the z ^ ^  and Zn axes. The yn is then 

established to complete the right- handed coordinate system. In some cases, it- is 

more convenient to have the origin of coordinate system 0 coincide with the origin 

of coordinate system i.
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joint i axis joint i+ i axis

Figure 3.3

The Denavit-Hartenberg coordinate system.

3.4 Kinematics

In the study of robotics, the information about the location of an object is 

important. These objects can be the links of the robot, the end effector, the parts 

to be manipulated or other objects in the robot's environment (eg. some obstacles). 

This information is expressed in term of position and orientation.

When a coordinate system <x,y,z) is rotated an angle <*■ about its x axis, the rotation 

matrix Rx ^  which express the new coordinate system with respect to the old 

coordinate system is given by
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i 0 0

0 cos <t> -sin (3.1)

0 sin U1oo-a- 4>

If a vector b is given as (x^y^^)"^  with respect to the coodinate system (x,y,z), 

then when this coordinate system is rotated an angle <t> about the x axis, the new 

value of vector b with respect to the new coordinate system is obtained by 

performing the following operation,

b = Rx,*b (3.2)

where b is the new value of vector b with respect to the new coordinate system.

The rotation matrices which express rotations of an angle j3 about the y axis and 

of an angle 7 about the z axis are given by

,̂.<3 -

cos ,G 0 sin 0

0 i  0

-sin 0 □ cos 0

Rz /7 =

cos 7 -sin 7 0

sin 7 cos 7 0

(3.3)

(3.4)

If more than one rotation is performed in a sequence, then the order of 

multiplication must be considered. To obtain a new value of vector b when the 

following sequence is performed; a rotation of an angle 7 about the z axis
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followed by a rotation  of an angle & about the y  axis and fin a lly  followed by a

rotation of an angle about the x axis; the relationship is :

b  =  R z ,7 R y ,0 R x , *  b
(3.5)

When a combination of rotation and translation is considered, a (4x4) homogenous 

transformation (rotation and translation) matrix T  is introduced. This matrix 

consists of rotation, translation, scaling and perpective transformations. In the 

kinematics study, however, the scaling and perspective transformations are not 

used.

Rotation matrixo„o Translation vector-,.^.

T  = (3.6)

The translation vector gives the position of the new coordinate system with 

respect to the old coordinate system. In order to be able to perform the 

transformation appropriately, a 'i ' is added as the fourth element of a vector b, ie. 

(Xfa, yb, zb, i ) T  The procedure to perform this transformation is similar to the 

procedure of the rotational transformation. Thus, to express a coordinate system 

with respect to another coordinate system, it is necessary to know both the 

relative position and orientation between these two coordinate systems.

In a robot manipulator, a coordinate system l can be transformed into a coordinate 

system i-i .  Based on the coordinate system assignment given in section 3.3.2, this 

task is carried out by performing a rotation, two translations and a final rotation 

as follows [Denavit, Hartenberg, 19551,
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1. A rotation about the zi_i  of 9̂ , so the xi_i  axis is in parallel to the

axis (pointing in the same direction).

2. A translatation of di along the zi_i  axis to locate the origin of the 

coordinate system i - i  at the point where the common normal between the Zj_^ 

and Z| axes intersects the z^  ̂ axis. The result is that the x̂ _j_ axis 

coincides with the x̂  axis.

3. A translation of â  along the x̂  axis, so both origins of the two 

coordinate systems coincide.

4. A rotation of a.- about the x̂  axis to bring the z ^  and zx axes into 

coincidence. The result is that the two coordinate systems have the same 

position and orientation.

The relationship of the D-H coordinate systems in the neighbouring links can be 

described using the 4x4 homogenous transformation matrix. By following the above 

operation to transform the coordinate system i to the coordinate system i-i ,  the D- 

H transformation matrix is obtained as follows CDenavit, Hartenberg, 19551

; h  ■ ' 1 -cosci- : sin9; sina:sin9: a,cos9:l x  1 1  X 1

smy •
X

cusa^ubSj -since jCosQ  ̂ a^-inS^
(3.7)

□ cos«.^

0 0 0 i

and the corresponding rotation matrix is given by

5i



cos -cosa^sinG^ sina^sinG^

sinG^ casajCOsG^ -sino^cosG^

0 sina^ cosa^

For a multi link robot manipulator, the coordinate system i can be expressed with 

respect to the base coordinate system as

A_i -  A ^ A   ̂ À , 1 ''SS"1"0 " HU ...... hi -2 Hl - i  ^

Using this D-H homogenous transformation matrix, if the D-H parameters are known, 

one can obtain the position and orientation of the hand with respect to the base 

coordinate system.

3.5 Differential Solution

It. is often necessary to compute the differential change of a 4x4 homogenous 

transformation matrix with respect to its variables. This knowledege is important 

in studying the dynamics of a robot manipulator where velocities of the joint 

variables are used extensively.

The differential transformation of a coordinate system T is defined as [Paul, 19811

^  + ^  ^dx,dy,dz ^5x,5y,6z (3.10)

where :

dT = a differential change of a coordinate system T.

Tdx dM d7 = a differential translation along the x, y and z axes.
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= a d iffe re n tia l rotation  about the x, y and z axes.'SXlSy,S7

Defining,

5'x = a small rotation of 9 angle about the x axis.

5y = a small rotation of 9 angle a□out the y axis.

6 2 — <=*■ small rotation of 9 angle about the z axis.

and since for 9 «  0, sin 9 9 and cos 9 »  i ,  from (3.1), (3.3), (3.4) and (3.6) the

homogenous differential rotation matrices (setting the translation vector to 0)

then expressed in the following form

i 0 0 0

0 Í -Sx 0

II> (3.11)
0 Sx i 0

0 0 ¡3 i±

i 0 Sy 0

0 1 0 0

T Sw = (3.12)
-Sy 0 i 0

Q 0 0 i
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1 -S 2 0 0

£2 1 0 0

0 0 1 0

0 0 0 1

(3.13)

If a differential rotation about the x, y and 2 axes is considered, then

T P p p = T  p Jp  T ,  6x'-y<-2 L’x ûy -2
(3.14)

jiving equation (3.14) yields (ignoring second and third order terms)

-
1 -ô’z S y 0

£2 i -Sx 0
To 0 0 = (3.15)N0Jl0X0

-Sy Sx 1 0

0 0 0 1

From equation (3.6) and setting the rotation matrix to a 3x3 identity matrix

4x4 homogenous différé ntial transi ation matrix is given by

1 0 0 dx

0 1 0 dy

"*~dx,dy,d2 ~ (3.16)
0 0 1 dz

0 0 0 1
_

Substituting equations (3.15) and (3.16) to equation (3.10) gives the expression of dT
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as

D -Sz Sy dx

Sz □ -Sx dy

-Sy Sx D dz

0 0 0 0

or in the more compact form as

dT = A . T

(3.17)

(3.1S)

All these differential relationships are expressed with respect to the base 

coordinate system.

In the case of the D-H transformation, the differential relationships with respect 

to the .joint variables (€h or d )̂ are obtained directly. From equation (3.7), the 

derivative of A1̂  with respect to the joint variable is given by

3 a1
3q.A l - i

sin 0̂ -COSCi-0050  ̂sinoncosO^ -aisin6'1

cos6^ -cosa^sint^ sina^sinS^ aiCOS®i

0 0 0 0

0 0 0 1

(3.19)

for a revolute joint.



0 0 0 0

0 0 0 0

0 0 0 i

0 D 0 0

(3.20)

for a prismatic joint.

Let, [Paul, 19721

IJ -1 o 0

i 0 0 □

0 0 0 0

0 0 0 0

for a revolute joint, and

0 □ G 0

0 0 0 0

0 0 0 1

0 n 0 Ü

for a prismatic joint.

The differential relationships now can be expressed as
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(3.23)

For an n degree of freedom robot manipulator where i= i,.. ,n and j {_ i

(3.24)

3.6 Dynamics

3.6.1 Overview of Robot Dynamics

Dynamics of a robot manipulator deals with mathematical equations of motion which

for controlling or simulating a motion of a robot arm accurately. The robot 

manipulator forward dynamics problem involves determining the motion of the 

manipulator resulting from a set of applied joint torques/ forces. The solutioni of 

this problem is a necessary requirement and, in fact, the heart of any dynamic 

simulation work. The inverse dynamics problem, as the name implies, uses knowledge 

of the joint position, velocities and accelerations of each link to calculate the 

required torques/ forces applied to each joint. Many advanced robot control 

schemes are based upon the accuracy of an inverse dynamics solution of the 

nonlinear robot dynamics.

The dynamic formulations of a robot, arm can be obtained from basic physical laws 

such as the Lagrangian formulation and Newton law. The structure of these 

formulations, however, differ as they are required for various reasons and

gives the dynamic behaviour of the manipulator. A good dynamic model is important
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intended purposes. Some are required  to have fast computation time in perform ing

real time control tasks, others are required to allow for control analysis. Since 

the complete dynamic model of a robot is complex, many researchers have 

endeavoured to develop efficient algorithms which can be implemented directly in 

the digital computer. Murray [1986] carried out a comparison among the then 

existing dynamics algorithms.

There are several techniques of modelling to derive the dynamic equations of a 

robot arm, such as :

- methods which are based on the Lagrangian equation [Paul, 1981; Li, 1989bl

- methods which are based on the Newton-Euler equations CLuh, Walker, Paul, 1980; 

Huang, Lee, 19881.

In general, two types of approaches are used in developing the dynamic equations, 

namely a closed form approach [Raul, 19811 and a recursive form approach [Luh, 

Walker, Paul, i960; Hollerbach, 19801. The former is preferable for state space 

control analysis purposes since this technique gives an explicit set of closed 

form differential equations. For real time control purposes, one would prefer the 

recursive form approach as this technique is very efficient in term of the 

computation time. The recursive nature, however, destroys the dynamic model 

structure if one wants to design the controller in the state space manner. From 

the above facts, there is some kind of trade off between the modelling and control 

aspects of a robot- manipulator.

The dynamic description of a robot manipulator is a highly nonlinear multivariable 

system. The accuracy of modelling this complex system might be reduced by the 

structural deformation of the robot links since in reality each link to a certain

58



extent has a degree of flexibility [Huang, Lee, 19881. In this research work, 

however, it is assumed that all links are rigid.

When the robot moves, kinetic energy which depends on the velocity of each .joint 

exists in the system and, depending on the configuration, some .joints suffer from 

gravity effects and thus potential energy also exists in the system. If the 

information about the total kinetic and potential energies in the system are 

evaluated, the Lagrangian function is then given by [Paul, 19811

L = K - P (3.25)

L = Lagrangian function.

K = Total kinetic energy of the system.

P = Total potential energy of the system.

Depending upon whether the joint is revolute or prismatic, the required 

generalized torque/ force at joint i in order to drive link i is obtained by forming 

the Lagrange-Euler equation which is given by

d
dt ( IK

\dQ:
8L
3q; =  T i l = 1,1 ,n (3.26)

where :

t I = the generalized torque/force to drive link l 
Ii

qx = the generalized joint i variable

q = the firs t derivative of generalized joint i variable 

n = no. of degree of freedom
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3.6.2 Newton-Euler (N-E) Approach

This approach is derived by analysing the net force and the net torque on an 

isolated link i, where the neighbouring links, le. link i - i  and link i+ i are seen as 

exerting forces and torques to this link. Hence, in this apporoach, by having 

information on the angular and linear accelerations of link i, and the force and 

torque exerted by link i+1, one can obtain the generalized torque/ force applied to 

joint i in order to drive link i.

Consider a robot manipulator as shown in figure (3.4). When the robot links move, 

there is a propagation of velocities and accelerations from the base to the hand. 

Here, although the base does not move and, in fact because of this nature, the base 

actually propagates a linear acceleration to link i  which is equal to the gravity 

acceleration. Thus, the angular/ linear velocity and the angular/ linear 

acceleration of link i with respect to the base coordinate system are cumulative. 

Since the coordinate system i is fixed to link i, this means that the coordinate 

system i is rotating and/ or translating with respect to the coordinate system i - i  

and to the base coordinate system as well. As the robot manipulator which is used 

in this research work has revolute joints only, so the following derivation is 

intended for a revolute joint system only. From figure (3.4), some vectors are 

defined, namely

p  ̂ = a translation vector of the origin of the coordinate system i from the

origin of the coordinate system i - i  and expressed in the base coordinate 

system.

s  ̂ = a position vector of the centre of mass of link i from the origin of the
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coordinate system i and expressed in the base coordinate system, 

c  ̂ = a position vector of the centre of mass of link i from the origin of the

coordinate system i - i  and expressed in the base coordinate system.

= an angular velocity of .joint i with respect to the coordinate system i - i  

and expressed in the base coordinate system.

(j 1 = an angular acceleration of joint i with respect to the coordinate system 

l - i  and expressed in the base coordinate system.

= an angular velocity of joint i with respect to the base coordinate system 

and expressed in the base coordinate system.

= an angular acceleration of .joint i with respect to the base coordinate 

system and expressed in the base coordinate system, 

v^ = a linear velocity of the origin of the coordinate system i with respect 

to the base coordinate system and expressed in the base coordinate 

system.

Cn = a linear acceleration of the origin of the coordinate system i with 

respect to the base coordinate system and expressed in the base 

coordinate system.

= a linear acceleration of the centre of mass of link 1 with respect to the 

base coordinate system and expressed in the base coordinate system.

The kinematic information is then given oy

C1 =  P i  + =1 (3.27)

A

“ l = Zl - i qi (3.23)

À
“ l = 2l - i qi (3.29)

“ l = “ l - i + Z i - i  ài (3.30)

“ i = “ l - i + x + z 1. 1 q1 (3.3i)
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(3.32)vi = vi - i  + ui X Pi

+ (d| X p1 + X (uj, X Pj) (3.33)

= Vj + ¿  ̂ X ŝ  + X (u1 X s j  (3.34)

As joint i rotates about the z ^  axis, so uip tĵ  and the z ^  axis have the same 

direction as given by equation (3.28) and (3.29).

a  A

Z0
, i

X q base coordinate system

Figure 3.4

Vector assignments in the Newton-Euler approach.

Since the velocity and acceleration (both angular and linear) of link i are 

cumulative from the base, so the above equations are evaluated recursively from 

i=i to i=n. Once the kinematic relationships are known, the forces and torques in

the system can then be evaluated as shown in figure (3.5). As the name implies, the



Newton-Euler approach uses the Newton equation (fo r translation)

F l = mi ax (3.35)

where :

= mass of link i.

Fx = the net force acting at the centre of mass of link i and expressed in the 

base coordinate system..

the Euler equation (for rotation)

Ni = 1 ^  -f or X (I^up (3.36)

where :

1̂ = inertia tensor matrix of link i about its centre of mass and expressed in 

the base coordinate system. Detail of the inertia tensor matrix 1̂ is 

given in appendix A.

Nx = net torque acting on the centre of mass of link i and expressed in the 

base coordinate system.

and the d'Alembert principle which applies the static equilibrium conditions to 

problems in dynamics. Using the d'Alembert principle., the algebraic sum of external 

forces/ torques exerted on link i and the forces/ torques which resist the motion 

is zero.

From figure (3.5), applying the d'Alembert principle gives
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(3.37)f i = f i+ i + Fi

ni = ni+ i + Ni + C i X F i + P l X fi+ i (3.38)

where :

f 1 = force exerted at joint i to support link i and the distal links. 

n: = torque exerted at joint 1 to support link i and the distal links

Z o

*0 base coordinate system

Figure 3.5

Forces and torques in a robot mechanical linkage

From the establishment of the D-H coordinate system., link l rotates about the Zj_^ 

axis. Thus., to drive link i, the applied input torque at joint i is the projection of 

n: onto the z ^  axis. Hence, the necessary torque given by the actuator to joint i 

is given by
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(3.33)T

where :

Ti = applied input torque to drive link i given by the actuator to .joint i with 
xi

respect to the link shaft.

As link l must support the link above it, so equation (3.35) to (3.39) are performed 

recursively from i=n to i=l. It should be noted that as the linear acceleration of 

the base is assigned to the gravity acceleration, the value of given by equation 

(3.35) includes the gravity effect.

When the Newton-Euler algorithm is completely carried out, it yields a complete 

dynamic equation of motion and can be expressed in the following matrix form

T-j = 1X0) 0 + K0.0) + G;0) (3.40)

where :

T1

1X0)

hK0,é>

(3(0)

0

è

0

= an nxi generalized torque vector applied at joint i where i= i to n.

= an nxn inertial acceleration related symmetric matrix.

= an nxi coriolis/ centrifugal torque vector.

= an nxi gravity torque vector.

= an nxi joint variable position vector with respect to the link side.

= an nxi joint variable velocity vector with respect to the link 

side.

= an nxi joint variable acceleration vector with respect to the link 

side.
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Equation (3.40) shows that the dynamic equation of a robot manipulator is  composed

of a set of highly nonlinear coupled second order differential equations where the 

D matrix is always non singular [Fu, Gonzalez and Lee, 19871.

To improve the efficiency in computation, the inertia tensor matrix 1̂ as well as p̂ , 

s 1 and cx are expressed in the coordinate system 1 CLuh, Walker, Paul, 19801.

3.7 Trajectory

3.7.1 Trajectory in General

In many applications, it is necessary to have a preplanned path (trajectory), so 

that the robot can move efficiently with or without any obstacle in the work space. 

A trajectory is defined as a time history of position, velocity and acceleration of 

each degree of freedom [Craig, 19861. When there is no trajectory constraint, the 

problem is simply a positional control. Although for the purpose of designing or 

examining a control system one usually, for convenience, uses only trajectories 

which do not have constraints such as a step input, a ramp step input or a 

sinusoidal input; however it is appropriate to mention trajectories which are used 

in typical applications of the industrial robot, eg. in a pick and place task.

In designing a robot system, not only does the system control the motion of the 

robot, but it also needs to be capable of planning the motion trajectory from the 

initial joint- configuration to the final joint- configuration. Once the kinematic 

information, such as the initial and final positions and orientation of the hand in

term of the joint coordinates, to manipulate an object has been given, the system



then generates the motion trajectory in order to accomplish the given task. The 

initial and final conditions are commonly defined as

9i<to> = 6io (3.41)

ei(tf) = ©if (3.42)

y • (Ìq)■A — = éio (3.43)

ôi(tf) = ©if (3.44)

where :

i = joint number 

tD = initial time 

tr = final time

and normally, 0j(to) and 8(t^) are set to zero.

Logically, a smooth continuous trajectory is preferable than a jerky discontinuous 

one. This requires that the firs t and the second derivatives of the trajectory must 

exist to guarantee the continuity of the trajectory. The simplest approach to 

obtain this is by implementing a cubic trajectory as given in the following form

0-(t l ' M  .vio + hiit hi

Figure (3.6) shows this trajectory.

(3.45)

To avoid any collision with the environment's obstacles if any, a more detailed 

trajectory might- be necessary than just the initial and final points only. Thus, 

some times the trajectory needs one or more via points so that a trajectory is



divided into some segments. For a trajectory with two segments as shown in figure

(3.7), the initial and final conditions of the both segments are given as

ei i ( io i> = eio l (3.46)

ei2 (to2> = ei i ( t f i ) (3.47)

° i i <lol> = eio i (3.48)

él2 (to2> = ® ii<tfi> (3.49)

012(t f 2) = ei2 f2 (3.50)

éi2 ( t f 2) = éi2 f2 (3.5i)

and the trajectory segments are in the following form

ei i (t) = eiio + hi i i l + hi i2 ^  + hii3t3

0i2(t) = ei2o + hi2 it + hi22t^ + hi23tw

ei (t>

Figure 3.6 

A cubic trajectory
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e^t)

Figure 3.7

A cubic trajectory with two segments 

3.72  Trajectory in a Pick And Place Task

Typical applications of an industrial robot are some sort of pick and place like 

tasks, eg. picking and placing objects to a conveyor belt and assembling printed 

circuit boards. Consider a robot which perf'ormsa picking motion. After the robot 

grips an object, the joints are commanded to move to their corresponding final 

points. If there is not any constraint imposed on the picking movement, the robot 

may drag the object instead of pick it up or even the robot tip may collide with 

the surface which supports the object. Since the object needs to be picked gently 

in order not to damage it as well as the robot itself, another consideration in 

planning a trajectory must be taken into account.
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Paul [1972] suggested an additional constraint which must be considered. Instead of 

bringing the object directly to the final point, it is necessary to lift  the arm up 

firs t in order to clear the supporting surface. Thus, as the hand starts moving, 

the motion must be in the normal direction and pointing away from the surface. 

This via point which is in the normal direction to the surface is called a lift  off 

point. After passing this lift  off point, the robot can bring the object to the 

desired location.

A similar constraint as in the picking movement is necessary when the robot wants 

to place the object in the desired location. A collision with the surface may happen 

if the arm directly places the object. Instead of placing it directly, the hand must 

pass another via point which is in the normal direction from the surface and this 

via point is called a set down point. Having passed this set down point, the hand 

then approaches the surface in the direction of the normal.

Hence two points alone, ie. the initial and the final points, are not sufficient in 

order to avoid collision with the supporting surface and two other via points, le. 

the lift  off and the set down points are necessary to be considered in generating 

a trajectory. Paul [1972] recommended that both the lift  off and the set down 

points must be at least 25% of the length of the last link. Figure 3.3 shows this 

trajectory.

From figure (3.8), the trajectroy which has the initial, the lift off, the set down and 

the final points is divided into three, ie. a picking motion (from the initial point to 

the lift  off point), a travelling motion (from the lift  off point to the set down 

point) and a placing motion (from the set-down point to the final point). One 

approach to carry out this kind of trajectory is by assigning a fourth order
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polynomial to both the picking and the placing motion as given by (with an 

appropriate subscript for the picking and the placing motion)

e / t )  = eio  + hxlt + hi2t2 + hl3t3 + hl4t4 (3.54)

and a third order polynomial to the travelling motion. Normally, the velocities and 

accelerations at the initial and final points are zero. To avoid any obstacle, the 

travelling motion can be further divided into some smaller cubic polynomial 

segments as detailed in section 3.7.1.

e^t)

Figure 3.S

A trajectory in the pick and place task
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33  Control System

3.8.1 General

In general, robot control is an application of microprocessor equipped controllers 

to carry out mechanical manipulation tasks in a desired manner. The main objective 

of the controller is to provide the necessary torques to all joints in such away so 

that the robot arm can follow the desired trajectory with a considerably small 

error. Since the controller is programmable, theoretically any control algorithm 

can be implemented. Hence, in more general, the aim of a robot control is to obtain 

a good performance of a robot manipulator with specified characteristics. A 

typical closed loop robot control system is shown below in figure (3.9).

Figure 3.9

A closed loop robot control system

3.8.2 Complete Dyjramic Robot Model



Before going into the control strategy, it is necessary to develop a robot model

with an integrated actuator. The dynamics of the actuators have to be included in 

the model since they are part of the whole robot system. Here, an electrically 

powered actuator is considered, ie. a DC motor with permanent magnet. This motor 

is armature controlled and operated in its linear range.

The torque given to each .joint is a function of the current and the torque 

constant. For .joint i,

where :

t  ̂ = output torque of the i-th actuator ENml 

Ky^= torque constant of the i-th actuator CNm/Ampl 

= armature current of the i-th actuator [Amp],

As the speed increases, the back EMF voltage, which is induced in the armature, 

increases proportionally and this tends to reduce the current.

(3.56)

(3.57)

where :

Lk = input voltage of the i-th actuator [Volti

E; = back EMF voltage of the i-th actuator [Volt].

back EMF constant of the l-th actuator [Volts/radl

Rx = terminal resistance of the i-th actuator [Ohm],
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L: = rotor inductance of the i-th actuator CmH],

0m̂  = angular velocity of the joint i with respect to the actuator

[Radian/sl

Since the rotor has an inertia value, so

Ti _ ^mi ^mi + Tmi

where :

(3.58)

J • = i-th actuator rotor inertia [kcimH mi

6'mi = i-th joint angular acceleration with respect to the actuator 

[Radian/s^l

Tm|= generalized torque of joint i with respect to the actuator side [Nml

From equation (3.55), (3.56), (3.57) and (J.58)

(3.59)

(3.60)

Let the state vector be = (6 6mi, 1̂)"*", then the third order mathematical 

of the actuator can be expressed in the state equation as

j  . e . = i mi mi <T i ! i

Li h  = Ui - Kbi

mi

l i

'

x2i II

x3i

0

0

□

1

H i
H i

"4

M.i

x2i

x-3i

+

side

side

model
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■ ■

0 0

0
U 1 +

1

■ J m i

i

L 1

□

mi (3.61)

As the electrical time constant is much smaller than the mechanical time constant, 

the inductance can be neglected and hence, equation (3.56) reduces to

Ei = I, R; (3.62)

Let the new state vector be x̂  = ($m̂ ,©m̂ ,  the second order mathematical model of 

the actuator is then given in the following form

x±i

x-21
KT iKbi
RiJmi

•ii

KTi
RiJmi

U:

(3.63)

Or, in a more condensed form for the i-th actuator model

xi = Ai xi + Bi Ui + Ci Tmi (3.64)



and for an n degree of freedom robot manipulator

x = A x + B U + C r m (3.65)

where :

x = a 2n x 1 state vector 

U = a n x i  input voltage vector

Tm = a n x i  generalized torque vector with respect to the actuator side

A = diag(A^, A2» .... 1 An)

B = diagiB^, B2 , 1 Bn>

C = diag(C^, Co....L. .. Cn)

The block diagram of a complete robot system with a second order actuator is 

shown in figure (3.10).

Actuator Mechanical Linkage

1

e

_ l

Figure 3.10

A complete robot, model with an integrated actuator.
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The generalized torque produced by the actuator has a re lationship with the input

generalized torque to the manipulator as

Tmi-  ni Tli (3.66)

and the .joint variable relationship is given as

9i ^ ni °mi (3.67)

where :

n: = gear ratio of .joint i (r^ _< i)

Equation (3.40) can be rewritten in the following form (dropping 0, 0 for brevity)

Tj = D 0 + P (3.68)

where;

P = H + G (3.69)

Let the gear ratio of a robot manipulator with n degree of freedom be

N

ni
n->¿L o

o
nn

(3.70)

where ;
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N = an nxn gear ratio diagonal matrix.

From equations (3.66), (3.67), (3.63) and (3.70) the generalized torque vector with 

respect to the actuator shaft can now be expressed in the following form

t n-j = N D N 0m + N P (3.71)

Let the transformation matrix between 6̂ , and x be Z such that

em = z  x (3.72)

where Z is an nx2n matrix and given as

0 1 0 0 U

0 0 0 1 0
(3.73)

0 0 i

Substituting equation (3.72) into (3.71) yields

T ni = N D N Z x  + N P (3.74)

Substituting (3.65) into (3.74) and manipulating gives

r m = (in - N D N Z c ) '1 j N D N Z  (Ax + BU) + N p) (3.75)
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where :

In = an nxn identity matrix

Hence, equation (3.65) now becomes

x = (if, + C (In - N D N Z C )'1 N D N Zj A x + (ln + C(In - N D N z ) B U 

+ C(In - NDNZC)'1 N P (3.76)

3.8.3 Control Strategies

The purpose of robot manipulator control is to keep the motion of the robot in a 

correct trajectory with a specified characteristic response. The problem becomes 

complicated since the nonlinear and coupling inertial torques, gravity torques and 

other disturbances are inherent in the system.

If it is assumed that the coupling inertial torques are small enough to be 

neglected, the control design becomes less complicated. Figure (3.11) shows a 

closed loop robot control system for joint i. The preplanned trajectory gives a 

set point to this joint as a function of time. If necessary, the desired velocity and 

acceleration are obtained by evaluating the firs t and second derivatives of the 

preplanned trajectory, respectively.

The position error is obtained by subtracting the observed position from the 

desired position. This negative position feedback reduces the position error. This 

position error is then converted to voltage by the means of a potentiometer or 

optical encoder/ counter assembly with a gain of [Luh, 19831. The velocity

feedback is obtained by taking the first derivative of the position error. The
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negative velocity feedback provides damping into the system.

Figure 3.11

A closed loop robot control system of joint i

Combining equations (3.55), (3.57) and (3.62) gives

_ Ui '  Kb i V  y
Ti = --------Rl--------  KT i

(3.77)

Substituting equation (3.58) into (3.77) and rearranging yields

R: . R:
1-1 i = k ^mi *Vii + k Tmi + ^bi^mi 

T i  T i
(3.78)

As in reality, only the measured position with respect to the link side can be 

obtained, equation (3.78) then becomes

u. = imi e. + r • + ^  è 
1 K T i ni 1 K T l ™  ni *

(3.79)
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The generalized torque of joint i with respect to the actuator side can be

expressed as

(3.80)

Substituting equation (3.80) into (3.79) gives

i i. l (3.81)

If all terms other than the inertial torque are treated as disturbances, then 

equation (3.81) becomes

Figure (3.12) shows the revised block diagram of a closed loop system.

Consider a proportional + derivative controller which is employed in joint i as 

shown in figure (3.13). Since the coriolis and centrifugal terms are negligible in a 

low speed motion, so the principal disturbances are due to the gravity effect and 

back EMF. Working through the block diagram given in figure (3.13) and defining the 

state vector with respect to the link side, xx = (tV, 6r> , this system can be 

expressed in the following form

(3.82)

where :

(3.33)

(3.84)
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0 1
“ r

h i

II

*2i
. -

0

1 ■

H i 0
+

H i
l

M ■11

(3.85)

From .figure (3.13),

Bi = *di *

Ui »  «P i ei' + «D i èi'j

(3.86)

(3.87)

Combining equation (3.85), (3.86) and (3.37) yields

1--

* ii

%
.

0

KPifeei 
' Mn

1 Hi

KDiK0i
M • Hi11

“ ~ ‘
0 i 9di 0

KPiK0i
M11

KDiKei
Mii édi

+
1

»11

S-l (3.88)

Let the input vector be ux (edi, 0dj) , equation (3.88) can then be expressed in a

more compact form as

= Ai % Bi ux Ci Si (3.89)
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Figure 3.12

The revised block diagram of a closed loop system 
in robot control

Figure 3.13 

A PD control system
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From here, it can be seen that the characteristic of the system which is given by 

the eigenvalues of matrix Aj depends on the effective inertia M^. Since the 

effective inertia, which is a function of 9, varies as the posture of the robot arm 

changes, it is not possible to maintain the system characteristic independent of 

the robot arm configuration.

The value of this effective inertia can be evaluated using the dynamics 

mathematical model which was developed in the proceeding section and is denoted 

as M^. The computed model effective inertia value is then added to the system as a 

gain. Figure (3.14) shows this modification. With added as a gain in the system, 

equation (3..82) then becomes

Mu Ui = MU  ëj + Si  <3.90)

Figure 3.14

A linearized closed loop control system
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A
If it is assumed that there is no modelling error, ie. = M^, equation (3.88) 

becomes

1-----H
•ÏX

i_____ 0 1 * ii

% •KPiKÔi -KDiK0i x2i

— - *
0 1 edi 0

KPiK0i KDiK9i édi
1

' Mn

(3.91)

Equation (3.91) shows that the characteristic of the system no longer depends on 

the effective inertia. To further improve the performance of the system, the 

disturbance should be eliminated from the system. With the aid of the dynamics 

mathematical model, the value of' this disturbance model can be obtained and is
A A

denoted as S-. Again, with the assumption that the model is perfect, ie. = S ,̂ 

injecting this signal into the system will eliminate the disturbance from the 

system. Figure (3.15) shows this modification.

Having added this compensation signal into the system, equation (3.91) becomes

* ii 0 1 % i

*2i ' KPiK0i ' KDiK0i x2i

_ - l—

0 1 edi

KP iK0i KDiK0i édi
_ .

(3.92)
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and a critically damped response is obtained when

k Di ~ 2
(K

,1
Pi

Keij
(393)

To suppress the error quickly, Kp  ̂ must be set to a large value. In practice, 

however, the choice of Kj-  ̂ value is limited due to the presence of noise in 

differentiating the error.

Si

Figure 3.15

A linearized closed loop control system 
with disturbance compensation signal

This control strategy is the basic principle of the computed torque technique 

[Markiewicz, 19731. Some control algorithms which are based on this principle are 

the alpha computed torque technique [Benson, 19S71 and the control partitioning
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technique [Craig, 19861. Other algorithms such as an adaptive control method can 

also be based on this technique but with an addition of an adaptive element [Craig, 

Hsu and Sastry, 19861. The main drawback of the computed torque technique is its 

heavy dependence on the model reference. Many present industrial robots, however, 

still use a simple PID control law in a straight forward manner.

3.9 Conclusions

In this chapter, the foundation of all aspects in developing a mathematical model of 

an industrial robot which has a revolute joint system has been presented. A 

thorough understanding of the Denavit-Hartenberg concept which systematically 

gives a description of an industrial robot is necessary. This is obtained by 

understanding the D-H parameters and the coordinate system placement.

Based on the D-H concept, kinematics of an industrial robot can be developed. This 

involves the use of the D-H transformation matrix which describes the position and 

orientation of the robot hand. The differential change of the robot arm 

configuration with respect to a change of the joint variables has been presented.

Having obtained the kinematic information, the dynamic equations which give the 

dynamic behaviour of the robot can be developed. The accuracy and computational 

efficiency of a robot dynamic model plays an important role in a simulation. In this 

chapter, the robot arm dynamics has been developed with some assumptions, ie. all 

links are rigid and all motion are frictionless. The N-E approach has been chosen 

by the author in developing the robot arm dynamics since it is efficient in 

computation and relatively easy to analyse all forces and torques which exist in 

the system.
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For the sake of a general understanding of a robot manipulator system, trajectory 

planning has been discussed briefly in term of the joint coordinates. In order to 

give a smooth continuous trajectory, a polynomial with the lowest order of a third 

order polynomial is used. In the case of pick and place like tasks, the trajectory is 

divided into three, the picking motion, the travelling motion and the placing motion. 

For this kind of task, a 4-3-4 trajectory has been presented.

As actuators are part of the system, it is necessary to develop a complete 

integrated mathematical model prior to designing a control system. The basic idea 

of the so called computed torque technique has been given to overcome

nonlinearity problems in the system.
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CHAPTER 4

THE DISTORTION TECHNIQUE

4JL Introduction

The confidence in using a model for any purpose relies on the model validation 

technique which is used during the model development. Clearly, it is important to be 

able to justify the validity of the model for its intended purposes. Most validation 

techniques rely on a visual comparison while it is ambiguous how close a model 

response can be said to be close to a recorded response. The model validity is 

often assessed by a quantitative means such as the minimum squared error, minimum 

peak differences etc. These approaches also still exhibit an ambiguity since there 

is no certain rule which indicates how small a true minimum value should be. Also, 

by deriving the best fit parameters only, the model tends to be assumed as a black 

box model and not based on physical principles. Hence, the judgement of a model 

validity is frequently subjective.

In validating a model, the model parameter uncertainties should be taken into 

account. Any model can be made to match the measured transient response by 

distorting its parameters. If the distortion required to match the transient is 

acceptable in terms of known approximations in the model, then the model is 

considered capable of explaining the measured transient ie. the model is valid in 

terms of the model uncertainties. This is the idea which stands behind the 

distortion technique for validating a model quantitatively [Butterfield, Thomas, 

19831, and also this technique is applicable to non-linear systems. This chapter 

describes the distortion technique which gives a relatively objective assessment 

in validating a model quantitatively.
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The d isto rtio n  quantitative validation technique was f ir s t  developed at the United

Kingdom Atomic Energy Authority, Winfrith, England [Butterfield, Thomas, 19831 and 

was applied to nuclear power plant models. Some institutions, eg. City University, 

London, do some research work for other applications.

4.2 Quantitative Model Validation Based on The Distortion Technique [Butterfield 

and Thomas, 19833

This method is based on the preposition that a mathematical model can be made to 

match the plant transient response by varying the model parameters as functions 

of time. So that, the less the distortion, the better the model.

There are two approaches of the distortion technique :

1. Direct solution in the time domain.

2. Approximate solution using the transfer function concept.

A mathematical model of a plant can be represented as,

x = f( x, u, a, t ) (4.1)

where : x = a state vector in n dimension.

u = an input vector in m dimension, 

a = a constant, parameter vector in p dimension, 

f = a linear or nonlinear vector function.

and for a plant model with k output variables,
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y  = Cx + Du (4.2)

where : C = a kxn coefficient matrix.

D = a kxm coefficient matrix. 

Y = a kxi output vector.

The residual error vector between the plant and the model is given by,

e(t) = z(t) - y(a,t) (4.3)

where : z = a vector of the measured output variables in k dimension.

To quantify the match between a model and a plant, a performance index, which is a 

function of the parameter vector ' a ', is defined by,

T

I = i  J  ef. a, t )T W &. a, t ) (4.4)

0

where : W = a weighting matrix.

T = an observation time. 

t  = transpose operator.

For convenience, a performance index should be easily computed.

After minimising the performance index, given by equation (4.4), a fitted model is 

defined by,

x = f( x, u, a, t ) (4.5)
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y  = Cx + Du (4.6)

where ' A ' denotes the optimal condition.

So that, equation (4.3) can be written as,

emin(U = ¿':t) ' y& t) (4.7)

where em̂ n is the residual error function and its norm has been minimised, at the 

optimal condition.

If the model parameters are varied as functions of time, the new model equations 

are given by,

X = f(X, u , a +  a(t), t) (4.8)

Y = CX + Du (4.3)

where : X = a distorted state vector.

a(t) = a time dependent parameter variation vector for distorting the 

model.

Y = a distorted output vector.

In most cases, it will be possible to drive the system with these parameter 

variations, so that the measured states of the plant are matched by the distorted 

state vector of the model [Butterfield and Thomas, 19831.
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F o r a p e rfect model-plant match, equations (4.8) and (4.9) can be w ritten as,

X* = f( Xs, u, â + a°<t), t ) (4.10)

Y° = CX° + Du (4.11)

where : X'! = a matched distorted state vector.

a°(t) = a time dependent model parameter variation vector to obtain a 

perfect model-plant match.

V7 = a matched distorted output vector of the model,

and }°’ denotes a perfect match.

So that,

Y*(t) = z(t) (4.12)

which implies a perfect model-plant matching. Hence, in the model distortion 

technique, a quantitative model validation is performed by judging the time 

dependent vector a“it).

4.3 Time Domain Approach

This method involves a direct computation in obtaining a time dependent model 

parameter variation vector, a“(t), required to eliminate the residual error between 

the model and the plant. For a reasonable model, which implies that the parameter 

variations a~ should be small, equation (4.8) can be linearised using a Taylor

93



series theorem as,

X° = f( X°, u, a, t  ) +  J * cl (4.13)

Y* = CX° + Du (4.14)

where J* is a Jacobian matrix in nxp dimension ie.

l t i
3a ̂ Sa2

Sf2
Sa^

0a.p

(4.15)

|fn
3a1

3fn
Sap

evaluated at a = a.

Differentiating equation (4.14) gives,

<r = ex" + do (4.16)

Substituting equation (4.13) into equation (4.16),

< r  =  Cf< X°, u, a, t ) + CJi a* + Du (4.17)
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and rearranging;

CJ*a* = y° - ( Cf( X*, u, a, t ) + Du ) (4.18)

Differentiating equation (4.12) and substituting into equation (4.18) yields,

C Ja a c = z - ( Cf( X*, u, a, t) + Du ) (4.19)

Other than a“, all terms in equation (4.19) are known.

Equation (4.19) can be written in a simplified form, ie.

Da“ = z - b (4.20)

where,

D = CJi ; a kxp matrix (4.21)

b = Cf( X“, u, a, t ) + Du ; a kxl vector (4.22)

Provided k = p, equation (4.20), which is a set of linear equations, can be solved to 

obtain the values of a“ at each time interval. In the case where k < p, an 

optimisation procedure should be used, since the solution is not unique.

4.3Jl Criterion For Model Fidelity

95



By solving equation (4.20) during an observation time, T, the distribution of each 

time dependent model parameter variation to obtain a perfect match a^(t), i= i to p 

can be found and a typical graphical representation of a.° is shown in figure (4.1).

Model parameter

Figure 4.1

Distribution of time dependent model parameter variation

The mean squared value or variance of each parameter variation 

optimal value can be evaluated during an observation time, ie.

about its

1
T

T

J ( cc  ̂ r  dt 

0

for j = 1 to p (4.23)

The variances of all p model parameters given by equation (4.23) are then required 

to eliminate the error between the model response and the plant response. The 

basic concept in judging whether or not the model is capable of explaining the 

recorded transient in term of the parameter uncertainties is by observing the
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variance of each model parameter. In o rder fo r  the model to be considered valid,

the variance of each model parameter, cr2 0 , should be less than or equal to its
a j

2expected variance, r '  j  , le.

cr2 ,■> < t '2,- ; for j = i  to pa • -  -> (4.24)

Hence, provided the condition stated in equation (4.24) is satisfied, the model is 

considered capable of explaining the recorded transient in term of the parameter 

uncertainties.

4.4 Transfer Function Approach

For a reasonable model, where X does not differ greatly from x and a is small, 

equation (4.S) can be approximated using a Taylor series theorem.

X = f( x, u, a, t ) + J*( X -  x ) + a (4.25)

with the assumption, that, the vector function f is continuous in the vicinity of x 

and a. J* and are the Jacobian matrices, evaluated at x and a, respectively le.

3fi 9fi 3fi
Sxi dx2 3xn

3f -i

8fn Sfn
3xn
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3fl 3fl 9fl
3a^ da.2 dap

df 2
3aj_

8£n 3fn
3a  ̂ 3a.p

(4.27)

The state difference vector between the undistorted model and the distorted model 

is defined by,

<f> =  X - x (4.28)

and hence,

=  X - x (4.29)

When a system is said to be controllable at time tc, it is possible by means of an 

unconstrained input to transfer the system from initial state x(tc-) to any other 

state in a finite time interval [Ogata, 19811 Provided that the system is 

controllable, a perfect model-plant match can be achieved by introducing the a  

vector variations in the absence of any limit on the amplitude or frequency of 

variation of a

Hence, for a perfect model-plant match,
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yf = f  ( x, u, a, i  ) + J*< Y° -  x ) + J 4 a (4.30)

Y* -  CX° + Du (4.3i)

(4.32)

<P° = X* - x (4.33)

Substituting equations (4.32) and (4.33) into equation (4.30) yields, 

x + <f>° = f( x, u, a, t ) + J* 4>" + J* a"

A  A  A

Since, from equation (4.5), x = f( x, u, a, t ) then,

(4.34)

r  = lx  <f>° + J* ac' (4.35)

II n (4.36)

The state equation, given by (4.35), is called the associate system where the time 

dependent model parameter variation vector a“(t) and #"(t) are the input and output,

respectively.

Based on equations (4.7) and (4.12),

= « W « (4.37)
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so that,

»¿it) emin̂ (t) (4.38)

The associate system, given by equations (4.35) and (4.36) has the transfer function

matrix,

G(s) = C (sin - J*)'1 Jj (4.39)

where In is an nxn identity matrix.

Hence,

#s) = G(s) a(s) (4.40)

where G(s) is the transfer function matrix of the associate system in kxp 

dimension.

In a general form, equation (4.40) can then be written as,

- i- a^(s)

0±(S)

07(s)

9i i (s> 9i?<S) 

g-> (̂s)

9lp <5)

a^s)

*K(S) 9ki(s) ................ gkp(s>

- ap(s)

x
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4.4.1 Single Measured Variable Case

For a case in which there is one overridingly important variable which is 

available from a recorded measurement, equation (4.41) is reduced to

a^(s)

0L(S) II 9 i l (s> 9i7(s) q • ('s' -IP
. -1

(4.42)

ap(s)

where 0, is the output of the associate system of interest.

For a well developed model, the dynamic behaviour of the output of the associate 

system, 0: , which is driven by each model parameter acting alone, can be assumed

as a second order system. Hence,

g,v (s> 0 : ( S )

OijKS)
5 + i

(4.43)

The input of the associate system, <Xj, is assumed to be represented by filtered 

white noise and the filte r is given by
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F*(s>
1

cf

where = cut off frequency

c^ = filte r gain

(4.44)

By this condition, the parameter varies randomly about the optimal constant value

a and its variation has a limited bandwidth. The filtered white noise itself with an

intensity then acts as a signal a ; of variance . . This signal in turn drives
J

the associate system to produce the signal !/>,• , which has a variance c*,,, . FiguresVi

(4.2) and (4.3) show the associate system.

From figure (4.3), the variance of the input associate system, â , can be evaluated 

in term of £ as

+joo

Integrating equation (4.45) yields [Douce, 19631,

(4.45)

(4.46)
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The associate system driven by the white noise

Using the same principle, the output of the associate system can be related to # 

3 5

+vloo

= —  f¿7T0 J
-JOO

1  + jf-LO.p A - * s +1
U ij

ds

2 iTj

+ JÖO

/
-joo

Cf C;

2£(x)y y 4* Li).p + CiKy
ds (4.47)

Cl)^COy ; Cü ; Ci) r*Ci) ;fu*V

Integrating equation (4.47) yields [Butterfield and Thomas, 19331
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(448)cf* ° if' (2 S<j3j j  +

4?(2£ Ur
z£  1
u<v ^

#

The relationship between q2a . and cr2̂ , is then obtained by dividing equation (4.46)
 ̂ i

by equation (4.48) which is given as

•j a-
7C i 7? . ^  i

[  ‘~i ‘ J  +  Z i J  +  U ~ J }

C2,; ( 2S;; + i  )
(4.49)

With the assumption that the frequency contents of the input signal, a and the 

output signal, (/r , are roughly the same such that =; d -j  , the relationship

o 2between the parameter variance, q a . , and the output variance, c ^ , can be
) l

written as

4g,y ( g,y 4- 1  > 
c*,v < ZglV + 1 )

(4.50)

where depends on the shape of the minimum residual error and for most-

systems, can be approximated to a value of 0.5 [Butterfield, 19891.

For a single i-th measured variable case, equation (4.7) can be rewritten as,

emin1 (t) = z^t) - y^a.t) (4.51)
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The steady state gain of the associate system, c^j , can be evaluated by 

considering the residual error as given by equation (4.3). Equation (4.3) can be 

rewritten as ,

e^(a,t) = Zjtt) - y (̂ a + a^5 , t ) (4.52)

where a -c is a constant value of parameter variation about â .J—' J

From equation (4.43), the steady state condition of the associate system is obtained 

by,

(¿is -  cijaj5  (4.53)

where the subscript 's' indicates the steady state condition.

This yields, from equations (4.5i) and (4.52), an error function

e^(a,t) = z^t) - y^(a,t) + c^a.^ (4.54 )

so that,

e^(a,t) = emin^(t) c • <x 1J JS

The mean squared error is given by,

e • ■+■miri' GijaJS dt

(4.55)

(4.56)



■ T n , *  -  ¡t / 2 emini cij aos dt r l

I

«js* dt

Since for aa linear system, ^ J  emin. dt = 0 , [Butterfield, Thomas, 19831, then

2 2 „  2 2 
e i “ e min, + cij * js (4.57)

Hence,

e • -  e2 _ l mir^
13 (4.58)

a OS

where the value of e<cmin . was already obtained during the minimisation process.

A typical mean squared error curve is shown in figure (4.4).

If, from the graph, = cc^ is selected where e2L is double e*m̂ n , equation (4.58) 

then becomes,

2 min-
1 ij = 2

a jd
(4.59)

Since a mean squared error, usually, is non-symetrical, equation (4.59) can be 

written as,

mm.
13

| ajd- + ajd+ j2
(4.60)
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where and ccjd +  are the descending and the ascending parameter variations to

double the minimum mean squared error, respectively.

Figure 4.4

A typical mean squared error curve 

Combining equations (4.50) and (4.60) yields,

4^ij < *ij + 1  > 
( 2?ij + i  )

j a0d- + gjd+
)2

e min̂
(4.6i)

As in the perfect plant-model match, the output of the matched associate system is
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equal to the minimum residual error and, in addition, the variance of the matched 

associate system is identical with the mean squared value of the output of the

matched associate system, so that

2 (4.62)e mirij

The input parameter variance is then given by,

<7 ( *.jd- + <*jd+ j2
2 (4.63)

Hence, <72 0 is the required j-th parameter variance to eliminate the plant-model

mismatch.

4.4.2 Multiple Measured Variable Case

It is not always possible to find a system which has one overridingly important 

measured variable. In this case, provided the plant has been carefully modelled, the 

distortion technique based on the transfer function approach can be applied 

simultaneously to all k measured variables. A combination of the mean squared

error values, ie. e ^  for i = i  to k, is used as a performance index to fit the

For the sake of clarity, a multiple measured variable case is represented in a two 

measured variable case, but this approach extends to any finite number of 

measured variables. In this case, all associate systems, given by equation (4.43), are 

considered to have the same values of S and to, ie. ?ivl- = $v.- and Wj j  = U j ; for l = 1

model.

to 2 .

109



When the model is in the optimal condition, then the residual errors

emin1(t) = 2l (t) - Ôi(â,t> (4.64)

(t) =rrnri2 ?(t> - y?(a,t) £— (4.65)

where and Z£ are the plant responses, and in the perfect plant-model match the 

associate system outputs

i/'“ i (t) emin^(t) (4.66)

t) = emiri2 (t) (4.6?)

Hence,

e mirici (4.68)

e min? (4.69)

e min e min  ̂ + e min? (4.70)

where min is the minimum total mean squared value.

If a constant value of the j-th parameter variation, cc._, is applied about to 

both associate systems, after the settling period
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(4.71)^iS  = Cl j  ajs

^2 s = c2 .j ajs (4 72)

where, as before, the subscript ' s ' denotes the steady state condition.

Since,

e^(a,t) = z^(t) - y^( a + a 5̂  , t ) (4.73)

e2 (3 ,t) = z9(t) - y2 ( a + a jE , t ) (4.74)

where <Xjc is a constant value of parameter variation about â  , then

e^(a,t) = z^(t) - y^( a , t ) + Cj j  aj5 (4.75)

e2 (a.t) = z 2(t) - y2( a , t ) + c 7j a^s (4.76)

Hence, for a single j-th parameter acting alone, equation (4.56) can be written as,

i=i
(4.77)

i
T

T

/  ( ( emini + clj ajs )2 + < emin-2 + c2j 
0

cc-is >2 ) dt

i
T /  S2minl 

0

dt min- dt

l i i



2 ci.) a iS f  J emini  dt

I

a >5 T /  8n^ c2 j a js  j  / Gmiri2 ^

i i

+ c \ j  a%  T / dt + c22 .j « 'js  T / dt
0 0

T T T

= g  ( f  J ^ min. dt + 2 ci3- a3 i  J e L dt + c ^ 2 * Zjs > J dt (>.78)

With the assumption, that, for a linear system, the second term of equation (4.78) at 

the optimal condition is negligible, equation (4.78) then becomes

2 2 2 2 2 2 2 e = e + e + c j ■ a + c o-; amim mm- i j  a js + L 2 j “ is (4.79)

Substituting equation (4.70) into equation (4.79) gives,

e" -  e‘ min + ^ i j  a2js + c*2 j a*js (4.80)

where.

c l j  a js + c 2 j a js = c j a as (4.81)

as shown in figure (4.5). So that, equation (4.30) becomes,

2 2 2 2 
e e min + c j a js (4.82)
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Selecting <Xj5 aj^ , from figu re  (4.5), where e2 is double e2̂ ^  , yields

-  min (4.83)

The relationship between the variance of the j-th parameter and the variance of 

the outputs of the associate systems, based on equation (4.50), are

c2! ,  < Zff, + i  )
4?j ( ?.j + i  )

(4.84)

c 2 j < 2?J + i  )

4?0 < «j + 1  >
(T2« j (4.85)

When a perfect-model plant matched is achieved, then from equations (4.68), (4.69) 

and (4.70)

min
( + c*2 j > < 2?j + i  ) _2

« j  < «j + i  > '
(4.86)

Bince cAj = c^jj  4- 0*2 j * ie. equation (4.81), equation (4.8b) then becomes,

nun
cV 2*j + 1> _2
4?j < Sj -  i  > '

(4.87)

Substituting equation (4.83) into equation (4 87) and rearranging yields,

4£, (? , + ! )

< W + * »
(4.88)

where aid is the average value of the descending and the ascending parameter
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variations due to the non-symetrical curve of e2

e2

Figure 4.5

A mean squared error curve for a system with 2 measured variables

4.4.3 Criterion For Model Fidelity

As in the time domain approach, the model is considered capable of explaining the 

recorded transient if

t '* • ; for j = i  to p

where is the expected variance of the j-th parameter.

(4.39)



In the case where p parameters act simulataneously, only a fraction, dj , of the j-th

Equation (4.93) is then regarded as the fidelity criterion for the case where p 

parameters act simultaneously.

4.5 Advantages And Disadvantages of the Two Approaches 

4.5.1 Time Domain Approach

Advantages ■

1. In theory, this method is relatively more accurate.

d. cr̂  o < t' , ; fo r  j = i  to p 
j a  ■ —  J

(4.90)

where,

P
(4.91)

Defining,

T
(4.92)

and substituting equations (4.91) and (4.92) into equation (4.90) yields,

(4.93)
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Disadvantages :

1. The Jacobian matrix, l a, must be evaluated at every time interval and it is not

always easy in many cases to obtain this matrix.

2. An optimisation procedure might be needed at every time interval, if the number 

of parameters is more than the number of the first order differential equations, 

which have the information about the parameters.

3. Information is lost between each sampling time, hence an interpolation procedure 

should be performed.

4. Although in theory it is relatively more accurate, in practice differentiations

are susceptible to noise.

5. It is difficult to implement.

4.5.2 Transfer Function Approach

Advantages :

i. It is more practical than the time domain approach, hence it is easy to implement. 

Disadvantages :

i. It depends on the approximation of the second order associate systems and the

white noise to represent the variance of each parameter.

4.6 Conclusions

The distortion technique quantitative validation technique has been outlined in 

this chapter. Both the time domain approach and the transfer function approach 

have been outlined. In both approaches, the basis of the technique is in the 

calculation of the amount of the distorted model parameters which are required to
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eliminate the e r ro r  between the model response and the plant response. The

mathematical derivations of this technique have been described in detail. 

Advantages and disadvantages of the two approaches have been given.

In order to be a p p lica b le  to a robot system which is multivariable and non

linear, the transfer function approach was extended to cope with the multiple 

measured variables case. An application of the transfer function domain approach 

in a robot system can be found in chapter 7. The transfer function domain 

approach is selected due to its ease of use and practicality in implementing the

technique.



CHAPTER 5

IMPLEMENTATION OF THE DISTORTION TECHNIQUE

5jL Introduction

Commonly, an industrial robot manipulator has six degrees of freedom where the 

first three degrees of freedom provide the position of the hand and the last three 

degrees of freedom give an orientation of the hand in performing a task. In this 

research work, however, due to the complexity of a six degree of' freedom robot 

manipulator, only the firs t three degrees of freedom are considered. As the firs t 

three degrees of freedom give a major part of the operation, the dynamic 

behaviour and control system analysis can be sufficiently performed on them 

without losing the general understanding.

In implementing the distortion quantitative validation technique, one needs to know 

the importance of the parameters of the system. Thus, the physical behaviour of 

the system has to be studied before hand with respect to parameter changes. This 

is because some parameters are redundant in the sense that if  some parameters 

take different values, the dynamic behaviour of the robot does not change. 

Knowledge about redundant parameters is important for parameter estimation and 

for obtaining an efficient, inverse dynamics algorithm.

Neuman and Khosla [1985a, 1985b] stated some properties involving parameter 

identification in robot dynamics. Some work were carried out in identifying the 

non-redundant- robot- parameters EMayeda, Yoshida and Osuka, 1988; Mayeda, Yoshida 

and Qhashi, 19S9; Gautier and Khalil, 1989; Sheu and Walker, 19891. This chapter 

presents the analysis of the robot parameters using the Newton-Euler approach.
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This analysis then gives a basis in selecting important parameters in order to 

implement the distortion quantitative validation technique to a robot system.

Prior to performing a distortion quantitative validation technique which involves 

many repetitive tasks in exercising the model, it is appropriate to mention that the 

procedure in developing a simulation program is also important. Thus, the 

development of the simulation program is discussed in this chapter as well.

5 2  System Behaviour to Parameter Changes

The very firs t step in implementing the distortion quantitative validation 

technique is to have a good understanding of the system itself in how the system 

reacts if  some parameters are distorted. For a robot with three degrees of 

freedom, the inverse dynamic equation which was given in equation (3.40) can be 

rewritten in the following form (eliminating (0) for brevity)

T11 Di i D12 D13 * 1

Nr“H
__t__ = D1 2 D22 D23 e2

t 13 D13 °23 Don e~,
_ .

Hl i i * 1 1 2 H113 H12 2 H123 H133

H2 1 1 H2 12 H213 H222 h223 H233

H3 il H312 Ho 4 0 JlO Hnoo H323 H333

ôi ei

M z

le±e;

M e ,

ô3e3(

(5.1)
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The first, second and third terms are inertial, coriolis/ centrifugal and gravity 

torques, respectively. All the above coefficients which are functions of 0 contain 

a combination of inertial parameters, where the inertial parameters for each link 

are mass, centre of mass and inertia tensor matrix elements CSheu, Walker, 19891.

Figure (5.1) shows a three degree of freedom manipulator with revolute joints which 

is under consideration. In chapter 3, it was discussed that all forces and torques 

propagate from the distal link backward to the proximal link. Thus, the study of 

parameter sensitivity starts form the distal link which is link 3.

Figure 5.1

A three degree of freedom robot arm
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As the forces and torques propagate from the distal link to the proximal link, not 

only do the .joint variables 0's need to be considered, but also the twist angle a's 

of each link is equally important to be considered. From the Denavit-Hartenberg 

concept which was given in chapter 3, the twist angle value cc± between the Zq and 

the axes is 90 degrees and the twist angle value ctg between the Zj_ and the Z2 

axes is 0 degree while the value of the twist angle ag between the Zg and the Zg 

axes is not important in analysing the forces and torques propagation.

Let each link be isolated with its neighbouring links. With this condition, only the 

net forces/ torques and the forces/ torques at its own joint caused by the motion 

of its own link are considered. To make the problem easier in analysing the 

importance of each inertial parameter, the moment of inertia about the centre of 

mass is changed to about its own joint. By having the inertia tensor matrix 

evaluated about its own joint, the quadratic term of the centre of mass is 

eliminated [Neuman, Khosla, 1935a, 19S5bl

Applying Newton and Euler equations to each link, the relationship of the torques/ 

forces and the inertial parameters on each link, based on An, Atkenson and 

Hollerbach [1985], with a modification can be expressed as
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where--

ni+ i

*5

force at the centre of mass of link i expressed in the coordinate 

system i.

force at joint- i+ i expressed in the coordinate system i. 

torque at joint i expressed in the coordinate system i. 

torque at joint i+ i expressed in the coordinate system i. 

inertia matrix of link i about joint i and expressed in the
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coordinate system i.

m̂  = mass of link i.

xp = position of the origin of the coordinate system i from the origin
i

of the coordinate system i - i  and expressed in the coordinate 

system i.

xc  ̂ = position of the centre of mass of link i from the origin of the 

coordinate system l - i  and is expressed in the coordinate system i. 

= angular velocity of link i and expressed in the coordinate system 

i.

1o)1 = angular acceleration of link i and expressed in the coordinate

system i.

= linear acceleration of of the origin of the coordinate system i - i  

and expressed in the coordinate system i.

Although the centre of mass *0^ ,  Ac ^  and l c ^  are not determined directly, their 

value can be factorized since m̂  is determined on its own [An, Atkenson and 

Hollerbach, 19851.

It is important to understand that since each link rotates about its own joint, only 

the torque component which is in the joint axis direction is necessary to be 

considered, ie. the generalized torque. If equation (5.2) is derived, it unleashes the 

significance of each inertial parameter with its relation to all kinematic variables 

as the following

123



0

• -

V i*
i,-,

Vi-ix

i F i y ' i - i y

1Fiz
V

vi - i z

i nn-2x
nu

i nn:xy 0

i m iz 0
—

z z-hi - h
h y

— -7- (i)y ■+■ UiT̂ Cjjy

~r ii>yCi}y z Z
-Cl) -  iij 

Z  X
u)y -f-

t  iiiy t - ii)yii5r? z 2-u? - (ii
y x

Vi- 1 ;
1,-,

Vi-±L

1
V i ,

Vi - i u
1 ,-.

In equation (5.3)., all other kinematic variables are subscripted and superscripted
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the coordinate system i. The components of I are computed about joint i and 

expressed with respect to the coordinate system i. By observing equation (5.3) in 

conjunction with the N-E algorithm given in appendix B, how the system reacts if
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parameters are d istorted can then be analysed.

If only i  joint is allowed to move at a time and the other .joints are locked, in the 

case when link 2 or link 3 moves alone, only the angular kinematic variables in the 

directions of Z£ or z3  axes exist in the system. When only joint i  is allowed to 

move, only the angular kinematic variables in the direction of the y^ exist in the 

system. Equations (5.4) to (5.9) express this behaviour, ie. when only i  joint moves at 

a time.

0

2
“ 2 (5.5)

3
“ 3 (5.6)

(5.7)

2 .
<¿>2 (5.8)
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0

(5.9)

2*Consequently, among all elements of the inertia tensor matrix, only the I zzz

and moments of inertia affect the generalized torque of joint 2 and joint 3,

i*respectively and only the I  ̂ moment of inertia affects the generalized torque of 

joint i. Equation (5.3) shows that the positions of the centre of mass of link 2 and 

link 3 in the z axis direction does not affect at all the generalized torque of 

joint 2 and joint 3, respectively, for any kind of movement.

If now joint 2 and joint 3 are allowed to move simultaneously, but still keeping joint

i  stationary, the system now is similar to a two link planar manipulator, where the

hand moves in a two dimensional X^-Y^ (vertical) space as shown in figure (5.2). This

system has the same property as before in the sense that only the z components of

angular velocities and angular accelerations with respect to their own coordinate

systems exist in the system. As a result , only the z  and the I components

2*
of the inertia tensor matrices I -  and I 3, respectively, are significant and no 

matter how much the other components of the inertia tensor matrix are varied the 

system behaviour remains unchanged. On the other hand, the z components of the

linear accelerations of each link are zero.



Figure 5.2

A three degree of freedom robot arm with joint i  locked

When joint i  is released and hence all links move simultaneously, the movement of 

joint i  provides a third dimension movement to the robot. Now, the hand moves in a 

three dimensional X0-Y0-Z0 space. As a result, both the angular velocities and the 

angular accelerations of link 2 and link 3 have the x, y and z components with 

respect to their own coordinate systems and for each joint the angular velocity 

and acceleration values are given as

2
“ 2

P1 S2|

&1 C2j (5.10)

3
“ 3

e±S23

0±C23

e2+e3
(5.11)
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2 .

“ 2 (5.12)

OjSZl

= F iC2
e-

3.
“ 3

0^S23

e±C23

« 2 +Sq

(5.13)

where, S2 = sin(©2^ l"2 = cos(02>, S23 = 5111(02+03) and C23 = cos^+Qq).

*
This causes all components of the inertia tensor matrices I of link 2 and link 3 to

be significant to the system behaviour. As a three dimensional movement is

provided by the movement of joint 1 , the system then has a property that the
*

importance of all inertia tensor matrix elements other than I Zz for both link 2 and

link 3 depend on the movement of joint 1. If joint 1 rotates with a considerably
S

high speed, all elements of the inertia tensor matrices I of link 2 and link 3 are

significant to the system. On the other hand, if joint 1 rotates with a considerably

low speed, the importance of all elements of the inertia matrix elements other 
*

than I zz for both link 2 and link 3 can be ignored.

The property cited above, however, does not apply to link i. In the case of link i,

i*among all ten inertial parameters of link i, only I^ yy element of its inertia 

tensor matrix affects the behaviour of the system. The angular velocity and 

angular acceleration of link i  are still represented by equations (5.4) and (5.7),
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respectively. This is due to the re s tric te d  movement of link i  since link i  has only 

i  degree of freedom about the Zq  or y^ axis (the origin of the coordinate system 0 

coincides with the origin of the coordinate system i  and based on the D-H concept, 

the Zq and axes have the same direction while the z^ axis is in the direction of 

joint 2 axis). It should be noted due to the restricted motion, link i  does not have 

both linear velocity and linear acceleration.

When the forces and torques from the distal links are considered, the torques/ 

forces propagation needs to be studied. As all forces and torques are treated as 

vectors, the orientations among all coordinate systems determine the propagation. 

Thus, apart from the joint variables 0's, the twist angles a's play an important 

role. The force exerted by each joint needs to be considered. This is because this 

force causes a torque which must be overcome by the proximal joints. Similarly, the 

x and y  components of torques at joint 2 and joint 3 need to be considered as 

these torque components propagates and affects the generalized torque at joint i. 

This propagation can be observed from the Newton-Euler algorithm which was 

presented in section 3.6.2.

Let link 3 move alone. As in this manner link 3 moves in a two dimensional (X i-Y i) 

space, thus the net force which exists in the system is in the direction of x and y 

only of the coordinate system 3. As a result, the centre of mass of link 3 in the 

direction of the z  axis of the coordinate system 3 has no significance. On the 

other hand, the changes of the centre of mass of link 3 in the direction of the x

and y axes of the coordinate system 3 affects the net force of link 3. This

property still holds when joint 2 and joint 3 move simultaneously ie. the centre of 

mass of link 2 and link 3 in the direction of the Z2  axis and the Zq axis,

respectively, do not- affect the net forces of the corresponding links and, hence,



they do not affect the generalized torque at joint 2 and joint 3 either. So, only the 

centre of mass of link 2 and link 3 in the direction of their corresponding x and y 

axes affect the system behaviour. In the case for link i  when it moves alone, there 

is no translational motion due to its one degree of freedom movement limitation, 

hence no net force exists on link i. If now all links move simultaneously, although 

the z components of the centre of mass vector of link 2 and link 3 do not affect 

the generalized torques at joint 2 and at joint 3, respectively, but they both 

affect the generalized torque at joint i.

To summarize, the inertial parameters which affect the generalized torques of 

joint i ,  joint 2 and joint 3 when all links move simultaneouly and link i  moves with 

a considerably high speed are tabulated in table (5.1); and when all links move 

simulataneously and link 1 moves with a considerably low speed are tabulated in 

table (5.2).

Generalized torque Parameters

Joint 1 All inertial parameters of link 3,

1*link 2 and I^yy.

Joint 2 All inertial parameters of link 3

and link 2 except T5~ .

Joint 3 All inertial parameters of link 3

except

Table 5.1

Inertial parameters which affect the generalized torques 

when link 1 moves with a considerably high speed
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Generalized torque Parameters

Joint i
3_ 3_

m3' C3X' c3y'  ̂3zz'
2_ 2_ 2* i* m2, c2x, c2y, I2zz, I lyy

Joint 2 3_ 3_m3, c3x, c3y, I3zz,

2_ " 2_ 2* 
m2' C2X' c2y' ] 2zz

Joint 3 3_ 3_ 3f m3, c3x, c3y, i 3zz

Table 5.2

Inertial parameters which affect the generalized torques 

when link i  moves with a considerably low speed

If the system now is simplified by considering link 2 and link 3 as a line with a

uniform distribution of mass, the number of inertial parameters of link 2 and link
* *

3 which affect the system behaviour are reduced to m, cx, Iyy and I zz. Equation 

(5.3) then becomes
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In the case of link i  only I yy affects the system behaviour and equation (5.3) 

becomes

i
nniy~

i .  1*wiy lyy (5.15)

Based on all the facts cited above, the important inertial parameters of each link 

which need to be considered in implementing the distortion quantitative validation 

technique are given in table (5.3).

By observing all inertial parameters which are given in table (5.3), all these 

parameters in fact are derived from the two most fundamental parameters for each 

link, ie. the mass of link and the length of link. Hence, a new term called the 

fundamental parameters is introduced to represent the mass and the length of each
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link. These fundamental parameters will be used in implementing the distortion

validation technique in chapter 7.

Link no. Parameter

i if
iy y

'yX- rn2

^2 x

ZI 2yy

‘12zz

3 m3
n
■ -}_

c3x
a*

13yy 

^ 3 z z

Table 5.3

Effective inertial parameters of a simplified system

5.3 Simulation of the Robot Dynamics

In a dynamic simulation of a robot arm, the inverse dynamics equation needs to be 

converted into the forward dynamics equation, ie. given a set- of generalized 

torques, the joint acceleration of each joint is to be computed which in turn is 

integrated twice to obtain the position. This torque is obtained from the controller 

output. A typical block diagram of a robot dynamics simulation is shown in figure 

(5.3).
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Figure 5.3

A block diagram of a robot computer simulation

In developing a simulation program of a robot manipulator dynamics system, it is 

preferable to have an inverse dynamics algorithm which has a flexible access for 

manipulating each parameter as well as computational efficiency. With all these 

considerations and reasons cited above, the most efficient general purpose 

algorithm CHollerbach, 19801 ie. the Newton-Euler approach has been selected for 

deriving the manipulator mathematical model. An advantage of N-E method is that it 

is relatively easy to analyse the dynamic behaviour of robot manipulators. This is 

due to the familiarity of the Newton equation for translational motion and the
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Euler equation for rotational motion.

To obtain the values of accelerations 0's, which in turn are integrated to obtain 

the velocity and position results, there are two methods to choose from. Either 0's 

are manually derived before hand or they are numerically calculated by a computer 

using an inverse dynamics algorithm. The firs t method, manually derivation by hand, 

has an advantage of having faster computation time. This is because only the final 

equation to produce 0 is produced numerically by a computer. On the other hand, it 

has a big disadvantage because it lacks flexibility for manipulating the 

parameters. Since everything is done by hand, the resulting equations to be 

integrated are dependent on the assumed nature of the parameters.

For example, the centre of mass vector of a link which is assumed as a line with 

uniform distribution of mass is expressed as

i (5.16)

where is the length of link i.

If the offset distance, due to the structure of the robot arm, in joint 2 and joint 3 

is not neglected, equation (5.16) then becomes

i (5.17)
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As a result, in the final equations derived by hand, some terms are missing due to 

the assumption of zero offset distance elements in the centre of mass vector c. 

Hence, in developing the model, if the offset elements are to be included, the 

equations should be rederived and this process is time consuming and inefficient.

Although the second method has a disadvantage of having longer computation time, 

it has an important feature, ie. flexibility in manipulating the parameters. Because 

the recursive set of equations use parameters in full without any neglected 

elements, there is no difference in the computational time with or without these 

elements. Another important advantage over the first method is that the risk of 

making errors is reduced particularly if a full complete model (including coriolis 

and centrifugal terms) is to be obtained. Because these terms are complicated, 

deriving them manually before hand is prone to error.

A subroutine in FORTRAN which performs the inverse dynamics problem in order to 

obtain the generalized torques of a robot with revolute joints, called NE1, has 

been created. Its inputs are the number of links, the Denavit-Hartenberg 

parameters and the inertial parameters, and its output is the generalized torque 

vector. It also has a flag which is used to determine whether the Zq axis is in a 

horizontal plane (perpendicular to the gravity acceleration vector) or in a 

vertical plane (parallel to the gravity acceleration vector), and a flag which is 

used to disable the gravity effect.

From equation (5.1), it is seen that each component of the generalized torque

where is the D-H offset distance parameter and not an in e rtia l parameter.
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vector can be computed separately. That is the gravity force vector is obtained by 

setting the 0 and 0 to zero and the coriolis/ centrifugal force vector is obtained 

by setting the 0 and gravity acceleration to zero. The inertial force vector is 

obtained by substracting the gravity and coriolis/ centrifugal force vectors from 

the known generalized torque vector. An algorithm by Walker and Or in Cl 9821 is 

used to efficiently compute the D matrix.

The above method yields a convenient simulation program for implementing the 

distortion technique. An important aspect is that it is not necessary to rederive 

the dynamic equations when a parameter value is changed, eg. in the case of the 

centre of mass vector, and hence it has the flexibility for manipulating important 

model parameters. Figure (5.4) shows the flowchart of a forward dynamics

simulation.



Figure 5.4

Flowchart of a forward dynamics simulation



5.4 Conclusions

In this chapter, foundations to implement the distortion validation technique on a 

robot system with revolute joints have been given. A knowledge of how the system 

reacts if some parameters are distorted is important. The sensitivity analysis of 

all inertial parameters have been carried out. Based on this knowledge, important 

parameters which are to be distorted can be selected.

The efficient inertial parameters for a simplified robot system are summarised in 

table 5.3. A new term has been introduced and is called the fundamental parameters 

term where the all inertial parameters depend on the value of these new 

parameters. For each link, the fundamental parameters are the mass and the length. 

These fundamental parameters will be used later in validating a model using the 

distortion quantitative validation technique.

To carry out a computer simulation work of a robot dynamics, the N-E algorithm 

approach has been chosen for both its computation efficiency and ease in 

analysing the robot dynamic behaviour. Using a flow chart given in figure (5.4) a 

forward dynamics problem can be carried out. The D matrix is then computed using 

an algorithm which was developed by Walker and Orin [19321 since it gives the most 

efficient general purpose algorithm for computing forward dynamics problems 

[Murray, 19861.

The information which has been given in this chapter will be used in developing 

and validating robot models in chapter 7.
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CHAPTER 6

EXPERIMENTS WITH TQ MA2000 ROBOT

6JL Introduction

In a. robot system, it is necessary to have a computer system which is used in the 

servo system. By controlling the movement of each joint of the robot, a good 

flexibility of the robot arm can be achieved, so that, a multipurpose robot can be 

obtained.

The task of this computer system in controlling the movement of the links of a 

robot arm can be as simple as picking up an object from one place and moving it to 

another place to as complex as picking up an object with a certain orientation and 

moving it to another place by following a particular trajectory. Whatever the 

tasks are, a well designed controller as well as a good controlling servo algorithm 

are required.

Basically, there are two types of controller system ie. single processor system 

and multi processor system. In the first system, the coordination of all joint 

actions is controlled by a single processor based motor controller. The 

disadvantage of this system is that it is incapable of implementing a complex 

control algorithm due to its limited processing speed. This system is usually 

adopted for a pick and place task and the TQ MA200Q falls in this category. Qn the 

other hand, the second system is composed of a number of local processors, each 

of which controls a single joint only. This system can be used for assembly work 

eg. PUMA 600.
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F o r both single processor and multi processor systems, they have two control

levels. The low level control, ie. the motor controller, is for controlling the 

position/ orientation of the hand as well as the speed of the .joint axes, where the 

measured informations are obtained from the internal sensors eg. potentiometer 

and shaft encoder. The high level control, which is done by the host computer, 

defines the trajectories for all joints. The information signals are obtained from 

both the internal sensors and the external sensors (process input terminals in TQ 

MA2000) and the resulting set points are then sent to the motor controller.

This chapter gives a description of the TO MA20Q0 robot arm and an experiment 

which was carried out. This experiment was carried out prior to perf'ormimg the 

distortion quantitative validation method. The computer architecture is explained 

as well as its software system. For advanced experiments, this robot needs some 

modifications both in hardware and in software due to its limited capability.

Some experimental results are presented. The transient responses could not be 

obtained in a longer period due to the limited memory of the BBC computer. A ramp- 

step input signal was used since it was the simplest way and it did not require a 

lot- of memory to create this kind of trajectory.

6_2 TQ MA2000 in General

The TQ MA2QQQ robot manufactured by Tequipment Ltd. is a low cost educational 

robot with unique design based on industrial robots. Mechanically, the robot 

consists of an arm with 6 joints as shown in figure (6.1). Joint- 1, joint 2 and joint 3 

provide the waist , shoulder and elbow motions, respectively. These first three 

joints, called the major axes [Tequipment, 19841, give the position of the hand and
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perform the major operation in many applications. The remaining three joints, 

called the minor axes [Tequipment, 19841 complete the robot motion by giving the

orientation of the hand. The motions which are given by joint 4, joint 5 and joint 6 

are called the pitch, the yaw and the roll. The range of movement of the waist, 

shoulder and elbow are 270° and the range of movement of the pitch, yaw and roll 

are 180°. This allows the robot to reach most points inside a hemisphere work 

space. A gripper which is pneumatically powered, is attached to the hand and this 

allows the robot to perform operations such as a pick and place task. Basically, 

the gripper works as an on/ off device and a variety of tools can be attached in 

order to carry out specific tasks.

This robot has 6 DC motors with permanent magnets to actuate its six joints where 

each joint is operating with a closed loop control. The TQ MQ20GG robot arm is not 

a direct drive robot arm. A torque is provided by the DC motor to the joint through 

a gear box and pulleys. Detail about the actuator and gear ratio technical

information is given in appendix C.

The teach pendant provides a friendly facility for the user to communicate with 

the robot through the host computer. Information signals such as position of each 

joint, speed and mode of movement can be given to the robot arm. Some mode of 

movements are point to point operation with absolute position, point to point 

operation with relative position to the current position, point to point operation 

through the lead by nose method and continuous path operation. For other and more 

detail modes of movement, one can refer to the user's manual [Tequipment, 19841 

Programming the robot to perform a certain task can also be done through this 

teach pendant where some editing functions are provided.
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Figure 6.i

TQ MA2D00 robot arm
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The robot has also additional input and output ports fo r  connecting with other

devices. The input ports receive signals from the outside world which are to be 

tested and the output ports send signals to the outside world which are to be set. 

All these capabilities allow the robot to be used as a part of a flexible 

manufacturing system as well as a stand alone system.

The host computer can be one of the following : BBC model B micro computer, OU 

Hektor micro computer or IBM PC micro computer. The one which is used in the 

control engineering computer laboratory is the BBC model B micro computer where 

the host computer is further controlled by a PDP 11 computer. Figure (6.2) shows 

the computer network in the control engineering computer laboratory.

6.3 Hardware

The TQ MA2000 robot system in the corriputer control laboratory comprises of a 

robot arm, a BBC microcomputer with 32 KRAM as the host computer, a teach 

pendant, a 1 MHz 6502 based motor controller interface and an operating system 

software. Figure (6.3) shows the configuration of the system. The controller 

interface contains an ADC and DAC circuit, a servo system circuit and a power 

amplifier circuit. The control algorithm and the default values of the PID 

parameters are held in EPROM, and the work space and shared memory are held in 

RAM. The shared memory, which is accessible from both the host computer and the 

motor controller, contains set points, measured positions, positional errors, PID 

gain values and PID outputs.
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Figure 6.2

Computer network in the control engineering computer laboratory
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The main task of the motor controller is to perform real time PID control of all

the six joints. The set points, which are sent from the host computer, and the 

measured positions are computed using a conventional PID algorithm by the motor 

controller in order to give the required torques to the coresponding actuators. 

Output of this process is then passed to an 8 bit DAC converter. The resulting 

analogue signal is fed to a Pulse Width Modulation circuit prior to amplifying it. 

Output of this power amplifier with a frequency of 15.6 KHz then drives the 

corresponding DC motor. Using a potentiometer, the response of each joint is 

measured and sent back to a motor controller via a 12 bit ADC converter. Figure 

(6.4) shows the block diagram of the feedback control system.

Figure 6.3

TO MA200Q robot system
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Figure 6.4

The feedback control system of TQ MA2000 robot arm

The host computer interprets the user's commands for each robot joint 

configuration and translate them into a series of set points which in turn are 

sent to the motor controller. It also performs the required calculation for the 

process inputs and process outputs.
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Understanding the communication protocol between the host computer and the motpr 

controller is important since the shared memory cannot be accessed at the same 

time by both the host computer and the motor controller. The motor controller has 

a higher priority to access the shared memory than the host computer. So, if the 

shared memory is being accessed by the host computer, the motor controller will 

not wait for an access and as a consequence a new set point will then be missed. 

To protect the robot from an uncertain condition, if the error is less or greater 

than -127 or +127 ADC units respectively, the host computer will temporarily stop 

sending the set points.

6.4 Software

The operating system of the TQ MA2000 is written in BASIC and in assembly. The 

BASIC routines interface the use of the teach pendant in order to give commands 

to the robot. The assembly routines interface the host computer to the shared 

memory contained in the motor controller. There are 4 teaching modes available for 

the user and these are under two types of operation.

1. Point to point operation.

The teaching modes which fall under this category are :

- Drive through using the teach pendant.

- Lead by nose

- Off line by the host computer.

2. Continuous path operation.

There is only one teaching mode for this kind of operation ie. lead by nose. When 

the arm is led by nose, all the position during that period are stored in memory.
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Hence, the length of period depends on the memory available in the host computer. 

For the BBC computer, it is less than 60 seconds. When it is played back, all 

positions recorded during that period are sent to the motor controller as the set 

points. Using this technique, the robot can move along a specified path.

Assembly routines which interface the host computer to the shared memory are :

- DRIVESA :

Sends the set point for the current motion, being driven under direct control of 

the teach pendant.

- LEABSA :

Used when in Lead by Nose mode and reports back the current values for each 

motion.

- CONTPATH :

Executes a series of ministeps which constitute a continuous path step. This 

series of mini steps are stored in address T0P+&B0Q to &EEEE. Refer to BBC 

Manual [Coll, Allen, 19821 for the information of TOP.

- SAMOVE :

Moves the robot from the current step to the next step. This routine also creates 

a trajectory between each step in such away so that all joints arrive at their own 

destinations (the posture configuration) at the same time.

- REPORTG :

Reports the PID gains for each motion.
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-  SETG :

Sends new PID gains for each motion.

- REPORTEPP :

Reports the Errors, Positions and Powers for each motion.

Each command is stored in a step and each step has an information of the position 

of each link. This position is expressed in posture value. For the major and minor 

axes which can rotate up to 270° and 180° respectively, they have 1000 units of 

posture values. These posture values are scaled to ADC units prior to sending 

them to the shared memory.

More information about the BASIC and assembly routines can be found in TQ MA2000 

Hardware and Software manual CTequipment, 19861 All the available routines

provide a highly interactive interface between the human operator and the robot. 

Moreover, the facilities of process inputs and process outputs give the robot an 

intelligence to interact with outside world. But from the control engineering 

experimental point of view, this facility is not as important as in the industrial 

field and using the BASIC interpreter means slower speed and less available 

numerical libraries.

6.5 Experiment

In doing the experiments, none of the four available teaching method was used. The 

block diagram of the system while in the play back mode is given in figure (6.5). 

Given a set of posture values with range 0-999 for all six joints, a BASIC
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procedure called PATH calculated the biggest increment among all six joints. The 

posture values of the current step and the next step were scaled to ADC units and 

an assembly routine called SAMOVE was then called. This SAMOVE routine generated 

a series of set points, ie. the trajectory, between the current step and the next 

step for all joints and this trajectory depended on the value of the selected 

parameter RATE which acted as a delay. The algorithm inside SAMOVE created a 

trajectory for each joint in such away so that the final set points of all joints 

occured at the same time. As a result, if the increment between the current step 

and the next step of each joint was different to each other, each link would move 

with different speed. Hence, the parameter RATE in the teach pendant defined the 

rate of movement of the whole system.

Using a point to point operation, the interval time between having finished the 

current step and starting executing the next step, if done by the existing original 

program, would take a considerable amount of time. This caused all joints to 

achieve their steady state conditions before executing the next step. Another 

difficulty arose since the actual set points generated by SAMOVE were not 

available for the user. So, the actual input signal of each joint, which was really 

important in modelling this robot, could not be obtained. The only available facility 

provided by the manufacturer is an analogue port of the robot output response.
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Figure 6.5

Block diagram of the system in play back mode
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Using a continuous path operation, the steady state conditions between each step 

could be overcome since some procedures were by-passed in this operation. In this 

operation, all ministeps which constitute a continuous path step, were stored in 

memory. This operation, however, created another problem since the continuous path 

was generated by leading the robot arm by nose (ie. by hand). This method yielded 

an unreliable continuous path as it was difficult to create a good continuous path 

manually. The set points generated by SAMOVE, as in the point to point operation, 

could not be obtained either.

Considering all the difficulties cited above, none of the four available teaching 

modes could be used, instead, a modification of a continuous path mode was created. 

Using the BBC computer with BASIC as a language to govern the robot, it was 

virtually impossible to create a sophisticated trajectory. The reason was the 

processing speed of BASIC was very slow and the robot might have settled down 

before the host computer finished computing the next point in the trajectory. Also, 

due to the limited memory of the BBC computer, the trajectory could not be stored 

in an array. Instead, every point had to be sent to the motor controller immediately 

by calling SAMOVE (SAMOVE still generated the actual set points between the 

trajectory points generated in BASIC and these actual set points were the set 

points which were sent to the motor controller ie. to the shared memory).

Since the *FX command in BBC BASIC to send an output only to a printer (not the 

VDU and the printer to increase the speed) did not work and the printer did not 

have a sufficient buffer, the resulting output was stored in an array. Hence, the 

observation time for the output response was limited to the available memory in 

the host computer.
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Using the similar principle to the continuous path mode, but instead of leading the 

robot by nose to create the trajectory, a ramp step trajectory applied to the first 

three joints was created using BASIC with the assumption that the interval time 

between each point in the trajectory was much smaller than the transient time. This 

trajectory has been chosen to be simple but capable of providing the dynamic 

behaviour of the robot. The trajectory algorithm inside SAMOVE routine was made 

less significant by giving the same small increments to the joints. Joint 4, 5 and 6 

were kept constant. In this manner, the wrist and the gripper were assumed as a 

load. Using this technique, the SAMOVE routine was used only to send the ramp step 

trajectory points to the shared memory in the motor controller since the same 

small increment of the ramp step trajectory points applied to joints i, 2 and 3 

fooled the trajectory algorithm inside this routine (SAMOVE routine could not be 

modified since it was not accessible).

In order to be able to carry out this technique, some BASIC procedures in the 

original program, which were not needed in this experiment, were deleted to 

overcome the out of memory space problem. It was found that using the REPORTERS 

routine to obtain the output response of the robot was not fast enough ie. the 

robot reached its steady state condition between every pair of trajectory points. 

An alternative way to obtain the output response faster was by accessing the 

location of the shared memory directly.

Each measurement of the output response of the robot was stored in the shared 

memory in a location of two bytes since a 12 bit ADC converter was used. These 

locations are :
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- joint i  : Low byte FC20

High byte FC28 

-joint 2 : Low byte FC2i 

High byte FC29 

-joint 3 : Low byte FC22 

High byte FC2A

To obtain a good dynamics result, the robot was made under damped by setting the 

Integral and Derivative gains to zero. Since the adjustable RID gains with range 

from 0 to 20 are not the actual FID gains, this way also simplified the procedure 

to obtain the actual gain (in this case only the proportional gain). From the 

information given by the manufacturer, the power value which was obtainable using 

REPORTEPP routine was not the actual power which drove the motor. Instead, it was 

the output of the PID controller before amplified by the power amplifier. So, by 

knowing the values of error and power given by REPQRTEPP, the actual 

proportional gain of each joint was obtained experimentally at some different 

postures.

In the experiment, joint i ,  joint 2 and joint 3 were commanded to move 21.6° in 0.65 

seconds. The joints then were commanded to remain constant after this. The 

adjustable proportional gains of all joints were set to 2. Figure (6.6) shows the 

responses of joint i, joint 2 and joint 3. Due to the nature of communication 

protocol between the host computer and the motor controller (see section 6.3), not 

every trajectory points could be sent to the motor controller by SAMOVE at the 

same time interval. So, linear least square fitting was applied to the input signal 

in producing the plots. This linearly fitted input signal will be used in the 

modelling.
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T h e ta l [D e g re e ]

Time [0.01 s]

(a) Response of joint i

Theta2 [Degree]

Time [0.01 s]

(b) Response of joint 2
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Theta3  [D e gre e]

Time [0.01 s]

(c) Response of joint 3 

Figure 6.6

Experimental results of TQ MA2G00 robot

6.6 Conclusions

An experiment to obtain the dynamic behaviour of a TQ MA200Q robot arm has been 

carried out. This robot has a lot of capability to carry out works in the industrial 

field. The teach pendant gives an interactive interface between a man and the 

robot. The process inputs and process outputs facility allows the robot to 

communicate with the outside world, in short, this robot reflects industrial 

practice with a slower processing speed.

From the control engineering experimental point of view, this robot needs some 

modifications both in the computer hardware and in software. For example, in doing 

a control experiment, it is preferable to have the operating system done in
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FORTRAN o r C ra th e r than in BASIC since speed is  more important than the ease of

use (the teach pendant is not really necessary for this kind of experiment). Also, 

to have more memory capacity to create bigger programs and to record all 

responses of the experiment, and to gain more speed, an IBM AT compatible host 

computer is preferable. It was felt that the job which was done using the BBC 

computer with BASIC language as a host computer was extremely limited. The 

SAMOVE routine should be modified in order to have a greater flexibility in 

generating a trajectory. Finally, the control algorithm inside the EPROM in the 

motor controller should also be modified to include some additional summing points 

to allow more advanced technique eg. feedforward control. But, since the current 

control rate is 20 ms, which is the lower limit for an industrial robot CKhosla and 

Neuman, 19851, this speed limit should be considered in modifying the control 

algorithm inside the EPROM.

The same input signals applied to joint i ,  jont 2 and joint 3 and the response of 

each joint of the robot arm which was obtained from the experiment as well as the 

corresponding controller gain will be used in developing and vaidating the robot 

models in the next chapter.
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CHAPTER 7

VALIDATION OF TQ MA2000 ROBOT ARM MODEL

7_1 Introduction

In developing a control system of a robot manipulator, knowledge of inertial 

parameters of the manipulator ie. mass, centre of mass and moment of inertia as 

well as parameters of actuators is important. Most manipulators are usually 

designed based on their kinematic information and not on their dynamic 

information. This is because it is difficult to obtain knowledge of dynamic 

information in which the manipulators have irregular shapes and nonuniform mass 

distribution, even by dismantling and weighing each component, and not even the 

manufactures know them.

In this chapter, another approach to obtain dynamics information of a manipulator 

is carried out, ie. by identifying the parameters of a mathematical model which was 

derived in chapter 3 through some simplifications in a closed loop manner. There 

are many papers which discuss parameter estimation of a robot manipulator with 

some experiments eg. COlsen and Bekey, 1985; An, Atkenson and Hollerbach, 1985; 

Atkenson, An and Hollerbach, i986; Moon, Chung, Cho and Gweon, 1986; West, 

Papadopoulos, Dubowsky and Cheah, 19891. Most of them, however, use the inverse 

dynamics method in estimating the parameter values ie. the errors of generalized 

torques are used to identify the parameters. This chapter deals with estimating 

parameters of the first three links in a forward dynamics manner in which the 

errors of joint response are used to identify the parameters and sensitivity of 

each parameter are investigated. The mathematical model will then be validated 

quantitatively using the distortion technique which is based on the trasfer
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function technique since it is more practical over the time domain approach. In the 

previous work, the distortion quantitative validation technique was applied to a

two link planar robot arm [Kartowisastro, 19891.

7 2  Basic Model

As derived in chapter 3, the dynamic behaviour of a robot arm with n degrees of 

freedom is given by

tj = Exe> e + H<e,è) + G:e> <7.±>

where : = an nxi generalized torque vector

D = an nxn symmetric inertial matrix 

H = an nxi coriolis/centrifugal vector 

G = an nxi gravity vector 

6 = an nxi joint variable vector

The above equation of motion is the basic equation where energy dissipation is not 

considered. This is the model which is commonly used. By applying the distortion 

technique method to validate the model quantitatively, it is now possible to tell 

whether the model is capable of explaining the transient record or not. Each link 

of the robot manipulator has ten inertial parameters, ie. the mass, the three 

elements of the centre of mass vector and the six elements of the inertia tensor 

matrix [Sheu and Walker, 19891. All these inertial parameters, however, depend on 

the two most fundamental parameters, namely the length of link and the mass of 

link as discusssed in chapter 5. For each link, two fundamental parameters have 

been selected for implementing the distortion technique, with the exception of link
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3 where another parameter is taken into account and also considered as a 

fundamental parameter ie. mass of load.

In this mathematical model, each link is assumed rigid and considered as a line with 

uniform distribution of mass. Link 1 is assumed to have a cylindrical shape with a 

radius of R' ,̂ and the end effector at the end of link 3 is treated as a load. The 

.joint and motor of each link is assumed massless. These assumptions yield a simple 

mechanical model where the centre of mass of each link lies in the centre of the 

corresponding link with the exception of link 3 where the existence of load shifts 

the centre of mass along its x axis.

From figure 7.1, the Denavit-Hartenberg parameters are

« 1 = ir/2 (7.2)

¿*2 = 0 (7.3)

(Xr'j = 0 (7.4)

dl = 0 (7.5)

d2 = B2 (7.6)

do = (7.7)o

al = 0 (7.8)

S-7 = (7.8)iL

a3 ~ A3 (7.10)

and 6 '̂s are the joint variables tor i=i,2,3.

The vectors used in Newton-Euler approach, as shown in figure 7.2 are given by
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o
(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

(7.17)
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(7.18)

A2/2

0

(7.19)

where :

= a translation vector of the origin of the coordinate system l from the 

origin of the coordinate system l - i  and expressed in the coordinate

S3x

system i.

the centre of mass of link i from the origin of the coordinate system i 

and expressed in the coordinate system i. 

the centre of mass of link i from the origin of the coordinate system 

i- 1  and expressed in the coordinate system i. 

the centre of mass of link 3 in the x direction from the origin of the 

coordinate system 3.
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Figure 7.1

The D-H representation of TQ MA200Q robot arm.

Since the mass of the end effector is assumed to be concentrated at the distal 

end of link 3, the addition of this mass to link 3 will alter the centre of mass of 

the integrated link 3 to a new position. Hence, the inertia matrix of this link will 

also be affected. Consequently, this in turn will change the dynamic behaviour of 

the robot arm.
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Figure 7.2

Vectors used in the Newton-Euler equations.

Assuming that link 3 and the mass of end effector, MLOAD, may be isolated as shown 

in figure 7.3, then the new position of the centre of mass of link 3 may be 

determined as :

MMq = rriq + MLDAD (7.20)

From basic mechanics,

m-; X A q / L + MLOAD x A-, = M M q  x  (A- S3x>

Thus,

(7.2i)
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S3x = A3 (7.22)m3 x A3/2  + ^LOAD x A3
Rm^

where MM3 is the mass of link 3 after the mass of end effector is taken into

account.

The inertia tensor matrix of each link about its joint, which is expressed in its 

own coordinate frame, is given by

0 0 0

i f
iy y

0 0 0

(7.23)

0 0 0

0 i 2yy

2*
0 0 1 2zz

(7.24)

0 0 0

3? -
‘ 3 - 0 % y y  0

0 3*
0 ! 3zz

(7.25)
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where :

1* i  0 . 5 
I ly y  = | mi R i

(7.26)

2* _ 
2 yy~

1 2 
3 rr'2 A 2

(7.27)

_
3yy _ s MM3A32 ( ( ^ r + ( ^ f )  -

2

MM3ÌA3~S3x) (7.28)

a3

Figure 7.3 

Link 3 with load.

Figure 7.4 shows the block diagram of the mathematical model. The power amplifier 

is assumed linear and there is no back lash in the gear box.
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T  ra jectory
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R
%

Gearbox] | Manipulator

Figure 7.4

Closed loop system block diagram.

Simplification is further made by neglecting the inductance of the actuator since 

the electrical time constant is much smaller than the mechanical time constant. For 

the sake of convenience, the information about actuators used by TQ MA2000 

ETecQuiptment, 1986; Escap, 1986/87] given in the appendix C is written in S.I. units 

as shown in table 7.1 where both link 1 and link 3 use the same actuators ie. MAXON 

and link 2 uses ESCAP.

The dimensions from the technical drawing which is obtained from the manufacturer 

have been used to obtain the unoptimised parameters. The weight of each link was 

obtained by evaluating its volume and then multiplying by its density. The density
3

of aluminium which is used by the robot is found to be 2698 kg/m [Anderson and 

Haupin, 1978], These unoptimised parameters were used as starting points in 

excercising the hill climbing process. From all the information obtained, the 

unoptimised parameter values are tabulated in table 7.2 where MSQE stands for
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mean squared error. Figures (7.5), (7.6) and (7.7) show the responses of the 

unoptimised model and their corresponding errors when a ramp step input is given

to each joint.

MAXON ESCAP

Power output Watt 1 1 12

Nominal voltage Volt IB 15

No load current mA 43.3 20

Terminal resistance Ohm 5.49 4.5

Rotor inductance mH 0.82 0.6

Torque constant mNm/A 20.S 33

Rotor inertia kgm'ViCf1 18.3 32

Back EMF constant V/rad/s Not available 0.0334

Mass kg 0.174 0.230

Viscous damping

constant Nms/rad.iO’k Not available 1

Table 7.1

Technical data of actuators

By assuming initially that the value of back EMF constant of actuator 2 is correct, 

there are B parameters to identify, namely mass of link i ,  m̂ ; mass of link 2 , m2 ; 

mass of link 3, m,; Mass of load, MLOAD; radius of link i, R'^; length of link 2, A?; 

length of link 3, A^; and back EMF constant of actuator i  and actuator 3,
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T h e t o l  [ R a d i a n ]

(a) Joint i  response.

Errori [Radian]

(b) Joint i  error.

Figure 7.5 

Unoptimised model.
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T he t a2  [ Ra di an ]

(a) Joint Z response.

Error2 [Radian]

(b) Joint 2 error.

Figure 7.6 

Unoptimised model.
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Theto3 [Ro di on]

Time [s]

(a) Joint 3 response.

Error3 [Rodion]

Time [s]

(b) Jo in t 3 e r ro r

F ig u re  7.7

Unoptimised model.
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Since all these parameter values are always positive, the lower bounds of all 

parameters are assigned to zero. Assigning upper bounds of parameters are

difficult without any understanding of physical knowledge. Upper bounds are then 

determined by evaluating the maximum gravity force caused by the upper bound of 

each link. This gravity force in turn must be less than the maximum torque that the 

corresponding actuator can give. For link i  where gravity force does not exist, 

the upper bound is simply 5 times its unoptimised value (there appear to be no 

formal technique for choosing this value of 5 times, so the number had to be 

chosen so that the result could be obtained). The upper bound of back EMF 

constant is found by tria l and error from simulation exercises.

ml kg 2.0468

n̂ 2 kg 0.4040

m3 kg 0.2321

MLOAD kg 1.0

R"l m 0.0493

a2 m 0.23

A3 m 0.137

Kbl-3 V/rad/s 0.03

MSQE Radian^ 2.1428-10’’^

Table 7.2

Unoptimised parameters of the basic model

The same ramp step input signal as applied to the real system during an 

experiment is given to the model under study. The difference between the output of
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the real system and the output of the model in terms of the combined mean squared 

error of joint 1, joint 2 and joint 3 is then minimised to obtain an optimum model. 

The parameter optimisation curves are obtained and shown in figure (7.S) and the 

result of optimised parameters are tabulated in table 7.3. Figures (7.9), (7.10) and 

(7 .1 1 ) show the plant and fitted model responses and their corresponding errors.

ml kg 2.93606

rr«2 kg 1.22302

ITiq kg 0.64424

MLOAD kg 1.11327

R"i m 0.05376

a2 m 0.89820

A3 m 0.32245

Kbl-3 V/rad/s 0.03776

MSQE Radian3 i.465110'3

Table 7.3

Optimised parameters of the basic model.
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T h e t a l  [ R a d i a n ]

(a) Joint i  response.

Errori [Radian]

Time [s]

(b) Jo in t 1 e rro r .

F ig u re  7.9

Basic model.
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Theto2 [ Ra d i an ]

Error2 [Radian]
0. 1 r

0 . 0

-O . A. 0 0.1 0. 2 0 . 4  0 . 5  0 . 6  0 . 8  0.9 1.0 1.2 1.3
Time [s]

(b) Jo in t Z e rro r.

F ig u re  7.10

Basic model.
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T h e t a 3  [ R a d i a n ]

Time [s]

Error3 [Radian]

(b) Joint 3 e rro r.

F ig u re  7.1 i

Basic model.
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7 2 1  Sensitivity Analysis

From the parameter optimisation curves in figure (7.8), it can be seen that the 

fundamental parameters of the distal link are more sensitive than the fundamental 

parameters of the proximal link. The modified Newton-Euler (N-E) algorithm, given in 

appendix B, can explain this sensitivity behaviour. The centre of mass of each link 

is a function of its length, so that the length of each link determines the value of 

its centre of mass. From the backward iteration of the N-E algorithm, which gives 

dynamic terms of the system, it is seen that the changes of the centre of mass and 

mass of the distal link affect the generalized torques of this link as well as the 

proximal links while the changes of the centre of mass and mass of the proximal 

link only affect its own link and do not affect the distal links. In another words, 

the parameters of the distal link are more sensitive than the parameters of the 

proximal link. In addition, the centre of mass value of link 2 is only affected by its 

length and not by its mass. As a consequence, its linear acceleration is also 

affected. Hence, for link 2, its length is more sensitive than its mass.

In the case of link i ,  its motion is restricted where it has only one degree of 

freedom about its axis. Neither nor R'  ̂ affect the movement of the

manipulator directly. They only affect the movement of the robot through its 

moment of inertia about the Yj_ axis. In another words, the fundamental parameters 

of link i  affect only the rotational component and not the translational component 

of the robot movement. Because of this and since link i  is the proximal link, the 

mass and the radius of link i  are insensitive in practice.
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1 2 2  Fidelity of The Model

From a set of parameter optimisation curves, which are shown in figure (7.8), the 

ajcj_ and Ujrj+ values to double the minimum mean squared error value can be 

determined. A damping ratio of 0.5 is assigned since it provides a reasonable rule 

covering a wide range of conditions [Butterfield, 19891. The variance of each 

parameter to eliminate on its own the differences between the measured response 

of the real system and the model output can then be determined and their standard 

deviations are tabulated in table 7.4 where ' »> ' denotes a very large value.

ml kg >»

m2 kg 0.9342

m3 kg 0.4001

MLOAD kg 0.6560

R'i m »>

a2 m 0.1674

A3 m 0.0557

Kbi-3 V/rad/s 0.0263

Table 7.4

Standard deviation of parameters of the basic model.

The parameters involved are expected to have standard deviations, from their 

corresponding optimal values, of 3% for the radius or length of each link and 10% 

for the mass of each link and load. The assignment of an expected standard 

deviation of the back EMF constant is performed by assuming that it has a
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Gaussian distribution and its mean value is the optimal value of From its

physical properties, the back EMF constant value always has a positive value. 

Choosing an area under the Gaussian tail at = 0 which lies three standard

deviations from the mean value is considered to be reasonable and gives a very 

small error function value.

The fidelity criterion as given in chapter 4 is then evaluated to assess the 

validity of the model quantitatively. For this basic model, applying the criterion 

gives

Z > "  = ( T mi  |2 , |• t m -,
f *

j r  m3 j2 i t 'MLOAD "¡4
t, cm  ̂ .1 + 1. crmo l cm;3 j l o-MLOAD ’

i T Az l2 i !
r t 'Ao

]z  + { T l<bi-3 )2
t cA7 / '1 c-a 3 ) + ^^bl-S

t 'R'

= 0.2449

The value of , because it is considerably less than inity, does not satisfy the

fidelity criterion of the distortion technique and hence the model is not capable 

of explaining the recorded response of the real system. Clearly, the model needs

improvement.

A further investigation is performed. From figures (7.9) to (7.ii), the model 

response of joint 2 has the largest discrepancy where the real system response is 

more sluggish. A scrutiny of the system behaviour is performed by observing each 

component, of the D matrix. The rotational and translational components of D11 

elements along the trajectory are computed and plotted as shown in figure (7.12). 

Since the D matrix is a function of 8, the value of each element depends on the
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nature of the trajectory. This set of plots shows that the parameters of link i  are 

not sensitive since the values of Di 2  and ^ 13  elements are very small. This is due 

to the fact that = ■n/Z and a2 = 0. It can be seen that D22  is much larger than 

D22- This implies that link 2 suffers not too much interaction caused by link 3 in 

comparison with its own inertial value. The behaviour of the system is more clearly 

understood by studying the components of each torque which exists significantly in 

the system ie. inertial torques and gravity torques. For the same trajectory, these 

components are then computed and plotted. Figures (713) and (7.14) show the 

inertial torques and gravity torques, respectively. The amount of interactions 

among the links are easily noticeable. It is clearly shown that interactions are 

mainly caused by the gravity torques while interactions due to the induction of 

inertial torques are relatively small. The sawtooth like shapes of the inertial 

torques are due to tracking a ramp input signal for a period of 0.65 secs while, 

after the input signal becomes constant, the inertial torques shapes are smooth 

and eventually die out in the steady state condition. The interaction inertial 

torques induced by accelerations of other joints are relatively small in 

comparison with their own inertial torques. The maximum inertial torques on joint 2 

and joint 3 which are caused by their own acceleration are only slightly larger 

than their corresponding gravity torques. While the inertial torques have large 

values only at the time when there is a sudden change in the trajectory and zero 

when the speed is constant, the gravity torques have relatively more constant 

values. From the plots, it- is noticed that joint 2 suffers much larger interaction 

caused by gravity torques than interaction caused by inertial torques. Since the 

same trajectories are applied to all joints, there is no significant difference 

between the interaction inertial torque on joint 2 induced by the acceleration of 

joint 3 and the interaction inertial torque on joint 3 induced by the acceleration 

of joint 2 .
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This knowledge implies that the fundamental parameters have an important role in 

the interactions of joints while other parameters such as back EMF constant give 

insignificant interactions. In other words, parameters other than fundamental 

parameters affect only their corresponding joints. Hence, it leads to an idea that 

parameters of link 2 other than mass and length can be manipulated to obtain a

better fit of joint 2 response. This parameter is the coefficient of back EMF. It

must be understood that the D matrix for a particular trajectory is a function of 

mass and length of link only and not a function of back EMF coefficient. Although 

the value of back EMF coefficient of motor 2 is available from the data sheet, its 

value still needs to be optimised due to a change of magnetic field. Hence, to 

improve the model, a new parameter, back EMF coefficient K^., should be optimised.

With a new parameter to be optimised, there are 9 parameters to identify. The

upper and lower bounds are assigned in the same manner as and the

prescribed value from the data sheet is used as a starting value. Figures (7.15), 

(7.16) and (7.17) show the model responses and its errors, it can be seen that joint 2 

has a better fit than it had in the previous model. The parameter optimisation 

curves are then obtained and shown in figure (7.18) and the result of optimised 

parameters are tabulated in table 7.5. The standard deviations of each 

corresponding parameters in order to eliminate the errors between the recorded 

response of the real system and the model output are tabulated in table 7.6.

Using the approach previously used, the expected standard deviation of is

determined in the same manner as by assuming that it has a Gaussian

distribution. The fidelity criterion is then evaluated to assess the validity of the 

model quantitatively. Applying the criterion gives
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5 X  =
t  m̂ \2 + 1' r m Z \ 2  . 1' T m3 )2 ( t 'MLOAD 12
o-m̂ ) + 1, orrt2 ) ‘.. crm3  ̂ l crMLOAD )

t 'A2

<j &2 )z v ( S f ) 2 * ' [ ; > 1 -3  f
- pKbi-3

+ ( T 'Kb2 )2 
1 ^ b 2 j

{ t 'r'i  )2
\ crRi )

= 0.4431

A definite improvement in 3>>. is clearly seen but the model still fails to satisfy 

the fidelity criterion.

ml kg 2.050781

fTî kg 0.401821

m3 kg 0.229105

MLOAD kg 1.017110

R"i m 0.049466

a 2 m 0.235155

A3 m 0.129856

Kbi-3 V/rad/s 0.037760

Kb2 V/rad/s 0.074697

MSQE Radian2- 9.98S4.10'4

Table 7.5

Optimised parameters of the basic 

model with K^2 optimised.
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rn̂ kg »>

m2 kg 0.2734

m3 kg 0.1207

MLOAD kg 0.4238

R'l m »>

a2 m 0.0294

A3 m 0.0133

Kbl-3 V/rad/s 0.0255

Kb2 V/rad/s 0.0632

Tab le  7.t>

Standard deviation of parameters of the basic 

model with Kb2 optimised.
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Basic model with optimised
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Time [s]

(a) Joint Z response.
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(b) Joint Z error.

Figure 7.16

Basic model with optimised.
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T h eta3  [R a d ia n ]

(a) Joint 3 response.

Error3 [Radian]

(b) Joint 3 error.

Figure 7.17

Basic model with optimised.
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73  Model With Viscous Friction

In order to be more realistic, the model must include some sort of energy 

dissipation. Viscous friction is not dependent upon position, instead it is 

dependent upon velocity. Moon, Chung and Cho [19861 and Armstrong [19831 

performed experiments to estimate the value of viscous friction using inverse 

dynamics identification but its sensitivity was not investigated. To include viscous 

friction on each .joint, equation (7.1) is then modified as

t j  = rxo) è + Hce,è> + Gce> + txè> (7.29)

where : 1X0) = an n x 1 viscous friction vector

Figure (7.19) is a closed loop block diagram of a system where viscous friction is 

included.

V

Figure 7.19

Closed loop system block diagram with viscous damping.
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For joint i, expressing the viscous friction with respect to the actuator side gives

umi= wmi emi + ni uji 6i

= ( Dmi + r'Z Sji ) ®mi

“ 6mi

where : V = viscous damping constant [Nms/radl

n = gear ratio (< i)

(7.30)

and subscripts : m = actuator 

j = joint 

i = no. of joint 

eff= effective value

Since the viscous damping constant is not a fundamental parameter, its existence 

will only affect its own joint response. With the viscous damping constant 

introduced as a new parameter, there are 1 2  parameters to be identified le. with 

an addition of 3 viscous damping constant effective values. Since the value of 

effective viscous damping constant is always positive, its lower bound is assigned 

to zero and its upper bound is found by tria l and error from simulation exercises. 

For all joints, zero values are used as starting points in optimising the 

parameters. The results obtained by optimising this model are given in table 7.7. 

This optimisation yields an optimised back EMF coefficient value of motor 2 closed 

to the prescribed value in the data sheet due to the introduction of viscous
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friction. Figure (7.20) shows the corresponding parameter optimisation curves. 

Although from table 7.7 the mean squared error value does not change much, figure

(7.20) shows that the parameters are more sensitive. Using this set of optimised 

parameters, the responses and errors of each joint are shown in figures <7.2i), 

(7.22) and (7.23). From figure (7.20), the standard deviations of each corresponding 

parameter in order to eliminate the errors between the recorded response of the 

real system and the model output can be evaluated and are tabulated in table 7.8.

ml kg 2.475884

m-,¿L kg 0.497314

m3 kg 0.286792

MLOAD kg 1.219998

R'l m 0.060944

a2 m 0.280288

A3 m 0.167525

Kbl-3 V/rad/s 0.034953

Kb2 V/rad/s 0.037130

Ce ffi Nms/rad 3.010' 6

®eff2 Nms/rad 2.46.10'4

®eff3 Nms/rad i.710'5

MSQE ?Radian 9.494010"4

Table 7.7

Optimised parameters of the model 

with viscous friotion.
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Since all surfaces in ambient atmosphere are contaminated in a number of forms

[Sarkar, 19801, the roughness between two surfaces may change. For example, metals 

may oxidize and this will result an obstruction in the movement. Hence, one expects 

an uncertainty in the frictional resistance. An expected standard deviation of 

viscous damping constant is obtained by assuming its distribution has a Gaussian 

distribution and its optimal value is the Gaussian mean value. As in the back EMF 

constant, an area under the Gaussian tail at = 0 is chosen to be three

standard deviations from its mean value.

ml kg //)

ffî kg 0.2930

mq kg 0.1330

MLDAD kg 0.4547

R'i m »>

a2 m 0.0313

A3 m 0.0158

Kbi-3 V/rad/s 0.0218

Kb2 V/rad/s 0.0311

Se ffl Nms/rad 8.0J.0-6

Seff2 Nms/rad 3.95J.0' 4

*Wf3 Nms/rad 3.310'5

Table 7.S

Standard deviation of parameters of the model 

with viscous friction.

This model is then assessed in the same way as before in order to check its
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validity quantitatively. Applying the criterion gives

T'ml  I2 + ( r  rn2 \2 + 1 
crn2 ; \

r  m3 \2 ( r'MLOAD \2 t 
cm3 j \ o-MLOAD ) \

■ t 'R', z  + 
crR̂  1

t 'A2 )2 t t  A3 )2 , / T 'Kbl-3 \2 { ^ b Z  )2 f T '^effi )2
ctA2 > '

hCO
<rb ^ b i . 3  > l crKb2 ) ' a^e ffi

T'^eff2 )2 . i T'*Wf3 )Z
CT̂ eff2

* 1 ■
^o ff'S

I

= 0.5973

Although the fidelity criterion ^ X 2 is greater than the previous model, it is still 

not fully capable of explaining the transient record.
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(a) Joint 1 response.
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(b) Joint 1 error. 

Figure 7.21

Model with viscous friction
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T h eta3  [R a d ia n ]

Error3 [Radian]



7.4 Model With Viscous And Coulomb Friction

Another term which is also to be considered is Coulomb friction since it is a 

redundant energy. There are not many papers which discuss this topic and some of 

them do not provide simulation results CKubo, Anwar, Tomizuka, 1986; Gogoussis, 

Donath, 1987,1988; Armstrong, 19881 Prior to modelling the Coulomb friction, there 

are some laws of friction which must be understood.

Amontons' laws of friction [Sarkar, I960] :

- The friction force is proportional to the normal force of the moving object.

- The friction force does not depend on the apparent contact area.

The proportionality between the normal force and the friction force determines 

the characteristic of the static friction coefficient ( ls and the kinetic friction 

coefficient /Up, where < tls . These two coefficients are not the intrinsic 

property of a material, instead they depend on the roughness of the contact area 

surfaces.

Coulomb's law of friction [Sarkar, 1980] :

- The friction force between two surfaces does not depend on the relative 

velocity between the two surfaces.

This law is valid only over a limited range of speed [Sarkar, 1980], If the speed 

increases up to a certain limit, the friction coefficent will fall considerably.
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The three laws stated above are used in studying the behaviour of Coulomb 

friction in the rest of this section. When the two contact surfaces are about to 

move relatively to each other, the friction rises to a certain value. This friction 

is regarded as static friction ie. when the two surfaces still stick together. When 

it achieves a maximum value, the static friction then disappears since the two 

surfaces are now moving relatively to each other. In this moment, the interface 

slips so that the friction falls to a lower value ie. the kinetic friction. The nature 

of the motion is in such a manner that it sticks, slips and is repeated for the 

whole process. Hence, it does not produce a constant smooth friction, instead it 

fluctuates about a certain mean value, and for contact surfaces which have similar 

materials, the friction fluctuates in a random manner CSarkar, 19301. Figure (7.24) 

shows the variation of friction coefficient with time.

Figure 7.24

Variation of friction coefficient ¿1 .

This behaviour was modelled by Tustin [19471 and assumed as having an exponential 

decay from its static value to its kinetic value. The equation is given by
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/ <-v/Vc>\F(v) = F0 - Fc( l  - e c ) (7.31)

where: F(v) = the friction as a function of velocity.

F0 = the maximum static friction.

Fc = the difference between the static and kinetic friction, 

v = velocity of motion.

Vc = a constant which gives the characteristic velocity at the system 

transition to kinetic friction.

Due to the presence of joint compliances, Coulomb friction can generate limit 

cycles at low speed CGogoussis and Bonath, 1987, 19881 In modelling the Coulomb 

friction, some simplifications are made. Static and kinetic friction coefficients are 

assumed equal as shown in figure (7.25), joint compliances are assumed negligible, 

the speed is high enough to avoid oscillation (jerkiness), and the dead band in the 

system due to the stick slip property is assumed negligible since the trajectory 

does not have zero velocity except in the initial and final points. All joints have 

equal coefficients of friction since they are made of the same material and 

underwent the same manufacturing processes.

Although it is true that Coulomb friction depends on the total forces at a joint 

under consideration, but since the total of the inertial forces exerted by the 

other links is zero when the corresponding joint accelerations are zero and since 

the coriolis/ centrifugal forces are insignificant in low speed, only gravity 

forces are important, which affect the magnitude of Coulomb friction. This is 

particularly true for a trajectory which is used in this research work as can be 

seen from figures (7.13) and (7.14). Moreover, not many applications use trajectories 

which have many acceleration points along them.
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/ i

v e lo c it y

Figure 7.25

Simplified Coulomb friction coefficient.

In evaluating Coulomb friction, the weight of each link at its centre of mass can be 

projected to obtain a component which acts as a normal force to a joint. So, each 

link suffers a normal force caused by the upper links as shown in figure (7.26). As 

the manipulator moves along a trajectory, the normal forces of all joints change 

accordingly. Hence, Coulomb friction causes highly nonlinear coupling in the 

system.

Based on figure 7.26 as shown below, Coulomb friction in a manipulator system can 

be approximated as

C'^ = ,S|m29sin(©2)cos(©2  ̂ + MMqgsin(02+Qq)cos(@2+®3') (7.32)

C'2 = &-(m2 9Sin*®2* + MMg95in(Q2+$q)cos<‘0q)) (7.33)

C'q = £..MMqgsin(02+Sq) (7.34)

2 i i



= Coulomb friction torque at joint i.where : C'^

C'2 = Coulomb friction torque at joint 2.

C'3 = Coulomb friction torque at joint 3.

H = effective coefficient of friction which gives the proportionality of 

Coulomb friction torque on the normal force at each joint.

Figure 7.26

Contact areas in a manipulator system.

Taking Coulomb friction into account, the dynamic equation of the manipulator now 

becomes

T j = EX0) 0 + H(0,0) + G(0) + lK0) + C'(0) (7.35)

where : C(Q) = an n x i  approximate Coulomb friction vector
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Combining viscous and Coulomb frictions yields

T j = EX9) 0 + H(ô,é) + 0!9) + F<0,0) (7.36)

where : F(9) = 1X9) + 0(9)

= an n x i  friction vector

Figure (7.27) shows a closed loop block diagram of a system where complete 

friction is included.

F

Figure 7.27

Closed loop system block diagram with complete friction.

The lower bound of Coulomb friction coefficient is assigned to zero while its 

upper bound is found by trial and error from simulation exercises and zero value 

is used as its starting point in the optimisation process. The results of optimising
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the model with complete friction are presented in table 7.9.

kg 2.517390

m2 kg 0.506972

m3 kg 0.290461

MLOAD kg 1.250307

R'l m 0.062899

a2 m 0.285755

A3 m 0.168410

Kbl-3 V/rad/s 0.033444

Kb2 V/rad/s 0.036948

£'effl Nms/rad 2 .0J.0 '6

Seff2 Nms/rad 2.53J.0' 4

Seff3 Nms/rad 2.410'5

M 0.128486

MSQE 2Radian 7.4877J.0"4

Table 7.9

Optimised parameters of the model 

with complete friction.

From table 7.9, it can be seen that introducing Coulomb friction can reduce the 

minimum mean squared error over 20'/,. Figure (7.27) shows the parameter 

optimisation curves and the output responses with their errors of this model are 

shown in figures (7.28), (7.29) and (7.30). The fundamental parameter curves show that 

the parameter sensitivities rise considerably. This is because normal forces 

depend on these parameters. The standard deviations of each corresponding
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parameter are then evaluated from figure (7.27) and given in table 7.10 below. The 

expected standard deviation of Coulomb friction coefficient is determined in the 

same manner as in the viscous damping constant ie. with the assumption it has a 

Gaussian distribution truncated three standard deviations from its optimal value.

Applying the fidelity criterion gives

5 > z «  ( l " i  )2 -  (
■ T'rri2 
, o-m2 f  + l

' T 'm3 \2 . { 
. orm3 ) + \

t 'MLOAD )2 t 
cMLGAD 1 \

r'R'i ,2 
crR̂  /

i t 'a 2 I2 + 1 r  T'A3 X2 + 1f  T'Kbl-3 |2 i i r 'K'b2 l2 i ( T % f f l
v cAo - £—

A j + 1i aKb i . 3  ) 1 aKb2 ) o-^effl

( T'ueff2 )2 j' T'üeff3 \2 |f T'ti )2

l « W  1 crüef f 3 1 crjl >

= 0.9313

The above result for the fidelity criterion of this model indicates that the model 

is almost considered capable of explaining the plant transient record. Joint 3 has 

the largest discrepancy in comparison with the other two links. This is because 

link 3, with its wrist and gripper, has the most irregular shape and it is difficult 

to evaluate or even to approximate its moment of inertia. Furthermore, the equation 

to obtain the moment of inertia of each link is based on the assumption that each 

link has a regular shape as stated in section 7.2.
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kg »>

fTî kg 0.2113

m3 kg 0.0939

MLOAD kg 0.3634

R'i m »>

a2 m 0.0253

A3 m 0.0127

Kbi-3 V/rad/s 0.0193

Kb2 V/rad/s 0.0296

^effl Nms/rad 4.010' 6

Seff2 Nms/rad 3.1410'4

Seff3 Nms/rad 3.810'5

U 0.1129

Table 710

Standard deviation of parameters of the model 

with complete friction.
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Parameter optimisation curves 

of a model with viscous and Coulomb fric tio n .
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T h e t o l  [ R a d i a n ]

(a) Joint 1 response.

Errori [Radian]

(b) Joint 1  error.

Figure 729

Model with viscous and Coulomb friction.
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T h e t a 2  [ R a d i a n ]

Error2 [Radian]

(b) Joint 2 error.

Figure 7.30

Model with viscous and Coulomb friction.

Time [s]

Time [s]
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T h e t a 3  [ R a d i a n ]

Time [s]

Error3 [Radian]

(b) Joint 3 error.

Figure 7.31

Model with viscous and Coulomb friction.
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7.5 Conclusions

The main objective of the distortion technique for validating a model 

quantitatively is the importance to know sensitivities of the model parameters. If 

a model has sensitive parameters, this means that the model equations that govern 

the dynamic system behaviour really represent the real system. On the other hand, 

if a model has a small mean squared error value, the model equations do not 

necessarily represent the real system since a small mean squared error may be 

achieved by merely manipulating the parameter values. The fidelity criterion, ^ X  , 

indicates how sensitive the model is. The weakness of this technique is in 

assigning the expected standard deviation of each parameter. It is difficult to 

assign this value and unfortunately there is no certain rule to do this task. So, 

assigning these values is based on knowledge of the physical properties of the 

system.

In applying this technique, the progression of ]>FX from a simple model to the most 

complex one is the most important thing to be noted. This will indicate whether the 

model is improving or not. In the simplest model where the back EMF constant of 

motor 2 was not identified, although the mean squared error value looks small, the 

fidelity criteria  is very poor. This condition certainly indicates that further 

investigation of the system is necessary. It is then found that the back EMF 

constant of motor 2 needs to be identified since this parameter is susceptible to 

a change due to wear. Having identified this parameter, significant improvements 

both in the fidelity criterion and in the mean squared error value are obtained. In 

order to be more realistic, some sort of energy dissipation approximation is 

introduced into the model le. the existence of friction since the friction effect 

may be quite large and is about 25'/i of the torques required to actuate the
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manipulator in typical situations [Craig, 19861. Introducing viscous damping does

not greatly reduce the mean squared error value, but the parameter sensitivities

which are the main point of the distortion technique increase. By introducing an

approximate Coulomb friction into the model, the parameter sensitivities improve
2

significantly, especially the fundamental parameters, and this leads to a of

0.9313.

From the basic model to the last model which has Coulomb friction approximation, 

the fundamental parameters of link 1 are not sensitive. This is because link 1 is 

the proximal link which means any changes in its parameters do not affect the 

upper links as can be understood from the Newton-Euler algorithm. Although the 

fidelity criterion is still slightly less than unity, it has been shown that the 

distortion technique can be applied to validate a robot arm quantitatively.

In a real time control situation in which computing time is very crucial, based on 

the results obtained, the interactions due to the inertial torques can be omitted 

as long as the trajectory does not involve much acceleration. Only interactions due 

to the gravity effects are taken into consideration. Hence, by omitting the inertial 

torque interactions, the computing time can be greatly reduced.
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CHAPTER 8

APPLICATION IN CONTROL SYSTEM  DESIGN

8JL Introduction

One application of a simulation is to study a control system with the aid of a 

mathematical model. This work is very important since all control systems which 

use model based techniques rely on the mathematical model being used. Hew control 

systems can be developed and existing control systems can be examined through a 

simulation study using a validated mathematical model to represent a real system. 

There are many robot control techniques around belonging to the class of 

nonlinear multivariable systems which can be studied through a simulation. Many 

control algorithms are proposed based on simulation studies rather than on 

experimental studies. This is due to the fact that in simulation studies, 

computation time is not as important as in the case of experimental studies.

This chapter describes a simulation study using a robot mathematical model with 

both viscous and Coulomb friction, which was developed and validated in chapter 7, 

to represent the real system. Two control schemes are examined, one of them does 

not ignore the nonlinearities of the robot while the other is a very simple control 

law commonly used in industry which does not take the nonlinearities into account. 

The former, a partitioned servo control scheme [Craig, 1986] is compared with a 

built in ordinary PID control scheme which is used by the TQ MA2000 robot arm. 

The aim of this chapter is to do a comparison among the three models which were 

developed in the proceeding chapter and to show the insufficiency of the classical 

PID control scheme. Using a partitioned servo control law, the importance of 

modelling a ■ friction term in a robot manipulator is highlighted. Confidence in
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modelling friction effects is important although the trend of' robot design is to

reduce the friction of each .joint [Fernandez, Bae and Everett, 19901 

82 . Partitioned Servo Control Scheme [Craig, 19851

This algorithm falls in the class of a computed torque technique and is based on 

the preposition that a set of highly nonlinear and coupled second order 

differential equations which governs the dynamic behaviour of a robot manipulator 

can be modified in such away that it appears as a new system which has a set of 

linear uncoupled second order differential equations. In addition, this new system 

has a unit inertia which further simplifies the problem. The salient advantage of a 

system which is linear and decoupled is that the configuration of all links does 

not affect the characteristics of the control system employed in the system. The 

evaluation of a control system is sufficiently performed in a single configuration. 

This in turn will yield a good control system in all areas inside the workspace. 

Details on the control law partitioning technique can be found in [Craig, 19961.

Disturbances, such as gravity effects and friction, in the system can be eliminated 

by injecting a compensation signal, and inertia coupling can be decoupled by 

manipulating the corresponding controlled signal. As in the other model based 

control techniques, this technique relies heavily on the accuracy of the 

mathematical model which is used to linearize and decouple the system. Lack of 

knowledge of parameters is the major problem in this technique and among them is 

friction effects. The contributions of friction effects which were modelled in 

chapter 7 are examined.

■Since the result of the control partitioning technique depends on the accuracy of



the model being used to compute the required torques, three different cases are 

examined in which three different models with their corresponding optimised 

parameter values which were developed in chapter 7 are used to linearize and 

decouple the system. These three different models are the basic model, the model
ry _

with viscous friction and the model with complete friction- with of 0.4431, 

0.5973 and 0.9313, respectively. With each model in each case is used in evaluating 

the inverse dynamics to obtain the required torques, the inferiority/superiority of 

each model can then be examined and compared with other models.

Figure (3.1) and figure (3.2) show the block diagram of- the system which utilizes a 

control law partitioning technique. Unless stated, all variables are related to the 

variables in chapter 7 and '*■' denotes an optimised parameter value of the model.

Figure B.i

Block diagram of a closed loop system employing 

a control law partitioning technique.
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i______________________________________________________ i
Plant

Figure 8.2

Block diagram inside a plant.

The generalized torque vector of a three degree of freedom manipulator, with 

respect to the link side, can be expressed in the following form

t x = D<e> è + R e ,è) ( 8 .1 )

where: t j = a 3xi generalized torque vector with respect to the link side.

D = a 3x3 symmetric inertial acceleration related matrix.

P = a 3x1 disturbance vector with respect to the link side.

0 = a 3x1 joint variable vector with respect to the link side.



8 = a 3x1 joint velocity variable vector with respect to the link side.

0 = a 3xi joint acceleration variable vector with respect to the link

side.

Expressing the generalized torque vector with respect to the actuator side gives 

the following (dropping 9 and 0 for brevity)

T m = N D 0 + N P  (8.2)

where Tm = a 3xi generalized torque vector with respect to the actuator side. 

N = a diag(nj_, ng, nq) gear ratio matrix.

Taking the actuator inertia into account, then the required output torque of each 

actuator, t , in order to drive each joint including its own inertia is given by

r  = ( N D + J ) 0  + N P  (8.3)

J ■
where: J = a diag(J^, Jg, Jq) actuator inertia matrix and 

From figure (8.2), a parameter matrix is introduced

K = diag(Kj_, Kg, Kg) (8.4)



where: K = an integrated amplifier and actuator parameter matrix.

Fr = terminal resistance [Qhm3.

= gain of the linear power amplifier.

Ky^ = torque constant of the actuator CNewton.m/Ampl

and let the proportionally back EMF matrix be

V = diag(Vi( W2, V3> (3.6)

Khi
V: = (8.7)

1 *1

where: = back EMF constant of actuator [Volt.s/radianl

Based on figure (8.2), where 8̂  = nO^, the relationship between the voltage which is 

applied to the input of the amplifier and the response of the robot arm is given by

v = K (N D + J! 6 + K N P + N_iV 0 (8.8)

If the second and the third terms are treated as disturbances, equation (8.8) then 

becomes

v = M* 0 + S* (8.8)

M* = K (N D + X' (8 .10 )

S* = K N P + N '1 V 0 (8.11)
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Equation (8.9) is the complete inverse dynamics equation of a three degree of 

freedom manipulator where both the actuator and the linear amplifier are taken 

into account. When a PID controller is employed at each .joint then, from figure (8.1), 

the applied input voltage to the amplifier, v, is computed by the inverse dynamics 

equation, which is given by equation (8.9), as

= M (©d-e) + (©d- ©) dt + K ĵ (©d- ^) + ©d | S* (8.12)

where: Kp -  a diag(Kpj_, Kp2 , Kp^) proportional gain matrix.

Kj = a diag(Kjj_, Kj£, Kj^) integral gain matrix.

Kj} = a diagdip^, Kĵ i Kp-q) derivative gain matrix.

A subscript d  denotes the desired value (preplanned trajectory).

Let the error vector be

e' = ©d - e (8.13)

and equating equation (8.9) and (8.12) yields

Kp dt e + e = M* 1 (M
A 1

- M*) © + (S* - S' ■>) (8.14)

From equation (8.14), the objective of the partitioned control technique is 

accomplished, le. the system becomes linear and decoupled, and appears as a unit 

inertia system, only if the dynamic mathematical model is accurate which implies
aX X a| X

that M = M and S = S Thus, since it is assumed that there is no modelling 

error, from equation (8.14) the characteristic equation for joint i is then given by
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(8.15)Kpi e i + <i i  / n dt + KDi é'i + ë'i = 0

Or, in Laplace form,

S '-" +  k j j ^  5  +  K p ^  ^  — 0 (8.16)

As the new system is linear, choosing the right values of controller gains for a 

specific characteristic will be valid for all joint configurations. By locating the 

roots of the characteristic equation in the right places, a critica l damped 

response can be obtained. In a third order system, a critical damped resopnse can 

be approximated by having equal values for the firs t two roots and placing the 

third real root far enough to the left of the firs t  two roots. Since the transient 

time of the third root is much faster, its transient response is then negligible.

iing,

Kp = ii.O (8.17)

Kj = 5.0 (8.19)

Kd = 7.0 (8.19)

for all joints will put the firs t two roots at -1 and the third root at -5. Since the 

transient time of the third root is five times quicker than the transient times of 

the firs t two roots, the transient, time of the third root is then fast enough to be 

neglected [DiStefano III, Stuberrud and Williams, 19761 By having all roots in this 

configuration, the system can be approximated to have a critical damped response.



Since it is assumed that there is no modelling error, consequently the

characteristic of the system which is given by equation (8.15) is assumed to apply 

to all three cases in designing a control system. This results that the PID 

controller gains are equal for all cases. However, although in ail cases the PID
A J  A j

controller gains are equal, each model gives its own values of M and S in order 

to make the system linear and decoupled with unit inertia. Equation (8.14) shows 

that the performance of the system depends on the accuracy of the model being 

used and this is to be examined in the following cases. The basic model and the 

model with viscous friction, which were developed in chapter 7, will be used to
A*

compute the values of M and S in case 1 and case 2, respectively, where the 

plant is represented by a model with complete friction. So, how true the assumption 

that there is no modelling error in designing the control system using the control 

partitioning technique, can be observed from the resulting responses. The 

importance of the inclusion of the Coulomb friction in the model is examined by
A J

implementing the model with complete friction to compute the values of M and S 

and is given in case 3.

8.2_L Case i  : Basic Model

The dynamic behaviour of the robot manipulator is approached by the basic model

35

Tj = D(0> 0 + H(0,0) + G(0.) (8.20)

and

P = H0 0- + G<0) (8.2i)



Equation (8.10) and (8.11) then are approached by (dropping 6,6)

M* = K (N D + J) (8.22)

S* = K N (H + G) + N '1 V 6 (8.23)

For convenience, a sinusoidal trajectory with a period of 3 seconds is used for all 

joints. The controller gains for all joints are given by equations (3.17), (8.13) and 

(8.19).

Initially, link 1 is at 130 degrees, link 2 is at 45 degrees (0.7854 radian) and link 

3 is at 0 degrees. An amplitude of 60 degrees (1.0472 radian) is given to all joint 

trajectories where the trajectory of joint 2 has a different phase angle. Figure 

(8.3) shows the responses where the basic model with its optimised fundamental 

parameters (mass and length of each link) and back EMF coefficient values is used

A j * J
to compute the values of M and S . It is seen that the output responses of all 

joints have significant reductions in the amplitude in comparison with their 

corresponding input trajectories.
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Thetal [Radian]

(a) Joint i  response

Theta2 [Radian]

(b) Joint 2 response
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Theta3 [Radian]

(c) Joint 3 response 

Figure 8.3
a *  A J

The system response with a basic model to compute M and S

8.2.2 Case 2 : Model With Viscous Friction

A. IT A  JE
With a model incorporating viscous friction, v, used to compute M and S , the 

dynamic behaviour of the robot is approximated by

T j = 1X0) 0 + H(0,9> + G:0) + tX0> (S.24)

and

p = ñ<e,é) + G-e: + íké> (8.25)

The expression to approximate M is similar to the one in the previous case, ie.
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equation (8.22) but with different optimised fundamental parameter values while the

disturbance is approximated as

A  If- A  A  /\ _ 'I A
S* = K N !H + G + U! + N 1 V 0 (8 .26)

The initial conditions of link i ,  link 2 and link 3 are the same as in case 1, ie. link

i  is at 180 degrees, link 2 is at 45 degrees (0.7S54 radian) and link 3 is at 0

degrees. Sinusoidal trajectories with the amplitude of 60 degrees (1.0472 radian)

and the period of 3 seconds as in case 1 are given to all joints. Using the same

initial values, trajectories and controller, gains as in case 1, the accuracy of

this model in linearising and decoupling the system can then be observed. Figure

(8.4) shows the responses where the model incorporating viscous friction with its

corresponding optimised parameter values is used to compute the values of M and 

* {
S . The response 

enlarged, than the

of each joint is noticeably better, where the amplitude is 

responses in the previous case.
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Thetal [Radian]

(a) Joint 1 response

Theta2 [Radian]

(b> Joint 2 response

233



(c) Joint 3 response 

Figure S.4

The system response with a model incorporating
A  J. A *

viscous friction to compute M and S

8.Z3 Case 3 : Model With Viscous And Coulomb Friction

Coulomb friction, C , is added into the model in order to improve the system 

performance, and the required torque to drive each joint is approximated by the 

inverse dynamics equation as

r j  = bm  0 + H<e,0) + Gee) + (ke) + c'(e> (8.27)

and

p = i+:e,9) + g :o> + t>;©> + c'<e> ( 8 .28 )
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a£
and as in the previous cases, the expression to approximate M is given by 

equation (8.22) with different optimised fundamental parameter values. By giving the 

addition of a Coulomb friction term, the disturbance is then approximated as

S* = K N (H + G + V  + C) + N '1 V 6 (8.29)

The same initial conditions as in the previous cases are applied to the link i ,  link 

2 and link 3 where link i  is at 180 degrees, link 2 is at 45 degrees (0.7854 radian) 

and link 3 is at 0 degrees. The input trajectories to each joint are not changed as 

in case i  and case 2 with the same amplitude and period. The controller gains for 

all joints are kept constant as in the previous cases, so that the resulting 

performance of each joint response can be compared with the previous results. 

Figure (8.5) shows the responses where the model incorporating both viscous and 

Coulomb friction with its corresponding optimised parameter values is used to
A  JC A l

compute the values of M and S . The result shows that the overall system 

performance is further improved in comparison with the performance in case 2 

where all joint responses have good agreements with the sinusoidal inputs.

With a partitioned control technique employed in the system, the gain settings can 

be kept constant for all areas inside the work space without degrading the 

responses of all joints.
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Thetal [Radian]

(a) Joint i  response

Theta2 [Radian]

(b) Joint 2 response
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' Theta3 [Radian]

Time [s]

The system response with a model incorporating both viscous
A  J  * }

and Coulomb friction to compute M and S

8.3 Classical PID Control Scheme

The classical PID control scheme is expected to have a poorer performance when 

applied to a robot manipulator in comparison to the PID control partition scheme. 

This classical technique is one of the earliest techniques applied to industrial 

robot manipulators. Nonlinearities in the robot mathematical model mean gravity 

and friction effects change as the robot moves from one configuration to another 

configuration. Things get even worse as the inertial acceleration related matrix D 

also changes. Hence., it is impossible to select fixed gains to a desired 

characteristic for all areas inside the work space
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Initially, link i  is at 180 degrees, link 2 is at 45 degrees (0.7854 radian) and link 3 

is at 0 degrees. These initial conditions are the same as in the partitioning 

control technique case. In order to have an idea how the system behave under this 

classical PID control scheme in comparison with the performance of the 

partitioning -control technique, the same sinusoidal trajectories as in the 

partitioning control - technique case are employed to all .joints. The controller gains 

of each joint, which are selected by tria l and erro r so that the best responses of 

all joints can be obtained, are as follows Kpj_ = 25.4, Kj^ = 5.2 and = 21.9; Kp£

= 29.2, = 3.8 and = ii3.b; hp^ = 2z.S, = 4.3 and = 21./. Figure 8.to

shows ■ the responses of each joint. In this gain setting, all joints follow their 

corresponding trajectory nicely, although each joint exhibits a phase lag.

To show nonlinearities in a robot control system, a different initial value is given 

to joint 2 while initial values of other joints remain constant. No changes are made 

to all controller gains and trajectory of each joint. In this case, the initial value 

of joint 2 is at 90 degrees (1.5708 radian). With this configuration, as link 2 and

link 3 are at right angles (vertical position), the inertia value suffered by joint 1

due to its own joint acceleration is at its minimum and gravity effects at both 

joint 2 and joint 3 are at their minimum too. All these changes give significant 

effect to the responses of all joints. Figure (8.7) shows that joint 2 and joint 3 

suffer considerably overshoots.
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(a) Joint i  response

Theta2 [Radian]

Time [s]

(b) Joint 2 response
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Theta3 [Radian]

Time [s]

<c) Joint 3 response 

Figure 8.6

Joint responses using a classical PID control system

Thetal [Radian]

Time [s]
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Theta2 [Radian] Reference Input

(b) Joint 2 response

Theta3 [Radian] .u J --------------- Reference Input

(c) Joint- 3 response 

Figure 8.7

Classical RID control system with overshoots.



In a practical situation, an average gain is selected to overcome the problem of

nonlinearity. This average gain is usually selected with respect to the centre of 

the work space. For the sake of safety, an overdamped response is preferable to a 

critical damped or underdamped response.

8.4 Conclusions

Simulation studies show that nonlinearities inherent in the robot system cannot be 

neglected. There are many control techniques around proposed to overcome this 

problem [Li, 1989a; Fernandez, Bae and Everett, 19901, but the problem is back to 

the availabilities of expensive high speed computers to carry out the algorithms. 

Khosla and Kanade [19831 performed a real time evaluation of a model based 

contnol scheme. Kararn and Warwick [19891 proposed a novel practical 

microprocessor based controller. To reduce the computational burden in model 

based contnol of manipulators, some customised computer architectures have been 

proposed such as to compute the inverse dynamics [Khosla and Ramos, 1933; 

Vuskovic, Liang and Anantha, 19901 Through a simulation study, it is shown that the 

individual FID technique is not suitable, but for economic reasons, present day 

manipulators are still controlled with a simple RID control scheme and avenage 

gains are chosen in the centre of the work space.

2
A simulation study also shows that the larger the value of in the model the

better the response and that omitting friction effects can cause considerable 

discrepancy between the plant and model responses. Although a friction effect is 

relatively less siginificant than the gravity effect, its existence cannot be 

neglected in modelling and at least an approximation of the fniction term must be 

carried out. In spite of the fact that ‘ a partitioned control law is rarely  used in
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many practical situations due to the need of a second derivative of a trajectory

[Craig, 19861 and a high speed computer, this control algorithm is very useful in 

studying the behaviour of a robot manipulator eg. in the existence of friction.
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CHAPTER 9

CONCLUSIONS AND SUGGESTIONS 

FOR FUTURE WORK

9JL Conclusions

The fundamental concepts of mathematical modelling and computer simulation as 

well as model building have been presented. Principal simulation steps have been 

included in this study and this lead to the realization of the importance of model 

validation. The distortion technique to validate a mathematical model quantitatively 

has been thoroughly reviewed. Both the time domain approach and the frequency 

domain approach have been outlined. In order to be applicable to a robot system, 

the frequency domain approach has been extended from a single measured variable 

case to a multiple measured variable case.

Various aspects concerning an industrial robot have been given. The derivation of 

a mathematical model of an industrial robot with revolute joints has been studied 

in detail. The Newton-Euler approach in deriving the robot dynamics equation has 

been chosen since it leads to a deep understanding of how a robot arm behaves. 

And also, from the distortion quantitative validation technique point of view, this 

method is the most suitable.

Implementing the distortion technique to a robot system has been discussed. This 

covers from selecting important parameters to creating a simulation program. In 

order to be able to select important parameters which are to be distorted, a study 

about the importance of inertial parameters has been carried out and this leads to

introducing a new term called the fundamental parameters where all inertial
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parameters depend on the value of these fundamental parameters. For each link,

the fundamental parameters are the mass and the length.

An experiment to obtain recorded transient measurements has been carried out 

using a TQ MA2Q0Q robot arm which is located in the computer control laboratory. 

Some modifications in the software were necessary to be done before 

measurements could be carried out. A ramp step input signal was applied to .joint i, 

joint 2 and joint 3 as this was the simplest trajectory but was s till capable of 

giving dynamic properties of the robot. Based on this result, the robot 

mathematical model was validated.

The distortion technique based on the transfer function approach has been used to 

validate robot models quantitatively since it is more practical over the time 

domain approach. As the model parameter uncertainties are taken into account in 

validating the model, the analysis in evaluating the parameter sensitivities has 

given further insight into the dynamic behaviour of the robot. This has led to an 

idea that if the trajectory does not involve much acceleration, the interactions 

due to the inertial torques can be omitted. Although the distortion technique is 

relatively more objective in validating a model quantitatively, this technique has a 

weakness ie. in assigning the expected standard deviation of each parameter. With a 

simplified model where each link is assumed rigid and considered as a line with a 

uniform distribution of mass, the model with complete friction can produce a 

reasonably good fit with the exception of link 3 since it is difficult to find its 

dynamic information due to its highly irregular shape.

Finally, the application of a validated robot model to represent a real system for 

the control purposes has shown that the friction term is important and hence must
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be included in the model. Examining the built in classical PID control scheme which

is used by the TQ MA2QQ0 robot arm has indicated that the classical PID technique 

is not suitable for controlling a robot arm. So, this is a challenge in the future to 

modify the control algorithm used by the TQ MA2000 robot arm.

9 2 . Suggestions For Future Work

As mentioned before, although the frequency domain approach is more practical to 

implement over the time domain approach, this approach suffers from some 

assumptions, eg. the use of a second order transfer function for representing the 

discrepancy between model and plant responses. This approximation should be 

investigated further by applying this technique to many other systems. A more 

rigorous mathematical derivation would raise the credibility of this approach.

On the other hand, the time domain approach, which is relatively more accurate 

suffers from the burden in the mathematical difficulty. A simplification of this 

mathematical problem should be investigated, so this technique can be more easily 

implemented.

In the second area, the controller board of this robot which accomodates the 

control algorithm needs a major modification. It needs a more powerful and faster 

microprocessor as well as more RAM to store the necessary coefficient values. The 

architecture should allow more summing points, so more advanced control 

algorithms can be implemented. An analogue power amplifier is preferable rather 

than a pulse width modulation one since it allows many other aspects of parameter 

estimation to be done and this may lead to further control research work. All 

these modifications will lead to a more advanced controller with faster sampling
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rate. A faster host computer is also preferable since this will allow more 

sophisticated trajectories to be used.

In order to do advanced works, the robot needs force/ torque sensors such as 

strain gauges and a more sophisticated -end effector. But the modification in the 

mechanical part of the robot is less necessary than the modification in the 

controller.
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APPENDIX A

For a rigid body which is free to move in three dimensions, there are an infinite 

number of possible rotation axes. A complete way of characterising the mass 

distribution of a rigid body is the inertia tensor, which can be thought of as a 

generalisation of the scalar moment of inertia of an object.

The inertia tensor matrix relative to a coordinate system i may be expressed in 

the matrix form as the 3x3 symmetric matrix.

Ixx - Ix y  "Ixz

I = ■Ixy lyy ~Iyz

'*xz _Iyz Izz

where Z il y + z

( x^ + z‘ 

( x~ + y*

xy p dv

xz p dv 

yz ,0 dv

) p dv 

) ,0 dv 

) P  dv

and the rigid body is composed of differential volume elements, dv, with material 

density, p, and located with a vector ( x’,y',z' )T with respect to a coordinate system 

i.
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APPENDIX B

The recursive Newton-Euler equations of motion in this appendix is a modification 

of the existing algorithm CLuh, Walker and Paul. 19801 where in the backward 

iteration, the inertia matrix of link i is evaluated about joint i and expressed 

in the coordinate system i.

Forward iteration

i i _  . i - i  ,
“ i = Ri - i  < “ i - l  + ^ i  >

i - i 0 / i-1 - i-1 v \
“ i = Ri - i  I. “ i-1 + zodx + “ i - i  X Zpdi )

\  ^  X ^  X ( ^  X Xpx ) + < 1' i Vi.i  )

i -  i.-. i . v i i v / i v i \
a! = Vi-1 + “ i X Ci + “ i X ( « i  X cx )

Backward iteration

i nn, Hi: '  v *  ^  1*1
C 1 X  V l - i

i -  1 D  i +  i -  lj-
f I = Rl + 1 f l + i  + F i

X X 1 + 1 i ,, , i „  i+ i.n, = nn, + Ri+i ni+1 + P, X ( R^., f,^.t )i+1 1+1
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where

i R1+i a 3x3 rotation matrix which transforms any vector in the coordinate

system i+ i to the coordinate system i.

Oi

1

i-th joint variable.

position of the origin of coordinate system i from the origin of 

coordinate system i-iand expressed in the coordinate system i. 

position of the centre of mass of link i from the origin of coordinate 

system i and expressed in the coordinate system i. 

angular velocity of link i expressed in the coordinate system i. 

angular acceleration of link i expressed in the coordinate system i. 

linear acceleration of the origin of coordinate system i - i  and 

expressed in the coordinate system i.

inertia matrix of link 1 about joint i and expressed in the coordinate 

system 1 .

lnn.

lH:

= mass of link i.

= force at the centre of mass of link i and expressed in the coordinate 

system l.

= force at joint i expressed in the coordinate system i.

= moment at joint i due to motion of link i alone expressed in the 

coordinate system l.

= moment at joint i due to motions of link i and the distal links., and

expressed in the coordinate system i.



APPENDIX C

TECHNICAL SPECIFICATION OF TO MA2000 ROBOT ARM

Repeatability

Accuracy

Power Transmission :

Waist : Motor - Maxon 2332-908-11-151-000

Driving through iOO-i gearbox 

and 60:10 pulleys.

Shoulder Motor - Escap 34LÜ-224E-5

Driving through 1231 gearbox 

and 62T2 pulleys.

Elbow Motor - Maxon 2332-903-11-151-000

Driving through 100:1 gearbox 

and 40:12 pulleys.

Gain of power amplifiers of joint 1, 2 and 3 : 28

Joint position tranducer Plastic film potentiometer with linearity of

: + 2 mm.

: + 3 mm.

(main axes only).



MAXON ESCAP

Power output Watt i l 12

Nominal voltage Volt 18 15

No load current mA 43.3 20

Terminal resistance Ohm 5.49 4.5

Rotor inductance mH 0.82 0.6

Torque constant mNm/A 20.8 33

Rotor inertia kgm^.10"' 18.3 32

Back EMF constant V/iQQQ rpm Not available 3.5

Mass g 174 230

Viscous damping

constant Nms/rad.iO"^ Not available 1
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